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Abstract 

Infrastructure as Code (IaC) is a process that enables developers to provision and 

manage infrastructure resources through code rather than manually intervening. 

This paradigm has grown in popularity in recent years as it addresses the issue of 

inconsistency, which occurs when different people want to use the same 

configuration on different machines, a problem that cloud computing struggles to 

address. However, several impediments to IaC adoption exist, including a dispersed 

field of technologies and a lack of support within existing tools. SODALITE, a 

European project, aims to address these issues by providing an end-to-end solution 

for the deployment of a complex application. In this context, Ansible DSL, an 

abstraction of Ansible, and Ansible editor, a text editor, have been implemented to 

aid in the operationalization of the cloud application.   

The contribution of this thesis is to extend the features of the Ansible editor in 

multiple directions. More specifically, we integrate disparate information sources 

into the Ansible editor to provide a large spectrum of information to the developers 

and enable direct access to preexisting, reusable elements, such as Ansible content, 

and TOSCA models. In this way, the Ansible editor exploits the nested information 

to provide semantic suggestions, validation mechanisms and code smell detection 

utilities to the developers, that ensure the quality of the Ansible scripts and lower the 

development costs.  

Our second contribution is the seamless integration of the various phases of an 

application's deployment procedure into a single approach. More specifically, we 

enable smooth continuity between resource provisioning, which in SODALITE is 

performed by executing a deployment model written in the TOSCA language, and 

the creation and configuration of software layers on top of the provisioned resources, 

which in SODALITE is performed through the execution of Ansible scripts. 

Overall, our approach enhances an already innovative development environment 

with features not available in other tools on the market, thereby moving the IaC 

paradigm one step closer to adoption. 

 

Key-words: Infrastructure as Code, TOSCA, Ansible, IDE 
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Abstract in lingua italiana 

Infrastructure as Code (IaC) è un processo che consente agli sviluppatori di fornire e 

gestire le risorse dell'infrastruttura tramite codice anziché intervenire manualmente. 

Questo paradigma è diventato popolare negli ultimi anni poiché affronta il problema 

dell'incoerenza, che si verifica quando persone diverse vogliono utilizzare la stessa 

configurazione su macchine diverse, un problema che il cloud computing fatica ad 

affrontare. Tuttavia, esistono diversi ostacoli all'adozione dell'IaC, tra cui un campo 

di tecnologie disperso e la mancanza di supporto all'interno degli strumenti esistenti. 

SODALITE, un progetto europeo, mira ad affrontare questi problemi fornendo una 

soluzione end-to-end per l'implementazione di un'applicazione complessa. In questo 

contesto, Ansible DSL, un'astrazione di Ansible, e Ansible editor, un editor di testo, 

sono stati implementati per facilitare l'operazionalizzazione dell'applicazione cloud. 

Il contributo di questa tesi è di estendere le caratteristiche dell'editor Ansible in più 

direzioni. Più specificamente, integriamo diverse fonti di informazioni nell'editor 

Ansible per fornire un ampio spettro di informazioni agli sviluppatori e consentire 

l'accesso diretto a elementi preesistenti e riutilizzabili, come i contenuti Ansible e i 

modelli TOSCA. In questo modo, l'editor di Ansible sfrutta le informazioni nidificate 

per fornire agli sviluppatori suggerimenti semantici, meccanismi di convalida e 

utilità di rilevamento dell'odore del codice, che garantiscono la qualità degli script 

Ansible e riducono i costi di sviluppo. 

Il nostro secondo contributo è la perfetta integrazione delle varie fasi della procedura 

di distribuzione di un'applicazione in un unico approccio. Più specificamente, 

consentiamo una continuità regolare tra il provisioning delle risorse, che in 

SODALITE viene eseguito eseguendo un modello di distribuzione scritto nel 

linguaggio TOSCA, e la creazione e configurazione di livelli software in aggiunta alle 

risorse fornite, che in SODALITE viene eseguita attraverso l'esecuzione di script 

Ansible. 

Nel complesso, il nostro approccio migliora un ambiente di sviluppo già innovativo 

con funzionalità non disponibili in altri strumenti sul mercato, avvicinando così il 

paradigma IaC all'adozione. 

Parole chiave: Infrastructure as Code, TOSCA, Ansible, IDE 
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1. Introduction 

1.1 Motivation 

Nowadays, the IT market is dominated by the need to release software quickly and 

frequently in order to meet the constantly changing needs of customers and users. 

Consequently, IT organizations were scrambling to find new ways to meet their 

customers' expectations while remaining competitive and viable. Cloud computing 

[1] emerged in this direction, intending to address some of the challenges facing the 

IT industry.  

Cloud computing offers new capabilities and opportunities that traditional IT 

solutions cannot, as well as a number of advantages to organizations that adopt this 

model [2]. The pay-per-use model and on-demand resource provisioning, which 

allow for dynamic resource adjustment based on service needs at any given period, 

are two of the primary reasons for adopting cloud computing. This is highly 

advantageous, especially for new and small businesses, because it eliminates the 

need to acquire resources in advance to meet peak usage and only pays for resources 

that will cover current demand. The client is also relieved of system maintenance, 

hardware upgrades, and data backups. These three administration procedures are 

the responsibility of cloud providers; they are frequently expensive and time-

consuming, and they have a negative impact on the development cycle and decrease 

flexibility.  

Cloud providers offer various types of services to their clients based on their needs 

and expertise [3]. There are three types of service models: software as a service 

(SaaS), platform as a service (PaaS), and infrastructure as a service (IaaS). In SaaS, 

cloud providers provide software services on the application layer, allowing clients 

to access software applications without worrying about deployment, configuration, 

or updates. PaaS is a computing platform that is delivered to clients as a web service 

[4]. The advantage of this type of service is that clients can build and deploy their 

applications in pre-configured development environments, utilizing virtualized 

hardware, dynamic resource allocation, and data redundancy. On the other hand, 

IaaS provides computational resources and infrastructure, such as CPUs, storage, 
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and networks, that can be "created," "destroyed," and managed as needed by the 

client. In this case, the client has complete control over the "rented" resources and can 

deploy and run applications and operating systems.  

Another type of cloud computing classification is deployment models, which specify 

how cloud services are made available to consumers [5]. The four deployment 

models are public, private, hybrid, and community cloud. On the one hand, the 

public cloud's resources are accessible to the general public via a web service and are 

entirely controlled by the cloud provider who provides the cloud services. On the 

other hand, a private cloud consists of resources dedicated to and maintained by a 

single organization and can only be accessed by that entity. Finally, a community 

cloud is managed by a group of organizations that share computing resources, 

whereas a hybrid cloud is a combination of two or more deployment models that 

will operate as a unified system.  

Regardless of the various service and deployment models that have been introduced, 

cloud computing is insufficient to address all of the major challenges for continuous 

and rapid software delivery. In this context, IT enterprises focused on using agile and 

lean methodologies throughout the software development cycle to reduce 

development time and increase responsiveness. However, these methodologies were 

primarily focused on the development side, ignoring the operations side [6], causing 

bottlenecks in the development process and delaying software delivery. A new 

paradigm known as DevOps emerges to bridge this gap and overcome barriers to 

effective communication between software development and operations teams.  

Primary goal of DevOps is to shorten the release cycle and provide continuous 

delivery of high-quality software [7]. One major requirement for accomplishing this 

is to automate the entire process of configuring infrastructure components in a 

repeatable manner [8]. Infrastructure as Code, a fundamental principle of DevOps, is 

used to implement such an automated process [9]. IaC views IT infrastructure as 

software, allowing it to use software principles, methodologies, and tools to 

accelerate software operations. 

When we consider the properties that IaC induces in the managed environment [10], 

the significance of this practice becomes clear: 

1. Software-defined infrastructure: Computing resources are codified into 

simple text-based, machine-readable configuration files that describe the 

desired infrastructure state. This code-oriented approach allows the 

infrastructure to be deployed in stages and treats IaC as any other 

software development cycle. In addition, developers can test their 

applications in environments that are easily deployed and managed, 
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receiving immediate feedback on real-time metrics of their applications, 

such as security checking. 

2. Consistency of configuration across multiple environments: Manual 

configuration of infrastructure components is error-prone, especially 

when the number of resources is significant, leading to configuration drift. 

In contrast, with IaC, the configuration procedure is automatic, ensuring 

that the same configuration is deployed across all desired components. 

3. Auditability: By automating the provisioning/configuration procedure 

and using a software-defined approach, it is possible to version the 

configuration files and track the changes made during the evolution of the 

deployed scripts. As a result, unstable systems can be quickly reverted to 

previous versions and restored to operational status. 

4. Reproducibility: Manually configuring an infrastructure is a time-

consuming and labor-intensive process. One of the primary benefits of 

IaC is the ease with which an administrator can provision resources and 

configure each component to different environments. 

5. Immutability: When using IaC, the configuration file is the only thing that 

matters, which means that the provisioned infrastructure changes only 

when the relevant configuration file changes. As a result, system 

administrators can maintain consistency in computing resources across 

multiple environments. 

DevOps practices, particularly IaC, are not restricted to the cloud computing context 

but can also be applied to on-premise infrastructure with the same benefits described 

above. In contrast, combining cloud computing and IaC practices multiply each 

methodology's benefits and significantly improve software development acceleration 

and infrastructure automation. Businesses and organizations rode the new wave of 

automation, attempting to adapt the fundamental principles of IaC to their specific 

needs. As a result, a plethora of disparate technologies and IaC languages emerged, 

with requirements and goals frequently overlapping. Furthermore, some IaC 

languages and tools are tied to specific technologies and platforms, limiting 

organizations' flexibility in collaborating with different service providers.  

OASIS developed an open standard called TOSCA [11] in this fragmented field to 

provide a common language for describing the relationships and dependencies 

between cloud-based services and applications in a vendor-neutral manner. TOSCA 

introduced a unified model of common cloud resources, allowing developers from 

various backgrounds to use a standard specification to describe the structure of a 

cloud service as well as its operational aspects. This improves interoperability among 

service providers, lowers costs, and stimulates innovation, bridging the gap between 

various IaC approaches.  
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TOSCA allows you to design the infrastructure topology model of a cloud 

application as a graph, with typed nodes and typed edges serving as building blocks. 

The nodes represent the application components of the service, whereas the edges 

represent the various types of relationships between two or more application 

components. TOSCA also defined deployment and management operations for each 

application component, which are used throughout the component's lifecycle. 

Nonetheless, TOSCA is unable to define how these operations are implemented, so 

artifacts containing the content required to realize these operations must be included. 

The artifacts content can be of various types (scripts, executable programs, libraries), 

but Ansible is one of the most popular options [12]. 

Ansible is a free and open-source automation tool that can be used for provisioning, 

configuration management, application deployment, and orchestration. It is written 

in Python, and commands are scripted using YAML syntax.  

One significant issue with IaC languages and tools/methodologies such as TOSCA 

and Ansible is a lack of support from text editors and IDEs, making code 

development time-consuming. For example, if a developer wants to use Ansible to 

create a deployment file, the obvious choice is to use a text editor that supports 

YAML syntax, such as Vim. This is not the best approach because the developer 

receives no feedback on the written code or suggestions to speed up and guide the 

development process. Features like code suggestions and error messages are handy, 

especially for new developers, and lay the groundwork for broader adoption of the 

respective tools and, more broadly, IaC.  

SODALITE [13] (SOftware Defined AppLication Infrastructures managemenT and 

Engineering) is a European H2020 project in which multiple IT companies and 

universities from across Europe collaborate to achieve a specific vision and 

contribute to IaC's widespread adoption. SODALITE aims to address the issues that 

have arisen due to the rapid growth of cloud computing and the emergence of a 

plethora of disparate technologies. Its goal is to create a common platform for 

developers to deploy and run modern cloud applications in heterogeneous execution 

environments such as HPC or cloud. Vision of SODALITE is as follows [13]:  

"The SODALITE vision is to support Digital Transformation of European Industry 

through (1) increasing design and runtime effectiveness of software-defined 

infrastructures to ensure high-performance execution over dynamic heterogeneous 

execution environments; (2) increasing simplicity of modelling applications and 

infrastructures to improve manageability, collaboration, and time to market." 

To accomplish these goals, SODALITE leverages the benefits of the IaC paradigm, 

such as increased automation and limited manual intervention, and focuses on 
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creating an environment that supports the entire IaC lifecycle, from resource 

provisioning to resource management and, finally, "destruction". In addition, it offers 

a toolkit that enables application developers and infrastructure operators to create 

high-level models by abstracting from a specific IaC technology, simplifying the 

modeling and deployment process.  

TOSCA and Ansible, two well-known IaC methodologies, are used in the SODALITE 

framework. Their integration occurs as previously described, with TOSCA defining 

the application topology graph and Ansible implementing the deployment and 

management operations of the container application components. However, 

SODALITE does not directly provide TOSCA in its pure form , but rather a Domain 

Specific Language that is similar to TOSCA and follows the same principles. The 

framework includes a smart IDE that provides suggestions during the development 

process and flags potential syntax errors via a syntax validation process to support 

this TOSCA-like language.  

The semantic validation that is performed in the defined abstract models is another 

essential feature of SODALITE IDE. These models are mapped into knowledge 

graphs and stored in a knowledge base, where logic-based inference is used to enrich 

and validate the models in missing TOSCA definitions and relationship requirements 

[14]. In addition to TOSCA abstract models, SODALITE IDE allows users to create 

Ansible models using an integrated editor that supports a Domain Specific 

Language, similar to Ansible but with another layer of abstraction with respect to the 

original language, and to generate Ansible scripts directly from these Ansible 

models. This is done to simplify the development process for the user by grouping 

Ansible elements that are related to the same aspect. The Ansible editor's innovation 

is syntax validation and content suggestions and the ability to write Ansible scripts 

within the context of a TOSCA topology model. This allows for direct interaction 

between the script that will implement the operation of an application component 

and the component itself.  

The current project is housed within the SODALITE IDE, and our goal is to create a 

development environment that includes all of the features required to provide users 

with a smooth and straightforward experience when modeling an application's 

deployment procedure. More specifically, we extend the capabilities of the included 

Ansible editor by integrating a diverse set of knowledge sources into it, assisting 

developers, and providing a wide range of information within the same text editor. 

Furthermore, we bring TOSCA deployment models and Ansible scripts closer 

together and facilitate information exchange between them, reducing the 

development time required to transfer information from one model to the other. To 

the best of our knowledge, no other editor provides such a comprehensive set of 
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features, and as a result, our work advances the adoption of IaC by addressing these 

significant challenges. 

