
POLITECNICO DI MILANO
School of Industrial and Information Engineering

Master of Science in Computer Science and Engineering
Dipartimento di Elettronica, Informazione e Bioingegneria

Re-platforming operation of the
eCommerce web portal for a

retail global enterprise
Supporting the rollout of new countries in the company’s
Omni-channel program by developing new features and

exporting existing ones from SiteGenesis onto the
StoreFront Reference Architecture

Fabrizio Schembari

Laureando

Fabrizio Schembari
matr. 912892

Relatore

Prof. Pierluigi Plebani

Fabrizio Schembari

Sommario

Il seguente lavoro di Tesi ha lo scopo di descrivere gli aspetti generali ed

e!ettuare analisi in ambito tecnico riguardo l’esperienza lavorativa acquisita

durante un tirocinio nell’ambito della consulenza aziendale.

Il progetto in questione — seguito come back-end developer del team di

Deloitte Digital — era parte del programma di Omni-channel per una

multinazionale di vendite retail.

Il suo focus era diretto su due topic in particolare: l’operazione di re-

platforming dell’infrastruttura esistente dall’architettura SiteGenesis alla (più

recente e performante) StoreFront Reference Architecture, e l’estensione di

tale rinnovato eCommerce su due nuove country dell’Asia meridionale,

costituenti le prime localizzazioni di rollout nell’ambito dell’intero progetto.

Questo documento descrive l’argomento in ogni sua sfaccettatura,

includendo la pipeline relativa alla gestione, le relazioni col cliente o i

provider dei vari servizi esterni e alcuni esempi pratici delle attività comprese

nel software engineering.

Nel fare ciò, il paper fornirà al lettore una vista a tutto tondo sulla realtà di

team working in tale ambito sia da un punto di vista tecnico che strategico, e

assumerà sia il punto di vista del team sia quello del singolo developer nello

spiegare come si sia arrivati al raggiungimento degli obiettivi prefissati.

Fabrizio Schembari

Fabrizio Schembari

Abstract

The following document has the purposes of describing the general aspects

and analyzing the technical facets connected to the work experience

gathered during an internship in business consulting.

The project of matter — followed as a back-end developer hired by Deloitte

Digital — was part of the Omni-channel program for a B2C worldwide retail

enterprise.

It focused mainly on two primary topics: the re-platforming of the already

present infrastructure from SiteGenesis architecture onto the (most recent

and better performing) StoreFront Reference Architecture, and the extension

of such all-new eCommerce to two south-Asian countries, representing the

first locales performing a rollout in the scope of the entire project.

This paper will describe such topic in all its aspects, including the pipeline

through which it was managed, the interface with the business client or the

external services’ providers and a few examples of the actual activities

involved in the software engineering.

In doing so, the document will provide the reader with an all-round insight on

the reality of team working in such business from a technical and executive

point of view, and will assume both the team perspective and the point of

view of a single developer to better explain how the forecast goals were

reached.

Fabrizio Schembari

Fabrizio Schembari

Contents

1. Introduction

1.1. The project in a nutshell

1.2. The structure of the document

2. The technology background
2.1. Preliminaries: retail market and trends

2.2. The involved entities
2.2.1. Service Provider Partner: Deloitte

2.2.1.1. Commerce team (Deloitte Digital)

2.2.1.2. Enterprise Service Bus (MuleSoft Integration Services

Architecture)

2.2.1.3. InStoreApp team (Deloitte Digital)

2.2.1.4. Application Maintenance (Deloitte Digital)

2.2.2. The external systems
2.2.2.1. CRM - Customer Relationship Management

2.2.2.2. ERP - Enterprise Resource Planner

2.2.2.3. OMS - Order Management System

2.2.2.4. PIM - Product Information System

2.2.2.5. PSP - Payment Service Provider

2.2.2.6. POS - Point Of Sale

2.2.2.7. WMS - Warehouse Management System

2.2.2.8. ESP - Email Service Provider

Fabrizio Schembari

11

11

12

15
15

17
18
19

20

21

21

22
22

24

25

26

27

28

28

29

2.3. The development tools
2.3.1. Development setting

2.3.2. Paradigms used

2.3.3. Javascript

2.3.4. HTML / CSS

2.3.5. Node.JS

2.3.6. JQuery

3. The starting point
3.1. Overview

3.2. SiteGenesis by Demandware

4. The goal
4.1. Overview

4.2. Salesforce SFRA
4.2.1. Overview

4.2.2. SalesForce Commerce Cloud (SFCC)

4.2.3. StoreFront Reference Architecture (SFRA)

4.3. SFRA vs SiteGenesis

4.4. Benefits of introducing a PIM

5. The project
5.1. Overview

Fabrizio Schembari

30
30

31

33

34

34

35

37
37

38

40
40

41
41

41

42

43

44

46
 46

5.2. The development pipeline
5.2.1. Design

5.2.2. Tests
5.2.2.1. Point-To-Point tests (P2P)

5.2.2.2. System Integration Tests (SIT)

5.2.2.3. Quality assurance and User Acceptance Tests (QA & UAT)

5.2.2.4. No regression tests

5.2.2.5. Smoke tests

5.2.3. My contribution: the development
5.2.3.1. Types of technical activities (w/ case studies)
5.2.3.2. Bug-fixing

5.2.3.3. Change Requests

5.2.3.4. Actual developments

6. Conclusions

7. Appendix
7.1. Acronyms

7.2. Terms definition

7.3. References

Fabrizio Schembari

47
47

48
48

48

49

49

50

50
50
51

54

56

64

66
66

68

 70

Fabrizio Schembari 10

1. Introduction

1.1. The project in a nutshell

The following Thesis work is centered on the business consulting work experience

gathered during an internship in Deloitte Digital.

During these months, the team followed a sub-part of an already launched and long-

lasting project: the global transformation of a B2C retail global enterprise, through

which the firm wanted to provide an Omni-channel experience for the whole group.

To achieve the awaited results, the client company started the rollout of a new

Commerce within some central Europe countries, such as Italy; however the

adopted solution soon showed a few weak points concerning the flexibility and

scalability of its backbone, SiteGenesis infrastructure, factor that lowered the

performance of the platform and the expected rollout speed of the entire project.

From this need comes the engagement with a Partner such as Deloitte which

o"ered, together with a proactive consultancy approach, to develop the integration

with the state-of-the-art StoreFront Reference Architecture in place of SiteGenesis,

plus a few other measures (such as the adoption of a PIM system — more on that

later) that would imply a relevant speedup factor in the overall Omni-channel

program.

And in this context happens to be my involvement in the team, located in a phase of

the overall project in which the focus was mainly to work on the rollout of the new

Commerce on two south-asian countries — India and Malaysia to be more specific.

Fabrizio Schembari 11

To perform this task, the goal was to develop the SFRA integration of the currently

existing architecture — in other words, to perform a re-platforming of the existing

infrastructure from SiteGenesis to StoreFront Reference Architecture —, and

applying the necessary customizations that each of these two countries required to

launch their all-new storefronts and use such countries as a starting point for the

overall rollout plan.

All in all, the Indian country — that was in a past-halfway state of development at my

arrival — ended up being a very customized version of the SFRA storefront, instead

the requirements on the Malaysian locale allowed us to construct it as a canvas for

the default case, thus maintaining the aim of building everything with scalability in

mind, and ease the upcoming transition of more and more countries onto such new

architecture.

1.2. The structure of the document

To perform the descriptive task introduced, the following paper is organized in a few

sections:

• The technology background chapter will describe all the systems involved in a

project of such entity, explaining their roles, a few of their interactions, and the

tools that have been used in the whole project;

• The starting point chapter will provide an insight on the previous situation, with

an overview of the SiteGenesis architecture and the negativities that brought the

client firm to embark in this re-platforming operation;

• The goal chapter will then describe the SFRA architecture, compare it more in

detail to SiteGenesis and illustrate the improvements that such adoption brought,

together with the introduction of a PIM system;

Fabrizio Schembari 12

• The project chapter will finally provide:

• A few information on the pipeline through which the project was carried,

from a team point of view;

• An insight on the roles covered by the generic team member, together with a

few examples of activities portraying a few of my contributions in reaching

the goal;

• Finally, a conclusion will highlight my personal point of view, what I learnt during

these months of internship and the skillset that this experience allowed me to

develop.

