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Abstract
Master of Science in Space Engineering

Ballistic Capture Sets and orbits evolution
under variations of the capture epoch

by Emiliano La Paglia

Over the last decades a new wave in space exploration has risen: small satellites such as
CubeSats are more and more opening the possibility to smaller companies to reach the orbital
environment. Within the Horizon 2020 programme the EXTREMA project ongoing at Politec-
nico di Milano aims at proving that miniaturized satellites are fully capable of autonomously
navigating the deep-space environment. In particular, the main structure of the mission is
divided into three main pillars, one of which focuses on the ballistic capture phenomenon and
how it can be exploited to achieve low-energy and low-cost injection into the martian gravita-
tional field. Such pillar has been at the basis of this thesis: the ballistic Capture Sets and orbits
evolution under the variation of the capture epoch has been extensively investigated. Robust-
ness and sensitivity of target arrival date and spacecraft state at its first close encounter with
the red planet have been assessed.

iii



Sommario
Master of Science in Space Engineering

Ballistic Capture Sets and orbits evolution
under variations of the capture epoch

by Emiliano La Paglia

Nelle ultime decadi una nuova modalità nell’esplorare lo spazio ha guadagnato popolarità:
piccoli satelliti come i CubeSats stanno sempre più aprendo la possibilità a piccole compagnie di
navigare nello spazio. All’interno del programma Horizon 2020 il progetto EXTREMA in corso
al Politecnico di Milano si pone lo scopo di dimostrare che questi satelliti miniaturizzati siano
in grado di navigare lo spazio profondo in maniera completamente autonoma. In particolare, lo
scheletro di questa missione è diviso in tre pilastri principali, uno dei quali affronta il tema della
cattura graviatazionale e di come questa possa essere sfruttata per raggiungere a basso costo
il campo gravitazionale marziano. Questo pilastro rappresenta il punto di partenza di questa
tesi: l’evoluzione dei Capture Sets e delle relative orbite è stato ampiamente studiato all’interno
di un modello ad alta fedeltà. Sono infatti state oggetto di investigazione la robustezza e la
sensitività della data di arrivo selezionata e dello stato del satellite al suo primo passaggio
ravvicinato del pianeta rosso.
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Chapter 1

Introduction

In astrodynamics, the trajectory design process aims at finding a solution that satisfies
a given set of constraints whilst optimizing one or more parameters. The objective is often
defined as the minimization of the cost associated with the mission at hand, which translates
into the minimization of the propellant mass required for the trajectory.
In the early stages of space exploration, trajectories were designed accounting for the use of
high-thrust engines able to provide quasi-instantaneous changes in velocity - and therefore also
in orbit. Over the last few decades instead, new approaches have been developed: low-energy
transfers have started to rise as a viable option for interplanetary trajectories. Amongst this
last category, it is possible to find the phenomenon of the ballistic capture, sometimes referred
to as gravitational capture.

1.1 Historical Context

In 1991, Japan placed two satellites in Earth orbit: Hagoromo, which was supposed to
achieve lunar orbit, and Hiten. During the journey to the Moon, contacts with Hagoromo
were lost and without any knowledge on the state of the spacecraft, the Japanese decided
to send Hiten to the Moon. However, Hiten was designed to serve as a relay satellite for
communications between Hagoromo and the Earth, therefore lacking a sufficient amount of
propellant to complete a lunar transfer through the traditional Hohmann strategy. To overcome
this issue scientists started looking for a different way to get Hiten to the Moon. In particular,
they started investigating trajectories that exploited the gravitational fields of the Moon, the
Earth and the Sun, allowing for a small propellant requirement. Such ballistic trajectories were
found through numerical simulations and Hiten was able to achieve lunar orbit using only 3
out of the 7 kg of propellant that the spacecraft was provided with. However, the transfer
resulted in a 150 days long journey, a value significantly larger than the 3 days required for a
traditional Hohmann transfer [6]. A comparison between a ballistic capture trajectory and a
traditional Hohmann transfer is depicted in Figure 1.1.

The success of the japanese satellite marked a new milestone in space exploration: since Hiten,
more missions have looked for and applied ballistic capture trajectories, including the first
ESA’s mission to the Moon, SMART-1, launched in 2003, and NASA’s mission to map the
lunar gravity field, GRAIL, launched in 2011. The concept of ballistic capture has also been
considered in the early stages of the development of the ESA’s mission to Mercury, Bepi-
Colombo [15].
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Chapter 1. Introduction

Figure 1.1: Hohmann transfer (a). Ballistic capture in inertial (b) and rotating frame (c),
respectively [16].

1.2 Motivation and Objectives

In the last decade, research in the field of miniaturized satellites has grown significantly: this
has opened the possibility to smaller companies to develop and fly their own satellites. However,
the smaller scale of such spacecraft implies the necessity of introducing low-energy transport
systems, among which the ballistic capture phenomenon can be found. In this context, the
EXTREMA project, ongoing at Politecnico di Milano within the Horizon 2020 programme,
aims at proving that such miniaturized probes are fully capable to navigate autonomously in
deep-space. The project exploits the ballistic capture phenomenon around Mars to prove that
miniaturized spacecraft can perform autonomous tasks also in complex scenarios.

The ballistic capture phenomenon represents a very interesting possibility in the trajectory
design process due to its advantages with respect to traditional patched conics transfers. Among
the upsides of such ballistic capture trajectories there are:

• reduction of the propellant mass required for the injection burn;

• removal of single point failure associated with the traditional hyperbolic insertion;

• wider launch windows due to the intrinsic nature of the phenomenon considered.

Due to their advantages, ballistic capture transfers are more frequently being considered in the
design process, leading to the necessity of better understanding the robustness of the chosen
trajectory. In particular, it is worth analysing how variations in the time frame considered can
affect the resulting transfer and answering the following research question:

How do particular portions of a Capture Set evolve under the influence of variations in the
capture epoch?

The focus will therefore be only on a small region of the Capture Set: the neighbourhood of
the most regular trajectories will be extensively analysed.

1.3 Work Summary and Structure

Whilst answering the research question represents the final milestone of this study, during
the developed work also an in-depth analysis of previously achieved results has been performed.
The early stages of this thesis extensively covered the physics behind the gravitational capture
phenomenon. Subsequently, the work focused on understanding how particular mathematical
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1.3. Work Summary and Structure

tools could be adapted to the problem at hand and developing models that were later tested
on the case study in order to finally answer the proposed research question.

The present work is organised as follows:

• Chapter 2 will cover the theoretical background necessary to understand and study the
ballistic capture phenomenon;

• Chapter 3 will give an in-depth physical and dynamical description of the ballistic capture
phenomenon;

• Chapter 4 will describe the workflow and the methodology followed throughout this
document;

• Chapter 5 will present the results obtained;

• Chapter 6 will summarise the conclusions reached in the present thesis, underlining areas
in which future developments appear desirable.
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Chapter 2

Background

In this chapter, an in-depth description of the ideas at the basis of the phenomenon at
hand will be given through the definition of the reference frames used, the equations of mo-
tion, the variational equations characterizing the problem and the mathematical background
of Lagrangian Coherent Structures.

2.1 Reference Frames

2.1.1 Earth Mean Equator and Equinox of J2000

In order to introduce this reference frame, it is mandatory to define what J2000 represents:
it is the time epoch corresponding to 12:00 at Greenwhich on January 1st 2000, Barycentric
Dynamic Time (TDB). It is now possible to define the Earth Mean Equator and Equinox of
J2000 (EME2000) inertial reference frame, shown in Figure 2.1:

• the positive x-axis (xe) points at the mean equinox at J2000;

• the positive z-axis (ze) points at the celestial North Pole;

• the positive y-axis (ye) completes the dextral orthonormal triad.

This reference frame, although being defined through the Earth’s equator and equinox, is not
necessarily centered at the Earth.
In the present work, the ephemerides are assumed to be defined in this reference frame. How-
ever, a more rigorous definition would involve the use of the International Celestial Reference
Frame (ICRF), which presents infinitesimal discrepancies with the EME2000 frame[4].

2.1.2 Radial-Tangential-Normal

In literature, ballistic capture has mainly been studied using reference frames connected
with the orbit of the target body and its position along the orbit itself. The Radial-Tangential-
Normal frame at epoch t0 (RNT@t0), centred at the target body as shown in Figure 2.1, is
defined such that [17]:

• the positive z-axis (zr) is orthogonal to the orbital plane;

• the positive x-axis (xr) is aligned with the Sun-planet line, pointing from the Sun to the
planet;

• the positive y-axis (yr) completes the dextral orthonormal triad.

5



Chapter 2. Background

Figure 2.1: EME2000 and RTN@t0 reference frames [17].

The transformation from the RNT@t0 reference frame to the EME2000 one is given by [17]

¨

˝

xe
ye
ze

˛

‚“

»

–

sin θ sin Ω cos i´ cos θ cos Ω sin θ cos Ω` cos θ sin Ω cos i sin Ω sin i
´ cos θ sin Ω´ sin θ cos Ω cos i sin θ sin Ω´ cos θ cos Ω cos i ´ cos Ω sin i

´ sin θ sin i ´ cos θ sin i cos i

fi

fl

¨

˝

xr
yr
zr

˛

‚ (2.1)

with θ “ ω ` f , where i, Ω, ω and f represent inclination, right ascension of the ascending
node, argument of periapsis and true anomaly of the Sun in the EME2000 frame, respectively.

2.1.3 Roto-Pulsating Frame

Another useful reference frame is the Roto-Pulsating Frame (RPF). It is defined in the
Circular Restricted 3-Body Problem (discussed in Section 2.2.1) such that both primaries are
at rest on the x-axis, in particular:

• the positive x-axis is directed from the largest primary to the target one;

• the positive z-axis is aligned with their orbital angular momentum vector;

• the positive y-axis completes the dextral orthonormal triad.

Since the two primaries are at rest, their position within this frame is intrinsically defined: the
largest sits at x “ ´µ, whilst the target lays at x “ 1´ µ, with

µ “
m2

m1 `m2

being the mass parameter of the Sun-target system. This reference frame will be used in
Section 3.1 when introducing the concept of Weak Stability Boundary and the definition of
stable and unstable trajectories, as well as during the exposition of some results in Chapter 5.

2.2 Equations of Motion

2.2.1 Circular Restricted 3-Body Problem

Due to the nature of the phenomenon, ballistic capture trajectories cannot be found in the
context of the 2-Body problem of the Keplerian dynamics: at least two major gravitational
fields must be considered to observe a particle undergoing ballistic capture. The simplest non-
Keplerian model that allows to compute ballistic capture trajectories is the Circular Restricted
3-Body Problem (CR3BP), where a particle with negligible mass is influenced by the gravita-
tional fields of two main bodies (also referred to as primaries) cycling about the centre of mass
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2.2. Equations of Motion

of the system on circular orbits.
In the EME2000 reference frame centred at the target planet, the motion of the particle is
described by the following second-order differential equation [17]

:r`
µt
r3
r` µs

ˆ

rs
r3
s

`
r´ rs

‖r´ rs‖3

˙

“ 0 (2.2)

with

rsptq “ ´a

¨

˝

sin θ sin Ω cos i´ cos θ cos Ω
´ cos θ sin Ω´ sin θ cos Ω cos i

´ sin θ sin i

˛

‚ (2.3)

where a is the target’s planet orbital semi-major axis.
In Equation 2.2:

• r and rs are the position vectors of the particle and the Sun, respectively;

• r and rs are the magnitudes of the respective position vectors;

• µ and µt are the gravitational constants of the target and the Sun, respectively.

A graphical representation of the framework depicted by the CR3BP is reported in Figure 2.2.

Figure 2.2: CR3BP: m1 and m2 are the Sun and the target planet, respectively [31].

The CR3BP will be used later in Chapter 3 to introduce the concept of Weak Stability Boundary
and its connection with the Lagrange Points.