1.2 Scope of the thesis 

This thesis aims to extend SODALITE IDE already innovative capabilities and go a 

step further in meeting user needs by providing high-quality support throughout the 

cloud application modeling procedure. The IDE enables the creation of the so-called 

Resource Model, which consists of various types of application and infrastructure 

components and their relationships, as well as Ansible models that implement the 

deployment and management operations of a typed component. Furthermore, the 

end-user can combine the previously defined components to form an AADM 

topology graph representing the cloud application and specify the non-functional 

requirements that must be met at run-time. Our work focuses on the first two stages 

of the modeling procedure to make valuable contributions that will improve users' 

interaction with the IDE. 

As inspiration, we will take modern IDEs that provide multiple features and 

streamline the development workflow. Autocompletion, error messages, and code 

suggestions are extremely useful for the user and significantly speed up the 

development process because he/she has all of the necessary information in one place 

without having to search through lengthy documentation. This is especially 

important in the case of Ansible, where Ansible collections, modules, and roles are 

dispersed across multiple repositories, requiring the user to strain for the desired 

information. As a result, our primary focus will be connecting SODALITE IDE with 

information sources that will provide the end-user with valuable suggestions and 

constant feedback. These information sources will be the already implemented 

Knowledge Base, which stores SODALITE Resource Models, and a database 

containing Ansible content from repositories such as Ansible Galaxy and Github.  

A significant contribution of this project is the multiple validation mechanisms that 

check Ansible models for validity issues and provide clear and meaningful 

recommendations to the end-user on how to fix them. For example, the Ansible 

editor notifies the user if an Ansible collection name has the incorrect format and 

instructs the user how to correct it. Such errors cause problems during cloud 

application deployment and management and necessitate a significant amount of 

time to identify the errors in the source code. As a result, accurate error messages, 

accompanied by quick fixes whenever possible, save the end-user a significant 

amount of time, increase productivity, and increase user satisfaction.  
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Another important aspect of our work is the mechanisms that guide the user through 

defining an Ansible model and importing the generated scripts into the 

corresponding Resource Model. After creating a Resource Model, the Ansible scripts 

that implement its TOSCA operations must be imported into the RM. For this reason, 

we developed a standardized procedure that guides the user through the definition 

of the appropriate Ansible model, followed by the generation and integration of the 

corresponding Ansible script into the RM. In this way, the user is not lost among the 

various DSL provided by SODALITE IDE but instead remains in a specific chain of 

activities. These mechanisms, however, do not alter the existing transparency 

property of the Ansible script's origin. Transparency property enables the user to 

select an Ansible script written with an external editor for a TOSCA operation rather 

than firstly defining an abstract Ansible model (i.e., .ans file) and then generating the 

concrete Ansible script. Thus, the only requirement for importing an Ansible script is 

to specify the script's local path in the RM without restricting development to our 

Ansible editor. 

1.3 Thesis Structure 

In this section, we will go over the structure of the current thesis and briefly describe 

the chapters that follow. 

Chapter 2 introduces the state of art, presenting various Infrastructure as Code tools 

and research projects developed to meet the needs of the DevOps field. Furthermore, 

it delivers an overview of the technologies used in this thesis to provide readers with 

the necessary context.  

Chapter 3 describes the goal of this thesis and the three different directions in which 

we moved to develop our ideas. 

Chapter 4 describes the implementation decisions we made and the features we 

created to solve the problems we identified, with examples. 

Chapter 5 describes our work's evaluation procedure, in which external testers 

compared the implemented editors to an existing editor used by the community to 

develop Ansible scripts. The testers experimented with actual use cases and reported 

their findings via a questionnaire. 

Chapter 6 summarizes the various aspects of this thesis and suggests potential future 

research topics. 
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2. Background and Related work 

This chapter presents an overview of the most popular IaC tools and languages, and 

we document some of the recent research projects related to our work. Section 2.1 

discusses some of the most commonly used configuration and provisioning tools, 

describes their key features and compares them. Section 2.2 examines the state of the 

art in IaC research projects and provides an overview of their purpose and features. 

Section 2.3 identifies research gaps in modern literature and where our work resides 

among the state of the art. 

2.1 Iac Tools 

In Chapter 1.1, we discussed the concept of Infrastructure as Code and the value it 

brings to the IT industry. DevOps engineers can use IaC to define all aspects of the 

desired infrastructure and build an infrastructure system from the ground up by 

leveraging a variety of IaC tools that streamline the development process and cover 

all aspects of the modeled infrastructure. DevOps engineers can select from a large 

pool of IaC tools, each with its own set of features and serving diverse purposes. 

Based on this, IaC tools can be divided into two broad categories: configuration 

management tools and provisioning tools. In the following sections both types of 

tools are presented. 

2.1.1 Configuration Management Tools 

Configuration management tools are designed to install software on existing 

infrastructure, verify its state, and make the necessary configurations on provisioned 

infrastructure to ensure software’s smooth execution. They provide an automated 

method for deploying and configuring applications and environments across various 

infrastructure components without the need for manual intervention, which can be 

difficult when managing a large number of components. In our work, we study 

many of the configuration tools used by the community, but we focus on the four 

most popular: Ansible, Chef, Puppet, and Saltstack, and we examine each one's main 
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characteristics, highlighting the differences between them. Moreover, we dedicate a 

subsection to describe the fundamental concepts of Ansible, as it is the core of our 

work. 

2.1.1.1 Ansible overview 

Ansible is a free and open-source configuration management tool for provisioning 

and configuring infrastructure components as well as deploying applications. It 

employs a Python-based YAML syntax in which the developer specifies the exact 

step-by-step procedure for bringing the infrastructure to the desired state. 

Furthermore, it is agentless, so the system administrator does not have to set it up 

separately for each management interface component [15]. 

An Ansible file is known as a playbook, and it contains a list of sequential operations 

known as tasks. A playbook can be run on specific hosts chosen by the developer 

while the available hosts' names and IP addresses are saved in an inventory. Hosts 

can also be organized into groups, allowing a playbook to be executed only on hosts 

of a specific group. 

Tasks are the primary units of action in Ansible and are executed on selected hosts 

from the inventory. Different sets of tasks within a playbook may need to be 

executed in different hosts, which is accomplished by organizing them in groups 

known as plays. For example, suppose we have a playbook with 20 tasks, and the 

developer wants to run the first ten tasks on a group of nodes called "first group" and 

the following ten tasks on a group of nodes called "second group". In this case, he/she 

will define two plays with the names "first group" and "second group," with each 

containing the corresponding tasks.  

The module is another central concept in Ansible. A module is a reusable unit of 

code that, like a function in a programming language, performs a specific operation 

with the help of some parameters. A task can call a single module and pass the 

necessary arguments as parameters in the form of variables or values. Modules are 

organized into Ansible collections, which are packages that contain Ansible content. 

Ansible includes many collections [16], but users can also access Ansible Galaxy, a 

massive repository of Ansible content, from which they can download and install 

Ansible collections and use the contained modules.  

Aside from modules, another reusable Ansible entity is the role. A role is a portable 

unit of Ansible code that, when executed, accomplishes a specific task. Each role is 

written in YAML and is essentially a subset of a play that can be imported directly 

into an Ansible playbook. The utility of roles is that they enable the automation of 

reusable sets of operations that can be shared among the community in a self-

contained manner because roles include all the necessary tools for execution such as 
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variables, files, tasks, etc. Users can find and download Ansible Roles from Ansible 

Galaxy and upload their own to share with the community. 

Figure 2.1 shows an example of a simple Ansible playbook. 

 

Figure 2.1: Ansible playbook 

The goal of this playbook is to install an Apache Web server on multiple hosts. More 

specifically, in the second line, we define the playbook's name, and in the third line, 

we specify that the playbook will be executed on hosts belonging to the host group 

webservers. We tell Ansible that the playbook will be executed with elevated 

privileges in the fourth line, and in the fifth line, we begin the section where all the 

tasks will be defined. In the task section, we will define two tasks using two modules, 

the first of which is yum and the second of which is service. In the first task with the 

yum module, the state latest indicates that the package httpd should be installed if it is 

not already installed or that it should be upgraded to the most recent version 

available if it is already installed. On the second task with the service module, we use 

the state: started to ensure that the service named httpd is started and running. If the 

service is already started and running, Ansible will not restart it. 

2.1.1.2 Other configuration management tools 

Puppet [17],[18] is an open-source configuration management and deployment tool. 

It uses a customized Domain Specific Language implemented in Ruby and runs a 

master-agent setup, following a model-driven approach. The main elements of 

Puppet are Resources, Classes, Manifests, and Modules. Each Resource defines the 

desired state for a part of the system and are the fundamental building blocks to 

model the system state. Classes are collections of Resources, while Manifests are 

collections of Classes. Finally, Modules represent a particular automation task and 

contain all the previously described elements. 
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Chef [19] is another configuration management tool that helps automate the IT 

infrastructure. It uses a Ruby-based Domain Specific Language to write the 

configurations and follows master-agent architecture, where a logical Chef 

workstation controls the configurations from the master to the agents. The main 

components of Chef are the following [20]: 

• Chef workstation: It is the main point of interaction between the user and 

the system. Through this component, users can author and test cookbooks 

and recipes, manage the system's physical and virtual nodes, and interact 

with the Chef server through Knife, a command-line tool. 

• Chef client node: A node is a physical or virtual machine that Chef 

manages. A Chef client is installed on every node and performs all the 

defined configuration tasks to bring the component into the desired state. 

The configuration procedure is performed by a built-in tool called Ohai. 

• Chef server: This component acts as a hub of information, where all the 

critical files and data are kept, such as cookbooks, recipes, policies, etc. 

Each node that runs a Chef-client uses a pull-based approach and 

periodically requests the Chef server for the necessary configuration data, 

applying the defined configuration. 

Chef exploits the concepts of "recipes" and "cookbooks" to specify the exact steps to 

be followed that will bring the infrastructure components to the desired state. 

Cookbooks define the automation workflow that will be executed and organize the 

related recipes. Recipes are Ruby scripts that support the required resources and 

specify how each resource will be applied. Finally, roles contain a list of recipes, 

which, after their retrieval from the Chef server, are executed by the Chef client and 

create the necessary configuration. 

Saltstack [21] is an open-source tool to configure IT infrastructure. It leverages a 

mixed model, where there are two distinct types of nodes, the Salt master and the 

Salt minion, while at the same time, it uses a decentralized approach. The system can 

have multiple masters to which groups of minions are connected and get 

configuration data. The user can push configurations and updates to the minions, but 

also minions are allowed to check for updates and pull them accordingly [22]. As a 

result, this hybrid architecture of Saltstack achieves high speed, low latency, high 

scalability and resiliency [23]. Other essential characteristics of Saltstack are the Salt 

reactors, which are responsible for listening to new events on the minions, the grains, 

which retrieve information from the client nodes; and the pillars, which serve data to 

minions in a confidential, secure and node-specific manner. In addition, Saltstack is 

language-agnostic as it can render scripts in multiple languages such as Python, 

YAML and JSON. 
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Parameters Ansible Chef Puppet Saltstack 

Configuration 

Language 

YAML DSL based on 

Ruby 

DSL YAML 

Language Type Procedural Procedural Declarative Declarative 

Configuration 

file 

Playbook Recipe Manifest State file 

Architecture Master only Master-Agent Master-Agent Master-Agent 

Configuration 

method 

Push Pull Pull Push 

Communication SSH HTTPS HTTPS ZeroMQ, SSH 

Supported OS Master: Linux, 

MacOS 

Master: Linux, 

MacOS 

Agents: Linux, 

Windows, 

MacOS 

Master: Linux 

Agents: Linux, 

Windows, 

MacOS 

Master: Linux 

Agents:Linux, 

Windows, 

MacOS 

Table 2.1: Comparison of configuration tools 

Table 2.1 summarizes the previously described characteristics for the tools under 

consideration, making it easier for the reader to identify significant differences 

between them [24]. The following parameters were considered in order to make the 

comparison: 

• The configuration language provided by each tool: In Ansible and 

Saltstack, users script commands in YAML, i.e., Yet Another Markup 

Language, a user-friendly syntax that significantly reduces the learning 

curve. On the contrary, Chef and Puppet use their dedicated Domain-

Specific Languages, which increases the time required for a developer to 

learn and write commands in each tool. 

• The language's style: Ansible and Chef use a procedural programming 

paradigm, in which the developer writes code that specifies how to 

achieve the desired end state step by step. Puppet and Saltstack use a 
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declarative approach in which the developer specifies the desired end 

state, and the configuration tool determines the most efficient way to 

achieve that state. 

• What kind of configuration file each tool employs and how this file is 

called. 

• The infrastructure component architecture that each tool applies to the 

system: Chef, Puppet, and Saltstack have a master-agent architecture, in 

which the main server runs on the master machine of the system, and 

every other related machine runs a client that acts as an agent for the 

communication with the master machine. Ansible has only a master 

running on the server machine but no agents running on the client 

machines. 

• How each system node receives the appropriate configuration: Puppet 

and Chef adopt a pull configuration approach, whereas Ansible and 

Saltstack adopt a push configuration approach. In the first case, the client 

machines automatically pull all the configurations from the master server 

without any commands, while in the second case, all the configurations 

present in the central server are pushed to the client machines. 

• The node-to-node communication protocol: The communication between 

system nodes in Puppet and Chef is based on the HTTPS protocol, 

whereas Ansible and Saltstack use SSH. Saltstack also supports ZeroMQ, 

a high-performance asynchronous messaging library that allows for faster 

communication. 

• The supported operating systems by each node type. 

In general, the emergence of numerous configuration management tools has resulted 

from the fact that no single tool completely meets the needs of the DevOps 

community. For this reason, as we saw, there have been numerous attempts to meet 

these needs with various characteristics and features. Therefore, the developers 

should review and examine the features provided by each tool before making a 

decision based on the needs of their system. For example, in a system with many 

nodes, a reasonable decision would be to select a tool with a push configuration 

approach that minimizes the communication overhead between the clients and the 

master compared to a pull configuration approach in which the clients constantly 

request potential updates from the master. 
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2.1.2 Provisioning tools 

Provisioning tools are intended to allow for the automatic provisioning of servers, 

networks, users, and services via code without the need for manual intervention. In 

this way, the provisioning work required by developers when deploying a new 

application is significantly decreased and reduced to just a script to be executed that 

contains all of the infrastructure specifications. Among the tools investigated, we 

concentrated on TOSCA, Terraform, Openstack Heat, and CloudFormation and 

briefly compared their features. Given the significance of TOSCA in this thesis, we 

will devote a separate subsection to describe its objectives and characteristics. 