Fabrizio Schembari 13

Fabrizio Schembari 14

2. The technology
background

2.1. Preliminaries: retail market and
trends

It’s no secret that the trend in eCommerce sales has seen them growing steadily

over the last years; moreover it is expected to continue growing over a few of the

next ones — though not at a rate as fast as before (Figure 1).

And retail industry makes no exception, in a context of growing availability of

technology and home-delivery services (and most recent strikes of worldwide

pandemics imposing home quarantining).

Fabrizio Schembari 15

Figure 1: Total retail sales worldwide — travel and event tickets excluded —, 2015-2020
(trillions)
Source: eMarketer, Aug 2016

In this scenario, there are some major industry trends:

1. The connected customer: such figure represents how the ideal buyer is

changing and is substantially transforming the fruition of retail services. The

connected customer is social, connected and smart, but still interested in having

a spotless in-store shopping experience.

In terms of proportions, nowadays it has been estimated that more than 62% of

eCommerce tra$ic comes from mobile devices, with a share of orders growing

41% year after year. And more than 50% of retail orders still belongs to physical

stores, but more than half of such commerce is heavily influenced by the digital

environment around, populated of di"erent channels (social media, blogs, online

retail) over di"erent types of devices (mobile, tablet, desktop).

This situation produces in the customer an expectation so high that only a few

brands can keep up with it, leaving most of commerce teams struggling with:

• Diverse and duplicative systems: each touchpoint with the customer is often

managed through a specific technology that’s not always integrated with any

of the others present;

• Customer data scattered across these many systems: this prevents business

groups such as marketing, customer service, and merchandising from having

access to the data they need, or simply makes it di$icult to know where to

find it;

• Multiple sources of truth: retailers have no single view of the customers,

products, prices, promotions, and so on;

• Complex back-end integration: when retailers are able to integrate data

across their multitude of systems, such integrations tend to be inflexible,

frequently breaking down whenever there is a software update or an upgrade

across any of the endpoints.

2. Omni-channel and Unified Commerce: The already used term “Omni-channel”

generally refers to the practice of creating a consistent buying experience across

all channels available to a company — mobile, in-store, social; “unified

commerce” takes things one step further, since it focuses on the customer’s

entire commerce experience, from marketing to shopping, custom product

Fabrizio Schembari 16

recommendations and customer service with the associated marketing and

retargeting.

It’s basically the idea that brands must think beyond individual retail channels

and beyond shopping to meet the customer’s expectations for personalized

attention, relevant product recommendations, responsive customer service, and

more.

These factors are the ultimate motivation that makes retailers such as the client firm

want to upgrade, acknowledge the need of technology and provide a unified

commerce experience that can support them for a long-term benefit, increased

margins, revenues, and brand value.

2.2. The involved entities

Of course, a project of a substantial size such as the one depicted by this document

requires many entities to cooperate. These di"erent systems are entrusted with

managing each one the build-up of a subset of the entire platform, handling a few of

the large amount of the overall data, exchanging the necessary ones with each

other and having di"erent responsibilities.

What all of them have in common is the same objective: making such environment

work in harmony and as flawlessly as possible.

In this scenario, the main systems we distinguish are:

• The business client — the retail enterprise;

• The service provider Partner, providing services regarding:

• the Commerce implementation,

• the middleware implementation,

• the application maintenance,

• the InStoreApp implementation;

Fabrizio Schembari 17

• The Customer Relationship Management system;

• The Enterprise Resource Planner;

• The Order Management System;

• The Product Information System;

• The Payment Service Provider;

• The Point of Sale system;

• The Warehouse Management System;

• The Email Service Provider;

In the following section, an overview of each of these systems will be given.

2.2.1. Service provider Partner: Deloitte.

As already said, the consulting firm that hosted me for the whole internship

experience and that was in charge of managing the whole project is Deloitte.

In the relationships with the client, Deloitte has a Partner role, meaning that we are

not just talking of a commissioned work of system integration; instead, the firm is

meant to keep a consulting approach — according to which keep performance in

mind and always suggest the best solution — and it’s entrusted with the whole

Omni-channel operation, covering the extension to new countries, to all platforms

(such as the InStoreApp together with the eCommerce platform) and within all the

steps of its existence (including the maintenance of the applications on the already

running countries).

But what is Deloitte?

Fabrizio Schembari 18

Deloitte Touche Tohmatsu, commonly known as Deloitte, is a multinational

professional services network founded by William Welch Deloitte in London,

England, in 1845 and today having headquarters in London and bases in over 150

countries around the world.

Deloitte is one of the Big Four accounting organizations (together with KPMG, PwC

and Ernst & Young) and it’s actually the global leader over its competitors according

to revenues (US$ 47.6 billion in aggregate revenues in fiscal year 2020, setting a

record, and constantly growing each FY) and number of professionals (estimated

around 312,000 professionals around the globe in fiscal year 2020).

Deloitte operates providing services in di"erent areas: Audit, Tax, Financial Advisory

and Consulting.

The branch of interest for the purpose of this document is actually the last one, in

which the firm operates providing services around:

• Strategy and management

• IT consulting

• Supply chain management

• Systems integration

• Outsourcing

• Human Resource

And it is in this environment that the Deloitte Digital and MuleSoft teams have their

own spot.

2.2.1.1. Commerce team (Deloitte Digital)

The branch of Deloitte that actually hosted my internship is Deloitte Digital,

Deloitte’s Creative Digital Consultancy. More specifically, in the scope of the project

I belonged to the Commerce team.

This division is entrusted with the task that represent the main topic of this work of

Thesis: the buildup of the Commerce onto the SalesForce StoreFront Reference

Fabrizio Schembari 19

Architecture, mission that includes the re-platforming of the existing services and

the customizations of the new platform to bring new countries to the rollout of their

state-of-the-art eCommerce in the Omni-channel plan.

2.2.1.2. Enterprise Service Bus (MuleSoft Integration
Services Architecture)

As the title suggests, MuleSoft is an integration platform belonging to SalesForce to

which the middleware was delegated in the context of the project.

In a scenario where di"erent entities send the data they’re requested in di"erent

formats — not necessarily compatible with what their receiver expects — some sort

of decoupling is necessary: for this purpose, such software was managed by a

specialized unit belonging to Deloitte that was in charge of implementing the bridge

node between all these flows, connecting the external systems with each other (*)

or with the storefront.

This means that such team was entrusted with building the integration layer among

the various systems, decoupling their data and controlling the information flow,

making sure that each of the involved entities receives the data in the format they

expect them, even though the sender sent them under another shape.

Fabrizio Schembari 20

(*) With the update of the Commerce, a few of the flows in which two systems communicate directly

or aggregate data with each other before transmitting them to the commerce are:
- During the update on warehouse and store inventory the data periodically propagated from the

ERP gets aggregated by the OMS and then forwarded to the Middleware that sends it to SFCC;
- Also the import of the product Master starts from the ERP, then data gets elaborated by the PIM

before getting to the commerce, where it’s managed

2.2.1.3. InStoreApp team (Deloitte Digital)

The omni-channel plan expects from Deloitte, among the other functions, to build

and take care of the InStoreApp together with the eCommerce.

And such function has a dedicated team, another fragment of Deloitte Digital which

is entrusted with the management of everything that concerns the InStoreApp: this

means build it where it’s not present, keeping it up-to-date, monitoring that

everything that’s already built works as expected and extending its functionalities as

a limb of a broader omni-channel system with a worldwide commerce scope.

