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1. Introduction
The analysis of neuronal signals is of great im-
portance to understand the brain and the ner-
vous system. Neurons communicate by means of
electrical signals, called Action Potentials which
generate a fast variation in the electric poten-
tial of the extracellular medium. The signal is
recorded by neuronal probes whose spatial res-
olution, i.e. the density of channels, is increas-
ing year by year. Indeed, the higher the spa-
tial resolution of a neuronal probe, the higher
the number of neurons that can be distinguished
processing the recorded signal. After properly
processing the signal it is possible to get access
to single neuron activities, i.e. identifying the
spike times of each neurons. The method that
aims at processing neuronal recordings is called
spike sorting.
Despite the large number of existing spike sort-
ing algorithms, none can perform well on record-
ings with large noise levels, meaning that they
fail in detecting small neurons. A possible so-
lution to that problem is provided by Indepen-
dent Component Analysis, a blind source sepa-
ration algorithm that estimates the signals of the

sources generating the recordings. The source
signals, called Independent Components (ICs),
have a larger Signal to Noise Ratio (SNR) than
the raw recording. ICA has already been ap-
plied to spike sorting by running event detection
(spike detection and clustering) on the output of
ICA [1, 5]. In this work it is proposed a differ-
ent and new approach which applies ICA as a
post processing tool to enhance the activity of
small neurons, helping spike sorting algorithms
to detect them.

2. State Of The Art
2.1. Recording Devices
Classical recording devices such as tungsten
microwires, tetrodes and silicon probes could
record the activity of few cells only. The de-
velopment of CMOS-based probes steeply in-
creased both the density and the number of
recording electrodes. The improved spatial res-
olution allows to record large networks of neu-
rons with low noise levels. That is especially
true for High-Density Micro-Electrode Ar-
rays (HD-MEAs) which are chips for in-vitro
experiments featuring thousands of electrodes.
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2.2. Spike Sorting
Spike sorting algorithms aims to estimate the
spike times of neurons in the analyzed culture.
They differ in the actual implementation, but it
is possible to identify four main steps:
Spike detection aim is to extract all the spikes
from the signal by thresholding it, e.g. evaluat-
ing when the signal exceeds n times its Mean Ab-
solute Deviation (MAD) [1]. After spikes are de-
tected, their features are extracted for example
by means of PCA or wavelet features. Finally,
the spikes are clustered based on their features.
Clustering algorithms may fail to detect overlap-
ping spikes, i.e. spikes that overlap both in time
and space. This problem is gaining more and
more importance due to the increasing number
of recording channels which increase the proba-
bility of spike collisions. Template matching
algorithms have been developed to disclose over-
lapping spikes. They estimate a set of templates,
i.e. the average spike waveform of a neuron, by
running a pre-clustering step on a subset of de-
tected spikes. Each template is then matched
with the signal, e.g. by evaluating when the cor-
relation between the signal and the template ex-
ceeds a threshold. When a match is found, the
template is subtracted from the signal so that
overlapping spikes are uncovered.

2.3. Independent Component Analy-
sis

ICA is a blind source separation technique that
aims to unmix a signal into a set of statistically
independent signals, called Independent Compo-
nents. When ICA is run on neuronal recordings,
each IC is, ideally, the activity of a single neuron.
ICA assumes the signal to be an instantaneous
linear mix of the sources:

r(t) = As(t) (1)

where r(t) is the set of recorded signals, A is
called the mixing matrix and s(t) is the set of
source signals. Since the goal is to retrieve s(t),
ICA estimates the pseudo-inverse of A, which
is called unmixing matrix and outputs the esti-
mated source signals s̄(t) as follows:

s̄(t) = Wr(t) (2)

where W is the unmixing matrix. Three assump-
tions must be satisfied to apply ICA:

• The number of channels is greater than
the number of neurons: this assumption is
closer to be satisfied for HD-MEAs given
their high spatial resolution. Therefore,
the algorithm proposed by this work as-
sumes that signals are recorded by HD-
MEA probes.

• Instantaneous statistical independence of
the sources: that would not be true if neu-
rons were firing together at every time.
That is not the case due to randomness of
spiking activity [5].

• Recorded signals are an instantaneous mix-
ture of the sources: That is not completely
true as the spikes recorded along dendrites
are phase shifted with respect to spikes
recorded close to the soma because of fil-
tering properties of the dendrites.

2.4. Aim of the Work
The hereby work has three main objectives:
• Improving ICA efficiency: ICA scales

quadratically with the number of channels
which leads to large estimation times. That
becomes problematic if signals are recorded
by high-density probes, so we attempted
to decrease the dimensionality of the in-
put dataset by wisely subsampling the in-
put dataset.

• Increasing the SNR of raw neuronal record-
ings through ICA.

• Improving sorting performances by increas-
ing the SNR of recordings: Existing spike
sorting algorithms do not perform well on
low-SNR recordings which leads to not to
detect small units in the signal. Since ICA
increases the SNR of neurons [5] we at-
tempted to enhance the activity of small
neurons through ICA so that sorting algo-
rithms may detect them.

3. Methods
3.1. Datasets
Due to the lack of ground-truth information
for large recordings, it is not trivial to evalu-
ate the performances of spike sorting algorithms.
Therefore, recordings have been simulated us-
ing the MEArec [3] Python package. It allows
to finely control the simulated recordings with
several parameters. The recordings were simu-
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lated with three different probe models (a Neu-
ronexus probe with 32 channels, a squared high-
density MEA with 100 channels and a Neuropix-
els probe with 128 channels), for each probe 4
noise levels (standard deviation of the signal in
µV) have been used: 5, 10, 20 and 30. Finally,
for each noise level 5 recordings with different
seeds have been simulated. The number of neu-
rons in the recording is half the number of chan-
nels, so Neuronexus recordings carry 16 neurons,
squared MEA recordings carry 50 neurons and
Neuropixels recordings carry 64 neurons.
We also tested our new ICA application for spike
sorting on 2 real recordings. The signals were
recorded by CMOS-based HD-MEA with 26’400
recording electrodes at 15 µm pitch. The neu-
rons plated on the chip were extracted from em-
bryos of Wistar rats. For both datasets the sig-
nals were only recorded from the most active
electrodes which ended up being 529 and 536.

3.2. Spike Sorting Framework
To read and process recordings, to run spike
sorting algorithms and to evaluate their perfor-
mances we used SpikeInterface [2], a Python
framework developed to ease the processing of
neuronal recordings. It allows both to run sev-
eral spike sorting algorithms (sorters) and to
compare their outputs with ground-truth data
(if available). Throughout the work we used the
following sorters: Herdingspikes, Ironclust
and Kilosort2.

3.3. Peak Selection
Due to the sparsity of neuron firing rates, spikes
may be spaced out by several milliseconds dur-
ing which only noise is recorded. That is not a
useful information for the estimation of the ICs
for spike sorting purposes as the ICA model do
not follow temporal patterns (see equation 2).
That is why the dataset can be subsampled by
focusing it on the spikes only. Spike times are
first detected evaluating when the signal exceeds
n times its MAD (n = 5 by default). For every
spike a window of nbefore + nafter samples is se-
lected on all the channels. The two parameters
are computed as follow:

nbefore =
msbefore ∗ fs

1000
(3)

nafter =
msafter ∗ fs

1000

where msbefore and msafter are the milliseconds
before and after the spike time respectively. By
default msbefore = 1 and msafter = 2 but they
can be set externally. It is possible to further
subsample the dataset using a (user-defined)
percentage of the detected spikes. Since a ran-
dom choice of the spikes may do not represent
the variability of the original dataset, it is pos-
sible to balance the number of spikes across the
channels so that the number of selected spikes
for a channel i is:

nspikes,i = all_spikesi ∗ p (4)

where all_spikesi is the number of all spikes
detected on channel i and p is the percentage of
spikes to be used.

3.4. Cleaning
When the number of neurons is lower than the
number of channels, some ICs are not focused on
any channel and they only carry noise, meaning
that they need to be removed. Following the
same approach used by Buccino et al. [1] the
false neuronal sources can be removed by remov-
ing the ICs whose skewness is below a thresh-
old (0.2 by default). The skewness computation
may take some time for large recordings, that is
why its computation was improved by paralleliz-
ing the process.

3.5. Units Recovery
Because of the phase shift introduced by den-
drites, the ICA model may estimate duplicate
sources, i.e. ICs that are focused on the same
neuron. Projecting the ICs back to the original
space reconstructs the original structure of the
data solving the problem of duplicate sources.
Moreover, after the cleaning process a portion
of the noise in the signal is removed which leads
to an increase of the recording SNR after back-
projection. That is the starting point of the
small-unit recovery algorithm. Often, after run-
ning a sorting algorithm on a recording, only the
largest neurons are well detected. If their spikes
are removed from the signal, only small neurons
are still present in the signal. So, the small-
unit recovery algorithm runs ICA on the resid-
ual recording (after peak selection) and backpro-
jects ICs (after cleaning) to increase the SNR of
the residual signals. Now, the same sorting al-
gorithm is run again to extract the spike train of
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neurons that were not detected during the first
round of spike sorting. If ground-truth data are
available, SpikeInterface [2] provides the units
that are well detected by the sorter. If ground
truth is not available, we propose an automatic
curation step to find the well detected units. It
defines a unit i as well detected based on the
following quality metrics [4]:
• firing_ratei ≥ 0.1 Hz
• ISI_violation_ratioi ≤ 0.3

The firing rate of a neuron is the average fre-
quency at which it emits spikes, while the ISI
violation ratio is the percentage of spikes that vi-
olate the Inter Spike Interval. The ISI is a time
interval between two consecutive spikes during
which a neuron is not supposed to emit spikes.
The default value is equal to 1 ms but it can be
set by the user. Both threshold values are the
default ones but they can be set externally for a
more or less strict automatic curation.