2.2.2 Elliptic Restricted 3-Body Problem

The Elliptic Restricted 3-Body Problem (ER3BP) is a model where also the eccentricity of
the orbit of the target planet is considered. The motion of the particle is still described by
Equation 2.2, however, in order to account for the planetary eccentricity Equation 2.3 has to
be modified and becomes [17]

rsptq “ ´
ap1´ e2q

1` e cos fptq

¨

˝

sin θ sin Ω cos i´ cos θ cos Ω
´ cos θ sin Ω´ sin θ cos Ω cos i

´ sin θ sin i

˛

‚ (2.4)

where e and f are the target planet’s orbital eccentricity and true anomaly, respectively. It is
trivial to verify that by setting e “ 0 the formulation of the CR3BP is restored. The ER3BP
represents an intermediate step between the simple representation offered by the CR3BP and
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Chapter 2. Background

the more complex Full Ephemerides Model. For non-negligible values of eccentricity, the cir-
cular model approximates in a very poor manner the real trajectory of the particle, whereas
the elliptical one represents a good approximation of the real dynamical behaviour [17].

2.2.3 Full Ephemerides Model

A more comprehensive dynamical environment is represented by a model accounting for the
gravitational fields of all the main bodies in the Solar System: the Full Ephemerides Model
(EPHE). The dynamical behaviour of the particle within this framework is described by [17]

:r`
µt
r3
r` µs

ˆ

rs
r3
s

`
r´ rs

‖r´ rs‖3

˙

“ ´
ÿ

iPP
µi

ˆ

ri
r3
i

`
r´ ri

‖r´ ri‖3

˙

(2.5)

where P is the set containing the perturbing bodies, which in this work includes all the planets
in the Solar System except for the target one. In this framework, the states of the Sun and of the
perturbing bodies are extracted from NASA’s SPICE toolkit [1, 2]. A graphical representation
of the EPHE model is depicted in Figure 2.3.

Figure 2.3: EPHE: µt, µs and µi are the target, the Sun and the i-th planet, respectively.

It is trivial to verify that by setting P “ H the equations of motion of the ER3BP model are
obtained.

2.2.4 Orbital Perturbations

A more accurate high-fidelity model that can be used to describe any gravitational phe-
nomenon is one accounting for all possible orbital perturbations, such as Solar Radiation Pres-
sure and a Non-Spherical Gravity model of the target body in addition to the complete set
of gravitational fields already accounted for in the EPHE model. Such complete model would
result in the following equations of motion for the particle [21]

:r`
µt
r3
r` µs

ˆ

rs
r3
s

`
r´ rs

‖r´ rs‖3

˙

“ aSRP ´QfÑi∇UNSG ´
ÿ

iPP
µi

ˆ

ri
r3
i

`
r´ ri

‖r´ ri‖3

˙

(2.6)
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where:

• UNSG is a potential function describing the geometry of the target’s gravity field;

• QNSG is the transformation matrix relating the planet-fixed reference frame (in which
the potential function UNSG is defined) to the inertial one of the equations of motion;

• fSRP is the acceleration vector due to the Solar Radiation Pressure.

Although the dynamical model used in the present work does not account for the Non-Spherical
Gravity term appearing in Equation 2.6, the expression of both SRP and NSG perturbations
is now given.

Solar Radiation Pressure

In Equation 2.6, the effect of the Solar Radiation Pressure (SRP) is represented by the term [21]

aSRP “
CRLS
4πc

A

m

r´ rs
‖r´ rs‖3

(2.7)

where:

• LS is the luminosity of the Sun;

• c is the speed of light;

• CR is the reflectivity coefficient of the particle;

• A is the effective area of the particle;

• m is the mass of the particle;

• r and rs are the position vectors of the particle and Sun, respectively.

In the present work the effective area A has been considered constant and independent of the
attitude orientation of the particle: this hypothesis is what constitutes the cannonball model.

Non Spherical Gravity

In Equation 2.6, the effect of the Non-Spherical Gravity (NSG) of the target’s gravitational
field is expressed through the use of the potential UNSG. An approximation of this function
can be obtained using a spherical harmonics expansion [21]

U “ ´
µt
r

«

1`
8
ÿ

n“2

n
ÿ

m“0

ˆ

R

r

˙n

Pn,m sinφpCn,m cosmλ` Sn,m sinmλq

ff

(2.8)

with

Pnpxq “
1

p´2qnn!

dn

dxn
p1´ x2qn and Pn,m “ p1´ x

2qm{2
dm

dxm
Pnpxq (2.9)

where:

• R is the target’s reference radius;

• r is the distance of the particle from the target’s centre of mass;

• µt is the target’s gravitational parameter;

• φ is the geocentric latitude;

• λ is the geographic longitude;

• Cn,m and Sn,m are numerical coefficients.
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Chapter 2. Background

It is worth highlighting that the spherical coordinates (φ,λ) are defined in a target-fixed refer-
ence frame centred at its centre of mass, which is the reason why the transformation matrix
QfÑi had to be introduced in Equation 2.6.

It is now possible to write the potential function describing the non-spherical gravity field as

UNSG “ U `
µ

r
(2.10)

2.3 Variational Equations

Once the dynamical model and the reference frame are defined, the motion of the particle
can be described as

#

9xptq “ fpx, tq
xpt0q “ x0

(2.11)

with xptq P Ω Ď R6 being the state vector of the system. It is immediate to notice that
Equation 2.11 is a first-order differential equation (also called velocity map). In Section 2.2 the
dynamics of the system is described by a second-order differential equation: the transformation
to a first-order one implies doubling the number of independent variables of the system. It
is also worth highlighting the direct dependence on time (f explicitly depends on t) because
of the intrinsic nature of the (perturbed) restricted n-Body problem at hand: the system is
therefore non-autonomous.
Integrating Equation 2.11 allows to compute the flow map of the system

ϕtt0 : Ω ÞÑ Ω

x0 ÞÑ ϕtt0px0q “ xpt; t0,x0q
(2.12)

returning the state at time t for each initial state x0 and initial time t0.
From the expression of the flow map it is now possible to define the State Transition Matrix
(STM) of the system as

Φ :“ Φpt; t0,x0q “ Dx0ϕ
t
t0px0q “ Dx0xpt; t0,x0q (2.13)

which can be propagated through

#

9Φ “ Dxfpx, tqΦ “ Apx, tqΦ
Φpt0; t0,x0q “ Inˆn

(2.14)

where D is a differential operator, A is the Jacobian of the velocity map and Inˆn is the
identity matrix of size n. It is worth noticing that Equation 2.14 features the term Apxptq, tq “
Dxfpxptq, tq which depends on xptq, the instantaneous state vector of the system. Because of
this dependence, the integration of Equation 2.14 requires the simultaneous propagation of the
dynamics of the state described in Equation 2.11. The joint system characterized by n2 ` n
independent variables constitutes what is referred to as variational equations.

2.3.1 Analytical derivatives of the velocity map

When referring to dynamical systems, it is worth remembering that the representation of
the state is not unique: there is in fact an infinite set of equivalent formulations. In the context
analysed throughout the current section, a cartesian representation has been chosen, such that
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2.3. Variational Equations

xptq “
ˆ

rptq
vptq

˙

“

ˆ

rptq
9rptq

˙

and 9xptq “ fpx, tq “
ˆ

vptq
apr,v, tq

˙

“

ˆ

9rptq
:rpr, tq

˙

As previously mentioned, the term Apxptq, tq represents the Jacobian of the velocity

Apx, tq “ Dxfpx, tq “
Bfpx, tq
Bxptq

(2.15)

Making use of the representation chosen, it is possible to further analyse such Jacobian

Bfpx, tq
Bxptq

“

»

—

—

—

–

Bvptq
Brptq

Bvptq
Bvptq

Bapr,v, tq
Brptq

Bapr,v, tq
Bvptq

fi

ffi

ffi

ffi

fl

6ˆ6

“

»

—

—

–

03ˆ3 I3ˆ3

B:rpr, tq
Brptq

B:rpr, tq
B 9rptq

fi

ffi

ffi

fl

6ˆ6

(2.16)

where 03ˆ3 and I3ˆ3 are the null and identity matrices of size 3, respectively. By recalling the
expression of the acceleration which the particle is subjected to (given in Section 2.2), it is easy
to notice that :rpr, tq does not depend on the velocity. This in turn means that

B:rpr, tq
B 9rptq

“ 03ˆ3

and therefore

Apx, tq “
Bfpx, tq
Bxptq

“

»

—

—

–

03ˆ3 I3ˆ3

B:rpr, tq
Brptq

03ˆ3

fi

ffi

ffi

fl

6ˆ6

(2.17)

To obtain the Jacobian of the velocity field is therefore necessary to compute only one term,
whose analytical expression will follow [22]. It is however worth recalling that the expression
of the acceleration given in Section 2.2 featured many different terms, each associated to its
source. To ease the reading and understanding of the work, each component will be treated
individually. For the sake of completeness, the analytical derivative of the term associated with
the NSG component is provided in Appendix A.

Central Body gravitational field

The most important contribution to the Variational Equations arises from the term associated
with the gravity field of the target body. When considering the gravity field as ideally spherical
the expression of the partial derivative is given by

ˆ

B:r
Br

˙

SG

“ ´µt

ˆ

1

r3
I3ˆ3 ´ 3r

rT

r5

˙

(2.18)

where the subscript SG stands for "Spherical Gravity" and the term rrT represents the dyadic
product, which results in a 3ˆ 3 matrix and should not be confused with the dot product rT r.

When the NSG component of the gravity field of the central body is accounted for, the ex-
pression of the partial derivative is different. In a body-centred frame the expression of the
derivative assumes the following form
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Chapter 2. Background

ˆ

B:r
Br

˙

NSG

“
ÿ

n,m

B:rnm
Br

(2.19)

The analytical expression of the right hand side of Equation 2.19 in given in Appendix A.

Third Body perturbations

Since the framework at hand is that of the restricted n-Body problem, there are n´2 additional
gravitational fields influencing the motion of the particle. Although the formulation presented
in Section 2.2.3 would suggest a distinction between the contribution due to the Sun and those
due to the planets, in reality they are all of the same nature and are therefore here referred
to as third body perturbations. The partial derivative of the acceleration generated by these
perturbations is given by

ˆ

B:r
Br

˙

3B

“ ´
ÿ

iPP
µi

ˆ

1

‖r´ ri‖3
I3ˆ3 ´ 3pr´ riq

pr´ riqT

‖r´ ri‖5

˙

(2.20)

Solar Radiation Pressure perturbation

The last term to analyse is the component of the acceleration due to the SRP. Recalling the
model used in Section 2.2.4 to describe this force, the expression of the partial derivative
assumes the following form

ˆ

B:r
Br

˙

SRP

“
CRLS
4πc

A

m

ˆ

1

‖r´ rs‖3
I3ˆ3 ´ 3pr´ rsq

pr´ rsqT

‖r´ rs‖5

˙

(2.21)

It is therefore now possible to compute the Jacobian Apx, tq of the velocity field in Equa-
tion 2.17, since

B:rpr, tq
Brptq

“

ˆ

B:r
Br

˙

SG

`

ˆ

B:r
Br

˙

3B

`

ˆ

B:r
Br

˙

SRP

(2.22)

2.3.2 Cauchy-Green Strain Tensor

Having a complete description of the State Transition Matrix and its computation, the
Finite-time Cauchy-Green (CG) Strain Tensor can now be introduced

∆pT,x0, t0q :“ ΦT pt0 ` T ;x0, t0q ¨ Φpt0 ` T ;x0, t0q (2.23)

This mathematical construct allows to quantify the relative stretching of nearby trajectories for
a given time interval, as shown in Figure 2.4. By definition, the CG tensor ∆ is symmetric and
positive definite and therefore characterized by n real positive eigenvalues. This tensor will be
used when discussing Lagrangian Coherent Structures in Section 2.4: in fact, its eigenstructure
is a powerful tool in the study of underlying behaviours of dynamical systems.
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Figure 2.4: Stretching associated with eigenvectors of the Cauchy-Green Tensor [28].

2.3.3 Sensitivity to changes in the initial epoch

At the core of the present work there is the question about what influence does the initial
epoch have in the resulting trajectory of the particle. It is therefore important to define the
derivative of the flow map with respect to the initial epoch t0, given by [11]

dϕtt0
dt0

“ ´Φpt;x0, t0qfpx0, t0q (2.24)

At the basis of this expression lies the idea that for sufficiently small variations, a perturbation
in the initial epoch δt0 can be mapped as a perturbation in the initial state vector δx0, as
shown in Figure 2.5.