2.2.1.4. Application Maintenance (Deloitte Digital)

Finally, to cover all the duties held by Deloitte, even though this is not actually one

of the “systems” involved in the project, it’s important to name the AM: another team

internal to the Deloitte Digital division, whose role is basically monitoring that

everything on the storefronts still on SiteGenesis (or also on SFRA for the locales

that go live with it) runs smoothly and satisfy eventual late needs of the client on

such platforms.

Fabrizio Schembari 21

2.2.2. The external systems

2.2.2.1. CRM - Customer Relationship Management

The Customer Relationship Management (or CRM) is a tool that’s used by the client

firm, as well as many other companies, to keep track of consumers that are already

scheduled and potential new ones.

The software has the aim of improving the e$iciency and e"ectiveness of the

customer relationship management; however this is not the only goal that it can be

achieved, since CRM can help deepening relationships also with colleagues,

suppliers and partners.

This system is basically a cloud-based loyalty rewards platform, a database that

keeps track of the records about customers’ contact information (e-mail, telephone,

website social media profile and more) and loyalty data within the Commerce.

However, it that can also pull in data on recent news about the company’s activity

and details such as the clients’ personal preferences on communications. Moreover,

it is provided with AI technologies which, together with tips from the customers

themselves, is used to build complex analytics about them.

So the main focus of this type of system is to centralize the data the business has

access to, but also to digitize the processes and automatize the tasks of providing

the customers with the targeted experience they would expect, hence granting an

improved fidelity towards the firm.

If we want to categorize the beneficial impacts of a CRM, we find that they’re related

to:

• Sales: sales managers can monitor the progress of the individual team members

in achieving their sales targets and how well individual sales teams, products and

campaigns are performing;

Fabrizio Schembari 22

• Marketing: since data from customers’ social media activity — their likes, dislikes

and sentiment about specific brands and businesses — is available, forecasting is

made simpler and more accurate;

• Customer service: customers’ interactions don’t have a common platform (an

issue can be raised on a channel, say a social media, but then switch to another

platform as phone, chats or e-mails), so the centralization of all the contact data

the consumers provide ensures to avoid — or at least limit — missing interactions

or losing communications in the flood of information (which, from the business

point of view, can bring to unsatisfactory response to potentially valued

customers);

• Supply chain, procurement and partner management: the relationships with other

entities involved in the business can benefit from a CRM since it’s able to track

meetings or requests made and add to them useful notes that can help

comparing the e$iciency of suppliers, and more generally managing the entire

supply chain;

• HR: this function is improved by speeding up the on-boarding process, mostly

through the automation of the process of managing candidates, analyzing needs,

identifying skill gaps and supporting the pursuit of sta" retention targets.

Fabrizio Schembari 23

2.2.2.2. ERP - Enterprise Resource Planner

The Enterprise Resource Planner, or ERP, is another among the most important tools

used by many companies in the B2B and B2C businesses.

Its functions, in the specific case of the client firm, are related to products and sales,

and they have the ultimate task of collecting and aggregating information to provide

the company with statistical insight and let it draw conclusions for the decisions to

take.

Concerning the first point, the ERP is basically in charge of constructing a database

with the products when they get created. Their creation takes place with their “raw”,

a profile that includes the very least amount of data, such as an ID, the UPC code —

the barcode — and a few information such as its English name; with the updates of

the client firm within the project this database is meant to be then enriched through

the intervention of a PIM.

Moreover, the data aggregation the ERP performs is also related to purchase and

selling prices, allowing the company to perform inference on the revenues related

to each and every product.

Then, talking about sales, it works strictly in contact with OMS when an order is

created to record the actual sales and, yet, performing statistic inference for

decision making.

Fabrizio Schembari 24

2.2.2.3. OMS - Order Management System

In an eCommerce system, even in the most complex ones, where the user expects

absolute ease of use and transparency in the whole order placement experience

nevertheless, there’s for sure the need of advanced order management capabilities.

In this scenario, the Order Management System — or OMS — is the system involved

in performing this task: in a retail business such as the one assessed by this

document, it is given the objective of:

• Managing all the phases of an order while it gets created (including the interface

with payment handlers, credit cards and billing), canceled or returned (with the

subsequent refund);

• Handling the whole processing of such orders after they are placed (so all the

phases such as selection, invoices’ printing, picking, packing or shipping). This

point shows how the OMS is involved in the sourcing (once a product is ordered,

finds the closest logic node of the business network to the client) and fulfillment

logics (how the shipment actually takes place, from the store/central warehouse

to the interface with the carriers);

• Keeping track of the existing orders for all the customers;

• Synchronizing orders that tackle di"erent channels separately (aggregating store

orders to eCommerce ones) or together (as for orders placed online but set to

pick up in stores — feature called Click & Collect),

• Managing the inventory (keeping track of the stocks belonging to every store as

well as to the central warehouse as an ensemble),

So of course considering the retail enterprise of matter, it has a thorough integration

with all the systems, since it works strictly in contact with:

• the ERP (to register the sales);

• the WMS (for the availability of products according to the stock levels);

• the PSP (for the payments);

• the POS (to produce the invoices);

• the CRM (for what concerns the customers’ info and loyalty data);

Fabrizio Schembari 25

• and the PIM in the upgraded scenario (for the data related to products, catalogs

and pricing).

Finally, the operation it performs require multiple steps, since they are included in a

workflow that involves validation, fraud check, payment authorization and the whole

backorder management, together with the associated customer communications.

2.2.2.4. PIM - Product Information Management

The Product Information Management system — or PIM — is an entity needed by the

biggest B2C and B2B firms that sell products through a big variety of sales channels

(including an eCommerce platform) in order to e"ectively manage all the

information required to market and sell through such distribution channels.

If the ERP is in charge of creating the raw products, with very few data on them, the

PIM constitutes a central hub where to keep all the additional information about

such products, together with categories, catalogs and assets (meaning media,

brands and so on).

So in many cases, as for the project concerned, PIM functionalities are delivered by

platforms designed to work also as Content Management Systems (or CMS), which

takes care of all the media and content through which all items in the eCommerce

are enriched.

It has already been stated that, in the context of the business of matter, the PIM

system was not present before the engagement with Deloitte, and it was indeed one

of the potential improvements detected, together with the adoption of SFRA as

underlying architecture, at the beginning of the business relationships; more detail

on this will be given in the goal chapter later on in this document.

Fabrizio Schembari 26

2.2.2.5. PSP - Payment Service Provider

The Payment Service Provider — or PSP — is the software in charge of the

transactions of the customers, a central hub used in many systems to integrate

several or all the payment networks or bank circuits allowed by their Commerce and

manage the sales through them.

In practical terms, in the context of the eCommerce buying experience, it’s the

environment in which the customer is redirected once they place an order, that is

the very moment in which they confirm their commitment into proceeding to buy.

This means that it’s devoted mainly to assist the customer along the payment,

making sure that it makes it from point A to B safely and securely.

However, it is also generally capable of performing functions related to:

• Sales reporting:

• Generate detailed sales reports, based for example on products, employees,

total cost of items sold and their retail amount, net profits and percentages;

• Provide quick snapshots and charts on stores’ sales performances;

• Customer management:

• Attach a sale/transaction to a customer;

• Keep track of the customers’ purchase history;

• Capture customers’ information (name, age, birthday, phone number and

email address);

• Use email marketing to keep in touch with customers.

A few examples of PSP systems for the purpose of this document — so by focusing

mainly on south-Asian countries — are Adyen and CCAvenue.

Fabrizio Schembari 27

2.2.2.6. POS - Point Of Sale

In simple terms, the Point of Sale system is the software present within all the

cashes in the various retail shops.

This tool, apart being accessed by the stores’ salesmen to perform payments and

complete retail sales, can be used for the interest of the eCommerce storefront, as it

allows to prepare the invoices for the customers — that are basically cash register

printouts — and handle coupons and gift cards’ creation and validation, since

dedicated o"ers for specific customers are allocated starting from cashes

themselves.