2.1.2.1 TOSCA Overview 

The Topology and Orchestration Specification for Cloud Applications(TOSCA) is an 

official OASIS standard whose primary goal is to standardize the description of 

cloud application's structure and automate their deployment and management [25]. 

In order to achieve this, TOSCA focuses on the following three sub-goals [26]: 

1. Automated application deployment and management: TOSCA provides a 

Domain Specific Language that allows developers to describe a complex 

cloud application in an abstract and modular manner. Furthermore, 

developers are able to create management plans that describe best 

practices for deployment and management, making complex application 

supervision an automated and less error-prone procedure. 

2. Portability of application descriptions and their management: TOSCA 

provides a standardized way to describe a multi-component application 

and exploits the portability of workflow languages, such as BPMN and 

BPEL, to describe deployment and management plans. 

3. Interoperability and reusability of components: TOSCA provides a 

standardized approach to describe the components of cloud applications, 

which not only improves interoperability and reusability amongst 

different cloud providers but also reduces developers' effort to design a 

cloud application's topology. 

TOSCA offers an YAML-based modeling language, which allows describing, 

abstractly, a cloud service's topology and its operational aspects through 

management plans. It encodes a cloud application in the concept of "Service 

Template", which consists of two different components, the "Topology Template" 

and the "Management Plans": 

• Topology Template: The topology template is a typed topology graph 

representing the structure of a cloud application and capturing the 

relationships and dependencies between the application components. 
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Types, Templates, and Instances are the three levels of abstraction used to 

describe the topology graph. This layered approach promotes the 

reusability of application components (see sub-goal three above) through 

type definition and allows for the description of a cloud application at 

various levels of granularity. 

o Types are defined separately from the topology and specify the 

structure of a template's features, such as properties, interfaces, 

requirements, capabilities, and policies [27],[28]. Each type 

maintains a set of operations bundled in interfaces and enables the 

deployment and management of the respective component. These 

operations are either deployment operations, which can be 

deploying an application component on an application server, or 

management operations such as scale, configure, upgrade, etc.[26]. 

The former is implemented through deployment artifacts, which 

are needed to realize the actual component, while the latter is 

implemented through implementation artifacts [29]. TOSCA 

allows artifacts of various types. For instance, a node type may 

have a deployment operation implemented with a WAR file, and 

at the same time, a management operation implemented in 

Ansible. Therefore, each component defines, implements, and 

maintains its deployment and management in a self-contained 

way. As a result, each defined type is independent of concrete 

cloud providers, fulfilling second sub-goal of TOSCA. 

o Templates are instances of a type and are the main building blocks 

of the topology graph, representing either an application 

component, in the case of a node template, or a relationship 

between two different application components, in the case of a 

relationship template. 

o Instances depend on the runtime of TOSCA and represent the 

actual instances of templates. A template can be realized many 

times in a topology. 

• Management plans: Management plans express higher-level management 

tasks and combine a series of deployment and management operations 

from various topology graph nodes and relationships, as well as external 

services. Management plans, in general, specify how to manage the 

associated service template throughout its lifetime [26],[27] having three 

different types: Build, modification and termination. In this manner, 

application creators can incorporate best management practices and 

reoccurring tasks into management plans, ensuring that best practice 

https://www.zotero.org/google-docs/?AST2em
https://www.zotero.org/google-docs/?DRPkk1
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knowledge is widely used. Furthermore, management plans relieve 

enterprise IT of the burden of management knowledge while concealing 

most of the technical details of management best practices. In this context, 

TOSCA does not introduce a new workflow language to set up 

management plans but instead recommends an existing workflow 

language such as BPMN or BPEL. In this way, TOSCA enhances 

interoperability and portability between different engines while also 

shortening the learning curve required to use a new modeling tool. Aside 

from the explicit modeling of a management plan directly from the 

application creator, TOSCA also supports another approach, in which the 

management plan is generated automatically if the topology graph 

contains enough semantics. This shifts the encoded semantic information 

from the plan to the topology graph. 

During the execution and management of the cloud application, the TOSCA runtime 

environment must have access to the Service template and all related artifacts. 

TOSCA ensures that these files are available by defining a standardized archive 

format known as "Cloud Service Archive" (CSAR). A CSAR is a compressed zip file 

[30] containing files of various types (e.g., implementation and deployment artifacts, 

scripts, etc.) organized in hierarchical sub-directories specific to a given cloud 

application, where Definitions and TOSCA-Metadata are two required 

subdirectories. The former contains one or more Definitions.tosca documents that 

describe the cloud application, such as the Service Template file, whereas the latter 

contains the TOSCA.meta file, which describes the metadata of the CSAR and the 

packaged files. All TOSCA-compliant runtime environments can deploy CSAR 

packages, ensuring portability between different TOSCA-compliant environments. 

There are two methods for processing a CSAR package. The first approach is 

imperative processing, and it involves the TOSCA engine deploying the cloud 

application based on the workflow specified by the topology modeler. The second 

method is declarative processing, and it involves the TOSCA engine attempting to 

extract a valid workflow from the topology graph. 

Figure 2.2 depicts the topology of an application in which a Nginx server is deployed 

on OpenStack infrastructure. 
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Figure 2.2: TOSCA service template 

In the first line, we specify the TOSCA version to be used, and in the imports section, 

we include the node types required to form the desired topology. We define a 

topology with three nodes in the topology templates section: 

1. The Nginx server application component is represented by the node 

nginx, with the requirement to host the provisioned server on another 

component called vm. 

2. The node vm represents a provisioned virtual machine on the Openstack 

infrastructure, and we define its characteristics. 

3. The node site represents the site's contents, which will be uploaded to the 

provisioned Nginx server. 
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2.1.2.2 Other Provisioning tools 

OpenStack [31] is a free and open-source cloud IaaS platform that enables rapid 

deployment, management, and development of an IT infrastructure's computing, 

storage, and network resources. Heat [32] is one of the leading software components 

of Openstack and automates the deployment of infrastructure and applications in 

OpenStack Clouds. Heat uses template text files to describe the infrastructure for a 

cloud application in a human-friendly way and supports a variety of infrastructure 

resources such as servers, volumes, security groups, etc. Furthermore, the user can 

specify the relationships between the different resources of the infrastructure and 

potential dependencies between them. Heat can identify the implicit and explicit 

dependencies between the resources and provision the corresponding infrastructure 

components in the correct order. Another important point is how easily the user can 

update or change the infrastructure state completely by simply modifying the 

template file. Heat receives the updated template files and performs all the necessary 

steps to adjust the current infrastructure to the desired state, including deleting 

existing resources. It also provides a cross-compatible AWS Cloud Formation 

implementation to run existing Cloud Formation templates on OpenStack [33]. 

AWS CloudFormation [34] is a provisioning tool that automates infrastructure 

deployment in the AWS Cloud. Users use JSON or YAML-compliant template files to 

describe a collection of AWS resources, known as a stack. CloudFormation uses a 

declarative approach, which means that the platform deploys the requested 

resources and manages their dependencies without the user's intervention. 

Furthermore, it provides a preview of how proposed changes will affect already 

provisioned infrastructure resources and allows you to roll back to previous versions 

of the deployed infrastructure if errors are detected. 

Terraform [35] is a free and open-source orchestration tool for infrastructure 

provisioning, scaling, de-provisioning, and operations. It supports multiple cloud 

service providers, can integrate other third-party services, and provides a wide range 

of features for dealing with extensive infrastructure for complex distributed 

applications. Terraform primary function is to describe the desired infrastructure 

resources in configuration files using a domain-specific language known as HCL. 

The platform then generates an execution plan, which details the exact steps that will 

be taken to create the desired infrastructure topology. Terraform also creates a graph 

of infrastructure resources and identifies the dependencies that exist between them. 

As a result, if the user accepts the generated execution plan, the platform executes the 

necessary operations to deploy the resources and can parallelize the creation of non-

dependent resources. It also has the advantage of storing the state of the deployed 
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infrastructure in a separate file called terraform.tfstate, which can be easily shared 

and used to recreate the same infrastructure elsewhere instantly. 

Parameters Terraform CloudFormation Heat TOSCA 

Language DSL(HCL) YAML,JSON DSL(HOT) YAML 

Language Type Declarative Declarative Declarative Declarative 

Cloud Platform Multiple AWS Openstack,AWS Multiple 

Source Code Open-source Closed-source Open-source Open-source 

Interface CLI GUI CLI GUI, CLI 

Table 2.2: Comparison of provisioning tools 

Table 2.2 provides a quick overview of the investigated provisioning tools, allowing 

the reader to identify differences and similarities for five different parameters: 

• The configuration language provided by each tool: Terraform and Heat 

use Domain-Specific Languages to provision resources, whereas TOSCA 

and CloudFormation use the YAML syntax. Furthermore, when writing 

provisioning scripts, CloudFormation supports the JSON syntax. 

• The provided language's style: All the examined provisioning tools follow 

the declarative programming paradigm, which means that the developer 

states the system's desired state and the tool determines how to achieve 

the requested state. 

• What cloud platforms are supported: Terraform and TOSCA support 

resource deployment across multiple cloud providers, whereas 

CloudFormation is vendor-locked and only supports Amazon AWS. 

Furthermore, Heat only supports Amazon AWS and private cloud 

infrastructure via OpenStack rather than a wide range of cloud providers. 

• How the tool's source code is distributed. 

• The type of user interface to which the user has access: CloudFormation 

and TOSCA provide a GUI that allows developers to write scripts more 

quickly, whereas Terraform and Heat provide only the option to write 

code via a terminal(Command Line Interface). 
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2.2 IaC Research Projects 

In the previous section, we presented just a few of the most popular IaC tools and 

languages, and new technologies are being developed daily. However, this wide 

range of tools and technologies makes it difficult for practitioners to select the 

appropriate ones that meet their needs. Because no tool dominates the market and 

supports the IaC development and deployment procedure end-to-end, practitioners 

typically use a set of IaC tools to cover all aspects of IaC [36]. To make the process of 

selecting appropriate technologies easier, the authors of [37] performed a systematic 

mapping review and categorization on IaC-related tools and catalogued the topics 

studied in infrastructure as code-related publications. 

Furthermore, the authors of [38] conduct a systematic literature review of DevOps 

concepts and DevOps tools, including deployment automation tools like Chef or 

Puppet, whereas [39] catalogued cloud deployment modeling languages and 

identified their primary purposes for each one. These studies confirmed that, despite 

the abundance of frameworks, tools, and languages, the field of IaC is still quite 

fragmented. As a result, it is pretty challenging to select the appropriate technology, 

compare the disparate features and mechanisms, and migrate from one technology to 

the other due to the domain knowledge required. These challenges put significant 

barriers to the widespread adoption of IaC and DevOps in general. 

To address these concerns, the authors of [40] propose a deployment metamodel that 

abstracts from the specific complexities of each technology and introduces a general 

overview of all the essential parts that exist between different declarative 

deployment technologies. This enables researchers working with various IaC 

technologies to share a common understanding and develop technology-agnostic 

models. As a result, migration between environments becomes more accessible 

because the user can identify commonalities and changes that must be made. 

Furthermore, the metamodel and the standard features of the technologies pave the 

way for exploiting MDA methods that will automatically transform the deployment 

artifacts from one environment to another, making application migration an 

automated procedure.  

Based on this concept, the same team created TOSCA Light [41], a TOSCA subset 

used to develop technology-agnostic deployment models that can then be translated 

into a concrete IaC deployment artifact. In this manner, the developer creates an 

application deployment model only once and then reuses it through model 

transformations into all EDMM framework-supported deployment technologies, 

enhancing portability between heterogeneous environments.  
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Another kind of model-driven approach is RADON [42]. RADON proposes a 

DevOps framework for developing and managing cloud applications that utilize the 

microservices architectural style and the serverless Function as a Service (FaaS) 

paradigm. The user controls the autoscaling operations performed at the function 

level when using this framework, and the cloud application can be deployed across 

different cloud providers with heterogeneous capacities. Regarding the modeling 

language, RADON extends TOSCA with a constraint definition language (CDL) to 

specify temporal behavior as well as functional and non-functional requirements of a 

cloud application. Using TOSCA as the baseline modeling language allows 

professionals already familiar with TOSCA to learn this new modeling environment 

in less time. Another important aspect is that TOSCA-compliant tools, such as 

Winery, can be easily integrated into the framework and enrich the modeling 

environment at no additional cost to the RADON developers. After defining the 

application model and creating the TOSCA templates, the user can use the provided 

Verification and Defect Prediction tool to analyze, verify, detect, and correct 

defective IaC blueprints and incorrectly defined requirements. 

Goal of RADON is to provide a solution that allows developers to effectively manage 

the entire lifecycle of a complex application that adheres to the serverless and 

microservices paradigms. However, while it provides quality assurance tools for 

checking IaC code for code smells and anti-patterns as well as serverless functions or 

microservices for business logic errors, it does not provide any quality review for 

configuration management scripts imported into TOSCA templates. Furthermore, it 

does not provide features that aid in developing configuration management scripts; 

instead, RADON assumes that they were created with an external tool. 

An interesting model-driven project is ARGON [43], a framework for modeling the 

cloud resources that an application will require when distributed across many cloud 

providers. To accomplish this, ARGON provides a Domain Specific Language that 

allows users to abstractly represent the needed infrastructure without relying on a 

specific IaC language. As a result, DevOps professionals spend less time dealing with 

an extensive DevOps toolset and more time modeling the required infrastructure 

with a DSL, which abstracts the specificities of each tool and reduces modeling 

complexity. Moreover, after defining the infrastructure model, ARGON performs 

model to model and model to text transformations to build concrete scripts, such as 

Ansible or Puppet, which are subsequently deployed and executed on a cloud 

platform. Following this approach, the user may model the required infrastructure 

without expert knowledge in a specific configuration/provisioning language, 

significantly automating the infrastructure management and facilitating the 

communication between different DevOps professionals. 



Background and Related work 23 

 

 

One thing to keep in mind is that ARGON has a limited expressive capability 

because it is limited to the supported abstract ARGON elements [44] and their 

transformation rules. Assume a developer wants to write complex Ansible scripts 

that use multiple Ansible modules to perform a variety of software configurations. In 

that case, due to ARGON's element library limitations, it may not be possible to do it 

entirely with ARGON, as it may not generate the desired Ansible modules. As a 

result, there is a tradeoff between development simplicity due to abstraction from 

technical details and tool expressiveness. 