Figure 2.5: Representation of the initial flow projection [11].

2.4 Lagrangian Coherent Structures

A particular mathematical tool suited to study complex nonlinear and non-autonomous
dynamical systems is represented by Lagrangian Coherent Structures (LCS) [21, 27]. Here the
word Lagrangian highlights the evolution of such structures in the state space throughout time,
as opposed to the Eulerian specification of the flow.
As will be discussed in Section 3.1, the dynamical behaviour of autonomous systems can be
qualitatively described by considering equilibrium points and invariant manifolds. In complex
non-autonomous systems like the one represented by the restricted n-Body problem, such
manifolds cannot be defined: Coherent Structures are an attempt at generalizing this concept
to "systems with arbitrary time dependence" [26].
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2.4.1 Poincaré and Stroboscopic maps

Within the mathematics of dynamical systems a powerful construct is represented by the
Poincaré map (also called first recurrence map). Such tool is obtained by intersecting the flow
with a lower-dimensional surface transversal to the flow called Poincaré section. A schematic
representation of this concept is reported in Figure 2.6.

Figure 2.6: Poincaré map P transforms x into P pxq onto the Poincaré section S.1

A particular type of Poincaré map that can be defined when studying non-autonomous periodic
dynamical systems (with period T) is the Stroboscopic map, where the state of the system is
studied in intervals of T time units.

2.4.2 LCS Definition and Classification

The following formal definition of Lagrangian Coherent Structures is given:

• LCS are material surfaces in that they have sufficient dimension to visibly impact the
dynamics of the system and move coupled with the flow (as suggested by "Lagrangian");

• LCS are locally characterized by the strongest attraction, repulsion or shear in the flow.

LCS can also be classified following the same rationale used when analysing invariant manifolds:

• Hyperbolic LCS are structures characterized by the strongest attraction/repulsion;

• Elliptic LCS are closed material surfaces;

• Parabolic LCS are structures characterized by the strongest shearing.

In the present thesis, only hyperbolic LCS will be used.

2.4.3 Projection on a 2D space

Although Lagrange Coherent Structures can be applied in any high degrees-of-freedom
system, in the present work their application will be limited to a 2-dimensional flow [21, 23].
In Section 3.2, it is shown that the dynamical system considered is a 6-dimensional one: some
additional mapping needs to be introduced in order for the strainlines to be defined in a 2D
space. The flow ψ is therefore introduced, which is related to the physical flow ϕ by [21]

ψ “ π ˝XX2S ˝ I2XX ˝ ϕ ˝XX2I ˝ S2XX ˝M

The successive transformation of the physical flow can be represented as

R2 M
ÞÝÑ R6 S2XX

ÞÝÝÝÝÑ R6 XX2I
ÞÝÝÝÝÑ R6 ϕ

ÞÝÑ R6 I2XX
ÞÝÝÝÝÑ R6 XX2S

ÞÝÝÝÝÑ R6 π
ÞÝÑ R2

1Retrieved from: https://en.wikipedia.org/wiki/Poincaré_map. Last visited: 12/09/2021.
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where OP stands for "Orbital Plane", identified by the initial osculating orbital elements. As
will be explained in Section 3.3.5, the particle is supposed to start its motion at the perigee of
an osculating ellipse. Therefore, given its radius of pariapsis rp0 and its argument of periapsis
ω (i.e. given its polar coordinates), the derivation of the cartesian state is trivial.
In the mapping described in Equation 2.25:

• M is a function that returns the velocity vector associated to the input point given in
cartesian coordinates. In particular, the periapsis velocity vector is given by

vp “

d

1` e

rp
ev

where ev is the unit vector normal to the initial position vector;

• S2XX is a rotation matrix relating the orbital plane with a generic reference frame XX
where the osculating orbital elements are defined. In the present work such elements are
defined in RTN@t0, therefore the transformation assumes the following expression

S2XX “

„

η 03ˆ3

03ˆ3 η



with

η “

»

–

cos Ω ´ sin Ω 0
sin Ω cos Ω 0

0 0 1

fi

fl

»

–

1 0 0
0 cos i ´ sin i
0 sin i cos i

fi

fl

• XX2I is the rotation matrix relating the frame XX with the inertial reference frame I
where the equations of motion are formulated (the EME2000 frame in this work). The
expression of such transformation is given in Section 2.1.2;

• ϕ is the physical flow of the system, described in Section 2.3;

• I2XX is the inverse of XX2I;

• XX2S is the inverse of S2XX;

• π is the projection of the state to the 2D position, given by

πpx, y, z, 9x, 9y, 9zq “ px, yq

where OP reference plane is the one defined previously and not the one associated to the
final orbital elements.

It is now possible to compute the strainlines associated to the 2D flow ψ. The associated
Cauchy-Green Strain Tensor is given by

∆ “ ΨTΨ (2.26)

where Ψ is the Jacobian of the ψ, computed through the chain rule as
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Chapter 2. Background

Ψ “ JΨ “ JπJ
T
S2XXJ

T
XX2IΦJXX2IJS2XXJM (2.27)

where:

• the Jacobian of the projection is given by

Jπ “

„

1 0 0 0 0 0
0 1 0 0 0 0



• the Jacobian of the rotation matrices S2XX and XX2I are given by the matrices them-
selves and their inverse coincides with their transpose;

• Φ is the State Transition Matrix of the system, computed by integrating the Variational
Equations defined in Section 2.3;

• the Jacobian of M is given by

JM “

»

—

—

—

—

—

—

—

—

—

—

–

1 0
0 1
0 0
9x

Bx

B 9x

By
9y

Bx

B 9y

By
0 0

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

with
B 9x

Bx
“
?

1` e
3xy

2px2 ` y2q7{4

B 9y

By
“ ´

?
1` e

3xy

2px2 ` y2q7{4

B 9x

By
“
?

1` e

ˆ

3y2

2px2 ` y2q7{4
´

1

px2 ` y2q3{4

˙

B 9y

Bx
“
?

1` e

ˆ

1

px2 ` y2q3{4
´

3x2

2px2 ` y2q7{4

˙

2.4.4 Strainlines

Because of the formulation of the Cauchy-Green Strain Tensor given in Equation 2.26 it is
now possible to compute the associated Lagrangian Coherent Structures: for a 2D projection
such as the one adopted, such structures are 1-dimensional curves called strainlines. In par-
ticular, it can be demonstrated that such curves are locally tangent to the the eigenvector ξ1

associated to the smallest eivenvalue λ1 of the CG Tensor ∆t0`T
t0

px0q [12].
A strainline γpt0q Ă Ω Ď R2 is the solution of the following Cauchy problem

$

’

&

’

%

x1psq “ ξ1pxpsq, t0, T q
xp0q “ x0 P Ω

|ξ1| “ 1

(2.28)

Furthermore, the system of equations can be scaled as [12]

#

x1psq “ ξ̃1pxpsq, t0, T q
x0 “ x0 P Ω

(2.29)

with
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ξ̃1pxpsq, t0, T q “ signpxpsqqαpxpsqq ξ1pxpsq, t0, T q (2.30)

where:

• αpxpsqq allows to regularize the procedure and stop the integration if a degenerate point
is approached. It is defined as

αpxpsqq “
ˆ

λ2pxpsqq ´ λ1pxpsqq
λ2pxpsqq ` λ1pxpsqq

˙2

• signpxpsqq is introduced to ensure the smoothness of the strainline. At the k´th integra-
tion step, it must be verified that

ξ̃1pxpsq, t0, T q ¨ pxk´1 ´ xkq ě 0
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Chapter 3

Ballistic Capture

The ballistic capture is a phenomenon by means of which a small body like an asteroid or a
spacecraft can start orbiting a celestial body in a completely natural manner. This process is
however only temporary, meaning that after a finite amount of time the particle will escape the
primary it was orbiting, unless some sort of energy dissipation is introduced (such as thrusting
manoeuvres, aerobraking [19], etc). Nevertheless, ballistic trajectories can perform multiple
revolutions around the targeted celestial body and present a set of advantages with respect to
traditional transfer methods, as mentioned in Section 1.2.

3.1 Weak Stability Boundary

As explained in Section 2.2.1, the simplest model that allows to compute ballistic capture
trajectories is the CR3BP. Within this framework, five distinct equilibrium points can be
identified: the Lagrange points or libration points, as shown in Figure 3.1. Out of these five
points, three are located on the line passing through the primaries and are therefore called
collinear points.

Figure 3.1: Lagrange points.1

These points represent unstable equilibrium points in the dynamics described by the CR3BP,
meaning that from a mathematical standpoint they are associated with stable and unstable

1Retrieved from: https://en.wikipedia.org/wiki/Trojan_(celestial_body). Last visited: 12/09/2021.
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Chapter 3. Ballistic Capture

manifolds: topological structures that can be shown to be connected to what is referred to as
Weak Stability Boundary (WSB) [13]2. This is a particular region of the space around a celestial
body where the transition from stable to unstable (and/or viceversa) ballistic trajectories
manifests itself. It is now important to define what the terms stable and unstable mean.

The simplest description of the ballistic capture phenomenon can be given in the context of a
planar CR3BP: the particle is bound to move onto the plane defined by the two primaries. In
particular, the RPF reference frame defined in Section 2.1.3 will be used during the consider-
ations done throughout the present section.
Recalling what was mentioned in Section 2.3.1, there exist infinite equivalent representations
of the state vector. In the study of ballistic trajectories, the initial condition of the system is
usually defined such that the particle starts its motion at the periapsis of an osculating ellipse

xpt0q “ ra, e, i,Ω, ω, f sT pt0q “ ra0, e0, i0,Ω0, ω0, 0s
T “ x0 (3.1)

Due to the lower dimensionality of the planar problem, the set of indipendent variables reduces
from 6 to 4:

x0 “ ra0, e0, i0,Ω0, ω0, 0s
T ÞÝÑ ra0, e0, ω0, 0s

T (3.2)

In fact, i and Ω uniquely identify the plane where the motion takes place, which in this case is
constrained to coincide with the one identified by the orbits of the primaries:

iptq “ i0 and Ωptq “ Ω0

Let also H be the Kepler energy of the particle with respect to the target body:

H “
1

2
v2 ´

µ

r
(3.3)

with

r “
ap1´ e2q

1` e cos f
and v “

d

µ

ˆ

2

r
´

1

a

˙

It is now possible to define the concept of stability within this framework [29]. With reference to
Figure 3.2, consider the line emanating from the target primary and passing through the point
identified by the initial osculating orbital elements of Equation 3.2: the trajectory is said to be
stable if it completes a revolution about the target P2 maintaining a negative Kepler energy
and without revolving around the primary P1, otherwise the motion is said to be unstable.

By considering a discretization of the plane and initial orbital eccentricity, the set of stable
points (and therefore also the one of unstable points) is described through its algorithmic
definition. For instance in [29], the search grid is defined as

rp “ r0, 2 ¨ 10´3, . . . , 1.5s, θ “ r0, 2π{1000, . . . , 2πs and e “ r0, 0.05, . . . , 0.95s (3.4)

with rp “ ap1 ´ eq being the periapsis radius of the osculating ellipse. The set of initial
conditions that result in stable trajectories is then defined as the following countable union of
open intervals

2Such relation has also been shown exploiting the Poincaré map [7].
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3.1. Weak Stability Boundary

Figure 3.2: 2D stable and unstable trajectories. Here θ is the argument of periapsis [29].

Wpθ, eq “
ď

kě1

pr˚2k´1, r
˚
2kq

where r˚ represent endpoints of stable intervals. By allowing θ to vary within the search space,
the following set can be introduced

Wpeq “
ď

θ Pr0,2πq

Wpθ, eq

Finally, by considering the finite interval of eccentricities associated with negative Kepler en-
ergy, the Stable Set can be defined

W “
ď

e Pr0,1q

Wpeq (3.5)

From the Stable Set W, the Weak Stability Boundary (WSB) BW can be defined: as the
notation suggests, it represents the contour of the Stable Set

BW :“ tr˚pθ, eq | θ P r0, 2πq, e P r0, 1qu (3.6)

From a physical standpoint, the WSB represents the surface in the state space acting as sepa-
ratrix between two different dynamical behaviours, such as stable and escape trajectories.