4. Results
4.1. Efficiency Improvement
To understand if the subsampling decreases the
goodness of the estimated ICs, the accuracy
of a sorting algorithm (Ironclust) was evalu-
ated on the datasets subsampled with decreas-
ing percentage of spikes. Figure 1 shows the
results for recordings simulated with the Neu-
ropixels probe. Both the elapsed time (red) and
the accuracy (blue) were averaged on 5 sim-
ulated recordings with a noise level equal to
10 µV and 64 neurons. The recordings were
sampled at 32 kHz and were 120 s long for a
total of 3’840’000 samples per channel. The
time values were normalized by the time re-
quired by ICA when run on the full dataset.
Conversely, the accuracy was only evaluated for
the detected units with a SNR > 5 (see equa-
tion 6). When the full dataset was used ICA
took 5′251.59 ± 141.27 s and the accuracy was
69.62 ± 3.59%. After subsampling (all peaks)
the dimension and the elapsed time decreased
to 2′458′775 ± 119′186 (35.97% reduction) and
2′562.60 ± 125.79 s (51.2% reduction) respec-
tively. On the contrary, the accuracy increased
to 73.12 ± 3.74%. Overall, decreasing the per-
centage of spikes decreases the running time, but
the accuracy remains almost constant.
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Figure 1: Average running time of ICA (red) and ac-
curacy of Ironclust (blue) as function of the dataset di-
mension. The accuracy is constant with respect to the
percentage of spikes used for subsampling the dataset
while the running time decreases by decreasing the per-
centage of spikes. If all peaks are used, the running time
is reduced by 51.2%.

4.2. SNR Improvement
To evaluate the consequences of projecting the
ICs back to the original space after cleaning, the
SNR of both traces and neurons has been com-
puted before and after backprojection. The
traces SNR was evaluated as:

traces_snri =
max(tracesi)

noise_leveli
(5)

where the index i refers to the ith channel and
the noise level is the MAD of the channel. The
neurons SNR is computed by SpikeInterface
[2] as:

units_snrj =
max(waveformsj)

noise_levelj
(6)

where waveformsj is a vector collecting all
spike waveforms from unit j and noise_levelj is
the noise level of the trace from which the spike
given by max(waveformsj) is extracted. Fig-
ure 2 compares the channel SNRs before (hor-
izontal axis) and after (vertical axis) backpro-
jection. Each dot represents a channel and it
is red if its SNR decreased, while it is green
if its SNR increased. The barplot in the right
panel counts the green and red dots. It can be
seen that the SNR of 124 out of 128 channels
improved thanks to backprojection.
Figure 2.B compares the units SNR before (hor-
izontal axis) and after (vertical axis) backpro-
jection. It can be seen that the SNR of 41 out
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Figure 2: The scatter plots compare the SNR of traces
(A) and units (B) before and after backprojection.
Green dots show when the SNR increased, while the
red ones show when the SNR decreased. On the right
side, the barplots count the number of red and green
points.

of 64 neurons improved thanks to backprojec-
tion.
The datasets processed here were simulated
with Neuropixels probe (128 channels) with
noise_level=10 and 64 neurons.

4.3. Units Recovery
The algorithm for small-unit recovery was run
with three different spikes sorting algorithms:
Herdingspikes, Ironclust and Kilosort2.
Figure 3 shows the accuracy improvement
(∆acc = accafter_recovery − accbefore_recovery)
averaged over the three algorithms for three
probes - Neuronexus (magenta), squared MEA
(blue) and Neuropixels(orange) - with increas-
ing noise level. The algorithm performs better
on squared MEA and Neuropixels when the av-
erage improvement at noise_level=5 is equal to
9.12±0.1% and 10.8±0.2%. For Neuronexus the
improvement at the same noise level is less than
half of the previously and equal to 3.87± 0.2%.
This may suggest that an higher spatial resolu-
tion of the probe used to record the signal can
improve the output of ICA for spike sorting pur-
poses. The performance decreases as the noise
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Figure 3: The plot shows the average accuracy improve-
ment for Kilosort2, Herdingspikes and Ironclust al-
gorithms on recordings simulated with Neuronexus (ma-
genta), squared MEA (blue) and Neuropixels (orange)
with increasing noise level. The improvement achieved
on squared MEA and Neuropixels recordings is greater
than the one achieved on Neuronexus recordings (with
an exception at 20 µV of noise level).

level increases. Indeed, at noise_level=30 the
∆ accuracy on Neuronexus, squared MEA and
Neuropixels respectively drops to 0%, 2.43 ±
0.32% and 3.52± 0.23%.
If ground truth is not available, non-well de-
tected units may be detected by evaluating
which units have a small firing rate or a large
ISI violation ratio (automatic curation). Fig-
ure 4 shows the average ∆accuracy between
small-units recovery with automatic curation
and small-units recovery with ground-truth (gt)
curation (∆acc = accgt − accautomatic_curation).
The highest ∆accuracy is related to squared
MEA at noise_level=5 and equal to 7.11%
while the ∆accuracy on Neuropixels and Neu-
ronexus is much lower and equal to 1.92%
and 1.62% at the same noise level. A dif-
ferent behavior is shown for Neuropixels and
Neuronexus as the difference of the former re-
mains ≈ 2% while the accuracy of the latter for
noise_level=20 and noise_level=30 becomes
negative and equal to −1.02% and −0.69%,
meaning it increases with automatic curation.
The small-unit recovery algorithm was tested on
real recordings. The results are shown in Fig-
ure 5. Figure (A) shows the results of the al-
gorithm using Kilosort2 as spike sorting algo-
rithm which found 52 and 43 new units (after
recovery) for a total of 239 and 244 neurons on
the 529-channels recording and the 536-channels
recording respectively. Figure (B) shows the re-
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Figure 4: The plot compares the accuracy difference of
automatic curation with respect to the ideal case (avail-
ability of groud truth) for Kilosort2, Herdingspikes
and Ironclust algorithms on recordings simulated with
Neuronexus (magenta), squared MEA (blue) and Neu-
ropixels (orange) with increasing noise level. The ac-
curacy decrease remains fairly constant for Neuropixels
(≈ 2%) while it is larger for squared MEA at low noise
levels.

sults of the algorithm using Ironclust as spike
sorting algorithm which found 12 and 17 new
units (after recovery) for a total of 33 and 43
neurons the 529-channels recording and the 536-
channels recording respectively.

5. Conclusions
Independent Component Analysis is a blind
source separation method which estimates the
signal of sources that generated the recording.
The application of ICA in spike sorting gained
new interest because of the high spatial resolu-
tion of high-count channel probes, such as High-
Density Micro-Electrode Arrays. Since
ICA scales quadratically with the number of fea-
tures, it is unfeasible its application to large
recordings. The sparsity of neuron firing rates
allows to subsample the input dataset. Keeping
only the detected spike,s greatly decreases ICA
running time without lowering the goodness of
the ICs. Moreover, it is possible to use a sub-
set of the detected spikes (up to 20% of them)
without worsening ICs estimation.
The ability of ICA to increase the SNR of a
signal [5] can be exploited to improve the per-
formances of existing spike sorting algorithms.
Indeed, after removing from the signal the spikes
of well detected neurons, the recording has a
low SNR as it carries small neurons only. Ap-
plying ICA to the residual recording and back-
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Figure 5: Performance of units recovery on real record-
ings. (A): the results of Kilosort2 that found 52 and
43 new units on the recording with 526 and 539 chan-
nels respectively. (B): the results of Ironclust which
found 12 and 17 new units.

projecting the ICs to the recording space en-
hances the activities of neurons that were not
removed from the signal, making it easier for
sorting algorithms to detect them if they are
run again. It is worth noting that the algo-
rithm is influenced by the spatial resolution of
the probe used and by the noise level of the sig-
nal. Indeed, the higher the spatial resolution
of the probe and the lower the noise level, the
better the ICs estimation which suggests to ap-
ply ICA on high-count channel probe recordings
such as HD-MEAs which feature a large number
of recording electrodes and a small noise level.