DICE [45] is another model-driven approach that enables users to create language-

independent models that are then translated into concrete IaC scripts in the context 

of Data-Intensive Applications(DIA). DIA typically necessitates complex 

infrastructures, making it challenging to deploy, configure, and operate one, 

especially when the user wishes to combine more than one framework. To address 

these issues, the authors propose a Domain Specific Language (DSL) based on UML 

with a high level of abstraction, in which the user can model the provisioning, 

deployment, and configuration of a DIA without having to worry about the specific 

technical details for each framework. It also includes a library of standard IaC 

components, such as Hadoop, Storm, and Spark, for deploying DIA, as well as an 

open-source tool called DICER, which takes the defined abstract model of the DSL as 

input and generates runnable IaC scripts, which are written in Chef or TOSCA. 

DICER aims to allow users to create IaC in parallel with software development by 

unifying common abstractions between IaC and software design and enabling rapid 

deployment, testing, and redeployment by automating the procedure to generate 

concrete, deployable IaC scripts. Furthermore, because of the level of abstraction 

provided by DICER regarding the infrastructure, a user can exploit pre-existing IaC 

components without knowing the technical details behind them. 

In general, DICE implements the same ideas as SODALITE, where there is a level of 

abstraction from the selected IaC languages. However, like ARGON, there is the 

limitation that the users cannot develop infrastructural code outside the scope of the 

provided library. As DICE focuses on DIA, it contains a specific set of reusable 

components of data-intensive architectures for TOSCA topologies and Chef recipes, 

supporting the most popular frameworks. This limitation is also reported by the 

writers of DICE with the intention to extend the provided library in the future. 

MELODIC [46] follows another direction and exploits the concept of utility functions. 

MELODIC delivers powerful autonomous middleware that acts as automatic 

DevOps for a specific cloud application and changes the necessary deployment 

configuration at runtime. This framework aims to enable multi-cloud application 

deployment while also providing additional flexibility, capacity, and elasticity 



24 Background and Related work 

 

 

during runtime. The suggested framework selects an appropriate initial deployment 

for the cloud application, then monitors its condition, and performs the necessary 

adaptations throughout its entire life cycle. These adjustments are either 

optimizations in the application's configuration or its redeployment, which includes 

the provision of new infrastructure. This method adheres to the concepts of 

autonomic computing, in which the application can self-configure, self-heal, self-

optimize, and self-protect without the need for human interaction. As a result, the 

deployment and management of a cloud application become a fully automated 

activity, where even the cloud providers that will host the application are selected 

automatically based on defined requirements. 

MELODIC uses the CAMEL language (Cloud Application Modeling and Execution 

Language) to describe the application's requirements and infrastructure, similar to 

TOSCA but enhanced with the ability to support the specification of instances at run-

time beyond the definition of types and templates at design-time. CAMEL, like 

TOSCA, necessitates the use of implementation scripts to provide the necessary 

resources and configure the appropriate software. However, MELODIC does not 

support the development of such implementation scripts within the framework; 

instead, the user must create them with an external editor and then import them into 

the application model. 

PIACERE [47] is an ongoing project whose primary goal is to simplify the 

development of infrastructure code, increase its quality, security, and reliability, and 

provide autonomic computing features such as self-healing, self-configuration, and 

self-optimization that ensure its uninterrupted business continuity. To accomplish 

these tasks, PIACERE provides a framework that DevSecOps [48] professionals can 

use as an end-to-end solution, from modeling the required infrastructure and 

specifying the functional and non-functional requirements to deploying the 

application on the defined infrastructure and monitoring it during runtime. These 

activities are aided by the modular approach of PIACERE, which combines multiple 

tools within the same framework. The core is an IDE that allows developers to create 

infrastructure code for various infrastructure environments using a domain-specific 

language called DOML, which hides the peculiarities of each environment through 

abstraction layers. After completing the infrastructure model, PIACERE runs the 

Verification Tool, which checks the model for errors and inconsistencies. If the model 

is verified, a component called Infrastructure Code Generator is used to generate 

concrete IaC scripts in various IaC languages such as Terraform, TOSCA, Ansible, 

etc. Another valuable feature of PIACERE is testing infrastructure code in a 

simulated environment and performing checks to identify potential vulnerabilities 

and bottlenecks before the code is deployed. In addition, during the pre-deployment 

phase, PIACERE optimizes application deployment by determining the best 
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combination of available services (IaaS, XaaS), infrastructure resources, and defined 

requirements. PIACERE also monitors the entire IaC execution run in real-time and 

provides insightful and continuous feedback to the DevSecOps team on security, 

deployment, execution, and provisioning. These data are fed into PIACERE's 

autonomic computing mechanisms, which self-adapt the deployed application in 

order to meet the defined QoS conditions at all times. 

SODALITE is a European project that provides an environment to support the 

definition of complex deployment models across heterogeneous resources and 

frameworks and simplifies application deployment modeling and execution across 

multiple, heterogeneous infrastructure resources. Our work lies in the context of 

SODALITE, and in order to give the readers a clear view of our contribution, we 

describe the main concepts and purpose of SODALITE thoroughly.Mainly, we will 

focus on the components of SODALITE related to our work and its modeling aspects. 

The references that we will exploit are the official website of SODALITE [13] and 

[14]. 

SODALITE provides a robust toolkit that aids in deploying an application 

throughout the stages of its modeling procedure. TOSCA and Ansible are key 

components of this toolset, but not in their pure form. SODALITE provides Domain-

Specific Languages that adhere to the principles of TOSCA and Ansible but differ in 

critical ways to simplify deployment models and increase modularity. DevOps 

engineers can define deployment models by using an abstraction of TOSCA that is 

then translated into TOSCA. Two Domain-Specific Languages (DSLs) have been 

implemented to accomplish this: Resource Model DSL and Abstract Application 

Deployment Model DSL. The provided DSLs decouple the definition of an 

application model from the resources that it will use. When developing a TOSCA-

based model, these concepts are bound together, whereas SODALITE creates two 

different development environments to support each development procedure 

separately and more efficiently.  

Application Ops Experts (AOEs) can define application topology models using the 

AADM DSL, which is represented as a connected graph of application components. 

AOEs define node templates in the same way they do in TOSCA by instantiating 

imported node types, stating their relationships, and declaring their requirements. 

Another model, called the Resource Model, defines the node types and their 

relationships. A Resource Model represents infrastructure resources and contains the 

building blocks of an application topology model (AADM). The so-called Resource 

Experts (RE) are in charge of creating RMs and modeling classes of infrastructure 

resources as well as their capabilities, requirements, interfaces, and relationships. The 

completed RMs can then be uploaded to Knowledge Base of SODALITE and made 
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available for import into an AADM. As a result, the two types of models remain 

distinct, though closely linked. This concept is critical when new technologies 

emerge because it enables AOEs to exploit novel infrastructure resources uploaded 

from REs for their application. After submitting an AADM for deployment, 

SODALITE transforms the model and generates an equivalent TOSCA blueprint 

ready for execution on SODALITE's orchestrator [49]. 

Each operation defined in an RM must be accompanied by a corresponding 

implementation script that performs the required configuration and management 

tasks. SODALITE provides an Ansible abstraction called Ansible DSL, through which 

REs can define Ansible Models. Ansible DSL adheres to and supports the same 

conceptual attributes as Ansible, but it groups several attributes that are 'included' in 

the same semantic category to simplify user interaction and better organize the code. 

The Ansible Models are transformed into concrete Ansible scripts, which can be 

associated then with operations of an RM, integrating Ansible with TOSCA. 

The Optimization Model DSL is another DSL provided by SODALITE, in which 

Optimization Experts (OEs) design optimization recipes that are associated with an 

AADM. Then, when the AADM is submitted for deployment, an application 

optimizer goes through the optimization settings and applies them to the target 

hardware. 

 

Figure 2.3: SODALITE overview 
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Modeling capabilities of SODALITE are delivered to end-users through a user 

interface known as SODALITE IDE. Users can use a textual and graphical editor to 

create AADM, as well as a textual editor for all other DSL. Textual editors provide a 

wide range of advanced features that aid in developing the cited models. For 

example, they provide content assistance mechanisms that propose elements at each 

stage of the development process to assist in the development of correct 

implementation scripts not only syntactically but also semantically. They also 

provide syntactic and semantic validation mechanisms, which alert the user about 

code errors and prevent the submission of deployment models with faulty 

properties.  

However, the IDE depends on other components to serve some of the features and 

function properly. Figure 2.3 depicts a high-level overview of SODALITE 

architecture. SODALITE incorporates an ontology layer that maps the defined 

models into entities of a 3-tier ontology graph, implemented with GraphDB. The 

Reasoning Engine interacts with the ontology layer and performs logic-based 

inference, presenting the extracted information to the IDE through a RESTFUL API. 

The Blueprint Builder is in charge of generating concrete TOSCA artifacts from 

submitted AADM, interacting with the Optimizer taking into account associated 

Optimization Models, while the Orchestrator deploys the generated blueprint and 

manages the lifecycle of the application. Finally, the Image Builder creates runtime 

images that are stored in the image registry, and the Platform Discovery assists REs 

in the definition of node types by collecting information for the underlying 

infrastructure environment such as HPC or OpenStack. 

2.3 Research Gaps and Contribution 

This chapter introduced a plethora of IaC tools for resource provisioning and 

configuration management. Furthermore, we investigated cutting-edge research 

projects aimed at facilitating IaC adoption. At this point, it is critical to report where 

our contribution lies in relation to these research efforts and tools by making some 

observations. The research projects under consideration seek to address two 

significant issues in the field of IaC: the large number of tools and the enhancement 

of support of cloud applications that exploit specific programming paradigms. 

In the first case, the large number of IaC tools with varying structures, syntax, and 

properties, combined with the lack of a dominant tool on the market, make selecting 

the appropriate one, time-consuming with ambiguous outcomes. To tackle this 

challenge, research projects like ARGON, DICE, and PIACERE aim to add 

abstraction layers to selected IaC languages (TOSCA, Ansible, Chef) in order to 

remove specific technical details, reduce the learning curve for different languages, 
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and lessen the effort required when a developer migrates the same script between 

languages. In this way, the developer only needs to write one abstract IaC script, and 

the framework will translate it into concrete IaC code, increasing flexibility. 

However, despite the simplicity that the abstraction layers offer to the users, one 

significant weakness is the limitations of the provided translation mechanisms 

concerning the supported target languages. Moreover, the abstraction layers hide 

some language-specific details from the resulted IaC script, reducing the 

expressiveness of the tool. Such an example can be the usage of Ansible modules that 

are not supported by the translation mechanisms and therefore are not included in 

the final, concrete, Ansible script. 

Regarding the second issue, some research projects, such as DICE and MELODIC, 

focus on a specific set of infrastructure resources (e.g., FaaS) and a specific phase of 

the lifecycle of the IaC (provisioning, deployment, configuration). As a result, users 

have to exploit external tools in order to automate all the steps of the deployment 

procedure of an application and different tools for different kinds of applications. For 

example, in the case of MELODIC, the user has to develop with an external editor the 

implementation scripts that are necessary for the realization of the defined resources. 

Alternatively, in the case of DICE, the supported set of infrastructure resources is 

limited to those related to popular Big Data frameworks. 

As we can conclude, numerous tools, languages, and frameworks focus on resolving 

a specific issue while failing to provide an end-to-end solution for various types of 

applications. Thus, in many cases, users must employ multiple tools to complete the 

general task of properly deploying a relatively complex application across 

heterogeneous resources and ensure the expressiveness of the deployment model. To 

address this challenge, the SODALITE project was created to provide a method and 

tools to make users' lives easier. SODALITE focuses on assisting users in the creation 

of TOSCA artifacts that define the overall structure of an application from a 

deployment standpoint. This approach, however, is insufficient to automate the 

deployment tasks from start to finish entirely. The reason is the assumption that the 

implementation scripts used to realize the defined components were written outside 

of the SODALITE framework and related to the Resources and Application 

Deployment models in an implicit way. 

Our work aims to fill this gap by complementing the work done in [50]. We enhance 

the existed development environment with features that assists users in writing 

Ansible scripts and guides them in relating such scripts to other parts of the 

deployment specification, such as resource provisioning, thereby facilitating end-to-

end modeling of a cloud application from the definition of each deployment 

topology characteristic to the implementation scripts that realize its management and 
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deployment operations. The main goal is to create a hub where various information 

sources can be brought together, and pre-existing elements can be reused (Ansible 

collections, Ansible modules, Ansible roles, TOSCA models). Users can also utilize 

the provided validation and defect prediction mechanisms to ensure the correctness 

and quality of the Ansible scripts. 

In comparison to state-of-the-art, we are aware of no other tool on the market that 

provides all these features in one place and assists users in such a wide range of 

aspects. These features enable the end-users to reduce their development effort, thus 

allowing them to use their time and resources in other activities and saving costs. 
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3. Problem Definition 

This chapter presents the thesis' objectives, explaining the problems we attempt to 

solve and providing a general idea of the proposed solutions without delving into 

technical details. Section 3.1 introduces our work's main goal and breaks it down into 

smaller, more concrete objectives. Section 3.2 provides an overview of the Ansible 

editor's initial version, while Section 3.3 discusses the TOSCA and Ansible 

integration issue in the context of the Ansible editor. Section 3.4 describes how to 

assist users in selecting the appropriate Ansible content, and Section 3.5 provides a 

preview of the new features we will implement. 

3.1 Main Goal 

This thesis aims to support the adoption of the IaC paradigm as a DevOps practice 

by bringing together two popular IaC tools, TOSCA and Ansible, to facilitate the 

writing of IaC code and increase practitioner productivity. In addition, modern 

development environments, such as IntelliJ [51] and VisualStudio [52], serve as 

inspiration for our work because they provide advanced features to developers such 

as code completion, language support, integrated plugins, etc. 

Our work will be done within the context of the SODALITE IDE and will extend the 

functionality and capabilities of the already implemented Ansible editor, which laid 

the groundwork for an innovative and supportive IaC development environment. As 

described in Chapter 2, SODALITE allows users to model TOSCA node types and 

include Ansible scripts that implement each node type's various deployment and 

management operations. However, the RE had to use an external editor to write the 

necessary Ansible script before the Ansible editor was released [50]. As a result, 

incorporating this editor into SODALITE added significant value and allowed for a 

more tightly coupled relationship between these two powerful tools. 

Having the current Ansible editor as a starting point, we aim to enrich its capabilities 

and facilitate the end-to-end modeling of a cloud application, from the definition of 

each characteristic regarding the deployment topology, to the implementation scripts 
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that realize its management and deployment operations. To accomplish this task, we 

divided it into four smaller objectives: 

1.  Facilitate the combination of TOSCA and Ansible further and provide the 

necessary environment for the seamless integration of these two IaC tools. 

