
DILLEMA: Metamorphic Testing
for Deep Learning using Diffusion
and Large Language Models

Tesi di Laurea Magistrale in
Computer Science and Engineering - Ingegneria In-
formatica

Author: Muhammad Irfan Mas’udi

Student ID: 952541
Advisor: Prof. Luciano Baresi
Co-advisors: Davide Yi Xian Hu
Academic Year: 2022-2023

i

Abstract

In the last decade, deep learning has propelled the development of intelligent systems,
notably autonomous vehicles and tumor detection tools. Despite their proven efficacy in
real-world scenarios, deep learning applications exhibit unpredictable behaviors in corner
cases, raising concerns about potential fatal errors. To address this challenge, effective
testing methodologies are important.

This thesis explores the application of Metamorphic Testing in deep learning, emphasizing
its efficacy compared to alternative approaches. Unlike traditional software, deep learning
systems learn from complex data, making the interpretation of erroneous corner-case
behaviors challenging. Metamorphic Testing is proposed as a solution that creates test
cases by transforming existing ones with the objective of highlighting failure cases in
software and systems. This method has shown great capability to reveal failures in deep
learning systems and enhance their robustness.

This thesis introduces DILLEMA (Diffusion Model and Large Language Model for Aug-
mentation) framework. DILLEMA combines Diffusion Models and Large Language Mod-
els (LLMs) to perform data augmentation for Metamorphic Testing by providing a more
comprehensive approach to generating test cases. The proposed framework aims to ad-
dress the shortcomings of current methodologies and enhance the reliability of deep learn-
ing applications.

Keywords: Metamorphic Testing, Alternative Examples, Data Augmentation, Diffusion
Models, Large Language Models, Autonomous Driving

Abstract in lingua italiana

Nell’ultimo decennio, il deep learning ha spinto lo sviluppo di sistemi intelligenti, in
particolare veicoli autonomi e strumenti per la rilevazione dei tumori. Nonostante la
loro comprovata efficacia in scenari del mondo reale, le applicazioni di deep learning,
specialmente nell’ambito della guida autonoma, mostrano comportamenti imprevedibili
in casi limite, sollevando preoccupazioni riguardo a possibili errori fatali. Per affrontare
questa sfida, sono importanti metodologie di test efficaci.

Questa tesi esplora l’applicazione del Metamorphic Testing nel deep learning, enfatizzando
la sua efficacia rispetto ad approcci alternativi. A differenza del software tradizionale, i
sistemi di deep learning imparano da dati complessi, rendendo difficile l’interpretazione
di comportamenti errati in casi limite. Il Metamorphic Testing è proposto come soluzione
per creare casi di test trasformando quelli gia’ esistenti con l’obbiettivo di evidenziare
casi di errore in software e sistemi. Questo metodo ha dimostrato notevoli capacita’ nel
rivelare errori all’interno di sistemi deep learning e migliore la loro robustezza.

Questa tesi introduce il framework DILLEMA (Diffusion Model and Large Language
Model for Augmentation). DILLEMA combina i Modelli di Diffusione e i Large Language
Models (LLMs) per eseguire l’aumento dei dati per il Metamorphic Testing, fornendo un
approccio più completo alla generazione di casi di test. Il framework proposto mira a ri-
solvere le limitazioni delle metodologie attuali e migliorare la affidabilità delle applicazioni
di apprendimento profondo.

Parole chiave: Metamorphic Testing, Esempi Alternativi, Aumento dei Dati, Modelli
di Diffusione, Large Language Models, Auto Autonoma

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1
1.1 Structure . 3

2 Related work 5
2.1 Metamorphic Testing . 5

2.1.1 DeepTest: Automated Testing of Deep-Neural-Network-driven Au-
tonomous Cars . 5

2.1.2 DeepRoad: GAN-based Metamorphic Autonomous Driving System
Testing . 6

2.1.3 DeepXplore: Automated Whitebox Testing of Deep Learning Systems 7
2.2 Alternative Generation and Data Augmentation 8

2.2.1 Dataset Interfaces: Diagnosing Model Failures Using Controllable
Alternative Generation . 8

2.2.2 Diversify Your Vision Datasets with Automatic Diffusion-Based
Augmentation . 9

3 Background 11
3.1 Metamorphic Testing . 11
3.2 Deep Learning . 12

3.2.1 Feed Forward Neural Network . 13
3.2.2 Convolutional Neural Network . 16
3.2.3 Classification and Semantic Segmentation 18
3.2.4 Transformer and Large Language Model 22

vi | Contents

3.2.5 Diffusion Model . 24
3.3 Metamorphic Testing in Deep Learning . 27

4 Solution 29
4.1 Describing the Image with Captioning Model 30
4.2 Large Language Model (LLM) Application 31

4.2.1 LLM: Generate Keywords . 32
4.2.2 LLM: Generate Alternatives . 32
4.2.3 LLM: Generate New Caption . 33

4.3 Controlling Image Generation in Diffusion Model 33

5 Implementation 37
5.1 BLIP-2 Captioning Model . 37
5.2 LLaMA-2 as Large Language Model . 37
5.3 ControlNet for Image Generation . 39

6 Evaluation 43
6.1 Experimental Description . 43
6.2 Experimental Setup . 44
6.3 Result . 45

6.3.1 ImageNet1K Result . 53
6.3.2 ResNet18 Performance . 54
6.3.3 ResNet50 Performance . 66
6.3.4 ResNet152 Performance . 78
6.3.5 Fine-tune Pre-trained Model . 89
6.3.6 SHIFT Result . 90

7 Conclusion and Future Works 93
7.1 Conclusion . 93
7.2 Future Works . 93

Bibliography 95

List of Figures 105

List of Tables 107

Acknowledgements 109

1

1| Introduction

Over the past decade, remarkable advancements in deep learning have facilitated the
creation of safety-critical Intelligence systems like autonomous vehicles [2, 17, 30] and
medical tool for tumor detection. Prominent automobile companies, such as Tesla have
been engaged in constructing and rigorously assessing these self-driving cars [45]. Re-
cently, autonomous vehicles have proven to be highly effective in real-world scenarios,
having covered millions of miles without the need for human intervention [21]. In the
case of tumor detection, Adel et. al. highlight the importance of early tumor detection
in increasing the probability of survival rate [13]

Nevertheless, despite the significant advancements, deep learning, including those applied
in safety-critical systems, can be similar to conventional software, it has erroneous or un-
expected behaviors in corner cases, which could potentially result in dangerous outcomes
such as a fatal collision. Therefore, the testing process becomes a crucial aspect. From a
conceptual perspective, the faulty corner-case behaviors in deep learning can be semanti-
cally equivalent to software erroneous. But the difference with traditional software, deep
learning learn from data that are trained to approximate complex functions that can be
difficult to interpret or explain [65]. Various techniques are proposed for testing in deep
learning [37, 64], including Metamorphic Testing [71], Combinational Testing [26, 40],
Mutation Testing [22, 43], and Fuzzing Testing [15, 16]. Liu et al. Metamorphic Testing
stands out as a notably effective method when compared to alternative approaches [34].

The conventional method for assessing deep learning involves the collection and manual
labeling of a substantial amount of real-world test data. In computer vision applications
of self-driving cars, some deep learning systems also employ simulation to create synthetic
training data. Nevertheless, this simulated data lacks guidance and does not take into
account the intricacies of the target system. Consequently, when dealing with the vast
input spaces of real-world scenarios, such as encompassing all potential road conditions
for self-driving cars, most of these methods can reasonably expect to have corner cases
[45].

Metamorphic Testing can be applied to deep learning, by creating a set of test cases

2 1| Introduction

by applying transformations to the original input data [12]. Then evaluate the system
by comparing it with the expected outputs [9, 69]. Furthermore, adding error-inducing
inputs to the training datasets can help to improve the reliability and accuracy of existing
deep learning models, especially in autonomous driving car [72].

Generation test cases or data augmentation for Metamorphic Testing could use traditional
transformation [62], including adjustments to brightness and contrast, translation, scal-
ing, horizontal shearing, rotation, and blurring. However, this approach failed to capture
several driving scenarios that were artificially generated to simulate various conditions. In
particular, real-world driving environments are seldom amenable to affine transformations
and the limitations of autonomous driving system perception. Generative Adversarial
Networks (GANs)-based test case generation could have more varied scenarios and con-
ditions, e.g generate the snowy environment from the sunny environment. GANs needs
training for each precise transformation within a targeted domain, which makes GANs
rely on paired data to learn the mapping from one domain to another [4, 27]. In the
driving scenario, there could be a lot of possibilities target domain. Hence, it is not easy
to prepare even from the initial implementation [70]. Generate test cases could also use
pre-trained models to generate new test cases with additional perturbation. However, this
approach still falls short in capturing the possibilities in corner cases, as it may not be
comprehensive enough to encompass various conditions and environments.

Generating data augmentation could deploy controllable alternative to generate distri-
bution shift of datasets. Alternative generation acquires augmented data that stays in
class or label data training distribution with specific changes from text description of
images. Image description is a natural language that describes the image. Recent work,
Large Language Model (LLMs) used to tailor the image descriptions in order to make
a new description for data augmentation based on the original data. The original data
image is described as text and it is used to generate new images with different domains
and conditions that are specified with text. The existing solution for image generation
with the original image as its reference and text description managed by LLMs combined
with GANs-based cannot capture the spatial context in the image. Therefore, this the-
sis propose DILLEMA (Diffusion Model and Large Language Model for Augmentation)
to perform alternative generation and data augmentation as the generated test cases for
Metamorphic Testing.

1| Introduction 3

1.1. Structure

The thesis structure is organized as follows:

• Chapter 1 Introduction, provide the general overview of the thesis.

• Chapter 2 Related work, this chapter will provide the recent research related to
thesis work. Exploring different techniques that have been implemented dealing
with Metamorphic Testing on autonomous driving car, and related to alternative
generation and data augmentation.

• Chapter 3 Background, introduces some concepts, technologies and theoretical mod-
els that are used in the context of this thesis.

• Chapter 4 Solution, this chapter will provide a description of DILLEMA (Diffusion
Model and Large Language Model for Augmentation) to perform alternative gener-
ation and data augmentation as the generated test cases for Metamorphic Testing.

• Chapter 5 Implementation, this chapter will provide the technicalities of the im-
plementation of DILLEMA. Proposed implementation of Image Captioning Model,
Large Language Model, and Diffusion model.

• Chapter 6 Evaluation, In this chapter, a crucial element is presented as the assess-
ment and validation of DILLEMA are detailed. To contextualize this evaluation,
thorough explanations are provided regarding the methodologies and approaches
used, covering tools, techniques, and datasets.

• Chapter 7, Conclusion and Future Works, This chapter is dedicated to present the
conclusive remarks based on the outcomes of our study and delving into promising
directions for future research.

5

2| Related work

This chapter provides the recent research related to thesis work. Exploring different tech-
niques that have been implemented dealing with Metamorphic Testing on deep learning
application, and related to alternative generation and data augmentation.

2.1. Metamorphic Testing

2.1.1. DeepTest: Automated Testing of Deep-Neural-Network-
driven Autonomous Cars

The main goal of this research is specifically designed for the automated testing of au-
tonomous vehicles. These vehicles rely on deep neural networks (DNNs) for decision-
making and control. Autonomous vehicles must undergo rigorous testing to ensure their
safety and reliability. This includes assessing how well they respond to various scenarios
and conditions, as well as verifying that the DNNs make appropriate decisions. Auto-
mated testing involves using software tools and scripts to systematically evaluate the
performance of autonomous vehicles. Their method implemented Systematic Testing
with Neuron Coverage, which tries to generate inputs that maximize neuron coverage of
the test DNN. As each neuron’s output affects the final output of a DNN, maximizing
neuron coverage also increases output diversity. They tried increasing Neuron Coverage
with Synthetic Images by applying a set of image transformations to original images,
they aim to replicate various real-world phenomena such as distortions caused by camera
lenses, object motion, diverse weather conditions, and more. In pursuit of this objective,
they explore nine distinct and authentic image transformations, including adjustments to
brightness and contrast, translation, scaling, horizontal shearing, rotation, and blurring,
as well as the addition of fog and rain effects. These transformations can be categorized
into three groups: linear, affine, and convolutional. This kind of transformation shows it
can uncover the possible erroneous in the steering decision, see Figure 2.1.

6 2| Related work

Figure 2.1: Blue arrow is the expected steering in original images and red arrow is the
steering result with six-degree rotation [55].

Nevertheless, the techniques employed in DeepTest for generating test cases may not
faithfully replicate actual real-world driving scenarios. In particular, real-world driving
environments are seldom amenable to affine transformations and the limitations of au-
tonomous driving system cameras. Additionally, the simulated blurring, fog, and rain
effects can often appear unrealistic, thus potentially undermining the effectiveness and
dependability of DeepTest.

2.1.2. DeepRoad: GAN-based Metamorphic Autonomous Driv-

ing System Testing

DeepRoad has created a Metamorphic Testing component designed for DNN-driven au-
tonomous systems. In this approach, Metamorphic Relations are established to ensure
that, regardless of how driving scenarios are artificially generated to simulate various
weather conditions, the driving behavior should remain consistent with that observed
in the corresponding genuine driving scenarios. This development assesses the precision
and dependability of current DNN-based autonomous driving systems (DeepTest), for
example when faced with diverse extreme weather scenarios, such as heavy snow and
heavy rain. The generation can hardly be distinguished from the original image and can-
not be generated using simple transformations. DeepRoad is used to simulate various
weather conditions, based on the Generative Adversarial Networks (GANs) technique.
Generating various real-world road scenes fully automatically, they implemented UNIT,
the GAN-based method to perform unsupervised image-to-image transformation. The
different input domains can be projected into a shared latent space and have the same
latent representation. In this way, given a new image from one domain image, UNIT can
automatically generate its corresponding version in the other domain. See Figure 2.3

2| Related work 7

Figure 2.2: GAN based generated images, snowy and rainy image [67].

The main issue with this solution is that they require separate GAN training for each
specific transformation within a given domain. This process can be costly and time-
consuming. Furthermore, these methods assume the availability of a set of images from
the target domain. This assumption may not always hold true, as collecting such images
can be challenging, especially in scenarios where neural networks must operate in several
domains.

2.1.3. DeepXplore: Automated Whitebox Testing of Deep Learn-
ing Systems

DeepXplore was developed to automatically test the robustness of deep learning models
by generating test inputs that can show previously unobserved behavior in the model.
The idea is to generate test cases that are similar to the data train based on the neuron
converge parameters. First, by taking the unlabeled test inputs as seeds and generating
new tests that cover a large number of neurons. Note that, the pre-trained model is used
to do the generating process. Instead of having gradient descent to optimize the weights
of NN, they use gradient ascent to compute the input value that maximizes the outputs.

Figure 2.3: Left image is the original input image that correctly makes a decision result.
The right image is the generated image which makes an error with respect to the expected
result [45].

8 2| Related work

DeepXplore focuses on examining a limited set of transformations to evaluate their as-
sociated characteristics. While these transformations may be considered more realistic
compared to adversarial perturbations, they still fall short of encompassing the complete
spectrum of real-world input distortions.

2.2. Alternative Generation and Data Augmentation

2.2.1. Dataset Interfaces: Diagnosing Model Failures Using Con-
trollable Alternative Generation

Dataset Interface deployed alternative examples to generate distribution shift of the im-
age datasets. To perform reliability of real-word input of the model represented in the
training dataset. The machine learning model could fail when faced with a distribution
shift, for instance, changing the background of the image input. In order to improve
the performance, they applied alternative generation, by acquiring new images that stay
in class or label data training distribution with specific changes. Dataset Interfaces use
synthetically generated data with textual inversion. Given a set of image inputs, the text
inversion will find a word or token in the Diffusion Model’s text space. Textual inver-
sion will learn embedded vectors in the text embedding space of the Diffusion Model.
Therefore, the token will not be diverse with the expected label. Then it can be used to
make distribution shift of images. For example a < dog − class > in the "A photo of
< dog − class > in the beach" and in "A photo of < dog − class > in the grass" is the
same, for instance, the dog breed and its color. The only change is the background of the
image. See Figure 2.4

Figure 2.4: Left image is "A photo of < dog − class > in the beach". The right image is
"A photo of < dog − class > in the grass" [60].

2| Related work 9

2.2.2. Diversify Your Vision Datasets with Automatic Diffusion-

Based Augmentation

Classification task in some cases have limited training data. Because of that trained model
classifiers on these datasets come to fail when faced with the variation of domain changes.
Automated Language-guided Image Augmentation (ALIA) is a method to automatically
generate new data related to the original input data. This method uses image captioning
and a language model to generate a natural language description of the image. Then
the description will be used for image augmentation. In order to verify the augmented
data, ALIA employed filtering which will remove the augmented image if it does not
change the domain or corrupt task-relevant information. Generating caption from the
image using BLIP Captioning Model, then tailoring the expected result with GPT 4 Large
Language Model (LLM). Editing images with language guidance deployed two techniques,
Image to Image with Text Guidance (Img2Img) and Instruct Pix2Pix. The generated
images based on tailored descriptions might fail. Hence, the implementation of Semantic
Filtering as a classification task from given input text and images to get the correct
target class of generated images by using CLIP. Confidence-based Filtering, comparing the
original datasets’ confidence interval with augmented data. For the comparison between
the original image and the augmented result, see Figure 2.5.

(a) Original image (b) Augmented image

Figure 2.5: ALIA augmented image result and the original image [11]

11

3| Background

This chapter introduces some concepts, technologies and theoretical models that are used
in the context of this thesis.

3.1. Metamorphic Testing

In software engineering, software testing is to examine the correctness of a piece of soft-
ware. It is a dynamic technique with an experimental approach for verification and vali-
dation processes [35, 52]. Verification is an assessment of whether the software aligns with
the specified requirement. Instead, Validation is to check the system with the expected
software needs [8]. The testing process needs a test case, it is error-revealing if it detects
a software error otherwise it is called successful. In detail, test case generation can be
selected Randomly, it is blind testing that generates and executes hundreds of thousands
of test cases. And Systematically, selecting test cases using characteristics of the soft-
ware artifacts (e.g. code), and using the information on the behavior of the system (e.g.,
specification) [51]. The Figure 3.1 depict the testing process in the software engineering

Specification Test case generation

Software under testComparison

Identification of

expected results

Test result

Figure 3.1: Testing process.

The result of a testing process is comparing the output of the software under test, for a
given generated test case input, to the output that determines that software should have,

12 3| Background

then concluded whether a test has passed or failed, it is known as test oracle. Test case
generation is constructed based on some predefined criterion and generally assumes the
availability of a test oracle. However, as indicated by Weyuker [8] this assumption may
not hold in practice. Metamorphic Testing rise because of the difficulties in constructing a
perfect test case that does not assume the availability of such a test oracle. This technique
refers to the generation of new test cases based on the input-output pairs of previous test
cases and the types of errors usually associated with that particular type of application.
The approach is considered fault-based as new test cases aim at uncovering specific errors
which left undetected in previous successful test cases [7].

3.2. Deep Learning

In recent years, Artificial Intelligence has experienced extraordinary developments, which
linearly make it hard to give one exact definition because it can be defined in many ways.
Artificial Intelligence is a big umbrella that covers Machine Learning, and conceptually,
Deep Learning lies inside.

Starting from Machine Learning definition, according to Tom Mitchell, Machine Learning
is a computer program that learns from experience with respect to some class of task and
has a measurable performance, if the performance of the task improves, it is because of
the experience [38]. Based on the learning paradigm, Machine Learning can be divided
into some categories. This thesis will mainly focus on Supervised Learning, it is a learning
paradigm when there are available data input = {x1, x2, x3, . . . , xN} and data target =

{y1, y2, y3, . . . , xN}. The task is to predict the new input tk based on new data input xk.
Classification is a Supervised Learning example, the task that asked to specify which k

categories when given data inputs. The learning process will learn the function f : Rn →
{1 . . . k}. When y = f(x), let x as the inputs then the model will provide the categorical
result of class k [18]. Another task that is related to supervised learning is Regression, in
this task, is asked to predict a numerical value given some input. To solve this task, the
algorithm should learn the function of f : Rn → R.

The difference between Machine Learning and Deep Learning is the way to train the model
from the data based on features. Feature is the characteristic or measurable property to
describe the data. In Machine Learning, extracting the features is handcrafted by humans
as a feature engineering process. Instead, in Deep Learning, feature extraction will be
done in the training process, asking the machine to make the best representation of the
data. Hence, the term Deep in Deep Learning comes from the fact that the learning
process is pushed down in the hierarchy between data and output through the layers.

3| Background 13

Deep learning is about learning data representation from the data, and it needs a huge
amount of data.

3.2.1. Feed Forward Neural Network

Artificial Neural Network is inspired by the biological system of the human brain which
contains layers of neurons connected. Each neuron receives inputs, processes them, and
produces an output [61]. The perceptron is a mathematical model of the biological neuron
shown in Figure 3.2 that contains input xi, weight wi, bias b, and hj is the output.

w1

wi
Σ...

b

x1

xi

hj(x|w, b)

Figure 3.2: The perceptron.