2.2.2.7. WMS - Warehouse Management System

The Warehouse Management System, as the name suggests, is a software

application designed to support and optimize warehouse functionality and

distribution center management.

So its duties make it work hand in hand with systems such as the ERP or the OMS,

since it’s devoted to:

• handle the monitoring of stock levels and changes to the data, controlling the

utilization of available resources in all the nodes of the business network (let’s

recall that within the order placement the allocation of the bought products may

interest one of the stores — the closest possible to the customers’ location — or

one of the central warehouses);

• In general, supporting the warehouse sta" in the processes required to handle all

of the major and many minor warehouse tasks: I’m talking of receiving, inspection

and acceptance, put-away, internal replenishment to picking positions, value

added services, order assembly on the shipping dock, documentation, and

shipping (loading onto carrier vehicles).

Fabrizio Schembari 28

2.2.2.8. EMS - Email Service Provider

Finally, another important utility tool used by companies such as the client firm is

the Email Service Provider — or EMS — that is, indeed, in charge of handling the

marketing e-mails.

It allows, on one side, to access features such as creating and sending campaigns to

lists of subscribers, automatizing marketing and emails that can also contain

dynamic content and performing segmentation based on what the subscribers are

interested in; on the other side, it can help unifying the management of the

templates the business sends, to make sure that the communications received by

the clients are always the same, valid, coming from the same society and including

legitimate and up-to-date content, media and links.

Fabrizio Schembari 29

2.3. The development tools

2.3.1. Development setting

When developing storefront applications, the developer persona is easily going to

keep three important tools open:

• The Integrated Development Environment (IDE), where they write and test the

application;

• The Business Manager, which is the SalesForce B2C Commerce online tool for

configuring and managing B2C Commerce storefronts.

It’s a key element of the storefront applications development because it’s the

command center for merchandising tools (to perform functions such as setting

data on products, images, campaigns, promotions, and search settings),

administration (to set preferences, settings on the di"erent sites or import/export

sites’ data) and site development capabilities (mainly for troubleshooting through

debugging or configure development-specific settings).

Of course, depending on the permissions associated to the role of a developer,

the BM can be a hub for accessing one or a set of the available storefronts, such

as di"erent geographies of the same eCommerce application;

• The Storefront application, which is the actual application being written, kept

open to see the real-time results of any changes.

Fabrizio Schembari 30

2.3.2. Paradigms used

• MVC architecture: The storefront application under analysis follows the Model-

View-Controller architecture, which divides it into 3 parts (as Figure 2):

• The model, which is the business logic,

data and rules underlying the

application; it basically contains the

data used to populate the view.

In B2C Commerce is represented by

APIs;

• The view, which is essentially the front-

end view, i.e. what’s seen by the

customer on the storefront;

• The controller, which is the set of

classes and objects that convert the

customer’s inputs on forms or button

clicks into actions taken by the model or the view.

While this architecture provides a high-level map of how the elements work

together, the code still needs a deployment mechanism. That’s where the cartridges’

system comes in.

• B2C Commerce Cartridges: Cartridges are containers used by B2C Commerce

to package and deploy program code and data.

They are used to extend business functionalities or integrate with external

systems, moreover they are structured in a directory-based pattern for maximum

e$iciency and customizability; a storefront needs at least one of them, but

typically it has multiple.

A cartridge can carry generic or application-specific functionalities: the former

include standard processes that can be deployed in many sites, while the latter

contain merchant-specific code and data.

Fabrizio Schembari 31

Figure 2: the MVC flow chart

And such code and data is retrieved in a hierarchical way: B2C Commerce loads

individual cartridges in a specific order, loading the ones containing the most

basic functionalities first (the Base, to be kept edit-free by the developers for a

safe common fallback), followed by increasingly customized ones (the external

Plugin, third party functionalities from LINK partners, up to the Custom level). This

bottom up representation of the increasing levels of customization is called the

cartridge stack.

Then, cartridges can contain di"erent elements, such as controllers, form

definitions, scripts, static contents (text, images, CSS files, and client-side JS files)

and templates.

So together with the definition of the cartridge stack, we must introduce the

concept of cartridge path: this determines the order according to which B2C

Commerce identifies the correct element to run (cartridges earlier on the path —

to the leftmost part of the directory — override the functionality of the ones later

on the same path).

In practice, the organization of the cartridges according to these two paradigms

helps maximizing their reusability together with a correct di"erentiation of the

storefronts, thanks to the assignment of values to variables according to the most

specific localization in which they are defined, or eventually falling back to more

generic — homonymous — modules (up to the ‘default’ ones).

This allows the eCommerce application to have properly consistent and coherent

information in all its geographies, yet, again, maximizing the code reutilization.

Fabrizio Schembari 32

2.3.3. Javascript

Javascript is one of the most used programming languages in browser applications,

since it conforms to the ECMAScript specification (commonly used for client-side

scripting on the World Wide Web and meant to ensure the interoperability of web

pages across di"erent web browsers).

Here are some of its main features:

• High-level: it has a very strong abstraction, setting it closer to the human

readability than to direct machine interpretability (it may even contain elements

of natural language)

• Object-oriented: it’s based on the paradigm of objects, structures that contain

attributes (data fields keeping the information on them) and methods (procedures

representing the actions that can be called on the instances’ of such object).

Di"erently from procedure-based programming, which structures the overall flow

into sub-programs performing a defined function and that can be called from

throughout the code, it’s based on the dynamic interaction among objects,

sending messages with each other, but maintaining their status and data. This

helps in identifying actual “software components”, factor that can grant re-

usability, modifiability and possibility of maintenance of the code.

• Event-driven: as Javascript instructions do not follow fixed paths in their

execution, the program dynamics are based on user actions/interactions

triggering the next flow of events. This means that the code is structured on loops

that continuously listen for new events and event handlers that are triggered by

them.

• (mainly) Just-In-Time compiled: most of times Javascript code is compiled at

runtime, rather than before execution. This means that the compiler typically

analyzes the code being executed continuously and identifies the parts where the

speedup gained from compilation/recompilation would outweigh the overhead

costs of compiling such code, thus allowing adaptive optimization.

Fabrizio Schembari 33

2.3.4. HTML / CSS

The UI in all the pages of the storefront is rendered on templates coded in

SalesForce’s proprietary extension called Internet Store Markup Language (ISML),

which is based on HTML and uses CSS for formatting industry standard stu".

HTML is the standard markup language for the documents designed to be displayed

in a web browser, meaning that it’s used to give a layout to files such as web pages

by adding opening and closing hypertext tags (such as ‘<tagName>text</tagName>’)

to the text that’s going to be displayed on them.

The language is meant to be assisted by Javascript to provide the content

populating such web pages, and by CSS for what concerns the styling.

CSS is a language meant to enrich and diversify the aesthetic representation on

HTML pages, and constituting together with such language a standard whose rules

come from a set of recommendations for web pages provided by the World Wide

Web Consortium.

It works through the assignment of classes to the di"erent HTML elements of the

page, and allows to manipulate the various attributes that each of these classes

carry, such as colors, fonts, positions, visibility and many more, everything to

provide a more complex customizability to the HTML document.

2.3.5. Node.js

Node.js is a back-end JavaScript runtime environment, a software providing the

necessary services to execute JavaScript instructions outside a web browser.

It is open source, cross-platform and event-driven, and it’s mainly used to build

back-end services, also called APIs. But what does it mean?

Prior to Node.js, JavaScript was only used on client side code and then evaluated by

an engine within the browser. Then, the introduction of such tool made possible for

the code to perform computations of JS instructions also on the server side.

Fabrizio Schembari 34

This results in the implementation of the JavaScript everywhere paradigm, meant

to unify the developments of web applications around the same programming

language.

Its Package Manager, npm, is the world’s biggest libraries’ ecosystem, and it’s

composed of a command line client (called also ‘npm’) and a database of private

and public packages, named ‘npm registry’.