2.  Extend the features of the already implemented Ansible editor and make 

meaningful changes to Ansible DSL that will enhance the user's 

experience. 

3.  Integrate Ansible content from various resources and repositories into 

Ansible editor. 

4.  Assess the quality of Ansible content and create a meaningful subset that 

will bring value to the SODALITE framework in a secure and quality way. 

3.2 Ansible editor overview 

The current Ansible editor incorporates a content assistant component that provides 

valuable visual suggestions to the end-user while developing an abstract Ansible 

model. More specifically, it supports the following features: 

• Syntax errors identification: The Ansible editor can detect syntax errors 

made by the user, such as misspelling a keyword or using the wrong 

variable name, and triggers a detection mechanism to notify the user of 

the errors by underlining the corresponding text in red. 

• Keywords' meaning: The addition of a new level of abstraction in 

comparison to Ansible requires Ansible editor users to learn and 

understand the syntactical and semantic differences between the two 

languages. To aid in this process, the Ansible editor displays clear 

indications for each keyword and explains the logical meaning of each 

keyword option and the attributes that can be defined in it in a small 

window. 

• Declared variables suggestions: On numerous occasions, the user must 

refer to a variable that holds a specific value, which must be used at 

another point in the code. In this case, the user must traverse the entire 

text to identify the appropriate variable to be referenced, which may 

result in errors and time waste, especially if the code is long and complex. 

To make this process easier, the Ansible editor suggests available 

variables that can be referenced directly and displays the type of variable 

as well as its name identifier. 

• Suggest information from local Resource Model: As we described in 

chapter 2, a TOSCA operation belongs to a TOSCA interface, which in 

turn is contained inside a TOSCA node type. Each abstract Ansible model 
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aims to implement the logic behind a TOSCA operation and perform the 

necessary tasks to deploy or configure the corresponding node type. Still, 

the Ansible model may require some information as inputs from the 

corresponding RM, which can come either from an interface or from an 

operation. For this reason, the Ansible editor allows users to reference 

these inputs from the locally connected RM and exploit them as if they 

were variables declared in the Ansible model. 

The Scope Provider is another critical component of the Ansible editor. This 

component provides hyperlinking, a feature that allows you to navigate between 

references. For example, if a user declares an entity of any type in the Ansible model 

(defined variable, registered variable, handler, topic, 'fact set' variable) and then 

refers to it elsewhere in the code, he/she can directly jump to the corresponding 

definition of the entity using hyperlinking. Furthermore, it supports cross-references 

between entities from different models. In SODALITE, this means that an Ansible 

model can refer to elements contained within a local RM. Hyperlinking is especially 

useful because the user has direct access to all the entities and files associated with an 

Ansible model and does not have to waste time searching for the location of the 

corresponding file or the definition of the entity within the code, primarily when the 

code extends in hundreds of lines. 

One of the most critical features of the Ansible editor is the generation of concrete 

Ansible playbooks from an abstract Ansible model. A component called Generator 

performs the necessary steps by taking an abstract syntax tree (AST) as input and 

generating concrete Ansible playbooks ready for deployment in the orchestrator. The 

abstract syntax tree represents the Ansible model's abstract syntactic structure and is 

generated during parsing, storing it in memory for later processing. The Generator 

component can process the AST to create valid, concrete Ansible playbooks, which 

can be included in the RMs. The user defines the necessary information for 

generating concrete Ansible scripts within the abstract Ansible model in a self-

contained manner, which means that the Generator can produce valid playbooks 

without the need to retrieve information from other resources, greatly simplifying 

the entire procedure. 

3.3 TOSCA and Ansible integration 

The integration of Ansible and TOSCA is one of the main aspects of this project and 

one of the main features of the Ansible editor. Currently, the Ansible editor supports 

suggestions and cross-references between local RM and Ansible models, allowing the 

user to refer to inputs defined by a TOSCA interface or operation. However, this 

approach only supports RM stored in the developer's file system, which may be a 
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problem when different people develop a RM and its implementation scripts 

simultaneously. For example, in Figure 3.2, the developer has imported the node 

type sodalite.nodes.AWS.Keypair into the Ansible model from a local Resource Model. 

In order to use this Resource Model file from different developers, it is necessary to 

distribute it via external communication channels, adding overhead to the 

development procedure. With this in mind, we must use every available tool at our 

disposal to facilitate the development process. As a result, we thought it would be 

beneficial to link SODALITE's Knowledge Base with the Ansible editor. In this way, 

Ansible developers will have direct access to TOSCA files stored in KB (Figure 3.1) 

and will be able to reference information without downloading these files. 

Furthermore, distributing the same file among different developers may result in 

deviations from the original version, impacting the developed Ansible scripts. Thus, 

referring to the same RM through a centralized knowledge base eliminates this risk 

and ensures consistency within the same group of practitioners. 

 

Figure 3.1: Content of the Knowledge Base 
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Figure 3.2: Ansible Model importing a node type from a local RM 

Along with the definition of a RM, the RE must include an implementation script for 

each defined deployment or management operation. To accomplish this, the RE can 

either use an Ansible script written with an external editor or an Ansible script 

generated from an abstract Ansible model defined with the Ansible editor of 

SODALITE. Nonetheless, suppose the RM contains many node types and operations, 

including all of the different Ansible files in the RM. In that case, it can be quite an 

error-prone and time-consuming task that can result in unexpected behavior at 

runtime. For this reason, it would be helpful to provide some guidelines to the end-

user to create a clear picture of what the next step would be and simplify the 

management of the Ansible scripts for each operation. For example, the Ansible 

editor can provide Ansible script templates for each operation as a starting point for 

further development, indicating to the user that extending these scripts should be the 

next development step. Furthermore, grouping Ansible files (Ansible abstract 

models, Ansible scripts) by interface and node type matches Ansible scripts to 

specific TOSCA operations, establishing the prerequisites for a structured 

development environment. These types of mechanisms will be discussed in greater 

detail in Chapter 4. 

In this context, it is essential to maintain the portability of RM stored in KB between 

different users. A RE includes the required Ansible playbooks within a RM by setting 

their path in the local file system. With this approach, when a RM is stored in the KB, 

it depends on the local file system, where the RM was developed (Figure 3.3). For 

instance, if a RE writes a RM that includes multiple Ansible scripts, then when 

another user retrieves that specific RM from the KB, he/she will have to manually 
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replace all the paths that refer to each Ansible script and are dedicated to another 

folder structure, wasting much time in unnecessary errors. As we can see from the 

example in Figure 3.3, there is an error for the delete operation’s implementation 

script due to its dependency to a local file system that does not exist in the current 

system. Therefore, we must devise a mechanism to ensure interoperability among 

machines that download the same RM. This change will benefit not only experienced 

SODALITE users but also newcomers because when they download RMs from KB to 

familiarise themselves with the environment and the TOSCA models, they will not 

have to deal with errors right away, which otherwise will make their first experience 

with the framework unpleasant. Another thing that limits the portability of the RMs 

is that when a user retrieves an RM from the KB, the related Ansible files are not 

accessible. Thus, the user must find these Ansible files through other channels, if this 

is possible, creating problems to the development procedure. 

 

Figure 3.3: Error after retrieve RM from KB 

3.4 Ansible Content 

Ansible modules and roles are two of the essential aspects of Ansible. They are 

primarily reusable Ansible content that allows the distribution of execution logic 

among different users. A module is a discrete unit of code that performs a specific 

operation, whereas a role is a grouping component with a set of tasks that reuse 
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common configuration steps. Furthermore, in Ansible 2.8, a new concept called 

'Ansible collection' was introduced, a package of Ansible content that can include 

playbooks, roles, modules, and plugins. These elements enable the user to write 

playbooks in a clean and readable manner, avoiding the need to rewrite code for 

tasks that have already been implemented. 

Ansible collections and roles can be shared among users via Ansible Galaxy, the 

official Ansible content hub. Users can publish their Ansible artifacts in Ansible 

Galaxy and provide documentation for them, in which the purpose and functionality 

of each artifact, as well as its requirements, are described. However, as Ansible has 

grown in popularity, the number of available collections and roles stored in Ansible 

Galaxy has increased significantly, and many of them overlap in terms of purpose 

and functionality. This complicates the selection of the appropriate artifact because 

the developer does not know which one is best suited to his/her playbook. Therefore, 

the documentation quality is a good strategy [53] for selecting the right Ansible 

artifact, which must include a quickstart tutorial for installation as well as a detailed 

reference guide for the contained elements, such as modules, plugins, etc. Beyond 

documentation, the developer should look at the Ansible artifact's issue tracker to see 

if the creator maintains the artifact regularly and fixes old issues and bugs that users 

report. Another criterion is the rating given to the artifact by other users regarding 

code quality, community score, and the number of downloads. When these metrics 

are high, we can assume that the Ansible artifact is trustworthy and serves its 

intended purpose, as described in the documentation. 

As we can see, the selection procedure is time-consuming, and even after taking into 

account all of these criteria, the outcome may not be as desired. As a result, we 

evaluated the content in Ansible Galaxy and chose a valid subset of it to be used in 

Ansible editor, which we believe will meet the needs of SODALITE users and 

simplify the selection of the appropriate Ansible module or Ansible role. Our first 

criterion for selection is security. After submitting the corresponding TOSCA file, 

SODALITE executes the Ansible playbooks with xOpera orchestrator, as described in 

Chapter 2. Keeping this in mind, we must ensure that the running playbooks and, as 

a result, the imported Ansible content from Ansible Galaxy do not pose any security 

risks to the SODALITE infrastructure. 

3.5 Ansible DSL and editor extensions 

The Ansible editor, as described in Section 3.2, offers a wide range of features aimed 

at making it easier to develop Ansible models and thus create Ansible scripts with a 

lesser amount of effort. Syntax validation, autocompletion, content assistance, and 

hyperlinking are vital features that bring innovation and take the editor a step 
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further than other Ansible editors such as Atom. In this context, the Ansible editor 

focuses primarily on Ansible's syntactical concepts and provides the necessary 

guidelines for writing syntactically correct Ansible scripts without considering the 

semantics of each Ansible entity. In addition, the collaborative nature of Ansible in 

terms of content has resulted in the development of a large volume of Ansible 

collections, modules, and roles from various developers, which can be shared among 

the community, as described in section 3.4. At this point, we believe there is plenty of 

room for improvement in order to bring this content closer to developers when 

writing Ansible models, providing mechanisms that will exploit this information, 

and bringing advanced features to the editor. 

The new features that we will implement will give users access to information from 

various repositories, allow them to search for relevant Ansible content, and receive 

continuous feedback on their choices. In addition, the suggestions and validation 

mechanisms presented to the end-user will aid in understanding the purpose of the 

various Ansible collections, modules, and roles, as well as their functionality and 

how to use them correctly. 

To extend the capabilities of the Ansible editor, we will use the Xtext framework [54], 

which provides the necessary environment for implementing the desired features, 

such as the validator component, which is in charge of detecting errors in an Ansible 

model and coloring the corresponding area in red. 
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4. Solution Design 

In this chapter, we discuss the design decisions we made to extend the framework's 

functionality, as well as the features and components we introduced within the 

SODALITE ecosystem to improve the user experience. We also present some of our 

work's implementation details. Section 4.1 provides a general overview of the 

Ansible components and presents the project's organization. Section 4.2 describes 

how TOSCA and Ansible are integrated into the context of SODALITE, whereas 

Section 4.3 explains how Ansible content was collected and organized into a 

structured MongoDB. Finally, Section 4.4 discusses the Ansible DSL and Ansible 

editor additions and extensions. 

4.1 Ansible Editor Architecture and Code 

Organization 

4.1.1 Xtext framework 

Eclipse Xtext [54] is a free and open-source framework for creating programming 

languages and domain-specific languages. It provides all the required components 

for a complete language infrastructure, including a serializer, linker, code formatter, 

compiler, interpreter, and syntax checker. Furthermore, through various 

functionalities, Xtext provides the ability to create an editor for the designed 

language, which the Eclipse IDE supports. Syntax highlighting, suggestions, scope 

providers, wizards, and code generators are among the features available.  

One of the most critical characteristics of Xtext is the integration with EMF and 

Eclipse. For each defined piece of code written with the DSL, Xtext generates an EMF 

model, which abstracts from the syntactic details of the DSL and is used later on by 

Xtext for validation, compilation, or interpretation. As a result, the textual model that 

the user defines is transformed and maintained by Xtext as an Abstract Syntax Tree 

(AST). The generated AST conforms to a specific metamodel inferred from the DSL's 

grammar defined in a language called Ecore. In addition, EMF contains a code 
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generation mechanism that transforms each entity in the Ecore metamodel into a 

concrete Java class, whereas each entity in the metamodel results from a grammar-

defined production rule. Therefore, each element of the EMF model is an instance of 

one of the generated Java classes that implement Ecore's primary interface, called 

EObject.  

Beyond the tools that allow the definition of a DSL, Xtext offers, through the 

integration with Eclipse, the ability to create powerful editors for the defined DSL 

with advanced features such as validation,auto-completion options, syntax checking, 

quick-fixes, hyperlinking, etc. Thus, developers are relieved of creating these features 

from scratch for an editor that supports the development of textual models in the 

provided DSL.  

SODALITE IDE takes advantage of all these features and offers a collection of Xtext 

textual editors for different DSLs, aiming to model infrastructure resources, 

application deployment topologies, application optimization, and operation 

implementations [55]. 

4.1.2 Architecture 

 

Figure 4.1: Architecture 
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Figure 4.1 highlights the elements of the Ansible editor and its interaction with the 

neighbor components. The Ansible editor is integrated into the SODALITE IDE as an 

Eclipse Plugin built with Xtext and uses Ansible DSL, which allows the users to 

create abstract Ansible playbooks that are then translated into concrete Ansible 

scripts. This Ansible Eclipse Plugin is based on the Resource Model Eclipse Plugin, 

which includes a DSL and a user interface for defining TOSCA reusable entities and 

their details such as attributes, properties, provided capabilities, and requirements. 

Ansible editor provides various services by interacting with four different software 

components: Semantic Reasoner, Knowledge Base, the MongoDB database, and the 

Ansible defect predictor, either implicitly or explicitly. 

The semantic Knowledge Base is a semantic repository containing structured data 

from various domain aspects of SODALITE. SODALITE users (Application Ops 

Experts, Resource Model Experts, Quality Experts) can store and retrieve domain 

models from the KB. These are internally represented as RDF-based knowledge 

graphs. The Semantic Reasoner, an intermediary between the Knowledge Base and 

the SODALITE IDE, provides access to this knowledge. It consists of two 

components: the Semantic Reasoning Engine and the Semantic Population Engine. 