The perceptron has weight wi and bias b as the learnable parameters to get better per-
formance on the specific task from the input xi. If b = w0 then the output hj is the result
of the activation function of wTx. The formula shown in Equation (3.1)

hj(x|w, b) = hj

(
I∑
i=1

wi · xi + b

)
= hj

(
I∑
i=0

wi · xi
)

= hj(w
Tx) (3.1)

Feed forward neural network is the basic concept of Deep Neural Networks (DNNs) a non-
linear model constructed from a multilayer perceptron with several layers (input layer,
hidden layer, and output layer) shown in Figure 3.3. By stacking more hidden layers the
network will tackle the non-linear problem. The training process is to find the optimal
value of learnable parameters. Since the learning process works in the non-linear problem,
it cannot have convex functions, which means the closed-form solutions are practically
never available. Therefore, the learning process is in the scope of non-linear optimization.
By iterative solution using Gradient-descent also known as Backpropagation, the learning
process will update the trainable parameters based on the error of the output with respect
to the target. The parameters should minimize the error distance between the output and
the target. In another way, the output of the neural network is g(xn|w) ∼ tn.

14 3| Background

x0

x1

...

xi

h
(1)
0

h
(1)
1

...

h
(1)
j

. . .

. . .

. . .
h
(L−1)
0

h
(L−1)
1

...

h
(L−1)
j

h
(L)
0

...

h
(L)
j

g1(x|w)

gK(x|w)

wji

wJI

input layer
1st hidden layer

Lth hidden layer

output layer

Figure 3.3: Feed Forward Neural Network for a (L)-hidden layer with i input units and
K output units. wji is the weight going to neuron j-th from input or neuron i-th.

Gradient descent only works on differentiable activation functions. There are several non-
linear activation functions [6, 10, 39, 41], in Table 3.1 are the activation functions that
commonly used. The choice of activation functions depends on the task. For instance, in
the classification problem for multiclass, the output of the network should use Softmax
activation function in order to normalize the output in the range 0 to 1. In this case, the
number of output layer of the network should be the same of the number of K class.

Table 3.1: Non-linear activation functions.

Name Function Derivative Figure

Sigmoid f(x) = 1
1+e−x f ′(x) = f(x)(1− f(x))2

tanh f(x) = ex−e−x

ez+e−z f ′(x) = 1− f(x)2

ReLU f(x) =

0 if x < 0

x if x ≥ 0.
f ′(x) =

0 if x < 0

x if 1 ≥ 0.

Softmax f(x) = ex∑
i e

x f ′(x) = ex∑
i e

x − (ex)2

(
∑

i e
x)2

3| Background 15

Finding the weight of a neural network are non-linear optimization problem. The optimal
weight will provide the minimum error. For each task have specific error function or
cost function. The regression problem uses sum squared error as a cost function see the
Equation 3.2. The classification task uses categorical cross-entropy, see the Equation 3.3

E(w) =
N∑
n=1

(tn − g(xn|w))2 (3.2)

E(w) = −
N∑
n=1

tT log (g(xn|w)) (3.3)

Starting the iteration from the initial random configuration, Gradient descent will update
the weight iteratively through the Stochastic Gradient Descent (SGD) formula [3], see the
Formula 3.4.

wk+1 = wk − η
∂E(w)

∂w

∣∣∣
wk

(3.4)

Where
∂E(w)

∂w
=

∂E(xn, w)

∂w
, each iteration updated for each data points. wk+1 is the

weight at k+1-th iteration as updated weight, wk is the weight at k-th iteration, η is the

learning rate, E is the mentioned cost function, and
∂E

∂w
is the gradient of the cost function

with respect to the weight. Several variants of optimization also exist such as SGD with
momentum, Rprop, AdaGrad, RMSprop, AdaDelta, and Adam [23, 47, 58] which try to
improve the basic gradient descent method both in the performance of convergence and
with respect to the time to convergence. Partial derivative cost function with respect to
the weight could be done in two steps; Forward pass and then Backward pass. Forward
pass will produce the result of output the neural network given the input, g(xn|w). The
backward pass is the process that allows the information of the cost function results to
propagate backward in the network to compute its gradient and then update the weight.
The gradient of the cost function with respect to weight can be computed by using the
chain rule for partial derivatives in an efficient way with parallel computation. Instead
of having the updated weight for each iteration with each data. Batch Gradient Descent,
uses all the available data training that is used at once and the gradient is averaged. For
one epoch (when all training data is already used) there will be only one iteration, see
the Equation 3.5, where N is the number of data train.

16 3| Background

∂E(w)

∂w
=

1

N

N∑
n=1

∂E(xn, w)

∂w
(3.5)

In practice batch gradient descent might not be possible due to the limitation of computer
resources, because it is going to load N all available data train once [24]. Hence, Mini-
batch gradient descent helps to slice N into M sections. Therefore, in one epoch there
will be M iterations, in this case loading the N/M per iteration is easier to handle by
computer, see the Equation 3.6

∂E(w)

∂w
=

1

M

M<N∑
n∈Minibatch

∂E(xn, w)

∂w
(3.6)

In the training process, the gradient may lead to vanishing gradient. The condition that
the result of the gradient is nearly zero or too small [25, 44]. ReLU (Rectifier Linear
Unit) is used as an activation function because Sigmoid and Tanh are prone to vanishing
gradient when the layer is going deeper [20]. A vanishing gradient problem could also
happen if the initial weight is started with a very small value [53]. Therefore, a proper
weight initialization is needed. Such as Xavier Initialization propose weight initialization

w ∼ N (0,
1

nin
) where nin number of neuron inputs and Gloroth Initialization also propose

w ∼ N (0,
2

nin + nout
) where nout is the number of output layers [14].

3.2.2. Convolutional Neural Network

A Convolutional Neural Network (CNN) is a widely used deep learning architecture, par-
ticularly in computer vision. CNN is constructed by several types of layers, convolutional
layer, sub-sampling or pooling, and fully connected layer [68]. See Figure 3.4, which is
the architecture for the image classification task. A convolutional layer is a layer where
convolution operations are executed. When working on the data image, the input should
have height, width, and channel (e.g. RGB) [29].

3| Background 17

input image

convolutional layer
with non-linearities

subsampling layer

convolutional layer
with non-linearities

subsampling layer

fully connected layer

fully connected layer

Figure 3.4: The architecture of the original convolutional neural network, as introduced
by LeCun et al. [28].

A convolution operation is defined as follows: Let X ∈ RH×W×C is an input and V =

{vi ∈ Rh×w×C | i ∈ I} is a filter or kernel. The filter could have an arbitrary number of
I and the important thing is the depth of the filter should same as the input depth. The
convolution operation of vi over X can be written the Equation 3.7.

ui = vi ∗ X =
I∑
i=1

vsi ∗ xs (3.7)

where ui is the result of convolution, vsi is the i-th filter of V operating on the s-th channel
of X, and xs is the s-th channel of X and F is the number of the filter. The Equation 3.8
is the detail formula.

vsi ∗ xs(r, c) =
I∑

u,v∈vs
i

r,c∈xs

vsi (u, v) ∗ xs(r − u, c− v) (3.8)

where (r, c) is the position pixel in xs, (u, v) is the pixel’s position in filter vsi . The output
will be U ∈ RH′×W ′×I that can be represented as sliced layer ui ∈ I, which [u1 u2 ... uI]
whose I is the depth that will be equal to the number of the filter V applied to the input.
The spatial size H ×W changes to H ′ ×W ′ due to the different settings values of stride
(how many steps the filter window will move), kernel size (filter height and width), and
the padding type (how the filter and input pixel combination to get the intended result).
The filter is a learnable parameter, it is similar to neuron, ui =

∑J
j xj · w

(i)
kj + b(i). The

result of the convolutional layer should be added with activation functions in order to
give non-linearities.

18 3| Background

The receptive field is a portion of the input image that a particular neuron in the network
is sensitive to. It describes the spatial extent of the input data that influences a particular
feature or unit in the network. The receptive field can vary in size and shape depending
on the depth of the layer and the architecture of the CNN. The receptive field of a
neuron in a CNN is determined by the size of the convolutional filter and the stride used
in each layer. When performing a convolution operation, a filter slides over the input
image, and the receptive field of a neuron in a given layer is the area of the input image
that the filter covers. In the initial layers of the CNN, the receptive field of neurons is
relatively small. Each neuron responds to a small region of the input image. When moving
deeper into the network, the receptive field of neurons increases. This is because multiple
convolutional layers process information from previous layers, causing the receptive field
to grow. Neurons in deeper layers are sensitive to larger and more abstract features. The
pooling layers, such as max-pooling or average-pooling, can further increase the receptive
field. Pooling layers downsample the feature maps, making the spatial dimensions smaller
while retaining the most important information.

Subsampling layer or pooling layer is used for reducing the spatial size of the convolu-
tional layer output. Because it is going to help in terms of computation by reducing the
parameters but not missing the important things. Hence, there is an existing pooling
technique; Max-pooling, which will take the maximum value as the result in the neighbor-
hood. Instead, Average-pooling will average the neighborhood as the result. The result
of the convolutional layer and subsampling is a Latent representation and the process
is usually called High-level feature extraction. Then the last layer of CNN architecture
is a fully connected layer, conceptually it is a feed-forward neural network. The latent
representation will feed as the input of the network by Flattening process, change the
dimension RH′×W ′×I → Rn and the output will be used to solve the image classification
task, the input is X ∈ RH×W×C → k, where k is predicted class. In some cases, instead
of having flattening, it can be replaced with Global-Average Pooling by averaging each
ui ∈ U. This technique can reduce the trainable parameters [33].

3.2.3. Classification and Semantic Segmentation

In the computer vision context, there are many tasks that can be applied in deep learning.
First task is image classification, given an image as an input to a trained network, then the
network has to determine the class of the input image. Classification task uses categorical
cross-entropy as the loss function. In order to measure how good the performance, there
are many metrics to calculate the performance of the model. Accuracy provides an overall
view of correct predictions see Equation 3.9, the accuracy formula for multiclass. But it

3| Background 19

may fall short in scenarios where class imbalances or specific objectives demand a more
nuanced evaluation. Precision, recall, and F1 score are three metrics that offer a more
comprehensive understanding of a model’s performance.

Accuracy =

∑K
k=1 True Positivesk

Total Observations
(3.9)

Precision, also known as positive predictive value, calculates the ratio of correctly pre-
dicted positive observations to the total predicted positives. It is particularly valuable
in scenarios where minimizing false positives is crucial, as it provides insight into the
model’s ability to avoid misclassifying negative instances as positive. Macro refers to a
type of averaging method used to compute aggregate metrics across multiple classes, In
the case of precise, calculate precision for each class individually and then average them
see Equation 3.10. Macro averaging method is used also in the recall and f1 score metrics.

Precisionmacro =
1

K

K∑
k=1

True Positivesk
True Positivesk + False Positivesk

(3.10)

Recall, or sensitivity, measures the proportion of actual positive instances that are cor-
rectly identified by the model. This metric is essential when the cost of missing positive
cases is high, as it assesses the model’s capacity to capture all relevant instances of the
positive class see Equation 3.11

Recallmacro =
1

K

K∑
k=1

True Positivesk
True Positivesk + False Negativesk

(3.11)

F1 score is the harmonic mean of precision and recall, offering a balanced assessment
that considers both false positives and false negatives. It is especially useful when there
is an uneven distribution between classes, providing a single metric that considers both
precision and recall see Equation 3.12.

F1 Scoremacro =
2

K

K∑
k=1

Precisionmacro × Recallmacro

Precisionmacro + Recallmacro
(3.12)

There is other task in the computer vision, Classification + Localization, the goal of this
task is not only to classify objects but also to provide a bounding box that indicates the
object’s location within the image. In addition to determining whether an image contains
a cat or a dog, the model will also draw a box around the detected object. Another task

20 3| Background

is Object Detection, which takes the classification + localization a step further by allowing
the model to detect multiple objects within an image. It can identify and locate several
objects, drawing bounding boxes around each one. For example, in an image with both a
cat and a dog, an object detection model would locate and label both. While classification
+ localization only draws the box, Semantic segmentation tries to draw the boundary (or
mask) between each class (e.g. cat, dog, and carpet), see Figure 3.5

Figure 3.5: Semantic segmentation with Fully-Convolutional Network [36].

Image segmentation problem assigns to each pixel of image I ∈ RR×C×3 with a label li from
fixed categories of L = {cat, . . . , dog}. The result is S(x, y) ∈ L denotes the class that
is associated with the pixel (x, y), I → S ∈ LR×C . Conceptually semantic segmentation
task uses the convolutional operation and down-sampling (Max-pooling, Average-pooling)
to extract the feature to get latent representation, which is usually called Encoder. The
next part is Decoder, doing the opposite way of the encoder, instead of making deep of
the layer, it will reduce the depth of the result for each convolution and at the same time
do up-sampling (e.g. Max-unpooling, Transpose convolution).

Long et al. (2015) also propose the skip connection, by adding the result of down-sampling
layer into the result of up-sampling layer which has the same spatial space. In the sense
that the latent representation contains semantic information about what the class belongs
to, while the spatial information knows the position that belongs to that class in the image.
See Figure 3.6

3| Background 21

6464

I

conv1

64 64

I/
2

conv2

256 256 256

I/
4

conv3

512 512 512

I/
8

conv4

512 512 512

I/
16

conv5

4096 4096

fc to conv

K
I/
32

fc8 to
conv K

I/
16

K

I/
16

+

K

I/
8

K

I/
8

+

K K

I

softmax

Figure 3.6: Fully Convolutional Network with 8 times upsampled.

Another architecture that has improved the segmentation result is U-Net, instead of only
having the skipping connection. U-Net implements a stacked result of convolution in the
encoder part with convolution in the decoder part. Therefore, it is not only going deeper
to get the latent representation but also keeping the information in the encoder part to
be used in the decoder. See Figure 3.7

6464

I

128 128

I/2

256 256

I/4

512 512

I/8

1024 1024

I/16

512

I/8

||

512 512

I/8

256

I/4

||

256 256

I/4
128

I/2

||

128 128

I/2

64

I

||

64 64

I

I

Softmax

Figure 3.7: U-Net Architecture, the orange layer is convolution, the red color is max-
pooling, and the blue color is convolutionl transpose.

In image segmentation, a metric that is usually used is Intersection over Union (IoU), also
known as the Jaccard index. It measures the similarity between the predicted segmen-

22 3| Background

tation mask and the ground truth (or reference) segmentation mask. IoU is particularly
useful when dealing with binary or multi-class image segmentation tasks. The IoU is
calculated as the ratio of the intersection of the predicted and ground truth regions to
the union of these regions. The formula for calculating IoU is as Equation 3.13

IoU =
|A ∩B|
|A| ∪ |B| (3.13)

where A is predicted and B is ground truth, Intersection The area where the predicted
segmentation mask and the ground truth mask overlap or intersect. Union The total area
covered by both the predicted and ground truth masks. IoU values range from 0 to 1,
with 0 indicating no overlap between the predicted and ground truth masks (completely
dissimilar), and 1 indicating perfect overlap (perfectly similar). The higher the IoU, the
better the segmentation accuracy.

3.2.4. Transformer and Large Language Model

The Transformer is a deep learning architecture model that widely used for Seq2Seq
problem. Seq2Seq or Sequence to Sequence, is the concept for learning the data not an
independent data point. Instead, they related to each other. For instance the input
x = {xi, xi−1, . . . , xi−z}, and also for the output y = {yi, yi−1, . . . , yi−z}. The example of
Seq2Seq problem is a machine translation, which makes a translation from an input lan-
guage into another language. The input is a sequence of words that have semantic, then
the output is a sequence of words that have similar semantic to the sequence input lan-
guage. In this case it is a sequence of inputs and the sequence of output. Another example
of Seq2Seq is Image Captioning, the input is single image, but the result is a sequence of
words that describe the semantic of the image. Seq2Seq rely on the Encoder-Decoder ar-
chitecture, in the sense of finding feature extraction from the sequence of input as encoder
process. Then Encoder part will generate the feature of latent representation into another
domain. Vashvani et al. (2017) proposed Transformer to improve performance in term
of quality and training process parallelization, compared to other approaches, Recurrent
Neural Network (RNN), Long-Short Term Memory (LSTM), and Gated Recurrent Unit
(GRU). The Transformer architecture combines some functionalities that are stacked into
Decoder and Encoder.

3| Background 23

Figure 3.8: The Transformer Encoder-Decoder architecture [59].

The Figure 3.8 is the transformer architecture that inside of the Encoder-Decoder part
there exist some components:

• Input Embedding, transformer originally used for the input of a sequence of words,
that is usually called as token. It is use neural network to get trainable weight for
predicting the next token as the input embedding. This is used for get the semantic
of each word and give the similarity value to other words in the list of the input
tokens.

• Positional Encoding, the idea is to give the input to keep track of the sequence of
tokens order. Because word or phrase order is important in the semantic or meaning
of the sentences.

• Multi-Head Attention, in order to know the similarity of each token including itself.
The transformer using the Attention. The idea is each token have value of Query,
Key, and Value. Query related to the value of similarity of tokens itself. And the
Key is related to the similarity to other tokens and Value is to make sure that the
token is exactly the input token. Attention related to the token itself is a Self-

24 3| Background

Attention. Then the result is a Scaled Dot Product Attention, see the Equation
3.14.

Attention(Q,K, V) = softmax(
QKT

√
dk

) (3.14)

where
√
dk is Keys dimensions. The Multi-Head Attention is stacking Self-Attention

in order to handle a more complex sequence of tokens. The attention mechanism
also used in the connection between Encoder and Decoder because the Decoder
needs to keep track with the inputs.

• Feed Forward Neural Network is added to have more nonlinearity with weight and
bias to fit with more complicated data.

In the training process, each token is independent, which means they are not dependent
on each other when the training process happens. Therefore, the training process can be
done in parallel, and because of that the transformer is fast in the training process.

Large Language Model (LLM), is a specific application of the Transformer architecture.
It is trained on a large and structured collection of text data, which allows it to learn
grammar, syntax, facts, and even some degree of common-sense reasoning. To perform the
generation, LLM could use different approaches depending on how many demonstrations
are provided at inference time [5]:

• Fine-Tuning is the approach that involves updating the weights of a pre-trained
model.

• Few-Shot refers to a scenario in which the model is provided with a limited number of
task (few) demonstrations during inference, acting as conditioning while preventing
any weight updates.

• One-Shot is the same as few-shot inference, except that only one demonstration or
example is allowed.

• Zero-Shot is the same as one-shot except that no demonstrations are allowed, and
the model is only given a natural language instruction describing the task.

3.2.5. Diffusion Model

Image synthesis represents one of the computer vision domains that has witnessed re-
markable advancements in recent times. However, it also stands out as one of the most
computationally high demands, particularly when it comes to generating high-resolution
synthesis of complex images. Diffusion Model [19] contains the forward process or diffu-

3| Background 25

sion process, the sampling process that adding the noise, From the original images, then
add noise step by step and adds more noise each step, from x0 to xT . see Equation 3.15.

q(x1:T |x0) :=
T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt;
√
1− βtxt−1, βtI) (3.15)

where
√
1− βtxt−1 is the mean and βtI is the variance. The other process is reverse

process, which is the process that learns how to remove the noise from the input. The
process does not remove the noise once, but step by step. To do that, needed U-Net to
train, given the input xt and predict the output xt−1, see the Equation 3.16

pθ(x0:T) := p(xT)
T∏
t=1

pθ(xt−1|x), pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) (3.16)

where µθ(xt, t) is the mean, and the variance is Σθ(xt, t). Predicting the image of xt−1

is equal to predicting the noise of xt that want to remove. In the training process, let xt
be the input, the output of U-Net is ϵθ, and the noise of the output is ϵt, and the cost
function is a mean square error. See Equation 3.17

Loss = MSE(ϵt, ϵθ(xt, t)) (3.17)

The idea is to find the minimum error of the predicted noise and sampled noise. Latent
Diffusion Model (LDM) [49], instead of applying the diffusion process on the pixel-space
image, the diffusion process is applied in the latent representation of U-Net. The process
is depicted in Figure 3.9

x ε 𝓛 x~𝒟

U-Net

D𝜓

Conditioning
Mechanism

QKV QKV

𝓛oss

Figure 3.9: Latent Diffusion Model.

26 3| Background

The training process will follow the formula in the Equation 3.18

Loss = min
E,D

max
ψ

(Lossrec(x,D(E(x)))− Lossadv(D(E(x))) + logDψ(x) + Lossadv(x; E ,D))

(3.18)

where Lossrec = MSE(x,D(E(x))) lost function for autoencoder. Lossreg = KL(E(x) =
L,N (0, 1)) will make the latent representation forced to a normal distribution. The
adversarial loss function going to measures the output image of the decoder as much as
the input, by implementing Discriminative function Dψ(D(E(x)) ≈ x). Minimizing the
encoder decoder means, it will have an output image that is similar to the input. The
discriminant part comes to predict the encoder input in order to improve the quality of
output. After getting the best latent representation, then training the Diffusion Model the
process is similar to Diffusion Model training in pixel-space, and freezes the autoencoder
part. To generate the image, the procedure is implemented cross-attention that combines
the conditional input with the input image that is trained with the Diffusion Model.