This last tool was also used in the scope of the project, mainly to launch instructions

on the command prompt, like re-building the FE scripts or the SCSS after

modifications on the UX code.

2.3.6. JQuery

JQuery is one of the most used and important Javascript libraries employed in the

project constituting the scope of this document.

It’s used to simplify the manipulation of HTML documents, as well as event-handling,

animations and Ajax calls through which data can be sent from the front-end to the

back-end side of the application and received back to populate FE variables for the

UX.

Fabrizio Schembari 35

Fabrizio Schembari 36

3. The starting point

3.1. Overview

The previous section explored all the entities and the technology tools that are

involved in the project, representing all the gears that interleave with each other and

let the overall machine perform its duty.

The following section is meant to portray the structure underlying the client firm’s

Commerce at the beginning of its Omni-channel program, when — in early 2019 —

the first European countries had their rollout (as portrayed by Figure 3).

The focus in particular will be given to the description of SiteGenesis, the starting

architecture.

Fabrizio Schembari 37

Figure 3: Flow diagram of the communication among the systems before the switch to SFRA and the
introduction of a PIM system

3.2. SiteGenesis by Demandware

The first EU countries having their rollout in the overall Omni-channel program had

SiteGenesis as their common backbone.

SiteGenesis JavaScript Controllers (SGJC) is an architecture launched in the year

2009 by the software technology company Demandware and based on their

eCommerce platform.

The company was a revolutionary upstart launching the Software as a Service (SaaS)

model for e-commerce long before others did, though it did not natively support

mobile web experiences as it was built around a proprietary ‘Pipeline’ architecture.

Later on, in 2016, Demandware was acquired by Salesforce, that then renamed it

SalesForce Commerce Cloud.

SiteGenesis has been one of the leading technologies for the storefronts, and still

nowadays it’s currently used in more than 2700 Commerce Cloud sites, including

some of the world’s leading brands.

However, from the beginning it showed a few deficiencies that brought SalesForce

to develop a state-of-the-art heir for the next generation storefronts. Such successor

is the StoreFront Reference Architecture.

A full comparison of the two systems has been made on the next chapter, to better

identify the di"erences that make SFRA stand out against its predecessor.

Fabrizio Schembari 38

Fabrizio Schembari 39

4. The goal

4.1. Overview

If the previous section was devoted to describe the situation of the infrastructure at

the beginning of the project, the following one aims at outlining the features of the

reaching point (represented by the flow chart in Figure 4), by defining what the

StoreFront Reference Architecture is and the benefits that it brought, together with

the addition of a PIM system, to the Commerce.

Fabrizio Schembari 40

Figure 4: Flow diagram of the communication among the systems after the switch to SFRA and the
introduction of a PIM system

4.2. SalesForce SFRA

4.2.1. Overview

As already stated, from the beginning of year 2018 the retail enterprise started a

global transformation for the whole group, with the aim of bringing a unified Omni-

channel experience.

The designated Commerce chosen for this global transformation was SalesForce

Commerce Cloud, since such cloud-based platform holds the position of global

leader within the companies in the sector.

In the following section, a description will be given to better explain, among the

di"erent components of the entire system, what SalesForce Commerce Cloud is.

4.2.2. SalesForce Commerce Cloud
(SFCC)

Commerce Cloud is, as the name suggests, a cloud service o"ered by SalesForce

that can perform CRM, OMS and In-store functionalities; in the last few years it has

become one of the global standards when building an eCommerce platform.

Its core capabilities are related to B2B, B2B2C and B2C customers, granting a high

level of specific features and customization of the storefronts.

Moreover, this service allows online sellers, such as B2C retailers, to launch sites for

multiple brands or geographies (if they sell in many countries) and then manage

them all in a single place.

But consumes don’t just visit web and mobile sites, they also interact with brands

through emails, social media, and in stores: that’s where SFCC integration of

Fabrizio Schembari 41

eCommerce sites with marketing and service solutions comes in handy, making

every email and social media interaction more personalized and relevant to

shoppers.

Another feature that SFCC provides is a direct embedding with Einstein features, a

tool that uses AI to mine data related to Product Recommendations, Predictive Sort,

Commerce Insights, Search Dictionaries, and Search Recommendations.

Both the architectures under the spotlight of this Thesis work belong to SFCC — we

recall that SFCC is just another name for Demandware, the platform foundation of

SiteGenesis —, one is just the newer generation of the other (they came out 9 years

apart from each other).

4.2.3. StoreFront Reference Architecture
(SFRA)

Talking about B2C Commerce, we can distinguish a few categories that compose it:

merchandising and marketing, multi-site management and localization, B2C

Commerce API extensions and, mostly relevant for the scope of this document,

commerce storefront: this last category represents essentially an eCommerce site,

but enriched with a few features: brands can indeed also di"erentiate, manage, and

customize the customers’ whole shopping experience.

Among the newest capabilities o"ered by SFCC, there is the StoreFront Reference

Architecture (SFRA): a robust reference architecture that helps brands build and

launch sites quickly and easily using mobile-first best practices.

While each site has its own storefront rich of own features, retailers can use the

reference architecture to create it.

It sits — yet fully customizable — outside the platform API layer, lets the business

create storefronts that support multiple languages and currencies, provides a

modern shopping cart and checkout that include interesting features such as Save

for Later (to save an item to a wishlist for a logged in user), optimized user flows,

Fabrizio Schembari 42

Apple Pay, and other wallet options to make the checkout process as fast and

seamless as possible.

SFRA capabilities also include prebuilt integrations to extend site functionality, and

open APIs that allow sites to connect to any third-party data or applications like user

reviews.

4.3. SFRA vs SiteGenesis

The comparison of SFRA with its predecessor shows that a few of the improvements

come from:

• Its Mobile-First fully responsive design, key factor for a business such as the client

firm (forecasting mainly smartphone tra$ic on its storefronts), making it more

scalable and bringing reduced Total Cost of Ownership in the long term;

• Improved modularity and abstraction together with a full compatibility with the

MVC paradigm, allowing to extend Models and Controllers without replicating the

templates. This a"ects extensibility and inheritance, since it encourages a

modular approach in the customizations, and producing a better maintainability

factor;

• General performance improvements (a"ecting also the user experience) due to:

• The compatibility with a Page Designer, a tool available to the Business on

the BM that allows them to configure their web pages with ease, by building

them visually (as if it was block programming);

• An overall faster system of templates, that takes advantage of Javascript

controllers and frameworks as Bootstrap 4 or JQuery;

• Many out-of-the-box integrations for the cartridges, such as with ApplePay or

In-store pickup;

• A better testability of the former, that comes with unit tests for many of the

base functionalities.

Fabrizio Schembari 43

4.4. Benefits of introducing a PIM

In the previous infrastructure of the Commerce, the management of the assets was

assigned to jobs within SFCC itself.

This solution produced centralized activities, however — in addition to the

operations being really slow — it resulted in numerous lacks from the point of view

of maintainability, scalability and human interaction.

Hence, the proposal of the adoption of a PIM system. The main reasons were related

to:

• Data quality: a PIM is more e"ective in detecting gaps in the products and solving

issues such as incomplete attribution, inconsistent attribute values, missing

images;

• Centralization: a PIM helps in aligning the content across channels by creating a

single repository of product data for multichannel publishing;

• Performance: a PIM provides improvements in by reducing redundancy, rework

and repetition and the Business doesn’t need to rely anymore on error-prone,

complex spreadsheets;

• Information: Finally a PIM helps accelerating business value since it allows to

connect products to the transactional, interactional and analytics data it

produces.

Fabrizio Schembari 44

Fabrizio Schembari 45

5. The project

5.1. Overview

Now that the reader is provided with all the basic information on all the preliminary

entities, decisional drivers and tools involved, it is possible to enter into the details

of the actual project and all the processes related.

The first section will assume the perspective of the team, and it aims to explain all

the steps that are necessary to perform the job, portraying how the client and the

consulting firm get to an agreement on the project guidelines and how it is carried

out by the latter.

