
Politecnico di Milano

School of Industrial and Information Engineering

Master of Science in Automation and Control Engineering

Master Thesis

Analysis of Identified Models
for Quadruple-Tank Process

Supervisor

Prof. Riccardo Scattolini
Candidate

Korcan Defineci
925522

Academic Year 2020-2021

Acknowledgements

First, I am truly grateful to my parents who encouraged and supported me during
my master’s degree at Politecnico di Milano.

I would also like to thank Prof. Riccardo Scattolini for his guidance and patience
during the progression of my thesis.

Last but not least, I am thankful to all healthcare professionals around the world
who are fighting against the coronavirus pandemic.

K o r c a n D e f i n e c i

i

Contents

Acknowledgements i

Table of Contents iv

List of Figures vi

List of Tables viii

Abstract ix

Sommario xi

Abbreviations xiii

Introduction 1
Outline . 1

1 Physical System 3
1.1 System Description . 3

1.1.1 Nonlinear Dynamics . 4
1.1.2 Linearized Model . 6

1.2 Plant Simulator in MATLAB/Simulink 12
1.3 Summary . 14

2 Linear Model Identification 15
2.1 State-Space Models . 20

2.1.1 Model Structure . 20
2.1.2 Identification . 20
2.1.3 Validation . 21

2.2 ARMAX Models . 27
2.2.1 Model Structure . 27
2.2.2 Identification . 28
2.2.3 Validation . 30

2.3 Output-Error Models . 33
2.3.1 Model Structure . 33
2.3.2 Identification . 34
2.3.3 Validation . 35

2.4 ARX Models . 40

iii

iv CONTENTS

2.4.1 Model Structure . 40
2.4.2 Identification and Validation 40

2.5 Comparison of the Selected Linear Models 43
2.6 Summary . 44

3 Nonlinear Model Identification 45
3.1 NARX Models . 46

3.1.1 Model Structure . 46
3.1.2 Identification and Validation 47

3.2 Hammerstein-Wiener Models . 56
3.2.1 Model Structure . 56
3.2.2 Identification . 57
3.2.3 Validation . 58

3.3 Neural NARX Models . 65
3.3.1 Model Structure . 65
3.3.2 Identification . 66
3.3.3 Validation . 69

3.4 Comparison of the Selected Models 75
3.5 Summary . 76

Conclusions 79

Bibliography 83

Appendices 85

List of Figures

1.1 Four-Tank system used in laboratory of University of São Paulo [1] . 3
1.2 Schematic diagram of the Quadruple-Tank Process [2] 4
1.3 Pole-Zero Map of the overall transfer function G(s) 10
1.4 Principal gains of the system . 11
1.5 Simulator of the plant . 12
1.6 Transient responses and steady-state values for h1, h2, h3 and h4 . . 13

2.1 Example of a periodic PRBS input signal [3] 16
2.2 Asymmetric PRBS signals for the inputs qa and qb 16
2.3 Proposed order for a state space model by N4SID method 18
2.4 Impulse responses from inputs to outputs with 3σ confidence level . 18
2.5 Autocorrelation of the residuals for the outputs 23
2.6 Cross-correlation for the output residuals with associated inputs . . . 24
2.7 The fourth order state space model on the validation data 24
2.8 Asymmetric PRBS inputs for additional tests 25
2.9 Scheme of an ARMAX model in the SISO case [4] 28
2.10 The chosen ARMAX model vs. validation data set 31
2.11 Residue correlations of the selected ARMAX model 32
2.12 Scheme of an Output-Error model in the SISO case [5] 33
2.13 Transient response of some OE models with default solver 34
2.14 The candidate OE model (oe221) vs. validation data 37
2.15 Cross-correlations of the candidate model on the validation dataset . 37
2.16 Step responses for the chosen OE model 39
2.17 Comparison of residue correlations of different ARX models 42
2.18 The candidate ARX model vs. validation data set 42

3.1 The relationship between the corresponding regressors and the first
output . 48

3.2 The comparison of the candidate NARX models on validation dataset 52
3.3 Residue correlations of the candidate NARX models 53
3.4 Scheme of a Hammerstein-Wiener model in the SISO case 56
3.5 The candidate Wiener model vs. validation dataset 60
3.6 The performance of the calibrated Wiener model on the validation

dataset . 61
3.7 Residue correlations of the candidate Wiener models 62
3.8 Saturation non-linearity plots for both outputs 63
3.9 Performance comparison of the train, validation and test data points 67

v

vi LIST OF FIGURES

3.10 Simulated response diagram for the output h1 on the estimation dataset 67
3.11 Simulated response diagram for the output h2 on the estimation dataset 68
3.12 Linear regression plot of the simulated outputs on the estimation dataset 69
3.13 The selected Neural NARX model vs. validation dataset 73

List of Tables

1.1 System parameters . 5
1.2 System dynamics with regard to valves’ positions of QTP 8

2.1 Fit% of different State-Space models on the estimation dataset . . . 20
2.2 Fit% of the estimated State-Space models vs. validation data 21
2.3 Average Fit% of different State-Space models on the test datasets . . 25
2.4 Fit% and nAIC of the estimated ARMAX models with different orders 29
2.5 Fit percentage of the candidate models on the validation and test

datasets . 30
2.6 Fit% of different OE models with orders nb and nf on the estimation

dataset . 35
2.7 Fit% and cross-correlations of the estimated models vs. validation data 36
2.8 Average fit% of the candidate models on the test datasets 38
2.9 Performance of the estimated ARX models with different orders . . . 41
2.10 Performance of the candidate ARX model on the test datasets 43
2.11 Comparison of the obtained models with different methods 44

3.1 The maximum value for the first output h1 on the NARX plots . . . 48
3.2 The maximum value for the second output h2 on the NARX plots . . 49
3.3 Performance of the obtained NARX models after adding regressors

iteratively . 49
3.4 Performance of the acquired NARX models after adding nonlinear

regressors with higher degree of polynomials 51
3.5 Performance comparison of the candidate NARX models (Polynomial

vs. Non-polynomial) . 52
3.6 Performance of the selected Polynomial NARX model vs. test datasets

never used before . 53
3.7 Fit% of different Wiener models on the estimation dataset 58
3.8 Fit% of the estimated Wiener models on the validation and test datasets 59
3.9 Fit% of the estimated models with different input-output nonlinearities

and with the orders nb = 2, nf = 2, nk = 1 60
3.10 Fit% comparison of the candidate Wiener models on the new test

datasets . 62
3.11 Average Fit% of the trained NNARX models on the validation and

test datasets . 70
3.12 Average Fit% of the trained NNARX models with candidate orders

and different number of basic neurons in the hidden layer 71

vii

viii LIST OF TABLES

3.13 Fit% of the candidate NNARX models with different weights and
biases on the validation, the first and the second datasets 71

3.14 Average Fit% of the candidate NNARX models with different weights
and biases on the new test datasets 72

3.15 Performance comparison of the selected nonlinear models 75

Abstract

The objective of this thesis is to analyze the identified models for the Quadruple-Tank
Process. In this work, both linear and nonlinear model identification methods are
employed by means of the MATLAB/Simulink.

In the first part of the work, the Quadruple-Tank System is described and the
mathematical model of the process is stated. Then, the linearized model is obtained
and the main characteristics of the corresponding system is examined by using the
linearized model.

In the second part of the thesis, seven different methods are utilized so as to
identify the system. Four of them belong to linear models and the remaining ones
are the part of nonlinear models. The linear methods are State-Space, ARMAX,
Output-Error (OE), and ARX models; the nonlinear ones are Polynomial NARX,
Hammerstein-Wiener, and Neural NARX (NNARX) models. For all identified models,
first, the structure of the considered models is specified. Afterwards, the models are
estimated by using the estimation dataset. In the validation phase, the estimated
models for each method are tested on the different datasets and the acquired models
are compared based on NRMSE criterion and residual analysis in order to select one
of them. After that, the parameters of the selected models are reported. Finally, the
seven selected models are contrasted to decide which one is the best.

ix

Sommario

L’obiettivo di questa tesi è analizzare i modelli identificati per il Processo Quadruple-
Tank. In questo lavoro vengono utilizzati metodi di identificazione di modelli sia
lineari che non lineari tramite MATLAB/Simulink.

Nella prima parte del lavoro viene descritto il Quadruple-Tank System e viene
presentato il modello matematico del processo. Quindi, si ottiene il modello lineariz-
zato e si esaminano le caratteristiche principali del sistema corrispondente utilizzando
il modello linearizzato.

Nella seconda parte della tesi vengono utilizzati sette diversi metodi per identi-
ficare il sistema. Quattro di essi sono modelli lineari e i restanti sono modelli non
lineari. I metodi lineari sono i modelli State-Space, ARMAX, Output-Error (OE)
e ARX; quelli non lineari sono i modelli Polynomial NARX, Hammerstein-Wiener
e Neural NARX (NNARX). Per tutti i modelli identificati, in primo luogo, viene
specificata la struttura dei modelli considerati. Successivamente, i modelli vengono
stimati utilizzando il set di dati di stima. Nella fase di validazione, i modelli stimati
per ciascun metodo vengono testati sui diversi dataset e i modelli acquisiti vengono
confrontati in base al criterio NRMSE e all’analisi residua per selezionarne uno.
Successivamente vengono riportati i parametri dei modelli selezionati. Infine, i sette
modelli selezionati vengono messi a confronto per decidere quale sia il migliore.

xi

List of Abbreviations

MIMO Multiple-Input and Multiple-Output

QTP Quadruple-Tank Process

LCD Least Common Denominator

GCD Greatest Common Divisor

N4SID Numerical Algorithm for the Subspace State-Space System Identification

NRMSE Normalized Root-Mean-Square Error

SEM Simulation Error Minimization

SISO Single-Input and Single-Output

ARMAX Auto-Regressive Moving-Average with Exogenous Inputs

OE Output-Error

SQP Sequential Quadratic Programming

ARX Auto-Regressive Exogenous

NARX Nonlinear Auto-Regressive Exogenous

NNARX Neural Nonlinear Auto-Regressive Exogenous

LM Levenberg-Marquardt

MSE Mean-Square Error

LOOCV Leave-One-Out Cross-Validation

NMPC Nonlinear Model Predictive Controller

xiii

Introduction

For nonlinear dynamical systems, it is difficult to acquire a precise mathematical
model; hence, identification of nonlinear systems is required for most problems
encountered in the process industry [6] [7] [8] [9] [10] [11] [12] [13] [14]. In this work,
the considered nonlinear system is a Quadruple-Tank, comprehensively described
in Chapter 1. For the Quadruple-Tank Process (QTP), some linear models have
been identified in ARX, ARMAX, and State-Space forms in [15] and [16]. Besides,
several Polynomial and Neural NARX models have been used in order to identify
the Quadruple-Tank System, such as in [7], [17]. Some other nonlinear model
identification methods like Hammerstein and Wiener have been utilized for the
considered process in [18] and [19]. The corresponding system has also been identified
by using the Volterra series in [20].

This thesis is aimed at analyzing the identified models for the QTP. For the
identification of the corresponding nonlinear dynamical system, both linear and
nonlinear models contribute to this work.

Outline

The thesis is organized as follows:
Chapter 1 is aimed at describing the physical properties of the Quadruple-Tank

Process. For this purpose, the components of the corresponding system and its
working principle are specified. The nonlinear mathematical model of the system is
then expressed. The linearized model is also represented and the main characteristics
of the plant are determined by analyzing the multi-variable poles, invariant zeros
and singular values of the linearized model. Besides, minimum and nonminimum
phase modes are explained and their relation with the positions of the process valves
are indicated. At the end of this chapter, the simulator of the plant is displayed and
the transient responses under stationary operating conditions are shown.

Chapter 2 describes, first, the excitation signals utilized in order to identify
the system. Then, the data preprocessing procedure is explained. The prediction
and simulation modes are mentioned as well. Afterwards, the input-output delay
is defined and how it has been chosen is clarified. Thereafter, the equation of the
Normalized Root-Mean-Square Error (NRMSE) is provided and the fit percent quality
metric with regard to NRMSE is reported. In Section 2.1, first, the structure of
the continuous-time State-Space models is written. In the sequel, many State-Space
models with different orders are estimated by employing the estimation dataset.
Then, the estimated State-Space models are tested on the validation dataset and
the performance of the considered models are evaluated based on NRMSE criterion,

1

2 INTRODUCTION

whiteness and independence tests. The obtained models are also tested on different
datasets so as to attain more reliable results. After these tests, one of the estimated
State-Space models is selected and its parameters are stated. In a very similar way,
ARMAX, Output-Error, and linear ARX models are examined in Section 2.2, 2.3,
and 2.4 respectively. At the end of this chapter, the models selected by using different
linear methods are compared.

Chapter 3 initially introduces the general structure of NARX models. The
Polynomial NARX models are also touched upon. In the identification phase, first,
the orders of the initial NARX model are specified and how it has been acquired
is mentioned. Then, the performance of the initialized NARX model is enhanced
by adding some nonlinear regressors. After deciding the candidate non-polynomial
NARX model, the nonlinear function of the corresponding model is discarded so
as to reduce the complexity of the model structure. Subsequently, the candidate
Polynomial NARX model is tested on different datasets which have never been utilized
before to eliminate the risk of overfitting. Finally, the parameters and the regressors
of the selected Polynomial NARX model is reported. At the beginning of Section 3.2,
the structure of Hammerstein-Wiener models are demonstrated. Then, many Wiener
models with different orders are estimated. The estimated models are validated by
analyzing the performance of considered models on the different data sets. In the
validation stage, various Hammerstein, Wiener, and Hammerstein-Wiener models are
also taken into consideration for the candidate orders. Afterwards, the performance
of the candidate Wiener model is improved by adjusting the lower and upper bounds
of the employed saturation function. After that, the unmodified and the calibrated
Wiener models are tested on different test datasets which have not been used before in
order to avoid overfitting. At the end of this section, the calibrated model is selected
and its equation including the parameters is written. Likewise, at the beginning
of Section 3.3, the structure of Neural NARX models is encapsulated. Then, the
data division method applied on the estimation dataset is explained and the impact
of this method on the “early stopping” technique is mentioned. Subsequently, the
regression analysis is described. In the validation stage, the trained NNARX models
are tested on three different datasets. In order to get more robust results, twenty
NNARX models with different weights and biases are trained for each order pairs (na
and nb), and then the average of their fit percent is calculated. Moreover, some other
NNARX models are trained with different number of neurons in the hidden layer.
Next, three candidate model structures are determined. For each model structure,
two different NNARX models are trained with different weights and biases. Thus,
six candidate Neural NARX models are obtained. In order to eliminate the risk of
overfitting, these models are tested on the different datasets that have never been
employed before. At the end of Section 3.3, the parameters of the selected NNARX
model is reported. In the sequel, the selected Polynomial NARX, Wiener, and Neural
NARX models are compared with regard to fit percent quality metric. After the
comparison, it is seen that the selected Neural NARX (NNARX) model performs on
all of the test datasets better than the other chosen models.

Finally, some conclusions are drawn for the identification of linear and nonlinear
models and future developments of this work are discussed.

Chapter 1

Physical System

In this chapter, the system is described by specifying its dynamics and parameters.
Then, given an operating condition, the corresponding linearized model is presented
and its main characteristics are studied in terms of poles, invariant zeros and singular
values.

1.1 System Description

The system is composed of four interconnected water tanks, two pumps and two
valves. It is widely known as Quadruple-Tank in process industry [21]. This process
is commonly used for analyzing multiple-input and multiple-output (MIMO) systems
because the performance of the Quadruple-Tank Process significantly changes with
respect to valve positions. A real life example of the system can be seen in the
following figure.

Figure 1.1: Four-Tank system used in laboratory of University of São Paulo [1]

3

4 CHAPTER 1. PHYSICAL SYSTEM

Working Principle

In the Quadruple-Tank Process, there are four interconnected tanks, two pumps
and two valves. Levels of the lower tanks can be controlled by means of the pumps.
The pump on the left delivers the water to the tanks which are on the lower left
and on the upper right. Likewise, the pump on the right distributes the water to
the remaining tanks (lower right and upper left). The distribution of the water is
done with respect to the valves’ positions (see Table 1.2). Besides, because of the
settlement of the tanks, the water flows down from the tanks at the top to the ones
at the bottom, and the water also pours out from the lower tanks to the reservoir.

1.1.1 Nonlinear Dynamics

The nonlinear mathematical model of the Quadruple-Tank Process is represented in
the following equations [21].

dh1
dt

= −a1
S

√
2gh1 +

a3
S

√
2gh3 +

γa
S
qa

dh2
dt

= −a2
S

√
2gh2 +

a4
S

√
2gh4 +

γb
S
qb

dh3
dt

= −a3
S

√
2gh3 +

(1− γb)
S

qb

dh4
dt

= −a4
S

√
2gh4 +

(1− γa)
S

qa

(1.1)

A schematic diagram of the system is demonstrated in Figure 1.2.

Figure 1.2: Schematic diagram of the Quadruple-Tank Process [2]

According to the system shown in Figure 1.2, the inputs are the flow rates to the

1.1. SYSTEM DESCRIPTION 5

both pumps and the outputs are the levels in the lower water tanks. The inputs, the
outputs and the states can be expressed in the vector form as

u =
[
qa qb

]T
y =

[
h1 h2

]T
x =

[
h1 h2 h3 h4

]T (1.2)

and the relationship between the flow rates from each outlet pipe to the corresponding
tank and the total flow from the pumps are specified by the parameters γa and γb,
which depend on the valves’ positions as

q1 = γaqa

q2 = γbqb

q3 = (1− γb)qb
q4 = (1− γa)qa

(1.3)

The parameters of the plant are specified in Table 1.1

Value Unit Description
h1max 1.36 m Maximum level of the tank 1
h2max 1.36 m Maximum level of the tank 2
h3max 1.30 m Maximum level of the tank 3
h4max 1.30 m Maximum level of the tank 4
hmin 0.20 m Minimum level of all tanks
qamax 0.0009056 m3/s Maximum flow rate of qa
qbmax 0.0011111 m3/s Maximum flow rate of qb
qmin 0.00 m3/s Minimum flow of qa and qb
a1 0.0001310 m2 Discharge constant of tank 1
a2 0.0001510 m2 Discharge constant of tank 2
a3 0.0000927 m2 Discharge constant of tank 3
a4 0.0000882 m2 Discharge constant of tank 4
S 0.06 m2 Cross-section of the tanks
γa 0.30 Parameter of the 3-way valve
γb 0.40 Parameter of the 3-way valve
h◦1 0.65 m Linearization level of tank 1
h◦2 0.66 m Linearization level of tank 2
h◦3 0.65 m Linearization level of tank 3
h◦4 0.66 m Linearization level of tank 4
q◦a 0.0004528 m3/s Linearization flow rate of qa
q◦b 0.0005556 m3/s Linearization flow rate of qb
g 9.81 m/s2 Gravitational acceleration

Table 1.1: System parameters

6 CHAPTER 1. PHYSICAL SYSTEM

1.1.2 Linearized Model

The linearization of the nonlinear model is required to understand the main charac-
teristics of the system in a given operating condition.

Stationary operating points used for linearization of the nonlinear model are
reported in Table 1.1. At the operating conditions, the equation 1.1 can be linearized
by the help of Taylor series expansion by neglecting higher order terms [22].

Define the variables xi = hi - h◦i (i=1,2,3,4), u1 = qa - q◦a and u2 = qb - q◦b . The
linearized state-space equations are obtained using Jacobian matrix transformation.

dx

dt
= Ax+Bu

y = Cx+Du
(1.4)

with x ∈ Rn, u ∈ Rm, y ∈ Rp and the matrices are

A =

− 1
T1

0 1
T3

0

0 − 1
T2

0 1
T4

0 0 − 1
T3

0

0 0 0 − 1
T4

B =

γa
S 0
0 γb

S

0 1−γb
S

1−γa
S 0

C =

[
1 0 0 0
0 1 0 0

]
D =

[
0 0
0 0

]

(1.5)

where the time constants are

Ti =
S

ai

√
2h◦i
g
, i = 1, 2, 3, 4 (1.6)

After calculating the values of the time constants with respect to the process param-
eters seen in Table 1.1, A and B matrices can be written as

A =

−0.005998 0 0.004244 0

0 −0.006861 0 0.004007
0 0 −0.004244 0
0 0 0 −0.004007

B =

5 0
0 6.667
0 10

11.67 0

(1.7)

The state-space representation can be transformed to a transfer matrix G(s) by

1.1. SYSTEM DESCRIPTION 7

taking the Laplace transform of equation 1.4. Thus,

sX(s) = AX(s) +BU(s)

Y (s) = CX(s) +DU(s)
(1.8)

By solving the equations for X(s) first, and then Y (s), the following equations are
attained.

X(s) = (sI −A)−1BU(s)

Y (s) = [C(sI −A)−1B +D]U(s)
(1.9)

The input-output relationship is

Y (s) = G(s)U(s) (1.10)

And, the transfer function matrix is

G(s) = C(sI −A)−1B +D (1.11)

The corresponding transfer matrix with 2 inputs and 2 outputs can be represented
as

G(s) =

[
Gqah1(s) Gqbh1(s)
Gqah2(s) Gqbh2(s)

]
(1.12)

where
Gqah1(s) =

[
γaT1

S(1+sT1)

]
Gqah2(s) =

[
(1−γa)T2

S(1+sT2)(1+sT4)

]
Gqbh1(s) =

[
(1−γb)T1

S(1+sT1)(1+sT3)

]
Gqbh2(s) =

[
γbT2

S(1+sT2)

]
(1.13)

By putting the operating point values into the transfer functions, the transfer matrix
with numeric values is

G(s) =

 5
s+0.005998

0.04244
s2+0.01024s+0.00002546

0.04675
s2+0.01087s+0.00002749

6.667
s+0.006861

 (1.14)

The transfer matrix G(s) has two finite zeros for γa, γb ∈ (0, 1). At least one
invariant zero always has a negative real part, but one zero can be located either in
left or the right half-plane. The positions of the process valves determine whether
the system is minimum phase or nonminimum phase. In order to find the invariant
zeros of G(s), it is needed to take its determinant.

|G(s)| = γaγbT1T2
S2(1 + sT1)(1 + sT2)

− (1− γb)(1− γa)T1T2
S2(1 + sT1)(1 + sT2)(1 + sT3)(1 + sT4)

(1.15)
by multiplying the term on the left by (1 + sT3)(1 + sT4), the determinant of G(s) is

8 CHAPTER 1. PHYSICAL SYSTEM

written as

detG(s) =
γaγbT1T2(1 + sT3)(1 + sT4)− (1− γb)(1− γa)T1T2

S2(1 + sT1)(1 + sT2)(1 + sT3)(1 + sT4)
(1.16)

After making some arrangements, the determinant is

detG(s) =
T1T2

S2
∏4
i=1(1 + sTi)γaγb

(
(1 + sT3)(1 + sT4)−

(1− γb)(1− γa)
γaγb

)
(1.17)

Define a parameter η as [21]

η =
(1− γa)(1− γb)

γaγb
(1.18)

If η is very small, then the equation 1.17 becomes

0 ≈ (1 + sT3)(1 + sT4) (1.19)

and the invariant zeros are close to −1/T3 and −1/T4; that is, both zeros have
negative real part. In the event that η is very large i.e. it goes to +∞, one zero
tends to -∞ and the other one tends to +∞. Moreover, one invariant zero is located
at the origin if η = 1 because the equation 1.17 takes the form of

1 = (1 + sT3)(1 + sT4) by organizing the terms

1 = 1 + (T3 + T4)s+ (T3T4)s
2 and thus

0 = s[T3 + T4 + (T3T4)s]

(1.20)

In this case, sum of the parameters of the valves is equal to 1 since

(1− γa)(1− γb) = γaγb by distributing the terms
1− γa − γb + γaγb = γaγb thus

γa + γb = 1

(1.21)

Under which conditions the system being minimum or nonminimum phase is
specified in Table 1.2.