Future Developments The goodness of the
ICs can be improved by convolutive ICA instead
of using the classical model as it follows tempo-
ral patterns (which tackle the duplicate prob-
lem too) in the signal by estimating a set of un-
mixing matrices delayed in time. It is worth to
mention that the computational time of cICA
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is even greater than the one of classical ICA,
so the choice between classical and convolutive
ICA is a trade-off between computational speed
and goodness of the estimation. Understand-
ing which units have been well detected is not
trivial if ground-truth data are not available.
We proposed a simple automatic curation ap-
proach which can be improved by using a set of
more complex metrics to evaluate the output of
a sorter (see SpikeInterface [2] paper for a full
list).
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Abstract

Neuroscience is a multidisciplinary science studying the brain and the nervous system.
One widely used approach to record neuronal electrical activity is extracellular elec-
trophysiology where neuronal probes record the electrical potential of the extracellular
medium. The recorded signal is made up by a summation of the activity of all neurons
close to the recording device, meaning that the signals need to be processed to reconstruct
single unit activities. That is the goal of spike sorting algorithms. Even though a huge
number of algorithms have been published in the last years, none can perform well on
recordings with large noise level and small neuronal activity, meaning small neurons may
not be detected.

Independent Component Analysis is a blind source separation method that improve the
quality of a signal, focusing it on the activity of its sources. Application of ICA has gained
new interest in the latest years due to the increased spatial resolution of recording devices.
The output of ICA is a set of signals, called Independent Components, that are, ideally,
focused on the activity of a single neuron. That enhances the neuronal signals which, in
turn, may improve spike sorting performances. Starting from that assumption, this work
proposes new approaches for the application of ICA in spike sorting and it attempts to
solve its computational limitations.

Keywords: ICA, spike sorting, neuroscience





Abstract in lingua italiana

Le neuroscienze sono l’insieme delle scienze che studiano il sistema nervoso. Un approccio
comune per registrare i segnali elettrici prodotti dai neuroni è l’elettrofisiologia extracellu-
lare, nella quale sonde neuronali misurano il potenziale elettrico del liquido extracellulare.
Il segnale registrato è composto dalla somma dei segnali prodotti dai singoli neuroni,
quindi è necessario processare il segnale registrato per avere accesso all’attività delle sin-
gole unità. Questo è l’obiettivo degli algoritmi di spike sorting che ad oggi, nonostante il
grande numero di algoritmi esistenti, falliscono nell’analisi di segnali con un alto livello di
rumore.

L’Analisi delle Componenti Indipendenti (ICA) è un metodo di elaborazione dei segnali
che mira a scomporre un segnale nelle sorgenti che lo hanno generato. L’applicazione di
ICA nell’ambito di spike sorting ha ricevuto nuova attenzione grazie all’aumento della
risoluzione spaziale delle sonde neuronali. L’output di ICA sono i segnali delle singole
sorgenti, anche chiamate Componenti Indipendenti (ICs). Questa caratteristica porta le
ICs ad avere un rapporto segnale/rumore maggiore rispetto ai segnali registrati che a
sua volta porta ad una migliore performance degli algoritmi di spike sorting. Questa è
l’assunzione di base dietro alla nuova applicazione di ICA per spike sorting proposta in
questo elaborato.

Parole chiave: ICA, spike sorting, neuroscienze
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Introduction

Among all of mysteries of life, the brain is one the most fascinating and interesting.
Many and many studies have been carried out to shed light on brain mechanisms, yet
we have very little knowledge about it. The main players of brain activity are neurons;
in the brain, approximately 86 billion of them are grouped in only 1260 cm2, pretty
amazing, isn’t it? "Phenomenal cosmic powers, itty bitty living space!" to cite a well
known feature-film. Neurons share information by means of electrical signals. Information
is first gathered through dendrites which branch as if they were trees roots looking for
nourishment. Signals are then processed in a central hub, the soma, and finally the output
is sent to other neurons through the axon. Studying the response of a neuronal network to
an external stimulus can provide important information about the properties of each cell
as well as the characteristic behavior of the network. Neuronal activity can be evaluated
either measuring intracellular or extracellular electric potential by means of probes. The
main difference between the two types of recording lies in the number of neurons that
can be analyzed at the same time. Intracellular recordings allow to directly measure the
activity of a single neuron, but they cannot capture the activity of a neuronal network.
Conversely, extracellular recordings allow us to record from many neurons. Unfortunately,
if one records the electrical signal from a network of neurons, it will contain a mixture
of the activity of each neuron. Hence, the recordings need to be processed to extract
single-neuron activities. This essential processing step is called spike sorting.

Spike Sorting Spikes can be interpreted as the unitary information, like a single bit,
sent by a neuron. At the beginning of spike sorting, clustering was mainly performed
by hand, which suffers of several limitations. First of all, the process strongly suffers of
subject variability. Second, it does not scale well with the number of probe channels.
Recently, more and more semi-automatic and automatic algorithms have been developed.
The first step of a spike sorting algorithm is spike detection which often leverages on a fixed
threshold, applied to the signal amplitude, and a shadow period to estimate spike times
[27]. After spikes have been detected, the data needs to be projected into new spaces with
lower dimensions. The features for dimensionality reduction can be chosen empirically
or automatically extrapolated from data, e.g. through PCA or wavelet features. Despite
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their wide use, clustering-based approaches have some limitations, such as oversplitting
units and overlapping spikes [7]. Oversplitting means spikes from a unit are grouped in two
or more clusters, while overlapping spikes means the algorithm cannot distinguish spikes
overlapping both in time and space. Whereas oversplitting can be solved with either
a manual or automated curation step, correcting for overlapping spikes is more tricky.
Template matching approaches have been developed to ameliorate that issue. A template
is considered to be the characteristic waveform of spikes coming from the same neuron.
It is then assumed the signal is made up by a scaled sum of templates. They are first
estimated by running a clustering step on detected spikes and then everytime a template
is detected in the signal, for example by means of correlation, it is subtracted. However,
two issues seem to be unsolved [25]: how to perform event detection for redundant data
and which features should be used for unit separation. Independent Component Analysis
(ICA), a third, less explored, solution may answer these questions.

Independent Component Analysis ICA is a blind source separation technique that
aims at demixing a set of linearly mixed and statistically independent sources. When
signals are recorded, either in-vivo or in-vitro, each electrode of the probe collects a
mixture of neuronal signals, meaning that ICA may ideally draw out single activities [9].
However, ICA has three assumptions that need to be considered:

1. The number of sources is lower than or equal to the number of signals: thanks
to High-Density Microelectrode Arrays (HD-MEAs) developed throughout the last
years, the number of recording electrodes is getting closer and closer to the number
of expected neurons.

2. The signals are an instantaneous and linear mixture of the sources: this condition
is not fully met. Spikes recorded along the dendrites have a phase shift with respect
to spikes recorded in the vicinity of the soma because of the filtering properties of
dendrites. As a consequence, ICA may estimate some sources focused on the same
neuron.

3. The sources need to be statistically independent: although neurons are not indepen-
dent from each other, ICA requires an instantaneous independence. Luckily, due to
randomness of spiking activity [9, 25] that is not the case.

The sources are estimated by maximizing their statistical independence, leading to an
optimization problem which can be solved in many ways [21]. In terms of application to
spike sorting, ICA suffers of two main problems: the huge computational effort and the
generation of false sources. The former can be addressed by running the algorithm after -
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wisely - subsampling the input dataset. The latter requires to detect and discard the false
neuronal sources, which usually only carry noise. Conversely, ICA has advantages too.
In particular, it sharply increases the Signal to Noise Ratio (SNR) of a signal [25]. The
SNR is defined as the ratio of signal power to the noise power and it is used to compare
the amplitude of the desired signal with respect to the noise level. Increasing the SNR in
a spike sorting framework can improve spike detection and consequently the performance
of spike sorting algorithms on recording with low SNR.

Aim of the work The objectives of the work were the following:

1. Improving ICA efficiency: ICA suffers of huge computational cost which makes its
application to large dataset unfeasible. The first goal of this project is to find suitable
and efficient ways to subsample the input dataset to minimize the computational
cost without losing any crucial information for estimating the sources.

2. Improving the SNR of neuronal signals through ICA

3. Increasing accuracy of existing spike sorters: despite many spike sorting algorithms
exist, they usually fail in detecting small neurons whose spikes have small amplitude.
Given the ability of ICA to increase SNR [25], it is possible to use ICA as a post-
processing tool to improve spike sorting performances on recording with small SNR.
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1.1. Electrophysiology

Neurons communicate each other with electrical signals, generating on/off events called
action potential or, equivalently, spikes. Every neuron, in resting conditions, express a
difference between the electric potential of intra- and extra-cellular fluids, which is usually
about -70 mV. External perturbations may induce a variation of the potential and when
it crosses a threshold, conventionally -55 mV, a spike is generated. Electrophysiology
studies electrical properties of neurons by recording and generating spikes under different
conditions. Recordings can be classified as intracellular and extracellular recordings.

During intracellular recordings the recording electrode is placed inside the soma or the
axon while the reference one is put outside the cell. That is why they focus on single
cells addressing variations of membrane potential due to neurotransmitters or pharma-
cological agents. A widely-used intracellular recording is the patch-clamp techinque. A
micropipette is used to "patch" a small portion of the membrane which is perforated to
have direct access to the intracellular space. Now, ions can flow from the intracellular
region into the pipette. The generated current is then sensed by an amplifier. On the
contrary, extracellular recordings collect signals from several neurons.