Controlling Image Diffusion Model [66], aim to control the output of generated image
of the Diffusion Model. The idea of architecture is to copy every layer of the Diffusion
model, see Figure 3.10.

neural network block
(locked)

neural network copy
(trainable)

zero convolution

+

+

x

zero convolution

condition

Figure 3.10: Controlling Diffusion Model.

The copied neural network layer is locked, which means when the training process it will
not retrain. The copy neural network will train with zero convolution. Zero convolution is
the convolution process with weight and bias initialized with zero. The inference process
combines the original image as a spatial context reference and text as semantic context

3| Background 27

conditioning. The original image will be inverted into spatial context conversion. Captur-
ing the spatial context from the original input image can be done with several techniques.
Canny edges detection, dept-map, segmentation map, Scribble, Holistically-Nested Edge
Detection (HED). Canny edge detection will provide the spatial context as a canny edge
detection algorithm result. Depth-map provides the depth image result. Semantic map
uses semantic segmentation as context spatial conversion. HED will provide an edge de-
tection algorithm that automatically learns rich hierarchical representations (guided by
deep supervision on side responses). See Figure 3.11.

(a) Original image (b) Canny (c) Depth-map

(d) Segmentation-map (e) Scribble (f) HED

Figure 3.11: Controlling Image with spatial context.

3.3. Metamorphic Testing in Deep Learning

Metamorphic Testing can be used in the context of deep learning to assess the quality
and reliability of models. It is based on the principle of metamorphism, which involves
transforming or altering the input data and examining the corresponding changes in the
model’s output. Metamorphic Testing can help in scenarios where traditional testing
methods might be inadequate, such as complex and non-deterministic, which is a deep
learning scope. Metamorphic Testing can be applied by Generate Test Cases, creating a
set of test cases by applying transformations to the original input data. Then Evaluate

28 3| Background

the Model, by comparing the model’s predictions with the expected outputs. If there
are significant discrepancies, it indicates potential issues with the model’s robustness or
correctness. This may prompt the discovery of the corner case, further investigation or
model refinement.

The similarity between traditional software and DNNs. In traditional software, each
statement performs a certain operation to transform the output of previous statement
to the input to the following statement, whereas in DNN, each neuron transforms the
output of previous layer to the input of the following layer. The output layer is related
to the receptive field of the input. But unlike traditional software, DNNs do not have
explicit branches and flow, but a neuron influences other neurons. A lower output value
indicates less influence and vice versa. When the output value of a neuron becomes zero,
the neuron does not have any influence on following neurons. Corner case behavior will
never be seen unless the test input is not cover all possibility. Similarly, low coverage
inputs will also leave different behaviors of DNNs unexplored. Therefore, many incorrect
DNN behaviors will remain unexplored even after performing fine-tuning the model with
the same input dataset.

Metamorphic Testing offers several advantages in the context of deep learning:

• Non-Bias Testing, It can uncover issues that traditional testing methods might miss
because it uses transformations of the input data, which can reveal subtle model
flaws.

• Automatic Test Case Generation, once the Metamorphic Relation is defined, test
cases can be automatically generated, making it easier to test a wide range of sce-
narios.

• Robustness Assessment, Metamorphic Testing helps assess a model’s robustness to
different inputs and transformations, which is important for real-world applications.

• Continual Testing, it can be used for continual monitoring of model performance,
as new data can be subjected to the same Metamorphic Testing.

29

4| Solution

This chapter provides a description of DILLEMA (DIffusion model and Large LanguagE
Model for Augmentation) to perform alternative generation and data augmentation as
the generated test cases for Metamorphic Testing. DILLEMA has five-step processes from
the input image to generate the image result. See Figure 4.1.

Large
Language

Model

Captioning
Model

Diffusion
Model

Step 1
CAPTION = "A street with a
grey car. The street is foggy
and dark"

Step 2
INPUT PROMPT = "Given
the task <TASK> and an image
described by this caption
<CAPTION>, what are the
elements that I can modify in
the image so that the output
corresponding to the image is
not changing the task.

Step 2
KEYWORDS = ["grey car",
"foggy", "dark"].

Step 3
INPUT PROMPT = "Given an
image described by this caption
<CAPTION>, identify the
possible alternatives for these
keywords <KEYWORDS>.

Step 3
ALTERNATIVES = {
"grey car" : ["black car", "white
car", "red car"],
"foggy" : ["rainy", "snowy"],
"dark": ["light", "bright"]
}

Step 4
INPUT PROMPT = Modify
the caption <CAPTION> by
applying some of the following
transformation described by
<ALTERNATIVES>.

Step 4
NEW CAPTION = "A road
with a white car. The street is
snowy and lot of sunlight"

Step 5

Figure 4.1: DILLEMA schema.

30 4| Solution

Step 1) the input image is described as text with an image Captioning Model, the result
provides some sentences related to the input image that is described as a caption. Step
2) LLM takes place in order to find the words that can be modified corresponding to
the description of the caption without changing the task objective, and the expected
result (Keywords) is a list of the most relevant words in the caption. Step 3) given
the specific task, and the caption (the original text description of image input), LLM
is asked to identify Alternatives, a set of the possible words to replace the elements in
Keywords. Step 4) creates New Caption by changing Keywords with their alternatives
and generating complete sentences that describe the output of the image. Step 5) control
a Diffusion Model to generate a new image based on the original image and New Caption.

4.1. Describing the Image with Captioning Model

In step 1, DILLEMA uses an image Captioning Model to capture the description of
the image. Captioning Model performs the generation of sentences which semantically
equivalent to the image description [31]. In this process, the Captioning Model can be
used to generate more than one sentence to depict a comprehensive description of the
image [32]. The large number of sentence generations in the caption can cause a problem
due to word repetitions. Because in step 4) should avoid word repetition. Increasing
the number of sentence generations also increases the time cost of this process. More
generated captions, more time needed, and vice-versa. Therefore, finding the optimal
number of captions becomes an important hyperparameter in this step. See Figure 4.2
which is an image input.

Figure 4.2: Input image for caption generation.

The result for generated captions that describe the input image with ten sentences,

4| Solution 31

[‘‘a vehicle driving on a foggy road in front of a tree’’,

‘‘a view from a windshield of a car driving down the road’’,

‘‘a car driving down the road and through a forest’’,

‘‘a photo of a street that has trees on it’’,

‘‘a car is driving down the side of a road’’,

‘‘a car on the highway next to a car that’s on the grass’’,

‘‘a car is driving down a road in the mist’’,

‘‘a car driving along a highway in a fog’’,

‘‘a view of impulses of cars on a road’’,

‘‘a view from inside a car of a road’’]

The generated caption with ten sentences shows many repetitions of the words car or road
where excessive word repetition should avoided.

4.2. Large Language Model (LLM) Application

LLM is used for several processes in DILLEMA, because it is proficient in addressing
and solving problems related to natural language [46, 48]. LLM enhances scalability
by offering a faster and automated replication process compared to human processes.
Keywords and Alternative generations require understanding the context and semantics
of natural language [56]. LLM involves predicting the next word in a sentence in the
inference process. This results in the model learning intricate language structures and
the importance of different words in diverse contexts [42, 63]. LLM essentially uses its
learned knowledge to identify and extract words that hold particular significance within
the context of the text to generate Keyword. LLM has learned a wide range of synonyms,
antonyms, and various ways to express sentences [57]. This semantic knowledge allows
LLM to suggest alternative words or phrases that fit the context of the sentence for
Alternative generation. LLM can consider and disambiguate multiple possible meanings
of a word [1], ensuring that the modifications align with the structural natural language of
the sentences after applying the alternatives’ words to have New Caption from Alternative
generation. DILLEMA uses three different steps for LLM application because it’s rather
easier to have LLM prompt for a specific task instead of combining several tasks into one
prompt. It also provides the easiness to manage the result and fine-tune the prompt on
specific task.

To optimize the performance of LLM application in DILLEMA, it is essential to consider
not only the effectiveness of crafting a suitable prompt but also consider multiple proper-
ties for better results. Fine-tuning the control over output randomness stands as a pivotal

32 4| Solution

property, dictating whether LLM generates a deterministic outcome with repetitive words
or more creative result. In the context of the inference process, the performance of LLM is
intricately tied to the length of input words. While minimizing the length of the generated
result can enhance precision, it introduces challenges when dealing with outputs requiring
extensive generation. It’s noteworthy that a long-generated result does not necessarily
guarantee conciseness, as complexity may still persist in the outcome.

4.2.1. LLM: Generate Keywords

DILLEMA in step 2 uses LLM to identify a set of words that can be altered to align
within the description of a caption, ultimately generating a list of keywords that match
the intended context. In other words, LLM performs to find a list of words in the caption
that can be modified without changing the main objective of the task. For example, if
the task is related to the word car then it will not give the word car in the list of words
in the keyword. The prompt to generate Keyword with given Caption and Task can be,

"Given the task <TASK> and an image described by this caption <CAPTION>,

what are the elements that I can modify in the image so that the output

corresponding to the image does not change the task."

LLM leverages its pre-trained knowledge to discern the contextual relevance of each word.
It understands the relationships between words, their syntactic and semantic roles, and
the overall coherence of the language. This understanding enables LLM to suggest possible
word modifications in the caption, maintaining the intended context and purpose of the
task. Moreover, providing the format example result also can help LLM provide a good
result. For instance, result = ["red", "dark", "sunny"] in this way, LLM provides
the result with the given template. Hence, it will not provide a result in arbitrary format.

4.2.2. LLM: Generate Alternatives

In step 3, DILLEMA considers the caption as an initial textual representation of the
image input, LLM recognizes the potential Alternative for the provided Keywords. The
outcome of this step is the creation of a formatted string that maps the original Keywords
to their respective Alternative words.

Given Keyword from the previous step and the caption that describes the image, the
prompt can be,

"Given an image described by this caption <CAPTION>, identify the

possible alternatives for these keywords <KEYWORDS>."

4| Solution 33

4.2.3. LLM: Generate New Caption

In step 4, LLM takes Keywords and transforms them into selected Alternatives within
complete sentences. These sentences are designed to convey a new description of the
image output, essentially serving as New Caption for the image. The process involves
replacing Keywords with their Alternatives to generate new sentences that vividly depict
the content and context of the image in a properly structured natural language. Prompt
for this step can be,

"Modify the caption <CAPTION> by applying some of the following

transformations described by <ALTERNATIVES>."

4.3. Controlling Image Generation in Diffusion Model

In the step 5, DILLEMA use a controlling Diffusion Model to generate the image from
image and text. The aim of Image generation create the test case generation or the
data augmentation from the original image. Data augmentation is most effective when
it faithfully mirrors real-world scenarios. However, techniques like blurring, rotation, and
translation may fall short in capturing diverse and complex real-world environments, par-
ticularly in the context of self-driving car vision. Therefore, the traditional transformation
needs to be improved. Generative Adversarial Networks (GANs) rely on paired data to
learn the mapping from one domain to another in the training process. Consequently,
this becomes a challenge when tackling transformations across multiple domains. On the
other hand, Diffusion models do not require paired data for training. This presumption
to have a mapped dataset may not always be feasible, particularly when dealing with
scenarios that have diverse targeted domains. A crucial consideration in self-driving car
data augmentation is ensuring that the desired outcome effectively captures the spatial
context of the original data. Diffusion Model allows fine-grained to have a high level of
control or precision over specific details or attributes within an image. In the context
of image generation, fine-grained control means being able to make precise adjustments
or modifications to various aspects of the image control over the generated images which
cannot be effectively done by GANs-based image-to-image transformation.

Controlling Diffusion Model incorporates a conditioning mechanism to control the trans-
formation which uses converted input images into different spatial contexts such as depth-
map, canny, segmentation-map, scribble, or HED. The spatial context result recognizes
semantic contents in the input. The different spatial contexts provide good results in
different specifications and conditions. See Figure 4.3. Image generation results that use

34 4| Solution

spatial context conditioning mechanisms will be provided in the Implementation section.

(a) Original image. (b) Canny.

(c) Depth-map. (d) Segmentation-map.

(e) Scribble. (f) HED.

Figure 4.3: Controlling Image with spatial context conversion possibilities.

Depth-map has a good performance when the original input image is essentially repre-
sented as a depth image. For canny spatial context, the original input image will convert
into an image with canny edge detection. The problem is to find the optimal threshold
to have a good spatial context that can capture the original image. Canny edge detection

4| Solution 35

also encounters challenges in addressing the potential variations in brightness conditions
within the original image. Setting the edge detection threshold too low risks losing the
spatial context of the original image, while a threshold set too high may introduce noise
and alter the contextual information in the converted image i.e. adding the objects that
are not in the original image. Hence, it cannot adapt to some variants of input datasets.
The segmentation map only works with specific pre-trained classes which make it cannot
be used on other task. Another spatial context conversion is HED, it is the optimal option
for capturing the spatial context of the original input image. HED performs better com-
pared to other spatial context conversion. It can recognize important semantic content in
spatial context conversion without considering any setting. Because of that, HED is used
in controlling image generation and combined with New Caption. The image generation
results are performed by spatial context that is captured from the original image, and
text as semantic context from New Caption as a prompt.

37

5| Implementation

This chapter provides the technicalities of the implementation of DILLEMA. Proposed
implementation of Image Captioning Model, Large Language Model, and Diffusion model.

5.1. BLIP-2 Captioning Model

Image Captioning Model uses Bootstrapping Language-Image Pre-training (BLIP), which
is a Vision-language pre-training model that refers to the implementation of training mod-
els on a large dataset that combines both visual and textual data. This model is designed
to learn joint representations of visual and textual information, which can then be used
for a variety of tasks that require understanding and generating content that involves both
images and text. Implementation of BLIP-2 latest version of BLIP is used for the Cap-
tioning Model. In order to have a good result consider another step on the solution pro-
cess. Applied nucleus_sampling provides a better generation of image description. The
generation result is more creative and captures the semantics of the image within a sen-
tence. DILLEMA uses pre-trained model without fine-tunning. BLIP-2 has several pre-
trained models, pretrain_opt2.7b, pretrain_opt2.7b, caption_coco_opt2.7b, and
caption_coco_opt6.7b The best option in this case is caption_coco_opt6.7b, which
provides non-repetitive tokens or sentences. The number of generation sentences also
needs to be optimized, because it affects the generating Alternative result. Therefore,
based on the experiment, two generated sentences are the optimal implementation, be-
cause it properly capture the semantics of the image more extensively and does not have
the problem in the Alternative generation step due to word repetition.

5.2. LLaMA-2 as Large Language Model

Large Language Model Meta AI is an abbreviation of LLaMA, which is a family of
large language models. LLM was applied for generating Keywords, Alternatives, and
New Caption, specifically using LLaMA-2, the second version of LLaMA. DILLEMA im-
plements a quantized pre-trained LLaMA-2 model without fine-tuning. LLaMA-2 is open-

38 5| Implementation

source but it is as good as GPT-4 (other LLMs family), and much better than GPT-3.5-
turbo. This is because LLaMA-2 is trained on a massive dataset of factual information,
and it uses a variety of techniques to check the accuracy of its output. LLaMA-2 has three
model sizes; 7, 13, and 70 billion parameters. A billion parameters need a huge amount
of memory resources. The quantization is a technique used to reduce the size of LLM by
modifying the precision of their weights. Quantization not only reduces memory needs
but also improves time inference. Of course, there is a trade-off in using that, the perfor-
mance could be decreased. But 13 billion parameters of LLaMA-2 with 5-bit quantized
precision provide good performance, with a lower memory cost.

LLaMA-2 needs some settings, temperature to manage the output’s randomness, re-
ducing the temperature generates responses that are more repetitive and deterministic,
whereas increasing the temperature leads to results with greater unpredictability and cre-
ativity. top_p also controls response randomness, but uses a different method. Lowering
top_p will narrow the model’s token selection to likelier tokens. Increasing top_p will let
the model choose from tokens with both high and low likelihood. max_new_tokens sets
a limit on the number of tokens per model response. repetition_penalty is a penalty
for repeated words in the generated text. context_length refers to the total number
of tokens permitted input by LLaMA-2. In the device configuration, LLaMA-2 can run
with CPU or GPU, if using GPU, it is needed to specify the gpu_layer. The number
of specified gpu_layer contributes to the inference time of LLaMA-2, the higher number
induces more time to load into memory, but decreases the inference time. LLM can ap-
ply a system prompt, which is an initial prompt to construct the general behavior of LLM.

"You are a helpful, respectful and honest assistant. Always answer

as helpfully as possible, while being safe. Your answers should not

include any harmful, unethical, racist, sexist, toxic, dangerous, or

illegal content. Please ensure that your responses are socially unbiased

and positive in nature. If a question does not make any sense, or is

not factually coherent, explain why instead of answering something not

correct. If you don’t know the answer to a question, please don’t share

false information."

The system prompt is constructed as the fundamental behavior of LLaMA-2 for each
task in the DILLEMA steps. DILLEMA implements Few-Shot inference because in the
prompt provides the example in the prompt to generate Keyword.

if the task is related to cars, then you cannot put the word car in the

list. For example, list = [’red’, ’people’, ’rainy’]

5| Implementation 39

Generating Alternatives involves more than just providing a simple example; it requires a
thorough demonstration to effectively communicate how the response should unfold. This
entails not only presenting a straightforward case but also offering a more comprehensive
illustration of the desired outcome.

For example "small": ["big", "medium"] which is different type of

size, "person": ["woman", "man", "boy", "girl"], "rainy": ["sunny",

"snowy", "clear"] which is different condition of weather, "red":

["green", "yellow", "blue"] which is a possible color, or "night":

["day", "lights"]. Provide the result, for example, result = {"small":

["big", "medium"], "person": ["woman", "man", "boy", "girl"], "rainy":

["sunny", "snowy", "clear"], "red": ["green", "yellow", "blue"],

"night": ["day", "lights"]}.

New Caption generation needs One-Shot inference because only given one example.

{"night": "morning", "dark": "red"} your response can be result = ["a

beautiful road in the morning", "a red street"].

5.3. ControlNet for Image Generation

The control of the Diffusion Model through a conditioning mechanism, which incorporates
spatial context and textual descriptions, stands as a crucial component in DILLEMA.
The use of GANs-based image-to-image transformation faces limitations as GANs rely on
paired data to learn the mapping from one domain to another in order to have specific
random noise. In the context of Instruct Pix2Pix, a GANs-based image-to-image transfor-
mation approach, the introduction of random noise to the input image poses a challenge
by not ensuring the preservation of specific characteristics, such as the spatial context
inherent in the input image’s structure. The adjustment of the degree of random noise is
facilitated through the strength parameter. When applying minimal noise, the resulting
image is closely similar to the input image, while adding a significant amount of noise pro-
duces a significantly divergent output image. Contrarily, ControlNet stands out by offering
a superior level of control, allowing for meticulous adjustments and detailed specifications
in the final output. The process involves capturing input images, transforming them into
a spatial context, and integrating them with prompts or text that articulate the desired
attributes of the augmented image. In the context of DILLEMA, HED spatial context
is chosen for its superior performance in addressing this specific problem when compared
to alternative methods. ControlNet provides two controlling prompts categories, prompt
going to infuse the description into an augmentation image, and negative-prompt makes

40 5| Implementation

a restriction on the augmented image. Figure 5.1, 5.2, 5.3, 5.4, and 5.5 are the generated
images provided by ControlNet starting from the original image in Figure 4.3. These
results are generated with prompt: "sunny road, detailed, professional camera",
and negative-prompt: "low-resolution". Image generation is able to generate aug-
mented images from spatial context and textual input. The result shows that HED
outperforms the other spatial context conversions, see Figure 5.5.

(a) Canny spatial context conversion. (b) Canny result.

Figure 5.1: ControlNet with Canny spatial context conversion.

(a) Depth-map spatial context conversion. (b) Depth-map result.

Figure 5.2: ControlNet with Depth-map spatial context conversion.

5| Implementation 41

(a) Segmentation-map spatial context conversion. (b) Segmentation-map result.

Figure 5.3: ControlNet with Segmentation-map spatial context conversion.

(a) Scribble spatial context conversion. (b) Scribble result.

Figure 5.4: ControlNet with Scribble spatial context conversion.

(a) HED spatial context conversion. (b) HED result.

Figure 5.5: ControlNet with HED spatial context conversion.