Finally, the section devoted to the development will enter the single member’s point

of view, and it will reflect some of the actual activities that marked my contribution

within the team.

The purpose of this section is to illustrate the actual tasks that the technical team is

involved into, and providing also a few concrete examples of issues faced, solution

approaches and results achieved.

Fabrizio Schembari 46

5.2. The development pipeline

5.2.1. Design

The earliest phase of this software engineering case study is the definition of what

the delivered product has to be, which features must include and how it needs to

look.

During this preliminary step, these factors are established between the client and

the consulting firm with the highest details possible, they try to cover all the

possible use cases and scenarios that may show up and include the agreed

responses of the Commerce in a document gathering all the possible user stories.

This document, from one side, states how the client requests the storefront to be,

the UX features that the platform has to present and how it needs to respond to all

possible inputs from the users.

On the other side, such document implicitly defines the responsibilities of the

di"erent parties, it provides a bound to the client demands and by implication a

definition to which requests are duty of the Commerce team and which are

considered extra, hence requiring an additional e"ort to be satisfied (and additional

costs for the client).

Once the user stories are given a first agreed definition, the team has a concrete

milestone to achieve, so the first developments can take place.

However, defining the design step as preliminary doesn’t mean that it reaches an

early termination, as such phase is spread along the whole project, or at least until

the relationship with the client gets to an end: that’s of course because design

features may vary due to forgotten scenarios, changes in the client’s policy or

requests by the same — thus implying changes in the user stories.

Fabrizio Schembari 47

5.2.2. Tests

During the whole development of the platform, the results achieved are constantly

tested to make sure that the product being delivered fits the requests of the client

and that everything is working seamlessly.

Depending on the phase of the development, di"erent types of tests can take place,

and they might involve or be conducted by di"erent entities.

5.2.2.1. Point-To-Point tests (P2P)

Point 2 point tests can be considered among the earliest forms of testing, and they

are performed internally in the Commerce team.

They tackle the task of verifying that the integration with each of the external

services — considered singularly, as the embedding is developed — works as

expected.

5.2.2.2. System Integration Tests (SIT)

Further in the development of the software, once the integration among all the
communicating external systems has been elaborated, System Integration Tests (or
SIT) take place.
Their aim is to validate all possible procedures of sequential calls to the present
services, and they consist in live sessions where exponents (that could be technical
managers or the developers themselves for major features) of each of these systems
meet and — of course keeping a testbook as a starting point is always advised —
check that most of the flows in the program work as expected.
This is done in order to check whether the communication among all the entities is
correctly functioning, and take on-line solutions as much as possible if that’s not the
case.

Fabrizio Schembari 48

5.2.2.3. Quality Assurance and User Acceptance tests
(QA & UAT)

The final step in the testing pipeline before the go-live date of the application

consists in the quality assurance (QA) and user acceptance tests (UAT).

In the context of the project, it was actually an external enterprise — specialized in

testing — being in charge of performing the checks related to this first phase: these

are done through extensive runs of all the flows in the platform, to make sure that

everything works as defined by the user stories, considered one by one at first, then

by looking at entire end-to-end procedures; then a dedicated ticketing service is

used to notify the issues still present.

After the QA, the UAT phase of testing consists in the same validation, this time

performed by the Business.

Of course, internal checks for bugs are also kept active within the Commerce team

during this and all the other steps (looking for blocking issues beforehand), however

the problems reported externally certainly have a higher priority.

5.2.2.4. No regression tests

When code coming from bug fixes or developments is released in production

environment for some country, it is main interest of the developer to make sure that

the other countries are not influenced in unwanted ways.

No regression is a testing phase that takes place at the turn of a software release in

production with this aim.

This step is composed by a set of checks that are performed on the already existing

storefronts on the processes that run on the code that’s been a"ected by the

modifications or developments released, to ensure that they are not impacted by

unexpected changes or malfunctions.

Fabrizio Schembari 49

5.2.2.5. Smoke tests

Finally smoke testing, also known as confidence testing or build acceptance testing,

is another validation phase that aims at pointing out general failures within a release

in production. These tests are performed with the focus of covering the most

important functionalities of the system, to validate whether the main functions of

the platform appear to work as expected.

5.2.3. My contribution: the development

Both the design step and the di"erent types of testing are essentially meant to

shape the product to be delivered.

This, in other words, means that they interleave with the developments to provide

them with a guideline, but also to validate that the expected results are reached by

the storefront being built.

So at this point, we can finally describe the main technical activities present within

the project, the actual developments.

This, again, is the context in which my actual contribution, as well as for the other

technical members within the team, takes place.

5.2.3.1. Types of technical activities

In a re-platforming operation such as the one portrayed in this document we can

distinguish three types of activities that a developer might be involved into: bug-

fixing, change requests and new developments. All of them will be thoroughly

described in the following section, which will also provide a few concrete examples

of real tasks that have been tackled by me during my internship.

Fabrizio Schembari 50

5.2.3.2. Bug-fixing

The activity of bug fixing is the prevalent occupation performed during an already

started team development, especially on a re-platforming operation: as the name

suggests, the task represents the resolution of malfunctions or the fix of features

showing up di"erently from the user stories, found (most of times) directly on the

storefront.

Once the bug is detected — primarily during dedicated testing sessions performed

by the functional team —, it gets reported through the usual ticketing services and

assigned to the proper technical team member to get rid of it.

When approaching a bug, the first step is of course the replication of the issue (it’s

indeed fundamental to provide as many details as possible when reporting it), and

then consulting the tools considered appropriate — such as the ones provided by a

debugger or the logs associated to the environment where such issue is found — to

make hypotheses on what could be the cause of it.

Generally, the issues found can be related to:

• wrong configurations on the Business Manager, which require an update on the

faulty preference(s) or a notification to the Business communicating what needs

to be changed (that’s because after the rollout of a site the management of its

settings on the BM is up to them);

• problems in the information flow among some services — or in this case

prevalently with Mulesoft, since it stands in the communication as a data hub

between the Commerce and the other external systems. These issues can figure

in the storefront as missing or wrong data in the view, and need to be redirected

to the failing system to deal with it, possibly with all the additional insights gained

during the analysis;

• actual bugs present in the code and generated by a rough integration of new

developments producing regressions or mismanaged cases.

These last issues are the ones that actually require intervention on the code.

Fabrizio Schembari 51

Actual example: Order placed without e-mail and phone on Production

environment — India:

An interesting case of bug-fixing, not for the fix itself but for the analysis behind,

was related to a real case happened on the third day the eCommerce platform went

o$icially live in the Indian country (first of the two countries having a rollout):

A (real) customer was able to place an order without filling two mandatory contact

fields, the e-mail and the phone number.

Giving a quick analysis to the export of the orders by SFCC, they showed two, and

only two, orders coming from the same customer and placed around 8 minutes one

from the other.

The first one, though, resulted in an ABORTED status, while the second (the newer —

and faulty — one, on which the ticket was based) was SUCCESSFUL, yet with email

and phone data missing.

So it made sense to look for a possible correlation between the two orders.

After a bunch of further analyses on the logs related to the Production environment,

and consulting the SFCC documentation, I came to the realization that the default

behavior of an SFCC controller might be involved in the issue, but to better explain

the problem some preliminary notions are necessary: in some eCommerce systems,

older for the most part, when the customer places an order, the flow starts with the

build-up of a basket, containing the SKUs about to be ordered and gradually filled

with the mandatory information related to the contact data (email and phone), type

of shipment, shipping/billing addresses and payment coordinates during the

checkout.

Then, once the shopper confirms by clicking on “place order”, they get redirected to

the PSP — the payment handler’s page —, where they are asked to authorize an

amount to pay, which is established by the basket itself.

Finally, once the payment is authorized, the user is redirected to the storefront,

where the basket has been wiped clean and an order has been created from the

data contained on it.