1.1.1. Extracellular electrophysiology

During extracellular recordings the recording electrodes are placed outside the cell and
the ground electrode in a far extracellular position, so now the probe records the electric
potential of the extracellular medium. The recorded potential is generated by ion currents
that flow across cells membrane, called transmembrane currents, and propagate from the
cell throughout the extracellular medium. It acts as a low-pass filter that causes the
presence of two components in the recorded signal: slow variations of the potential, called
Local Field Potentials (LFPs) which represent the low frequency component due to the
activity of neurons far from the recording site and the spiking activity of close neurons
which is a high frequency component [7] (Figure 1.1).
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Knowing the total current generated by a neuron and approximating it as a point current
source, using volume conduction theory we can approximate the extracellular potential
as [2]:

Φ(r, t) =
1

4πσ

I(t)
r

(1.1)

where r is the distance of the electrode from the source, Φ(r, t) is the extracellular potential
at time instant t and distance r, I(t) is the transmembrane current at time t and σ is
the conductivity of the extracellular fluid. Equation 1.1 provide the potential for a single
source, but it can be easily extended to N point current sources as follows[2]:

Φ(r, t) =
1

4πσ

N∑
i=1

In(t)

rn
(1.2)

From the above equation it can be seen that closer the source to the recording electrode,
the larger its contribute while the more distant the source is, the more attenuated its
signal.

Figure 1.1: A schematic showing the signals obtained through an extracellular recording.
At the top of the image the raw signal recorded by a single electrode. Below, the Local
Field Potential obtained from the raw recording after low pass filtering it. At the bottom
the spiking activity of the network obtained after applying a high pass filter to the raw
recording. Image taken from [19].

1.1.2. Recording Devices

Neuronal signals are measured by means of neuronal probes which have greatly changed
and evolved since the beginning of neurophysiology (Figure 1.2.A). Classical recording
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devices can be broadly classified in three categories: tungsten microwires, tetrodes and
silicon probes. Tungsten microwires have been the first conventional recording device,
used because of tungsten high resistance to corrosion [14]. They feature very thin wires
embedding a limited number of electrodes made of tungsten which provide a non-biological
interface between the electrode and the neuron. Despite they can very well isolate ac-
tivity of single neurons, extracellular electrophysiology requires to gather signals from
many neurons. That need drove the development of tetrodes, which are bundles of low-
impedance microwires twisted together. Thanks to greater size and lower impedance they
can record signals up to almost 20 neurons [40]. The major drawback of tetrodes lies in
their size as it makes them invasive for in-vivo recordings. Silicon probes managed to
keep small dimensions with higher channel count exploiting micro-scale recording sites
[39, 40]. They do not feature microwires anymore but metal or silicon shanks - also called
needles - housing the recording lines, while the electrodes are placed either along the
surface of the shank (Michigan silicon probes [3]) or at the tip of the shank (Utah silicon
probes [30]). Development in microfabrication allowed to move from a single needle to
2D or 3D configurations (Figure 1.2.B and C). Moreover, the use of CMOS technology
allowed a huge leap in the number of electrodes per needle, reaching 300 and more chan-
nels [39]. Application of CMOS technology represents a breakout point for neural probe
manufacturing, providing high spatial integration thanks to higher number of electrodes,
higher temporal stability and multifunctional integration. The high resolution of modern
technology allows to get low-noise signals and to better isolate single units [24].

Micro-Electrode Arrays (MEAs) are chips for multi-site recording of extracellular signals.
Signals are pre-processed on chip to provide signals of high quality. For example, dedicated
circuitry provide on-site conditioning for weak neuron signals so that the recorded signal
has an higher SNR. The new generation of CMOS-based MEAs (Figure 1.3) led to a
huge increase in number of electrodes, reaching thousands on a single chip, which in turn
allow for higher spatio-temporal resolution. It is now possible to selectively stimulate and
record cells with a great precision [11, 15, 37]. Anyway, the higher dimensionality and
redundancy of the recorded data lays new challenges for spike sorting algorithms, which,
at the same time, have to be able to exploit the new information and have to scale well
with high number of channels [7].
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(A)

(B)
(C)

Figure 1.2: (A): Timeline showing the evolution of neural recording technologies. Red
indicates conventional technologies while green the modern ones. (B): 2D probe for
modulation of in-vivo signals. Image from [38]. (C): 3D probe with multiple recording
sites (black dots) on each needle. Image from [41].

1.2. Spike Sorting

Spike sorting is a technique whose goal is to reconstruct the spike trains of each neuron
in the recording, i.e. to identify every time instant in which a neuron has fired an action
potential. The general framework of a spike sorting algorithm is the following:

• Detect putative spikes

• Extract waveforms features

• Cluster waveforms based on features

Earlier spike sorting techniques required the manual intervention of an electrophysiologist
to cut the putative spikes from the signal and cluster them based on explicit features
like their shape. However, it is straightforward to understand how manual approaches
do not scale well with high-channel count probes. (Semi-)automatic algorithms speed up
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Figure 1.3: High-Density Micro-Electrode Arrays developed by ETH - Bio Engineering
Laboratory (BEL-ETH) over the years. It shows how much the number of electrodes
increased. Image from BEL-ETH website.

the entire process, remove user variability and outperform manual methods [16]. From
the general framework we can identify 4 main steps in modern spike sorting algorithms:
spike detection, feature extraction, clustering and template matching.

1.2.1. Spike Detection

Spike detection requires to distinguish neuronal activity from background noise. A detec-
tion function is applied on successive time windows of the signal returning a value that
can be interpreted as the probability to have a spike in the analyzed time stamp. The
most common method is to apply a voltage threshold to the signal and detect a spike
whenever it crosses the threshold. The main problem of thresholding techniques is that
they are not robust against noise [27], as the detection is not efficient with low SNRs.
Classical solutions to improve efficiency leverage on the estimation of noise statistical
model from data [31, 45]. However, all these techniques require both the estimation of
model parameters, which need to be re-initialized periodically since biological signals are
non-stationary, and of a threshold value. To counter this problem a template matching
technique [27] has been published recently, which improves efficiency of spike detection
with high noise levels at the cost of higher computational effort. Once the spike times
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Figure 1.4: Spike waveform cut from a signal recorded at 32 kHz. The red line indicates
the putative spike time. 32 and 64 samples have been selected respectively before and
after the spike time.

have been estimated, spikes are cut from the signal selecting n samples before the spike
time and m after it (Figure 1.4).

1.2.2. Feature Extraction

Each extracted spike waveform is composed by hundreds of samples per each channel, so
it would be impossible to cluster in such a high-dimensional space. The approach is to
decrease the dimensionality of the waveforms by extracting their most relevant features.

Due to heterogeneous morphology, electrical properties and positions with respect to the
probe, spikes from different neurons normally exhibit different amplitudes and shapes
[7]. These are useful characteristics to cluster them, but they have to be extracted from
the spikes detected in the previous step. One common solution is the use of principal
component analysis (PCA), which computes a new orthogonal basis that better describes
the variability of the data. Data are first standardized :

z =
(xi − x̄)

σx

(1.3)

where x̄ is the mean of the signal and σx its variance. Then the covariance matrix C is
computed as:

C =
ZZT

n− 1
(1.4)
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where Z is the matrix of standardized variables and n is the number of samples. From
C, eigenvalues λi are computed and ranked from the highest to the lowest. The principal
components are the eigenvectors v of C and the amount of variance explained by each
vi depends on its λi as λi∑k

j=1 λj
. As a final step data are projected onto the new orthog-

onal basis as Z̄ = vTZT . The advantage of using PCA is that it provides an easy way
to decrease the dimensionality of the input dataset. Indeed, one can select the first n

components and the new dataset still explains a percentage of the original variance equal
to:

explained_variance =

∑n
i=1 λi∑k
j=1 λj

(1.5)

The perfect number of components to be chosen it is then a trade-off between not losing too
much information and selecting few components to decrease the computational burden.
However, the choice is often based on the so called elbow rule. By plotting the ratio of
variance explained by each component vs their number (Figure 1.5), the line can ideally
be approximated as an elbow. According to the rule, all the components after the elbow,
that is the point at which the graph tends to be almost flat, are not significant and can
be discarded.

Figure 1.5: A Scree Plot for the first 50 Principal Components of a signal recorded
by a 100-channel probe. The red line indicates the position of the elbow, meaning all
components after the 10th can be discarded.
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1.2.3. Clustering

During the clustering step, spikes are grouped based on similarity of their features. Many
algortihms exists but they can be classified in seven groups [43].

• Partitional: Each waveform can be represented as a point in the feature-space.
Partitional algorithms make clusters by dividing the feature space based on the
density of points around centroids or medoids. Both are the center of a cluster,
but a medoid must be an element of the dataset. Common partitional algorithms
are K-means (which is based on centroids) and K-medoids (based on medoids as
the name suggest). Kilosort [32] is a spike sorting algortihm which makes use of
K-means for the clustering step.