Condition Phase Mode Zero Location
0 < γa + γb < 1 Nonminimum phase One zero is in the RHP

γa + γb = 1 One zero is at the origin
1 < γa + γb < 2 Minimum phase Both zeros are in the LHP

Table 1.2: System dynamics with regard to valves’ positions of QTP

Since the flow parameters of the three-way valves γa and γb are 0.3 and 0.4
respectively in the considered operating point, the process is non-minimum phase
and it is expected that the dynamic performance of a control system designed for
transfer matrix G(s) is limited.

1.1. SYSTEM DESCRIPTION 9

Main Characteristics

The linearized model of the Quadruple-Tank Process (QTP) has multivariable zeros
and poles, and one invariant zero can be located in either the left or the right
half-plane by simply changing the position of the valves according to Table 1.2.

In order to find the multivariable poles, one can write the system in minimal form
which is completely reachable and observable [23]. The poles of the minimal system
coincide with the eigenvalues of the matrix A. Hence, the least common denominator
(LCD) is equivalent to

φ(s) = det(sI −A) = 0 (1.22)

where φ(s) is the characteristic polynomial associated with a minimal realization of
a system with transfer function matrix G(s).

Since the matrix A is of order four and it is also a triangular matrix, the
eigenvalues i.e. the multivariable poles of the system are directly located on the
diagonal elements of A. Hence, it is seen in equation 1.7 that the poles are -0.005998,
-0.006861, -0.004244 and -0.004007. All the poles have negative real part.

Besides, the individual transfer functions do not have any zeros according to
equation 1.14; nonetheless, the transfer function matrix G(s) might have invariant
zeros. The system in the Laplace domain (eq. 1.8) can also be stated as[

sI −A −B
C D

] [
X(s)
U(s)

]
=

[
0

Y (s)

]
(1.23)

Let the system matrix P (s) be

P (s) =

[
sI −A −B
C D

]
(1.24)

then, the normal rank of a given matrix P (s) is its rank for any value of s. The
multivariable zeros of a system can be considered as invariant zeros providing that
these zeros are the values of s such that the rank of the system matrix P (s) is lower
than the normal rank r.

By means of the transfer matrix G(s), the invariant zeros can also be determined.
Let z(s) be the polynomial of the invariant zeros of G(s). Then, the polynomial
z(s) of the invariant zeros of G(s) is the greatest common divisor (GCD) of all the
numerators of all the minors of order r of G(s), provided that these minors are
written so that they have the polynomial φ(s) of the poles at the denominator [23].

By putting the values of the parameters from Table 1.1 into the numerator of
equation 1.16, the following equation is obtained.

33.335s2 + 0.273347s− 0.00142397 = 0 (1.25)

and by solving equation 1.25, the invariant zeros are found as

s1 ≈ +0.0036

s2 ≈ −0.0118
(1.26)

These invariant zeros can also be obtained by using state-space representation i.e.

10 CHAPTER 1. PHYSICAL SYSTEM

directly solving the equation 1.24.
It is important to determine where the invariant zeros are because it affects the

system’s performance. Since one of the invariant zeros is located on the right-half-
plane, the process is non-minimum phase system as already noticed by looking at
the parameters γa and γb of the valves (see Table 1.2). Hence, controlling the system
will be a more difficult task. The pole-zero map of G(s) is shown in Figure 1.3.

Figure 1.3: Pole-Zero Map of the overall transfer function G(s)

Besides, the singular values of the linearized system can be analysed so as to
understand dynamic constraint of the QTP better. For a singular value σ and
corresponding singular vectors u and v of a rectangular matrix A, define

Av = σu

AHu = σv
(1.27)

where AH is the Hermitian transpose of A. Two orthogonal matrices U and V are
generated by the corresponding singular vectors, and the following equations are
obtained.

AV = UΣ

AHU = V Σ
(1.28)

where the diagonal entries of Σ are equal to the singular values of the matrix A. By
multiplying the first equation by V H on the right, the singular value decomposition
equation is acquired.

A = UΣV H (1.29)

and by means of MATLAB, considering the previous linearization point, Σ is found

1.1. SYSTEM DESCRIPTION 11

as

Σ =

0.0083 0 0 0

0 0.0078 0 0
0 0 0.0033 0
0 0 0 0.0032

 (1.30)

The gain of the MIMO system at a given frequency ω can be defined as [23]

||Y (jw)||2
||U(jw)||2

=
||G(jw)U(jw)||2
||U(jw)||2

(1.31)

In order to estimate the value of the gain at different values of ω, equation 1.32 is
written

σ(G(jw)) ≤ ||G(jw)U(jw)||2
||U(jw)||2

≤ σ(G(jw)) (1.32)

where σ(G(jw)) and σ(G(jw)) are the principal gains at that frequency. It is easier
to control a system if the ratio between the maximum and minimum principal gains,
which is so-called condition number, is close to 1.

The value of the principal gains (minimum and maximum singular values) is
shown in Figure 1.4.

Figure 1.4: Principal gains of the system

The amplification is ensured for any input signal in the frequency band (-∞, 5].
Likewise, the attenuation is guaranteed for any input signal in the frequency band
[6.67, ∞).

12 CHAPTER 1. PHYSICAL SYSTEM

1.2 Plant Simulator in MATLAB/Simulink

The simulator of the plant is implemented in MATLAB/Simulink by using the
equations in 1.1 and the parameters in Table 1.1. These equations and parameters
are written into a MATLAB script. The script constitutes derivative of the states by
using the manipulated variables qa and qb. It is important to mention that the states
h3 and h4 are not measurable practically; hence, these states must be estimated in
the control design step.

In this plant simulator, the first objective is to collect the outputs h1 and h2
under stationary operating conditions. In the following chapters, the simulator is
modified for the identification and control design of the system.

The scheme of the plant can be seen in Figure 1.5. In order to make simulations,
the plant simulator is designed as a subsystem. Simulation time is selected as 20000
seconds.

Figure 1.5: Simulator of the plant

The open loop plant is simulated on the purpose of computing the steady-state
values of states h1, h2, h3 and h4. It is supposed to get nominal output values when
the inputs with nominal conditions are applied as a constant at the time instant zero.
The operating conditions can be seen in Table 1.1.

For a stationary operating points, the differential equations in 1.1 can be written
as

a3
S

√
2gh◦3 =

(1− γb)
S

q◦b

a4
S

√
2gh◦4 =

(1− γa)
S

q◦a

(1.33)

and thus
a1
S

√
2gh◦1 =

γa
S
q◦a +

(1− γb)
S

q◦b

a2
S

√
2gh◦2 =

(1− γa)
S

q◦a +
γb
S
q◦b

(1.34)

Then, there exists a unique constant input (q◦a, q◦b) that supplies the steady-state

1.2. PLANT SIMULATOR IN MATLAB/SIMULINK 13

levels of the outputs (h◦1, h◦2) provided that the following matrix[
γa (1− γb)

(1− γa) γb

]
(1.35)

is invertible, i.e., if and only if γa + γb 6= 1. In the case that γa + γb = 1, the
transfer function matrix G(s) has an invariant zero at the origin, so there would be a
derivative action.

For γa = 0.3 and γb = 0.4, the determinant of the matrix (eq. 1.35) is not equal
to zero; therefore, the matrix is non-singular.

The obtained steady-state values are close to the nominal ones and transients of
the states can be seen in Figure 1.6. The steady state values are

h1 = 0.6536, h2 = 0.6498, h3 = 0.6590, h4 = 0.6582 (1.36)

Figure 1.6: Transient responses and steady-state values for h1, h2, h3 and h4

14 CHAPTER 1. PHYSICAL SYSTEM

1.3 Summary

In Section 1.1, the Quadruple-Tank Process and its working principle are described.
Nonlinear model is stated with the help of equations, parameters and diagrams.
Afterwards, the linearization of the system is specified. State-space representation
and the corresponding transfer function matrix are determined so as to understand
the main characteristics of the system including multivariable poles, invariant zeros
and singular values. Furthermore, minimum and nonminimum phase modes are
mentioned with regard to invariant zero location.

In Section 1.2, the simulator of the plant is explained and its scheme is shown.
Then, the differential equations are represented for stationary operating conditions
and invertibility of a matrix related to operating points is discussed. At the end,
steady-state values and the transient responses are presented with figures.

Chapter 2

Linear Model Identification

Although, in Chapter 1, it has been pointed out that the Quadruple-Tank Process
has nonlinear dynamics, linear models can be employed first for identifying the
linearized system model. Linear models cannot perform as well as nonlinear models;
nevertheless, it is good to realize how much a identified linear model could estimate
the nonlinear system in the overall set of operating conditions.

In this chapter, three different linear models are built. First, the structures
of the models are presented in each section. Then, several identification tests are
performed and performance of the identified models are evaluated. After determining
the candidate linear models based on estimation results, validation of these models
are made. Additional tests are done in the validation step in order to acquire more
reliable outcome. Last but not least, each selected state-space and input-output
polynomial model is compared so as to determine which one estimates the nonlinear
QTP the most.

Excitation Signal and Its Implementation

Input data has to be selected properly in order to collect output data representing the
system’s dynamics. It is possible to use various type of signals to identify the nonlinear
model including square, chirp, sinusoidal, Gaussian white noise, pseudorandom binary
sequence (PRBS).

For linear systems, a white noise (WN) is an ideal signal to excite the system
because it excites all modes. However, using this kind of signal is difficult in practice.
In order to meet the requirements of excitation, a PRBS signal might be a good
alternative to white noise. A PRBS is a deterministic signal and it is normally
periodic with a maximum period length of 2n-1, where the integer n is the order of
the PRBS. In Figure 2.1, illustration of a periodic PRBS input signal can be seen.

In this work, it has been decided to generate uncorrelated PRBS signals with
also varying amplitude for two inputs qa and qb so as to emphasize the nonlinear
behaviour of the system on the output. Maximum and minimum amplitudes of
these inputs have to be close to values of demanded operating range. Choosing
the sampling time is also very important because if it is too short, then the result
would be considerably affected by additional high frequency noise. Also, it should
not be selected very long since it may lead to aliasing problems. By taking into
consideration these requirements and the dynamics of the Quadruple-Tank system,

15

16 CHAPTER 2. LINEAR MODEL IDENTIFICATION

Figure 2.1: Example of a periodic PRBS input signal [3]

the sampling time has been chosen as 25 seconds.
The generated input signals for the identification can be seen in Figure 2.2. For

acquisition of these signals, a MATLAB script has been created (see Appendix B).

Figure 2.2: Asymmetric PRBS signals for the inputs qa and qb

17

Data Pre-processing and Estimation Mode

The asymmetric PRBS input signals shown in Figure 2.2 and the associated outputs
must be splitted into two datasets; one is used for estimating the parameters and
the other one is employed in order to validate the estimated model by evaluating
the performance based on NRMSE criterion (see eq. 2.2). For the identification
tests performed in the following sections, first 75% of the input and the output data
are selected for estimation of a linear model and the remaining 25% is utilized as a
validation dataset.

For linear models, normalizing the datasets, if possible, before starting estimation
of a model is always suggested. Normalization of the inputs and outputs is a part of
data pre-processing. For this purpose, the data sets are detrended i.e. mean value of
each data is calculated and these biases are subtracted from each time-domain signal.
Thus, the identified linear models can be considered as reliable in all frequency range
because best-fit linear trends for which the linear models are sensitive are removed.

Two different modes can be used for error minimization. One is called as predic-
tion mode which minimizes the 1 or k-step ahead prediction error between measured
and predicted outputs during estimation. This mode uses the current and the past
values of observed input and output values, as well as initial conditions. Another
one is simulation mode and it minimizes the simulation error between measured and
simulated outputs. Unlike the prediction, simulation mode does not use the measured
output values for estimation; instead, it calculates the outputs and uses them to
demonstrate the behaviour of the plant. This refers that simulation mode is more
reliable and robust with compared to prediction one; hence, all linear models are cali-
brated in simulation mode despite the fact that it requires more computational time.

Input-Output Delay

The input-output delay of a model is crucial for the system identification; therefore,
the delay for each input-output pairs has to be determined. The input-output delay
is also known as dead time of the linear model. There are many ways to acquire the
dead time; for example, it is possible to it by estimating the non-parametric impulse
response or by looking at the step response or by using N4SID based state-space
evaluation etc [3].

Numerical algorithm for the subspace state-space system identification (N4SID)
method is used to estimate a linear time invariant state-space model via the non-
iterative subspace method with a input-output data represented in time or frequency
domain [24]. The N4SID uses developed concepts and algorithms from numerical
linear algebra, such as QR-decomposition and singular value decomposition. Since
the N4SID is a fast algorithm, a range of orders can be tried quickly. In this thesis,
the N4SID is employed with a number of different orders to find the input-output
delay of the best (proposed) model. To this end, the MATLAB System Identification
Toolbox is utilized to estimate the state-space models with different orders (from
1 to 10) simultaneously from the detrended estimation data. The proposed order
is 8 by the N4SID; hence, the state-space model with order of 8 is selected so as
to analyze its impulse response. The logarithm of singular values related to model
orders is shown in Figure 2.3. These singular values represent the harmonics in the

18 CHAPTER 2. LINEAR MODEL IDENTIFICATION

signal. For example, the harmonics for the 8th order model is more valuable than
the 9th order one according to this figure.

Figure 2.3: Proposed order for a state space model by N4SID method

Moreover, the confidence level is selected as 3σ, where 3σ is equal to 99.7%
significance, so as to decide how many delay samples there are from inputs to outputs.
The obtained impulse responses from each input to each output are demonstrated in
Figure 2.4. The areas (regions) shown in this figure indicate the confidence interval

Figure 2.4: Impulse responses from inputs to outputs with 3σ confidence level

for the unimportant responses in the estimation. The amplitude of the impulse
response exceeds these areas for all input-output pairs after just one sample time

19

(25 seconds); that is to say, the transport delay or dead time is equal to one sample
time. Hence, the input-output delay for all the corresponding pairs is chosen as 1
and nk will be 1 during the identification of all models in the following sections.

Models’ Choice and Performance Criterion

The linear models implemented in the following sections are State-Space, Autoregres-
sive Moving Average Model with Exogenous Inputs (ARMAX), Output-Error (OE),
and ARX models.

In this chapter, normalized root-mean-square error (NRMSE) quality metric
is used to evaluate performance of all the estimated models. The following root-
mean-square error equation, which is sometimes called loss function, is related to
simulation error minimization (SEM) algorithm [3] [24]. The SEM algorithm updates
the parameters of an initial model to fit the estimation data.

RMSE =

√∑N
t=1(yobs(t)− ysim(t))2

N
(2.1)

where yobs is the measured output data, ysim is the simulated response of the model.
Different NRMSE equations can be used for the calculation of estimation fit; in this
work, the NRMSE choice is

NRMSE =
||yobs − ysim||2
||yobs − yobs||2

(2.2)

where yobs refers to the mean value of the observed output [3]. Then, fit percentage
can be written as

Fit% = 100(1−NRMSE) (2.3)

and its range is (-∞, 100].

20 CHAPTER 2. LINEAR MODEL IDENTIFICATION

2.1 State-Space Models

A state-space model is a mathematical representation of a physical system as a set
of input, output, and state variables related by first-order differential equations [3].
In a state space model, the output variables are originated from the state variables.

Starting a linear model identification through a state-space model is a good idea
because it provides a quick estimation by requesting only one input which is the
model order n. State-space models can also be represented in discrete time but only
the continuous state state models are estimated in this thesis since the discrete-time
state space model is similar to the ARMAX model which is explained in Section 2.2.

2.1.1 Model Structure

In continuous time, the state-space representation is

ẋ(t) = Fx(t) +Gu(t) +Ke(t)

y(t) = Hx(t) +Du(t) + e(t)
(2.4)

where F is the state matrix, G is the input-to-state matrix, H is the state-to-output
matrix, D is the feedthrough matrix, K is the matrix including noise component
parameters and x(t), u(t), y(t) and e(t) represent the states, inputs, outputs and
disturbances respectively [3]. The initial state vector x(0) is required in order to
estimate a state space model. The initial states can be computed by means of the
MATLAB System Identification toolbox.

2.1.2 Identification

First, the performance of the detrended data used for estimation of state space
models is evaluated according to NRMSE criterion so as to have an idea on the
model orders. Recall that the delay for each input is selected as 1, and it is kept
constant for all orders. Continuous time state space models are estimated from order
1 to order 9.

n nk Fit% [h1; h2]
1 1 [60.16; 64.24]
2 1 [69.92; 78.69]
3 1 [74.26; 84.43]
4 1 [75.15; 85.58]
5 1 [74.39; 84.52]
6 1 [73.87; 83.64]
7 1 [73.48; 83.81]
8 1 [45.67; 78.65]
9 1 [75.20; 85.63]

Table 2.1: Fit% of different State-Space models on the estimation dataset

From Table 2.1, it is seen that the ninth, fourth, third and fifth order state space

2.1. STATE-SPACE MODELS 21

models fit the estimation data the most in the simulation mode. However, deciding the
order of a model just by looking at the NRMSE results based on identification dataset
is meaningless since the models with higher orders might over-fit the corresponding
model. In order to avoid this, the identified models need to be tested using the
validation dataset and the implementation of validation is reported in Section 2.1.3.
All the estimations have been made using prediction error minimization method with
simulation focus and the maximum number of iterations is selected as 50.

2.1.3 Validation

The estimated state space models with the order from 1 to 9 are validated by
employing different data set and the obtained results can be seen in Table 2.2. Input
dead time nk is also set to 2 for the models which provide better fit on the validation
data in simulation mode in order to be sure that the previous choice of the delay nk
is correct.

n nk Fit% [h1; h2]
1 1 [67.21; 29.93]
2 1 [65.09; 54.97]
3 1 [70.86; 52.82]
4 1 [77.20; 59.25]
5 1 [80.77; 59.14]
6 1 [68.81; 48.55]
7 1 [74.52; 49.37]
8 1 [58.97; 42.80]
9 1 [78.12; 60.65]
3 2 [69.64; 52.72]
4 2 [73.15; 52.50]
5 2 [79.54; 63.34]
9 2 [73.77; 57.13]

Table 2.2: Fit% of the estimated State-Space models vs. validation data

According to Table 2.2, the state space models with order 4, 5 and 9 give the
best fit percent based on NRMSE criterion. Owing to the fact that there is not
a remarkable performance improvement between the order 9 and 5, the former is
eliminated to get rid of unnecessary complexity. Furthermore, performance of the
state space models decrease when the input-output delay nk is assigned to 2 except
the one with order 5. Its fitting percentage for the first output h1 becomes less about
1 percent, but the performance for the second output h2 increases approximately 4
percent. For this reason, the auto-correlation and cross-correlation of residuals for
the inputs and outputs will be presented below.

Auto-correlation is a mathematical tool that estimates the correlation between
observations as a function of the time lag (difference in samples) between them.
The auto-correlation function measures the correlation between yt and yt+k, where

22 CHAPTER 2. LINEAR MODEL IDENTIFICATION

k = 0, 1, ...,K. Then, the auto-correlation for lag k is [25]

rk =
ck
c0

(2.5)

where c0 is the sample variance and the auto-covariance function ck is

ck =
1

T

T−k∑
t=1

(yt − y)(yt+k − y) (2.6)

where y is the mean of a time series y1, ..., yn, T is the sample size of the vector y
and estimated standard error of the auto-correlation at lag k > q is

SE(rk) =

√√√√ 1

T
(1 + 2

q∑
j=1

r2j) (2.7)

where q is the lag coefficient beyond which the theoretical auto-correlation function
is zero.

By defining the residuals as the differences between the simulated output and
the measured output from the validation data set [3], the auto-correlation of the
residuals for the outputs can be expressed. It is so-called whiteness test. It is also
required to define confidence bounds. In this work, the confidence interval is selected
as ±3 standard errors of a Gaussian distribution in order to evaluate the performance
of auto-correlation functions and if all residual values are inside this interval, then
it means that the correlations are statistically unimportant and the linear model is
estimated well. For all lags are greater than the number of lags in the theoretical
model of the vector y, the confidence bounds are 0 ± 3σ̂ where σ̂ is the estimated
standard error of the sample auto-correlation. By contrasting the residuals with
the confidence limit, it can be decided whether the residuals are white noise or not.
If the residuals are white; that is, the residual auto-correlation function inside the
confidence interval of the corresponding estimates, then the associated state-space
model can be considered as a good model.

There is another residual analysis related to cross-correlations between the input
and the residuals for each input-output pair. This is also known as independence
test [3]. For a model being considered as sufficient, the residuals must be uncorrelated
with past inputs. For example, the identified linear model would not be a good model
in the case that the signal exceeds the confidence limits for lag k and it refers that
the output produced by the input u(t− k) is not properly described by the identified
model. The cross-correlation function estimates the sample cross-covariance function
cy1y2 for the time series y1t and y2t and the equation for estimating cross-covariance
with the lag k is

cy1y2(k) =

{
1
T

∑T−k
t=1 (y1t − y1)(y2,t+k − y2) k = 0, 1, 2, ...

1
T

∑T+k
t=1 (y2t − y2)(y1,t−k − y1) k = 0,−1,−2, ...

(2.8)

2.1. STATE-SPACE MODELS 23

where y1 and y2 are the sample means [25]. The cross-correlation function is

ry1y2(k) =
cy1y2(k)

sy1sy2
(2.9)

where sy1 and sy2 are the sample standard deviations i.e. the square root of the
variance of y1 and y2.

In order to compare the residuals of the identified state space models with n
= 4 & nk = 1, n = 5 & nk = 1 and n = 5 & nk = 2 on the validation date set,
the auto-correlation and cross-correlation figures are used. As it can be seen in

Figure 2.5: Autocorrelation of the residuals for the outputs

Figure 2.5, there is only one state space model which passes the whiteness test and
it is the fourth order model with a delay of one sample time due to the fact that the
fluctuations in the other models go beyond the ±3σ confidence interval.

After implementing the whiteness test, both estimated linear models with the
order of 5 are eliminated. Hence, the independence test is only performed for the
linear model with fourth order. From Figure 2.6, it is observed that all residuals
are uncorrelated with past inputs because there is no peak outside the confidence
interval for any lag k, i.e. past inputs u(t − k) contribute to the output y(t) and
this contribution is well-defined by the identified linear model. This means that the
corresponding model passes the independence test as well.