43

6| Evaluation

This chapter provides a critical component where the assessment DILLEMA are presented
in detail. To contextualize this evaluation, the methodologies and approaches employed
in conducting the evaluation are then thoroughly explained, encompassing the tools, tech-
niques, and datasets. Starting with the experimental description section that describes
the specific configurations, parameters, and conditions employed during the evaluation.
Experimental setup related to the hardware and software environments in which the ex-
periments were conducted. The Results section, presents evaluations, utilizing tables, and
textual descriptions. While also acknowledging the limitations of the evaluation process.

6.1. Experimental Description

In practical implementation, DILLEMA strategically divides its processes into three dis-
tinct processes to optimize computational resources. These processes encompass image
captioning, alternative generation, and image generation. This structure ensures efficiency
by minimizing the overall computational resource requirements. Image captioning uses
BLIP-2 which needs 20Gb memory. While LLaMA-2 needs 12Gb memory to process al-
ternative generation, and 12Gb is needed by ControlNet to generate images. Based on this
experimental specification DILLEMA should be deployed in the proper machine. In the
experiment, DILLEMA was applied to two datasets, ImageNet1K, is a dataset commonly
used for training and evaluating image classification task. It consists of 1.2 million images
from 1.000 different classes [50]. SHIFT provides multitask synthetic dataset tailored
for autonomous driving [54]. SHIFT encompasses both discrete and continuous shifts
in driving scenarios, Featuring a comprehensive sensor suite and annotations for several
mainstream perception tasks. However, in the context of this thesis, emphasis is placed
on leveraging the image segmentation task within the SHIFT dataset. Notably, SHIFT
includes a Multi-View RGB camera set, and for the scope of this study, the front-facing
camera is employed. This choice aligns with the precedent set by notable benchmarks
such as the Udacity Self Driving Car Challenge and Nvidia Dave-2, both of which utilized
front-facing cameras to predict steering commands in the domain of self-driving cars [2].

44 6| Evaluation

In the results section, a detailed comparison unfolds between the original dataset and its
augmented data, using diverse pre-trained models (ResNet18, ResNet50, and ResNet152)
for the ImageNet1K classification task. Acknowledging constraints of limited time and
available resources, this thesis strategically provides a focused comparison. To optimize
efficiency, the comparison involves 25 images per class, each accompanied by 5 augmented
versions, forming a representative subset within the ImageNet1K dataset. In contrast, the
entire SHIFT dataset is leveraged, ensuring a comprehensive evaluation. The augmen-
tation process for each image takes approximately 6 seconds, resulting in a cumulative
processing time of 4 days for the ImageNet1K dataset. Meanwhile, for the SHIFT dataset,
the entire augmentation process is completed within 1 day.

In the evaluation phase, this thesis extend the analysis to include the testing results of
fine-tuning the pre-trained model. The goal of this retraining process is to show the
the model’s robustness enhancement by incorporating and adapting to the generated
data. Fine-tuning involves adjusting the parameters of the pre-trained model using the
additional data generated by DILLEMA. This approach is undertaken with the intention
of improving the model’s ability to handle diverse scenarios, including corner cases and
unexpected inputs.

6.2. Experimental Setup

DILLEMA deployed into a machine with installed pytorch: 2.0.1 and CUDA: 11.8.
BLIP-2 needs to be installed salesforce-lavis==1.0.2 which provides the backbone
architecture and uses caption_coco_opt6.7b for the preferred parameters. We set
nucleus_sampling=True and define the number of captions that should be generated
with num_caption=2 and then set the device into "cuda". LLaMA-2 is running on top
of ctransformers==0.2.27 with gpu_layers=500 and with this specification setting,
"temperature": 0.1, "top_p": 0.85, and "repetition_penalty": 1 to manage the
result’s randomness. "max_new_tokens": 2048, "context_length": 2048 controlling
the result related to context and length of the token result. DILLEMA implements the
quantized ControlNet model and it is installed on top of diffusers[torch]==0.21.4 and
controlnet_aux==0.0.7 which provides the conversion of HED spatial context. Due to
constraints posed by the limited processing power of our machine’s GPU, DILLEMA
employs a quantized ControlNet model. The pretrained quantization is provided by Hug-
gingFace, llama-2-13b-chat.ggmlv3.q5_1.bin.

6| Evaluation 45

6.3. Result

This section provides DILLEMA comprehensive overview of the practical functioning
process, delineating its structure across various processes, including image captioning,
alternative generation, and image generation. The result shows that leveraging augmented
data introduces a valuable aspect of randomness to the output. This is particularly
advantageous since it enables the generation of a multitude of distinct images from just a
single alternative generation. Table 6.1 shows ImageNet1K each original data generates
5 augmented data. The first five images are classified as "Bird". These images have
the original caption, "a yellow bird standing on a wide branch, a yellow bird sitting on
a front twig looking off to the front". DILLEMA augmented these images and generated
an alternative version of the bird with different color (blue), different tree textures, and
different backgrounds. Note that both the original and the augmented version should be
still classified as "Bird". Table 6.2 shows mapping between a single original data point and
its corresponding augmented data in SHIFT dataset. DILLEMA provides the augmented
image by changing the environmental condition from the original image (e.g. sunny to
snowy, morning to evening, and dark to light).

Table 6.1: DILLEMA images augmentation result on ImageNet1K.

Original Image New Caption Augmented Image

a blue bird standing on a
wide branch, a blue bird
sitting on a front twig look-
ing off to the front

a blue bird standing on a
wide branch, a blue bird
sitting on a front twig look-
ing off to the front

46 6| Evaluation

Original Image New Caption Augmented Image

a blue bird standing on a
wide branch, a blue bird
sitting on a front twig look-
ing off to the front

a blue bird standing on a
wide branch, a blue bird
sitting on a front twig look-
ing off to the front

a blue bird standing on a
wide branch, a blue bird
sitting on a front twig look-
ing off to the front

a vulture is lying beside
some bushes, a picture of
a bird lying beside some
bushes

a vulture is lying beside
some bushes, a picture of
a bird lying beside some
bushes

6| Evaluation 47

Original Image New Caption Augmented Image

a vulture is lying beside
some bushes, a picture of
a bird lying beside some
bushes

a vulture is lying beside
some bushes, a picture of
a bird lying beside some
bushes

a vulture is lying beside
some bushes, a picture of
a bird lying beside some
bushes

several black chickens and
a couple of red and white
chickens stand on a paved,
a group of chickens stand
on a paved

several black chickens and
a couple of red and white
chickens stand on a paved,
a group of chickens stand
on a paved

48 6| Evaluation

Original Image New Caption Augmented Image

several black chickens and
a couple of red and white
chickens stand on a paved,
a group of chickens stand
on a paved

several black chickens and
a couple of red and white
chickens stand on a paved,
a group of chickens stand
on a paved

several black chickens and
a couple of red and white
chickens stand on a paved,
a group of chickens stand
on a paved

a small bird is perched on
some smooth rocks, a bird
standing on some smooth
rocks in the still

a small bird is perched on
some smooth rocks, a bird
standing on some smooth
rocks in the still

a small bird is perched on
some smooth rocks, a bird
standing on some smooth
rocks in the still

6| Evaluation 49

Original Image New Caption Augmented Image

a small bird is perched on
some smooth rocks, a bird
standing on some smooth
rocks in the still

a small bird is perched on
some smooth rocks, a bird
standing on some smooth
rocks in the still

a large white bird perched
on top of a thick tree
branch, the white and gray
bird is sitting in a short
tree

50 6| Evaluation

Original Image New Caption Augmented Image

a large white bird perched
on top of a thick tree
branch, the white and gray
bird is sitting in a short
tree

a large white bird perched
on top of a thick tree
branch, the white and gray
bird is sitting in a short
tree

6| Evaluation 51

Original Image New Caption Augmented Image

a large white bird perched
on top of a thick tree
branch, the white and gray
bird is sitting in a short
tree

a large white bird perched
on top of a thick tree
branch, the white and gray
bird is sitting in a short
tree

Table 6.2: DILLEMA images augmentation result on SHIFT.

Original Image New Caption Augmented Image

a car is driving through a
very sunny area, an ani-
mated view of several lights
in a rural area

52 6| Evaluation

Original Image New Caption Augmented Image

the scene of the car driv-
ing down a wet sidewalk, a
city street with a blue vehi-
cle going on it

a couple of cars driving
through an alley on a
snowy day, evening in the
city with sunsets

there are some cars is
drived in the middle of the
real road, several cars driv-
ing around in a standstill

cars moving down the alley
at lights, an image of many
cars driving on a bright
road at lights

a highway with two cars
stopped in front of a house,
two cars are stopped and
a man standing in front of
the house
a snowy street view from
a moving car looking into
an empty street, a sunny
view of a city from above
the street

a road with a stop sign
in the foreground, a car is
driving down a street and a
stop sign is gravel

6| Evaluation 53

6.3.1. ImageNet1K Result

This section provides a comparative analysis of testing performance between the original
dataset and augmented dataset, employing metrics previously detailed in the Background
section 3.2.3: accuracy, precision, recall, and F1 score. Tables 6.3 - 6.6 display results
that measure the pre-trained model’s generalization and indicate potential corner cases.
Table 6.7 presents the faulty cases found in the state-of-the-art of neural networks.

Table 6.3: Accuracy score.

Pre-trained Model Original Data % Augmented Data %
ResNet18 78.97 46.70
ResNet50 89.79 54.52
ResNet152 94.11 57.66

Average 87.62 52.96

Table 6.4: Precision score.

Pre-trained Model Original Data % Augmented Data %
ResNet18 79.59 50.44
ResNet50 90.49 58.77
ResNet152 94.55 61.25

Average 88.21 56.82

Table 6.5: Recall score.

Pre-trained Model Original Dat % Augmented Data %
ResNet18 78.97 46.70
ResNet50 89.79 54.52
ResNet152 94.11 57.66

Average 87.62 52.96

54 6| Evaluation

Table 6.6: F1 score.

Pre-trained Model Original Data % Augmented Data %
ResNet18 78.69 46.00
ResNet50 89.70 54.00
ResNet152 94.05 57.14

Average 87.48 52.38

Based on the result above, the augmented data are dropped by average 34.66% for accu-
racy score, 31.39% for precision score, 34.66% for recall score, and 35.10% for F1 score.

Table 6.7: Faulty behavior on ImageNet1K.

Model Original Data Augmented Data
ResNet18 5257 66619
ResNet50 2551 56843
ResNet152 1472 52920

Based on data shows that there exists a corner case which means the model is not able
to generalize well.

6.3.2. ResNet18 Performance

In this section provides the comparison performance between Top K classes which has
highest and lowest accuracy on the original data and their counterparts in the augmented
data. Where K : 10, 20, 50, 100. An additional aspect of the study examines comparison
between the original data which is correctly predicted by the model with their augmented
data. Table 6.8 illustrates the frequency of augmented data being classified as true (rang-
ing from 0 to 5) when the original data is also true. This table quantifies the instances
when the original data is true, with a corresponding scale indicating the number of times
augmented data is predicted as true—ranging from 0 (no augmented data predicted as
true) to 5 (all augmented data predicted as true). The frequency column denotes how
often augmented data is classified as true for a specific number of true predictions.

6| Evaluation 55

Table 6.8: Quantifying instances of augmented is true predicted when the original data
is true.

True Predicted Frequency %
0 24.85
1 10.91
2 8.81
3 9.74
4 12.41
5 33.29

Confusion Matrix

This section presents a comparison of the confusion matrix between the predictions for
the original data and augmented data, measured in percentages. Table 6.9 specifically
illustrates the outcomes for various classes, each belonging to the broader category of bird
species. Table 6.10 shows the result of augmented data. Likewise with Table 6.11 and
Table 6.12.

Table 6.9: Confusion matrix of original data.

ostrich brambling goldfinch house finch junco
ostrich 96 0 0 0 0

brambling 0 100 0 0 0
goldfinch 0 0 100 0 0

house finch 0 0 0 100 0
junco 0 0 0 0 92

Table 6.10: Confusion matrix of augmented data.

ostrich brambling goldfinch house finch junco
ostrich 73.6 0 0 0 0

brambling 0 42.4 12 1.6 1.6
goldfinch 0 0.8 58.4 0.8 0

house finch 0 8.8 26.4 14.4 2.4
junco 0 15.2 8.8 0.8 12.8

56 6| Evaluation

Table 6.11: Confusion matrix of original data.

indigo bunting robin bulbul jay magpie
indigo bunting 100 0 0 0 0

robin 0 100 0 0 0
bulbul 0 0 92 0 0

jay 4 0 0 96 0
magpie 0 0 0 0 92

Table 6.12: Confusion matrix of augmented data.

indigo bunting robin bulbul jay magpie
indigo bunting 51.2 0 0 5.6 0

robin 2.4 11.2 2.4 4 2.4
bulbul 0.8 2.4 20.8 6.4 2.4

jay 14.4 0.8 0.8 51.2 0.8
magpie 1.6 0.8 0 12.8 38.4

This outcome indicates that ResNet18 does not exhibit strong generalization capabilities
for bird species. The performance for these classes falls below the level observed with the
original data.

Top-10 Best Accuracy

Table 6.13 shows the Top-10 classes with the highest accuracy scores in the original
dataset, comparing them to their corresponding accuracy scores derived from augmented
data performance, presented as percentages. The results reveal errors in the model’s infer-
ence, indicating a challenge in effectively handling corner cases due to insufficient model
generalization. This is evident from the observed decrease in accuracy when assessing the
model on augmented data, simulating a specific instance of encountering corner cases.

Table 6.13: Top-10 the highest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
1 Cabbage Butterfly 100 31.2
2 Buckeye 100 34.4
3 Bison 100 61.6

6| Evaluation 57

Label Original Accuracy % Augmented Accuracy %
4 Yellow Lady’s Slipper 100 41.6
5 Daisy 100 85.6
6 Komodo Dragon 100 26.4
7 American Alligator 100 64.8
8 Orangutan 100 65.6
9 Speedboat 100 76.0
10 Colobus 100 21.6

The average accuracy for the Top-10 predictions on original images stands at an impressive
100%. However, when subjected to data augmentation, the model reveals a notable drop
in accuracy, indicating a challenge in maintaining performance comparable to that on
original images. This observation suggests that the pre-trained model may not possess
robust generalization properties. The fact that the model’s performance on augmented
data is only 50% in accuracy.

Top-20 Best Accuracy

Table 6.14 is the continuation of Top-10 best accuracy 6.13 presents the Top-20 classes
with the highest accuracy scores in the original dataset, comparing them to their corre-
sponding accuracy scores derived from augmented data performance. The results reveal
errors in the model’s inference, pointing to a challenge in effectively handling corner cases
due to insufficient model generalization. This becomes apparent through the observed
decline in accuracy when evaluating the model on augmented inputs.

Table 6.14: Top-20 the highest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
11 Torch 100 68.8
12 Triumphal Arch 100 85.6
13 Dandie Dinmont 100 3.2
14 Sulphur Butterfly 100 39.2
15 Prairie Chicken 100 37.6
16 Peacock 100 87.2
17 African Grey 100 23.2
18 Birdhouse 100 91.2

58 6| Evaluation

Label Original Accuracy % Augmented Accuracy %

19
Sulphur-Crested
Cockatoo

100 33.6

20 Lorikeet 100 17.6

The Top-20 predictions achieve an impressive 100% average accuracy on original images.
Yet, upon undergoing data augmentation, the model exhibits a significant decline in
accuracy, pointing to a challenge in sustaining performance levels similar to those on
the original images. This observation implies that the pre-trained model may lack robust
generalization properties. In the result, the model’s accuracy on augmented data is limited
to 49.8%.

Top-50 Best Accuracy

Table 6.15 extends the Top-10 best accuracy from Table 6.13 and Top-20 best accuracy
from Table 6.14 by presenting the Top-50 classes with the highest accuracy scores in
the original dataset. The table offers a comparison with their corresponding accuracy
scores derived from augmented data performance. In the subsequent analysis, the results
underscore errors in the model’s inference, signaling a challenge in effectively addressing
corner cases due to insufficient model generalization. This challenge becomes evident
through the observed decline in accuracy when evaluating the model on augmented inputs.

Table 6.15: Top-50 the highest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
21 Coucal 100 17.6
22 Sea Lion 100 69.6
23 Jacamar 100 28.8
24 Toucan 100 57.6
25 Albatross 100 56.0

26
Red-Backed Sand-
piper

100 36.8

27 Ruddy Turnstone 100 14.4
28 European Gallinule 100 21.6
29 Broccoli 100 80.0
30 Jigsaw Puzzle 100 83.2
31 Jack-O’-Lantern 100 87.2

6| Evaluation 59

Label Original Accuracy % Augmented Accuracy %
32 Hip 100 44.8
33 Steam Locomotive 100 86.4
34 Chambered Nautilus 100 69.6
35 Croquet Ball 100 48.8
36 Brown Bear 100 87.2
37 Brambling 100 42.4
38 Porcupine 100 76.8
39 Tiger 100 93.6
40 House Finch 100 14.4
41 Radio Telescope 100 84.0
42 Indigo Bunting 100 51.2
43 Robin 100 11.2
44 Snow Leopard 100 36.0
45 Ice Bear 100 90.4
46 Ladybug 100 80.8
47 Dung Beetle 100 57.6
48 Admiral 100 38.4
49 Recreational Vehicle 100 84.0
50 Pool Table 100 96.8

The Top-50 predictions achieve a remarkable 100% average accuracy on original images.
However, when undergoing data augmentation, the model experiences a noticeable de-
crease in accuracy, indicating a challenge in maintaining performance levels comparable
to those observed with original images. This observation raises questions about the pre-
trained model’s ability to generalize robustly. In practical terms, the model’s accuracy on
augmented data is only 54.8%.

Top-100 Best Accuracy

Table 6.16, which presents the Top-100 classes with the highest accuracy scores in the
original dataset, serves as an extension of the Top-10 best accuracy from Table 6.13, Top-
20 best accuracy from Table 6.14, and Top-50 highest accuracy from Table 6.15. The table
facilitates a comparison with their corresponding accuracy scores derived from augmented
data performance. The results emphasize errors in the model’s inference, signaling a chal-
lenge in effectively addressing corner cases due to insufficient model generalization. This
challenge becomes apparent through the observed decline in accuracy when evaluating

60 6| Evaluation

the model on augmented inputs.

Table 6.16: Top-100 the highest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
51 Sorrel 100 76.8
52 Zebra 100 96.0
53 Monarch 100 60.8
54 Goldfinch 100 58.4
55 Rhinoceros Beetle 96 41.6
56 Trifle 96 49.6
57 Blenheim Spaniel 96 23.2
58 Manhole Cover 96 44.0
59 Weevil 96 10.4
60 Fox Squirrel 96 85.6
61 Maypole 96 74.4
62 Killer Whale 96 87.2
63 Pekinese 96 40.8
64 Basketball 96 75.2
65 King Penguin 96 88.8
66 Angora 96 64.0
67 Walking Stick 96 65.6
68 American Coot 96 24.8
69 Leafhopper 96 44.0
70 Limpkin 96 16.8
71 Potter’S Wheel 96 73.6
72 Flamingo 96 96.8
73 Knot 96 72.8
74 Jinrikisha 96 60.8
75 Bullet Train 96 59.2
76 Fiddler Crab 96 48.0
77 Cab 96 79.2
78 Maze 96 56.0
79 Warthog 96 28.8
80 Norwegian Elkhound 96 0.8
81 Model T 96 84.8
82 Tibetan Mastiff 96 12.8

6| Evaluation 61

Label Original Accuracy % Augmented Accuracy %
83 Lion 96 90.4
84 Saint Bernard 96 24.0
85 Jaguar 96 81.6
86 Snowmobile 96 84.8
87 Leonberg 96 6.4
88 Pomeranian 96 44.8
89 Chow 96 30.4
90 Pinwheel 96 87.2
91 Arabian Camel 96 88.0
92 Plane 96 58.4
93 Cougar 96 64.0
94 Dhole 96 1.6
95 Running Shoe 96 76.0
96 Planetarium 96 76.0
97 Soccer Ball 96 83.2
98 Pickelhaube 96 68.8
99 Chiton 96 30.4
100 Odometer 96 95.2

The Top-100 predictions show that 98.1% average accuracy on original images. Yet, as
the model is tested into the data augmentation, there’s a discernible dip in accuracy.
This observation prompts contemplation regarding the pre-trained model’s are not well
generalization, the fact that the performance of accuracy is 54.8%

Top-10 Lowest Accuracy

Similar to the previous evaluation, but instead of having the highest accuracy classes,
Table 6.17 shows the Top-10 classes with the lowest accuracy scores in the original dataset,
comparing them to their corresponding accuracy scores derived from augmented data
performance.

Table 6.17: Top-10 the lowest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
1 Maillot 16.0 14.4
2 Lampshade 24.0 36.0

62 6| Evaluation

Label Original Accuracy % Augmented Accuracy %
3 Cassette Player 28.0 8.8

4
Black-And-Tan Coon-
hound

32.0 10.4

5 Night Snake 32.0 15.2
6 Green Lizard 32.0 52.8
7 Band Aid 36.0 22.4
8 Garden Spider 36.0 24.0
9 Purse 36.0 22.4
10 Spatula 36.0 22.4

The average accuracy for the Top-10 lowest predictions on the original images is 30.8%.
Conversely, the average accuracy on the augmented data for the Top-10 lowest predictions,
relative to the original image results, is 22.8%. Despite the lowest accuracy scenario, these
findings indicate that the data augmentation results are closely aligned with those of the
original data.