• Hierarchical: They are based on dendograms or binary trees to separate points.
The algorithm starts by considering all observations as separate clusters and itera-
tively merge the closest clusters until all of them are merged. At the end, it outputs
a dendogram or a tree showing the relationship between each cluster. The defini-
tion of the closest clusters is based on a metric which may be the Euclidean distance
[43]. A spike sorting algorithm exploiting hierarchical clustering is Mountainsort

[12] which implements the ISO-SPLIT clustering algorithm.

• Probabilistic: Probabilistic algorithms aims at maximizing the posterior distribu-
tion as function of the probability that a data point belongs to a certain cluster. A
common method is the Expectation Maximization (EM) which finds the Maximum
Likelihood (ML) estimates of parameters of a distribution and it is implemented in
Klusta sorting algorithm [36].

• Density-Based: Density-based algorithms do not need to know the number of
clusters a priori and do not need any parameter. They are based on the assumption
that clusters are contiguous space regions with high density of data points, separated
by regions with low density of data points which are considered to be outliers.
Common algorithms are DBSCAN and OPTICS. Density-based algorithms are used in
Ironclust [24].

• Graph-Based: Data to be clustered can be represented as graphs where each data
is a node and the distance is modeled by a weight on the edge linking two nodes.
In graph-clustering, nodes are connected to other nodes within the same cluster but
they have no link with nodes belonging to different clusters. A common graph-based
clustering algorithm is Minimal Spanning Tree implemented in Wave_clus [33].

• Fuzzy Logic: It is also known as soft-k-means. Algorithms belonging to this
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class allow data points to be members of more than one cluster.

• Learning Based: They are not a popular choice for spike sorting algorithms as
they require either prior information about the data or ground-truth data. Indeed,
before applying them a network needs to be trained with ground-truth data or
parameters need to be set based on a prior information.

Each class of algorithms has its own advantages and disadvantages but all of them share
three major limitations:

1. High computational cost: it is gaining more and more attention since probes
manufacturing is moving towards higher and higher number of channels meaning
the size of the input dataset is increasing as well.

2. Over-split units: the algorithm generates two or more clusters collecting spikes of
the same unit and requires a curation step which can be either manual or automatic
[12].

3. Overlapping spikes: spikes can overlap in space and/or time. Applying a spatial
mask [36] or evaluating the location of the spike can help to distinguish temporal
overlapping spikes but it cannot be applied to spatio-temporal overlapping spikes
as those methods assume the sources to be distant from one to the other.

1.2.4. Template Matching

Template matching algorithms entered the game as an attempt to solve the problem laid
by overlapping spikes. Templates are first estimated running a pre-clustering step on a
subset of detected spikes. The templates are obtained as the average waveform in each
cluster. Then, each template is matched with the recordings over time through a metric,
for example by evaluating the cross correlation between the two [27], and when it exceeds
a thresholds the templates are subtracted from the signal. Doing it recursively, allows to
uncover overlapping spikes, which are clustered again. All template-matching algorithms
have in common the assumption that the recorded signal s(t) is composed by a scaled
sum of templates T with a superimposed noise e(t):

s(t) =
∑
ij

aiTij(t− ti) + e(t) (1.6)

the subscript j refers to neurons while subscript i refers to firing times. On the other hand
they differ in the pre-clustering algorithm and the metric used for matching the templates
and recordings. Based on the metric, conventional template-matching algorithms can be
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classified in three classes:

1. Subtractive: the Euclidean distance is computed between templates and recordings
at each time step. The putative spike times are then identified as the time instants
when the distance is small enough, i.e. lower than a threshold.

2. Convolutional: it is computed the convolution between templates and recording.
The putative spike times are then identified as the time instants when the convolved
signal is greater than a threshold.

3. Matched Filtering: it follows the same steps of convolutional algorithms but
matched filters are used to compute the convolution instead of templates. Matched
filters are the result of the correlation between templates and delayed recordings.

1.2.5. Challenges for modern spike sorters

In recent years, improvement in semiconductors manufacturing led to a huge increase of
the number of electrodes on recording sensors, developing the so-called High-Density
Micro-Electrode Arrays (HD-MEAs), featuring thousands of recording sites [25]. The
larger number of recording channels increases the amount of spike collisions in the record-
ing leading to a wider use of template matching approaches. At the same time, the modern
devices laid the foundation for ICA-based spike sorting algorithms.

1.3. ICA

Independent Component Analysis is a blind source separation algorithm whose goal is
to decompose the recorded signal into its sources. Since each output signal, called In-
dependent Components (ICs), is focused on the activity of a source, ICA can also
increase the SNR of the input dataset [25]. The hypothesis behind ICA is that signals
are generated by an instantaneous linear combination of the sources, through a mixing
matrix A:

r(t) = As(t) (1.7)

where r(t) are the recorded signals and s(t) are the sources. The mixing matrix is a
matrix with shape NxN , with N features and N sources. Since the aim of ICA is to
demix the signals, it estimates the unmixing matrix W which is the pseudo-inverse of A,
such that:

s̄(t) = Wr(t) (1.8)
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where s̄(t) are the estimated sources. Since ICA algorithms output a square unmixing
matrix, to retrieve all source signals it is needed that their number is at most equal to the
number of features [22]. When dealing with neuronal recordings that constraint means
that the number of neurons is lower than or equal to the number of recorded channels,
that is why ICA is better suited for HD-MEAs. For the algorithms to be able to estimate
s̄(t), they must be statistically independent, meaning non-Gaussian [20].

1.3.1. Statistical Independence

Two events A and B are said to be independent if event A does not give any information
about event B and vice-versa. Given P(A) and P(B) the probabilities of event A and
event B respectively, the two events are independent if P (A ∩ B) = P (A)P (B). Ex-
tended to n events Ai, ..., An, it leads to P (∩ni=1Ai) =

∏n
i=1 P (Ai). A consequence of

independence is that E(AB) = E(A)E(B) meaning that A and B are uncorrelated too:
C(A,B) = E(AB) − E(A)E(B) = 0 [44]. Hyvärinen shows that non-Gaussian variables
are independent too [21]. The main idea is that from the Central Limit Theorem we know
that the distribution of the sum of two or more independent random variables tends to
be Gaussian, under certain conditions. Therefore, the single variables (the sources in the
case of ICA) are less Gaussian than their sum (the recorded signal). Examples of non-
Gaussianity measures are kurtosis, skewness, negentropy and mutual information.

Kurtosis is a measure of "peakedness" of a curve and it is computed as the ratio between
the fourth central moment µ4 and the fourth power of the standard deviation σ4:

K =
µ4

σ4
= E[(

X − µ

σ
)4] (1.9)

Since for a normal distribution K ≈ 3, it is often evaluated as K = µ4

σ4 − 3 to get a
quicker comparison between the analyzed distribution and a Gaussian one. Depending on
the value of K a distribution can be classified as supergaussian if K > 3, gaussian if K
= 3 and subgaussian if K < 3 (Figure 1.6). In the former case the distribution is more
"peaked" than a Gaussian one, while in the latter it is more flat.

Skewness is a measure of the asymmetry of a distribution and it is computed as the
ratio between the third central moment and the third power of the standard deviation:

S =
µ3

σ3
= E[(

X − µ

σ
)3] (1.10)
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A distribution is said to be positively skewed when S > 0, meaning the tail of the distri-
bution tends towards positive values. On the contrary, it is negatively skewed when S <

0 and its tail tends towards negative values (Figure 1.6).
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Figure 1.6: In both images the probability density function of three distributions are
plotted. (A): In orange, a distribution with kurtosis lower than 3. In blue, a supergaussian
distribution whose kurtosis is greater than 3. In green, a Gaussian distribution with a
kurtosis equal to 3. (B): In orange, an asymmetric left-tailed distribution. In blue, a
symmetric Gaussian distribution. In green, an asymmetric right-tailed distribution.

Negentropy Negentropy is another direct measure of non-Gaussianity based on en-
tropy. Entropy is a measure of randomness of data, the higher the entropy, the higher its
uncertainty. The original definition of Entropy provided by Shannon follows:

H(X) = −
∑
x

P (x)logP (x) (1.11)

H(X, Y ) = −
∑
x,y

P (x, y)logP (x, y) (1.12)

where H(X) is the entropy for a random variable X and H(X, Y ) is the joint entropy.
Now, we can define the negentropy J(Y ) as:

J(Y ) = H(Ygauss)−H(Y ) (1.13)

where Ygauss has a Gaussian distribution with same covariance of Y. The entropy of a
Gaussian variable is large, while it is small for a non-Gaussian one. Hence, the negentropy
of a non-Gaussian variable is large, that is why negentropy-based algorithms estimate the
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Independent Components by maximizing J(Y ). Unfortunately it is tricky to evaluate
negentropy with equation 1.13, so Hyvärinen and Oja proposed a new evaluation of J(Y )

for their fastICA algorithm [20]:

J(Ȳ ) = E[ϕ(Ȳ )]− E[ϕ(U)]2 (1.14)

with Ȳ as standardized Y , U as standardized Gaussian variable and ϕ(.) as non-quadratic
function, e.g. tanh(.). Now, the algorithm proceeds by estimating the unmixing matrix
W through the following optimization problem:

argmax
wi

n∑
i=1

JG(wixi(t)) wrt. wi, i = 1, ..., n (1.15)

with each wi representing a row of W . The sources si(t) are then provided by equation
1.8.