The former communicates with the Knowledge Base to retrieve information, whereas 

the latter populates the Knowledge Base with TOSCA entities defined by end-users. 

In addition, SODALITE IDE can communicate with the Semantic Reasoner via a 

REST API called Semantic Reasoner API, which allows it to import and retrieve data 

from the Knowledge Base and use its intelligent inference services. 

The Ansible editor interacts with the Semantic Reasoner API to retrieve information 

about Resource Models stored in the Knowledge Base. These can be the various 

Resource Models stored in KB, the TOSCA interfaces and operations defined within 

a specific Resource model, and the data that each interface and operation inputs to 

the appropriate implementation script to perform the necessary tasks. The Ansible 

editor presents such information to the end-user to allow for the coherent and 

consistent development of Ansible models within the context of the chosen resource 

type and TOSCA operation. 

The MongoDB database delivers Ansible content to Ansible editor end-users, 

including Ansible collections, modules, and roles gathered from various repositories 

in the Ansible Galaxy. To facilitate the development of an Ansible model, the Ansible 

editor communicates with the MongoDB database endpoint and serves the collected 

Ansible content to the end-user through suggestion and validation mechanisms. 

Finally, the Ansible defect predictor is a module that identifies code smells and bugs 

in Ansible scripts and alerts the user to potential problems in their code. The Ansible 

editor communicates with the defect predictor via the Defect Predictor API, where it 
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sends Ansible scripts for analysis and receives the results, which then displays to the 

user via the user interface. 

4.1.3 Implementation Structure 

This subsection presents the structure of different projects related to Ansible DSL 

within SODALITE IDE and explains the changes and extensions we have made 

compared to the initial version. 

The SODALITE IDE contains many Xtext projects that implement different DSL and 

their corresponding user interfaces in order to fulfill the requirements and purposes 

of the SODALITE project. In this context, our work mainly focuses on the projects 

related to Ansible and, more specifically, on three distinct components: the Ansible 

DSL, the Ansible editor, and the Resource Model editor. Our goal is to build upon 

the already implemented projects and provide meaningful extensions and features 

that will facilitate the development procedure of Ansible scripts. 

In order to provide users with a better understanding of how the project is structured 

and where our contribution resides, we present the changes and additions we made 

in the Ansible-related projects of the SODALITE IDE and briefly explain the purpose 

for each one. 

• org.sodalite.dsl.ansible: 

o AnsibleDsl.xtext: We extended the grammar of the Ansible DSL to 

support Ansible concepts such as namespaces, collections, 

modules, and role names not as strings only but as entities. 

o AnsibleDslGenerator: We changed the generation procedure of the 

concrete Ansible playbooks, which are now stored in the same 

folder as the corresponding, abstract Ansible model. 

o AnsibleHelper: We created a collection of reusable functions that 

are valuable for the functionality of the Ansible editor. 

o AnsibleDslValidator: We implemented many different validation 

mechanisms that alarm the user for errors in the abstract Ansible 

model. 

• org.sodalite.dsl.ansible.ui: 

o AnsibleDslProposalProvider.xtend: We introduced multiple 

content proposal features that aim to facilitate the development of 

an Ansible model and provide clear guidelines to the users. 

• org.sodalite.dsl.RM: 

o RMValidator.xtend: We added a validation mechanism to verify 

the paths of imported Ansible scripts. 
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o RMGenerator.xtend: We extended this component to support the 

generation of Ansible models and Ansible scripts for each 

specified operation within the Resource Model. 

• org.sodalite.dsl.RM.ui: 

o RMProposalProvider.xtend: We introduced suggestion 

mechanisms that facilitate the import of Ansible scripts into a 

Resource Model. 

o RMQuickfixProvider.xtend: We added a quickfix mechanism that 

corrects potential errors in the path of the imported Ansible 

scripts. 

o GenerationHandler.java: We added the option to generate Ansible 

files from a RM. 

o RMBackendProxy.java: This component was extended to 

implement the backend services that allow the generation of 

Ansible files from a RM. 

o RMHelper.java: We introduced some reusable functions required 

when importing Ansible scripts into a Resource Model. 

• org.sodalite.dsl.kb_reasoner_client: 

o InterfaceDefinitionJsonDeserializer.java: We extended this 

component to deserialize all the information stored in the 

Knowledge Base related to a specific TOSCA node type, such as 

interface and operation data. 

• org.sodalite.dsl.preferences: 

o SodaliteBackendProxy.java: We connected the IDE with the 

MongoDB, which contains Ansible Galaxy content, and the 

Ansible defect predictor, which identifies ansible code smells in 

the Ansible model. 

 

More details about the briefly described will be presented in the following sections of 

this chapter. 

4.2 TOSCA and Ansible integration 

This section will go over the various mechanisms that we put in place to make it 

easier to develop Ansible models in the context of a Resource Model. The extensions 

we've introduced are integrated into the RM editor and the Ansible editor, and they 

allow for a more efficient exchange of information between an Ansible model and the 

related Resource Model. 

As we described in Chapter 3, we mainly focus on three different aspects: 
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• Connection of Ansible editor with SODALITE KB: The goal of developing 

an Ansible model is to implement a TOSCA operation defined in a 

Resource model. However, during the development process, the user can 

only refer to the information contained in local Resource Models, with no 

access to models stored in SODALITE KB. As a result, the Ansible editor 

should communicate with the KB in some way and provide appropriate 

mechanisms for users to interact with its contents. 

• Guided creation of abstract Ansible models: When a RE creates a Resource 

Model, it must associate each defined TOSCA operation with an 

implementation script containing the necessary business logic. However, 

managing all of the related implementation scripts in the case of a 

complex Resource Model with a large number of node types, interfaces, 

and operations is a difficult task. As a result, we believe it would be 

beneficial to enhance the development environment with features that 

help users organize and implement abstract Ansible models and the 

corresponding concrete scripts. 

• Portability of Resource Models between different users of SODALITE: The 

association of a TOSCA operation with an Ansible script is achieved by 

defining the absolute path of the script in the local file system. However, 

this approach makes sharing Resource Models between different users a 

difficult task because each user who downloads a Resource Model from 

the KB must change all absolute paths that are incompatible with his/her 

local file system. Furthermore, when a user retrieves a RM from the KB, 

he/she does not have access to the Ansible files associated with it, which 

limits the portability, mainly when multiple practitioners develop the 

same Resource Model. For this reason, we present a mechanism that 

improves the portability of these models, allowing for the seamless 

exchange of Resource Models. 

In the following subsections, we will detail the implemented features. 
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Figure 4.2: Resource Model example 

4.2.1 Guided creation of abstract Ansible models 

The Resource Model editor has been enhanced to provide users with clear guidelines 

on which Ansible files should be created. To achieve this, the Resource Model editor 

creates a specific directory structure, where the implementation scripts are organized 

in a structured way, easing the management of different Ansible files, within the 

same project. 

For each specified operation within the Resource model, the user can generate the 

abstract Ansible model and the corresponding Ansible script for further 

development. Initially, these files do not contain any specific content, and their 

purpose is to provide clear indications of which Ansible models should be created 

and for which operations. The Ansible files are generated in the 'Ansible' folder and 

follow the folder structure depicted in Figure 4.3a. A folder is created for each 

defined node type, and a folder with the name of each TOSCA interface is generated 

in the appropriate node type folder. Finally, for each TOSCA operation, a .ans file 

(Ansible model) and the corresponding .yaml file are generated and placed in the 

proper interface folder. 
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Figure 4.2 shows an example of a Resource Model named exampleRM.rm, and Figure 

4.3: Folder organization shows the generated folder structure. We have two defined 

node types in the provided Resource Model: sodalite.nodes.AWS.VM and 

sodalite.nodes.AWS.SecurityRules. For each node type, two folders are generated with 

the same names (Figure 4.3b). Furthermore, each one of the node types contains an 

interface with the name Standard, and in each node type folder, another folder with 

the name Standard is generated. Every folder related to an interface contains the 

Ansible files for the operations that belong to that specific interface. In this case, for 

the node type sodalite.nodes.AWS.VM two different files are generated for the 

operation create(create.ans, create.yaml) and stored on the folder Standard, the parent 

interface of the operation. The same also holds for the node type 

sodalite.nodes.AWS.SecurityRule where two files related to the operation 

delete(delete.ans, delete.yaml) are generated and stored at the corresponding folder 

Standard. In the example above, both node types happened to have an interface with 

the same name, the name Standard. 

We want to emphasize that generating Ansible files through the RM editor is not 

required. The user can use Ansible scripts written with an external editor without 

first developing the abstract Ansible model (i.e. .ans file). In this way, the RM editor 

maintains transparency regarding the origin of the implementation scripts. Section 

4.2.3 will go into greater detail. 

 

 

 

 

(a) Directory structure  

 

 

(b) Example directory structure 

Figure 4.3: Folder organization 
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4.2.2 Connection of Ansible editor with SODALITE KB 

The Ansible editor has been extended to support the communication and 

information exchange between the provided user interface and Knowledge Base 

content. Through this interaction, the user has access to the contents of the 

Knowledge Base and can refer to information gathered from the stored Resource 

Models. 

In the first version of the Ansible editor [50], the user creates an Ansible model in the 

context of a local Resource Model, specifically a TOSCA operation, and can refer to 

its inputs as declared variables within the Ansible model. We expanded on this 

concept by developing mechanisms that enable the development of an Ansible model 

within the context of a Resource Model stored in KB. As a result of these 

mechanisms, the user can now refer to the inputs defined by the selected TOSCA 

operation as well as the inputs defined within the Ansible interface that contains the 

selected TOSCA operation. The presentation of this information is performed by the 

content assistant component that provides visual suggestions by using the 

“CTRL+Space'' combination. 

Figure 4.4 depicts how the Ansible editor displays the resource types in the 

Knowledge Base. Each resource type belongs to a distinct namespace, which aids in 

the organization of the Knowledge Base's various Resource Models. The Ansible 

editor preserves this organizational structure by providing the full list of resource 

types, organized by namespace, to assist the user in making the best choice. 

 

Figure 4.4: Select a resource type from a Resource Model stored in KB 
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Following the selection of a node type, the user can select one of the interfaces 

contained within it, as shown in Figure 4.5 

 

Figure 4.5: Select interface 

The same holds for operation selection, where the user can choose between the 

operations that belong to the selected interface, as shown in Figure 4.6. 

 

Figure 4.6: Select operation 

At this point, we would like to emphasize why, in comparison to the first version of 

the Ansible editor, we added the 'interface' option when selecting the appropriate 

TOSCA operation. Previously, when a user chose a node type with many interfaces 

and operations, the Ansible editor generated a large pool of suggested operations 

from all the contained interfaces. In this case, a large pool of proposals may confuse 

the user and complicate the selection process. As a result, filtering the proposed 

operations by interface simplifies the decision and reduces the time required to select 

the appropriate operation. 

After selecting the interface and the included operation, the corresponding interface 

and operation inputs can be used as variable references within the Ansible model. 
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Figure 4.7 shows an example where the user selects an operation input as a value for 

an attribute. 

 

Figure 4.7: Select operation input as variable 

4.2.3 Portability of Resource Models 

As described in the section 4.2.1, the RM editor creates a specific directory structure 

in which the various Ansible files of a RM are stored. We take advantage of this 

structure to improve the portability of Resource Models between users and enable 

the seamless exchange of Resource Models with all their related Ansible files 

together. 

We implement a feature that allows users to bind a TOSCA operation defined in an 

RM with an Ansible script by using the script's relative path to the RM's location. 

Thus, when a RE uploads an RM to the KB, the paths of the implementation scripts 

will be relative to the RM's location, with no reliance on any local file system. When a 

user retrieves an RM from the KB, the IDE will ask if he/she wants to retrieve all the 

related Ansible files. If the answer is yes, the IDE will create the same directory 

structure used during the RM's development, keeping the defined relative paths 

consistent. Otherwise, only the RM will be stored locally. Figure 4.8 depicts an 

example where the developer binds the TOSCA operation with Ansible scripts using 

their relative paths. 
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Figure 4.8: Resource Model example 

When a user retrieves the Resource Model in Figure 4.2 from SODALITE Knowledge 

Base, the IDE will recreate the directory structure shown in Figure 4.3b. Therefore, 

the relative paths indicating the location of Ansible scripts remain consistent across 

all machines that download the RM. 

Suppose now the user selects an implementation script that is not in the specified 

directory structure. In that case, the IDE copies it into the appropriate folder and 

renames it with the name of the related TOSCA operation. In this manner, the 

Ansible script is always encountered in the specified directory structure, and we 

avoid inserting inconsistencies within the RM. For example, assume a user has an 

implementation script named script.yaml that implements the business logic of the 

create operation in figure 4.8 and is located in the desktop folder. When the user 

selects this file, the IDE copies it to the following directory /ExampleRM-Ansible 

files/sodalite.nodes.AWS.VM/Standard/ and renames it as create.yaml. 
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4.3 Supporting the reuse of Ansible elements 

This section describes how we collected Ansible content from various sources and 

how we formulated a database that structures the collected information. Moreover, 

we present the features we added to the Ansible editor that exploits the Ansible 

content as well as the main components that provide the new features, which are the 

Xtext framework's Proposal Provider and Validator and the Ansible Defect Predictor 

as an external component. 

4.3.1 Ansible content 

One of the main contributions of our work is the integrated use of Ansible content, 

such as Ansible collections, modules, and roles within the SODALITE Ansible editor. 

As described in Section 3.4, the procedure for selecting the appropriate pre-packaged 

Ansible unit from Ansible Galaxy is not simple, and the developer must consider a 

number of factors. As a result, in order to mitigate these issues from the developers' 

standpoint, we established some criteria that can verify that the chosen Ansible 

component guarantees the provided functionality and meets some minimum quality 

standards. The Ansible content was filtered using the following criteria: 

documentation quality, maintenance, popularity, developer satisfaction, and 

security, as we are dealing with reusable units of code developed by verified and 

unverified sources. 

As a first step, we examined the documentation of all the Ansible collections stored 

in Ansible Galaxy and investigated how many of the included modules adhere to the 

official Ansible documentation. The outcome was that 911 modules out of 36882 had 

incomplete documentation or no documentation at all. Furthermore, many of the 

examined collections had few or no downloads, raising concerns about future 

maintenance efforts. Finally, because Ansible Galaxy is a public repository where 

anyone can upload Ansible collections, we were hesitant to include all of the Ansible 

collections that were uploaded for security reasons. 