An additional consideration in the study of the WSB is accounting for the possibility of multiple
revolutions about the target celestial body [13]. Given n P Z´ t0u, the generalized Stable Set
Wn is defined as the set containing those initial conditions that result in trajectories that
perform n revolutions around the target primary, as shown in Figure 3.3. The concept of
generalized Stable Sets automatically leads to the idea of generalized WSB. From Wn, the
generalized Weak Stability Boundary BWn is defined as the locus of points r˚pθ, eq, endpoints
of the n-stable open intervals pr˚2k´1, r

˚
2kq.
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Chapter 3. Ballistic Capture

Figure 3.3: W3 (left) and W6 (right) in the Earth-Moon CR3BP with e0 “ 0 [13].

3.2 3D Model

A more comprehensive description of the ballistic capture phenomenon requires the analysis
of 3D trajectories. If in the 2D case the surface identifying a complete revolution was a line,
the 3D counterpart is a semi-plane. In fact, if one were to use the same stability criterion
defined for the 2D model, the motion of the particle would always result unstable [25]. In an
inertial reference frame, such plane is uniquely defined by the initial condition x0, as shown
in Figure 3.4: in fact, considering the cartesian representation of the state vector, the plane is
identified by all vectors r “ rx, y, zsT satisfying

r ¨ ph0 ˆ r0q “ 0 (3.7)

with h0 being the specific angular momentum vector of the particle, defined as

h0 “ r0 ˆ v0 and x0 “

ˆ

r0

v0

˙

The k-th intersection with the plane is achieved at time t1 if

rpkqpt1q ¨ ph0 ˆ r0q “ 0 (3.8)

In particular the intersection lies on the semi-plane of interest if

rpkqpt1q ¨ r0 ą 0 (3.9)

Finally, the intersection coincides with a complete revolution if

pvpkq ¨ v0q pvpk´1q ¨ v0q ą 0 (3.10)

This last constraint is imposed to discard all the spurious intersections due to a possible "os-
cillatory" motion around the intersection semi-plane, as shown in Figure 3.4(b).
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3.2. 3D Model

Figure 3.4: 3D stable and unstable trajectories [20].

The particle is instead said to escape from the target at time te if:

Hpteq ą 0 and rpteq ą RSOI (3.11)

where RSOI “ at

ˆ

µt
µs

˙2{5

represents the radius of the Sphere of Influence (SOI) of the primary.

Escape occurs whenever the particle is found outside the SOI with positive Kepler energy.

An impact with the target at time ti occurs if:

rptiq ă R (3.12)

with R being the mean equatorial radius of the planet.

Finally, an impact with the j-th moon of the target occurs at time tm if:

‖rptmq ´ rj‖ ă Rj (3.13)

where Rj represents the mean equatorial radius of the j-th moon.

3.2.1 Trajectory Classification

It is now possible to divide the set of initial conditions into five non-intersecting subsets:
for a given n, an initial condition can belong to one and only one subset.

• The n-Weakly Stable SetWn contains those initial conditions resulting in trajectories that
perform n complete revolutions around the target. An example is reported in Figure 3.5.

Figure 3.5: Weakly Stable sample trajectory [18].

23



Chapter 3. Ballistic Capture

• The n-Unstable Set Xn contains those initial conditions resulting in trajectories that
perform n ´ 1 complete revolutions around the target before escaping from the planet.
An example is reported in Figure 3.6.

Figure 3.6: Unstable sample trajectory [18].

• The n-Crash Set Kn contains those initial conditions resulting in trajectories that perform
n ´ 1 complete revolutions around the target before impacting with the planet. An
example is reported in Figure 3.7.

Figure 3.7: Crash sample trajectory [18].

• The n-Moon Crash Set Mn contains those initial conditions resulting in trajectories that
perform n ´ 1 complete revolutions around the target before impacting with a moon of
the planet. An example is reported in Figure 3.8.

Figure 3.8: Moon Crash sample trajectory [18].
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3.2. 3D Model

• The n-Acrobatic Set Dn contains those initial conditions resulting in trajectories that
perform n´ 1 complete revolutions around the target and then do not verify none of the
previous conditions within a given time span3. An example is reported in Figure 3.9.

Figure 3.9: Acrobatic sample trajectory [18].

When the generalized WSB was introduced in Section 3.1, n was not bound to be a natural
number, but rather any non-zero integer n P Z´t0u. When a negative value of n is considered
the behaviour described is the one obtained by integrating the equations of motion in backward
time. Because of this, backward stability (and consequently all other behaviours) can be defined.
There is in fact nothing that constrains one initial condition to have the same type of behaviour
both in forward and backward time.

From these considerations, the Capture Set can finally be introduced:

Cn´1 :“ X´1

č

Wn (3.14)

The set Cn´1 is therefore defined as the set containing all the initial conditions that result in
n-stable trajectories when propagated in forward time (Wn component) and escape trajectories
in backward time (X´1 component).
Also the following additional intersection sets can be defined:

• the Escape Set E1
´n “W´n

Ş

X1, containing all initial conditions that result in trajecto-
ries that perform n revolutions in backward time and escape from the target in forward
time (defining ballistic escape trajectories) [8, 30];

• the Impact Set In´1 “ X´1
Ş

Kn, containing all initial conditions that result in trajectories
that escape from the target in backward time and perform n ´ 1 revolutions in forward
time before impacting with the planet (defining ballistic impact trajectories) [24];

• the Inject Set J n
´1 “ K´1

Ş

Wn, containing all initial conditions that result in trajectories
that impact with the target in backward time and perform n revolutions in forward time
(defining ballistic inject trajectories);

• the Landing Set L1
´n “W´n

Ş

K1, containing all initial conditions that result in trajec-
tories that perform n revolutions in backward time and impact with the target in forward
time (defining ballistic landing trajectories).

3Conventionally defined as the time required to cycle the Sphere of Influence four times: ∆t “ 4 ¨ 2π

d

R3
SOI

µ
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Mathematics of the set manipulation

Let I be the set containing all initial conditions, the following relationship holds:

Wn

ď

Xn
ď

Kn

ď

Mn

ď

Dn “

$

’

&

’

%

I for n “ ˘1

Wn´1 for n ě 2

Wn`1 for n ď ´2

(3.15)

Consider for instance the 3-Unstable Set X3: by definition, an initial condition that belongs to
this set performs 2 revolutions before escaping from the target, it is therefore a subset of the
2-Stable Set W2. The same thought-process can be applied for the backward propagation. In
general, it is true that:

Gn Ď

#

Wn´1 for n ě 2

Wn`1 for n ď ´2
(3.16)

where Gn is the n-Generic Set. This in turn means that Cn´1 ‰ C1
´n (in this case with n ě 2):

both sets include trajectories that perform n revolutions about the target but they contain
different initial conditions. Although they qualitatively describe the same type of dynamical
behaviour, the two sets do not coincide. Moreover, exploiting Equation 3.16 it is possible to
verify that:

Cn´1

č

C1
´n “ ∅ (3.17)

3.2.2 Stability Index and Capture Ratio

Now that a rigorous definition of ballistic capture trajectory is available, there is the need to
further classify the orbits obtained and search for those showing more desirable features. To
this end, the Stability Index S is introduced [20]:

S “ tn ´ t0
n

(3.18)

with tn being the time instant upon completion of the n-th revolution. From a physical point
of view, such index represents the mean period of each revolution.
Another aspect to analyse is the occurrence of capture trajectories, the index introduced to
consider it is the Capture Ratio [17]:

RC “
NCn

´1

NTOT
(3.19)

where NCn
´1

is the number of elements belonging to the Capture Set (namely the number of
initial conditions generating capture orbits) and NTOT is the total number of initial conditions
propagated during the analysis.

3.3 The influence of physical parameters

The classification given in Section 3.2.1 can be applied to any 3D model. However, it can
be demonstrated that the eccentricity of the orbit of the target planet deeply influences the
ballistic capture dynamics. For non-negligible eccentricity values, this implies that the CR3BP
is not a suitable model to accurately describe the phenomenon at hand. Moreover, it can be
proven that for some celestial bodies, including third-body perturbations can lead to different
results [17].
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3.3.1 The role of planet’s eccentricity

As already anticipated, the planet’s orbital eccentricity plays a fundamental role in the bal-
listic capture phenomenon. As Figure 3.10 shows, it can be noticed that increasing eccentricity
results in higher values of the capture ratio RC and therefore denser capture sets.

Figure 3.10: Capture ratio data points and trendline against planetary eccentricity [17].

It is also worth mentioning that the results obtained within the CR3BP differ also qualita-
tively from those returned by more accurate models. The trajectories computed are often very
different from those given by the ER3BP and EPHE models, meaning that strong variations
in the Stability Index S are likely to be observed [17].

3.3.2 The role of planet’s true anomaly

The previous results have been obtained under the assumption that the planet is at its
perihelion at the beginning of the simulations. Considering different initial positions along the
orbit, variations in both RC and S can be observed. In particular [17]:

• the capture set is larger (i.e. RC is maximized) when:

– f P rπ{2, 3π{2s for prograde orbits;

– f P r0, π{2s _ r3π{2, 2πs for retrograde orbits;

• orbits are more regular (i.e. Smin is minimized) when f P r0, π{2s for both prograde and
retrograde orbits.

A graphical representation of these results can be appreciated in Figure 3.11.

Figure 3.11: True anomalies of maximum RC and Smin [17].
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3.3.3 The role of planet’s natural satellites

At the beginning of the present Chapter 3, it was mentioned that ballistic trajectories
require a source of energy dissipation in order to yield permanent capture. In particular,
it is possible to exploit close passages of the planet’s moons in order to achieve a zero-cost
permanent capture [18].

Figure 3.12: Permanent capture around Jupiter exploiting gravity assists [18].

In Figure 3.12 an example of such satellite-aided capture is reported: upon completion of the
fly-by of Jupiter’s moon Io, the Kepler energy is decreased such that the particle is thereafter
trapped around the planet.
However, in order to achieve a significant change in the energy of the particle, the natural satel-
lite where the gravity-assist is performed should have a strong enough gravitational influence.
This in turn means that in a real case scenario, only large natural satellites such as the Moon
or those orbiting outer planets are a suitable option.

3.3.4 The role of particle’s plane orientation

Another aspect to be analysed is also the effect of the orientation of the plane associated
with the particle’s initial condition. In particular the following conclusions were reached [17]:

• the maximum chance for capture does not occur in the Sun-planet plane. Two different
inclination ranges that maximize the capture ratio can be observed: i0 P r40˝, 70˝s and
i0 P r150˝, 160˝s;

• although sensitivity to right ascension is visible, no distinct pattern can be appreciated;

• prograde orbits evolve in more regular post-capture dynamics;

• the minimum Stability Index depends on the initial orientation, especially for polar orbits.

Figures 3.13 and 3.14 represent a visual representation of the previous considerations for various
target planets. From left to right, top to bottom: Mercury, Venus, Earth, Mars, Jupiter, Saturn.
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Figure 3.13: Capture Ratio at different i0 and Ω0 [17].

Figure 3.14: Stability Index at different i0 and Ω0 [17].

3.3.5 Additional remarks on particle’s orbital elements

To completely and accurately describe gravitational capture, the six-dimensional infinite
vector space defined by the orbital elements should be considered. In order to reduce the
search space to a feasible one, some elements are therefore constrained to a predefined interval
or fixed value. Conventionally:

• f0 “ 0, although nothing precludes the possibility of considering different angular po-
sitions. One advantage of this convention is ensuring the presence of at least one true
apsidal point with orthogonal position and velocity vectors where efficient orbital ma-
noeuvring could be performed.

• e0 P r0.9, 1q, although both smaller and larger values represent also valid options. In
fact, it can be proven that initially parabolic (or hyperbolic) orbits can evolve into closed
ones and that initially large circular orbits can result in escape trajectories. However,
said interval has been proven to be a consistent source of valuable results [14].