In the light of the above findings, the 4th order state space model with 1 input-
output delay seems as the sanest choice. The comparison of the estimated and the

24 CHAPTER 2. LINEAR MODEL IDENTIFICATION

Figure 2.6: Cross-correlation for the output residuals with associated inputs

plant models can be seen in Figure 2.7.

Figure 2.7: The fourth order state space model on the validation data

Even though all results imply to choose the fourth order state-space model with
a delay of one sample time, additional tests have been performed in order to get
more reliable results. The additional test set has been constituted by merging four
different validation data sets. The PRBS input signals with also varying amplitude

2.1. STATE-SPACE MODELS 25

used for these tests are demonstrated in Figure 2.8.

Figure 2.8: Asymmetric PRBS inputs for additional tests

These signals are detrended i.e. their mean value or offset is removed to acquire
robust results while estimating linear state space models. The additional tests are
made in the simulation mode and the obtained results are shown in Table 2.3.

n nk Fit% [h1; h2]
1 1 [58.06; 50.80]
2 1 [75.70; 67.65]
3 1 [79.90; 73.07]
4 1 [78.71; 71.53]
5 1 [79.71; 73.26]
6 1 [79.54; 70.54]
7 1 [77.87; 71.47]
8 1 [54.88; 66.94]
9 1 [78.87; 71.68]

Table 2.3: Average Fit% of different State-Space models on the test datasets

According to the fit percentages on the test data set, the state space model with
order 4 and delay 1 can be selected with peace in mind. By recalling equation 2.4,
the continuous time identified state space model with the order of four and delay of

26 CHAPTER 2. LINEAR MODEL IDENTIFICATION

one is represented as

dx

dt
= Aidx(t) +Bidu(t) +Kide(t)

y(t) = Cidx(t) +Didu(t) + e(t)
(2.10)

where Did = 0 and the state-space matrices Aid, Bid, Cid and Kid are

Aid =

−0.008589 −0.001322 +0.000563 −0.004028
+0.000595 −0.003123 +0.000114 +0.000131
+0.010760 +0.001627 −0.005023 +0.006338
−0.002870 +0.000884 −0.001245 −0.001621

Bid =

−2.5360 +3.1350
−0.7504 −0.9623
+3.4400 −4.3180
−0.6488 +1.3010

Cid =

[
+1.3230 −3.3600 +1.9230 +0.6459
−0.9154 −3.9720 −1.4090 +0.3498

]

Kid =

−0.2937 −0.4585
+0.0987 +0.0762
+0.1204 +0.2132
+0.8350 +0.6990

(2.11)

where Kid have the coefficients of the disturbance e(t). The zeros and the poles of
the considered state space model are

z1 = −0.0005, z2 = +0.0042

p1 = −0.0098, p2 = −0.0048
p3 = −0.0031, p4 = −0.0006

(2.12)

Needless to mention, these zeros and poles are different than the ones obtained in
Chapter 1. However, the structure is similar i.e. all the poles are in left-half-plane
and there is one invariant zero in the right-half-plane for both state space models.
Thus, the continuous time identified state space model is nonminimum phase as well.

In conclusion, it is significant to note that although the identified fourth order
state space model has been considered the best one for fitting the validation data
among all, its fit percent regarding to NRMSE is approximately just 77% for the
first output h1 and 59% for the second output h2 owing to the nonlinear dynamics
of the plant.

2.2. ARMAX MODELS 27

2.2 ARMAX Models

The ARMAX polynomial models are widely used in the process industry. An
Auto-regressive Moving Average Model with Exogenous Inputs (ARMAX) model
is composed of an auto-regressive (AR), a moving average (MA) and an exogenous
input (X) classes. The moving average corresponds to weighted average of white noise.
It is called “moving” because the window moves during the identification process
according to order of the MA part. Moreover, a stochastic process is considered
as an auto-regressive (recursive) process in the event that the combination of old
output values and present input is utilized so as to estimate the current output. The
exogenous input is also included in order to make the system identification robust
with respect to noise i.e. the noise dynamics are also taken into account in addition
to the input-output system dynamics [4].

2.2.1 Model Structure

For a SISO system, the structure of an ARMAX model is

A(q)y(k) = B(q)u(k − nk) + C(q)e(k) (2.13)

where u(k) and y(k) are the input and the output values at sampling time k, e(k)
is the noise (error) term and nk is the number of input samples that occur before
the input affects the output. The variables A(q), B(q) and C(q) are the polynomials
stated in the time-shift operator q−1 and this operator is represented as [3] [24]

q−1u(k) = u(k − T) (2.14)

where T is the sampling time. Thus, the polynomials A(q), B(q) and C(q) are

A(q) = 1 + a1q
−1 + ...+ anaq

−na

B(q) = b1 + b2q
−1 + ...+ bnb

q−nb+1

C(q) = 1 + c1q
−1 + ...+ cncq

−nc

(2.15)

where na, nb and nc represent the number of poles, the number of zeros plus 1 and
the number of C(q) coefficients respectively. In equation 2.15, the first nk coefficients
of B(q) is zero when the dynamics from u(k) to y(k) constitute a delay of nk samples.

In the ARMAX model, A(q) represents the common poles for the dynamic model
and the noise model. Therefore, the system’s dynamics A(q) affects the noise term
e(k) at which the noise takes place in the system in early times [26]. The noise is also
influenced by the polynomial of C(q) which provides more flexibility for modeling
the noise using its parameters. The diagram of an ARMAX structure is shown in
Figure 2.9. In this figure, y∗(k) is the noise-free output measurements.

28 CHAPTER 2. LINEAR MODEL IDENTIFICATION

Figure 2.9: Scheme of an ARMAX model in the SISO case [4]

The equation 2.13 can be generalized for multi-input and/or multi-output systems.
The generalized structure of an ARMAX model is

y(k) =A1y(k − 1) + ...+Anay(k − na) +B1u(k − nk) + ...

+Bnb
u(k − nb − nk + 1) + e(k) + C1e(k − 1) + ...+ Cnce(k − nc)

(2.16)

where nu and ny are the number of inputs and outputs of the system respectively,
A1, A2, ... ∈ Rny ,ny , B1, B2, ... ∈ Rny ,nu and C1, C2, ... Rny ,1 are the coefficient
matrices, u(k) ∈ Rnu represents the inputs at sampling time instant k, y(k) ∈ Rny

corresponds to the outputs at sampling time instant k, na, nb, and nc are the orders
of the ARMAX model [3] [24].

2.2.2 Identification

The detrended estimation and validation data sets are employed for estimating
ARMAX models. The input-output delay has been determined in the previous
section as nk = 1 for all the transfer functions of the system and it is kept constant
during the estimation. A set of possible combinations of na, nb and nc is tried
iteratively. More specifically, the ARMAX models with the orders na = [i 0; 0 i], nb
= [j j; j j], and nc = [m; m] are estimated where i, j, m = 1, 2, ..., 7. In addition
to this, some other models are considered in Section 2.2.3 with different orders for
the sake of completeness.

For the estimated models with varying orders in the simulation mode, the Akaike
Information Criterion (AIC) provides a measure of model quality of each estimated
model [24]. Then, the estimated models can be compared to each other. Theoretically,
the most preferable model is the one with the smallest AIC. Nonetheless, models’
performance evaluation based on NRMSE criterion, whiteness test and independence
test has to be made on the validation data set in addition to AIC for selecting a
proper model. The AIC can also be represented in normalized form. The formulation
of the normalized AIC is

nAIC = log

(
det

(
1

N

N∑
t=1

ε(t, θ̂N)(ε(t, θ̂N))
T

))
+

2np
N

(2.17)

2.2. ARMAX MODELS 29

where N is the number of values in the estimation data set, ε(t) is the ny-by-1
vector of simulation errors, θN is the estimated parameters, and np is the number of
estimated parameters [3].

In Table 2.4, the ARMAX models with acceptable estimation performance are
sorted with regard to the normalized Akaike’s Information Criterion (nAIC) since
this criterion might give a clue for ARMAX models’ whiteness test failure on the
validation data set [27]. More clearly, the range of nAIC value for all the estimated
models is [-23.58, -10.30] and the residuals of the models with nAIC smaller than -19
always go over the confidence limits of auto-correlation function at many lag samples
with large amplitudes. In this table, the orders corresponds to arrays; for example,
in the first row nb = 7 is equivalent to nb = [7 7; 7 7], nc = 1 refers to nc = [1; 1] etc.

na nb nc nk Fit% [h1; h2] nAIC

[7 0; 0 7] 7 1 1 [74.81; 85.93] -10.30
[7 0; 0 7] 5 1 1 [74.57; 85.90] -10.95
[5 0; 0 5] 5 1 1 [74.48; 85.76] -10.99
[6 0; 0 6] 5 1 1 [83.43; 69.07] -11.01
[7 0; 0 7] 5 3 1 [74.78; 86.56] -11.21
[6 0; 0 6] 5 3 1 [84.22; 72.02] -11.24
[7 0; 0 7] 5 2 1 [74.78; 86.11] -11.44
[6 0; 0 6] 5 2 1 [84.18; 70.27] -11.48
[7 0; 0 7] 7 4 1 [74.62; 86.02] -11.60
[5 0; 0 5] 4 2 1 [70.36; 86.18] -12.45
[6 0; 0 6] 4 2 1 [81.58; 70.34] -12.64
[7 0; 0 7] 4 2 1 [74.34; 86.18] -12.67
[2 0; 0 2] 5 2 1 [62.50; 83.23] -12.76
[5 0; 0 5] 4 1 1 [68.81; 85.62] -12.79
[6 0; 0 6] 4 1 1 [80.30; 70.12] -12.83
[7 0; 0 7] 4 1 1 [71.77; 85.77] -12.84
[7 0; 0 7] 7 3 1 [74.51; 85.49] -12.86
[3 0; 0 3] 4 1 1 [66.74; 80.75] -13.22
[4 0; 0 4] 3 1 1 [67.07; 82.62] -13.35
[4 0; 0 4] 4 1 1 [65.56; 85.54] -13.44

Table 2.4: Fit% and nAIC of the estimated ARMAX models with different orders

From Table 2.4, it is seen that the complexity of the models in the last 3 rows
is less than the others because these three models identify the system by using less
parameters; for example, the ARMAX model with the orders na = [4 0; 0 4], nb = [3
3; 3 3], nc = [1; 1] has 22 parameters. However, the model order selection can only
be made in the validation stage.

30 CHAPTER 2. LINEAR MODEL IDENTIFICATION

2.2.3 Validation

The estimated ARMAX models with different orders are validated by using a different
data set. In addition to the orders mentioned in the identification phase, some models
are validated by assigning the orders randomly, such as na = [4 2; 1 3] or na = [5 5;
5 5], nb = [2 3; 3 2], nc = [2; 1] in order to extend the estimation procedure. Despite
the fact that nk is selected as [1 1; 1 1] in the estimation phase, different nk orders
are also tested in the validation phase for the sake of completeness. The candidate
models with good fit percent and negligible violations of the confidence intervals are
shown in Table 2.5.

Row na nb nc nk Valid.% Tests%
1 [6 0; 0 6] [4 4; 4 4] [2; 2] [1 1; 1 1] [75.96] [74.23]
2 [4 0; 0 4] [4 4; 4 4] [1; 1] [1 1; 1 1] [75.55] [76.66]

3 [7 0; 0 7] [4 4; 4 4] [1; 1] [1 1; 1 1] [75.34] [74.47]
4 [6 0; 0 6] [4 4; 4 4] [1; 1] [1 1; 1 1] [75.21] [74.40]
5 [5 0; 0 5] [4 4; 4 4] [1; 1] [1 1; 1 1] [74.50] [74.64]
6 [4 0; 0 4] [2 2; 2 2] [1; 1] [0 0; 0 0] [71.54] [73.47]
7 [3 0; 0 3] [2 2; 2 2] [2; 2] [0 0; 0 0] [71.18] [73.34]
8 [6 6; 6 6] [3 3; 3 3] [3; 3] [2 2; 2 2] [70.56] [68.94]
9 [4 0; 0 4] [2 2; 2 2] [2; 2] [0 0; 0 0] [70.53] [73.71]
10 [4 0; 0 4] [2 2; 2 2] [3; 3] [0 0; 0 0] [70.45] [73.57]
11 [3 3; 3 3] [4 4; 4 4] [2; 2] [2 2; 2 2] [70.42] [76.01]
12 [4 4; 4 4] [2 3; 3 2] [4; 4] [0 4; 4 0] [69.30] [72.58]
13 [3 3; 4 4] [2 3; 3 2] [2; 2] [0 4; 4 0] [66.90] [73.23]
14 [4 4; 4 4] [4 4; 4 4] [1; 1] [1 1; 1 1] [65.30] [73.82]

Table 2.5: Fit percentage of the candidate models on the validation and test datasets

Auto-correlation and cross-correlation functions have been explained in Section 2.1.
All the models indicated in Table 2.5 violate the confidence bounds of the auto-
correlation and/or cross-correlation functions at some lag samples; nevertheless,
these are the models that provide good validation performance among hundreds
of estimated models and whose confidence intervals are the least violated for the
considered dead time nk.

The minimum violations of the residuals have been observed for the models in
the 12th and 13th rows of Table 2.5. However, their performance based on NRMSE
criterion are considerably worse as compared to the models on the top of the table.
On the other hand, the correlations of the models with nk = 2 significantly violate
the confidence limits by comparison with other models, so the corresponding models
cannot be chosen in order to identify the plant.

The best choice might be the ARMAX model with the orders na = [4 0; 0 4], nb
= [4 4; 4 4], nc = [1; 1] and nk = [1 1; 1 1] but additional tests are also included so
as to get more reliable results. The PRBS signals in Figure 2.8 have been acquired

2.2. ARMAX MODELS 31

by merging four uncorrelated test data before. Here, only the second and the third
portions of these signals are detrended and utilized for the additional tests. According
to average performance of the models on the test data sets in Table 2.5, the model
in the second row is chosen. The sum of the numbers in the order matrices na, nb,
and nc gives the number of parameters. Since the orders of the selected model are
na = [4 0; 0 4], nb = [4 4; 4 4], nc = [1; 1], the number of coefficients are 26.

The comparison of the selected ARMAX model with the validation data set is
demonstrated in Figure 2.10. The fit percent of this model on the validation data

Figure 2.10: The chosen ARMAX model vs. validation data set

set is approximately 81% for the first output h1 and 70% for the second output h2
due to the nonlinear dynamics of the system. The performance can be increased by
using nonlinear models like NARX. Identification of the Quadruple-Tank Process
through nonlinear models is reported in Chapter 3.

The auto-correlations and the cross-correlations of the selected model can be
seen in Figure 2.11. The residuals of the considered model exceeds ±3σ confidence
interval of the auto-correlation function at some lag samples close to zero; therefore,
it does not pass the whiteness test completely i.e. the selected ARMAX model is not
optimal. The utilization of nonlinear models for identification procedure may solve
this problem.

By recalling the equation 2.16, the polynomials for the identified ARMAX model
with the orders na = [4 0; 0 4], nb = [4 4; 4 4], nc = [1; 1], nk = [1 1; 1 1] are the
following:

32 CHAPTER 2. LINEAR MODEL IDENTIFICATION

Figure 2.11: Residue correlations of the selected ARMAX model

The polynomials for the first output h1 are

A11(q) = 1− 1.9206q−1 − 0.0330q−2 + 1.8462q−3 − 0.8920q−4

A12(q) = 0

B11(q) = 57.1265q−1 − 61.0594q−2 − 46.0894q−3 + 50.4689q−4

B12(q) = 57.5594q−1 − 52.0625q−2 − 57.0862q−3 + 52.3133q−4

C1(q) = 1 + 0.6889q−1

(2.18)

and the polynomials for the second output h2 are

A21(q) = 0

A22(q) = 1− 3.5607q−1 + 4.7638q−2 − 2.8382q−3 + 0.6354q−4

B21(q) = 12.8440q−1 − 13.4310q−2 − 7.8395q−3 + 8.7704q−4

B22(q) = 143.6q−1 − 394.3q−2 + 362.2q−3 − 111.3q−4

C2(q) = 1 + 0.1706q−1

(2.19)

The zeros and the poles of the polynomial B11(q)
A11(q)

are

Zeros: + 0.9865± 0.0626i,−0.9042
Poles: + 0.9710± 0.0769i,−0.9804,+0.9589

(2.20)

and of the polynomial B22(q)
A22(q)

are

Zeros: + 0.9233± 0.0956i,+0.8994

Poles: + 0.9208± 0.0687i,+0.8595± 0.0803i
(2.21)

2.3. OUTPUT-ERROR MODELS 33

2.3 Output-Error Models

OE models parameterizes the system’s dynamics separately from the stochastic
dynamics and they do not use any parameters in order to simulate the noise charac-
teristics. For these models, it is also more important to remove offsets and linear
trends as compared to other input-output polynomial models [24] [3].

2.3.1 Model Structure

For SISO systems, the structure of an Output-Error model is the following:

y(k) =
B(q)

F (q)
u(k − nk) + e(k) (2.22)

where u(k) and y(k) are the input and the output values at sampling time k, nk
refers to the input-output delay (dead-time) and e(k) is the noise term. The first
nk coefficients of B(q) become zero in the case that the dynamics from u(k) to y(k)
comprise a delay of nk samples. By recalling the equation 2.14, the variables B(q)
and F (q) are

B(q) = b1 + b2q
−1 + ...+ bnb

q−nb+1

F (q) = 1 + f1q
−1 + ...+ bnf

q−nf
(2.23)

where nb is the order of the polynomial B(q)+1 and nf is the order of the polynomial
F (q) [3] [24].

The Output-Error model is generally used for long term simulation of dynamical
systems, but not for estimating a noise model because the white noise e(k) affects
only the output. The diagram of an OE structure in the SISO case is demonstrated
in Figure 2.12. In this figure, y∗(k) refers to noise-free output measurements.

Figure 2.12: Scheme of an Output-Error model in the SISO case [5]

Then, the Output-Error model structure can be generalized as:

y(k) =F1y(k − 1) + ...+ Fnf
y(k − nf) +B1u(k − nk) + ...

+Bnb
u(k − nb − nk + 1) + e(k) + F1e(k − 1) + ...+ Fnf

e(k − nf)
(2.24)

where nu and ny are the number of inputs and outputs of the system respectively,
F1, F2, ... ∈ Rny ,nu and B1, B2, ... ∈ Rny ,nu are the coefficient matrices, u(k) ∈
Rnu represents the inputs at sampling time instant k, y(k) ∈ Rny is the outputs at
sampling time instant k, nf and nb are the orders of the OE model [3] [24].

34 CHAPTER 2. LINEAR MODEL IDENTIFICATION

2.3.2 Identification

The PRBS signals shown in Figure 2.2 are separated into two as an estimation and
validation data sets. Then, both data sets are detrended i.e. their mean values are
removed and the obtained signals are employed in order to estimate Output-Error
polynomial models. Recall that the input-output delay nk = 1. This delay is kept
constant during estimation process. A set of possible combinations of nb and nf is
specified. In this set, the range is [1, 10] ∈ N for both the orders nb and nf .

First, 100 models with different orders have been estimated iteratively by using
the default solver (Gauss-Newton) of the MATLAB System Identification Toolbox.
Also, the maximum number of iterations is selected as 50.

Identifying a nonlinear system via Output-Error models might be problematic.
The main problem is the possible instability of the simulations during the model
estimation procedure [28]. The Gauss-Newton solver pretends to fit the estimation
data very well; indeed, the obtained Output-Error models have oscillations. The
instability of some models with having a good fit percent for both the estimation
and the validation data is demonstrated in Figure 2.13. Therefore, in the MATLAB

Figure 2.13: Transient response of some OE models with default solver

System Identification Toolbox, fmincon solver with SQP algorithm [29] [30] [31] [32]
is chosen and this solver is used with enforcing stability feature of the toolbox so as
to get rid of instability issue. The OE models that provide the best fit percentage on
the estimation data set can be seen in the first 15 rows of Table 2.6.

In Table 2.6, the orders refers to matrices; for example, in the first row nb = 7 is
equivalent to nb = [7 7; 7 7], nf = 2 means that nf = [2 2; 2 2] etc. From this table,
it is seen that the models oe131 and oe221 quite fit the estimation data despite the
fact that the orders of these models are not large. As mentioned in previous sections,
orders of a model cannot be determined just by looking at the NRMSE results
based on identification dataset. The estimated models has to be tested using the
validation data set and the implementation of validation is reported in Section 2.3.3.
Nonetheless, analyzing the normalized Akaike’s Information Criterion (nAIC) may
give preliminary assessment about the validation performance because the estimated

2.3. OUTPUT-ERROR MODELS 35

nb nf nk Fit% [h1; h2] nAIC

7 2 1 [75.51; 84.54] -11.84
10 1 1 [74.40; 84.86] -11.75
7 1 1 [74.35; 84.60] -11.80
1 3 1 [74.11; 84.69] -11.91
2 2 1 [74.53; 84.03] -11.82
2 10 1 [72.30; 84.99] -11.32
8 1 1 [74.03; 82.94] -11.54
9 1 1 [74.19; 82.70] -11.49
4 1 1 [73.71; 83.17] -11.58
6 1 1 [73.63; 83.11] -11.58
5 1 1 [73.33; 82.93] -11.54
1 1 1 [72.07; 82.11] -11.40
3 1 1 [72.33; 81.71] -11.31
1 2 1 [73.56; 80.42] -11.34
2 1 1 [71.43; 80.34] -11.08
9 3 1 [46.15; 68.30] -8.53
8 9 1 [66.33; 40.89] -8.32
6 7 1 [26.64; 76.88] -8.69
5 10 1 [73.39; 21.62] -8.11
3 5 1 [75.77; 12.20] -8.23

Table 2.6: Fit% of different OE models with orders nb and nf on the estimation dataset

models with smaller nAIC usually provide much better fit percent results on the
validation data set for Output-Error models. Hence, the last 5 rows in the Table 2.6
imply that the validation performance of these models is supposed to be worse with
regard to the ones on the top of the table.

2.3.3 Validation

The estimated Output-Error models with different orders are validated in the simula-
tion mode by utilizing another data set and the models which satisfy the performance
requirement the most are shown in Table 2.7.

The auto-correlation and cross-correlation have been defined in Section 2.1.
According to Table 2.7, all the cross-correlations between the output residuals and
the associated inputs are acceptable i.e. all the models pass the independence test.
However, the auto-correlations are not taken into consideration because the results
for all the models with varying orders are extremely bad. For the OE models, it is
already suggested that paying less attention to the results of the whiteness test by
the MATLAB System Identification Toolbox [3].

From the Table 2.7, selecting the model with nb = 2, nf = 2 and nk = 1 seems
reasonable due to the fact that its performance based on NRMSE criterion is as
good as the models with higher polynomial orders. Besides, the model complexity
problem can be overcome by choosing oe221.