Taking all of this into account, we decided to select only Ansible collections that are 

related to the official Ansible documentation [16] and are RedHat certified [56]. We 

examined these Ansible collections to check the documentation of the included 

modules and discovered that only 10 modules out of 7211 had minor issues with 

their documentation. Furthermore, they provide a wide range of functionalities to the 

end-user and make up the vast majority of the most popular collections in Ansible 

Galaxy. Finally, the fact that official creators and companies develop them ensures 

that the developed modules are secure and maintained in the future. 
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Regarding the standalone Ansible roles of Ansible Galaxy, we followed a different 

approach. We could not find any certified content from the official Ansible 

documentation or RedHat, so we evaluated the quality of each role based on the 

content score that each role received from users on Ansible Galaxy [57]. The 

weighted average of the community and quality scores is used to calculate the 

content score. The former is based on surveys submitted by users in Ansible Galaxy, 

while the latter is based on automatic validation from the yamllint and ansible-lint 

tools. We chose Ansible roles with a download counter greater than 20000 and a 

content score greater than 4.0. As a result, we can ensure that many users have used 

this role and are satisfied with its function and support. 

Ansible's content is stored in a well-structured MongoDB database, called 

AnsibleDB, and its detailed database schema is depicted in Figure 4.9. The database 

contains two MongoDB collections: Ansible_Galaxy_Collections and 

Standalone_Ansible_Galaxy_Roles. Ansible_Galaxy_Collections contains information 

about Ansible collections, including modules and roles, as well as the taking 

parameters and their details for each module, such as type, description, available 

value choices, and default value. Standalone_Ansible_Galaxy_Roles is a MongoDB 

collection that contains information about the standalone roles, and for each role, the 

database includes details such as the number of downloads, the user satisfaction 

score, the role description, and how a user can refer to each role (role name, role 

namespace). Aside from the contents of MongoDB, one critical aspect is the 

database's performance and how it handles incoming requests. In this context, we 

must consider how the Xtext framework provides validation and static analysis to 

the DSL. The static analysis provided can be used in three ways: whenever the file is 

modified, when the file is saved, or when the user explicitly validates the file from 

the menu option. The first option, in our opinion, is the most suitable because it 

allows for real-time validation of the user's inputs. This method, however, 

necessitates a large number of database requests each time a user makes a change to 

a local file, which can cause problems if multiple people use the Ansible editor 

simultaneously. To address this issue, we decided to provide an automated way that 

deploys the MongoDB database locally within a container, considering its small size. 

As a result, the database is relieved of managing a large number of queries, 

increasing overall system performance and the latency of the validation mechanisms. 
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Figure 4.9: Database schema 

4.3.2 Proposal Provider 

The Proposal provider is a component offered by the Xtext framework that provides 

visual suggestions to the user while writing code by pressing 'CTRL+Space'. More 

specifically, we extended the Proposal Provider to enable users to navigate the 

Ansible content stored in the related MongoDB database, named AnsibleDB. The 

newly introduced features are the following: 

• Import Ansible collections 

When a user needs to import a specific Ansible collection, the Proposal 

Provider was extended to suggest namespaces and collection names. 

Users can navigate the list of available namespaces (Figure 4.10), and after 

selecting one, the available collection list is filtered, and the user can select 

one of the collections contained within the chosen namespace (Figure 

4.11). 

 

Figure 4.10: Select Ansible namespace 
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Figure 4.11: Select Ansible collection 

• Module selection 

A significant addition to the current arsenal of features is the suggestion 

of modules. The majority of modules are hosted in Ansible collections, 

and so we thought it would be reasonable to extend the Proposal Provider 

in a way that suggests modules from the pool of the imported collections 

(Figure 4.12). Furthermore, the users can refer to Ansible modules 

through its fully qualified name by determining its three parts: the 

namespace, the collection, and the module's name. The Ansible editor 

provides suggestions for each part of the fully qualified name (Figure 

4.13), filtering the options based on the previously determined part. 

 

Figure 4.12: Select module from the pool of the imported collections 
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Figure 4.13: Select module through its fully qualified name 

• Parameters 

The procedure for defining parameters to be passed in a module is time-

consuming because the user must constantly check the module's 

documentation for the required parameters as well as the type and 

allowed values for each parameter. Moreover, some complex parameters 

necessitate the definition of a set of subparameters in order for the module 

to function properly. Because all of this information is stored in the 

MongoDB database, we gave users access to it through the suggestions 

provided by the Proposal Provider. As a result, the Ansible editor 

provides content assistance for each Ansible module's parameters, 

emphasizing the required ones (Figure 4.14) and the default value, if such 

exists (Figure 4.15). It also informs the user about inserting values for each 

parameter by displaying the value type that each parameter expects and 

presenting the acceptable values (Figure 4.17) and the official description 

that helps the user understand its purpose. Finally, it enumerates the 

possible subparameters that can be defined (Figure 4.16). 

 

Figure 4.14: Select parameter for the chosen module 
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Figure 4.15: Default value of the selected parameter 

 

Figure 4.16: Subparameters for complex parameters 

 

Figure 4.17: Acceptable values of the requested parameter 
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• Role selection 

Developers widely use roles in order to automate a set of tasks and make 

it reusable among the community. Thus, a suggestion mechanism that 

allows developers to select the appropriate Ansible role directly through 

the Ansible editor would be beneficial. For this reason, we took advantage 

of the Ansible Galaxy content and enriched the Proposal Provider with 

role selection suggestion mechanisms. These roles can be part of an 

Ansible collection or stand-alone without being associated with a 

collection. In the first case, the user can choose the desired role from the 

pool created by the imported collections (Figure 4.18) or by defining its 

fully qualified name as in Ansible modules (Figure 4.19), whereas in the 

second case, the user must define the namespace to which the role belongs 

(Figure 4.20) as well as its simple name (Figure 4.21). 

 

Figure 4.18: Select role from the pool of the imported collections 

 

Figure 4.19: Select role belonging to an Ansible collection through its fully 

qualified name 
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Figure 4.20: Select Ansible namespace 

 

Figure 4.21: Select role contained in the chosen Ansible namespace 

4.3.3 Validator 

Aside from proposals, we can use the information stored in the MongoDB database 

for validation and provide the user with real-time feedback on potential errors. The 

validation mechanisms that have been implemented are as follows: 

• Collection and Role support 

For the reasons stated in Section 4.3, SODALITE does not support the 

execution of all Ansible collections and roles. As a result, it is necessary to 

notify the user if an imported collection or role is supported and to use the 

provided suggestion mechanisms to choose the appropriate Ansible 

component (Figure 4.22). 
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Figure 4.22: Unsupported Ansible collection 
 

• Collection and Module name format 

Ansible developers frequently make the mistake of defining an imported 

collectio (Figure 4.23) or module (Figure 4.24) incorrectly, which is 

discovered only after the Ansible playbook is executed. To avoid this, we 

enhanced the Validator to detect these errors and alert the user to correct 

them. 

 

Figure 4.23: Wrong Ansible collection name format 
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Figure 4.24: Wrong Ansible module name format 

• Parameters' type and values 

Checking for parameter values and type correctness is another important 

feature that we introduced. An Ansible playbook may contain a large 

number of different parameters and subparameters, which can be a source 

of multiple errors that developers may not be able to detect. 

An automated validation mechanism is useful for developers and has the 

potential to reduce development costs significantly. As a result, we 

extended the Validator component to determine whether or not the 

inserted value for a parameter is correct. For example, if a user enters an 

integer value into a string parameter, the Ansible editor will highlight the 

parameter and inform the user of the error details (Figure 4.25). 

 

 

Figure 4.25: Wrong value type 

Moreover, some parameters and subparameters accept only specific values as input, 

causing issues during playbook execution even if the developer has inserted the 

same input type. To prevent this, the Ansible editor has been enhanced to check for 

acceptable values and generate an error message that displays all of the appropriate 

values that can be assigned (Figure 4.26). In addition, some modules require 
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mandatory parameters to be passed to be executed. In light of this, we implemented 

a validation mechanism that alerts the user when mandatory parameters and 

subparameters are missing (Figure 4.27,Figure 4.28). Finally, the Ansible editor has 

been expanded to accept only parameters and subparameters valid for the related 

Ansible module (Figure 4.29). 

 

Figure 4.26: Available values to be assigned 

 

Figure 4.27: Missing mandatory parameters 

 

Figure 4.28: Missing mandatory subparameters 
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Figure 4.29: Invalid parameter 

4.3.4 Ansible Defect Predictor 

Ansible scripts can provision and configure development environments and servers 

on a large scale by adhering to software engineering principles and best practices. On 

the other hand, developers frequently violate best practices and introduce code 

smells, negatively impacting maintainability and code quality. To address this issue 

and provide continuous feedback to the user, we connected the Ansible defect 

predictor developed as part of the SODALITE project [58] with the Ansible editor. 

When a user saves an abstract Ansible model, the Ansible editor sends the equivalent 

concrete Ansible script to the Ansible defect predictor, which is deployed in 

SODALITE public testbed for analysis. As a response, the Ansible defect predictor 

analyzes the received Ansible script and returns all detected code smells. Then, the 

identified code smells are presented to the user via the Ansible editor at the level of 

play or task, indicating the existing code smells as well as their type (Figure 4.31). As 

a result, the user can quickly identify 'smelly' pieces of code and refactor the abstract 

Ansible model. 

 

Figure 4.30: Example playbook 
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Figure 4.31: Code smells 
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5. Evaluation 

This chapter aims to present the evaluation procedure of the new version of Ansible 

DSL/Editor, identify how the newly added extensions assist the user in writing 

quality implementation scripts, and compare it with the Atom text editor. First, we 

describe the evaluation objectives of our procedure in Section 5.1. Then, in Section 

5.2, we briefly summarize the evaluation process in the initial version of Ansible DSL 

and Editor, what this evaluation procedure adds to the previous one, how we 

structured the questionnaire, and the purpose of each question, with the work done 

in [50] as a starting point. 

5.1 Evaluation objectives 

As we have seen so far, our work aims to make it easier for users to write Ansible 

blueprints and reuse pre-existing elements like collections, roles, and modules. 

However, it is critical to assess how the new features affect end-users and whether 

they are helpful to the development community. As a result, we need to collect 

information from a group of professionals through an evaluation procedure to assess 

their satisfaction with our system and receive feedback that can be used to improve 

and expand our work in the future. 

Our primary goal during this evaluation procedure is to determine whether or not 

our system actually helps users by measuring some quantitative and qualitative 

metrics and checking if there is an improvement in comparison to the experience a 

user has with the Atom text editor, one of the most popular editors in the 

community. These metrics would provide us with a clear picture of the participants' 

opinions and beliefs after they have used our system as well as Atom and 

experienced all of their features. Furthermore, during this procedure, we would be 

able to record how our system works in real-world scenarios and test for potential 

bugs. Finally, in order to contextualize the collected responses, we would catalog 

participants' attributes such as working experience and current working role. 
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5.2 Evaluation procedure 

The authors of the initial version of the Ansible editor [50] followed a three-step 

evaluation procedure to check the correctness of the Ansible DSL and receive 

feedback from users on the provided Ansible editor. In the first step, code coverage 

tools were used to check the correspondence between the expected generated 

playbooks and the actual generated playbooks, with 98 percent test coverage. The 

authors then tested the expressive power of Ansible DSL to ensure that users can 

develop any Ansible playbook using the Ansible DSL. To accomplish this, they chose 

a large set of Ansible playbooks and wrote the corresponding Ansible models, 

demonstrating that all Ansible playbooks can be written as Ansible models. Finally, 

they compared the Ansible editor with the Atom text editor and created a 

questionnaire where they asked engineering students about their experience using 

the Ansible editor. 

Using this as a starting point, we will concentrate on the final step of this procedure, 

broaden the scope of the questionnaire, and assess how the extensions we have made 

encourage developers to use the Ansible DSL and editor in comparison to the 

solution offered by Atom. 

In order to evaluate our work and check if the defined objectives were met, we 

conducted a survey among seven professionals from various backgrounds. First, we 

asked them to write four Ansible playbooks with varying characteristics using our 

Ansible editor and the Atom text editor's Ansible language plugin, as this editor is 

one of the most widely used for development in the Ansible community. More 

specifically, users created Ansible playbooks for 1) a simple LAMP application, 2) a 

VM on the AWS cloud infrastructure, 3) a Docker container running an Apache 

server, and 4) a MongoDB database. We provided instructions in the form of 

exercises for all the playbooks to help users understand the purpose of each 

playbook. The requested exercises have been designed to enable users to explore all 

the provided features of the Ansible editor. 

The first playbook is simple and introductory to familiarize users with the Ansible 

editor's UI and give them a glimpse of the features available. The second playbook is 

created in the context of a Resource Model to show users how the integration 

between TOSCA models and Ansible works in the Ansible editor and how users can 

use information stored in the Knowledge Base. Finally, the last two playbooks share 

a common goal: to demonstrate the Ansible editor's capabilities in relation to the 

collected Ansible content via suggestion and validation mechanisms in two different 

scenarios. 
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Users developed the requested playbooks in Ansible DSL via the Ansible editor and 

then automatically generated the corresponding Ansible scripts. Then, they 

developed the playbooks in Ansible via the Atom text editor. In this way, the users 

will be able to compare the features of the Ansible editor and Atom and identify the 

different approaches of the two solutions. 

Following that, we asked them to complete a questionnaire designed to investigate 

and document various factors for each editor and provided language gleaned from 

the related literature. Each question is related to a different factor and focuses on the 

user's satisfaction with that aspect. To obtain the necessary feedback from the users, 

we included Likert-scaled questions with a scale of 1 to 5 points, where 1 point 

corresponds to the most negative answer and 5 to the most positive answer, and 

open-ended questions. 

The authors in [59] propose specific factors that measure how valuable a DSL is, as 

well as which characteristics contribute to its success. We used these factors to assess 

users' satisfaction with various aspects of Ansible DSL and the related editor and 

draw conclusions about the utility of the new extensions we implemented compared 

to Atom and Ansible. More specifically, the factors are the following: 

• Expressiveness: The capability of the Ansible DSL to describe the Ansible 

playbooks sufficiently and concretely. 

• Learnability (L): How much effort and time do the developers need to 

learn the new Ansible DSL. 

• Reliability (R): What features does each editor provide to the users to 

make the development procedure less faulty and improve the quality of 

the delivered code. 

• Usability (U): How does each editor and language ease developing an 

Ansible script. 

• Implementation costs (C): If and how much each editor and language 

reduces the development time. 

• Reusability (RΕ): How helpful is the integration of Ansible and already 

implemented TOSCA models in the context of the new Ansible editor and 

Atom. 