3.4 Numerical Implementation

Throughout the previous chapters and sections little to no information about the imple-
mentation has been given. In the present section the main aspect concerning the numerical
propagation of the dynamics of the system will be covered.
The integration of the equations of motion has been performed through the GRAvity TIdal
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Slide (GRATIS) toolbox. Developed at Politecnico di Milano and written in MATLAB, its
name recalls the idea of submarines exploiting the tidal phenomenon to save the expenses
of underwater voyages. Moreover, the abbreviation GRATIS implicitly suggests the idea of
something happening "for-free", just like the ballistic capture dynamics making use of the
gravitational potential energy offered by the Solar System to develop "cost-free" trajectories.

Recalling Section 2.2, the equations of motion represent a system of ordinary differential equa-
tions (ODE), therefore built-in MATLAB integrators are a viable choice for the propagation of
the dynamics: ode113 has been selected [9]. This is a Variable Stepsize Variable Order (VSVO)
integration scheme based on the Adams-Bashforth-Moulton method [22].

Another important feature introduced in GRATIS is the use of dimensionless quantities to
describe the phenomenon. This allows to increase the efficiency of the numerical integration.
The dimensionless units (DU) introduced within the toolbox and used in the present work are:

• the length unit LU, defined as the mean radius of the target celestial body

LU = R

• the gravity unit MU, defined as the gravitational parameter of the target celestial body

MU = µt

• the time unit TU, defined as

TU =

c

LU3

MU

• the velocity unit VU, defined as

VU =
LU
TU

The numerical values of the dimensionless units for Mars (expressed in suitable multiples of
the International System of Units) are given in Table 3.1.

DU Value SI unit

LU 3396 km
MU 4.2828 ¨ 104 km3/s2

TU 965.2814 s
VU 3.5513 km/s

Table 3.1: Dimensionless units at Mars.

Other important numerical values that have to be assigned are those describing the spacecraft
itself. When discussing the SRP acceleration in Section 2.2.4, the reflectivity coefficient and the
area-to-mass ratio (defined as the inverse of the mass-to-area ratio) were introduced. Within
this work, the numerical values considered for such coefficients are:

m

A
“ 75 kg/m2 and CR “ 1.3

The study of the ballistic capture phenomenon is therefore studied within GRATIS by defining
a computational grid of initial conditions which are propagated and then classified by means
of the definitions given in Section 3.2.1.
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3.4.1 Loss of significance

Whilst the clever use of position vectors and size for the celestial bodies considered removes
the need of introducing a regularization scheme (such as the Levi-Civita one used in the 2D-
case [13, 14, 29]), a reformulation of the equations of motion is still necessary in order to avoid
loss of significance during integration. In fact, recalling the right hand side of Equation 2.5
and considering only one term for simplicity (note that the same consideration holds also for
the term associated to the Sun, on the left hand side of the equation)

ri
r3
i

`
r´ ri

‖r´ ri‖3
(3.20)

It is easy to verify that when the particle is in the vicinity of the target body (r ! ri)

r´ ri
‖r´ ri‖3

« ´
ri
r3
i

This would result in the computer storing the result of Equation 3.20 with few significant digits,
leading to large rounding errors.
However, it can be noted that Equation 3.20 has the following form

p
p3
´

d
d3

(3.21)

where:

• p “ ri is the position vector of the i-th celestial body;

• d “ ri ´ r is the position of the i-th body relative to the particle (Figure 2.3).

It it possible to prove that Equation 3.21 can also be expressed as [5]

1

d3
pr` fpqqpq (3.22)

with

fpqq “ q
3` 3q ` q2

1` p1` qq3{2
and q “

r ¨ pr´ 2pq
p ¨ p

Therefore, loss of significance can be avoided at the cost of a more complex formulation of the
equations of motion which results in an increase of the computational demand.
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Methodology

This chapter will cover and explain the approach adopted and followed during the develop-
ment of the present study, making use of the mathematical and numerical tools described in
the previous chapters and sections.
Starting from the complete Capture Set C6

´1 at Mars for a given initial epoch, the present work
studied the evolution in time of one particular sub-portion. Before explaining the methodol-
ogy adopted, it is worth briefly analysing the initial Capture Set, shown in Figure 4.1. The
assumptions under which it has been computed are:

• t0 “ 8743 MJD2000, corresponding to December 9th 2023 and ft « 270˝;

• rp0 “ R` r100, 200, 300, . . . , 10Rs km;

• e0 “ 0.99;

• i0 “ 36˝;

• Ω0 “ 36˝;

• ω0 “ r0, 1, 2, . . . , 360s˝;

• f0 “ 0˝;

• the set of perturbing bodies included are: Sun, Mercury, Venus, Earth, Jupiter, Saturn,
Uranus, Neptune and the two martian moons Phobos and Deimos.

Figure 4.1: Capture set around Mars on December 9th 2023. Smin shown in red.
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One important aspect worth mentioning is that although the initial Capture Set accounts for
the gravitational perturbations introduced by the martian satellites, the present study has
neglected their contribution to reduce the computational burden. In fact, accounting for short-
period objects in the equations of motion significantly increases the cost of the simulation,
resulting in a higher number of integration steps and sensibly longer computational times [3].

4.1 Capture Region definition

Following up on the definition of Stability Index S given in Section 3.2.2, the region of
interest of the Capture Set has been selected as a small circular region centred at the initial
condition characterized by Smin “ minpSq.
As it can be seen in Figure 4.1, the initial condition associated with Smin lies at the "edge" of
the Capture Set. This can be explained by recalling how C6

´1 and S are defined (Equation 3.14
and Equation 3.18): in fact, the Stability Index is defined only on the post-capture arc of the
trajectory (for t ě t0q and therefore characterizes only the W6 portion of the Capture Set. It
is therefore likely that lower values of Stability Index exist within the 6-Stable Set that do not
belong to the Capture Set

Dxnc : Spxncq ă min
x0 P C6

´1

pSq, xnc R C6
´1 (4.1)

Whilst this consideration will be used in Section 4.3 to define a suitable radius of the region of
interest, for the present analysis any arbitrary value could be selected. However, for the sake of
coherence and homogeneity, the same value r “ 75 km that will be explained in Section 4.3.3,
will be used throughout the entirety of the study.
One more aspect to assess is the discretization used to analyse the problem. The grid chosen is
defined with respect to its centre such that r “ r0, 7.5, 15, . . . , 75s km and α “ r0, 20, 40, . . . , 360s˝.
Finer meshes have been tested and the one selected resulted in a good compromise between
accuracy and computational time required.

During the early stages of this work various indices have been defined and considered. The
choice of using the Stability Index S resulted from the review of the literature and of the state
of the art. It is in fact the most used index to characterize the regularity of the post-capture
trajectories. The other indices analysed are reported in Appendix B.

4.2 The role of the capture epoch

It is important to note that the orbital elements generating the Capture Set shown in
Figure 4.1 are defined in the RTN reference frame. It is therefore fundamental to express the
epoch at which the frame is defined. In fact, different time instants result in different reference
frames:

RTN@t0 ‰ RTN@pt0 ` δt0q

This difference is immediately evident when considering the rotation matrix between the RTN
and the EME2000 reference frames given in Equation 2.1: the transformation in fact depends
on the true anomaly f of the planet, directly function of the time instant considered.
From this consideration, two possible paths open when introducing the perturbation on the
capture epoch:

• always defining the initial conditions in the RTN@t0 coordinate system;

• defining the initial conditions in a time-local RTN@pt0 ` δt0q coordinate system.
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4.3. Algorithmic propagation through Stable Sets

Although the difference between reference frames caused by the variation in the capture epoch
are infinitesimal, their effect cannot be neglected. In fact, whilst the former option corresponds
to a "simple" perturbation δt0 at the start of the propagation (accounting for the variation in
the position of the bodies in the Solar System), the latter translates instead into a perturbation
both in the initial epoch and in the initial condition x0 (due to the variation in the reference
frame), as schematically shown in Figure 4.2. Within this thesis, both approaches will be
covered and analysed.

x(t0 + δt0)

y(t0 + δt0)y(t0)

x(t0)

x0(t0)

δx0

x0(t0 + δt0)

Figure 4.2: 2D representation of the δx0 perturbation introduced by RNT@pt0 ` δt0q.

4.3 Algorithmic propagation through Stable Sets

Within the context described, the defined region has been investigated at a finite number
of initial epochs. In particular, the analysis stops whenever one of the following condition is
satisfied:

• the region does not intersect the Capture Set

R
č

C6
´1 “ ∅ or equivalently Ex0 P R, x0 P C6

´1

• the region completely belongs to the Capture Set

R
č

C6
´1 “ R or equivalently Ex0 P R, x0 R C6

´1

where R represents the region of interest. In particular, the second criterion ensures that the
"edge" of the Capture Set (where Smin is located) always intersects the region investigated.

Because of the two possibilities mentioned in Section 4.2 when discussing the effect of the
capture epoch on the reference frame, three different types of analyses with increasing degree
of complexity have been conducted:

• same set of initial orbital elements with fixed reference frame RTN@t0;

• same set of initial orbital elements with varying reference frame RTN@pt0 ` δt0q;

• varying set of initial orbital elements with varying reference frame RTN@pt0 ` δt0q.

4.3.1 Fixed orbital elements in fixed reference frame

In this context, the frame where the initial osculating orbital elements are defined coincides
with the one used to generate the Capture Set shown in Figure 4.1. From a planeto-centric
standpoint, the set of initial conditions expressed in EME2000 cartesian coordinates always
identify the same set of initial states: the patching points between pre-capture and post-capture
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arcs are identical, independently from the variation δt0 considered. A schematic representation
of the workflow adopted throughout this analysis is reported in Figure 4.3.

Set reference
 frame RTN@t0 

Set initial osculating
orbital elements

Set capture epoch
variation δt0

Integrate 
variational equations 

Classify trajectories
and create sets

No

YesStopping
Criteria

Initialiaze 
with new δt0

Stop the analysis

Figure 4.3: Workflow for fixed orbital elements in fixed reference frame.

From the integration of the Variational Equations the time history of the STM associated with
each initial condition is obtained. This it turn means that also the derivative of the flow with
respect to the initial epoch can be computed through Equation 2.24

dϕtt0
dt0

“ ´Φt
t0 fpt0,x0q for t P rt0, tf s

where tf represents the time instant which satisfies one of the criteria reported in Section 3.2.1
and therefore stops the integration of the Variational Equations. Under the assumption of
small variations with respect to the nominal condition, it is possible to assume that

ϕtt0`δt0px0q « ϕ̃tt0`δt0px0q “ ϕtt0px0q `
dϕtt0
dt0

δt0 (4.2)
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4.3. Algorithmic propagation through Stable Sets

where ϕ̃tt0`δt0 is the approximated flow. The results obtained from this analysis will be pre-
sented in Section 5.1.

4.3.2 Fixed orbital elements in varying reference frame

Within this framework the initial osculating orbital elements are defined in a time-local
RTN@pt0 ` δt0q reference frame. This in turn means that with respect to the EME2000
planetocentric coordinate system, a different set of initial conditions (i.e. a different region of
the phase space) is considered for each capture epoch

x0pt0q ‰ x0pt0 ` δt0q @x0 P R

A diagram of the workflow adopted throughout this analysis is reported in Figure 4.4.

Set reference frame
RTN@(t0 + δt0)

Set initial osculating
orbital elements

Set capture epoch
variation δt0

Integrate 
variational equations 

Classify trajectories
and create sets

No

YesStopping 
Criteria

Initialiaze 
with new δt0

Stop the analysis

Figure 4.4: Workflow for fixed orbital elements in varying reference frame.

By comparing the workflows reported in Figure 4.3 and Figure 4.4 it is easy to verify that the
methods differ in the way the feedback loop is applied: whilst in the former the block creating
the initial osculating orbital elements is outside of the loop, in the latter it is instead completely
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enclosed. In fact, this directly follows from the considerations made in Section 4.2 and at the
beginning of the current one.