The simulated response comparison and the cross-correlation diagrams of the

36 CHAPTER 2. LINEAR MODEL IDENTIFICATION

nb nf nk Fit% [h1; h2] Cross − correlation

9 1 1 [83.48; 73.73] Perfect
8 1 1 [82.52; 73.95] Perfect
3 6 1 [85.36; 68.89] Very good
2 9 1 [83.70; 69.58] Very good
10 1 1 [84.55; 68.52] Perfect
6 1 1 [80.61; 70.97] Perfect
2 2 1 [84.18; 67.15] Very good

2 10 1 [83.29; 67.92] Very good
2 7 1 [83.26; 66.74] Very good
2 8 1 [83.65; 65.77] Very good
7 1 1 [82.79; 66.61] Perfect
7 2 1 [85.18; 64.08] Very good
5 1 1 [79.65; 68.37] Perfect
4 1 1 [80.20; 67.75] Perfect
2 6 1 [83.20; 64.02] Very good
2 5 1 [82.96; 62.56] Very good
1 3 1 [80.92; 64.57] Perfect
7 3 1 [84.93; 58.93] Very good
4 5 1 [83.50; 59.85] Perfect
5 8 1 [82.11; 60.88] Very good
1 1 1 [78.44; 63.58] Perfect
6 5 1 [78.86; 62.84] Very good
2 4 1 [83.09; 58.32] Very good
3 1 1 [77.83; 63.37] Perfect

Table 2.7: Fit% and cross-correlations of the estimated models vs. validation data

candidate Output-Error model with nb = 2, nf = 2 and nk = 1 are demonstrated in
Figure 2.14 and Figure 2.15 respectively.

As it has been done in the previous sections, additional tests are performed to
make certain that the selected OE model is the right choice. The PRBS signals
seen in Figure 2.8 are used for the additional tests after detrending operation. As it
has been mentioned before, four different test data sets have been merged so as to
constitute the signals. Here, only the second and the third portions are employed
and the simulation results are represented in Table 2.8.

In Table 2.8, there is only one fit percentage value for each row since the average
of both output performances is also taken. According to this table, the Output-Error
polynomial model with nb = 2, nf = 2, and nk = 1 has the second highest average
fit percentage on the test data sets, so this model can be chosen.

2.3. OUTPUT-ERROR MODELS 37

Figure 2.14: The candidate OE model (oe221) vs. validation data

Figure 2.15: Cross-correlations of the candidate model on the validation dataset

The polynomials for the identified Output-Error model with the orders nb = 2,
nf = 2, and nk = 1 are the following:

38 CHAPTER 2. LINEAR MODEL IDENTIFICATION

nb nf nk Average Fit%
9 1 1 [77.80]
8 1 1 [76.82]
3 6 1 [74.67]
2 9 1 [78.53]
10 1 1 [76.89]
6 1 1 [74.29]
2 2 1 [78.46]

2 10 1 [77.11]
2 7 1 [77.10]
2 8 1 [77.40]
7 1 1 [75.14]
7 2 1 [77.74]
5 1 1 [73.02]
4 1 1 [74.07]
2 6 1 [75.80]
2 5 1 [73.97]
1 3 1 [75.40]
7 3 1 [69.43]
4 5 1 [68.81]
5 8 1 [75.36]

Table 2.8: Average fit% of the candidate models on the test datasets

The polynomials for the first output h1 are

B11(q) = 111.5376q−1 − 93.3374q−2

B12(q) = 11.5762q−1 + 21.6361q−2

F11(q) = 1− 1.5427q−1 + 0.5735q−2

F12(q) = 1− 1.6369q−1 + 0.6627q−2

(2.25)

and the polynomials for the second output h2 are

B21(q) = 19.2780q−1 + 23.0406q−2

B22(q) = 155.1399q−1 − 148.9504q−2

F21(q) = 1− 1.4769q−1 + 0.5094q−2

F22(q) = 1− 1.7575q−1 + 0.7658q−2

(2.26)

The zeros and the poles of the corresponding polynomials of the considered Output-

2.3. OUTPUT-ERROR MODELS 39

Error model are specified in the following equation.

Zero: + 0.8368, Poles: 0.9178 and 0.6249 for
B11(q)

F11(q)

Zero: − 1.8690, Poles: 0.9033 and 0.7337 for
B12(q)

F12(q)

Zero: − 1.1952, Poles: 0.9279 and 0.5489 for
B21(q)

F21(q)

Zero: + 0.9601, Poles: 0.9585 and 0.7990 for
B22(q)

F22(q)

(2.27)

In brief, the identified Output-Error polynomial model could not fit the validation
data with a sufficient percentage because of the nonlinear dynamics of the system.
However, the fluctuations for the outputs in the step response are removed by means
of fmincon solver of the MATLAB System Identification toolbox. The transient
responses for the selected model is shown in Figure 2.16.

Figure 2.16: Step responses for the chosen OE model

40 CHAPTER 2. LINEAR MODEL IDENTIFICATION

2.4 ARX Models

The ARX model structure is an auto-regressive model subject to exogenous inputs.
Regardless of the system to be either SISO or MIMO, ARX models generate lin-
ear predictors; hence, permitting the use of linear estimation methods to perform
parameter estimations.

In the following parts, first, the structure of the linear ARX model is expressed
and the least-square equation is stated. Then, the performance of the estimated
ARX models on the validation data set is evaluated based on NRMSE quality metric
and residue correlations. Afterwards, additional tests are also performed in order to
get more robust results for the candidate ARX model.

2.4.1 Model Structure

The structure of an Auto-regressive Exogenous (ARX) model is

y(k) = A1y(k − 1) + ...+Anay(k − na) +B1u(k − nk)
+ ...+Bnb

u(k − nb − nk + 1) + e(k)
(2.28)

where nu and ny are the number of inputs and outputs of the plant respectively,
A1, A2, ... ∈ Rny ,ny and B1, B2, ... ∈ Rny ,nu are coefficient matrices, u(k) ∈ Rnu

represents the inputs at sampling time instant k, y(k) ∈ Rny is the outputs at
sampling time instant k, na and nb are the orders of the ARX model and they
represent the number of past output and past input terms used in order to estimate
the current output respectively, nk refers to the input-output delay and e(k) is the
noise (disturbance) term [24].

In Section 2.4.2, ARX models are estimated by means of the MATLAB System
Identification toolbox, which solves the over-determined set of linear equations that
constitutes the least-squares estimation problem [3]. The ARX model parameters
vector ϑ is estimated by solving the following least-square equation:

ϑ = (JTJ)−1JT yobs (2.29)

where J is the regressor matrix and yobs is the measured outputs.

2.4.2 Identification and Validation

First, the ARX models are estimated by using the detrended estimation dataset
which contains the input data seen in Figure 2.2 up to 15000 seconds (600 samples)
and the associated outputs. As usual, the input-output delay nk is selected as 1
sample time for all the transfer functions of the system. Various ARX models with
different orders na and nb are estimated from 1 to 10 i.e. the ARX models with the
orders na = [i i; i i] and nb = [j j; j j] are tried where i, j = 1, 2, ..., 10.

The considered linear ARX models are tested on the validation data which
involves the remaining part of the input-output data shown in Figure 2.2 (last 5000
seconds or last 200 samples). Besides, for each estimated ARX model, the residual
tests are performed on the validation data in order to further inspect the models.
Since the estimations are made in the simulation mode, whiteness and independence

2.4. ARX MODELS 41

tests reveal whether the simulation errors are white and uncorrelated to the input
data. The results are reported in Table 2.9 and the specified orders refer to the
matrices; for example, in the first row na = 10 is equivalent to na = [10 10; 10 10],
nb = 9 means that nb = [9 9; 9 9] etc.

na nb nk Fitest% [h1; h2] Fitval% [h1; h2] Residuals

10 9 1 [79.85; 87.13] [84.51; 81.19] Mediocre
10 10 1 [79.66; 88.81] [83.72; 70.89] Bad
3 3 1 [71.31; 78.67] [74.58; 64.19] Good
2 3 1 [69.02; 81.35] [76.29; 58.59] Good
2 2 1 [66.29; 77.08] [77.43; 52.26] Outstanding

1 2 1 [58.25; 75.41] [62.38; 53.47] Outstanding
1 1 1 [68.86; 77.06] [64.92; 47.94] Very Bad
1 10 1 [50.84; 65.58] [47.09; 52.45] Good
1 9 1 [48.37; 66.68] [44.06; 52.55] Good
3 2 1 [34.48; 70.31] [53.46; 40.90] Good
1 8 1 [45.41; 67.03] [40.24; 51.67] Good
1 7 1 [41.96; 66.85] [35.69; 49.66] Good
1 6 1 [37.95; 66.25] [30.36; 46.73] Good
1 5 1 [33.11; 64.47] [23.97; 42.08] Good
2 1 1 [-22.11; 9.89] [32.98; 14.35] Outstanding

Table 2.9: Performance of the estimated ARX models with different orders

15 different linear ARX models are added to Table 2.9 due to various reasons.
The models with higher polynomial order na fit the validation data much better
than the others; however, the residuals of these models violate more the confidence
intervals of the auto-correlation and cross-correlation functions. Some of the models
pass the whiteness and independence tests but their performance on the validation
data are inadequate, such as arx121 and arx211. Also, the estimation fit percent of
arx211 is very poor.

The results of the whiteness and the independence tests for the models with good
validation fit percentage are demonstrated in Figure 2.17. From this figure, it is seen
that all the considered models perform quite well in the independence test since only
a few residuals go beyond the ±3σ confidence interval of the cross-correlation function
for each model. On the other hand, only the ARX model with the orders na = 2, nb
= 2 and nk = 1 could pass the whiteness test owing to the fact that the residuals
of other models violate significantly the confidence limits of the auto-correlation
function at several lag samples. For this reason, the arx221 has been determined as
the candidate model. The simulated response comparison diagram of the candidate
ARX model is shown in Figure 2.18.

Additional tests are also performed before selecting the candidate model (arx221)
in order to have more reliable results. The results are shown in Table 2.10.

42 CHAPTER 2. LINEAR MODEL IDENTIFICATION

Figure 2.17: Comparison of residue correlations of different ARX models

Figure 2.18: The candidate ARX model vs. validation data set

According to Table 2.10 and Figure 2.18, the candidate model could fit the test

2.5. COMPARISON OF THE SELECTED LINEAR MODELS 43

Model Name Fittest1% [h1; h2] Fittest2% [h1; h2]

arx221 [72.79; 72.56] [76.40; 69.18]

Table 2.10: Performance of the candidate ARX model on the test datasets

data sets even more than it could fit the validation data on the average. Therefore,
the candidate model arx221 has been selected.

The polynomials for the chosen ARX model with the orders na = 2, nb = 2, and
nk = 1 are the following:
The polynomials for the first output h1 are

A11(q) = 1− 1.9659q−1 + 0.9663q−2

A12(q) = 0.0471q−1 − 0.0455q−2

B11(q) = 42.1906q−1 − 40.0763q−2

B12(q) = 89.4773q−1 − 88.2050q−2

(2.30)

and the polynomials for the second output h2 are

A21(q) = 0.0058q−1 − 0.0068q−2

A22(q) = 1− 1.9228q−1 + 0.9250q−2

B21(q) = 73.5355q−1 − 71.5468q−2

B22(q) = 79.0570q−1 − 78.9397q−2

(2.31)

2.5 Comparison of the Selected Linear Models

The average fit percent of two outputs on the validation dataset for the chosen
State-Space, ARMAX, OE, and ARX models are 68.23%, 75.55%, 75.67%, and
64.85% respectively. Namely, the performance of the selected ARMAX and Output-
Error models based on NRMSE criterion are very close, the performance of the
considered State-Space model is slightly worse than them, and the performance of the
corresponding ARX model is the worst; nevertheless, there are no huge differences
between the fit percent of the selected models. It is significant to emphasize that the
considered State-Space and ARX models are extremely successful in the whiteness
and the independence tests. Lastly, the nonlinear models can be employed in order
to improve the system identification performance. The comparison of the selected
models by using different methods is shown in Table 2.11.

44 CHAPTER 2. LINEAR MODEL IDENTIFICATION

Model Name Fitval% [h1; h2] Autocorr. Crosscorr.

ss4 [77.20%; 59.25%] Outstanding Perfect
armax4004411 [81.06%; 70.04%] Good Good
oe221 [84.18%; 67.15%] Very bad Outstanding
arx221 [77.43%; 52.26%] Perfect Outstanding

Table 2.11: Comparison of the obtained models with different methods

2.6 Summary

In this chapter, first, the PRBS signals used for identifying the system are defined and
their figures are demonstrated. Afterwards, the pre-processing steps are explained
and two different estimation modes (prediction and simulation) are discussed. Then,
the input-output delay (transport delay) is described and the choice of the delay
order is done by means of input-output impulse response of the estimation data.
At the end, the performance evaluation criterion is mentioned and its equation is
provided.

In Section 2.1, State-Space models are analyzed. Initially, the structure of a
continuous-time State-Space model is reported. After that, several State-Space models
are estimated with different orders. The corresponding models are validated by using
a different data set. Next, the auto-correlation and cross-correlation functions are
explained so as to evaluate the performance of the models on the validation dataset
from a different point of view. The candidate model is tested on different data sets
to get a more robust result. Hereby, the coefficients of the matrices A, B, C, K are
expressed; the zeros and the poles of the selected model are stated. In the subsequent
sections, input-output polynomial models are examined.

In Section 2.2 and 2.3, ARMAX models and Output-Error models have been re-
ported respectively in a similar content by considering model structures, identification
together with normalized AIC, validation by looking at fit percent and correlation
functions, and additional tests. After the validation phase, the polynomials, zeros
and poles of the selected models are reported.

In Section 2.4, the model structure of linear ARX model has been specified. Then,
the estimated ARX models have been validated by using a different data set and the
performance of the considered models has been evaluated with regard to fit percent
on the validation data. In addition to this, extra tests have been performed for the
candidate model so as to attain more reliable results. Ultimately, in Section 2.5, the
comparison of the performance achieved with the different methods has been made.

Chapter 3

Nonlinear Model Identification

As it is seen in Chapter 2, the estimated linear models with different methods could
not identify the Quadruple-Tank system sufficiently well because the corresponding
system has nonlinear dynamics and wide range of operating conditions have been
used in order to identify the plant.

The excitation signal employed for the identification procedure has been described
in Chapter 2. Here, the input and output signals utilized for identification of nonlinear
models are the same as those used in the linear identification. Two uncorrelated
PRBS signals with different amplitude are used for the inputs qa and qb.

These asymmetric PRBS input signals and the associated outputs need to be
divided into two datasets which are called estimation and validation datasets. The
estimation dataset is composed of the first 75% of the input-output signals and the
validation dataset consists of the remaining part of the data.

For nonlinear model identification, detrending the datasets is not required; there-
fore, the input signals shown in Figure 2.2 and the associated outputs are employed
without removing the mean values or linear trends.

Two different estimation modes have been explained in the previous chapter. Once
again, all nonlinear models are calibrated in the simulation mode, which computes
the simulated outputs instead of utilizing the measured ones, due to the fact that it
is more reliable and robust as compared to prediction mode. However, the simulation
mode is computationally heavier than the prediction mode as expected.

Moreover, the input-output delay determined in Chapter 2 is used for nonlinear
model identification. Recall that the dead-time has been chosen as 1 sample time for
all the transfer functions of the system (nk = 1).

In this chapter, three different nonlinear models are studied. First, the structures
of the models are reported in each section. Then, many models are estimated with
different orders and their performance are evaluated. After that, the estimated models
are tested on the validation dataset and the results based on NRMSE quality metric
and correlations of the residuals are analyzed. Additional tests are also performed in
the validation phase so as to obtain more reliable results. All in all, each selected
nonlinear model is compared with regard to fit percentage, model complexity in
terms of orders, auto-correlations and cross-correlations of the residuals.

In the following sections, first, the Nonlinear Auto-regressive Exogenous (NARX)
models are estimated. At the beginning of identification procedure in Section 3.1,
the output function of the estimated models not only contain the linear function but

45

46 CHAPTER 3. NONLINEAR MODEL IDENTIFICATION

also the nonlinear function. Then, the function that represents the non-linearity is
omitted in order to reduce the model complexity and the candidate NARX model
transforms into the Polynomial NARX model. Hammerstein−Wiener and Neural
NARX (NNARX) models are also implemented in this chapter. The difference
between the Polynomial NARX model and the Neural NARX model is that the
former is linear in the parameters, whereas the latter uses a neural network and it
is nonlinear in the parameters. The NNARX models are more complex, but better
result might be obtained by using them.

3.1 NARX Models

The NARX model structure is a non-linear autoregressive model with exogenous
inputs. The NARX models are commonly used in the process industry so as to
identify nonlinear systems. The NARX models extend the linear ARX models. This
extension allows to model complex nonlinear behavior of the system by utilizing
output functions that combine nonlinear and linear components.

In the following parts, first, the structure of the nonlinear ARX (NARX) model
is reported. Then, the estimated NARX models are validated by analyzing the
performance of the corresponding models with regard to NRMSE criterion and
residue correlations.

3.1.1 Model Structure

The general structure of a NARX model is

y(k) = F (y(k − 1), ..., y(k − na), u(k − nk), u(k − 1− nk), ..., u(k − nb − nk + 1))
(3.1)

where nu and ny are the number of inputs and outputs of the system respectively,
u(k) ∈ Rnu represents the inputs at sampling time instant k, y(k) ∈ Rny is the
outputs at sampling time instant k, na and nb are the orders of the NARX model
and they represent the number of past output and past input terms used in order to
estimate the current output respectively, nk refers to the input-output delay, and F
is the output function [3] [24]. The output function F may contain linear and/or
nonlinear functions. Different mapping functions can be utilized, such as Wavelet
network, Sigmoid network or Neural network for the nonlinear block.

The regressors of the NARX model can be more complex as compared to the
linear ARX model because nonlinear combinations of delayed input and output
variables can be included. In the case that a NARX model does not a contain
nonlinear function, it is called Polynomial NARX model. In the Polynomial NARX
model structure, the outputs depend linearly on the model parameters while they
can depend non-linearly on the regressors. Recall that the structure of a linear ARX
model

y(k) = A1y(k − 1) + ...+Anay(k − na)
+B1u(k − nk) + ...+Bnb

u(k − nb − nk + 1) + e(k)
(3.2)

where A1, A2, ... ∈ Rny ,ny and B1, B2, ... ∈ Rny ,nu are coefficient matrices, e(k) is
the noise term [3] [24]. Then, the Polynomial NARX model can be represented as

3.1. NARX MODELS 47

an extension of equation 3.2 i.e. nonlinear regressors which depend linearly on the
parameters, such as 0.5y1(k − 1)2 or −0.2y2(k − 2)u1(k − 3) can be added to this
equation for any outputs.

3.1.2 Identification and Validation

The initial NARX model is obtained by using the selected ARX model as initial
model for the estimation i.e the corresponding NARX model is estimated by using
the orders and the parameters of the linear ARX model (arx221) that has been
selected in Section 2.4. In this way, the orders of the linear model become the orders
of the NARX models as well. Nonetheless, the unmodified estimation and validation
datasets are put into operation instead of detrended ones in order to acquire the
initial NARX model.

The fit percent of the corresponding NARXmodel on the estimation and validation
data sets are [62.71%; 71.47%] and [60.24%; 67.43%] respectively. Furthermore, the
additional test datasets are utilized so as to acquire more reliable results. The test
datasets employed in the previous chapter are also used here. The performance of
the initialized NARX model on the different test datasets are [53.60%; 69.63%] and
[66.50%; 69.24%] respectively.

As it is seen from the previous paragraph, the performance of the considered
NARX model is not sufficient. Therefore, after getting the initial NARX model by
refining the selected ARX model in the simulation mode, the nonlinear regressors that
enhance the performance are added to the outputs of the acquired NARX models
iteratively by means of the MATLAB System Identification toolbox. In the regressor
selection procedure, a nonlinear regressor is added to the existing NARX model
and the performance of the obtained NARX model is evaluated by analyzing the fit
percent on the validation and test data sets, and by looking at the correlations of the
residuals. If it is thought that the overall performance increases with the addition of
new regressor, the corresponding NARX model is determined as a new candidate
model. During this identification procedure, the nonlinear mapping function is also
included in the output function F in addition to linear function. To this end, Wavelet
Network function is employed for both outputs.

In this work, some nonlinear regressors are tried for adding them to the NARX
models. Since the orders of the NARX models are na = 2 and nb = 2, all nonlinear
regressors with only second polynomial degree could have been taken into account.
However, the nonlinear regressors with second polynomial degree are not tested in the
random order, whereas these regressors have been tried starting from the ones with
larger “maximum value of the outputs” on the NARX model plot. An example plot is
shown in Figure 3.1 for the initialized NARX model. In this figure, the relationship
between the regressors h1(t − 1), h1(t − 2) and the first output h1 is plotted by
means of the MATLAB System Identification toolbox. It is seen that the plot looks
like a plane for the corresponding regressors; hence, the relationship between the
regressors and the considered output is probably linear. Notwithstanding, in this
thesis, nonlinear function is also taken into account in the output function at the
beginning. After a non-polynomial NARX model with sufficient performance is
acquired, it will be tried to convert it to a polynomial model structure by omitting
the nonlinear part.

48 CHAPTER 3. NONLINEAR MODEL IDENTIFICATION

Figure 3.1: The relationship between the corresponding regressors and the first output

In Figure 3.1, the largest value of the plane on the Z axis is approximately 2.57.
Owing to the fact that the orders of the initialized NARX model is na = [2 2; 2 2],
nb = [2 2; 2 2] and nk = [1 1; 1 1], the linear regressors of this model are h1(t− 1),
h1(t− 2), h2(t− 1), h2(t− 2), qa(t− 1), qa(t− 2), qb(t− 1), qb(t− 2) for both outputs.
The maximum value for each NARX plot is reported in Table 3.1 and Table 3.2.

h1(t−1) h1(t−2) h2(t−1) h2(t−2) qa(t− 1) qa(t− 2) qb(t− 1) qb(t− 2)

h1(t−1) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

h1(t−2) 2.57 ∗ ∗ ∗ ∗ ∗ ∗ ∗

h2(t−1) 2.05 1.13 ∗ ∗ ∗ ∗ ∗ ∗

h2(t−2) 2.05 1.33 0.81 ∗ ∗ ∗ ∗ ∗

qa(t− 1) 1.97 1.25 0.73 0.73 ∗ ∗ ∗ ∗

qa(t− 2) 1.96 1.24 0.69 0.72 0.65 ∗ ∗ ∗

qb(t− 1) 1.99 1.27 0.75 0.75 0.68 0.67 ∗ ∗

qb(t− 2) 1.98 1.26 0.68 0.74 0.66 0.63 0.69 ∗

Table 3.1: The maximum value for the first output h1 on the NARX plots

During the regressor selection procedure, it is observed that all of the obtained
models fit the estimation data quite well and all of them also pass the independence
test; therefore, the fit percent related to estimation dataset and the cross-correlation
evaluation are not included in Table 3.3. In this table, V al%, Relval, Autocorrval,
Test1%, Test2%, Avg% and Relavg refer to the mean value of the fit% of the outputs
of the corresponding model on the validation data set, the difference between the
fit% of the new candidate model and the previous one, the residue correlations on the
validation data set, the mean value of the fit% of the outputs of the corresponding

3.1. NARX MODELS 49

h1(t−1) h1(t−2) h2(t−1) h2(t−2) qa(t− 1) qa(t− 2) qb(t− 1) qb(t− 2)

h1(t−1) ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

h1(t−2) 0.72 ∗ ∗ ∗ ∗ ∗ ∗ ∗

h2(t−1) 1.87 1.86 ∗ ∗ ∗ ∗ ∗ ∗

h2(t−2) 1.21 1.05 2.35 ∗ ∗ ∗ ∗ ∗

qa(t− 1) 0.68 0.67 1.81 1.16 ∗ ∗ ∗ ∗

qa(t− 2) 0.68 0.61 1.81 1.10 0.62 ∗ ∗ ∗

qb(t− 1) 0.69 0.68 1.83 1.17 0.64 0.63 ∗ ∗

qb(t− 2) 0.69 0.59 1.83 1.08 0.64 0.58 0.65 ∗

Table 3.2: The maximum value for the second output h2 on the NARX plots

model on the first test data set, the mean value of the fit% of the outputs of the
corresponding model on the second test data set, the average fit% of the corresponding
model on the validation and test data sets, and the difference between the average
fit% of the new candidate model and the previous one respectively.