We did not measure the factor of expressiveness in our questionnaire because it was 

investigated in [50] while the factor of learnability was measured only for the Ansible 

DSL in order to identify how easy its adoption would be. 

Every question in the questionnaire is related to one or more of these factors and is 

designed to evaluate various aspects of the two solutions. Table 5.1 presents the 

questions that have been chosen along with the factor that each question measures: 
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 Questions Measured 

factors 

Q1 How many years do you work as a software developer? L 

Q2 What is your current role? L 

Q3 What is your experience with Ansible? L 

Q4 How do you know Ansible? L 

Q5 How easy was it to learn the Ansible DSL? L 

Q6 How easy was it to install the editor? U 

Q7 How much time did it take on average to create an Ansible 

playbook with the editor? 

C 

Q8 How intuitive was it to use the language? U 

Q9 How do you rate the provided user interface? U 

Q10 How do you assess the language's ability to allow you to 

organize the code in a clear and logical manner? 

R 

Q11 How do you evaluate the integration of TOSCA models with 

Ansible? 

RE 

Q12 How complex do you find the development procedure? U 

Q13 How do you rate the error mechanisms R 

Q14 Which two features do you think are the most useful? R, U 

Q15 Rate features of Ansible editor based on how useful they are. R, U 

Q16 Name two advantages and two disadvantages for the 

editor 

R, U 

Table 5.1: Questions of the evaluation procedure 
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Questions Q1-Q4 are related to each professional's background and are used to 

document each professional's experience with software development and Ansible. 

Question Q5 was designed to assess how easy it is to learn Ansible DSL 

independently of Ansible, whereas questions Q6-Q13 and Q16 are intended to assess 

the user's satisfaction while developing Ansible code with both editors. Finally, 

questions Q14 and Q15 identifies the most useful features of the Ansible editor. Table 

5.2 presents the questionnaire that the testers completed. 

 

Questions Answer Options 

Q1  0-3 

 5-8 

 3-5 

 8+ 
 

Q2 Text 

Q3  None 

 Intermediate 

 Expert 

 Beginner 

 Advanced 

 

Q4 Text 

Q5  Very easy 

 Normal 

 Very difficult 

 Easy 

 Difficult 

 

Q6  Very easy 

 Normal 

 Very difficult 

 Easy 

 Difficult 

 

Q7  0-15 

 30-45 

 60+ 

 15-30 

 45-60 

 

Q8  Very straightforward 

 Neither straightforward nor difficult 

 Very difficult 

 Straightforward 

 Difficult 

 

Q9  Very poor 

 Fair 

 Exceptional 

 Poor 

 Good 
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Q10  Very poor 

 Fair 

 Exceptional 

 Poor 

 Good 

 

Q11  Not helpful at all 

 Somewhat helpful 

 Extremely helpful 

 Not very helpful 

 Very helpful 

 

Q12  Very simple 

 Neither simple nor complex 

 Very complex 

 Simple 

 Complex 

 

Q13  Not helpful at all 

 Somewhat helpful 

 Extremely helpful 

 Not very helpful 

 Very helpful 

 

Q14  Ansible Galaxy content 

proposal 

 Syntax proposal 

 Integration with TOSCA 

 Code smells detection 

 Content validation 

mechanisms 

 Syntax highlighting 

 Abstraction from Ansible 

 

Q15  Ansible Galaxy content 

proposal 

 Syntax proposal 

 Integration with TOSCA 

 Code smells detection 

 Content validation 

mechanisms 

 Syntax highlighting 

 Abstraction from Ansible 

 

Q16 Text 

Table 5.2: Questionnaire 

5.3 Evaluation Results 

In this section, we present the feedback we received from the 7 testers who 

experienced the development of Ansible playbooks with the Ansible DSL and Atom 

text editor. The responses from the testers are presented in detail in Appendix A. 

Regarding the background profile of the participants, the majority of the testers (five 

out of seven) had 0 to 3 years of experience in the IT industry, with only two having 

more. Furthermore, all the testers currently work in different roles, ranging from 
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network engineers to front-end developers, and only two of them had previous 

experience with Ansible prior to this survey. Finally, 6 out of 7 testers found Ansible 

DSL learning to be easy or very easy, while only one found it normal. 

Going to the core of our questionnaire, we asked the testers the questions Q6 until 

Q13 to measure the users' satisfaction in four different factors that assess various 

aspects of each editor and the provided language. 

Table 5.3 contains the average results from questions Q6 until Q13 that allow us to 

compare the two editors.  
 

Questionnaire 

Questions Ansible editor Atom 

Q6 2.7 5 

Q7(in minutes) 31.7 43 

Q8 4 3.6 

Q9 3.4 1.6 

Q10 3.9 2.29 

Q11 4.3 1 

Q12 4.1 2.86 

Q13 4.6 1 

Table 5.3:  Average Results of the Evaluation 

As we can observe from the responses, the Ansible editor receives a larger 

satisfaction score on most of the questions than the Atom text editor, achieving the 

primary goal of our work, which is to facilitate developers when writing Ansible 

playbooks. 

More specifically, we can see from Q7 that users needed 20% less time on average to 

develop Ansible playbooks with our Ansible editor than with the Atom text editor, 

which is to be expected given the toolset that the Ansible editor provides. The 

preference for the Ansible editor can also be seen in questions Q8, Q9, Q10, Q12, and 

Q13, where users gave very positive satisfaction scores compared to Atom in the 

features that improve the editor's usability and assist users in avoiding code errors. 

On the other hand, the Atom editor provides only features that check mainly for 
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syntax errors, such as the correct indentation, without checking for the semantics of 

the code, such as the type of the defined parameters. 

Another important conclusion that we can make from question Q11 is that the users 

found the integration of our Ansible editor with TOSCA and the ability to exchange 

information with TOSCA models very valuable. On the contrary, the Atom editor 

does not enable users to work in the context of a TOSCA model and retrieve 

information directly via the editor. 

However, users stated in question Q6 that installing the Ansible editor and the 

corresponding MongoDB was quite time-consuming when compared to the Atom 

editor, which only requires the installation of a software package. This is the tradeoff 

we have to pay between the editor's provided features and the complexity of its 

configuration procedure. 

We also asked users to rate some of the Ansible editor's features in addition to the 

Likert-based questions. According to the testers, the most important feature was the 

integration with TOSCA, followed by the syntax proposal, the content validation 

mechanisms, and the Ansible Galaxy content proposal. Finally, the detection of code 

smells and syntax highlighting were the least preferred features from this pool of 

options. 

Finally, for completeness, we asked the testers to report some of the advantages and 

disadvantages of our Ansible editor compared to Atom in open text questions. In this 

way, we can receive feedback beyond our questionnaire and see potential ideas for 

future improvements. More specifically, most users reported that the Ansible editor 

facilitates them to write faster and better Ansible playbooks by providing direct 

documentation for various concepts such as modules, collections, and roles, as well 

as suggesting Ansible Galaxy content. The Eclipse framework, on the other hand, in 

which the Ansible editor is housed, has been described as heavyweight, requiring a 

lot of RAM and more time to configure. Furthermore, some users stated that Eclipse 

is not a modern development environment and is not the best UI solution. 

Threat to validity: A vital point that needs to be mentioned for our evaluation 

procedure is that all the testers have zero or little experience with Ansible. As a 

result, in a more experienced audience, the satisfaction scores may be different, 

leading us to different conclusions 
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6. Conclusion 

6.1 Summary 

Our work is part of the SODALITE project, which provides a rich toolkit for 

simplifying the deployment of a complex application. SODALITE assists users in 

resource provisioning by generating TOSCA artifacts in which the user defines the 

general structure of an application from a deployment standpoint. This approach, 

however, is insufficient for fully automating deployment tasks because it lacks 

support for creating and configuring software layers on top of provisioned resources. 

At this point, this thesis extends the SODALITE approach by forming a modeling 

environment in which users can create configuration scripts and seamlessly connect 

them to other parts of the deployment specification. Therefore, our contribution aims 

to supplement the deployment procedure of a complex application after provisioning 

the necessary resources, with a particular emphasis on improving the user's 

experience when developing Ansible scripts. To accomplish this, we enhanced the 

capabilities of the Ansible editor developed in the context of SODALITE by 

integrating external components and information sources in one place. In this 

manner, developers have access to a large pool of tools provided by the same editor, 

offering many different advanced features and receiving constant real-time feedback. 

Having the initial version as a starting point, we expanded the Ansible editor's 

capabilities and focused on providing valuable features that streamline the 

development workflow. For example, autocompletion, error messages, and code 

suggestions are extremely useful for the user and significantly speed up the 

development process because he/she has all the necessary information in a single 

location without having to search through lengthy documentation. This is especially 

important in the case of Ansible, where Ansible collections, modules, and roles are 

dispersed across multiple repositories, requiring the user to strain for the desired 

information. As a result, our primary focus has been to connect the SODALITE IDE 

with information sources that provide the end-user with valuable suggestions and 

constant feedback. These sources of information are offered through intelligent 



74 Conclusion 

 

 

reasoning services running upon the Knowledge Base where SODALITE Resource 

Models are stored and a database containing Ansible content from Ansible Galaxy. 

A significant extension we have introduced is the set of multiple validation 

mechanisms that check Ansible models for validity issues and provide clear and 

meaningful recommendations to the end-user on how to fix them. For example, the 

Ansible editor notifies the users if an Ansible collection name has the incorrect 

format and instructs them how to correct it. Such errors cause issues during the 

deployment and management of the cloud application and necessitate a significant 

amount of time to identify the mistakes in the source code. As a result, accurate error 

messages, accompanied by quick fixes whenever possible, can save the end-user 

time, increase their productivity, and boost users' satisfaction. 

Taking semantic validation, a step further, we were inspired by static analyzers used 

in programming languages, which assess code quality by checking whether the 

developer followed some good development practices, and we wanted to provide 

this type of feedback via the Ansible editor. To accomplish this, we used another 

component developed in the context of SODALITE called Defect Predictor, which 

analyzes Ansible scripts and alerts on potential bad practices in them. Thus, the user 

can receive feedback on issues that do not directly affect the execution of the code but 

have an impact on its quality and maintenance. 

In the same vein, we implemented code suggestions features to help users with the 

Ansible development process by indicating the appropriate options to write at each 

step. The content proposal component that manages this feature makes use of the KB 

and the MongoDB database to provide semantic code suggestions such as Ansible 

modules, parameters, and Ansible roles, among other things. In this way, users with 

little or no experience with Ansible syntax can create Ansible models by following 

the editor's instructions. 

Another key feature of our work is the set of mechanisms that help the user define an 

Ansible model and import the generated scripts into the corresponding Resource 

Model. Following the definition of a Resource Model, the Ansible scripts that 

implement its TOSCA operations must be imported into the RM. As a result, we 

developed a standardized procedure that guides the user through the definition of 

the appropriate Ansible model, followed by the generation and integration of the 

corresponding Ansible script into the RM. In this manner, the user is not lost among 

the various DSLs that SODALITE IDE provides but instead remains in a specific 

chain of activities. One critical point to highlight here is that our work does not alter 

the transparency property of the Ansible script's origin. This property enables the 

user to select an Ansible script written with an external editor for a TOSCA operation 

rather than firstly defining an abstract Ansible model (i.e., .ans file) and then 
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generating the concrete Ansible script. Thus, the only requirement for importing an 

Ansible script is to specify the script's local path in the RM without restricting 

development to our Ansible editor. 

6.2 Future Work 

In this section, we propose some future contributions to the Ansible editor that will 

aid in the development of Ansible scripts and broaden the scope of our work. 

Reverse translation 

The current version of the Ansible editor supports the generation of an Ansible script 

from an abstract Ansible model. A beneficial extension to the Ansible editor would 

be to support the generation of Ansible scripts into Ansible models, which will allow 

users to exploit the capabilities of the Ansible editor for already implemented 

Ansible playbooks by generating the equivalent Ansible model. Then, the users can 

manipulate the generated Ansible model, make the desired changes, and create a 

new version of the Ansible playbook through the Generator component. 

Complex projects 

Aside from testing the expressiveness of Ansible DSL and measuring developer 

satisfaction when creating Ansible playbooks with the Ansible editor, it would be 

beneficial to test our approach in real-world case studies that require more complex 

projects than just playbooks. In that case, we could identify the effectiveness of the 

Ansible editor and its impact on development costs and user satisfaction.
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A. Appendix A 

This appendix presents the detailed responses we received from the participants of 

the survey. The Table A.1 outlines the profile of each tester while the Table A.2 and 

Table A.3 present the feedback we got related to the usage of Ansible editor and 

Atom editor respectively. 

Testers’ Background 

Questions T1 T2 T3 T4 T5 T6 T7 

Q1(in 

years) 

0-3 0-3 3-5 0-3 0-3 3-5 0-3 

Q2 Network 

engineer 

Data 

Analyst 

System 

Administra

tor 

Junior 

Machine 

Learning 

Engineer 

Full Stack 

Software 

Developer 

Product 

manager 

Front-

end 

develo

per 

Q3 Beginner None None Beginner None None None 

Q4 Through 

CCNA 

preparati

on 

None From the 

present 

project. 

From 

work 

From the 

current 

thesis 

Used to 

interact 

with 

compani

es as a 

cloud 

architect

. 

General 

knowle

dge 

Table A.1: Background of the participants 
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Ansible editor - Questionnaire 

Questions T1 T2 T3 T4 T5 T6 T7 Average 

Q5 4 4 4 4 4 3 5 4 

Q6 3 3 2 2 3 2 4 2.7 

Q7(in minutes) 40 45 30 27 50 15 15 31.7 

Q8 4 4 3 5 3 5 4 4 

Q9 4 4 3 4 4 2 3 3.4 

Q10 4 4 4 5 4 3 3 3.9 

Q11 4 4 4 5 4 5 4 4.3 

Q12 4 4 4 4 4 5 4 4.1 

Q13 5 5 4 5 5 5 3 4.6 

Table A.2:  Ansible editor - Evaluation Results 

Atom editor - Questionnaire 

Questions T1 T2 T3 T4 T5 T6 T7 Average 

Q6 5 5 5 5 5 5 5 5 

Q7(in minutes) 60 60 45 35 60 24 18 43 

Q8 4 4 4 4 3 3 3 3.6 

Q9 1 1 1 1 3 2 2 1.6 

Q10 3 2 2 3 3 2 1 2.29 

Q11 1 1 1 1 1 1 1 1 

Q12 2 2 3 4 3 2 4 2.86 

Q13 1 1 1 1 1 1 1 1 

Table A.3: Atom editor - Evaluation Results 
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