Mutual Information Mutual Information is a measure of dependence between two
variables. It is closely related to negentropy if the sources are uncorrelated and of unit
variance [21]. The mutual information for n scalar random variables is defined as:

I(y1, y2, ..., yn) =
n∑

i=1

H(yi)−H(y) (1.16)

In the case of an invertible linear transformation, e.g. y = Wx, the above equation
change slightly:

I(y1, y2, ..., yn) =
n∑

i=1

H(yi)−H(y)− log|detW | (1.17)

It can be proved that detW is constant, if yi are uncorrelated and of unit variance [21].
Therefore, equation 1.17 can be rewritten as:

I(y1, y2, ..., yn) = C −
∑
i

J(yi) (1.18)

where J(yi) is the negentropy of the variable yi.

1.3.2. Previous work

After the advent of HD-MEAs, the application of ICA for spike sorting has gained more
attention leading to the publication of many works.
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In Jackel et al. [25] ICA is applied recursively to the data, similarly to what happens in
template matching algorithms. At each iteration ICA is applied to the input dataset and
spikes are detected by a thresholding technique, then the detected waveforms are clustered
to identify the template of each neuron and finally the detected templates are subtracted
from the recordings. The dataset made up by the residual signal is the input of the next
iteration. Thanks to the iterative subtraction it is possible to disclose overlapping spikes.
Moreover, the authors propose the following metrics to evaluate the applicability of ICA
to HD-MEA recordings:

• SNR of neurons: it is compared the SNR of neurons in the recordings (SNRi
el)

and in the ICs (SNRi
ic) through the following equations:

SNRi
el =

max[abs(f i
j)]

σj

(1.19)

SNRi
ic = max(|H i|) (1.20)

where f i
j is the average spike waveform of the neuron i recorded by the channel j,

σj is the standard deviation of the channel j and H i is the average spike waveform
of neuron i after demixing the signal through ICA.

• Separability: it measures how well ICA can demix the signals. The main idea
behind it is that a neuron k is well demixed if its signal has a large peak on the IC
i while the signals of all the other neurons have a small peaks on the same IC i.

• Redundancy: it counts the number of signals in which the signal of a neuron
overcomes a threshold.

it is shown that ICA can increase both SNR and separability and decrease the redundancy
of the data with respect to the original recordings.

Another application of ICA is provided by Buccino and colleagues [9]. Now after the
estimation of the ICs, the algorithm attempts to correct the data to compensate for ICA
limitations. First, ICs are cleaned by removing ICs with low skewness as they carry very
few spikes. Second, spikes are detected from the cleaned ICs when the signal exceeds 4
times the Mean Absolute Deviation (MAD). Third, mixture of Gaussians are applied to
each source separately to cluster their spikes. In the ideal case each IC should carry the
spikes of a single source but due to the non-linearity of templates [25] it is possible that
an IC carries some spurious spikes of other neurons. Clustering each source separately
makes it possible to discard the spurious spikes. Finally, spike trains are compared to
each other to identify duplicates due to the non instantaneous mixture of the signals. If
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two spike trains share more than 80% of spikes, the one with lower spikes is discarded.

Leibig et al. [28] suggest the use of convolutive ICA (cICA) to tackle the problem of
duplicates due to the non-instantaneous mixture of the signals. cICA estimates a set of
L mixing matrices, so the new formulation of equation 1.7 is the following:

x(t) =
L∑

τ=0

Aτs(t− τ) (1.21)

after the estimation of the ICs, spikes are detected directly on them by evaluating when the
signals exceed 3 times the MAD and then spikes are clustered with KlustaKwik algorithm
[36].

cICA estimates ICs with higher SNR and lower redundancy compared to classical ICA.
Moreover, the spike sorting algorithm based on cICA proposed by Leibig et al. [28]
achieves a lower error rate with respect to ICA-based algorithms. Nevertheless, cICA
greatly increases the computational cost making it unfeasible applying cICA to large
recordings. Indeed, the cited cICA-based algorithm with L=3 took ≈40 minutes on a
simulated recordings of 5 seconds only.

1.3.3. ICA Constraints and Limitations

Recalling ICA assumptions about the data, neuronal recordings must be generated by
statistically independent sources and by a linear mix of them. Although neurons do
not behave independently with respect to other neurons in the network, ICA can still be
applied as it requires an instantaneous independence which is satisfied assuming that sets
of neurons do not fire exactly at the same time every time [9, 25]. On the contrary, the
hypothesis of instantaneous linearity between sources and signals is not fully met because
of the filtering behavior of dendrites. Indeed, the peaks of signals recorded close to the
soma or along the dendrites are not at the same time instants due to the propagation time
of the action potential that generated them. The ICA model may interpret the delayed
spikes as belonging to different sources which may lead to the estimation of duplicate
sources, i.e. ICs tuned to the same neuron, and requires a duplicate-rejection step [7].
The ICA algorithm used in this work is the above mentioned fastICA, available from
SCIKIT-LEARN python package. The package allows to perform a pre-whitening of the
data which is highly recommended to improve convergence [20]. Unfortunately, despite
the "fast" in the name of the algorithm, when it comes to recordings made with large
number of channels it has a high estimation time (Figure 1.7.A) which is further increased
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Figure 1.7: (A): Average time required by fastICA on recordings simulated with three
different probes: Neuronexus (32 channels), squared MEA (100 channels) and Neuropixels
(128 channels). For every probe the average has been computed on 5 simulated recordings
which were 120 s long, sampled at 32 kHz (3.840.000 samples per channel) and 10 µV
of noise level (see section 2.1 for a detailed description of the simulated datasets). From
left to right the average computation time is: 175.48 ± 43.17 s, 2104.23 ± 382.93 s and
5251.59 ± 141.27 s. (B): The 4 Independent Components estimated from a simulated 4
channel recording with 2 neurons. In red, ICs carrying only noise that must be discarded.
In green, ICs focused on the 2 neurons that must not be discarded during the cleaning.

by the whitening phase, shown by the following equations [46]:

flopswhitening = 2K2T (1.22)

flopsfastICA = 2(K + 1)T per iteration

where K is the number of channels and T the number of samples. None of the previous
works exploiting ICA for spike sorting tackled this problem, so the first step of this
project aimed at improving ICA efficiency to speed up sources estimation by decreasing
the dimensionality of the input data without losing crucial information for the estimation.
The second problem we had to deal with is related to the estimation of false sources. If
we recall how the unmixing matrix W is computed, we can notice it is a square matrix,
meaning ICA always outputs a number of estimated sources equal to the number of
channels. So, if the recording probe has M channels and the signals are generated by
N < M neurons, ICA will provide M −N false sources which are composed by noise only
(Figure 1.7.B).
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1.4. Aim of the work

Given the above-mentioned limitations of ICA for spike sorting, the overall goal of this
work is to investigate and benchmark new strategies to use ICA to improve spike sorting
performance.

In recent years the number of spike sorting algorithms - which I am going to address as
sorters - has increased exponentially. Their performance on different recordings can be
found on SpikeForest [29]. It is a useful platform to compare spike sorting algorithms by
modifying many parameters like the minimum SNR of recordings used for testing. It has
a huge dataset of recordings which, at the time of writing, total 1.3 TB of recordings and
34,773 of ground-truth units. Decreasing the minimum SNR shows how the performances
of all sorters drop dramatically, especially when SNR ≤ 3 as you can see from Figure 1.8.
An interpretation of these result is that existing sorters usually fail to discover small units
or equivalently fail to discover units within low-SNR recordings, but ICA can increase the
SNR of neuronal signals [25]. That is why the last step of this work aimed at improving
sorting performances by applying ICA, as a postprocessing phase, to increase the number
of neurons detected by sorters.

To summarize, the main objectives of the work are the following ones:

• Improving efficiency and decreasing running time of ICA.

• Increasing SNR of neuronal recordings through ICA.

• Improving performances of existing spike sorting algorithms on recording with small
neurons.
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(A)

(B)

Figure 1.8: (A): Dataframe from Spikeforest showing accuracy of sorters on differ-
ent datasets with minimum SNR = 3. The rows refers to different datasets while the
columns refers to different sorters. The star near accuracy values indicates the algorithm
failed to converge. (B): Scatter plot showing unit accuracy vs SNR for Kilosort2 on
HYBRID_JANELIA dataset. From the plot it can be seen that the unit accuracy
dramatically drops when the SNR ≤ 3.



23

2| Materials and Methods

The chapter is organized as follows: first I cover how simulated and real recordings are ob-
tained. Second, I present the spike sorting framework used throughout the work. Finally,
I outline how ICA can be used for spike sorting purposes.