Custom Regressor Added V al% Relval Autocorrval Test1% Test2% Avg% Relavg

None h1, h2 63.84 Perfect 61.62 67.87 64.44

h1(t− 1) · h1(t− 2) h1 65.66 +1.83 Very Bad 76.46 67.72 69.94 +5.50

h1(t− 1)2 h1 71.12 +5.46 Very Bad 75.78 82.29 76.40 +6.45

h2(t− 1) · h2(t− 2) h2 80.45 +9.32 Very Bad 81.13 77.59 79.72 +3.32

h1(t− 1) · h2(t− 1) h1 79.36 −1.08 Mediocre 82.02 87.65 83.01 +3.29

h2(t− 2)2 h2 81.93 +2.57 Mediocre 80.39 87.98 83.43 +0.42

h2(t− 1)2 h2 81.36 −0.58 Mediocre 80.91 89.54 83.93 +0.50

h1(t− 2)2 h1 82.08 +0.72 Mediocre 82.70 89.57 84.78 +0.85

h2(t− 1) · qb(t− 1) h2 81.99 −0.10 Mediocre 84.83 90.05 85.62 +0.84

qa(t− 1) · qb(t− 1) h1 82.35 +0.37 Mediocre 84.01 89.86 85.41 −0.21

qa(t− 1) · qb(t− 2) h1 82.45 +0.10 Mediocre 85.96 89.00 85.80 +0.40

qa(t− 2) · qb(t− 1) h1 82.44 −0.01 Mediocre 86.20 89.09 85.91 +0.11

h1(t− 1) · h2(t− 2) h2 83.29 +0.85 Good 84.59 65.83 77.90 −8.01

h1(t− 2) · h2(t− 2) h2 82.27 −1.02 Good 83.99 77.30 81.18 +3.28

h2(t− 1) · qa(t− 1) h2 83.33 +1.06 Good 84.89 73.50 80.57 −0.61

h2(t− 1) · qa(t− 2) h2 83.39 +0.06 Good 85.00 80.08 82.82 +2.25

h2(t− 2) · qb(t− 1) h2 87.41 +4.02 Mediocre 87.24 61.86 78.84 −3.99

qa(t− 1) · qa(t− 2) h2 88.88 +1.48 Mediocre 87.84 72.68 83.13 +4.30

h1(t− 1) · qa(t− 1) h2 89.80 +0.91 Mediocre 86.37 74.60 83.59 +0.46

h1(t− 1) · qa(t− 2) h2 90.34 +0.54 Good 87.65 53.48 77.15 −6.43

h1(t− 1) · qb(t− 1) h2 90.18 −0.16 Good 87.90 61.90 79.99 +2.84

h1(t− 1) · qb(t− 2) h2 89.12 −1.06 Mediocre 88.26 79.27 85.55 +5.55

Table 3.3: Performance of the obtained NARX models after adding regressors iteratively

The initial NARX model, which has been obtained by refining the selected linear

50 CHAPTER 3. NONLINEAR MODEL IDENTIFICATION

ARX model, is located on the top of Table 3.3. Even though this initialized NARX
model completely passes the whiteness and independence tests, its performance based
on NRMSE criterion is insufficient both on the validation and the test datasets. The
average fit percent for this model is approximately 64%. Hence, custom nonlinear
regressors are added. After adding h1(t− 1) · h2(t− 1) to the regressors of the first
output h1, the acquired NARX model fits both the validation and test datasets much
better than the initial NARX model. Besides, the residuals of the corresponding
model are less correlated as compared with the models in the second, the third and
the fourth rows, but this model still fails the whiteness test.

Similarly, the overall performance of the NARX models are increased by adding
the considered regressors one by one up to the 12th row. When the regressor
h1(t − 1) · h2(t − 2) is appended to the regressors of the second output h2, the fit
percent of the obtained model on the validation dataset increases slightly; nevertheless,
the fit% on the second test dataset decreases from 89.09% to 65.83%. It has been
decided to include this regressor because the corresponding model performs better in
the whiteness test and it still fits well the validation data set. The test data sets are
important but the validation dataset is more significant than others in this work.

The performance of the estimated NARX models based on NRMSE quality metric
is enhanced by adding other nonlinear regressors. In the event that the regressor in
the 17th row is appended to the regressors of the second output h2, the fit percent
of the obtained model on the validation dataset reaches 87.41%. Although this
model performs worse in the whiteness test and the performance on the second test
dataset decreases considerably as compared to the previous model (from 80.08%
to 61.86%), this regressor has been taken into account due to the importance of
the validation data. Afterwards, the fit% on the second test data set is increased
through the instrumentality of the regressor qa(t− 1) · qa(t− 2). Last, the regressor
h1(t− 1) is added to the regressors of the second output h2 after multiplied by all
input regressors. Thus, the NARX model with better performance is obtained by
adding all of the nonlinear regressors in Table 3.3.

In Table 3.3, the nonlinear regressors with only second polynomial degree have
been added up to this point. Now, some regressors with third and fourth polynomial
degrees are also considered arbitrarily so as to improve the performance of the
estimated NARX models with the orders na = 2, nb = 2 and nk = 1. The performance
improvement of new candidate models is demonstrated in Table 3.4.

Some other regressors with higher polynomial degree are added to the obtained
NARX model in addition to the ones reported in Table 3.3 in order to improve
performance of the existing model on the validation and test datasets. In the first
two rows of Table 3.4, the regressors h1(t− 1)2 · h1(t− 2)2 and h2(t− 1)2 · h2(t− 2)2

are simultaneously appended to the regressors of the outputs h1 and h2 respectively.
After adding these regressors, the fit percentage of the corresponding NARX model
on the validation dataset is increased. Then, the regressors with cubic polynomial
degree (h1(t− 1)3 and h1(t− 2)3) are also added to the regressors of the first output
h1. In this way, the fit% of the existing model on the validation dataset becomes
91.21%. Moreover, the residuals of this model perform better in the whiteness test.

After adding the regressors with higher polynomial degree, the regressors that
adversely influenced the model’s performance before are taken into consideration
once again because an omitted regressor depends also the regressors that is added

3.1. NARX MODELS 51

Custom Regressor Added V al% Relval Autocorrval Test1% Test2% Avg% Relavg

h1(t− 1)2 · h1(t− 2)2 h1

h2(t− 1)2 · h2(t− 2)2 h2 90.99 +1.87 Mediocre 80.28 83.68 84.98 −0.57

h1(t− 1)3 h1 91.06 +0.08 Good 86.95 91.76 89.92 +4.94

h1(t− 2)3 h1 91.21 +0.14 Good 87.17 92.64 90.34 +0.41

h1(t− 1) · qa(t− 1) h1

h1(t− 1) · qa(t− 2) h1

h1(t− 1) · qb(t− 1) h1

h1(t− 1) · qb(t− 2) h1 89.89 −1.32 Good 86.03 87.61 87.84 −2.49

h2(t− 1) · qb(t− 1) h1

h2(t− 1) · qb(t− 2) h1 92.23 +2.34 Good 88.58 87.77 89.52 +1.68

h2(t− 2) · qa(t− 2) h1 91.45 −0.78 Good 86.07 88.08 88.53 −0.99

h2(t− 1) · qb(t− 2) h2 90.18 −1.27 Very Good 85.38 88.29 87.95 −0.58

h2(t− 2) · qb(t− 2) h2 90.98 +0.80 Very Good 86.24 87.51 88.24 +0.29

qa(t− 1) · qb(t− 1) h2

qa(t− 1) · qb(t− 2) h2 90.78 −0.20 Outstanding 87.42 88.33 88.84 +0.60

Table 3.4: Performance of the acquired NARX models after adding nonlinear regressors with
higher degree of polynomials

after it has been tried. Therefore, considering the omitted regressors might be
beneficial for the existing NARX model. Starting from the fifth row in Table 3.4,
four different regressors are added simultaneously to the existing nonlinear model.
As it can be seen, the performance of the corresponding model based on NRMSE
criterion decreases for all data sets; however, the auto-correlation of the residuals of
this model are less than the previous model especially for the first output h1.

When the nonlinear regressor h2(t− 1) · qb(t− 2) is appended to the regressors
of the second output h2, the acquired model performs very well on the different
datasets in terms of fit percentage. Furthermore, the auto-correlation of the residuals
of the corresponding model is reported as “very good” because the confidence interval
of the auto-correlation function for the second output h2 is much less violated in
comparison with the previous estimated models. Finally, a model which meets all the
requirements is acquired. The corresponding model fits both the validation and the
test data sufficiently well and it also passes both the whiteness and the independence
tests. Hence, this model, which contains both linear and nonlinear functions in its
output function, has been considered as the candidate model.

In order to reduce the complexity of the candidate model, the nonlinear function
block might be omitted. Thus, another NARX model which uses the same regressors
as the candidate model has been estimated. Since all the corresponding regressors
are used only in the linear block, the acquired model becomes a Polynomial NARX
model. In the Polynomial NARX model structure, all regressors depend linearly
on the model parameters. The performance evaluation of the obtained Polynomial
NARX model is shown in Table 3.5.

There is no significant performance decrease for the Polynomial NARX model
(approximately 2% decrease on the average). Moreover, in the event of the Polynomial
NARX model, the complexity of the structure has been reduced. In the Polynomial

52 CHAPTER 3. NONLINEAR MODEL IDENTIFICATION

Model Type V al% Autocorrval Test1% Test2% Avg%

Non-polynomial NARX 90.78 Outstanding 87.42 88.33 88.84

Polynomial NARX 89.97 Very Good 84.96 84.66 86.54

Table 3.5: Performance comparison of the candidate NARX models (Polynomial vs. Non-
polynomial)

NARX model, the residuals are slightly more correlated as compared to the candidate
model which contains also the nonlinear function block; however, there is not much
difference. The comparison of these models on the simulated response and residual
correlation diagrams is shown in Figure 3.2 and Figure 3.3 respectively.

Figure 3.2: The comparison of the candidate NARX models on validation dataset

In figure 3.3, it is seen that all residuals are in the area of confidence interval
of the cross-correlation function for both models. In other words, all the residuals
of the considered NARX models pass the independence test. Likewise, the auto-
correlation function of the residuals are in the region of confidence bounds for the
first output of the non-polynomial model i.e. the corresponding residuals pass the
whiteness test. Besides, there are two residuals that exceed the confidence interval
of the auto-correlation function for the second output of the non-polynomial model
at the lag samples -1 and +1, but these correlations can be ignored because their
amplitude of correlation are very close to the confidence limit. On the other hand,
the Polynomial NARX model perform slightly worse in the whiteness test; however,

3.1. NARX MODELS 53

Figure 3.3: Residue correlations of the candidate NARX models

this little difference can be ignored because the complexity of the polynomial model
structure is far less than the other one.

Since several nonlinear regressors have been added during the regressor selection
procedure and the first and the second test data sets have been utilized in this
procedure, there is a risk of overfitting effects. Other test data sets which have never
been used before, now, take part in the validation phase so as to eliminate the risk
of overfitting. The fit percent of the considered Polynomial NARX model on 14
different test data sets is demonstrated in Table 3.6.

Test3% Test4% Test5% Test6% Test7% Test8% Test9%

86.21 81.35 95.56 84.78 94.60 93.27 86.94

Test10% Test11% Test12% Test13% Test14% Test15% Test16%

89.55 90.79 89.82 88.87 86.64 88.44 91.65

Table 3.6: Performance of the selected Polynomial NARX model vs. test datasets never
used before

According to Table 3.6, the considered model fits 89.18% the new data sets on

54 CHAPTER 3. NONLINEAR MODEL IDENTIFICATION

the average. Due to the fact that the corresponding model could fit adequately each
of the datasets according to the values reported in this table, this Polynomial NARX
model has been selected. The structure of the selected polynomial model can be
expressed as:

ĥ1(t) = ϑᵀ1ϕ1(t− 1) + d1

ĥ2(t) = ϑᵀ2ϕ2(t− 1) + d2
(3.3)

where ĥ1(t) is the first estimated output, ĥ2(t) is the second estimated output, ϑ1
is the parameters vector i.e. weights of the regressors for the first output, ϑ2 is the
vector of parameters for the second output, ϕ1(t− 1) is the regressors vector for the
first output, ϕ2(t− 1) is the vector of regressors for the second output, d1 and d2 are
the offsets of the first and the second outputs respectively.

According to equation 3.3, the vectors ϑ1 and ϕ1(t− 1) for the first output can
be represented as

ϑ1 =

−0.250760
+0.052640
−0.069129
+0.008187
−0.015926
−0.013793
−0.005396
+0.010468
−0.000814
+0.000142
−0.001009
+0.000162
−0.004072
−0.002668
+0.004720
+0.000304
−0.000187
−0.000716
−0.000468
+0.000188
+0.000015
−0.000797
−0.000065
+0.000009
−0.000839

, ϕ1(t− 1) =

h1(t− 1)
h1(t− 2)
h2(t− 1)
h2(t− 2)
qa(t− 1)
qa(t− 2)
qb(t− 1)
qb(t− 2)

h1(t− 1) · h1(t− 2)
h1(t− 1)2

h1(t− 1) · h2(t− 1)
h1(t− 2)2

qa(t− 1) · qb(t− 1)
qa(t− 1) · qb(t− 2)
qa(t− 2) · qb(t− 1)
h1(t− 1)2 · h1(t− 2)2

h1(t− 1)3

h1(t− 2)3

h1(t− 1) · qa(t− 1)
h1(t− 1) · qa(t− 2)
h1(t− 1) · qb(t− 1)
h1(t− 1) · qb(t− 2)
h2(t− 1) · qb(t− 1)
h2(t− 1) · qb(t− 2)
h2(t− 2) · qa(t− 2)

(3.4)

and the parameters vector ϑ2 and the vector of regressors ϕ2(t−1) of the selected

3.1. NARX MODELS 55

NARX model are

ϑ2 =

−0.246340
−0.075461
+0.047468
+0.003379
+0.007900
+0.024986
+0.005304
−0.006290
+0.001439
+0.001788
+0.000671
+0.004507
−0.002816
+0.005335
−0.000849
−0.001519
−0.000975
+0.001880
−0.001269
−0.000659
−0.000587
+0.000255
−0.000583
+0.000168
−0.000005
+0.000121
+0.000380

, ϕ2(t− 1) =

h1(t− 1)
h1(t− 2)
h2(t− 1)
h2(t− 2)
qa(t− 1)
qa(t− 2)
qb(t− 1)
qb(t− 2)

h2(t− 1) · h2(t− 2)
h2(t− 2)2

h2(t− 1)2

h2(t− 1) · qb(t− 1)
h1(t− 1) · h2(t− 2)
h1(t− 2) · h2(t− 2)
h2(t− 1) · qa(t− 1)
h2(t− 1) · qa(t− 2)
h2(t− 2) · qb(t− 1)
qa(t− 1) · qa(t− 2)
h1(t− 1) · qa(t− 1)
h1(t− 1) · qa(t− 2)
h1(t− 1) · qb(t− 1)
h1(t− 1) · qb(t− 2)
h2(t− 1)2 · h2(t− 2)2

h2(t− 1) · qb(t− 2)
h2(t− 2) · qb(t− 2)
qa(t− 1) · qb(t− 1)
qa(t− 1) · qb(t− 2)

(3.5)

and the offsets of the corresponding outputs, d1 and d2, are 0.335608 and 0.409923
respectively.

56 CHAPTER 3. NONLINEAR MODEL IDENTIFICATION

3.2 Hammerstein-Wiener Models

The Hammerstein-Wiener model is a block-structured model where a nonlinear block
both precedes and follows a linear dynamic system and this model can be used in
order to identify a nonlinear system [33]. The linear block is a discrete transfer
function that represents the dynamic component of the model [3]. For the SISO case,
the block diagram of a Hammerstein-Wiener model is illustrated in Figure 3.4.

In the following parts, first, the structure of the Hammerstein-Wiener model
is expressed. Then, many Wiener models with different orders are estimated for
the identification procedure. Afterwards, the estimated models are validated by
analyzing the performance of corresponding models based on the NRMSE quality
metric. In the validation phase, some Hammerstein and Hammerstein-Wiener models
are also tested so as to compare them with the candidate Wiener model. Finally, the
performance of the candidate model is improved by modifying the lower and upper
saturation limits on the outputs.

3.2.1 Model Structure

The block diagram of a Hammerstein-Wiener model is represented as

Figure 3.4: Scheme of a Hammerstein-Wiener model in the SISO case

where u(k) and y(k) are the input and output of the system respectively; w(k) is
the output of the input nonlinearity block; x(k) is the input of the output nonlinearity
block and w(k) and x(k) are called as internal variables. Also, f is the nonlinear
function that transforms the input data u(k) as w(k) = f(u(k)); h is the nonlinear
function that maps the output of the linear block x(k) to the system output y(k) as
y(k) = h(x(k)); B/F is the linear transfer function that transforms w(k) as x(k) =
(B/F)w(k) [3] [24].

An identified model does not need to have both input and output non-linearities
in the structure. When a model contains only the input non-linearity f , then it
becomes a Hammerstein model. Likewise, in the event that the model has only the
output non-linearity h, then it is called a Wiener model.

3.2. HAMMERSTEIN-WIENER MODELS 57

The structure of the Hammerstein-Wiener model can be generalized as

w(k) = f(u(k))

x(k) = F1x(k − 1) + ...+ Fnf
x(k − nf)

+B1w(k − nk) + ...+Bnb
w(k − nb − nk + 1)

y(k) = h(x(k))

(3.6)

where nu and ny are the number of inputs and outputs of the system respectively;
F1, F2, ... ∈ Rny ,nu and B1, B2, ... ∈ Rny ,nu are the coefficient matrices; u(k) ∈
Rnu represents the inputs at sampling time instant k; y(k) ∈ Rny is the outputs at
sampling time instant k; w(k) ∈ Rnu and x(k) ∈ Rny are the input and output of
the linear block respectively; f ∈ Rnu and h ∈ Rny are the nonlinear functions that
transform the input data and the output data respectively; nk ∈ Rny ,nu is the input-
output delay; nf and nb are the orders of the Hammerstein-Wiener model [3] [24].

3.2.2 Identification

In this section, all models are estimated in the simulation mode by using the
unmodified datasets i.e. the estimation, validation and test data sets are not
detrended. The models are obtained by means of the MATLAB System Identification
Toolbox. The maximum number of iterations is determined as 50. In the ordinary
way, the input-output delay nk is selected as 1 sample time for all the transfer
functions of the system and it is kept constant during the simulations for the sake of
simplicity.

Since PRBS signals with varying amplitude are employed as input signals, input
nonlinearities for the inputs qa and qb can be considered as absent or unitgain in
the MATLAB System Identification toolbox. In other words, the input PRBS signals
can be assumed as linear signals because their amplitudes do not change non-linearly
with respect to time. Moreover, the non-linearity is chosen as saturation for both
outputs in the estimations. This is an assumption and other possibilities will also be
tested in Section 3.2.3. Hence, the models in the estimation phase are called Wiener
models.

It is also important to remark that Output-Error models and Hammerstein-
Wiener models are similar because the linear block is composed of the polynomials
B(q) and F (q) for Hammerstein-Wiener models. In Section 2.3.3, the OE model
with nb = 2, nf = 2, and nk = 1 has been selected. Here, Wiener models could have
been estimated with same orders; nonetheless, 100 Wiener models are obtained by
trying different orders nb = [i i; i i] and nf = [j j; j j] iteratively where i, j = 1, 2,
3, ..., 10.

The Wiener models that provide the best fit percentage on the estimation data
set are demonstrated in the first 16 rows of Table 3.7. In this table, the orders refers
to matrices, such as nb = 2 corresponds to nb = [2 2; 2 2]. The Wiener models with
different orders indicated in Table 3.7 are the candidates; however, as it has been
mentioned in the previous sections, the model order can be decided only after the
corresponding models are tested on the validation data set.

In this table, the normalized Akaike’s Information Criterion (nAIC) of the consid-
ered models are also included because nAIC value gives clue about the performance

58 CHAPTER 3. NONLINEAR MODEL IDENTIFICATION

nb nf nk Fitest% [h1; h2] nAIC

2 2 1 [80.42; 85.78] -12.60
9 9 1 [78.13; 84.90] -11.88
2 3 1 [78.62; 83.55] -12.03
4 2 1 [78.73; 83.08] -11.86
3 2 1 [78.26; 83.27] -12.10
9 2 1 [76.94; 83.33] -12.11
5 8 1 [78.41; 81.00] -11.64
5 9 1 [75.95; 83.04] -11.55
10 1 1 [76.45; 82.51] -11.78
4 3 1 [74.95; 83.61] -11.65
5 3 1 [73.89; 84.48] -11.63
3 3 1 [75.39; 82.69] -11.79
4 6 1 [75.69; 82.14] -11.56
9 1 1 [75.97; 81.73] -11.78
7 7 1 [76.02; 81.31] -11.40
5 5 1 [72.40; 84.91] -11.64
6 8 1 [70.32; 78.94] -10.56
9 3 1 [60.22; 76.76] -9.84
9 8 1 [74.80; 33.10] -8.56
1 9 1 [54.17; 35.47] -7.62

Table 3.7: Fit% of different Wiener models on the estimation dataset

of the corresponding models on different datasets. The models with greater nAIC
generally fit the data less in the validation phase. Therefore, the models in the last 4
rows of Table 3.7 are expected to have less fit percentage on the validation and test
data sets.