Top-20 Lowest Accuracy

Table 6.18 is the continuation of Top-10 lowest accuracy 6.17 presents the Top-20 classes
with the lowest accuracy scores in the original dataset, comparing them to their corre-
sponding accuracy scores derived from augmented data performance. The results reveal
errors in the model’s inference, pointing to a challenge in effectively handling corner cases
due to insufficient model generalization.

Table 6.18: Top-20 the lowest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
11 Ram 40 48.0
12 Sunglass 40 34.4
13 Plunger 40 13.6
14 Siberian Husky 40 16.8
15 Television 40 32.0
16 Collie 40 21.6
17 Water Bottle 40 31.2
18 Corn 40 26.4
19 Hook 40 22.4

6| Evaluation 63

Label Original Accuracy % Augmented Accuracy %
20 Space Bar 40 9.6

The average accuracy for the Top-20 lowest predictions on the original images stands at
35.4%. The result predictions on the augmented data which its classes in the Top-10
lowest accuracy score, the average accuracy score is 24.2%.

Top-50 Lowest Accuracy

Table 6.19 extends the Top-10 lowest accuracy from Table 6.17 and Top-20 lowest accuracy
from Table 6.18 by presenting the Top-50 classes with the lowest accuracy scores in the
original dataset. The table shows a comparison with the corresponding accuracy scores
derived from augmented data performance. Providing the empiric result indicating a
challenge in effectively addressing corner cases due to insufficient model generalization.

Table 6.19: Top-50 the lowest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
21 Letter Opener 40.0 36.8
22 Lens Cap 44.0 32.8
23 Pole 44.0 38.4
24 Seashore 44.0 30.4
25 Sandbar 44.0 30.4
26 Eskimo Dog 44.0 42.4
27 Dock 44.0 29.6
28 Hand Blower 44.0 30.4
29 Syringe 44.0 10.4
30 Projectile 44.0 35.2
31 Bathtub 44.0 31.2
32 Overskirt 44.0 21.6
33 Ruffed Grouse 44.0 2.4
34 Ice Cream 44.0 29.6
35 Australian Terrier 44.0 15.2
36 Monitor 44.0 51.2
37 Wooden Spoon 44.0 43.2
38 Red Wolf 44.0 4.0
39 Water Jug 44.0 19.2

64 6| Evaluation

Label Original Accuracy % Augmented Accuracy %

40
American Stafford-
shire Terrier

44.0 11.2

41 Hatchet 44.0 14.4
42 Stethoscope 44.0 52.0
43 Cleaver 48.0 36.0
44 Bath Towel 48.0 34.4
45 Breastplate 48.0 18.4
46 Monastery 48.0 19.2
47 Laptop 48.0 26.4
48 Handkerchief 48.0 24.0
49 Cradle 48.0 45.6
50 Patas 48.0 12.0

The average accuracy for the Top-50 lowest predictions on the original images is 41.1%.
In contrast, the predictions on the augmented data, specifically for the classes within the
Top-50 lowest accuracy scores, yield an average accuracy score of 26.2%.

Top-100 Lowest Accuracy

Table 6.20, which presents the Top-100 classes with the lowest accuracy scores in the
original dataset, serves as an extension of the Top-10 lowest accuracy from Table 6.17,
Top-20 lowest accuracy from Table 6.18, and Top-50 lowest accuracy from Table 6.19.
The table facilitates a comparison with their corresponding accuracy scores derived from
augmented data performance.

Table 6.20: Top-100 the lowest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
51 Mouse 48.0 54.4
52 Weasel 48.0 19.2
53 Tiger Cat 48.0 29.6
54 Appenzeller 48.0 6.4
55 English Foxhound 52.0 11.2
56 Microphone 52.0 58.4
57 Maraca 52.0 16.8
58 Mailbag 52.0 41.6

6| Evaluation 65

Label Original Accuracy % Augmented Accuracy %
59 Library 52.0 56.8
60 Wine Bottle 52.0 47.2
61 Wreck 52.0 13.6
62 Screen 52.0 43.2
63 Miniature Schnauzer 52.0 8.8
64 Mushroom 52.0 51.2
65 Cliff 52.0 31.2
66 Hair Spray 52.0 31.2
67 Church 52.0 61.6
68 Cloak 52.0 37.6
69 Lakeside 52.0 33.6
70 Crate 52.0 28.8
71 Paddle 52.0 48.8
72 Tape Player 52.0 28.0
73 Velvet 52.0 13.6
74 Digital Clock 52.0 36.0
75 Plate Rack 52.0 49.6
76 Toy Poodle 52.0 19.2
77 Radio 52.0 36.8
78 Cardigan 52.0 14.4
79 Barrel 52.0 48.8
80 Hognose Snake 52.0 10.4
81 Restaurant 56.0 43.2
82 Windsor Tie 56.0 48.8
83 Diaper 56.0 34.4
84 English Springer 56.0 4.0
85 Lhasa 56.0 13.6
86 Canoe 56.0 62.4
87 Rifle 56.0 48.0
88 Horizontal Bar 56.0 45.6
89 Harvester 56.0 45.6
90 Passenger Car 56.0 38.4
91 Soap Dispenser 56.0 44.0
92 Chihuahua 56.0 52.0
93 Chime 56.0 52.0

66 6| Evaluation

Label Original Accuracy % Augmented Accuracy %
94 Egyptian Cat 56.0 38.4
95 Shih-Tzu 56.0 23.2
96 Bassinet 56.0 36.8
97 Ballpoint 56.0 53.6
98 Breakwater 56.0 31.2
99 Tub 56.0 32.8
100 Lotion 56.0 36.0

The average accuracy for the Top-100 lowest predictions on the original images is 47.2%.
In contrast, the predictions on the augmented data, specifically for the classes within the
Top-100 lowest accuracy scores, yield an average accuracy score of 30.84%.

6.3.3. ResNet50 Performance

In this section provides the comparison performance between Top K classes which has
highest and lowest accuracy on the original data and their counterparts in the augmented
data. The inference result uses ResNet50 pre-trained model. This section also provide the
result of prediction for augmented instance align with instances where the original data is
predicted correctly. Table 6.21 depicts the occurrence of augmented data being labeled as
true (ranging from 0 to 5) when the initial data is also true. It provides a quantification of
situations where the original data is true, indicating the frequency of instances in which
augmented data is predicted as true. The scale ranges from 0 (indicating no instances
of augmented data being predicted as true) to 5 (representing all augmented data being
predicted as true). The frequency column specifies the frequency with which augmented
data is classified as true for a given number of true predictions.

Table 6.21: Quantifying instances of augmented is true predicted when the original data
is true.

True Predicted Frequency %
0 22.93
1 9.69
2 8.05
3 8.59
4 11.42
5 39.32

6| Evaluation 67

Confusion Matrix

In this section, depict a comparative analysis of the confusion matrices for predictions on
both original and augmented data, expressed as percentages. Table 6.22 - 6.25 provides
a detailed breakdown of outcomes for various classes within the broader category of bird
species.

Table 6.22: Confusion matrix of original data.

ostrich brambling goldfinch house finch junco
ostrich 100 0 0 0 0

brambling 0 100 0 0 0
goldfinch 0 0 100 0 0

house finch 0 0 0 100 0
junco 0 0 0 0 96

Table 6.23: Confusion matrix of augmented data.

ostrich brambling goldfinch house finch junco
ostrich 84 0 0 0 0

brambling 0 54.4 9.6 0.8 2.4
goldfinch 0 4 54.4 0 0

house finch 0 16.8 16 16.8 1.6
junco 0 20.8 5.6 2.4 4.8

Table 6.24: Confusion matrix of original data.

indigo bunting robin bulbul jay magpie
indigo bunting 100 0 0 0 0

robin 0 100 0 0 0
bulbul 0 0 100 0 0

jay 0 0 0 100 0
magpie 0 0 0 0 96

68 6| Evaluation

Table 6.25: Confusion matrix of augmented data.

indigo bunting robin bulbul jay magpie
indigo bunting 58.4 0 0 4.8 0

robin 2.4 12 4.8 3.2 3.2
bulbul 1.6 0.8 45.6 8 3.2

jay 5.6 0 4 69.6 1.6
magpie 0 0.8 2.4 10.4 44.8

For bird species, this observation follows a similar process, revealing the limitation in
ResNet50’s capacity to effectively generalize. Its performance falls short of the level seen
in the original data; however, there is a noteworthy improvement when contrasted with
the performance of ResNet18.

Top-10 Best Accuracy

Table 6.26 shows the Top-10 class of data augmentation result with respect to the Top-
10 highest accuracy score. The findings expose inaccuracies in the model’s inference,
highlighting a difficulty in adeptly addressing corner cases owing to inadequate model
generalization. This is apparent in the noticeable decline in accuracy when evaluating the
model on augmented data, replicating a particular scenario of encountering corner cases.

Table 6.26: Top-10 the highest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
1 Dishrag 100 48.8
2 Pomeranian 100 53.6
3 Hyena 100 85.6
4 Rotisserie 100 58.4
5 Dhole 100 0.0
6 Rugby Ball 100 60.8
7 Disk Brake 100 87.2
8 Harmonica 100 70.4
9 Chow 100 28.0
10 Newfoundland 100 11.2

The average accuracy for the Top-10 highest class predictions with ResNet50 on original
images stands at an impressive 100%. However, when subjected to data augmentation,

6| Evaluation 69

the model reveals a notable drop in accuracy, indicating a challenge in maintaining per-
formance comparable to that on original images. This observation suggests that the pre-
trained model may not possess robust generalization properties. In practice, the model’s
performance on augmented data is only 50.4% in accuracy. This observation suggests
that the inclusion of ResNet50 does not yield a significant enhancement in the model’s
generalization especially in the case of Top-10 highest accuracy class.

Top-20 Best Accuracy

Table 6.27 is the continuation of Top-10 best accuracy 6.26 presents the Top-20 classes
with the highest accuracy scores in the original dataset, comparing them to their corre-
sponding accuracy scores derived from augmented data performance.

Table 6.27: Top-20 the highest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
11 Recreational Vehicle 100 92.8
12 Pug 100 72.0
13 Dalmatian 100 78.4
14 School Bus 100 77.6
15 Scoreboard 100 87.2
16 Great Dane 100 27.2
17 French Bulldog 100 40.8
18 Tibetan Mastiff 100 15.2
19 Arctic Fox 100 40.0
20 Radio Telescope 100 81.6

The Top-20 predictions achieve an impressive 100% average accuracy on original images.
Yet, upon undergoing data augmentation, the model exhibits a significant decline in
accuracy, pointing to a challenge in sustaining performance levels similar to those on the
original images. This observation implies that the pre-trained model may lack robust
generalization properties. In practical terms, the model’s accuracy on augmented data is
limited to 55.8%.

Top-50 Best Accuracy

Table 6.28 extends the Top-10 best accuracy from Table 6.26 and Top-20 best accuracy
from Table 6.27 by presenting the Top-50 classes with the highest accuracy scores in the

70 6| Evaluation

original dataset. The table offers a comparison with their corresponding accuracy scores
derived from augmented data performance.

Table 6.28: Top-50 the highest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
21 Convertible 100 60.0
22 Meerkat 100 60.8
23 Leafhopper 100 54.4
24 Cicada 100 36.0
25 Pool Table 100 93.6
26 Rhinoceros Beetle 100 36.8
27 Potter’S Wheel 100 84.8
28 Ladybug 100 87.2
29 Projector 100 83.2
30 Puck 100 55.2
31 Racer 100 76.8
32 Ice Bear 100 92.0
33 Quill 100 88.0
34 Brown Bear 100 88.0
35 Cheetah 100 75.2
36 Tiger 100 96.8
37 Lion 100 92.0
38 Snow Leopard 100 54.4
39 Screw 100 84.0
40 Hard Disc 100 71.2
41 Hamper 100 60.8
42 Toilet Seat 100 68.8
43 Tank 100 86.4
44 Thatch 100 50.4
45 Boston Bull 100 28.8
46 Dandie Dinmont 100 3.2
47 Theater Curtain 100 88.8
48 Airedale 100 2.4
49 Go-Kart 100 74.4
50 Torch 100 88.8

6| Evaluation 71

The Top-50 predictions achieve a remarkable 100% average accuracy on original images.
However, when undergoing data augmentation, the model experiences a noticeable de-
crease in accuracy, indicating a challenge in maintaining performance levels comparable
to those observed with original images. This observation raises questions about the pre-
trained model’s ability to generalize robustly. In practical terms, the model’s accuracy on
augmented data is only 62.8%.

Top-100 Best Accuracy

Table 6.29, which presents the Top-100 classes with the highest accuracy scores in the
original dataset, serves as an extension of the Top-10 best accuracy from Table 6.26, Top-
20 best accuracy from Table 6.27, and Top-50 highest accuracy from Table 6.28. The
table enables a comparison of their accuracy scores derived from the performance on aug-
mented data. The results highlight errors in the model’s inference, signaling a challenge in
effectively addressing corner cases due to insufficient model generalization. This challenge
becomes apparent through the observed decline in accuracy when evaluating the model
on augmented inputs.

Table 6.29: Top-100 the highest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
51 Gondola 100 85.6
52 Gong 100 51.2
53 Grand Piano 100 94.4
54 Hamper 100 60.8
55 Hard Disc 100 71.2
56 Harmonica 100 70.4
57 Honeycomb 100 87.2
58 Jeep 100 73.6
59 Jigsaw Puzzle 100 92.0
60 Jinrikisha 100 92.0
61 Knee Pad 100 59.2
62 Microwave 100 88.0
63 Missile 100 60.0
64 Model T 100 90.4
65 Mosquito Net 100 52.0
66 Mountain Bike 100 88.8

72 6| Evaluation

Label Original Accuracy % Augmented Accuracy %
67 Moving Van 100 62.4
68 Oboe 100 48.0
69 Ocarina 100 53.6
70 Pool Table 100 93.6
71 Potter’S Wheel 100 84.8
72 Projector 100 83.2
73 Puck 100 55.2
74 Quill 100 88.0
75 Racer 100 76.8
76 Radio Telescope 100 81.6
77 Recreational Vehicle 100 92.8
78 Rotisserie 100 58.4
79 Rugby Ball 100 60.8
80 School Bus 100 77.6
81 Scoreboard 100 87.2
82 Screw 100 84.0
83 Slide Rule 100 42.4
84 Soccer Ball 100 91.2
85 Speedboat 100 86.4
86 Steam Locomotive 100 87.2
87 Stove 100 78.4
88 Streetcar 100 78.4
89 Stupa 100 77.6
90 Sundial 100 74.4
91 Swimming Trunks 100 64.0
92 Swing 100 89.6
93 Tank 100 86.4
94 Thatch 100 50.4
95 Theater Curtain 100 88.8
96 Toilet Seat 100 68.8
97 Torch 100 88.8
98 Trombone 100 72.8
99 Unicycle 100 92.8
100 Upright 100 85.6

6| Evaluation 73

The Top-100 predictions show that 100% average accuracy on original images. It shows
that ResNet50 provode an improvement result compare to the ResNet18. Yet, as the
model is tested into the data augmentation, there’s a discernible dip in accuracy. This
observation prompts contemplation regarding the pre-trained model’s are not well gener-
alization, the fact that the performance of accuracy is 63.8%

Top-10 Lowest Accuracy

Table 6.30 shows the Top-10 classes with the lowest accuracy scores in the original dataset,
comparing them to their corresponding accuracy scores derived from augmented data
performance.

Table 6.30: Top-10 the lowest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
1 Garden Spider 20 5.6
2 Eskimo Dog 28 27.2
3 Soup Bowl 36 27.2
4 Weasel 36 32.0
5 Projectile 36 30.4
6 Cassette Player 36 16.0
7 Maillot 36 33.6
8 Ram 44 51.2
9 Green Lizard 44 56.0
10 Ruffed Grouse 44 1.6

The average accuracy for the Top-10 lowest predictions on the original images is 36.0%.
Conversely, the average accuracy on the augmented data for the Top-10 lowest predictions,
relative to the original image results, is 28.0%. Despite the lowest accuracy scenario, these
findings indicate that the data augmentation results are closely aligned with those of the
original data.

Top-20 Lowest Accuracy

Table 6.31 is the continuation of Top-10 lowest accuracy 6.30 presents the Top-20 classes
with the lowest accuracy scores in the original dataset, comparing them to their corre-
sponding accuracy scores derived from augmented data performance.

74 6| Evaluation

Table 6.31: Top-20 the lowest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
11 Hog 48 46.4
12 Sandbar 48 30.4
13 Mushroom 48 51.2
14 Church 48 61.6
15 Collie 48 21.6
16 Tub 52 32.8
17 Sidewinder 52 8.0
18 Corn 52 26.4
19 Space Bar 56 9.6
20 Wolf Spider 56 36.8

The average accuracy for the Top-20 lowest predictions on the original images stands at
43.4%. The result predictions on the augmented data which its classes in the Top-10
lowest accuracy score, the average accuracy score is 31.6%.

Top-50 Lowest Accuracy

Table 6.32 extends the Top-10 lowest accuracy from Table 6.30 and Top-20 lowest accuracy
from Table 6.31 by presenting the Top-50 classes with the lowest accuracy scores in the
original dataset.

Table 6.32: Top-50 the lowest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
21 Night Snake 56 15.2
22 Ice Cream 56 29.6
23 Dock 56 29.6
24 Sunglasses 56 46.4
25 Lampshade 56 36.0
26 Wine Bottle 56 47.2
27 English Foxhound 60 11.2
28 Cliff 60 31.2
29 Tiger Cat 60 29.6

6| Evaluation 75

Label Original Accuracy % Augmented Accuracy %

30
American Stafford-
shire Terrier

60 11.2

31 Purse 64 22.4
32 Mortarboard 64 60.0
33 Laptop 64 26.4
34 Seashore 64 30.4
35 Typewriter Keyboard 64 40.8
36 Toy Poodle 64 19.2
37 Cricket 68 50.4
38 Handkerchief 68 24.0
39 Hook 68 22.4
40 Digital Clock 68 36.0
41 Groom 68 56.0
42 Plate 68 32.0
43 Green Snake 68 70.4
44 Computer Keyboard 68 67.2
45 Wok 68 46.4
46 Monitor 68 51.2
47 Tusker 68 38.4
48 Appenzeller 68 6.4
49 Cloak 68 37.6
50 Miniature Poodle 68 12.0

The average accuracy for the Top-50 lowest predictions on the original images is 55.6%.
In contrast, the predictions on the augmented data, specifically for the classes within the
Top-50 lowest accuracy scores, yield an average accuracy score of 35.8%.

Top-100 Lowest Accuracy

Table 6.33, which presents the Top-100 classes with the lowest accuracy scores in the
original dataset, serves as an extension of the Top-10 lowest accuracy from Table 6.30,
Top-20 lowest accuracy from Table 6.31, and Top-50 lowest accuracy from Table 6.32.

76 6| Evaluation

Table 6.33: Top-100 the lowest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
51 Paddle 68 48.8
52 Switch 68 20.0
53 Barrel 68 48.8
54 Radio 68 36.8
55 Analog Clock 68 44.0
56 Television 68 32.0
57 Notebook 68 61.6
58 Printer 68 60.8
59 Spider Monkey 72 30.4
60 Egyptian Cat 72 38.4
61 Australian Terrier 72 15.2
62 Silky Terrier 72 12.8
63 Cradle 72 45.6
64 Doberman 72 10.4
65 Cornet 72 38.4
66 Band Aid 72 22.4
67 Car Wheel 72 63.2
68 Cuirass 72 53.6
69 Black-Footed Ferret 72 14.4
70 Toilet Tissue 72 36.8
71 Grille 72 45.6
72 Coral Reef 72 60.0
73 Red Wine 72 42.4
74 Wool 72 30.4
75 Water Bottle 72 31.2
76 Wall Clock 72 61.6
77 Tape Player 72 28.0
78 Spatula 72 22.4
79 Sliding Door 72 61.6
80 Gown 72 52.0
81 Pitcher 72 72.0
82 Picket Fence 72 42.4
83 Passenger Car 72 38.4

6| Evaluation 77

Label Original Accuracy % Augmented Accuracy %
84 Moped 72 44.0
85 Crane 72 38.4
86 Hoopskirt 72 37.6
87 Military Uniform 72 56.0
88 Maillot 72 46.4
89 Overskirt 76 21.6
90 Velvet 76 13.6
91 Lens Cap 76 32.8
92 Cardigan 76 14.4
93 Siberian Husky 76 16.8
94 Ipod 76 73.6
95 Water Jug 76 19.2
96 Wooden Spoon 76 43.2
97 Desk 76 58.4
98 Briard 76 9.6
99 English Springer 76 4.0
100 Comic Book 76 43.2

The average accuracy for the Top-100 lowest predictions on the original images is 63.9%.
In contrast, the predictions on the augmented data, specifically for the classes within the
Top-100 lowest accuracy scores, yield an average accuracy score of 40.2%.