With the same rationale followed in Section 4.3.1 the derivative of the flow can be computed.
However, in order to estimate the flow generated by x0pt0 ` δt0q starting from the integration
of x0, Equation 4.2 becomes

ϕtt0`δt0px0 ` δx0q « ϕ̃tt0`δt0px0 ` δx0q “ ϕtt0px0q `
dϕtt0
dt0

δt0 ` Φt
t0δx0 (4.3)

with δx0 “ x0pt0 ` δt0q ´ x0pt0q as shown in Figure 4.2.
The difference between Equation 4.2 and Equation 4.3 lies in the term Φt

t0δx0: this term
accounts for the infinitesimal difference between the reference frames in which the initial con-
ditions are defined at the different capture epochs.

The results associated with the current analysis will be presented in Section 5.2.

4.3.3 Varying orbital elements in varying reference frame

The analysis described hereafter constitutes a variation of the one previously described in
Section 4.3.2. In this context the reference frame is once again defined in a time-local fashion,
therefore rotating according to the position of the planet along its orbit. The new feature
introduced in this study is the investigation of a different region of space at each capture
epoch. In particular the set of initial osculating orbital elements considered at each iteration
will depend on the results of the ones studied at the previous epoch. Once the region is
propagated and classified, the Stability Index is computed for those initial conditions resulting
in ballistic capture trajectories and the one associated with the lowest value of S is selected as
the centre of the region at the following iteration (with same dimensions and discretization).
A scheme of the workflow applied within the current analysis is reported in Figure 4.5.

Because of the way the centre is defined, it is important to recall Section 4.1: since Smin is
likely to lie on the "edge" of the Capture Set (which in the case at hand coincides with the
WSB of W6), it is important to ensure that the region is not entirely enclosed within C6

´1

RĂ{ C6
´1 or, equivalently Dx0 P R, x0 R C6

´1 (4.4)

The value of r “ 75 km anticipated in Section 4.1 directly follows from this concept. Such
radius is sufficiently large to satisfy Equation 4.4 yet able to limit the computational cost of
the analysis. It is worth highlighting that such condition shall be satisfied at any iteration: a
smaller radius could result in the region being "saturated" at a generic time epoch t0 ` δt0.

In accordance with the previous analyses, the derivative of the flow is computed through
Equation 2.24 whilst Equation 4.3 can be used to estimate the flow generated by x0pt0 ` δt0q.
However, due to the difference between the two methods it is convenient to reformulate such
equation as follows

ϕtt0`δt0px0 ` δx0q « ϕ̃tt0`δt0px0 ` δx0q “ ϕtt0px0q `
dϕtt0
dt0

δt0 ` Φt
t0pδx

(R)
0 ` δx(T)

0 q (4.5)

where δx(R)
0 and δx(T)

0 are the infinitesimal variations in the initial condition x0 due to the
rotation of the RTN reference frame caused by the perturbation δt0 in the capture epoch and
by the translation of the centre of the region, respectively.
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Set reference frame
RTN@(t0 + δt0)

Set initial osculating
orbital elements

Set capture epoch
variation δt0

Integrate 
variational equations 

Classify trajectories
and create sets

YesStopping
Criteria

Initialiaze 
with new δt0

Stop the analysis

Evaluate 
Stability Index S

Create new region
centred at Smin

No

Figure 4.5: Workflow for varying orbital elements in varying reference frame.

The results obtained from the present analysis will be presented in Section 5.3.
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4.4 Stroboscopic Strainlines

In order to achieve a complete description of the region considered, also stroboscopic strainlines
have been used [21]. They are a useful tool when attempting to identify the WSB, where Smin
is likely to be found.
In order to compute such strainlines, the Cauchy problem defined in Equation 2.29 is integrated.
The propagation of such system requires a boundary condition x0. Such point is defined by
inspecting the circumference delimiting the region and identifying the "last" point belonging
to the Stable Set. The procedure is schematically reported in Figure 4.6.

x = (a + b)/2

No

Yes No
isStable(x)a = x b = x

No

Set a and b

Yes|b - a| < ε 
S(x) = Yes

S(a) = isStable(a)
S(b) = isStable(b)

Yes
S(a) = S(b)

a = a + 1
b = a + 1

Stop the algorithm
x = Boundary Condition

a = 0

Figure 4.6: Algorithm identifying the boundary condition x0.
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where:

• a, b and x are angles (expressed in degrees) associated to different points on the perimeter
of the circular region;

• isStable(z) is a function that evaluates whether the point associated to the input angle
z belongs to the Stable Set following the criteria defined in Section 3.2.1;

• ε is the tolerance stopping the algorithm (set to 10´10 in this work).

In the region analysed, the WSB will intercept the circumference in two distinct points (tan-
gency is prevented by Equation 4.4). This in turn means that the algorithm can identify two
distinct boundary conditions (xp1q0 and xp2q0 ), as shown in Figure 4.7.

WSB
x0
(2)

x0
(1)

ξ̃1(x0(1))

ξ1̃(x0(2)) a
b

Figure 4.7: Example of two distinct boundary conditions identified by the algorithm.

Since both xp1q0 and xp2q0 represent valid choices, Equation 2.29 has to be modified. In fact, the
example reported in Figure 4.7 clearly shows that for one of the two boundary conditions the
associated eigenvector ξ̃1px

p1q
0 q points outwards with respect to the region. This in turn would

result in the strainline being computed on the outside neighbourhood of the region. In order
to correct such pointing discrepancies, the following coefficient is introduced

βpxpsqq “ signpξ̃1pxpsqq ¨ px
pfq
0 ´ xpiq0 qq (4.6)

where xpiq0 is the boundary condition selected for the Cauchy problem and xpfq0 is the remaining
one. Equation 2.30 now becomes

ξ̃1pxpsq, t0, T q “ βpxpsqqsignpxpsqqαpxpsqq ξ1pxpsq, t0, T q (4.7)
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Results

In this chapter the results obtained from the methodology outlined throughout Chapter 4
will be presented and compared against previous findings, whenever possible. During the ex-
position, some sample orbits computed will be shown, both in inertial and pulsating frames.
Additionally, the state vectors and the estimation error of ϕ̃tt0`δt0px0q will be reported, high-
lighting the results obtained when predicting the flow variations caused by perturbations in
the capture epoch. Finally, the Capture Sets will be compared with the respective strainlines.

5.1 Fixed orbital elements in fixed reference frame

According to the procedure defined in Section 4.3.1, a circular region of radius r “ 75 km
has been investigated at a finite number of capture epochs with a time step of 1 day

δt
pi`1q
0 “ δt

piq
0 ` 1 day

In particular, the stopping criteria defined resulted in the analysis stopping at δt0 “ 4 days:
because of the emptiness criterion being verified, useful data span time epochs in the range
r0, 3s days. As expected from the considerations of Section 4.1 and confirmed by Figure 5.1,
Smin lies on the "edge" of the Capture Set. Moreover, it appears immediately that the variation
on the capture epoch causes the number of ballistic capture trajectories to diminish as larger
values of δt0 are considered. Recalling the definition of Capture Ratio given in Section 3.2.2
and limiting its evaluation to the region of interest, it is true that

RCpδt
pi`1q
0 q ă RCpδt

piq
0 q
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Chapter 5. Results

Figure 5.1: Capture Sets at different δt0. Smin shown in red, computational grid in grey.

5.1.1 Validation of the fixed-fixed approximation

Exploiting Equation 4.2 it is possible to obtain the value of the approximated flow at a
generic δt0. Because approximating the region at the same epochs where it is computed exactly
would not be of particular interest, such technique will be used to estimate the behaviour at a
capture epoch not previously considered. In particular for δt0 “ 0.25 days, Figure 5.4 shows
the comparison between the nominal flows ϕtt0 and ϕtt0`δt0 and the approximation of the latter
ϕ̃tt0`δt0 generating from the initial condition at centre of the region. Figure 5.5 reports the
L2-norm of the associated approximation error, computed as

errptq “
‖ϕtt0`δt0 ´ ϕ̃

t
t0`δt0

‖
‖ϕtt0`δt0‖

(5.1)

When computing the error it is important to recall that the quantities investigated are the
discrete output of a numerical integration. In particular, since the integration scheme used
employs a control on the stepsize (Section 3.4), the history of the flows is interpolated such
that the quantities are consistent. Moreover, since the integration is stopped according to
the criteria defined in Section 3.2.1, also the time span covered by ϕtt0 (and therefore also by
ϕ̃tt0`δt0) and ϕ

t
t0`δt0

could be different.

One more remark worth mentioning is the fact that the approximation disregards a small initial
portion of the time history (both in forward and backward time). It can be experimentally
verified that for |t| À 150 TU the error is too large to consider any result obtained for such
intervals. However, this does not represent a major issue when comparing the length of such
interval and the integration span: in fact the time scale of the dynamics is in the range of 104

TU. Such behaviour can be explained by considering Equations 2.14 and 2.24
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5.1. Fixed orbital elements in fixed reference frame

dϕtt0
dt0

ptÑ0q
“ ´fpx0, t0q (5.2)

and therefore Equation 4.2 becomes

ϕ̃tt0`δt0px0q
ptÑ0q
“ ϕtt0px0q ´ fpx0, t0qδt0 (5.3)

meaning that for sufficiently small t, the approximation is constructed as an Euler step of size
δt0. Provided that the step is sufficiently small, the Euler method could accurately approximate
the real behaviour, however, since the step has a fixed value of δt0 “ 0.25 days, it is not suitable
to describe a complex highly nonlinear dynamics such as the one at hand. As t increases the
integration of the STM embeds the dynamics of the phenomenon and the accuracy of the
approximation improves.
To better examine the approximation, the same procedure has been applied also for δt0 “
r0.50, 0.75, 1s days. As expected, the error increases for larger variations in the capture epoch,
as can be observed in Figure 5.2.

Figure 5.2: Comparison of the approximation error for different values of δt0.

Whilst the maximum error increases significantly for increasing δt0, the mean error remains
limited and therefore the approximated trajectory qualitatively describes the real dynamics
with discrete accuracy. However, it can be noted that the same process can be performed
from the other extreme of the time interval: considering as nominal condition the region at
t0 ` 1 day and approximating the dynamics "from the right". Therefore a more clever way of
constructing the approximation is to modify Equation 4.2 as follows

ϕ̃tt0`δt0 “

$

’

’

&

’

’

%

ϕtt0 `
dϕ
dt0

δt0 for δt0 À 0.5

ϕtt0`1 `
dϕ
dt0
p1´ δt0q for δt0 Á 0.5

(5.4)
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where δt0 is expressed as a fraction of the time interval (which in the present example is equal
to 1 day). Using this consideration, Figure 5.3 reports the associated approximation error.

Figure 5.3: Compensated estimation error at different δt0. The dashed lines represent the
non-compensated errors of the estimation.

It is worth noticing that due to the complexity of the ballistic capture phenomenon, the knowl-
edge of which approximation is more suitable for δt0 « 0.5 is not available a priori.

Observing Figures 5.4 and 5.5, it is immediate to verify that peaks in the approximation
error coincide with sharp changes in the state variables. In fact, in the post-capture arc such
peaks coincide with close-approaches (not necessarily complete revolutions), whilst for the pre-
capture phase only one peak is encountered and corresponds to the particle approaching the
escape condition. A possible explanation of this behaviour could be the high sensitivity of such
portions of the trajectory: in fact, in such points the propagation demands more integration
steps to guarantee the requested accuracy, implying that the dynamics is extremely sensitive.

Figures 5.6 and 5.7 report the trajectories generated by the exact flows ϕtt0 and ϕtt0`δt0 as well
as by the approximated one ϕ̃tt0`δt0 in EME2000 and RPF reference frames, respectively. It is
easy to verify that although the approximation error reported in Figure 5.5 reaches a maximum
value of 2%, the trajectory computed approximates with discrete accuracy the exact behaviour:
the mean error (0.1%) is in fact considerably smaller than the maximum.

The results obtained for the limiting case of δt0 “ 0.5 days are reported in Appendix B.
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Figure 5.4: State vectors for ϕtt0 (blue), ϕtt0`δt0 (green), and ϕ̃tt0`δt0 (orange) for δt0 “ 0.25
days.