3.2.3 Validation

The estimated Wiener models with various orders are validated by the help of different
data set in the simulation mode. The residuals of all the estimated models are strongly
correlated with the auto-correlation function i.e. all models fail the whiteness test.
On the contrary, the residuals of all the acquired models are totally uncorrelated
with the cross-correlation function i.e. all residuals are inside the confidence interval;
therefore, all estimated Wiener models pass the independence test. It is seen that the
residue correlation characteristics of Output-Error models and Hammerstein-Wiener
models are very similar.

The models which fit the validation data the most are shown in Table 3.8. The
residue correlations are not included in this table because all of the corresponding
models perform same in the whiteness and the independence tests. In the table,
Fitval%, Fittest1%, and Fittest2% are the fit percentages of the outputs h1 and h2
of the considered Wiener models on the validation, the first test and the second
test data set respectively. The obtained results become more reliable via test
datasets. Furthermore, the average of Fitval%, Fittest1%, and Fittest2% are reported

3.2. HAMMERSTEIN-WIENER MODELS 59

as Fitavg% in Table 3.8. According to this table, the obtained model with the orders
nb = 2, nf = 2, nk = 1 has the second highest fit% on the validation data set and
the considered model fits the datasets the most on the average.

nb nf nk Fitval% [h1; h2] Fittest1% [h1; h2] Fittest2% [h1; h2] Fitavg%

4 2 1 [87.00; 67.49] [69.99; 78.67] [84.46; 75.75] 77.23

2 2 1 [79.23; 70.66] [84.30; 83.20] [86.66; 81.14] 80.87

6 7 1 [78.91; 66.14] [69.03; 73.62] [76.32; 65.09] 71.52

9 10 1 [84.00; 56.53] [75.88; 78.73] [74.09; 75.69] 74.15

9 2 1 [89.46; 44.00] [68.57; 78.36] [86.93; 74.37] 73.62

3 10 1 [70.91; 62.23] [78.41; 85.58] [69.69; 74.19] 73.50

5 10 1 [79.84; 53.00] [72.84; 74.72] [74.00; 75.53] 71.66

4 3 1 [75.93; 56.79] [72.58; 80.88] [81.98; 75.85] 74.00

7 7 1 [80.91; 51.61] [77.79; 73.86] [83.18; 75.20] 73.76

3 3 1 [75.13; 56.33] [78.83; 76.61] [81.87; 77.26] 74.34

3 2 1 [61.86; 66.04] [73.94; 78.49] [74.47; 80.25] 72.51

4 4 1 [74.14; 49.60] [63.23; 74.56] [71.51; 73.97] 67.84

5 5 1 [67.52; 54.46] [81.32; 74.62] [80.81; 68.31] 71.17

2 9 1 [68.48; 51.55] [82.97; 68.19] [78.15; 58.70] 68.01

2 10 1 [68.54; 51.17] [77.85; 69.67] [59.16; 56.90] 63.88

Table 3.8: Fit% of the estimated Wiener models on the validation and test datasets

Despite the fact that the Wiener model with the orders nb = 2, nf = 2, nk = 1
and with the saturation nonlinearity choice for both outputs can be selected, other
Wiener, Hammerstein, and Hammerstein-Wiener models are taken into account for
the sake of completeness. For this reason, unitgain, saturation and deadzone are
tried for each input and each output as an iterative process and 81 different models
with the same polynomial orders (nb = 2, nf = 2, nk = 1) are obtained by means of
the MATLAB System Identification toolbox. In Table 3.9, the estimated models with
better performance are reported based on the average fit percent of the corresponding
models on the validation and test data sets. In this table, for each input and output,
U , S, D stand for absence of non-linearity, saturation non-linearity and dead-zone
non-linearity respectively.

From Table 3.9, it is seen that the performance of the previously validated model
is the second best model with regard to the fit percent on the average (Fitavg%).
The average fit percent of the corresponding model is very close to the model which
provides the best performance on the average. Besides, the model in the second
row performs better on the validation data set as compared to the model in the
first row of Table 3.9. As it has been mentioned before, validation dataset has more
importance in this work; thus, the Wiener model with saturation nonlinearities for
both outputs and nb = 2, nf = 2, nk = 1 for all the transfer functions of the system
has been determined as the candidate model.

The simulated response diagram of the candidate Wiener model in comparison

60 CHAPTER 3. NONLINEAR MODEL IDENTIFICATION

qa qb h1 h2 Fitval% [h1; h2] Fittest1% [h1; h2] Fittest2% [h1; h2] Fitavg%

S U S S [77.43; 70.53] [86.15; 83.28] [87.56; 81.05] 81.00

U U S S [79.23; 70.66] [84.30; 83.20] [86.66; 81.14] 80.87

U D S U [87.86; 71.06] [81.03; 85.43] [83.31; 73.80] 80.42

S S S U [86.78; 70.33] [84.77; 87.55] [81.85; 70.93] 80.37

U S D U [81.16; 73.48] [82.02; 87.23] [84.91; 72.90] 80.28

D D D D [80.79; 67.01] [82.01; 81.50] [83.36; 79.65] 79.05

U U S U [82.72; 67.56] [80.93; 82.50] [81.55; 72.30] 77.93

U U D D [77.07; 63.83] [85.97; 80.91] [82.79; 76.78] 77.79

U U D U [80.67; 66.83] [81.27; 81.88] [82.87; 71.88] 77.57

U U S D [87.38; 58.54] [86.63; 69.34] [86.81; 76.38] 77.51

U U U D [81.20; 67.70] [76.61; 81.77] [78.91; 78.46] 77.44

U D D U [81.24; 68.25] [71.53; 84.18] [81.66; 77.78] 77.44

S S S S [83.93; 70.08] [79.44; 84.44] [73.91; 72.49] 77.38

D D U U [82.34; 64.25] [78.57; 79.52] [82.72; 75.84] 77.21

U U U S [75.75; 66.45] [78.52; 82.46] [79.18; 80.88] 77.21

Table 3.9: Fit% of the estimated models with different input-output nonlinearities and with
the orders nb = 2, nf = 2, nk = 1

with the validation data set is demonstrated in Figure 3.5.

Figure 3.5: The candidate Wiener model vs. validation dataset

3.2. HAMMERSTEIN-WIENER MODELS 61

From Figures 2.14 and 3.5, it is seen that the performance of the candidate Wiener
model on the validation dataset is slightly worse than the selected Output-Error model
(75.67% for the OE model, 74.95% for the Wiener model on the average). However,
the considered Wiener model fits the test data sets more than the corresponding OE
model. From Tables 2.8 and 3.8, it has been found that the average fit percentages
of the selected OE and the candidate Wiener models on two different test datasets
are 78.46% and 83.83% respectively.

The performance of the candidate Wiener model can be enhanced by adjusting
the saturation limits on both outputs. After several trials, the lower saturation limits
on the first output h1 and on the second output h2 have been determined as 0.0636
and 0.0939 respectively. Besides, the upper saturation limits on both outputs of
the candidate model have been removed for the calibrated model. The simulated
response diagram of the calibrated Wiener model on the validation data set is shown
in Figure 3.6. Additionally, the fit percent of the considered model on the first and
the second test datasets are [80.11; 81.95] and [81.89; 80.84] respectively.

Figure 3.6: The performance of the calibrated Wiener model on the validation dataset

The results of the whiteness and the independence tests for the candidate models
are shown in Figure 3.7. As it has been pointed out at the beginning of this section,
the residuals of all the estimated Hammerstein-Wiener models are highly correlated
with regard to the auto-correlation function; hence, any obtained models could not
pass the whiteness test. On the other hand, all of the estimated models could pass
the independence test owing to the fact that the residuals of the corresponding
models are inside the confidence interval at any lag sample.

Since the overall performance of the candidate Wiener model has been increased
(from 80.87% to 81.06% on the average) through the calibration procedure, there is a

62 CHAPTER 3. NONLINEAR MODEL IDENTIFICATION

Figure 3.7: Residue correlations of the candidate Wiener models

risk of overfitting effect. Different test datasets that have not been used before, now,
are employed in order to reduce the risk of overfitting. The fit percent comparison of
the candidate Wiener models on 14 different test datasets is shown in Table 3.10.

Test Set No. Unmodified Model Calibrated Model

Data 3 Avg.Fit% 78.81% 81.81%
Data 4 Avg.Fit% 42.76% 45.00%
Data 5 Avg.Fit% 81.77% 81.91%
Data 6 Avg.Fit% 78.61% 80.40%
Data 7 Avg.Fit% 79.55% 83.15%
Data 8 Avg.Fit% 88.76% 85.77%
Data 9 Avg.Fit% 80.06% 84.77%
Data 10 Avg.Fit% 80.75% 84.04%
Data 11 Avg.Fit% 83.23% 84.99%
Data 12 Avg.Fit% 80.21% 86.36%
Data 13 Avg.Fit% 78.96% 84.16%
Data 14 Avg.Fit% 85.89% 86.17%
Data 15 Avg.Fit% 41.63% 58.05%
Data 16 Avg.Fit% 79.29% 87.30%
Overall Avg.Fit% 75.73% 79.56%

Top 12 Avg.Fit% 81.32% 84.23%

Table 3.10: Fit% comparison of the candidate Wiener models on the new test datasets

3.2. HAMMERSTEIN-WIENER MODELS 63

As it is seen from Table 3.10, the calibrated (updated) Wiener model fits the
data more than the original candidate model for all of the test sets except one (Test
set 8). The overall fit percents of the unmodified and calibrated Wiener models
are 75.73% and 79.56% respectively. Both Wiener models could not fit enough the
4th and the 15th test data sets. When these two test data sets are discarded, the
average fit percents of the corresponding Wiener models on the remaining datasets
are 81.32% and 84.23% respectively. In brief, the calibrated Wiener model performs
better on the average; therefore, the corresponding model has been selected.

By recalling the equation 3.6, the structure of the selected Wiener model can be
written as:

y1(k) = +1.8367y1(k − 1)− 0.8371y1(k − 2) + 1.6411y2(k − 1)

− 0.6668y2(k − 2) + 88.7083qa(k − 1)− 88.7157qa(k − 2)

+ 4.4017qb(k − 1) + 28.8148qb(k − 2)

h1(k) = f1(y1(k))

y2(k) = +1.8608y1(k − 1)− 0.8685y1(k − 2) + 1.8135y2(k − 1)

− 0.8137y2(k − 2) + 49.8207qa(k − 1)− 40.7712qa(k − 2)

+ 146.6556qb(k − 1)− 146.6925qb(k − 2)

h2(k) = f2(y2(k))

(3.7)

where f1 and f2 are the nonlinear functions that represent the saturation. Lower
saturation limits on the outputs h1 and h2 are 0.0636 and 0.0939 respectively. For
the selected Wiener model, no upper saturation limits have been determined. The
shape of the saturation function for each output is shown in Figure 3.8.

Figure 3.8: Saturation non-linearity plots for both outputs

64 CHAPTER 3. NONLINEAR MODEL IDENTIFICATION

In conclusion, it is important to note that the selected Wiener model contains only
nonlinear saturation function for both outputs. During the simulation experiments,
some other nonlinearity functions have also been considered for the inputs and the
outputs; nevertheless, it is not possible to take into account more than one type of
nonlinearity at the same time. This is a limitation of MATLAB.

3.3. NEURAL NARX MODELS 65

3.3 Neural NARX Models

The Neural NARX (NNARX) model structure is a neural non-linear autoregressive
model with exogenous inputs. The NNARX models are widely used in the process
industry for identifying non-linear plants.

In the following parts of this section, the structure of the Neural NARX model is
stated. Then, the training procedure is explained including the data division of the
estimation dataset, the Levenberg-Marquardt algorithm, and the data preprocessing.
Afterwards, an example of the simulated response diagrams for the outputs on the
estimation dataset is provided, Pearson correlation coefficient is defined and then an
example of regression analysis is indicated. In the validation phase, first, different
orders are tried for training NNARX models with 10 basic neurons in the hidden
layer. After determining the candidate orders, the considered orders are tested for the
models with different number of neurons. Thereafter, some NNARX models with the
candidate orders and the number of neurons are estimated. All of these models have
different weights and biases. Then, performance of the obtained NNARX models
are compared on the validation, the first and the second test datasets. Ultimately,
the candidate NNARX models are tested on the different datasets which have never
been utilized before in order to reduce the risk of overfitting and the model which
provides the best performance is selected.

3.3.1 Model Structure

Recall that the general structure of a NARX model

y(k) = F (y(k − 1), ..., y(k − na), u(k − nk), u(k − 1− nk), ..., u(k − nb − nk + 1))
(3.8)

where nu and ny are the number of inputs and outputs of the system respectively,
u(k) ∈ Rnu represents the inputs at sampling time instant k, y(k) ∈ Rny is the
outputs at sampling time instant k, na and nb are the orders of the NARX model
and they represent the number of past output and past input terms used in order to
estimate the current output respectively, nk refers to the input-output delay, and F
is the non-linear regression function [3] [24].

The NNARX model structure is the most complicated one as compared to the
model structures employed in the previous sections. In the Neural NARX models,
a feedforward neural network constitutes the nonlinear regression function. Since
only one hidden layer is utilized in order to estimate Neural NARX models in the
following phases, the structure of the NARX neural network can be compactly written
as [34] [35] [36]

y(k) = Fo(bo + whoFh(A1y(k − 1) + ...+Anay(k − na)
+B1u(k − nk) + ...+Bnb

u(k − nb − nk + 1) + bh))
(3.9)

where Fo and Fh are the functions of the output and hidden layers respectively; bo
∈ Rny ,1 and bh ∈ RNh,1 are the biases of the output and hidden layers respectively;
who ∈ Rny ,Nh denotes the weights from the hidden layer to the output layer; A1, A2,
... ∈ RNh,ny and B1, B2, ... ∈ RNh,nu correspond to the weights from the output
feedback layer to the hidden layer and from the network inputs to the hidden layer

66 CHAPTER 3. NONLINEAR MODEL IDENTIFICATION

respectively. Here, Nh represents the number of basic neurons in the hidden layer.
In this work, the tangent sigmoid transfer function (tanh) and the linear transfer

function are used for the hidden and the output layers respectively. Thus, Fh = tanh
and Fo = 1. The ranges of the hidden layer and the output layer transfer functions
are [−1, +1] and (−∞, +∞) respectively.

3.3.2 Identification

All models are trained in the simulation mode by using given past inputs and the
simulated past outputs of the estimation dataset in order to estimate the current
outputs. The models are obtained by means of the Neural Net Time Series Application
in the MATLAB Deep Learning Toolbox.

In this thesis, all Neural NARX models are trained by employing the Levenberg-
Marquardt (LM) algorithm. This algorithm has been designed to minimize functions
which are the sums of squares of other nonlinear functions [37]. Since the performance
index is selected mean-square error (MSE), this optimization algorithm is pretty
convenient for training NNARX models. By implementing LM algorithm, fast and
stable convergence can be achieved providing that the size of training problem is not
too large [38]. In this section, the performance comparison of the estimated NNARX
models is made based on “fit percent”, which is related to NRMSE quality metric i.e.
the fit percent value is derived from MSE value.

The maximum number of iterations for the training procedure is chosen as 1000.
As it always has been, the input-output delay nk is selected as 1 sample time and it
is kept constant during the simulations for the sake of simplicity. The models are
acquired by trying different orders na = [i i; i i] and nb = [j j; j j] where i, j = 1, 2,
3, ..., 10. For each order pairs, the corresponding models are trained 20 times with
different weights and biases so as to obtain robust results for the considered orders.
During the training procedure, just one hidden layer has been used and the number
of basic neurons in the hidden layer are determined as 10 initially. In the validation
phase (see Section 3.3.3), some other number of neurons are also taken into account
for the candidate model orders.

In order to get better results during the training phase, the input-output data
are pre-processed by mapping the minimum and maximum values to −1 and +1
respectively. Moreover, the estimation dataset has been divided into three parts
randomly by means of the MATLAB Deep Learning toolbox so as to enhance the
generalization of the trained NARX neural networks. One part is composed of
training points (70% of the estimation dataset) and the other ones contain validation
(15%) and test points (15%) respectively. When the error on the validation set
begins to increase, it means that the network starts overfitting the data. In this
work, if the validation error increases for 6 consecutive iterations, then the training
procedure is stopped; the weights and biases at the minimum of the validation error
are determined. This technique is called “early stopping” and it is utilized to avoid
overfitting [39]. An example of performance comparison of the train, validation and
test data points are shown in Figure 3.9.

In this figure, it is seen that the validation error begins to rise at the epoch 270;
hence the “early stopping” technique gets involved and the training procedure is
stopped at this epoch.

3.3. NEURAL NARX MODELS 67

Figure 3.9: Performance comparison of the train, validation and test data points

An exemplification for the comparison of the measured and the simulated output
responses on the estimation dataset are demonstrated in Figure 3.10 and Figure 3.11
respectively. In these figures, the randomly constituted train, validation and test

Figure 3.10: Simulated response diagram for the output h1 on the estimation dataset

data points of the estimation dataset are shown in different colors. It is seen that the

68 CHAPTER 3. NONLINEAR MODEL IDENTIFICATION

Figure 3.11: Simulated response diagram for the output h2 on the estimation dataset

corresponding model fits very well the estimation dataset for both outputs; however,
the trained NNARX models have to be tested on the different datasets and this will
be done in the validation phase.

The regression analysis can also be performed in order to investigate the trained
Neural NARX models in more detail. In the regression analysis, the simulated
response of the trained neural network and the corresponding measured (observed)
outputs are compared.

The regression analysis is related to the correlation coefficient. The correlation
coefficient (R-value) of two random variables is a measure of their linear depen-
dence [39]. In the event that R is equal to 1, there is perfect correlation between the
measured and the simulated outputs. The Pearson correlation coefficient R is

R = ρ(yobs, ysim) =
1

N − 1

N∑
i=1

(
yobs(i)− µyobs

σyobs

)(
ysim(i)− µysim

σysim

)
(3.10)

where yobs and ysim are the measured and simulated outputs respectively, N is the
number of observations, µyobs and µysim are the mean value of the observed and
simulated outputs respectively, σyobs and σysim are the standard deviation of the
measured and simulated outputs respectively. Alternatively, the equation 3.10 can
be represented as

R = ρ(yobs, ysim) =
cov(yobs, ysim)

σyobsσysim
(3.11)

where cov(yobs, ysim) is the covariance of the observed and the simulated outputs.
An example of the regression analysis is shown in Figure 3.12.

In Figure 3.12, there is an indication of the good fit due to the fact that all the

3.3. NEURAL NARX MODELS 69

Figure 3.12: Linear regression plot of the simulated outputs on the estimation dataset

R values for the train, validation and test data points of the estimation dataset are
very close to 1. In the case of training data points, for instance, the best linear fit is
ysim ≈ yobs + 0.00019. It means that the slope and the y-intercept of the best linear
regression relating observed outputs to simulated network outputs is 1 and 0.00019
respectively.

3.3.3 Validation

The trained Neural NARX models with different orders are validated by using
different datasets in the simulation mode. The 15 best performing NNARX models
on the validation, the first and the second datasets are shown in the table below. For
each order, 20 NNARX models with different weights and biases have been trained
and then their average performance has been computed so as to gain more reliable
results. In Table 3.11, Fitavg% corresponds to the average fit percent of the obtained
models on the validation and test datasets; # of Above 85% refers to the number of
the trained NNARX models which fit validation and test data sets more than 85% on
the average. For example, on the first row of this table, 11 out of 20 trained models
with the orders na = 4, nb = 4, nk = 1 could fit the data more than 85 percent on
the average.

70 CHAPTER 3. NONLINEAR MODEL IDENTIFICATION

na nb nk # of Neurons F itavg% # of Above 85%

4 4 1 10 72.88% 11

10 8 1 10 74.60% 10

7 6 1 10 69.05% 10

2 10 1 10 73.86% 9

8 7 1 10 69.95% 9

3 10 1 10 69.32% 9

6 7 1 10 67.35% 8

1 10 1 10 77.57% 7

8 10 1 10 74.34% 7

8 9 1 10 70.89% 7

10 9 1 10 68.66% 7

3 9 1 10 69.38% 6

6 6 1 10 68.84% 6

6 5 1 10 66.66% 6

7 8 1 10 66.40% 6

Table 3.11: Average Fit% of the trained NNARX models on the validation and test datasets

At the beginning of the validation phase, the models only with 10 basic neurons
in the hidden layer have been trained and tested. Now, the NNARX models with
the orders specified in Table 3.11 are trained and validated by employing different
number of basic neurons in the hidden layer for the sake of completeness. The 20
best performing ones are demonstrated in Table 3.12.

As it can be seen from Table 3.12, the performance of the acquired models with
orders and number of neurons reported on the 1st, 4th and 6th rows are quite good
and their complexity are less than the other models in general. Hence, from these
rows, the candidate orders and number of basic neurons in the hidden layer have
been determined.

After deciding the orders of the NNARX model structures, 6 different NNARX
models which have Fitavg% greater than 90% are determined as the candidate models
in order to compare their performance based on NRMSE quality metric. The fit
percents of the trained models on the validation, the first test, and the second test
data sets are shown in Table 3.13.

In Table 3.13, 6 different NNARX models with different weights and biases have
been obtained. According to this table, model 6 fits the validation data the most;
model 5 fits the first test data the most; model 2 performs on the second test dataset
the best. Furthermore, the sixth model could fit the data the most on the average
(92.63%).

3.3. NEURAL NARX MODELS 71

na nb nk # of Neurons F itavg% # of Above 85%

1 10 1 5 85.22% 12
3 10 1 15 79.75% 11
10 9 1 15 74.80% 11
4 4 1 10 72.88% 11
2 10 1 5 78.11% 10
4 4 1 5 75.22% 10
10 8 1 10 74.60% 10
7 6 1 10 69.05% 10
2 10 1 10 73.86% 9
8 7 1 10 69.95% 9
3 10 1 10 69.32% 9
3 9 1 5 68.10% 9
8 9 1 5 70.75% 8
6 7 1 10 67.35% 8
1 10 1 10 77.57% 7
7 8 1 15 74.70% 7
8 10 1 10 74.34% 7
8 9 1 10 70.89% 7
8 7 1 15 68.90% 7
10 9 1 10 68.66% 7

Table 3.12: Average Fit% of the trained NNARX models with candidate orders and different
number of basic neurons in the hidden layer

Model# na nb nk Neuron Fitval% Fittest1% Fittest2% Fitavg%

1 1 10 1 5 [92.39; 90.47] [87.23; 93.08] [94.37; 90.45] 91.33

2 1 10 1 5 [90.44; 89.62] [89.43; 91.09] [92.94; 92.74] 91.04

3 4 4 1 5 [88.73; 90.30] [87.91; 94.51] [90.96; 91.77] 90.70

4 4 4 1 5 [86.24; 92.15] [89.33; 92.85] [89.25; 92.23] 90.34

5 4 4 1 10 [94.70; 94.63] [89.42; 93.48] [88.41; 93.31] 92.32

6 4 4 1 10 [96.60; 96.01] [91.87; 89.20] [88.58; 93.53] 92.63

Table 3.13: Fit% of the candidate NNARX models with different weights and biases on the
validation, the first and the second datasets

Even though the 6th model seems as the top model among them, these six
NNARX models should be tried on the test data sets which have never been used
before in order to eliminate the risk of overfitting and improve the neural network

72 CHAPTER 3. NONLINEAR MODEL IDENTIFICATION

generalization. There is the risk because these models have been acquired according
to the condition Fitavg% > 90 during the training phase. The average fit percent of
these models on 14 new test data sets are shown in Table 3.14.