78 6| Evaluation

6.3.4. ResNet152 Performance

In this section provides the comparison performance between Top K classes which has
highest and lowest accuracy on the original data and their counterparts in the augmented
data. The inference result uses ResNet152 pre-trained model. This section additionally
presents the outcomes of prediction for augmented instances, with respect to instances
where the original data is predicted correctly, see Table 6.34

Table 6.34: Quantifying instances of augmented is true predicted when the original data
is true.

True Predicted Frequency %
0 21.90
1 9.43
2 8.05
3 8.56
4 10.89
5 41.17

Confusion Matrix

In this section, we present a comparative analysis of the confusion matrices, showcasing
predictions on both original and augmented data in percentage terms. Tables 6.35 provides
a detailed breakdown of outcomes for various classes within the broader category of bird
species, mirroring the observations made with ResNet18 and ResNet152.

Table 6.35: Confusion matrix of original data.

ostrich brambling goldfinch house finch junco
ostrich 100 0 0 0 0

brambling 0 100 0 0 0
goldfinch 0 0 100 0 0

house finch 0 0 0 100 0
junco 0 0 0 0 96

6| Evaluation 79

Table 6.36: Confusion matrix of augmented data.

ostrich brambling goldfinch house finch junco
ostrich 91.2 0 0 0 0

brambling 0 56.8 11.2 2.4 0
goldfinch 0 4.8 58.4 0.8 0

house finch 0 12.8 20 19.2 2.4
junco 0 17.6 6.4 1.6 6.4

Table 6.37: Confusion matrix of original data.

indigo bunting robin bulbul jay magpie
indigo bunting 100 0 0 0 0

robin 0 100 0 0 0
bulbul 0 0 100 0 0

jay 0 0 0 100 0
magpie 0 0 0 0 100

Table 6.38: Confusion matrix of augmented data.

indigo bunting robin bulbul jay magpie
indigo bunting 53.6 0 0 8 0

robin 1.6 8.8 4.8 1.6 4.8
bulbul 0 3.2 28.8 11.2 2.4

jay 8 0 3.2 68.8 0.8
magpie 0 1.6 0 12.8 48

This observation points to a limitation in ResNet152’s ability to generalize effectively
for bird species, with its performance not reaching the level seen in the original data.
However, there is notable improvement compared to the performance of ResNet18 and
ResNet50.

Top-10 Best Accuracy

Table 6.39 shows the Top-10 class which has the highest accuracy score which is repre-
sented as percentages and shows the data augmentation result with respect to the original
data.

80 6| Evaluation

Table 6.39: Top-10 the highest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
1 Ashcan 100 69.6
2 Angora 100 76.0
3 Wood Rabbit 100 24.0
4 Sea Cucumber 100 43.2
5 Sea Urchin 100 44.0
6 Loafer 100 75.2
7 Hotdog 100 90.4
8 Sulphur Butterfly 100 46.4
9 Cabbage Butterfly 100 24.0
10 Monarch 100 73.6

The average accuracy for the Top-10 highest class predictions with ResNet152 on original
images stands at an impressive 100%. However, when subjected to data augmentation,
the model reveals a notable drop in accuracy, indicating a challenge in maintaining per-
formance comparable to that on original images. This observation suggests that the pre-
trained model may not possess robust generalization properties. In practice, the model’s
performance on augmented data is only 56.6% in accuracy. This observation suggests that
the inclusion of ResNet152 improve the accuracy performance in the model’s generaliza-
tion especially in the case of Top-10 highest accuracy class compare to others pre-trained
model.

Top-20 Best Accuracy

Table 6.40 is the continuation of Top-10 best accuracy 6.39 presents the Top-20 classes
with the highest accuracy scores in the original dataset, comparing them to their corre-
sponding accuracy scores derived from augmented data performance.

Table 6.40: Top-20 the highest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
11 Ringlet 100 61.6
12 Admiral 100 39.2
13 Tray 100 77.6
14 Head Cabbage 100 80.0

6| Evaluation 81

Label Original Accuracy % Augmented Accuracy %
15 Lacewing 100 42.4
16 Leafhopper 100 45.6
17 Trailer Truck 100 80.0
18 Loupe 100 47.2
19 Cockroach 100 54.4
20 Walking Stick 100 84.8

The Top-20 predictions achieve an impressive 100% average accuracy on original images.
Yet, upon undergoing data augmentation, the model exhibits a significant decline in
accuracy, pointing to a challenge in sustaining performance levels similar to those on the
original images. This observation implies that the pre-trained model may lack robust
generalization properties. In practical terms, the model’s accuracy on augmented data is
limited to 58.9%.

Top-50 Best Accuracy

Table 6.41 extends the Top-10 best accuracy from Table 6.39 and Top-20 best accuracy
from Table 6.40 by presenting the Top-50 classes with the highest accuracy scores in the
original dataset. The table offers a comparison with their corresponding accuracy scores
derived from augmented data performance.

Table 6.41: Top-50 the highest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
21 Broccoli 100 85.6
22 Magnetic Compass 100 76.8
23 Mailbox 100 83.2
24 Toyshop 100 71.2
25 Fly 100 81.6
26 Weevil 100 18.4
27 Rhinoceros Beetle 100 44.0
28 Lipstick 100 81.6
29 Liner 100 83.2
30 Manhole Cover 100 64.0
31 Porcupine 100 83.2
32 Orangutan 100 71.2

82 6| Evaluation

Label Original Accuracy % Augmented Accuracy %
33 Three-Toed Sloth 100 84.8
34 Armadillo 100 80.0
35 Badger 100 80.8
36 Skunk 100 56.0
37 Trifle 100 67.2
38 Ice Lolly 100 66.4
39 Arabian Camel 100 97.6
40 Library 100 76.8
41 Hartebeest 100 31.2
42 Ibex 100 72.0
43 Bighorn 100 37.6
44 Lighter 100 51.2
45 Bison 100 79.2
46 Bagel 100 63.2
47 Pretzel 100 74.4
48 Hippopotamus 100 82.4
49 Warthog 100 34.4
50 Wild Boar 100 60.0

The Top-50 predictions achieve a remarkable 100% average accuracy on original images.
However, when undergoing data augmentation, the model experiences a noticeable de-
crease in accuracy, indicating a challenge in maintaining performance levels comparable
to those observed with original images. This observation raises questions about the pre-
trained model’s ability to generalize robustly. In practical terms, the model’s accuracy on
augmented data is only 64.3%.

Top-100 Best Accuracy

Table 6.42, which presents the Top-100 classes with the highest accuracy scores in the
original dataset, serves as an extension of the Top-10 best accuracy from Table 6.39,
Top-20 best accuracy from Table 6.40, and Top-50 highest accuracy from Table 6.41.
The table facilitates a comparison of their accuracy scores obtained from augmented data
performance. The findings underscore errors in the model’s inference, indicating a notable
challenge in effectively handling corner cases due to insufficient model generalization. This
challenge is evident in the observed decrease in accuracy when assessing the model using
augmented inputs.

6| Evaluation 83

Table 6.42: Top-100 the highest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
51 Hartebeest 100 31.2
52 Arabian Camel 100 97.6
53 Skunk 100 56.0
54 Badger 100 80.8
55 Armadillo 100 80.0
56 Three-Toed Sloth 100 84.8
57 Orangutan 100 71.2
58 Ashcan 100 69.6
59 Library 100 76.8
60 Lighter 100 51.2
61 Liner 100 83.2
62 Lipstick 100 81.6
63 Loafer 100 75.2
64 Loupe 100 47.2
65 Magnetic Compass 100 76.8
66 Mailbox 100 83.2
67 Manhole Cover 100 64.0
68 Marimba 100 80.0
69 Matchstick 100 55.2
70 Maypole 100 80.8
71 Model T 100 92.8
72 Mosque 100 91.2
73 Motor Scooter 100 78.4
74 Mountain Bike 100 86.4
75 Moving Van 100 76.0
76 Muzzle 100 52.0
77 Nail 100 43.2
78 Neck Brace 100 42.4
79 Nipple 100 56.0
80 Oboe 100 53.6
81 Toilet Seat 100 79.2
82 Toyshop 100 71.2
83 Trailer Truck 100 80.0

84 6| Evaluation

Label Original Accuracy % Augmented Accuracy %
84 Tray 100 77.6
85 Washer 100 77.6
86 Trifle 100 67.2
87 Ice Lolly 100 66.4
88 Bagel 100 63.2
89 Pretzel 100 74.4
90 Cheeseburger 100 76.8
91 Hotdog 100 90.4
92 Head Cabbage 100 80.0
93 Broccoli 100 85.6
94 Zucchini 100 63.2
95 Pineapple 100 71.2
96 Jackfruit 100 35.2
97 Custard Apple 100 41.6
98 Pomegranate 100 63.2
99 Hay 100 91.2
100 Carbonara 100 52.8

The Top-100 predictions show that 100% average accuracy on original images. It shows
that ResNet152 provode an improvement result compare to the ResNet18. Yet, as the
model is tested into the data augmentation, there’s a discernible dip in accuracy. This
observation prompts contemplation regarding the pre-trained model’s are not well gener-
alization, the fact that the performance of accuracy is 63.5%

Top-10 Lowest Accuracy

Table 6.43 shows the Top-10 classes with the lowest accuracy scores in the original dataset,
comparing them to their corresponding accuracy scores derived from augmented data
performance.

Table 6.43: Top-10 the lowest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
1 Projectile 32 28.8
2 Weasel 40 27.2
3 Cassette Player 44 11.2

6| Evaluation 85

Label Original Accuracy % Augmented Accuracy %
4 Hog 48 42.4
5 Garden Spider 48 20.8
6 Green Lizard 48 59.2
7 English Foxhound 52 11.2
8 Soup Bowl 52 37.6
9 Sidewinder 52 12.8
10 Eskimo Dog 52 48.8

The average accuracy for the Top-10 lowest predictions on the original images is 46.8%.
Conversely, the average accuracy on the augmented data for the Top-10 lowest predictions,
relative to the original image results, is 30.0%. Despite the lowest accuracy scenario, these
findings indicate that the data augmentation results are closely aligned with those of the
original data.

Top-20 Lowest Accuracy

Table 6.44 is the continuation of Top-10 lowest accuracy 6.43 presents the Top-20 classes
with the lowest accuracy scores in the original dataset, comparing them to their corre-
sponding accuracy scores derived from augmented data performance.

Table 6.44: Top-20 the lowest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
11 Ruffed Grouse 52 4.0
12 Maillot 56 32.8
13 Sandbar 60 33.6
14 Car Wheel 60 61.6
15 Space Bar 60 36.0
16 Tiger Cat 60 10.4
17 Wine Bottle 64 52.8
18 Tub 64 50.4

19
American Stafford-
shire Terrier

64 17.6

20 Ram 64 65.6

The average accuracy for the Top-20 lowest predictions on the original images stands at

86 6| Evaluation

53.6%. The result predictions on the augmented data which its classes in the Top-10
lowest accuracy score, the average accuracy score is 33.2%.

Top-50 Lowest Accuracy

Table 6.45 extends the Top-10 lowest accuracy from Table 6.43 and Top-20 lowest accuracy
from Table 6.44 by presenting the Top-50 classes with the lowest accuracy scores in the
original dataset. The table shows a comparison with the corresponding accuracy scores
derived from augmented data performance. Providing the empiric result indicating a
challenge in effectively addressing corner cases due to insufficient model generalization.

Table 6.45: Top-50 the lowest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
21 Grille 64 52.8
22 Typewriter Keyboard 68 47.2
23 Night Snake 68 17.6
24 Mushroom 68 69.6
25 Collie 68 40.0
26 Ice Cream 72 44.8
27 Crane 72 55.2
28 Patas 72 19.2
29 Corn 72 51.2
30 Dock 72 35.2
31 Passenger Car 72 71.2
32 Green Snake 72 60.8
33 Printer 72 65.6
34 Analog Clock 76 55.2
35 Computer Keyboard 76 68.0
36 Paddle 76 51.2
37 Radio 76 61.6
38 Seashore 76 36.0
39 Egyptian Cat 76 50.4
40 Gown 76 63.2
41 Moped 76 59.2
42 Squirrel Monkey 76 0.8
43 Maillot 76 45.6

6| Evaluation 87

Label Original Accuracy % Augmented Accuracy %
44 Cricket 76 59.2
45 Desktop Computer 76 67.2
46 Toy Poodle 76 35.2
47 Breastplate 76 39.2
48 Lampshade 76 55.2
49 Hook 80 48.0
50 Cloak 80 42.4

The average accuracy for the Top-50 lowest predictions on the original images is 65.6%.
In contrast, the predictions on the augmented data, specifically for the classes within the
Top-50 lowest accuracy scores, yield an average accuracy score of 42.6%.

Top-100 Lowest Accuracy

Table 6.46, which presents the Top-100 classes with the lowest accuracy scores in the
original dataset, serves as an extension of the Top-10 lowest accuracy from Table 6.43,
Top-20 lowest accuracy from Table 6.44, and Top-50 lowest accuracy from Table 6.45.
The table facilitates a comparison with their corresponding accuracy scores derived from
augmented data performance.

Table 6.46: Top-100 the lowest accuracy of original data and its data augmentation.

Label Original Accuracy % Augmented Accuracy %
51 Tusker 80 42.4
52 Cliff Dwelling 80 39.2
53 Letter Opener 80 47.2
54 Redbone 80 20.8
55 Mouse 80 70.4
56 Church 80 75.2
57 Water Bottle 80 48.8
58 Military Uniform 80 56.8
59 Laptop 80 42.4
60 Cliff 80 55.2
61 Coffeepot 80 64.8
62 Purse 80 51.2
63 Spider Web 80 78.4

88 6| Evaluation

Label Original Accuracy % Augmented Accuracy %
64 Japanese Spaniel 80 34.4
65 Stage 80 60.0
66 Screen 80 36.0
67 Titi 80 1.6
68 Cock 80 83.2
69 Leaf Beetle 80 60.8
70 Television 80 47.2
71 Space Heater 84 48.0
72 Otterhound 84 12.8
73 Monitor 84 56.0
74 Dungeness Crab 84 40.8
75 Wallet 84 65.6
76 Sports Car 84 77.6
77 Park Bench 84 70.4
78 Palace 84 73.6
79 Leopard 84 73.6
80 Safe 84 57.6
81 Miniature Poodle 84 12.0
82 Rifle 84 61.6
83 Quilt 84 69.6
84 Tabby 84 46.4
85 Appenzeller 84 16.8
86 Catamaran 84 53.6
87 Power Drill 84 64.0
88 Red Wolf 84 4.0
89 Switch 84 41.6
90 Doberman 84 20.0
91 Standard Poodle 84 48.8
92 Tape Player 84 46.4
93 King Crab 84 45.6
94 Loudspeaker 84 72.8
95 Barbershop 84 44.8
96 Artichoke 84 60.8
97 Spider Monkey 84 27.2
98 Barrel 84 52.0

6| Evaluation 89

Label Original Accuracy % Augmented Accuracy %
99 Guenon 84 34.4
100 Ipod 84 86.4

The average accuracy for the Top-100 lowest predictions on the original images is 74.0%.
In contrast, the predictions on the augmented data, specifically for the classes within the
Top-100 lowest accuracy scores, yield an average accuracy score of 46.3%.

6.3.5. Fine-tune Pre-trained Model

Refining the performance of a pre-trained model through retraining process enhance model
performance, especially through augmentation, it strengthen the model generalization.
Table 6.47 presents a testing comparison between the pre-trained ResNet18 model and
the ResNet18 model after fine-tuning on the original data and augmented data with 90
epochs which requires a training duration of 4.5 hours.

Table 6.47: Fine-tune pre-trained model performance.

Epoch
Pre-trained Fine-tune

Original
Data %

Augmented
Data %

Original
Data %

Augmented
Data %

10 79.06 47.46 99.05 99.67
20 79.06 47.46 99.10 99.64
50 79.06 47.46 99.40 99.79
90 79.06 47.46 99.45 99.80

Average 79.06 47.46 99.25 99.73

Through the fine-tuning process, the model exhibits a substantial average improvement of
20.19% on the original data and 52.27% on the augmented data. This outcome highlights
the model’s adeptness and enhance model generalization.

90 6| Evaluation

6.3.6. SHIFT Result

This section present the testing performance and showing the faulty behavior related
to autonomous driving. Figure 6.1 shows the prediction results through a normalized
percentage confusion matrix for each label in order to provide a clear representation of
faulty behaviors. The confusion matrix is presented with percentages that are rounded
for clarity. As a result, the sum of the percentages in each row may not be exactly equal
to 100% but an approximation. True Label is the ground truth of the label, on the other
hand, Predicted Label is the result of prediction. For example, there is 78% Building that
is truly predicted as Building, and there is 8% misclassified Building as Sky (second row
in the confusion matrix).

Un
la

be
le

d
Bu

ild
in

g
Fe

nc
e

Ot
he

r
Pe

de
st

ria
n

Po
le

Ro
ad

Lin
e

Ro
ad

Si
de

W
al

k
Ve

ge
ta

tio
n

Ve
hi

cle
s

W
al

l
Tr

af
fic

Si
gn Sk

y
Gr

ou
nd

Br
id

ge
Ra

ilT
ra

ck
Gu

ar
dR

ai
l

Tr
af

fic
Lig

ht
St

at
ic

Dy
na

m
ic

W
at

er
Te

rra
in

Predicted Label

Unlabeled
Building

Fence
Other

Pedestrian
Pole

RoadLine
Road

SideWalk
Vegetation

Vehicles
Wall

TrafficSign
Sky

Ground
Bridge

RailTrack
GuardRail

TrafficLight
Static

Dynamic
Water

Terrain

Tr
ue

 L
ab

el

0 24 0 0 0 0 0 0 1 60 6 1 1 5 0 0 0 0 0 0 0 0 1
0 78 0 0 0 1 0 0 0 5 6 1 0 8 0 0 0 0 0 0 0 0 0
0 23 20 0 1 2 0 2 3 17 13 8 0 4 0 0 0 1 0 0 0 0 5
0 50 1 15 0 2 0 0 0 12 5 1 1 11 0 0 0 0 0 0 0 0 1
0 19 1 0 38 2 0 3 2 8 19 2 1 2 0 0 0 0 0 1 0 0 1
0 25 1 0 1 37 0 1 2 8 9 2 0 10 0 0 1 0 0 1 0 0 1
0 2 0 0 0 0 48 33 2 2 9 0 0 1 0 0 0 0 0 0 0 0 2
0 0 0 0 0 0 1 90 1 0 6 0 0 0 0 0 0 0 0 0 0 0 1
0 2 0 0 0 0 3 27 38 3 15 1 0 0 0 0 0 1 0 0 0 0 10
0 12 0 0 0 0 0 1 0 59 8 3 0 11 0 0 0 0 0 0 0 0 3
0 3 0 0 0 0 1 3 0 3 87 0 0 1 0 0 0 0 0 0 0 0 0
0 20 2 0 0 1 0 2 2 11 12 40 0 3 0 0 0 1 0 0 0 0 6
0 19 1 1 0 3 0 1 1 29 8 2 9 24 0 0 0 0 0 0 0 0 2
0 5 0 0 0 0 0 0 0 3 4 1 0 87 0 0 0 0 0 0 0 0 0
0 4 1 0 0 0 2 27 13 4 14 2 0 1 20 0 0 2 0 1 0 0 8
0 15 2 0 0 0 0 1 1 10 8 6 0 34 0 16 1 1 0 0 0 0 3
0 33 0 0 0 2 0 0 0 9 6 3 0 20 0 2 23 0 0 0 0 0 1
0 2 2 0 0 1 1 11 6 7 18 5 0 1 0 0 0 36 0 1 0 0 11
0 28 0 1 0 6 0 1 1 12 9 1 4 11 0 0 0 1 21 1 0 0 2
0 28 1 0 2 1 0 3 9 8 22 2 0 4 0 0 0 1 0 14 0 0 4
0 38 2 0 1 1 0 2 2 16 18 6 1 2 0 0 0 1 0 1 4 0 4
0 9 3 0 0 1 0 3 4 23 13 11 0 4 0 0 0 5 0 0 1 2 20
0 11 1 0 0 0 0 6 6 20 13 8 0 7 0 0 0 2 0 0 0 0 24

0

10

20

30

40

50

60

70

80

Figure 6.1: Confusion Matrix (% of pixels of a certain class classified as another one).

The fifth row labeled Pedestrian shows a very dangerous misclassification that might lead
to fatal accidents, 38% of the pedestrian pixels were correctly classified as Pedestrian,
but 3% of them were misclassified as Road. The consequences of a Pedestrian being

6| Evaluation 91

misclassified as Road can be severe. Even a low-speed collision with a pedestrian can
cause serious injuries or even death.