Fabrizio Schembari 52

But this means that it’s possible for a customer with a malicious intent to game the

system and get free products: this can easily be done by manipulating the basket at

the right moment.

This happens if the user, once redirected to the payment handler’s site — that

requests a payment for an amount defined on the current basket — opens another

tab and adds a few new products to the basket. Then, by performing the payment

on the payment handler’s site, the order will be created out of the new basket, which

includes also the new products, but paying for the old basket.

However, this is not the behavior carried by SalesForce.

Di"erently from the scenario described above, on SFRA storefronts once the

shopper is redirected to the payment handler’s site the basket is deleted and the

order is created straight away, then if the payment flow is not successful such order

results in a FAILED or ABORTED status, the user is redirected to the storefront at the

last step of the checkout and the basket is restored if no new one has been created

(due to constraints on SFCC).

This means that the user tried to perform this exploit, the payment was refused

(resulting in an ABORTED order) and so they got redirected to the confirmation step

in the checkout; however, in doing so, the old basket was not restored because in

the meantime some new products were added and a new one was created.

This all in all means that the shopper was redirected to the checkout on the final

step, asking a confirmation for a basket in which all the mandatory data (except for

the addresses — pre-filled through radio buttons —) were not compiled during the

previous steps.

In this circumstance, to cover this edge case the fix was pretty basic, it was only

necessary to add a safety check for the contact details to be present on the basket

once the confirmation button is pressed; however, this analyses taught clearly how

the behavior of the customer is not always the one planned by developers and,

moreover, it’s not always naive or unintentional.

Fabrizio Schembari 53

5.2.3.3. Change Requests

As it’s already been said, once the project starts the first step that the firm needs to

take care of is the design of the desired platform. This is done by discussing logic

and UI features that the client needs, consider their feasibility (and associated costs)

and producing a set of user stories from the results.

This, though, doesn’t mean that the first design is going to be the mirror of the final

product. Indeed, changes can often happen: it could be for the lack of use cases

among the ones considered or for an explicit request from the client, due to

changes to the internal policies or just new features to be implemented w.r.t. the

former system.

Once this happens, an associated ticket is raised towards the firm: these don’t

represent bugs that prevent the platform from having the expected behavior, but it’s

a demand from the client to change what was agreed during the design phase

(which means that it consists in a source of costs, since an extra e"ort is being

expected).

At this point the ticket is treated just as any other issue, requiring to analyze the

current state of the storefront, with the code associated, and perform the

modifications, additions or tweaks (potentially involving also external services’

providers) to make sure that the request is fulfilled and that all the other locales are

not impacted by it if not requested.

Actual example: tracking link extension — Malaysia:

An interesting example of change request faced during the participation in the

project was associated to the tracking link in the Malaysian country.

Beforehand, once opening the Order Details page on the storefront, the SFRA code

logic (already developed and working on the Indian storefront) expected a unique

tracking link (Figure 5), a static string coming from a custom preference on the

Business Manager and populated with the URL of an agglomerator provided with

two placeholders to allow it to retrieve the shipment information according to:

{1}: the carrier;

{0}: the associated tracking link.

Fabrizio Schembari 54

However, with the addition of the Malaysian locale, the retail firm asked to extend

this logic in order to allow them not only to use a single tracking link from an

agglomerator, but to introduce the possibility of adding many di"erent tracking link

templates coming straight from the carriers’ websites, making sure that for the older

countries everything worked fine as before.

The solution approached for this issue was to dismiss such custom preference

(which was limited to a single string) and deploy a new one, shaped as a JSON map,

in which the key is represented by the carrier (whose ID is already received from

Mulesoft) and the value is its associated tracking link.

Through this preference, and the related adaptations to the code, the correct

tracking link is fetched among all the ones available for a particular locale and the

associated button on the storefront is populated with the correct URL, in which the

placeholders are substituted.

Fabrizio Schembari 55

Figure 6: The body of the new site preference introduced in the two new countries.

Figure 5: Tracking link custom preference - before

How is the correct behavior for the old countries preserved?

That’s thanks to a fallback logic according to which, if the carrier received is not

found in the map, the tracking link used to populate the button from the SFRA code

comes from the “default” key (which is going to be the only one populated in case of

unique link from an agglomerator), or if even this situation resolves as a failure (for

example, if the Business forgot to update the custom preference on the BM) then

still rely on the older preference.

Actual developments

The last form of activities that a developer faces during a team work such as the one

presented involves the development of features.

The generic name of “developments” refers to generic code modifications not

associated to bugs or CR requests, or design traits that are either new or inherited

and adapted during the re-platforming.

The new developments are related to features that are unprecedented w.r.t. the

older countries already present in the infrastructure, so they can often be associated

to change requests willing to satisfy peculiar requests of the business according to

the new country.

Then, there are the re-platforming developments: these tasks take place mostly in

the early phases of the build-up of the new storefront for a certain country, in which

the developer needs to analyze the SFRA code deployed for other geographies or

the SiteGenesis version of the same locale (if present); modifications are then made

or new locale-specific pages are detached with the customizations that allow the

new storefront to properly work with the integration of the forecast services’

providers and business requirements.

Fabrizio Schembari 56

Finally, there’s one other type of developments: such are those peripheral

developments that aim for a general improvement.

Actual example: performance improvement — India:

A relevant example of development belonging to the last category is related to a

task addressed when the Indian site was about to go live on Production

environment:

Improve the performances on the overall eCommerce.

Approaching this topic, all pages of the storefront have been considered, however

the evaluation of the improvements was done according to their immediate

feasibility and to which page they were going to be applied to.

This means that the pages were weighted on their relevance, focusing primarily on:

• homepage;

• primary category landing pages;

• product listing page (PLP);

• product details page (PDP);

• checkout.

The software used to perform the analyses was Google Lighthouse, a tool that

nowadays has become a standard more and more used. It analyzes webpages by

dividing the indices into:

• Performances: everything that’s related to the speed of the website and how long

each page takes to completely load from scratch;

• Accessibility: all the details that make the browsing on the page user-friendly,

from the color contrast to the ‘alt’ tag definition on the images and so on;

• Best Practices: all the activities representing how good the subject is at following

the basic webpages rules, such as the correct functioning of the SSL protocol,

the presence of HTTP/2 or valid APIs only and more;

Fabrizio Schembari 57

• SEO: this category ensures that a webpage is optimized for search engine results

ranking, resembling how friendly or optimized the webpage is for the user

experience;

• Progressive Web App (PWA): this parameter is related to all those resources

loading as webpages but behaving as mobile apps, thus it has not been

monitored.

The gathered indices were then tabulated into Microsoft Excel to report the starting

situation (Figure 6).

Before assessing the concrete development, a few remarks are needed:

• the eCommerce portal has a mobile-first design, meaning that the user

experience is forecast to be coming mainly from smartphone tra$ic; thus, the

optimization has to keep that in consideration;

• the subject of the analysis is an already established eCommerce portal; as such,

several indications for the optimization provided by Lighthouse — mostly related

to JS/CSS — were basically unfeasible due to the great quantity of modifications

that they would require and the huge impact that they could have on a website

that was almost ready to be deployed in Production environment;

• The numbers computed by Lighthouse have to be considered as approximative:

they were computed on the common Development code branch, the before and

Fabrizio Schembari 58

Figure 7: Google Lighthouse parameters - before

after state were a few days apart from each other, and during those days the

overall code was a"ected by modifications and additions of features by the other

team members solving bugs or managing change requests.

Moreover Lighthouse computations were done on the default standardized test

case and regularly showed fluctuations in the values, though limited in value.

As it can be immediately be deducted from the picture, mere performance was the

main point to address.

And by looking at the detailed reports provided by Lighthouse what was

immediately noticeable is that most of the potential improvements, aside from the

(minor or unfeasible) JS/CSS code optimizations already nominated before, were

related to images’ management.