Test Set No. Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

Data 3 Avg.Fit% 90.16% 90.45% 89.18% 85.90% 91.67% 21.70%

Data 4 Avg.Fit% 78.81% 84.68% 80.97% 84.59% 84.64% 92.05%

Data 5 Avg.Fit% 95.46% 97.13% 96.57% 96.27% 96.41% 97.40%

Data 6 Avg.Fit% 85.87% 90.57% 85.76% 85.69% 66.16% 82.45%

Data 7 Avg.Fit% 91.75% 94.90% 93.75% 93.44% 95.84% 97.98%

Data 8 Avg.Fit% 94.07% 94.47% 91.52% 94.70% 86.94% 97.18%

Data 9 Avg.Fit% 86.63% 90.43% 85.93% 85.39% 74.19% 87.75%

Data 10 Avg.Fit% 92.26% 91.18% 90.76% 90.13% 95.05% 24.13%

Data 11 Avg.Fit% 93.18% 93.01% 91.19% 90.79% 93.20% 93.01%

Data 12 Avg.Fit% 91.90% 91.27% 86.13% 89.27% 93.35% 92.85%

Data 13 Avg.Fit% 94.33% 94.32% 93.41% 95.65% 93.81% 96.19%

Data 14 Avg.Fit% 91.14% 90.99% 89.21% 91.11% 94.49% 46.90%

Data 15 Avg.Fit% 89.25% 90.88% 91.09% 92.41% 95.50% 95.71%

Data 16 Avg.Fit% 91.73% 94.53% 92.08% 93.94% 96.27% 95.22%

Overall Avg.Fit% 90.46% 92.06% 89.82% 90.66% 89.82% 80.03%

Table 3.14: Average Fit% of the candidate NNARX models with different weights and biases
on the new test datasets

From Table 3.14, it is seen that the second model could fit 2 out of 14 different
data the most; the Model 5 and the Model 6 have been able to fit 6 out of 14 different
data the most. In the case of head-to-head comparison of Model 2 and Model 5, it
has been observed that the fifth model surpasses the second one for 8 different test
datasets whereas the 2nd model fits 6 different datasets more than the 5th model.
Nevertheless, the fifth and the sixth models could not fit some of the test datasets
sufficiently well. On the contrary, the Model 2 has been able to fit all of the test
datasets more than 90% except for the 4th test data set and this model could also fit
the data the most on the average (92.06%). Therefore, the Model 2 with the orders
na = 1, nb = 10, nk = 1 and 5 neurons in the hidden layer has been selected among
the candidate NNARX models. The simulated response diagram of the selected
NNARX model on the validation data set is demonstrated in Figure 3.13.

3.3. NEURAL NARX MODELS 73

Figure 3.13: The selected Neural NARX model vs. validation dataset

By recalling the equation 3.9, the structure of the selected Neural NARX model
can be written. The weight matrices woh ∈ RNh,(na×ny) for the weights going to
the hidden layer from the output layer, who ∈ Rny ,Nh for the weights going to the
output layer from the hidden layer, and wih ∈ RNh,(nb×nu) for the weights going to
the hidden layer from the network inputs are:

woh =

−0.4014 +0.4926
−0.4414 +0.0002
+1.7540 +0.0695
+0.2567 −0.4453
+0.5046 −0.3895

 (3.12)

who =

[
+0.0037 −2.1575 +0.0690 +0.0235 −0.0211
+0.0765 −0.8270 +0.0317 −2.6866 +0.6539

]
(3.13)

74 CHAPTER 3. NONLINEAR MODEL IDENTIFICATION

wᵀ
ih =

−0.0032 −0.0231 +0.4372 −0.0229 −0.1360
+0.1867 +0.0024 +0.2081 −0.0508 −0.0388
−0.3549 −0.0014 −0.1074 −0.0285 −0.0964
−0.2590 −0.0115 +0.1856 −0.0212 −0.1521
−0.0547 −0.0019 −0.1331 −0.0203 −0.0460
−0.0810 −0.0018 +0.1431 +0.0685 +0.3338
+0.0715 +0.0010 −0.0007 −0.0120 −0.0433
−0.1131 −0.0047 +0.1584 −0.0799 −0.4173
+0.0087 −0.0006 −0.0301 −0.0005 +0.0094
−0.1573 −0.0062 −0.2315 +0.0094 +0.0430
−0.0664 +0.0026 −0.0396 −0.0193 −0.0585
−0.0683 −0.0047 +0.0753 +0.0665 +0.2940
−0.0342 +0.0026 +0.1256 −0.0016 −0.0034
+0.1582 +0.0031 +0.2715 −0.0736 −0.3347
−0.1673 +0.0017 +0.0138 −0.0122 −0.0460
−0.2055 −0.0178 −0.7877 +0.0190 +0.0768
−0.4164 +0.0001 +0.0464 −0.0112 −0.0541
−0.4472 +0.0176 +1.1144 +0.0041 +0.0047
−0.8109 +0.0018 −0.0934 −0.0302 −0.0891
+0.3686 −0.0151 −0.5483 −0.0201 −0.1013

(3.14)

And the biases of the hidden and the output layers are:

bh =

−2.5306
+0.2323
+1.5353
+0.2650
+0.5255

 , bo =

[
+0.4001
+0.5891

]
(3.15)

From these matrices, one can remark that the selected NNARX model has 127
parameters (weights and biases). If the Model 4 from Table 3.14 had been chosen, the
structure of the corresponding Neural NARX model would have been less complex
(97 parameters). However, in this work, the Model 2 has been selected due to the
fact that its performance on the new test datasets is better; in other words, the
selected NNARX model has been able to fit 13 out of 14 test datasets more than
90%, whereas the fourth model could have fitted 10 out of 14 new test datasets more
than 90%.

3.4. COMPARISON OF THE SELECTED MODELS 75

3.4 Comparison of the Selected Models

In this chapter, a Polynomial NARX, a Wiener, and a Neural NARX model have
been selected after the identification and the validation phases. The average fit
percent of two outputs on the validation dataset for the chosen Polynomial NARX,
Wiener, NNARX models are 89.97%, 80.80%, and 90.03% respectively. That is to say,
the performance of the selected Polynomial and Neural NARX models with regard
to validation data are extremely close; however, the performance of the considered
Wiener model is worse. In addition to the validation data set, 16 different test data
sets have been utilized so as to test the estimated models and to obtain more reliable
results. For all the nonlinear models obtained in this chapter, the validation, the
first and the second test datasets have taken part in the identification procedure
i.e. these data sets have been employed in order to improve the performance of the
estimated models. And, the remaining 14 test data sets have only been used to test
the acquired models. In this way, the risk of overfitting has been eliminated. The
performance comparison of the selected nonlinear models is indicated in Table 3.15.
In this table, First 3 Avg.F it% represents the mean value of the fit percents of the
corresponding models on the validation, the first and the second datasets. Similarly,
Last 14 Avg.F it% corresponds to the overall average fit percent of the considered
models on the remaining test data sets.

Data Set No. Polynomial NARX Wiener Neural NARX

Validation Avg.Fit% 89.97% 80.80% 90.03%

Test 1 Avg.Fit% 84.96% 81.03% 90.26%

Test 2 Avg.Fit% 84.66% 81.37% 92.84%

First 3 Avg.Fit% 86.54% 81.07% 91.04%

Test 3 Avg.Fit% 86.21% 81.81% 90.46%

Test 4 Avg.Fit% 81.35% 45.00% 84.68%

Test 5 Avg.Fit% 95.56% 81.91% 97.13%

Test 6 Avg.Fit% 84.78% 80.40% 90.57%

Test 7 Avg.Fit% 94.60% 83.15% 94.90%

Test 8 Avg.Fit% 93.27% 85.77% 94.47%

Test 9 Avg.Fit% 86.94% 84.77% 90.43%

Test 10 Avg.Fit% 89.55% 84.04% 91.18%

Test 11 Avg.Fit% 90.79% 84.99% 93.01%

Test 12 Avg.Fit% 89.82% 86.36% 91.27%

Test 13 Avg.Fit% 88.87% 84.16% 94.32%

Test 14 Avg.Fit% 86.64% 86.17% 90.99%

Test 15 Avg.Fit% 88.44% 58.05% 90.88%

Test 16 Avg.Fit% 91.65% 87.30% 94.53%

Last 14 Avg.Fit% 89.18% 79.56% 92.06%

Table 3.15: Performance comparison of the selected nonlinear models

76 CHAPTER 3. NONLINEAR MODEL IDENTIFICATION

As it can be seen from Table 3.15, the selected Neural NARX model outperforms
for any datasets in comparison with the other chosen models. Not surprisingly, all
the considered nonlinear models have been able to fit the datasets more than that
of the linear ones according to Tables 2.11 and 3.15. Hence, the identified NNARX
model can be employed in the controller design phase.

3.5 Summary

In Section 3.1, first, the general structure of a NARX model has been stated and the
Polynomial NARX model has been described. In the identification phase, the initial
NARX model has been obtained by refining the selected linear ARX model. Thus,
the orders of the selected linear ARX model has become the orders of the NARX
models as well. Then, the performance of the initialized NARX model has been
improved by adding some nonlinear regressors. Afterwards, the nonlinear function
of the obtained NARX model has been omitted in order to reduce the complexity.
Owing to the fact that the validation, the 1st test, and the 2nd test datasets has
been used during the regressor selection procedure, the candidate Polynomial NARX
model has been tested on 14 different test datasets which had not been used before.
In this way, the risk of overfitting has been elimininated. At the end of this section,
the parameters and the nonlinear regressors vectors of the chosen Polynomial NARX
model has been written.

At the beginning of Section 3.2, the structure of the Hammerstein-Wiener model
has been expressed. Then, several Wiener models with different orders have been
estimated in the identification phase. At this stage, the normalized Akaike’s In-
formation Criterion (nAIC) has also been considered. Thereafter, the estimated
models have been tested by analyzing the performance of corresponding models on
the validation, the 1st test, and the 2nd test data sets. In the validation phase, some
Hammerstein and Hammerstein-Wiener models have been taken into account as well.
After that, the performance of the candidate Wiener model has been enhanced by
changing the existing lower and upper saturation limits on the outputs. In order to
avoid overfitting, the unmodified and the calibrated models have been tested on 14
different test datasets which had not been utilized before. At the end, the calibrated
model has been selected and its structure has been reported.

In Section 3.3, first, the structure of a Neural NARX model has been specified.
In the identification phase, it has been mentioned that the estimation data had
been randomly partitioned into 3 parts by means of the MATLAB Deep Learning
toolbox. By doing so, the “early stopping” technique could have been implemented
in the training phase. In this way, the generalization of the trained NNARX models
has been improved. Afterwards, the regression analysis has been indicated and an
example has been provided. In the validation phase, for each na and nb order pairs,
20 Neural NARX models with same number of neurons (10) but different weights
and biases have been trained and the mean of their fit percent on the validation,
the 1st test, and the 2nd test datasets has been computed so as to get more robust
results. Afterwards, some other NNARX models have been trained by employing 5
and 15 neurons in the hidden layer. After the performance analysis with regard to
the validation, the 1st test, and the 2nd test datasets, 3 different model structures
have been determined. 6 different Neural NARX models with the considered model

3.5. SUMMARY 77

orders and the number of neurons have been trained. The obtained NNARX models
have been tested on 14 different test datasets which had not been employed before.
After analyzing the results, one of them has been selected. At the end, the weights
and the biases of the chosen NNARX model have been reported.

In Section 3.4, the selected Polynomial NARX, Wiener, and Neural NARX models
have been compared based on the NRMSE quality metric. It has been observed that
the chosen NNARX model outperformed on all of the test datasets. Finally, it has
been remarked that the corresponding NNARX model might be used for designing a
controller.

Conclusions

The purpose of this thesis was to analyze the performance of the identified linear
and nonlinear models of the Quadruple-Tank Process (QTP). Even though the
corresponding system possesses nonlinear dynamics, first, some linear models with
different methods have been identified. In Chapter 2, State-Space, ARMAX, Output-
Error, and linear ARX models have been employed so as to identify the plant. After
evaluating the performance of the estimated models based on NRMSE criterion and
residual analysis, one model has been selected for each linear method. The selected
linear models have been compared in Table 2.11. In a nutshell, it has been observed
that, not surprisingly, any of the selected models could not reach 80% fit on the
average in the validation phase. In Chapter 3, some nonlinear models with different
methods have also been identified in order to attain better performance. These are
Polynomial NARX, Hammerstein-Wiener, and Neural NARX (NNARX) models.
For each section of this chapter, a nonlinear model with sufficient performance has
been chosen. Ultimately, the selected nonlinear models have been contrasted by
using the different datasets which had not been included during the model selection
procedure and it has been noticed that the selected NNARX model delivers the best
performance.

During the identification of nonlinear models, extra test data sets have been used
in order to eliminate the risk of overfitting and to improve the generalization of the
estimated nonlinear models. Instead of bringing out new datasets, the Leave-One-Out
Cross-Validation (LOOCV) technique might have been utilized.

A future development of this work could be based on designing a controller.
In the controller design stage, one of the identified models, such as the selected
Neural NARX (NNARX) model, might be used in the MATLAB/Simulink instead of
the semi-physical model (see Figure 1.5). A Nonlinear Model Predictive Controller
(NMPC) could be designed in order to control the plant owing to the fact that MPC
is a powerful approach for controlling a system when a sufficiently reliable model is
available and the chosen NARX models in Chapter 3 can be regarded as sufficient
models. Furthermore, it is possible to explicitly include input, output, and state
constraints through the MPC. These constraints might be due to limitations of the
Quadruple-Tank System such as maximum allowable voltage of actuators (saturation)
and design limits (height of a water tank).

Finally, a more exhaustive analysis of the properties of neural networks might
be performed so as to better understand their reliability in the context of nonlinear
system identification.

79

Bibliography

[1] F. S. Barbosa, “Quadruple tank control,” https://www.youtube.com/watch?v=
bVl3kvpXG3o.

[2] R. Ranjbar, L. Etienne, E. Duviella, and J. Maestre, “Johansson’s
quadruple-tank process diagram,” https://www.researchgate.net/figure/
Johanssons-quadruple-tank-process-diagram-where-Sm-2-is-the-cross-section-of-all_
fig1_342956995.

[3] L. Ljung, System Identification Toolbox (User’s Guide), The Mathworks, Inc.,
Natick, Massachusetts, R2020b.

[4] S. M. Savaresi, “Lecture notes in model identification and data analysis course
at politecnico di milano,” December 2019.

[5] D. Maurya, A. K. Tangirala, and S. Narasimhan, “Identification of output-error
(oe) models using generalized spectral decomposition,” in 2019 Fifth Indian
Control Conference (ICC), 2019, pp. 28–33.

[6] K. Narendra and K. Parthasarathy, “Identification and control of dynamical
systems using neural networks,” IEEE Transactions on Neural Networks, vol. 1,
no. 1, pp. 4–27, 1990.

[7] H. Liu and X. Song, “Nonlinear system identification based on narx network,”
in 10th Asian Control Conference (ASCC), 2015, pp. 1–6.

[8] Í. Araújo, “Nonlinear system identification of a mimo quadruple tanks system
using narx model,” Przegląd Elektrotechniczny, vol. 1, pp. 68–74, 2019.

[9] W. Zhao and E. Weyer, “A general convergence result for kernel-based non-
parametric identification of nonlinear stochastic systems,” IFAC-PapersOnLine,
vol. 51, no. 15, pp. 634–639, 2018, 18th IFAC Symposium on System Identifica-
tion SYSID 2018.

[10] M. Bonin, V. Seghezza, and L. Piroddi, “Narx model selection based on sim-
ulation error minimisation and lasso,” Control Theory and Applications, IET,
vol. 4, pp. 1157–1168, 08 2010.

[11] L. Piroddi and W. Spinelli, “An identification algorithm for polynomial narx
models based on simulation error minimization,” International Journal of Control,
vol. 76, pp. 1767–1781, 11 2003.

81

https://www.youtube.com/watch?v=bVl3kvpXG3o
https://www.youtube.com/watch?v=bVl3kvpXG3o
https://www.researchgate.net/figure/Johanssons-quadruple-tank-process-diagram-where-Sm-2-is-the-cross-section-of-all_fig1_342956995
https://www.researchgate.net/figure/Johanssons-quadruple-tank-process-diagram-where-Sm-2-is-the-cross-section-of-all_fig1_342956995
https://www.researchgate.net/figure/Johanssons-quadruple-tank-process-diagram-where-Sm-2-is-the-cross-section-of-all_fig1_342956995

82 BIBLIOGRAPHY

[12] M. Farina and L. Piroddi, “Simulation error minimization identification based
on multi-stage prediction,” International Journal of Adaptive Control and Signal
Processing, vol. 25, pp. 389–406, 05 2011.

[13] E. Terzi, L. Fagiano, M. Farina, and R. Scattolini, “Identification of the cooling
system of a large business center,” IFAC-PapersOnLine, vol. 51, pp. 174–179, 01
2018.

[14] Y. Ma, H. Liu, Y. Zhu, F. Wang, and Z. Luo, “The narx model-based system
identification on nonlinear, rotor-bearing systems,” Applied Sciences, vol. 7, p.
911, 09 2017.

[15] K. Johansson, Relay Feedback and Multivariable Control, 1997.

[16] B. Bekhiti, A. Dahimene, K. Hariche, and M. A. Moustafa Hassan, “Mimo
identification and digital compensator design for quadruple tank process,” in
2017 5th International Conference on Electrical Engineering - Boumerdes (ICEE-
B), 2017, pp. 1–7.

[17] N.-S. Nguyen, K. Nguyen, and T. Minh Chinh, “Black-box modeling of nonlinear
system using evolutionary neural narx model,” International Journal of Electrical
and Computer Engineering (IJECE), vol. 9, p. 1861, 06 2019.

[18] Z. Rayouf, C. Ghorbel, and N. Braiek, Nonlinear PID Controller of MIMO
Hammerstein model, 07 2018.

[19] C. Ghorbel, “A new identification approach of mimo hammerstein model with sep-
arate nonlinearities,” Advances in Science Technology and Engineering Systems,
pp. 56–62, 11 2017.

[20] M. Faouzi, “Practical identification of four tank system described by volterra
model,” in SENDA, 10 2008.

[21] K. Johansson, “The quadruple-tank process: a multivariable laboratory process
with an adjustable zero,” IEEE Transactions on Control Systems Technology,
vol. 8, no. 3, pp. 456–465, 2000.

[22] S. Özkan, T. Kara, and M. Arıcı, “Modelling, simulation and control of quadru-
ple tank process,” 10th International Conference on Electrical and Electronics
Engineering (ELECO), pp. 866–870, 2017.

[23] R. Scattolini and L. Magni, Advanced and Multivariable Control. Pitagora,
2014, ch. 4 and 5, pp. 59–73.

[24] L. Ljung, System Identification: Theory for the User. Prentice Hall PTR, 1999.

[25] G. E. P. Box, G. M. Jenkins, G. C. Reinsel, and G. M. Ljung, Time Series
Analysis: Forecasting and Control, 5th Edition. John Wiley and Sons, 2015.

[26] C. Giller and M. Müller, “Linearity and non-linearity in cerebral hemodynamics,”
Medical engineering and physics, vol. 25, pp. 633–46, 11 2003.

BIBLIOGRAPHY 83

[27] H. Galiana, “How can i tune the parameters (na,nb,nk...) of an arx/armax to
identify a miso system, if the delays of input-output are not known?” December
2014.

[28] Q. Zhang, “Nonlinear system identification with output error model through
stabilized simulation,” IFAC Proceedings Volumes, vol. 37, no. 13, pp. 501–506,
2004.

[29] Optimization Toolbox (User’s Guide), The Mathworks, Inc., Natick, Mas-
sachusetts, R2021a.

[30] J. Nocedal and S. J. Wright, Numerical Optimization. Springer New York,
2006, pp. 529–562.

[31] L. Grüne and J. Pannek, Nonlinear Model Predictive Control: Theory and
Algorithms. Springer New York, 2011, pp. 297–309.

[32] L. M. Fagiano, “Lecture notes in constrained numerical optimization for estima-
tion and control course at politecnico di milano.”

[33] A. Wills, T. Schön, L. Ljung, and B. Ninness, “Identification of hammerstein-
wiener models,” Automatica, vol. 49, pp. 70–81, 2013.

[34] F. Bonassi, M. Farina, and R. Scattolini, Stability of discrete-time feed-forward
neural networks in NARX configuration, 12 2020.

[35] M. S. Hossain Lipu, M. A. Hannan, A. Hussain, M. H. Md Saad, A. Ayob, and
F. Blaabjerg, “State of charge estimation for lithium-ion battery using recurrent
narx neural network model based lighting search algorithm,” IEEE Access, vol. 6,
pp. 28 150–28 161, 05 2018.

[36] Q. Liu, W. Chen, H. Hu, Q. Zhu, and Z. Xie, “An optimal narx neural network
identification model for a magnetorheological damper with force-distortion
behavior,” Frontiers in Materials, vol. 7, 2020.

[37] M. Hagan, H. Demuth, M. Beale, and O. De Jesús, Neural Network Design.
Martin Hagan, 2014, ch. 12.

[38] B. Wilamowski and J. Irwin, Intelligent Systems, ser. Electrical engineering
handbook series. CRC Press, 2018, ch. 12.

[39] M. H. Beale, M. T. Hagan, and H. B. Demuth, Deep Learning Toolbox (User’s
Guide), The Mathworks, Inc., Natick, Massachusetts, R2021a.

Appendices

Appendix A: Implemented Code for the Quadruple-
Tank System

The following MATLAB code contains the parameters of the Quadruple-Tank Process.
For descriptions of these parameters, see Table 1.1.

1 h1max = 1.36; % m
2 h2max = 1.36; % m
3 h3max = 1.30; % m
4 h4max = 1.30; % m
5 hmin = 0.20; % m (same for all tanks)
6

7 qamax = 3.26/3600; % m3/s
8 qbmax = 4/3600; % m3/s
9 qmin = 0/3600; % m3/s

10

11 a1 = 1.31e−4; % m2

12 a2 = 1.51e−4; % m2

13 a3 = 9.27e−5; % m2

14 a4 = 8.82e−5; % m2

15

16 S = 0.06; % m2

17

18 ga = 0.30; % always between 0 and 1
19 gb = 0.40; % always between 0 and 1
20

21 h1o = 0.65; % m
22 h2o = 0.66; % m
23 h3o = 0.65; % m
24 h4o = 0.66; % m
25

26 qao = 1.63/3600; % m3/s
27 qbo = 2/3600; % m3/s
28

29 g = 9.81; % m/s2

30

31 Ts = 25; % s (Sampling Time)
32

33 T1 = S*sqrt(2*h1o/g)/a1;% 1st Time Constant
34 T2 = S*sqrt(2*h2o/g)/a2;% 2nd Time Constant
35 T3 = S*sqrt(2*h3o/g)/a3;% 3rd Time Constant
36 T4 = S*sqrt(2*h4o/g)/a4;% 4th Time Constant

85

86 APPENDICES

The following code should be written into the interpreted MATLAB function shown
in Figure 1.5 in order for the plant simulator to perform simulation experiments.