Figure 5.5: L2-norm and mean value of the approximation error for δt0 “ 0.25 days.
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Figure 5.6: Trajectories in EME2000 for ϕtt0 (blue), ϕtt0`δt0 (green), and ϕ̃tt0`δt0 (orange) for
δt0 “ 0.25 days.

Figure 5.7: Trajectories in RPF for ϕtt0 (blue), ϕtt0`δt0 (green), and ϕ̃tt0`δt0 (orange) for
δt0 “ 0.25 days.
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5.2 Fixed orbital elements in varying reference frame

The results produced following the rationale explained in Section 4.3.2 will now be presented.
As before, the region has been investigated for capture epochs one day apart from each other.
In particular the stopping criteria resulted in a observation window of r0, 9s days. As can be
appreciated in Figure 5.8, in this analysis the algorithm was stopped because of the region
being completely enclosed within the Capture Set.

Figure 5.8: Capture Sets at different δt0. Smin shown in red, computational grid in grey.

Now that the initial osculating orbital elements are defined in the time-local RTN@pt0 ` δt0q
reference frame, the region is not only able to stay within the Capture Set for a longer time
span, it also becomes completely enclosed by the WSB. In fact, it can be observed that:

RCpδt
pi`1q
0 q ą RCpδt

piq
0 q

Since the region is now observed for a longer time span, it is interesting to evaluate how S
evolves due to the variations in the capture epoch. Figure 5.9 reports the evolution of average
and minimum Stability Index within the region: both curves monotonically decrease over time.
To better understand how such quantities vary under the effect of different capture epochs, a
second analysis was conducted accounting for a larger region (r “ 150km) and δt0 covering a
time span of r´42, 42s days (to reduce the computational burden a non-uniform discretization
was selected). The corresponding results are reported in Figure 5.10. In both images the
iterations where the region completely belongs to the Capture Set are marked with a cross. It
can be noted that in the neighbourhood of δt0 “ 0 (i.e. the nominal condition) the two curves
are very close, meaning that within the region the initial conditions resulting in capture orbits
exhibit similar behaviours. Therefore, in such time interval the trajectories are the most robust
to variations in the initial state vector.

49



Chapter 5. Results

Figure 5.9: Minimum and average Stability Index at different δt0.

Figure 5.10: Minimum and average Stability Index for the extended analysis.
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5.2.1 Validation of the fixed-varying approximation

Exploiting Equation 4.3 it is possible to approximate the flow generated by the initial
conditions subjected to infinitesimal variations in capture epoch and initial state vector. For
consistency with the analysis performed in Section 5.1, the variation in the capture epoch has
been set as δt0 “ 0.25 days.
Following the same rationale as before, the approximation can be performed both from the
"left" and "right" extremes. The maximum and average approximation errors at different
capture epochs can therefore be computed and are reported in Figure 5.11.

Figure 5.11: Compensated estimation error at different δt0. The dashed lines represent the
non-compensated errors of the estimation.

It can be noticed that the maximum value of the error is significantly larger than the one found
in Figure 5.5 for the previous analysis. Because of such large errors, this approximation should
be carefully considered and studied, since it appears to be extremely sensitive to changes in
the capture epoch.

Figure 5.12 shows the comparison between the nominal flows ϕtt0 and ϕtt0`δt0 and the approx-
imation of the latter ϕ̃tt0`δt0 originating from the initial condition at the centre of the region.
Figure 5.13 reports the L2-norm of the associated error, computed as per Equation 5.1.
Figures 5.14 and 5.15 report the trajectories generated by the exact flows ϕtt0 and ϕtt0`δt0 as
well as by the approximated one ϕ̃tt0`δt0 . As expected, the accuracy of the approximation has
worsen with respect to the one reported in the previous section. In particular it is possible
to notice that the current investigation produces significantly larger discrepancies than the
previous one, especially when considering time instants near the escape point. However, due
to the mean error being relatively small (2%) the trajectory computed does represent a good
estimation of the nominal flow on the majority of the integration period.

The results obtained for the limiting case of δt0 “ 0.5 days are reported in Appendix B.
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Figure 5.12: State vectors for ϕtt0 (blue), ϕtt0`δt0 (green), and ϕ̃tt0`δt0 (orange) for δt0 “ 0.25
days.

Figure 5.13: L2-norm and mean value of the approximation error for δt0 “ 0.25 days.
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Figure 5.14: Trajectories in EME2000 for ϕtt0 (blue), ϕtt0`δt0 (green), and ϕ̃tt0`δt0 (orange)
for δt0 “ 0.25 days.

Figure 5.15: Trajectories in RPF for ϕtt0 (blue), ϕtt0`δt0 (green), and ϕ̃tt0`δt0 (orange) for
δt0 “ 0.25 days.
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5.3 Varying orbital elements in varying reference frame

Considering Figures 5.9 and 5.10 it was stated that the iterations where the region is com-
pletely enclosed within the Capture Set are signaled with cross marker. In particular, it is
because of these specific iterations that the procedure described in Section 4.3.3 was concep-
tualized. Such analysis aims at answering the question:

To what extent can the most regular initial conditions in the Capture Set be tracked?

The results obtained exploiting the algorithm used to tackle such question are reported in
Figure 5.16. It is worth noticing that the region dynamically evolves along the Capture Set for
approximately 300 days (evaluations have been performed with a constant step size of 2 days),
and it is particularly interesting to relate such propagation to the true anomaly of the target
planet. In fact, observing the secondary x-axis present in Figure 5.16 it can be verified that
such time span corresponds to the angular span covering ft “ r´π{2, π{2s and in particular
that S presents a minimum in the interval tf “ r0, π{2s, in accordance with the literature
results reported in Section 3.3.2.

Figure 5.16: Minimum and average Stability Index evolution in time.

It is also worth mentioning that the algorithm collected data up to δt0 “ 322 days, however
the interval r304, 322s has been neglected in Figure 5.16 due to the corresponding behaviour
exhibited by the region. A complete representation of the time span is given in Appendix B.

It is also interesting to observe the path traced by the region whilst evolving in time along
with the Capture Set, as reported in Figures 5.17 and 5.18. It is interesting to notice that the
minimum in the Stability Index where S changes behaviour is associated with a reversal of the
direction followed by the region.
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Figure 5.17: Path traced by the region
during the algorithmic propagation.

Figure 5.18: Detailed view of the path
traced by the region.

5.3.1 Validation of the varying-varying approximation

Making use of Equation 4.5 it is possible to approximate the flow generated by the initial
conditions subjected to variations in the capture epoch and initial state vector. As done for
the previous analyses, the perturbation on the capture epoch has been set to δt0 “ 0.25 days.
Consistently with the previous analyses, the approximation can be performed from both ex-
tremes of the time interval and therefore considering different nominal flows depending on the
query point to be approximated. In particular, Figure 5.19 reports the maximum and average
approximation error for different capture epochs. However, it is important to stress that within
the present section the time interval considered does not coincide with the one computed with
the algorithm and presented in Section 5.3. In particular, whilst the previous interval spanned
over two days, the current one covers only one day. Moreover, it is worth mentioning that
in the present case also the translation of the region has to be accounted for (represented by
the term δxpTq0 in Equation 4.5). To this end, the displacement has been linearly interpolated
between the data available for the "left" and "right" extremes of the time window considered.
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Figure 5.19: Compensated estimation error at different δt0. The dashed lines represent the
non-compensated errors of the estimation.

When analysing the results of the approximation, Figure 5.20 shows the comparison between
the nominal flows ϕtt0 and ϕtt0`δt0 and the approximation of the latter ϕ̃tt0`δt0 originating
from the initial condition at the centre of the region. Figure 5.21 reports the L2-norm of the
associated approximation error computed by means of Equation 5.1.

Figures 5.22 and 5.23 report the trajectories generated by the aforementioned flows. It is
interesting to notice that the accuracy of the approximation has increased with respect to the
fixed-varying case previously analysed. A possible explanation behind such phenomenon might
be that the rigid motion of the region onto the osculating plane is compensating the inaccuracies
introduced by the rotation of the reference frame. In fact, the accuracy of the approximation
is comparable to the one obtained for the fixed-fixed case reported in Section 5.1.

The results obtained for the limiting case of δt0 “ 0.5 days are reported in Appendix B.
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Figure 5.20: State vectors for ϕtt0 (blue), ϕtt0`δt0 (green), and ϕ̃tt0`δt0 (orange) for δt0 “ 0.25
days.

Figure 5.21: L2-norm and mean value of the approximation error for δt0 “ 0.25 days.
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Figure 5.22: Trajectories in EME2000 for ϕtt0 (blue), ϕtt0`δt0 (green), and ϕ̃tt0`δt0 (orange)
for δt0 “ 0.25 days.

Figure 5.23: Trajectories in RPF for ϕtt0 (blue), ϕtt0`δt0 (green), and ϕ̃tt0`δt0 (orange) for
δt0 “ 0.25 days.
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5.4 Additional considerations on the Capture Set

Since the definition of the region of interest revolves around the Stability Index S, it is
worth investigating how such parameter evolves and behaves inside a small region of space.
An interesting feature is the relationship between the Capture Set and its "edge" within the
region studied, here referred to as Capture Boundary. In particular, it is worth understanding
how the Stability Index behaves with respect to the boundary. To this end it is convenient to
study the shape and distribution of isolines (or contour lines) within the region. Here, in order
to have results showing a sufficient accuracy, the same r “ 150 km circumference introduced in
Section 5.2 has been used. If such lines were to be parallel to the boundary, one could conclude
that the gradient of the Stability Index would be orthogonal to the boundary itself. However,
no particular connection between Capture Boundary and isolines appears to exist, as shown in
Figure 5.24.

Figure 5.24: Stability Index isolines within the region for δt0 “ 0 days. Smin shown in red.

It is worth mentioning that the behaviour of the contour lines in proximity of the centre of the
region is highly affected by numerical noise. In fact, an interpolation scheme has to be used in
order to compute the isolines in between the available data points. This consideration explains
the weird bent performed by the isoline approaching the centre of the region in Figure 5.24. In
fact, to further confirm this consideration, it can be noticed that no geometry justifying such
bent appear when analysing a 3D plot of the data points, as reported in Figure 5.25.
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Figure 5.25: 3D scatter plot of the available data points. Smin shown in red.

Section 4.1 explained the reason behind the location of the minimum Stability Index. A visual
representation of such explanation can be appreciated in Figures 5.26 and 5.27. Exploiting the
Delaunay triangulation to avoid the numerical noise associated with the interpolation lying
behind other representation techniques, two surfaces are defined: the one on top represents
the surface described by the Stability Index within the forward-Stable Set W6 whilst the flat
one at the basis represents the portion belonging to the backward-Unstable Set X´1. Since
the Capture Set is constructed as the intersection of the two aforementioned sets, it is easy to
observe how X´1 governs the definition of the Capture Boundary.
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5.4. Additional considerations on the Capture Set

Figure 5.26: Front-view of W6 and X´1 for δt0 “ 0 days. Smin P C6
´1 shown in red.

Figure 5.27: Side-view of W6 and X´1 for δt0 “ 0 days. Smin P C6
´1 shown in red.

However, a more comprehensive investigation reveals that the Capture Boundary is not always
completely governed by the backward-Unstable Set. In fact, by applying the same rationale
for δt0 “ 200 days, significantly different surfaces can be appreciated, as shown in Figures 5.28
and 5.29.
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Figure 5.28: Front-view of W6 and X´1 for δt0 “ 200 days. Smin P C6
´1 shown in red.

Figure 5.29: Side-view of W6 and X´1 for δt0 “ 200 days. Smin P C6
´1 shown in red.

Although the behaviour reported is qualitatively different depending on the capture epoch
considered, it is interesting to notice that the consideration made in Section 4.1 is always valid.
In fact, it can be observed that the initial condition associated with the minimum Stability
Index lies on the portion of the Capture Boundary governed by the backward-Unstable Set for
the whole 322 days span analysed.