2.1. Datasets

Recordings of large networks lack ground truth information [8] making validation of spike
sorting algorithms tricky. Hence, for the validation of the work recordings have been sim-
ulated in MEArec [8] [https://github.com/alejoe91/MEArec] framework which provides
simulated neuronal recordings with ground-truth information.

2.1.1. Simulation of Ground-Truth recordings

Simulated recordings are obtained using the MEArec [8] Python package. The package
allows to simulate neuronal recordings starting from probe and cell models which can be
loaded from existing databases [1, 34]. The simulation consists in two steps: Template
Generation and Recording Generation.

Template Generation The template generation step is split in two phases: intracel-
lular stimulation and extracellular stimulation. During the intracellular stimulation, an
intracellular stimulation is simulated, using the software NEURON, for each available cell
model. This step generates a set of transmembrane currents which are saved and reloaded
for the actual generation of the templates. During the extracellular stimulation every cell
is randomly shifted and rotated around the selected probe n times, chosen by the user.
For every new position the transmembrane currents are loaded and EAPs are computed
through the LFPy package [2] (Figure 2.1). The higher the number of templates, the
higher the number of different recordings that can be simulated for the same set of cells
and probe. Cell models can be loaded in the package from online datasets; for this project
13 cortical cell models of layer 5 from Neocortical Microcircuit Portal (NPC) [34] have
been used. Moreover, three sets of templates have been simulated for the work. For each
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Figure 2.1: MEArec template generation pipeline. First transmembrane currents are
simulated through NEURON (left), then EAPs are computed by LFPy package using
results from intracellular stimulation (right).

set, all 13 cell models have been used and 100 EAPs with amplitude ∈ [5, 300] µV have
been simulated per cell. The three sets differ in the probe model selected for the simu-
lation. The three selected models (provided by MEArec) are: the model of Neuronexus
A1x32-Poly3-5 mm-25s-177-CM32 probe with 32 channels (Figure 2.2.A), the model of a
squared MEA featuring 10x10 channels with 15 µm pitch (Figure 2.2.B) and the model
of a Neuropixels probe with 128 channels [39] (Figure 2.2.C).

Recording Generation In the second phase, the templates and simulated spiketrains
are combined to generate the recordings (Figure 2.3). The process can be finely controlled
by many parameters which allow to characterize the signal in different ways, from mod-
ulating the drift of the signal to choosing the amount of bursting neurons. From the cell
models used in phase one, it is possible to select how many excitatory (nex) and inhibitory
(nin) cells are used during the simulation. The simulation starts with the generation of
nex+nin spike trains, which are modeled either as Poisson or Gamma distributions. Now,
based on a set of parameters defined by the user, e.g. the minimum and maximum am-
plitude, templates are selected and convolved with spike trains using a modulated (or
customized) convolution. Finally, noise is added to the convolved signal and, if selected,
recordings are filtered.

For each one of the three probes used for template generation we simulated four groups
of recordings. Each recording is 120 s long, it is sampled at 32 kHz and it has a colored
background noise. They differ in the following parameters:

• Number of cells: The number of electrodes in HD-MEAs is assumed to be greater
than the number of neurons recorded. To keep the simulated recordings consistent
with the real ones, we chose to use a number of cells equal to half of the number
of channels. Therefore, we simulated recordings with 16 cells for Neuronexus tem-
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Figure 2.2: The three probe models used for the template generation step. From left to
right: a Neuronexus probe with 32 channels, an high-density MEA with 100 channels and
the Neuropixels probe with 128 channels.

plates, with 50 cells for squared MEA templates and with 64 cells for Neuropixels
templates.

• Noise level: The noise level is the standard deviation of the signal measured in µV.
Within each group we kept fixed the number of cells and varied the noise level. So,
for each probe we selected four noise levels equal to 5, 10, 20 and 30. For each noise
level, 5 recordings have been simulated with different seeds to test the generalization
capability of the algorithms.

To summarize, we have 3 sets of recordings with 16, 50 and 64 cells. Within each set the
recordings differ in the noise level which increases from 5 to 30 and for each noise level
there are 5 different recordings with randomly selected templates, spike trains and noise
realizations.

2.1.2. Real Recordings

Biological preparations Cells are extracted from embryons of 18-day Wistar rats
following a standard protocol [35]. The cultures are kept in a humidified cell-culture
incubator at 37°C and 5% CO2/95% air and plated on a CMOS HD-MEA. All experi-
mental protocols were approved by Basel-Stadt veterinary office and follows Swiss federal
laws on animal welfare and a detailed explanation of the protocol, developed by ETH
Bio-Engineering Laboratory, can be found at Protocol Exchange [4].

CMOS HD-MEA The probe used for recording is a CMOS-based HD-MEA developed
by the Bionegineering Laboratory (BEL) of ETH in Basel. It features 26’400 electrodes
with 17.5 µm pitch and up to 1’024 can be routed and recorded simultaneously.
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Spike Trains EAPS Traces

Figure 2.3: MEArec recording generation. Spike trains are generated as Poisson or
Gamma distributions. Templates are then convolved with spike trains and background
noise is added as final step.

Neurons tend to cluster together [26] leading to a very low activity in some region of the
culture. To remove silent channels from the acquisition, an activity scan is performed
before recording the signal. During the scan, the acquisition software (MaxWell Lab)
divides the array in 7 columns which are analyzed independently. After the analysis of all
the columns, the software records the signal from the most active channels among all the
columns. We recorded from two chips for 5 minutes. The number of channels selected by
the activity scan were 534 and 526 for the first and second chip respectively.

2.2. Spike sorting framework

To handle both simulated and real recordings, to run spike sorting algorithms and to vali-
date their outputs we used SpikeInterface [10] [https://github.com/SpikeInterface-
/spikeinterface], a Python package collecting tools to ease processing and spike sorting
for different format of recordings. It provides: tools to read recordings and output of
spike sorting algorithms of different formats; many existing spike sorting algorithms; a
framework to compare them against each other or against ground-truth data (if avail-
able). All the tools and methods developed in this work are highly integrated with the
SpikeInterface framework.

I am going to describe more in detail only the modules heavily used in this work, for a
complete explanation of the package I refer the reader to SpikeInterface paper [10].
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2.2.1. Spike sorters used

The work makes use of three spike sorting algorithms that are integrated in SpikeInterface:
Herdingspikes [17], Ironclust [23] and Kilosort2 [32]. They are all designed for HD-
MEAs.

Herdingspikes algorithm is split in two phases: in the first one spikes are detected
by applying a threshold to the recorded signal, then the location of each detected event
is estimated by evaluating their spatial spread over the recording electrodes and finally
the locations are used to train a support vector machine to classify events as true spikes
or noise. In the second step spikes are clustered with the mean shift algorithm [13]. It
depends on a single parameter (the bandwidth h) which is related to the expected size of
each cluster, so it does not require prior knowledge about the final number of clusters. It
is possible to parallelize this step to speed up the process.

Ironclust spike sorting pipeline starts by high-pass filtering the signal to remove local
field potentials (LFPs). Additionally, notch filters can be used to remove high-frequency
components that overlap with spikes spectrum. Next, spikes are detected when the signal
exceeds six times its Mean Absolute Deviation (MAD). Then spikes are used both to
estimate the location of each spike and to track probe drift (it is based on the variation of
spike amplitudes over time). Tracking the probe drift is an important feature as changing
the relative position between neurons and electrodes modifies the amplitude of recorded
spikes which can lower the performance of the clustering step. Before running the cluster-
ing step, the two most relevant features are extracted from the detected spike waveforms,
through PCA. The clustering algorithm is DPCLUS [5], a density-based algorithm.

Kilosort2 filters data with an high-pass filter at 300 Hz to remove LFPs and it whiten
the data to remove correlated noise. Now, spikes are detected via template matching. The
templates are first initialized and at each iteration they are recomputed (the authors call
this step templates optimization) using the detected spikes. The loop, alternating template
optimization and spike detection goes on until a cost function reaches convergence. A final
clustering step is run to merge oversplitted neurons.