1 function dh = fourtankfun(u,a1,a2,a3,a4,S,ga,gb,g)
2

3 h1 = u(1);
4 h2 = u(2);
5 h3 = u(3);
6 h4 = u(4);
7 qa = u(5);
8 qb = u(6);
9

10 dh1 = (−a1/S)*((2*g*h1)^(1/2)) + (a3/S)*((2*g*h3)^(1/2)) + (ga/S)*qa;
11 dh2 = (−a2/S)*((2*g*h2)^(1/2)) + (a4/S)*((2*g*h4)^(1/2)) + (gb/S)*qb;
12 dh3 = (−a3/S)*((2*g*h3)^(1/2)) + ((1−gb)/S)*qb;
13 dh4 = (−a4/S)*((2*g*h4)^(1/2)) + ((1−ga)/S)*qa;
14

15 dh = [dh1; dh2; dh3; dh4];
16 end

87

Appendix B: Code for Generating Asymmetric
PRBS Input Signals

In this work, it has been decided to generate PRBS signals with also varying
amplitude so as to emphasize on the output the nonlinear behavior of the system. To
this end, the following MATLAB code can be utilized for producing index vectors.

1 idx = [1]; % Initial element of the index vector
2

3 for ii = 1:25
4 A = randi(6,1);
5 idx = [idx; idx(end) + A];
6 end
7

8 idx(1) = [];
9 idx(26) = 101;

10 idx_qa = idx % Index vector for the first input qa
11

12

13 idx = [1]; % Initial element of the index vector
14

15 for ii = 1:25
16 A = randi(6,1);
17 idx = [idx; idx(end) + A];
18 end
19

20 idx(1) = [];
21 idx(26) = 101;
22 idx_qb = idx % Index vector for the second input qb

By running the code above, index vectors with 26 elements are obtained. Then, the
first element of idx vectors is deleted to ensure that the inputs qa and qb at the
beginning have the nominal values q◦a and q◦b respectively. The number 101 is also
appended to idx vectors in order to avoid the amplitude variation at the end. The
reason for this is that the number of samples N are selected as 100 for both input
signals (See the following code).

88 APPENDICES

After obtaining index vectors, the asymmetric PRBS input signals can be created by
employing the following code.

1 % PRBS_ex = idinput(N, Type, Band, Range) where N is the number ...
of samples; Type corresponds to type of generated signal; ...
Band represents the frequency range of generated signal; ...
Range refers to generated input signal range.

2 u_qa = idinput(100,'prbs',[0 1],[0.00045278 0.0008]);
3

4 % In order to diversify the amplitude of the generated PRBS ...
signals, the following for loop can be employed.

5 for ii = 1:length(idx_qa) − 1
6 amp = rand;
7 u_qa(idx_qa(ii):idx_qa(ii+1)−1) = amp*u_qa(idx_qa(ii));
8 end
9

10 u_qa = iddata([],u_qa,200);
11 figure; plot(u_qa)
12

13

14 u_qb = idinput(100,'prbs',[0 1],[0.00055556 0.0010]);
15

16 for ii = 1:length(idx_qb) − 1
17 amp = rand;
18 u_qb(idx_qb(ii):idx_qb(ii+1)−1) = amp*u_qb(idx_qb(ii));
19 end
20

21 u_qb = iddata([],u_qb,200);
22 figure; plot(u_qb)

In the previous code, 0.00045278 and 0.00055556 are the nominal values of the inputs
qa and qb respectively. And, the 0.0008 and 0.0010 have been determined as the
maximum values of the corresponding inputs. These values are close to qamax and
qbmax but slightly smaller than them. In this code, PRBS signals with also varying
amplitude are generated by means of the for loops. Lastly, the generated signals are
converted to suitable forms which can be used for system identification via iddata
command.

89

Appendix C: Implemented Code for Input-Output
Polynomial Models (ARMAX, Output-Error, and
ARX)

The following code can be used for estimating some ARMAX models with different
orders.

1 load('td_vd.mat') % Load the detrended input−output data
2 opt = armaxOptions('Focus','simulation')
3

4 na = 1:7; % na: Ny−by−Ny matrix of nonnegative integers
5 nb = 1:7; % nb: Ny−by−Nu matrix of nonnegative integers
6 nc = 1:7; % nc: Ny column vector of nonnegative integers
7 nk = 1; % nk: Ny−by−Nu matrix of nonnegative integers
8 models = cell(1,343); % 7*7*7 = 343 models will be estimated
9 ct = 1;

10

11 % Nested for loops are used to estimate ARMAX models with ...
different orders

12 for i = 1:7
13 na_ = na(i);
14 for ii = 1:7
15 nb_ = nb(ii);
16 for j = 1:7
17 nc_ = nc(j);
18 for k = 1
19 nk_ = nk(k);
20 models{ct} = armax(td,[na_*eye(2,2) nb_*ones(2,2) ...

nc_*ones(2,1) nk_*ones(2,2)],opt);
21 ct = ct+1;
22 end
23 end
24 end
25 end
26

27 models = stack(1, models{:}); % The generated models can be ...
compared in a single figure after stacking them.

28 figure; compare(vd, models)
29

30 % The normalized Akaike Information Criterion (nAIC) of the ...
estimated OE models are gathered by running the following code.

31 cc = cell(1,100);
32 zt = 1;
33 for zz = 1:100
34 cc{zt} = aic(models(:,:,zz),'nAIC');
35 zt = zt+1;
36 end

where td and vd are the detrended estimation and validation data sets.

90 APPENDICES

The code below can be employed in order to generate Output-Error models with
different orders. In this code, the estimations are made in the simulation mode as
usual. Additionally, the fmincon search method is selected and the stability of the
constituted OE models are guaranteed.

1 load('td_vd.mat') % Load the detrended input−output data
2 opt = oeOptions('Focus','simulation','EnforceStability',true,...
3 'SearchMethod','fmincon')
4 opt.SearchOptions.MaxIterations = 50;
5

6 nb = 1:10; % nb: Ny−by−Nu matrix of nonnegative integers
7 nf = 1:10; % nf: Ny−by−Nu matrix of nonnegative integers
8 nk = 1; % nk: Ny−by−Nu matrix of nonnegative integers
9 models = cell(1,100);

10 ct = 1;
11

12 for i = 1:10
13 nb_ = nb(i);
14 for j = 1:10
15 nf_ = nf(j);
16 for k = 1
17 nk_ = nk(k);
18 models{ct} = oe(td,[nb_*ones(2,2) nf_*ones(2,2) ...

nk_*ones(2,2)],opt);
19 ct = ct+1;
20 end
21 end
22 end
23

24 models = stack(1, models{:});
25 figure; compare(vd, models)

The following code can be utilized for estimating linear ARX models with different
model orders.

1 load('td_vd.mat') % Load the detrended input−output data
2 opt = arxOptions('Focus','simulation')
3 na = 1:10; nb = 1:10; nk = 1;
4 models = cell(1,100); ct = 1;
5

6 for i = 1:10
7 na_ = na(i);
8 for j = 1:10
9 nb_ = nb(j);

10 for k = 1
11 nk_ = nk(k);
12 models{ct} = arx(td,[na_*ones(2,2) nb_*ones(2,2) ...

nk_*ones(2,2)],opt);
13 ct = ct+1;
14 end
15 end
16 end
17

18 models = stack(1, models{:});
19 figure; compare(vd, models)

91

Appendix D: Code for Refining the Selected ARX
Model to Obtain Initial NARX Model

The code below could be implemented so as to refine the existing linear ARX
model and to acquire the initial NARX model.

1 load('arx221.mat') % Load the selected linear ARX model
2

3 load('train_valid_test23.mat') % Load the estimation, validation, ...
and test datasets including both input and output values

4

5 opt = nlarxOptions('Focus','simulation','SearchMethod','fmincon')
6

7 Initial_NARX = nlarx(Train, arx221, 'wavenet', opt)
8

9 compare(Validation, Initial_NARX) % Fit percent of the ...
initialized NARX model on the validation dataset

10

11 resid(Validation, Initial_NARX) % Residual analysis

where Train corresponds to the estimation dataset; V alidation is the validation
dataset. After getting the initialized NARX model by refining the chosen ARX model,
some nonlinear regressors are added by means of the MATLAB System Identification
toolbox.

92 APPENDICES

Appendix E: Code for Estimating Wiener Models
and Testing Other Hammerstein-Wiener Models
for the Candidate Orders na & nb

The following code can be employed to estimate Wiener models with different
orders and saturation nonlinearity functions on both outputs.

1 load('train_valid_test23.mat') % Load the estimation, validation, ...
and test datasets including both input and output values

2 opts = nlhwOptions('InitialCondition','estimate') % Initial ...
values are estimated by the software.

3 opts.SearchOptions.MaxIterations = 50
4 nb = 1:10; nf = 1:10; nk = 1;
5 models = cell(1,100); ct = 1;
6 for i = 1:10
7 nb_ = nb(i);
8 for j = 1:10
9 nf_ = nf(j);

10 for k = 1
11 nk_ = nk(k);
12 models{ct} = nlhw(Train, [nb_*ones(2,2) nf_*ones(2,2) ...

nk_*ones(2,2)], 'unitgain', 'saturation', opts);
13 ct = ct+1;
14 end
15 end
16 end

In this thesis, after using the code above, the candidate orders have been determined
as nb = 2, nf = 2, and nk = 1. In the following code, these candidate orders are
tested for some Hammerstein, Wiener, and Hammerstein-Wiener models.

1 % Since some words must now be altered instead of numbers, the ...
following assignments are applied to run the code properly.

2 ncell_u = unitgain; ncell_s = saturation; ncell_d = deadzone;
3 ncell_i = [ncell_u,ncell_s,ncell_d];
4 ncell_j = ncell_i; ncell_k = ncell_i; ncell_m = ncell_i;
5

6 models = cell(1,81); ct = 1;
7 for i = 1:3
8 ni_ = ncell_i(i);
9 for j = 1:3

10 nj_ = ncell_j(j);
11 for k = 1:3
12 nk_ = ncell_k(k);
13 for m = 1:3
14 nm_ = ncell_m(m);
15 models{ct} = nlhw(Train, [2*ones(2,2) 2*ones(2,2) ...

1*ones(2,2)], [ni_,nj_], [nk_,nm_], opts);
16 ct = ct+1;
17 end
18 end
19 end
20 end

93

Appendix F: Code for Training and Simulating
Neural NARX (NNARX) Models

1 close all;
2 load('IO_tra_val_test.mat') % Load the estimation, validation, ...

and test datasets
3 % u_train − collected input time series.
4 % y_train − collected feedback time series.
5 above85 = 0; % Counter
6 for i = 1:20 % Run the code 20 times for each order pairs (na, nb)
7 X = tonndata(u_train,false,false); % Convert input data to ...

standard neural network cell array form
8 T = tonndata(y_train,false,false); % Convert output data to ...

standard neural network cell array form
9 trainFcn = 'trainlm'; % Levenberg−Marquardt backpropagation ...

algorithm.
10 inputDelays = 1:10; % it is equivalent to nb = 10
11 feedbackDelays = 1:1; % it refers to na = 1
12 neurons = 5; % it corresponds to the number of neurons in the ...

hidden layer
13 net = narxnet(inputDelays, feedbackDelays, neurons, 'open', ...

trainFcn); % Initialize NNARX model
14 net.inputs{1}.processFcns = ...

{'removeconstantrows','mapminmax'}; % Pre−processing functions
15 net.inputs{2}.processFcns = {'removeconstantrows','mapminmax'};
16

17 net = closeloop(net); % This is required to train the network ...
in the simulation mode.

18 [x,xi,ai,t] = preparets(net,X,{},T); % Prepare input and ...
output time series data for training where x:shifted inputs, ...
xi:initial input delay states, ai:initial layer delay states, ...
t: shifted targets (shifted measured outputs)

19 net.divideFcn = 'dividerand'; % As it has been reported in ...
the thesis, a data division function has been used to divide ...
the estimation dataset randomly and this is needed for ...
implementing the "early stopping" technique.

20 net.divideMode = 'time'; % Division mode for dynamic networks
21 net.divideParam.trainRatio = 70/100;
22 net.divideParam.valRatio = 15/100;
23 net.divideParam.testRatio = 15/100;
24 net.performFcn = 'mse';
25

26 [net,tr] = train(net,x,t,xi,ai); % Train the prepared NARX ...
Neural Network where tr is the training record

27 y = net(x,xi,ai); % Simulate the trained network on the ...
estimation dataset

28 e = gsubtract(t,y); % Calculate the difference between the ...
measured and the simulated outputs

29

30 % Calculate the performance of training, validation and test ...
data points

31 trainTargets = gmultiply(t,tr.trainMask);
32 valTargets = gmultiply(t,tr.valMask);
33 testTargets = gmultiply(t,tr.testMask);

94 APPENDICES

34 trainPerformance = perform(net,trainTargets,y);
35 valPerformance = perform(net,valTargets,y);
36 testPerformance = perform(net,testTargets,y);
37

38 % view(net) % View the NNARX model structure
39

40 % Plots of the trained NNARX related to estimation dataset
41 figure, plotperform(tr) % Performance plot of the randomly ...

selected training, validation and test points based on MSE
42 figure, plotregression(trainTargets, y, 'Train', valTargets, ...

y, 'Validation', testTargets, y, 'Test', t, y, 'All') % ...
Regression analysis of the estimation dataset

43 figure, plotresponse(trainTargets, 'Train', valTargets, ...
'Validation', testTargets, 'Test', y, 'outputIndex', 1)

44 figure, plotresponse(trainTargets, 'Train', valTargets, ...
'Validation', testTargets, 'Test', y, 'outputIndex', 2) % To ...
see randomly selected points and the error of the second ...
simulated output

45 figure, ploterrcorr(e,'outputIndex',1) % Auto−correlations ...
between the residuals of the first output

46 figure, ploterrcorr(e,'outputIndex',2)
47 figure, plotinerrcorr(x, e, 'inputIndex', 1, 'outputIndex',1) ...

% Cross−correlations between the residuals of the first ...
output and the first input

48 figure, plotinerrcorr(x, e, 'inputIndex', 1, 'outputIndex',2)
49 figure, plotinerrcorr(x, e, 'inputIndex', 2, 'outputIndex',1)
50 figure, plotinerrcorr(x, e, 'inputIndex', 2, 'outputIndex',2)
51

52 % Calculate the fit percent of the trained models on the ...
estimation dataset with regard to NRMSE quality metric

53 c_y = cell2mat(y);
54 y_1 = c_y(1,:); % Simulated outputs
55 y_2 = c_y(2,:);
56 c_t = cell2mat(t);
57 t_1 = c_t(1,:); % Measured (observed) outputs
58 t_2 = c_t(2,:);
59 nrmse_1 = norm((t_1−y_1)) / norm((t_1−mean(t_1))); % NRMSE ...

for the 1st output
60 nrmse_2 = norm((t_2−y_2)) / norm((t_2−mean(t_2)));
61 fit1_train = (1−nrmse_1)*100; % Fit percent for the 1st output
62 fit2_train = (1−nrmse_2)*100; % Fit percent for the 2nd output
63

64 %% Validation dataset
65 XV = tonndata(u_val,false,false); % Convert validation data ...

to standard neural network cell array form
66 TV = tonndata(y_val,false,false);
67

68 netcv = closeloop(net);
69 [xcv,xicv,aicv,tcv] = preparets(netcv,XV,{},TV); % Prepare ...

input and output time series data for validation phase
70 yv = netcv(xcv,xicv,aicv); % Simulate the trained network on ...

the validation dataset
71 c_yv = cell2mat(yv);
72 ycv1 = c_yv(1,:);
73 ycv2 = c_yv(2,:);
74 c_tv = cell2mat(tcv);
75 tcv1 = c_tv(1,:);
76 tcv2 = c_tv(2,:);

95

77

78 figure;plotresponse(tcv,yv,'outputIndex',1) % Performance of ...
the first simulated output on the validation dataset

79 figure;plotresponse(tcv,yv,'outputIndex',2)
80

81 nrmse_val1 = norm((tcv1−ycv1)) / norm((tcv1−mean(tcv1))); % ...
NRMSE for the 1st output

82 nrmse_val2 = norm((tcv2−ycv2)) / norm((tcv2−mean(tcv2)));
83 fit1_valid = (1−nrmse_val1)*100 % Fit percent for the 1st output
84 fit2_valid = (1−nrmse_val2)*100
85

86 %% The 1st test dataset
87 XT2 = tonndata(u_test2,false,false);
88 TT2 = tonndata(y_test2,false,false);
89

90 netct2 = closeloop(net);
91 [xct2,xict2,aict2,tct2] = preparets(netct2,XT2,{},TT2);
92 yt2 = netct2(xct2,xict2,aict2);
93 c_yt2 = cell2mat(yt2);
94 yct2_1 = c_yt2(1,:);
95 yct2_2 = c_yt2(2,:);
96 c_tt2 = cell2mat(tct2);
97 tct2_1 = c_tt2(1,:);
98 tct2_2 = c_tt2(2,:);
99

100 figure;plotresponse(tct2,yt2,'outputIndex',1)
101 figure;plotresponse(tct2,yt2,'outputIndex',2)
102

103 nrmse_test2_1 = norm((tct2_1−yct2_1)) / ...
norm((tct2_1−mean(tct2_1)));

104 nrmse_test2_2 = norm((tct2_2−yct2_2)) / ...
norm((tct2_2−mean(tct2_2)));

105 fit1_test2 = (1−nrmse_test2_1)*100
106 fit2_test2 = (1−nrmse_test2_2)*100
107

108 %% The 2nd test dataset
109 XT3 = tonndata(u_test3,false,false);
110 TT3 = tonndata(y_test3,false,false);
111

112 netct3 = closeloop(net);
113 [xct3,xict3,aict3,tct3] = preparets(netct3,XT3,{},TT3);
114 yt3 = netct3(xct3,xict3,aict3);
115 c_yt3 = cell2mat(yt3);
116 yct3_1 = c_yt3(1,:);
117 yct3_2 = c_yt3(2,:);
118 c_tt3 = cell2mat(tct3);
119 tct3_1 = c_tt3(1,:);
120 tct3_2 = c_tt3(2,:);
121

122 figure;plotresponse(tct3,yt3,'outputIndex',1)
123 figure;plotresponse(tct3,yt3,'outputIndex',2)
124

125 nrmse_test3_1 = norm((tct3_1−yct3_1)) / ...
norm((tct3_1−mean(tct3_1)));

126 nrmse_test3_2 = norm((tct3_2−yct3_2)) / ...
norm((tct3_2−mean(tct3_2)));

127 fit1_test3 = (1−nrmse_test3_1)*100
128 fit2_test3 = (1−nrmse_test3_2)*100

96 APPENDICES

129

130 %% Average Fit Percent
131 if fit1_valid < 0
132 % If the fit percent of the corresponding NNARX model for the ...

first output on the validation dataset is less than zero, ...
then assign it to zero.

133 fit1_valid = 0;
134 end
135

136 if fit2_valid < 0
137 fit2_valid = 0;
138 end
139

140 if fit1_test2 < 0
141 fit1_test2 = 0;
142 end
143

144 if fit2_test2 < 0
145 fit2_test2 = 0;
146 end
147

148 if fit1_test3 < 0
149 fit1_test3 = 0;
150 end
151

152 if fit2_test3 < 0
153 fit2_test3 = 0;
154 end
155

156 % Compute the average fit percent for the i−th trial with ...
same orders but different weights and biases.

157 Avg_fit(i) = (fit1_valid + fit2_valid + fit1_test2 + ...
fit2_test2 + fit1_test3 + fit2_test3)/6;

158

159 % Increase the counter for each trained NNARX model which ...
fits the data more than 85 percent on the average.

160 if Avg_fit(i) > 85
161 above85 = above85 + 1;
162 end
163 end
164

165 Avg_fit % To see average fit percent of each trained NNARX model ...
with same orders but different weights and biases

166

167 mean20_avgfit = mean(Avg_fit) % Represents the mean of 20 ...
different Neural NARX models with same orders

168

169 above85 % This number shows that how many of the trained NNARX ...
models have been able to fit the data related to validation, ...
the first test and the second test datasets more than 85 ...
percent on the average.

In the previous code, the orders na and nb are 1 and 10 respectively. When this code
is run, it creates 20 different Neural NARX models with these orders and 5 basic
neurons in the hidden layer. In this work, all possible combinations of na and nb
from 1 to 10 and various number of neurons in the hidden layer have been taken into
consideration and the obtained results have been reported in Section 3.3.3. Due to

97

the fact that the validation, the first test, and the second test datasets had taken
part in the training procedure, brand-new test datasets have been operated in order
to eliminate the risk of overfitting. The code related to the new test data sets is not
indicated in the appendix because the structure is very similar to the previous one.
Moreover, the following code can be used to see the weights and the biases of the
selected Neural NARX model.

1 load('LM1−10−5−fit91−04.mat') % Load the selected NNARX model
2

3 bh = net.b{1} %Bias vector of the hidden layer
4

5 bo = net.b{2} %Bias vector of the output layer
6

7 Input_weights = net.IW{1,1} %[5x20]
8 %[number of neurons x (nb*number of inputs)]
9

10 Output_weights = net.LW{1,2} %[5x2]
11 %[number of neurons x (na*number of outputs)]
12

13 w_ho = net.LW{2,1} %Weights from the hidden layer to the output layer
14 %[2x5] [number of outputs x number of neurons]
15

16 param_tot = net.numWeightElements %Total number of parameters ...
(weights + biases)

17

18 % In order to use the selected NNARX model in the Simulink ...
experiments, it is needed to generate a NARX Neural Network ...
block. Write the following command for this:

19 gensim(net, 25) % 25 is the sampling time.

	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Sommario
	Abbreviations
	Introduction
	Outline

	Physical System
	System Description
	Nonlinear Dynamics
	Linearized Model

	Plant Simulator in MATLAB/Simulink
	Summary

	Linear Model Identification
	State-Space Models
	Model Structure
	Identification
	Validation

	ARMAX Models
	Model Structure
	Identification
	Validation

	Output-Error Models
	Model Structure
	Identification
	Validation

	ARX Models
	Model Structure
	Identification and Validation

	Comparison of the Selected Linear Models
	Summary

	Nonlinear Model Identification
	NARX Models
	Model Structure
	Identification and Validation

	Hammerstein-Wiener Models
	Model Structure
	Identification
	Validation

	Neural NARX Models
	Model Structure
	Identification
	Validation

	Comparison of the Selected Models
	Summary

	Conclusions
	Bibliography
	Appendices