The result also shows the misclassification example of Water misclassified as Vegetation
23% and Terrain 20% introduces alarming possibilities of dangerous scenarios. This case
depicts a situation where an area of Water, such as standing water on the road is inaccu-
rately labeled as either Vegetation or Terrain. This misclassification poses serious risks,
ranging from incorrect navigation decisions to challenges in obstacle avoidance. For in-
stance, if Water is mistakenly perceived as Terrain or Vegetation, an autonomous driving
might erroneously attempt to navigate through a Water body, while a car might still be
physically capable of traversing Water on the road, which is not possible if Terrain or
Vegetation. This scenario leading to potential accidents and safety hazards.

The result also shows misclassification arises with the Ground label, encompassing hor-
izontal ground-level structures shared by both vehicles and pedestrians, as well as flat
roundabouts delimited from the road by a curb. The instances of labeled as Ground
are most mistakenly classified as Road by 27%. Misclassifying a flat roundabout as part
of the road could result in the autonomous driving misunderstanding the intended path
and potentially navigating inappropriately. Similarly, horizontal ground-level structures
shared by vehicles and pedestrians, if mislabeled as Road might lead to the autonomous
driving is misjudging the usage of the space and making decisions that compromise safety.

This evaluation presents Metamorphic Testing with DILLEMA data augmentation re-
sults of more than 2 billion misclassified pixels that reflect the faulty behavior in the
autonomous driving scenario.

93

7| Conclusion and Future Works

This chapter is dedicated to present the conclusive remarks based on the outcomes of our
study and delving into promising directions for future research.

7.1. Conclusion

In conclusion, the proposed DILLEMA framework represents a step forward in addressing
the challenges associated with corner cases of deep learning model with Metamorphic
Testing. By leveraging the power of Large Language Model and incorporating Diffusion
Models, DILLEMA aims to generate test cases that more accurately reflect the intricacies
of real-world environments. As the field of deep learning application continues to advance,
the findings and proposed methodologies presented in this thesis contribute to the ongoing
discourse on ensuring the robustness of deep learning systems.

7.2. Future Works

1. DILLEMA implementation with different Captioning Model, Large Language Model,
and Diffusion Model, as there are various potential alternative implementations to
explore.

2. Enhancing DILLEMA robustness through dataset incorporation. Task that specified
through DILLEMA process requires specilized handling, for instance ImageNet1K
should know the label of the dataset in order to have good result. Hence, towards
refining the robustness of DILLEMA by exploring methodologies to enhance the
incorporation of diverse datasets it improve comprehensive and effective testing
framework.

3. Acceleration of test case generation. The essential aspect of DILLEMA’s efficacy
lies in the speed at which it generates data augmentation. Future research can focus
on optimizing and accelerating the generation process.

95

Bibliography

[1] D. Adiwardana, M. Luong, D. R. So, J. Hall, N. Fiedel, R. Thoppilan, Z. Yang,
A. Kulshreshtha, G. Nemade, Y. Lu, and Q. V. Le. Towards a human-like open-
domain chatbot. CoRR, abs/2001.09977, 2020. URL https://arxiv.org/abs/

2001.09977.

[2] M. Bojarski, D. D. Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. D.
Jackel, M. Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba. End
to end learning for self-driving cars. CoRR, abs/1604.07316, 2016. URL http:

//arxiv.org/abs/1604.07316.

[3] L. Bottou. Large-scale machine learning with stochastic gradient descent. In
Y. Lechevallier and G. Saporta, editors, 19th International Conference on Computa-
tional Statistics, COMPSTAT 2010, Paris, France, August 22-27, 2010 - Keynote,
Invited and Contributed Papers, pages 177–186. Physica-Verlag, 2010. doi: 10.1007/
978-3-7908-2604-3_16. URL https://doi.org/10.1007/978-3-7908-2604-3_

16.

[4] A. Brock, J. Donahue, and K. Simonyan. Large scale GAN training for high fidelity
natural image synthesis. In 7th International Conference on Learning Representa-
tions, ICLR 2019, New Orleans, LA, USA, May 6-9, 2019. OpenReview.net, 2019.
URL https://openreview.net/forum?id=B1xsqj09Fm.

[5] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C. Winter, C. Hesse,
M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCan-
dlish, A. Radford, I. Sutskever, and D. Amodei. Language models are few-shot
learners. In H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, and H. Lin, ed-
itors, Advances in Neural Information Processing Systems 33: Annual Conference
on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/

1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

https://arxiv.org/abs/2001.09977
https://arxiv.org/abs/2001.09977
http://arxiv.org/abs/1604.07316
http://arxiv.org/abs/1604.07316
https://doi.org/10.1007/978-3-7908-2604-3_16
https://doi.org/10.1007/978-3-7908-2604-3_16
https://openreview.net/forum?id=B1xsqj09Fm
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html

96 | Bibliography

[6] P. Chandra and Y. Singh. An activation function adapting training algorithm for
sigmoidal feedforward networks. Neurocomputing, 61:429–437, 2004. doi: 10.1016/J.
NEUCOM.2004.04.001. URL https://doi.org/10.1016/j.neucom.2004.04.001.

[7] T. Y. Chen, F. Kuo, H. Liu, P. Poon, D. Towey, T. H. Tse, and Z. Q. Zhou. Metamor-
phic testing: A review of challenges and opportunities. ACM Comput. Surv., 51(1):
4:1–4:27, 2018. doi: 10.1145/3143561. URL https://doi.org/10.1145/3143561.

[8] T. Y. Chen, S. C. Cheung, and S. Yiu. Metamorphic testing: A new approach for
generating next test cases. CoRR, abs/2002.12543, 2020. URL https://arxiv.org/

abs/2002.12543.

[9] J. Ding, X. Kang, and X. Hu. Validating a deep learning framework by metamor-
phic testing. In 2nd IEEE/ACM International Workshop on Metamorphic Testing,
MET@ICSE 2017, Buenos Aires, Argentina, May 22, 2017, pages 28–34. IEEE Com-
puter Society, 2017. doi: 10.1109/MET.2017.2. URL https://doi.org/10.1109/

MET.2017.2.

[10] S. R. Dubey, S. K. Singh, and B. B. Chaudhuri. Activation functions in deep learning:
A comprehensive survey and benchmark. Neurocomputing, 503:92–108, 2022. doi: 10.
1016/J.NEUCOM.2022.06.111. URL https://doi.org/10.1016/j.neucom.2022.

06.111.

[11] L. Dunlap, A. Umino, H. Zhang, J. Yang, J. E. Gonzalez, and T. Darrell. Di-
versify your vision datasets with automatic diffusion-based augmentation. CoRR,
abs/2305.16289, 2023. doi: 10.48550/arXiv.2305.16289. URL https://doi.org/

10.48550/arXiv.2305.16289.

[12] A. Dwarakanath, M. Ahuja, S. Sikand, R. M. Rao, R. P. J. C. Bose, N. Dubash,
and S. Podder. Identifying implementation bugs in machine learning based image
classifiers using metamorphic testing. In F. Tip and E. Bodden, editors, Proceed-
ings of the 27th ACM SIGSOFT International Symposium on Software Testing and
Analysis, ISSTA 2018, Amsterdam, The Netherlands, July 16-21, 2018, pages 118–
128. ACM, 2018. doi: 10.1145/3213846.3213858. URL https://doi.org/10.1145/

3213846.3213858.

[13] M. A. Fahmideh and M. E. Scheurer. Pediatric brain tumors: Descriptive epidemi-
ology, risk factors, and future directions. Cancer Epidemiology, Biomarkers & Pre-
vention, 30:813 – 821, 2021. URL https://api.semanticscholar.org/CorpusID:

232104225.

[14] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In

https://doi.org/10.1016/j.neucom.2004.04.001
https://doi.org/10.1145/3143561
https://arxiv.org/abs/2002.12543
https://arxiv.org/abs/2002.12543
https://doi.org/10.1109/MET.2017.2
https://doi.org/10.1109/MET.2017.2
https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/10.1016/j.neucom.2022.06.111
https://doi.org/10.48550/arXiv.2305.16289
https://doi.org/10.48550/arXiv.2305.16289
https://doi.org/10.1145/3213846.3213858
https://doi.org/10.1145/3213846.3213858
https://api.semanticscholar.org/CorpusID:232104225
https://api.semanticscholar.org/CorpusID:232104225

| Bibliography 97

G. J. Gordon, D. B. Dunson, and M. Dudík, editors, Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, AISTATS 2011,
Fort Lauderdale, USA, April 11-13, 2011, volume 15 of JMLR Proceedings, pages
315–323. JMLR.org, 2011. URL http://proceedings.mlr.press/v15/glorot11a/

glorot11a.pdf.

[15] P. Godefroid, A. Kiezun, and M. Y. Levin. Grammar-based whitebox fuzzing. In
R. Gupta and S. P. Amarasinghe, editors, Proceedings of the ACM SIGPLAN 2008
Conference on Programming Language Design and Implementation, Tucson, AZ,
USA, June 7-13, 2008, pages 206–215. ACM, 2008. doi: 10.1145/1375581.1375607.
URL https://doi.org/10.1145/1375581.1375607.

[16] P. Godefroid, M. Y. Levin, and D. A. Molnar. SAGE: whitebox fuzzing for security
testing. Commun. ACM, 55(3):40–44, 2012. doi: 10.1145/2093548.2093564. URL
https://doi.org/10.1145/2093548.2093564.

[17] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition.
In 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 770–778, Los Alamitos, CA, USA, jun 2016. IEEE Computer Society. doi:
10.1109/CVPR.2016.90. URL https://doi.ieeecomputersociety.org/10.1109/

CVPR.2016.90.

[18] J. Heaton. Ian goodfellow, yoshua bengio, and aaron courville: Deep learning - the
MIT press, 2016, 800 pp, ISBN: 0262035618. Genet. Program. Evolvable Mach., 19
(1-2):305–307, 2018. doi: 10.1007/s10710-017-9314-z. URL https://doi.org/10.

1007/s10710-017-9314-z.

[19] J. Ho, A. Jain, and P. Abbeel. Denoising diffusion probabilistic models. In Proceed-
ings of the 34th International Conference on Neural Information Processing Systems,
NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

[20] S. Hochreiter. The vanishing gradient problem during learning recurrent neural nets
and problem solutions. Int. J. Uncertain. Fuzziness Knowl. Based Syst., 6(2):107–
116, 1998. doi: 10.1142/S0218488598000094. URL https://doi.org/10.1142/

S0218488598000094.

[21] R. Hussain and S. Zeadally. Autonomous cars: Research results, issues, and future
challenges. IEEE Commun. Surv. Tutorials, 21(2):1275–1313, 2019. doi: 10.1109/
COMST.2018.2869360. URL https://doi.org/10.1109/COMST.2018.2869360.

[22] Y. Jia and M. Harman. An analysis and survey of the development of mutation

http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf
https://doi.org/10.1145/1375581.1375607
https://doi.org/10.1145/2093548.2093564
https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.90
https://doi.ieeecomputersociety.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/s10710-017-9314-z
https://doi.org/10.1007/s10710-017-9314-z
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1142/S0218488598000094
https://doi.org/10.1109/COMST.2018.2869360

98 | Bibliography

testing. IEEE Trans. Software Eng., 37(5):649–678, 2011. doi: 10.1109/TSE.2010.62.
URL https://doi.org/10.1109/TSE.2010.62.

[23] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. In Y. Bengio
and Y. LeCun, editors, 3rd International Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings,
2015. URL http://arxiv.org/abs/1412.6980.

[24] J. Konečný, J. Liu, P. Richtárik, and M. Takác. Mini-batch semi-stochastic gradient
descent in the proximal setting. IEEE J. Sel. Top. Signal Process., 10(2):242–255,
2016. doi: 10.1109/JSTSP.2015.2505682. URL https://doi.org/10.1109/JSTSP.

2015.2505682.

[25] S. Kong and M. Takatsuka. Hexpo: A vanishing-proof activation function. In 2017
International Joint Conference on Neural Networks, IJCNN 2017, Anchorage, AK,
USA, May 14-19, 2017, pages 2562–2567. IEEE, 2017. doi: 10.1109/IJCNN.2017.
7966168. URL https://doi.org/10.1109/IJCNN.2017.7966168.

[26] R. Kuhn, Y. Lei, and R. Kacker. Practical combinatorial testing: Beyond pairwise.
IT Prof., 10(3):19–23, 2008. doi: 10.1109/MITP.2008.54. URL https://doi.org/

10.1109/MITP.2008.54.

[27] G. Kwon and J. C. Ye. One-shot adaptation of GAN in just one CLIP. IEEE Trans.
Pattern Anal. Mach. Intell., 45(10):12179–12191, 2023. doi: 10.1109/TPAMI.2023.
3283551. URL https://doi.org/10.1109/TPAMI.2023.3283551.

[28] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. E. Hub-
bard, and L. D. Jackel. Handwritten digit recognition with a back-propagation
network. In D. S. Touretzky, editor, Advances in Neural Information Processing
Systems 2, [NIPS Conference, Denver, Colorado, USA, November 27-30, 1989],
pages 396–404. Morgan Kaufmann, 1989. URL http://papers.nips.cc/paper/

293-handwritten-digit-recognition-with-a-back-propagation-network.

[29] Y. LeCun, Y. Bengio, and G. E. Hinton. Deep learning. Nat., 521(7553):436–444,
2015. doi: 10.1038/NATURE14539. URL https://doi.org/10.1038/nature14539.

[30] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z. Kolter,
D. Langer, O. Pink, V. Pratt, M. Sokolsky, G. Stanek, D. Stavens, A. Teichman,
M. Werling, and S. Thrun. Towards fully autonomous driving: Systems and algo-
rithms. In 2011 IEEE Intelligent Vehicles Symposium (IV), pages 163–168, 2011.
doi: 10.1109/IVS.2011.5940562.

https://doi.org/10.1109/TSE.2010.62
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/JSTSP.2015.2505682
https://doi.org/10.1109/JSTSP.2015.2505682
https://doi.org/10.1109/IJCNN.2017.7966168
https://doi.org/10.1109/MITP.2008.54
https://doi.org/10.1109/MITP.2008.54
https://doi.org/10.1109/TPAMI.2023.3283551
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network
http://papers.nips.cc/paper/293-handwritten-digit-recognition-with-a-back-propagation-network
https://doi.org/10.1038/nature14539

| Bibliography 99

[31] J. Li, D. Li, C. Xiong, and S. C. H. Hoi. BLIP: bootstrapping language-image pre-
training for unified vision-language understanding and generation. In K. Chaudhuri,
S. Jegelka, L. Song, C. Szepesvári, G. Niu, and S. Sabato, editors, International Con-
ference on Machine Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland,
USA, volume 162 of Proceedings of Machine Learning Research, pages 12888–12900.
PMLR, 2022. URL https://proceedings.mlr.press/v162/li22n.html.

[32] J. Li, D. Li, S. Savarese, and S. C. H. Hoi. BLIP-2: bootstrapping language-image
pre-training with frozen image encoders and large language models. In A. Krause,
E. Brunskill, K. Cho, B. Engelhardt, S. Sabato, and J. Scarlett, editors, International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii,
USA, volume 202 of Proceedings of Machine Learning Research, pages 19730–19742.
PMLR, 2023. URL https://proceedings.mlr.press/v202/li23q.html.

[33] M. Lin, Q. Chen, and S. Yan. Network in network. In Y. Bengio and Y. Le-
Cun, editors, 2nd International Conference on Learning Representations, ICLR 2014,
Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014. URL
http://arxiv.org/abs/1312.4400.

[34] H. Liu, F. Kuo, D. Towey, and T. Y. Chen. How effectively does metamorphic
testing alleviate the oracle problem? IEEE Trans. Software Eng., 40(1):4–22, 2014.
doi: 10.1109/TSE.2013.46. URL https://doi.org/10.1109/TSE.2013.46.

[35] D. Lo, S. Khoo, and C. Liu. Efficient mining of iterative patterns for software
specification discovery. In P. Berkhin, R. Caruana, and X. Wu, editors, Proceedings
of the 13th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, San Jose, California, USA, August 12-15, 2007, pages 460–469. ACM,
2007. doi: 10.1145/1281192.1281243. URL https://doi.org/10.1145/1281192.

1281243.

[36] J. Long, E. Shelhamer, and T. Darrell. Fully convolutional networks for semantic seg-
mentation. In 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3431–3440, Los Alamitos, CA, USA, jun 2015. IEEE Computer Soci-
ety. doi: 10.1109/CVPR.2015.7298965. URL https://doi.ieeecomputersociety.

org/10.1109/CVPR.2015.7298965.

[37] L. Ma, F. Zhang, J. Sun, M. Xue, B. Li, F. Juefei-Xu, C. Xie, L. Li, Y. Liu, J. Zhao,
and Y. Wang. Deepmutation: Mutation testing of deep learning systems. In S. Ghosh,
R. Natella, B. Cukic, R. S. Poston, and N. Laranjeiro, editors, 29th IEEE Inter-
national Symposium on Software Reliability Engineering, ISSRE 2018, Memphis,

https://proceedings.mlr.press/v162/li22n.html
https://proceedings.mlr.press/v202/li23q.html
http://arxiv.org/abs/1312.4400
https://doi.org/10.1109/TSE.2013.46
https://doi.org/10.1145/1281192.1281243
https://doi.org/10.1145/1281192.1281243
https://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298965
https://doi.ieeecomputersociety.org/10.1109/CVPR.2015.7298965

100 | Bibliography

TN, USA, October 15-18, 2018, pages 100–111. IEEE Computer Society, 2018. doi:
10.1109/ISSRE.2018.00021. URL https://doi.org/10.1109/ISSRE.2018.00021.

[38] T. M. Mitchell. Machine learning, International Edition. McGraw-Hill Series in
Computer Science. McGraw-Hill, 1997. ISBN 978-0-07-042807-2. URL https://

www.worldcat.org/oclc/61321007.

[39] V. Nair and G. E. Hinton. Rectified linear units improve restricted boltzmann ma-
chines. In J. Fürnkranz and T. Joachims, editors, Proceedings of the 27th Interna-
tional Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Is-
rael, pages 807–814. Omnipress, 2010. URL https://icml.cc/Conferences/2010/

papers/432.pdf.

[40] C. Nie and H. Leung. A survey of combinatorial testing. ACM Comput. Surv., 43(2):
11:1–11:29, 2011. doi: 10.1145/1883612.1883618. URL https://doi.org/10.1145/

1883612.1883618.

[41] A. N. S. Njikam and H. Zhao. A novel activation function for multilayer feed-forward
neural networks. Appl. Intell., 45(1):75–82, 2016. doi: 10.1007/S10489-015-0744-0.
URL https://doi.org/10.1007/s10489-015-0744-0.

[42] OpenAI. Chatgpt: A large-scale transformer-based language model for conversation,
2021. URL https://openai.com/research/chatgpt.

[43] M. Papadakis, M. Kintis, J. Zhang, Y. Jia, Y. L. Traon, and M. Harman. Chapter
six - mutation testing advances: An analysis and survey. Adv. Comput., 112:275–378,
2019. doi: 10.1016/BS.ADCOM.2018.03.015. URL https://doi.org/10.1016/bs.

adcom.2018.03.015.

[44] R. Pascanu, T. Mikolov, and Y. Bengio. On the difficulty of training recurrent
neural networks. In Proceedings of the 30th International Conference on Machine
Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, volume 28 of JMLR
Workshop and Conference Proceedings, pages 1310–1318. JMLR.org, 2013. URL
http://proceedings.mlr.press/v28/pascanu13.html.

[45] K. Pei, Y. Cao, J. Yang, and S. Jana. Deepxplore: Automated whitebox testing of
deep learning systems. In Proceedings of the 26th Symposium on Operating Systems
Principles, Shanghai, China, October 28-31, 2017, pages 1–18. ACM, 2017. doi:
10.1145/3132747.3132785. URL https://doi.org/10.1145/3132747.3132785.

[46] A. Radford, K. Narasimhan, T. Salimans, and I. Sutskever. Improving language
understanding by generative pretraining. Technical report, OpenAI, 2018. URL

https://doi.org/10.1109/ISSRE.2018.00021
https://www.worldcat.org/oclc/61321007
https://www.worldcat.org/oclc/61321007
https://icml.cc/Conferences/2010/papers/432.pdf
https://icml.cc/Conferences/2010/papers/432.pdf
https://doi.org/10.1145/1883612.1883618
https://doi.org/10.1145/1883612.1883618
https://doi.org/10.1007/s10489-015-0744-0
https://openai.com/research/chatgpt
https://doi.org/10.1016/bs.adcom.2018.03.015
https://doi.org/10.1016/bs.adcom.2018.03.015
http://proceedings.mlr.press/v28/pascanu13.html
https://doi.org/10.1145/3132747.3132785

| Bibliography 101

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/

language-unsupervised/language_understanding_paper.pdf.