In particular, the two interventions to bring the highest reward were:

• applying lazy loading to the images, which a good measure that involves loading

the images in a smart way, deferring all those that are not immediately on screen

or they are not even about to be;

• applying a more precise resizing operation to the images: previously, the images

were all sized according to a few fixed breakpoints (mobile, tablet, desktop)

representing the width of the entire screen.

However, many images in the storefront are placed in containers that are

oftentimes smaller than the entire view, and they mostly come from static

components that are added to the page through the Page Designer on the BM

and always behave in the same way.

Thus, I tackled the task by modifying the resizing algorithm present in the

storefront to make sure that the operation was not done anymore on the screen

size, but on the size of the container in which such component was inserted in;

this change involved the definition of a few substitutive breakpoints representing

the width of such container in each possible device breakpoint (as before, mobile,

tablet and desktop), and then using this parameter to give the image a proper

size.

Fabrizio Schembari 59

So at the end of this step in the development the images got their size no more on

the full width of the screen at a certain breakpoint, but on the width of their

associated container at that specific breakpoint.

On the other hand, there was more that could be done according to this last point:

and for the reader, the rationale behind these additional considerations was “favor

an overall performance improvement by penalizing a negligible amount of users”.

To be more specific, the previous breakpoints were chosen safely to make sure that

all the devices of a certain kind got the images loaded as crisp as they could get.

This resulted in a set of width breakpoints (in pixels) equal to:

- mobile: 767

- tablet: 1024

- desktop: 1440

(from 1440px on the size stops growing, instead what grows is the two white

sides of the page).

However, not all users use tablets or desktops as much as smartphones, and most of

smartphones have a screen width that barely exceeds half that safety breakpoint

value.

So a few statistic considerations could be made to further optimize.

The website gs.statcounter.com provided the following data:

- Percentages of users for each type of device worldwide (from January 2020) -

Figure 7;

Fabrizio Schembari 60

Figure 8: Percentages of
users for each device type
Source: gs.statcounter.com

http://gs.statcounter.com

- Highest market shares for each screen size according to each device type

worldwide (from April 2020) - Figure 8.

These data have then been tabulated onto Microsoft Excel, the weighted

distribution of users for each view type has been computed, and by automatically

minimizing the 3 breakpoint parameters I looked for the best trade-o" overall,

getting to this solution (Figure 9):

Fabrizio Schembari 61

Figure 9: Highest market shares for each screen size according to each device type worldwide
Note:
- The colors represent the associated view of the storefront for each particular device (oriented
vertically or horizontally).
- The “other” devices are considered as homogeneously distributed among the other distributions.

Figure 10: Results of the minimization process.
Note: A user is defined “happy” if the breakpoint used for the
scaling of the images is equal or higher w.r.t. the width of the
device they’re using.

This, compared to the starting breakpoints — respectively 767, 1024 and 1440 —,

produces an overall performance improvement, by still visually fully satisfying more

than 96.3% of the users; the increase in performance mostly influences smartphone

consumers and “sacrifices” a few tablet users — proven to be the less used kind of

device —, meaning that a few of them, depending on their screen size, might get

slightly less crisp images on a particular view.

All in all, considering the lazy loading and the resizing operation of the images, the

increase in performance was thorough, with a few oscillations for certain values and

some negative values (due to previous resizing parameters that were erroneous or

the update of their value was left behind during the re-platforming operation from

their SiteGenesis counterpart).

Fabrizio Schembari 62

Figure 11: Google Lighthouse parameters - after

Fabrizio Schembari 63

6. Conclusions

Even though the correlation with what I learnt during my academic years was not

immediate in the first place, the months of involvement in the project were

insightful on a broader level.

Indeed, everything up to the programming languages used in the day-by-day

activities were new to me; but nevertheless I had the chance of putting into practice

the general ability to interpret a foreign code with all its flows, and of course this

was the most immediate match with my University path at Politecnico di Milano.

However, the most tangible benefits that I got from this experience count the

opportunity of being able to put into practice what engineering means, tackling the

concept of problem solving in a professional context, where there’s an issue and it’s

required to learn the most e"ective way to solve it, yet being able to rely on my

teammates for brainstorming or asking for any advices.

Then, the skills that I had the chance to improve are related to aspects that are

fundamental in nowadays worklife: the possibility of facing the professional

approach of the team and be part of it in managing the delivery of the project,

having relationships with the Business client and learning about the latest state-of-

the-art technologies and actual global standards employed in the digital

environment.

But all in all, I found the biggest source of personal growth in the opportunity of

getting out of the student comfort zone and finally having my first real work

experience: thanks to that, I could access the business reality, see the e"ectiveness

of di"erent approaches when facing a problem and perform actions that, for the first

time, allowed me to reach concrete results.

Fabrizio Schembari 64

Fabrizio Schembari 65

7. Appendix

7.1. Acronyms:

AM = Application Maintenance

API = Application Programming Interface

BE = Back end

BM = Business Manager

COD = Cash on delivery

CR = Change Request

CRM = Customer Relationship Management

DD = Deloitte Digital

ERP = Enterprise Resource Planner

ESB = Enterprise Service Bus (example: MuleSoft)

ESP = E-mail Service Provider

FE = Front end

IDE = Integrated Development Environment

ISML = Internet Store Markup Language

JS = JavaScript

MVC = Model-View-Controller

Fabrizio Schembari 66

OMS = Order Management System

P2P = Point-to-point (tests)

PDP = Product Details Page

PIM = Product Information Management

PLP = Product Listing Page

POS = Point of Sale

PSP = Payment Service Provider

QA = Quality Assurance (tests)

SEO = Search Engine Optimization

SFCC = SalesForce Commerce Cloud

SFRA = StoreFront Reference Architecture

SIT = System Integration Tests

SKU = Stock Keeping Unit

UAT = User Acceptance Tests

UI = User Interface

UPC = Universal Product Code (12-cipher code associated to a barcode mainly used

in North America)

US = User Story

UX = User eXperience

WMS = Warehouse Management System

Fabrizio Schembari 67

7.2. Terms definition:

Fabrizio Schembari 68

Business Manager 31

Cartridge 32

Cartridge path 33

Cartridge stack 33

Connected customer 16

Einstein 43

Event-driven (language) 34

High-level (language) 34

IDE 31

ISML 35

JavaScript everywhere (paradigm) 36

Just-in-time compiled (language) 34

Lazy loading 62

Middleware 21

Mobile-first (design) 61

MVC = Model-View-Controller 32

Fabrizio Schembari 69

Objected-oriented (language) 34

Omni-channel 17

Page designer 46

Procedure-based (language) 34

Raw (product) 25

SEO 60

Storefront application 31

Unified Commerce 17

7.3. References

https://www.wikipedia.org

https://www.salesforce.com

https://trailhead.salesforce.com

https://www.softwareadvice.com/resources

gs.statcounter.com

https://warehouse-management.com/What-is-a-WMS-92163.htmlhttps://

www.tadigital.com/insights/perspectives/storefront-reference-architecture-sfra-vs-

sitegenesis-understanding-key

Fabrizio Schembari 70

https://www.wikipedia.org
http://www.salesforce.com
https://trailhead.salesforce.com
https://www.softwareadvice.com/resources
http://gs.statcounter.com
https://warehouse-management.com/What-is-a-WMS-92163.htmlhttps://
http://www.tadigital.com/insights/perspectives/storefront-reference-architecture-sfra-vs-sitegenesis-understanding-key
http://www.tadigital.com/insights/perspectives/storefront-reference-architecture-sfra-vs-sitegenesis-understanding-key

	1.1. The project in a nutshell
	1.2. The structure of the document
	2.2. The involved entities
	2.2.2. The external systems
	2.3. The development tools
	3.1. Overview
	3.2. SiteGenesis by Demandware
	4.1. Overview
	4.2. SalesForce SFRA
	4.3. SFRA vs SiteGenesis
	4.4. Benefits of introducing a PIM
	5.1. Overview
	5.2. The development pipeline
	7.1. Acronyms:
	7.2. Terms definition:
	7.3. References