5.5 Stroboscopic Strainline definition of the Capture Boundary

When constructing the Capture Set about a selected planet, the results span over charac-
teristic lengths so large that no a priori assumption about the local behaviour can be made.
For instance, no knowledge on the small-scale geometry of the Capture Boundary is available.
For example, one could ask the following question:

Is the Capture Boundary well represented by stroboscopic strainlines?
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5.5. Stroboscopic Strainline definition of the Capture Boundary

As explained in Section 4.4 two possible boundary conditions for the integration of the Cauchy
problem of Equation 2.29 are available. Here, both points have been considered, as shown in
Figure 5.30.

Figure 5.30: Strainlines (green) associated to C6
´1 (blue) at t0. W´1 shown in orange.

It is interesting to notice that two different strainlines emerge from the integration and that
they appear to be intersecting the sets. This behaviour can be explained when considering the
classification criteria given in Section 3.2.1. In fact, such algorithmic definition can sometimes
cause the loss of a portion of the dynamical behaviour, meaning that one criterion could be
triggered resulting in the associated classification, even though the overall behaviour could be
of a different nature. In this case for example, it is possible for one trajectory that escapes the
target to briefly trigger the revolution criterion. The introduction of strainlines represents an
attempt at identifying the WSB by means of mathematical tools accounting for the dynamics
of the ballistic capture phenomenon [21, 23].
By inspection it is possible to verify that initial conditions situated "just below" the lower
strainline result in ballistic capture trajectories, whilst those lying "just above" the upper
strainline do not generate capture. In particular, because of what has been said in Section 4.1,
it can be verified that orbits that do not generate capture are stable in backward time (capture
requires backward escape, as per Equation 3.14). Sample trajectories reporting such results
are shown in Figure 5.31.

It can be noticed that all trajectories depicted in blue belong to X´1 (and therefore to C6
´1), all

those coloured in orange belong to W´1, whilst the green trajectories (initial conditions located
in between the strainlines computed) are not associated with one unique behaviour. From
these considerations it is possible to infer that the WSB is bounded within the portion of space
delimited by the strainlines computed. This in turn means that initial conditions in proximity
of such portion of the state space are likely to manifest larger changes in flow under the effect
of small variations δt0 and δx0. It can be shown that such trajectories generate maximum
approximation errors that are larger than those presented by other points of the region. An
example of such behaviour can be observed in Figure 5.32, where the varying-varying analysis
is considered, the error computed greatly exceeds the one reported in Section 5.3 for the centre
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Figure 5.31: Pre-capture trajectories generated from initial conditions "below" the lower
stainline (blue), "above" the upper strainline (orange), and "between" the strainlines (green).

of the region. In particular, although the average error is small in both images, the one now
being considered manifests a large peak in the pre-capture arc, which is consistent with the
aforementioned considerations.

Figure 5.32: Approximation error in proximity of the strainlines.
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Conclusions and Recommendations

6.1 Conclusions

As introduced in Section 1.2, this thesis aims at answering the following research question:

How do particular portions of a Capture Set evolve under the influence of variations in the
capture epoch?

The answer to such question has been given under different types of analyses, considering
different types of variations. The results presented show that when considering a region of
the Capture Set defined by means of quantities found in literature, it is possible to estimate
and predict its evolution in time. In particular, it can be concluded that the approximations
defined are able to qualitatively describe the exact trajectories for a good portion of their time
history, even when large peak errors are observed.

In particular, it has been shown that given a time interval of interest and the Capture Sets at
the extremes of such interval, it is possible to approximate the continuous evolution in time
of the region analysed. Such estimation can therefore be exploited in the trajectory design
of low-energy transfers in order to preliminary identify a very narrow time-window of interest
as well as opening the possibility to preemptively estimate the effect of uncertainties in the
critical phases of the capture phenomenon. This methodology could be applied on board of
autonomous satellites in order to accelerate the high-fidelity re-computation of highly regular
ballistic capture orbits, so as to verify if different capture epoch and state vector at capture
should be targeted.

Additionally, to better understand the small-scale behaviour of ballistic Capture Sets and or-
bits, also a detailed analysis has been conducted by means of stroboscopic strainlines. This
in turn showed that although strainlines represent a useful mathematical tool to identify un-
derlying dynamical features, they are not able to return an exact representation of the WSB.
A particular feature exhibited by strainlines is the fact that by solving the associated Cauchy
problem results in two different strainlines, each corresponding to one of the two different
boundary conditions identified. In fact, if they were able to exactly identifying the WSB, it
would be reasonable to conclude that the same curve would be identified, independently of the
boundary condition considered. However, they are able to define a narrow region of the state
space where it is reasonable to conclude that the WSB is located.
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6.2 Recommendations

Based on the results of this work, future developments and efforts are required. In fact:

• Although the techniques developed allow to qualitatively estimate the flow originating
from any generic perturbation, no information has been obtained on how the perturbed
trajectory behaves. Therefore, future developments could aim at predicting which initial
conditions will generate perturbed flows belonging to the Capture Set as well as refining
the estimation, for example exploiting differential correction algorithms.

• The techniques developed in this thesis could be used to define a variable stepsize in the
propagation and study of the dynamical evolution of the Capture Set.

• It is worth further analysing the reason behind the excessive error on the initial portion
of the approximation (i.e. |t| À 150 TU) and if corrections of such behaviour are possible.

• The different behaviour exhibited by the estimation error across the different types of
analyses conducted should be further investigated.

• The limits of applicability of the assumptions under which the approximation is defined
should be further investigated.

• The correlation between peaks in the approximation error and the evolution of the state
vector in time should be carefully studied.

• Although in this thesis new interesting results in the position of the WSB were found, a
more comprehensive and exhaustive study should be conducted so as to clarify how LCS
and strainlines correlate to it.

• It is worth investigating what is the real small-scale behaviour of the WSB (and also of
the Capture Boundary). In particular, it might be interesting to study if it is represented
by a smooth and differentiable surface.
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Appendix A

Additional Derivatives

In this appendix the expression of the right hand side of Equation 2.19 will be given.
Recalling the symmetry property of the desired matrix and the condition of a vanishing sum
of the diagonal elements, it is possible to reduce the number of independent components to be
evaluated from 9 to 5 [22].
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where Cn,m and Sn,m are coefficients describing the planet’s mass distribution whilst Vn,m and
Wn,m are defined through recurrence relations and depend on the Legendre polynomials used
for the spherical harmonics expansion of the gravitational field.
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Appendix B

Additional Results

B.1 Additional indexes

When defining the region to investigate, different types of indices have been considered and
defined. In particular, apart from the Stability Index S largely discussed and used throughout
the thesis, also the Regularity Coefficient S [10, 21] has been investigated. It is defined as

S “
ˇ

ˇ

ˇ

ˇ

S
S2b

´ 1

ˇ

ˇ

ˇ

ˇ

(B.1)

where S2b represents the period of the osculating Keplerian elliptic orbit, computed as

S2b “ 2π

ˆ

rp0
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˙3{2

Additionally, also a normalized Stability Index has been constructed and investigated in this
thesis, defined as

S̃ “
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ˇ

ˇ

(B.2)

where ∆tn “ tn ´ tn´1 is the time interval required to complete the n-th revolution.

However, all the indices defined can be computed for different values of n. Therefore a more
complete description would be

S “ Sn, S “ Sn, S̃ “ S̃n

This in turn means that it could be worth investigating how such indices evolve at different
values of n. In particular, it is interesting to define their deviation from zero, computed as

devpS̃q “

g

f

f

e

1

N

N
ÿ

n“1

pS̃nq2 (B.3)

where N “ 6 is the maximum number of revolutions considered.

There are now 5 possible minimum points to consider: the minimum of the Stability Index
S6 (used throughout the entirety of the thesis), the minimum of the Regularity Coefficient S6

and its associated minimum deviation, the minimum of the normalized Stability Coefficient S̃6
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and its associated minimum deviation. Figure B.1 reports the location of the initial condition
associated to each of the minima defined. It is easy to verify that all points are distinct and
moreover, they all lie on different portions of the "edge" of the Capture Set.

Figure B.1: Minima associated to different indices.

However, upon visual inspection it was verified that the initial conditions associated to the
minima of the new indices do not exhibit a regular trajectories. Such behaviour is the reason
behind S being used to define the region of interest.

B.2 Fixed-fixed approximation

The current section reports the results obtained by applying the technique described in
Section 4.3.1 to the limit case of δt0 “ 0.5 days considering the left extreme. As done in
Section 5.1.1 the results show the representation of the state vector (Figure B.2), the approxi-
mation error (Figure B.3) and the trajectories in EME2000 (Figure B.4) and RPF (Figure B.5)
reference frames. By considering Figures B.4 and B.5 it is evident that although the error
reported in Figure B.3 is significantly larger, the trajectory is approximated with discrete
accuracy.
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Figure B.2: State vectors for ϕtt0 (blue), ϕtt0`δt0 (green), and ϕ̃tt0`δt0 (orange) for δt0 “ 0.5
days.

Figure B.3: L2-norm and mean value of the approximation error for δt0 “ 0.5 days.
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Figure B.4: Trajectories in EME2000 for ϕtt0 (blue), ϕtt0`δt0 (green), and ϕ̃tt0`δt0 (orange) for
δt0 “ 0.5 days.

Figure B.5: Trajectories in RPF for ϕtt0 (blue), ϕtt0`δt0 (green), and ϕ̃tt0`δt0 (orange) for
δt0 “ 0.5 days.
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B.3 Fixed-varying approximation

The current section reports the results obtained by applying the technique described in
Section 4.3.2 to the limit case of δt0 “ 0.5 day as built from the left extreme of the time interval.
As done in Section 5.2.1 the results show the representation of the state vector (Figure B.6),
the approximation error (Figure B.7) and the trajectories in EME2000 (Figure B.8) and RPF
(Figure B.9) reference frames. By considering Figures B.4 and B.5 it is evident that although
the error reported in Figure B.3 is significantly larger, the trajectory is approximated with
discrete accuracy due to the average error being limited.

Figure B.6: State vectors for ϕtt0 (blue), ϕtt0`δt0 (green), and ϕ̃tt0`δt0 (orange) for δt0 “ 0.5
days.

Figure B.7: L2-norm and mean value of the approximation error for δt0 “ 0.5 days.
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Figure B.8: Trajectories in EME2000 for ϕtt0 (blue), ϕtt0`δt0 (green), and ϕ̃tt0`δt0 (orange) for
δt0 “ 0.5 days.

Figure B.9: Trajectories in RPF for ϕtt0 (blue), ϕtt0`δt0 (green), and ϕ̃tt0`δt0 (orange) for
δt0 “ 0.5 days.
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B.4 Varying-varying approximation

The current section reports the extended results of the algorithm propagating the region
both in space and time, shown in Figure B.10.

Figure B.10: Complete representation of minimum and average Stability Index.

It is worth mentioning that the values of S computed in the time interval r304, 322s days are
erratic due to the region containing few highly unstable capture trajectories, as can be seen in
Figure B.11. In fact, the algorithm stopped at δt0 “ 324 days because of the verification of
the first criterion listed in Section 4.3.
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Figure B.11: Evolution in time of the Capture Ratio RC within the region.

This section also reports the results obtained by applying the technique described in Sec-
tion 4.3.3 to the limit case of δt0 “ 0.5 day considering the left extreme. As done in Section 5.3.1
the results show the representation of the state vector (Figure B.12), the approximation error
(Figure B.13) and the trajectories in EME2000 (Figure B.14) and RPF (Figure B.15) reference
frames. By considering Figures B.14 and B.15 it is evident that although the error reported in
Figure B.13 is significantly larger, the trajectory is approximated with discrete accuracy.
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Figure B.12: State vectors for ϕtt0 (blue), ϕtt0`δt0 (green), and ϕ̃tt0`δt0 (orange) for δt0 “ 0.5
days.

Figure B.13: L2-norm and mean value of the approximation error for δt0 “ 0.5 days.
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Figure B.14: Trajectories in EME2000 for ϕtt0 (blue), ϕtt0`δt0 (green), and ϕ̃tt0`δt0 (orange)
for δt0 “ 0.5 days.

Figure B.15: Trajectories in RPF for ϕtt0 (blue), ϕtt0`δt0 (green), and ϕ̃tt0`δt0 (orange) for
δt0 “ 0.5 days.
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