[47] M. A. Riedmiller and H. Braun. A direct adaptive method for faster backpropagation
learning: the RPROP algorithm. In Proceedings of International Conference on
Neural Networks (ICNN’88), San Francisco, CA, USA, March 28 - April 1, 1993,
pages 586–591. IEEE, 1993. doi: 10.1109/ICNN.1993.298623. URL https://doi.

org/10.1109/ICNN.1993.298623.

[48] S. Roller, E. Dinan, N. Goyal, D. Ju, M. Williamson, Y. Liu, J. Xu, M. Ott, E. M.
Smith, Y. Boureau, and J. Weston. Recipes for building an open-domain chatbot. In
P. Merlo, J. Tiedemann, and R. Tsarfaty, editors, Proceedings of the 16th Conference
of the European Chapter of the Association for Computational Linguistics: Main
Volume, EACL 2021, Online, April 19 - 23, 2021, pages 300–325. Association for
Computational Linguistics, 2021. doi: 10.18653/V1/2021.EACL-MAIN.24. URL
https://doi.org/10.18653/v1/2021.eacl-main.24.

[49] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and B. Ommer. High-resolution
image synthesis with latent diffusion models. In IEEE/CVF Conference on Computer
Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24,
2022, pages 10674–10685. IEEE, 2022. doi: 10.1109/CVPR52688.2022.01042. URL
https://doi.org/10.1109/CVPR52688.2022.01042.

[50] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpa-
thy, A. Khosla, M. S. Bernstein, A. C. Berg, and L. Fei-Fei. Imagenet large scale
visual recognition challenge. Int. J. Comput. Vis., 115(3):211–252, 2015. doi: 10.
1007/S11263-015-0816-Y. URL https://doi.org/10.1007/s11263-015-0816-y.

[51] S. Segura, G. Fraser, A. B. Sánchez, and A. R. Cortés. A survey on metamorphic
testing. IEEE Trans. Software Eng., 42(9):805–824, 2016. doi: 10.1109/TSE.2016.
2532875. URL https://doi.org/10.1109/TSE.2016.2532875.

[52] S. Segura, D. Towey, Z. Q. Zhou, and T. Y. Chen. Metamorphic testing: Testing the
untestable. IEEE Softw., 37(3):46–53, 2020. doi: 10.1109/MS.2018.2875968. URL
https://doi.org/10.1109/MS.2018.2875968.

[53] S. Squartini, A. Hussain, and F. Piazza. Preprocessing based solution for the van-
ishing gradient problem in recurrent neural networks. In Proceedings of the 2003 In-
ternational Symposium on Circuits and Systems, ISCAS 2003, Bangkok, Thailand,
May 25-28, 2003, pages 713–716. IEEE, 2003. doi: 10.1109/ISCAS.2003.1206412.
URL https://doi.org/10.1109/ISCAS.2003.1206412.

https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://s3-us-west-2.amazonaws.com/openai-assets/research-covers/language-unsupervised/language_understanding_paper.pdf
https://doi.org/10.1109/ICNN.1993.298623
https://doi.org/10.1109/ICNN.1993.298623
https://doi.org/10.18653/v1/2021.eacl-main.24
https://doi.org/10.1109/CVPR52688.2022.01042
https://doi.org/10.1007/s11263-015-0816-y
https://doi.org/10.1109/TSE.2016.2532875
https://doi.org/10.1109/MS.2018.2875968
https://doi.org/10.1109/ISCAS.2003.1206412

102 | Bibliography

[54] T. Sun, M. Segù, J. Postels, Y. Wang, L. V. Gool, B. Schiele, F. Tombari, and F. Yu.
SHIFT: A synthetic driving dataset for continuous multi-task domain adaptation. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022,
New Orleans, LA, USA, June 18-24, 2022, pages 21339–21350. IEEE, 2022. doi: 10.
1109/CVPR52688.2022.02068. URL https://doi.org/10.1109/CVPR52688.2022.

02068.

[55] Y. Tian, K. Pei, S. Jana, and B. Ray. Deeptest: automated testing of deep-neural-
network-driven autonomous cars. In M. Chaudron, I. Crnkovic, M. Chechik, and
M. Harman, editors, Proceedings of the 40th International Conference on Software
Engineering, ICSE 2018, Gothenburg, Sweden, May 27 - June 03, 2018, pages 303–
314. ACM, 2018. doi: 10.1145/3180155.3180220. URL https://doi.org/10.1145/

3180155.3180220.

[56] H. Touvron, T. Lavril, G. Izacard, X. Martinet, M. Lachaux, T. Lacroix, B. Rozière,
N. Goyal, E. Hambro, F. Azhar, A. Rodriguez, A. Joulin, E. Grave, and G. Lample.
Llama: Open and efficient foundation language models. CoRR, abs/2302.13971,
2023. doi: 10.48550/ARXIV.2302.13971. URL https://doi.org/10.48550/arXiv.

2302.13971.

[57] H. Touvron, L. Martin, K. Stone, P. Albert, A. Almahairi, Y. Babaei, N. Bash-
lykov, S. Batra, P. Bhargava, S. Bhosale, D. Bikel, L. Blecher, C. Canton-Ferrer,
M. Chen, G. Cucurull, D. Esiobu, J. Fernandes, J. Fu, W. Fu, B. Fuller, C. Gao,
V. Goswami, N. Goyal, A. Hartshorn, S. Hosseini, R. Hou, H. Inan, M. Kardas,
V. Kerkez, M. Khabsa, I. Kloumann, A. Korenev, P. S. Koura, M. Lachaux, T. Lavril,
J. Lee, D. Liskovich, Y. Lu, Y. Mao, X. Martinet, T. Mihaylov, P. Mishra, I. Molybog,
Y. Nie, A. Poulton, J. Reizenstein, R. Rungta, K. Saladi, A. Schelten, R. Silva, E. M.
Smith, R. Subramanian, X. E. Tan, B. Tang, R. Taylor, A. Williams, J. X. Kuan,
P. Xu, Z. Yan, I. Zarov, Y. Zhang, A. Fan, M. Kambadur, S. Narang, A. Rodriguez,
R. Stojnic, S. Edunov, and T. Scialom. Llama 2: Open foundation and fine-tuned
chat models. CoRR, abs/2307.09288, 2023. doi: 10.48550/ARXIV.2307.09288. URL
https://doi.org/10.48550/arXiv.2307.09288.

[58] P. Tseng. An incremental gradient(-projection) method with momentum term
and adaptive stepsize rule. SIAM J. Optim., 8(2):506–531, 1998. doi: 10.1137/
S1052623495294797. URL https://doi.org/10.1137/S1052623495294797.

[59] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. u.
Kaiser, and I. Polosukhin. Attention is all you need. In I. Guyon, U. V. Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Ad-

https://doi.org/10.1109/CVPR52688.2022.02068
https://doi.org/10.1109/CVPR52688.2022.02068
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.1145/3180155.3180220
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2302.13971
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.1137/S1052623495294797

| Bibliography 103

vances in Neural Information Processing Systems, volume 30. Curran Associates,
Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/

file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[60] J. Vendrow, S. Jain, L. Engstrom, and A. Madry. Dataset interfaces: Diagnosing
model failures using controllable counterfactual generation. CoRR, abs/2302.07865,
2023. doi: 10.48550/arXiv.2302.07865. URL https://doi.org/10.48550/arXiv.

2302.07865.

[61] J. Wang and B. Malakooti. A feedforward neural network for multiple criteria deci-
sion making. Comput. Oper. Res., 19(2):151–167, 1992. doi: 10.1016/0305-0548(92)
90089-N. URL https://doi.org/10.1016/0305-0548(92)90089-N.

[62] S. Wang and Z. Su. Metamorphic object insertion for testing object detection sys-
tems. In 35th IEEE/ACM International Conference on Automated Software En-
gineering, ASE 2020, Melbourne, Australia, September 21-25, 2020, pages 1053–
1065. IEEE, 2020. doi: 10.1145/3324884.3416584. URL https://doi.org/10.1145/

3324884.3416584.

[63] T. Wolf, L. Debut, V. Sanh, J. Chaumond, C. Delangue, A. Moi, P. Cistac,
T. Rault, R. Louf, M. Funtowicz, J. Davison, S. Shleifer, P. von Platen, C. Ma,
Y. Jernite, J. Plu, C. Xu, T. L. Scao, S. Gugger, M. Drame, Q. Lhoest, and
A. M. Rush. Transformers: State-of-the-art natural language processing. In
Q. Liu and D. Schlangen, editors, Proceedings of the 2020 Conference on Empir-
ical Methods in Natural Language Processing: System Demonstrations, EMNLP
2020 - Demos, Online, November 16-20, 2020, pages 38–45. Association for Com-
putational Linguistics, 2020. doi: 10.18653/V1/2020.EMNLP-DEMOS.6. URL
https://doi.org/10.18653/v1/2020.emnlp-demos.6.

[64] X. Xie, L. Ma, F. Juefei-Xu, M. Xue, H. Chen, Y. Liu, J. Zhao, B. Li, J. Yin,
and S. See. Deephunter: a coverage-guided fuzz testing framework for deep neural
networks. In D. Zhang and A. Møller, editors, Proceedings of the 28th ACM SIGSOFT
International Symposium on Software Testing and Analysis, ISSTA 2019, Beijing,
China, July 15-19, 2019, pages 146–157. ACM, 2019. doi: 10.1145/3293882.3330579.
URL https://doi.org/10.1145/3293882.3330579.

[65] J. M. Zhang, M. Harman, L. Ma, and Y. Liu. Machine learning testing: Survey,
landscapes and horizons. IEEE Trans. Software Eng., 48(2):1–36, 2022. doi: 10.
1109/TSE.2019.2962027. URL https://doi.org/10.1109/TSE.2019.2962027.

[66] L. Zhang and M. Agrawala. Adding conditional control to text-to-image diffusion

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.48550/arXiv.2302.07865
https://doi.org/10.48550/arXiv.2302.07865
https://doi.org/10.1016/0305-0548(92)90089-N
https://doi.org/10.1145/3324884.3416584
https://doi.org/10.1145/3324884.3416584
https://doi.org/10.18653/v1/2020.emnlp-demos.6
https://doi.org/10.1145/3293882.3330579
https://doi.org/10.1109/TSE.2019.2962027

104 7| BIBLIOGRAPHY

models. CoRR, abs/2302.05543, 2023. doi: 10.48550/arXiv.2302.05543. URL https:

//doi.org/10.48550/arXiv.2302.05543.

[67] M. Zhang, Y. Zhang, L. Zhang, C. Liu, and S. Khurshid. Deeproad: Gan-based
metamorphic testing and input validation framework for autonomous driving sys-
tems. In 2018 33rd IEEE/ACM International Conference on Automated Software
Engineering (ASE), pages 132–142, 2018. doi: 10.1145/3238147.3238187.

[68] Q. Zhang, Y. N. Wu, and S. Zhu. Interpretable convolutional neural networks.
In 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR
2018, Salt Lake City, UT, USA, June 18-22, 2018, pages 8827–8836. Computer
Vision Foundation / IEEE Computer Society, 2018. doi: 10.1109/CVPR.2018.
00920. URL http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_

Interpretable_Convolutional_Neural_CVPR_2018_paper.html.

[69] Z. Zhang, P. Wang, H. Guo, Z. Wang, Y. Zhou, and Z. Huang. Deepbackground:
Metamorphic testing for deep-learning-driven image recognition systems accompa-
nied by background-relevance. Inf. Softw. Technol., 140:106701, 2021. doi: 10.1016/
J.INFSOF.2021.106701. URL https://doi.org/10.1016/j.infsof.2021.106701.

[70] Z. Zhang, Y. Liu, C. Han, T. Guo, T. Yao, and T. Mei. Gener-
alized one-shot domain adaptation of generative adversarial networks. In
NeurIPS, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/

58ce6a4b9c16d11975f11e4a23871041-Abstract-Conference.html.

[71] Z. Zhou, S. Xiang, and T. Y. Chen. Metamorphic testing for software quality as-
sessment: A study of search engines. IEEE Trans. Software Eng., 42(3):264–284,
2016. doi: 10.1109/TSE.2015.2478001. URL https://doi.org/10.1109/TSE.2015.

2478001.

[72] Z. Q. Zhou and L. Sun. Metamorphic testing of driverless cars. Commun. ACM, 62
(3):61–67, 2019. doi: 10.1145/3241979. URL https://doi.org/10.1145/3241979.

https://doi.org/10.48550/arXiv.2302.05543
https://doi.org/10.48550/arXiv.2302.05543
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Interpretable_Convolutional_Neural_CVPR_2018_paper.html
http://openaccess.thecvf.com/content_cvpr_2018/html/Zhang_Interpretable_Convolutional_Neural_CVPR_2018_paper.html
https://doi.org/10.1016/j.infsof.2021.106701
http://papers.nips.cc/paper_files/paper/2022/hash/58ce6a4b9c16d11975f11e4a23871041-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/58ce6a4b9c16d11975f11e4a23871041-Abstract-Conference.html
https://doi.org/10.1109/TSE.2015.2478001
https://doi.org/10.1109/TSE.2015.2478001
https://doi.org/10.1145/3241979

105

List of Figures

2.1 Blue arrow is the expected steering in original images and red arrow is the
steering result with six-degree rotation [55]. 6

2.2 GAN based generated images, snowy and rainy image [67]. 7
2.3 Left image is the original input image that correctly makes a decision result.

The right image is the generated image which makes an error with respect
to the expected result [45]. 7

2.4 Left image is "A photo of < dog− class > in the beach". The right image
is "A photo of < dog − class > in the grass" [60]. 8

2.5 ALIA augmented image result and the original image [11] 9

3.1 Testing process. 11
3.2 The perceptron. 13
3.3 Feed Forward Neural Network for a (L)-hidden layer with i input units

and K output units. wji is the weight going to neuron j-th from input or
neuron i-th. 14

3.4 The architecture of the original convolutional neural network, as introduced
by LeCun et al. [28]. 17

3.5 Semantic segmentation with Fully-Convolutional Network [36]. 20
3.6 Fully Convolutional Network with 8 times upsampled. 21
3.7 U-Net Architecture, the orange layer is convolution, the red color is max-

pooling, and the blue color is convolutionl transpose. 21
3.8 The Transformer Encoder-Decoder architecture [59]. 23
3.9 Latent Diffusion Model. 25
3.10 Controlling Diffusion Model. 26
3.11 Controlling Image with spatial context. 27

4.1 DILLEMA schema. 29
4.2 Input image for caption generation. 30
4.3 Controlling Image with spatial context conversion possibilities. 34

5.1 ControlNet with Canny spatial context conversion. 40

106 | List of Figures

5.2 ControlNet with Depth-map spatial context conversion. 40
5.3 ControlNet with Segmentation-map spatial context conversion. 41
5.4 ControlNet with Scribble spatial context conversion. 41
5.5 ControlNet with HED spatial context conversion. 41

6.1 Confusion Matrix (% of pixels of a certain class classified as another one). . 90

107

List of Tables

3.1 Non-linear activation functions. 14

6.1 DILLEMA images augmentation result on ImageNet1K. 45
6.2 DILLEMA images augmentation result on SHIFT. 51
6.3 Accuracy score. 53
6.4 Precision score. 53
6.5 Recall score. 53
6.6 F1 score. 54
6.7 Faulty behavior on ImageNet1K. 54
6.8 Quantifying instances of augmented is true predicted when the original

data is true. 55
6.9 Confusion matrix of original data. 55
6.10 Confusion matrix of augmented data. 55
6.11 Confusion matrix of original data. 56
6.12 Confusion matrix of augmented data. 56
6.13 Top-10 the highest accuracy of original data and its data augmentation. . . 56
6.14 Top-20 the highest accuracy of original data and its data augmentation. . . 57
6.15 Top-50 the highest accuracy of original data and its data augmentation. . . 58
6.16 Top-100 the highest accuracy of original data and its data augmentation. . 60
6.17 Top-10 the lowest accuracy of original data and its data augmentation. . . 61
6.18 Top-20 the lowest accuracy of original data and its data augmentation. . . 62
6.19 Top-50 the lowest accuracy of original data and its data augmentation. . . 63
6.20 Top-100 the lowest accuracy of original data and its data augmentation. . . 64
6.21 Quantifying instances of augmented is true predicted when the original

data is true. 66
6.22 Confusion matrix of original data. 67
6.23 Confusion matrix of augmented data. 67
6.24 Confusion matrix of original data. 67
6.25 Confusion matrix of augmented data. 68
6.26 Top-10 the highest accuracy of original data and its data augmentation. . . 68

108 | List of Tables

6.27 Top-20 the highest accuracy of original data and its data augmentation. . . 69
6.28 Top-50 the highest accuracy of original data and its data augmentation. . . 70
6.29 Top-100 the highest accuracy of original data and its data augmentation. . 71
6.30 Top-10 the lowest accuracy of original data and its data augmentation. . . 73
6.31 Top-20 the lowest accuracy of original data and its data augmentation. . . 74
6.32 Top-50 the lowest accuracy of original data and its data augmentation. . . 74
6.33 Top-100 the lowest accuracy of original data and its data augmentation. . . 76
6.34 Quantifying instances of augmented is true predicted when the original

data is true. 78
6.35 Confusion matrix of original data. 78
6.36 Confusion matrix of augmented data. 79
6.37 Confusion matrix of original data. 79
6.38 Confusion matrix of augmented data. 79
6.39 Top-10 the highest accuracy of original data and its data augmentation. . . 80
6.40 Top-20 the highest accuracy of original data and its data augmentation. . . 80
6.41 Top-50 the highest accuracy of original data and its data augmentation. . . 81
6.42 Top-100 the highest accuracy of original data and its data augmentation. . 83
6.43 Top-10 the lowest accuracy of original data and its data augmentation. . . 84
6.44 Top-20 the lowest accuracy of original data and its data augmentation. . . 85
6.45 Top-50 the lowest accuracy of original data and its data augmentation. . . 86
6.46 Top-100 the lowest accuracy of original data and its data augmentation. . . 87
6.47 Fine-tune pre-trained model performance. 89

109

Acknowledgements

I extend my heartfelt gratitude to Prof. Luciano Baresi for providing me with the invalu-
able opportunity to complete my thesis under his expert guidance and supervision.

A special acknowledgment goes to Davide, my co-supervisor and the best person I have
ever met at Politecnico. His expertise and collaborative spirit have been indispensable to
the success of this thesis. I am truly thankful for his guidance and unwavering support.

I would like to express my deepest gratitude to my mother and father for their unwavering
support, encouragement, and sacrifices throughout my academic journey. Their pray and
belief in my potential have been a source of my life.

To my beloved partner Rosiana, your love, your love, understanding, and uplifting en-
couragement have stood as unwavering pillars of strength during this academic odyssey.
Your enduring support has not only accompanied me through every step but has also
bestowed a profound sense of purpose upon each milestone, transforming this journey
into a meaningful and enriching experience.

I am profoundly grateful to the Indonesian Endowment Fund for Education (LPDP)
for the invaluable support and scholarship that made it possible for me to pursue and
complete my master’s studies.

I would also like to express my sincere appreciation to Ardi, Arif, Fariz, Adib, Labiyb,
Bayu, Fian, and all my friends, whose names I regrettably cannot include here. Your
friendship, encouragement, and shared experiences have profoundly enriched my academic
and personal life.

This thesis is a culmination of the collective efforts and support from these remarkable
individuals, and I am genuinely grateful for their contributions to this significant milestone
in my academic journey.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Structure

	Related work
	Metamorphic Testing
	DeepTest: Automated Testing of Deep-Neural-Network-driven Autonomous Cars
	DeepRoad: GAN-based Metamorphic Autonomous Driving System Testing
	DeepXplore: Automated Whitebox Testing of Deep Learning Systems

	Alternative Generation and Data Augmentation
	Dataset Interfaces: Diagnosing Model Failures Using Controllable Alternative Generation
	Diversify Your Vision Datasets with Automatic Diffusion-Based Augmentation

	Background
	Metamorphic Testing
	Deep Learning
	Feed Forward Neural Network
	Convolutional Neural Network
	Classification and Semantic Segmentation
	Transformer and Large Language Model
	Diffusion Model

	Metamorphic Testing in Deep Learning

	Solution
	Describing the Image with Captioning Model
	Large Language Model (LLM) Application
	LLM: Generate Keywords
	LLM: Generate Alternatives
	LLM: Generate New Caption

	Controlling Image Generation in Diffusion Model

	Implementation
	BLIP-2 Captioning Model
	LLaMA-2 as Large Language Model
	ControlNet for Image Generation

	Evaluation
	Experimental Description
	Experimental Setup
	Result
	ImageNet1K Result
	ResNet18 Performance
	ResNet50 Performance
	ResNet152 Performance
	Fine-tune Pre-trained Model
	SHIFT Result

	Conclusion and Future Works
	Conclusion
	Future Works

	Bibliography
	List of Figures
	List of Tables
	Acknowledgements