2.2.2. Comparing spike sorting outputs

SpikeInterface [10] allows to compare sorting outputs with a ground truth, if available,
or to compare multiple sorting objects. The output of a spike sorting algorithm is made
up by N vectors of spike times, with N the number of neurons found by the algorithm.
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The spike times are the time instants in which a spike has been detected. The comparison
is made by counting the matching events, i.e. spike times, between the compared objects.
For the sake of clarity I provide an example between a sorting object and a ground truth
one (GT), but it can be extended to comparison of two or more sorting outputs. Say
that from MEArec we simulate a recording with N units while the sorter estimates M

units. From the ground-truth data (GT) we can access N spike trains, i.e. sequence of
spike times of a single unit, while from the sorting we can access M spike trains. For
every pair of GT and sorted units we first count the number of matching events, i.e. how
many elements of the vectors are within a small window (0.4 ms). The results make
up a matrix, that we can call matching_matrix, of shape NxM whose values are the
number of matched spikes for every pair of GT unit i and tested unit j. From it, the
confusion_matrix can be evaluated as:

1. True positive[i, j] = matching_matrix[i, j]

2. False negative[i, j] = nGT [i]−matching_matrix[i, j]

3. False positive[i, j] = nsorting[j]−matching_matrix[i, j]

where i index refers to the ith unit from GT and j the jth unit from the sorting; nGT

is a vector of length N whose values are the number of spikes of each unit; nsorting is a
vector of length M whose values are the number of detected spikes of each unit. From the
confusion_matrix (Figure 2.4.A), the performance of the sorter is evaluated by means
of the following quantities:

1. Accuracy = tp
tp+fp+fn

2. Recall = tp
tp+fn

3. Precision = tp
tp+fp

4. False Discovery Rate = fp
tp+fp

5. Miss Rate = fn
N

with tp = True positive, fp = False positive, fn = False negative. Using the Accuracy

values of every pair of ground-truth and sorted units (i, j), we can build the agreement_matrix
(Figure 2.4.B) which is again a matrix of shape NxM . Exploiting the values of the agree-
ment matrix, each GT unit is associated to a sorted unit and vice versa by the Hungarian
matching algorithm so that a sorted unit is associated, at most, to only one GT unit. Af-
ter the unit matching, a sorted unit j can be classified as well detected if the agreement
score with its matched GT unit i ((i, j) value of the agreement_matrix) is higher than
a threshold, which by default is set to 0.8.



2| Materials and Methods 29

(A)
(B)

Figure 2.4: (A): matrix showing true positives, false positives and false negatives. The
three values are separated by the two thick black lines. The last column shows the false
negatives, i.e. missed spikes, for each GT unit (vertical axis). The last row shows the false
positives, i.e. spikes that are missing from GT spike trains, for each tested unit (horizontal
axis). The upper left block shows the true positives for each pair of tested and GT unit.
(B): Agreement matrix. The (i, j) value is the accuracy of the sorted unit j with respect
to the GT unit i.

2.3. ICA for spike sorting

The current section shows pre- and post-processing steps to tackle ICA limitations and
possible ways to use ICA for spike sorting. It is organized as follows: first, I introduce
a pre-processing step to increase ICA efficiency; second, I present a post-processing step
to remove false neuronal sources (see subsection 1.3.3); next, two different approaches
show how to increase the SNR of neuronal recordings using ICA as a pre-processing
tool; finally, I show how to improve spike sorting algorithms performances using ICA as
a post-processing tool.

2.3.1. Peak Selection

As reported in subsection 1.3.3 and Figure 1.7.A the computational burden of ICA is
significantly high. To speed up the independent components estimation, we attempted to
decrease the dimension of the input dataset without decreasing the goodness of the ICs.
Neurons respond to stimuli in a sparse way, meaning they rarely fire [6, 42]. For example,
considering a sensory cortex neuron with a firing rate range of [4.94; 7.22] Hz [6], we can
say that it emits a spike every 0.14 s at most. If the signal is sampled at 20 kHz, 2800
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samples (0.14 s) are recorded without any spike from that neuron. Since ICA does not
follow temporal patterns in the signal but it assumes the recordings to be an instantaneous
mixture (see equation 1.7) it is possible to run the model on a subsampled version of the
original dataset. First, a spike is detected when the signal Mean Absolute Deviation
crosses a threshold, which can be selected externally and equals to 5 by default. The
detection is locally exclusive meaning if a spike is detected on n channels, it is selected
only on the channel with highest amplitude but not on neighboring channels which are
all the channels within a radius r from the peak channel. By default r = 100 µm. Then,
for each detected spike a window is selected across all channels as:

w = [spike_time− nbefore; spike_time+ nafter] (2.1)

where nbefore is the number of samples selected before the spike time and nafter the
number of subsequent ones. The waveforms obtained are finally concatenated channel
by channel to reconstruct the time sequence (Figure 2.5). The resulting dataset has a
smaller dimensionality due to the removed samples and it is more focused on spikes which
carry the important information for IC estimation for spike sorting purposes. The size of
the window can be chosen externally by providing the amount of ms to select before and
after the spike time, then based on the sampling frequency of the recording, the number
of samples is simply computed as:

nafter =
msafter ∗ fs

1000
(2.2)

nbefore =
msbefore ∗ fs

1000
(2.3)

If the number of neurons in the recording is very high, the size of the dataset may still
be very large. That is why we decided to give the possibility to use a percentage of the
selected spikes, meaning after spike detection (Figure 2.5.A), waveforms are selected for
a sub-set of detected peaks. The spikes can be either selected randomly or by balancing
them across the channels. In the latter case, the algorithm picks the selected percentage
of samples with the following steps channel by channel:

1. Count how many spikes are detected in channel i

2. Select nselected,i = nspikes,i ∗ p

with nspikes,i the total number of detected spikes in channel i and p the selected percentage
of spikes to be used. The suggested option is to balance the spikes as a pure random
sampling may select too many spikes from few channels. In that case, the ICA estimation
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Figure 2.5: Full pipeline of subsampling. (A): spikes are first detected channel by channel.
(B): a window of nbefore + nafter samples is selected across each detected spike. (C):
waveforms obtained at previous step are then concatenated to reconstruct the signal. In
the first two images, I marked only two of the detected spikes for sake of clarity.

might not exploit the full variability of spiking activity in the original recording.

2.3.2. Source Cleaning

ICA estimates a square unmixing matrix W , whose dimension is NxN with N being the
number of channels. As the sources are obtained by equation 1.8, the algorithm estimates
N sources. If N is greater than the number of neurons, some ICs are not focused on
any neuronal source, i.e. they carry noise only. In true neuronal sources, the presence of
spikes makes the signal asymmetric. The distribution of additive noise, instead, can be
assumed to be more symmetric. That is why a possible solution to distinguish between
true or false neuronal sources lies in evaluating their symmetry.

The most common statistic measure of symmetry is the skewness, which is the third
central moment and it is evaluated as:

µ̄3 =
µ3

σ3

= E[(
X − µ

σ
)3] (2.4)

where µ is the mean and σ the standard deviation. The skewness of a symmetric
distribution equals zero, while it increases the more asymmetric the distribution is. So,
by setting a threshold it is possible to discard false sources (Figure 2.6). The threshold
can be set externally and by default is 0.1.
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Figure 2.6: On the left, estimated ICs from a simulated recording with 2 neurons and a
tetrode as recording probe. The ellipse highlight the two false sources. On the right, a
bar plot representing the skewness of each component. The color code represents different
ICs.

The process to remove false neuronal sources is taken from the work of Buccino et al. [9]
and as they do I refer to it as source cleaning. Nevertheless, computing the skewness for
each source can take a long time if the number of channels is high, even higher for longer
recordings. That is why the cleaning process was improved by estimating the skewness on
chunks of the recording in parallel. Given N channels, M samples, K parallel processes
and L chunks, the pipeline is the following:

1. The recording is splitted in L time chunks of shape M
L
xN

2. Each chunk is assigned to an available process k which performs cleaning on the
input data

3. After all chunks have been processed, only sources selected by all processes are
chosen as final output

2.3.3. Sources Localization

The mixing matrix of a true neuronal source maps the source signal to the recording
space, hence it is focused on few electrodes of the probe (Figure 2.7). We exploited that
spatial information to estimate the position of the neuronal sources by computing the
center of mass of their mixing matrices. The position of a source i is computed as:

comi =
mixing_matrixi ∗ channel_positions∑N

j=1 mij

(2.5)
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(A) (B)

Figure 2.7: Amplitudes distribution of two mixing matrices over a 100 channels recording
simulated with a sqaured MEA probe. (A): Mixing matrix of a true source. The matrix
is focused on the upper left corner of the image (B): Mixing matrix of a false source.
Many peaks can be seen across the channels, meaning the matrix is not focused on any
of them.

where mixing_matrixi is the mixing matrix of the source i with shape 1xN , channel_positions

is a matrix of shape Nx2 whose columns are the x and y coordinates of the recording
electrodes, mij is the jth element of mixing_matrixi and N is the number of channels.

2.3.4. ICA for SNR improvement

Event detection on the ICs As shown by Jackel et al. [25], ICA can increase the
SNR of neuronal signals as each IC is ideally focused on a single unit. That is why
spike detection should perform better if applied on the IC rather than applying it on
the raw signal. Moreover, ICA-based spike sorting algorithms applies event detection
and clustering directly on the ICs [9, 25, 28]. Therefore, spike sorting algorithms should
provide better results if they are run on IC signals.

To run the algorithms on the ICs, the mixing matrix is first estimated running ICA on
the input dataset after peak selection. Then, the original dataset is projected into the
IC space by equation 1.7. It is necessary to project the whole dataset because during
peak selection the time structure of the data is altered. It is not needed by ICA which
assumes the data to be an instantaneous mixture of the sources, but it is needed by spike
sorting algorithms which have to reconstruct the firing times of each neuron. Finally,
the positions of IC sources are estimated as explained in subsection 2.3.3 and provided
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to the sorter. Spike sorting algorithms often use the channel positions throughout their
code (see subsection 2.2.1), but after projecting the data into the IC space the processed
signals do not originate from the electrodes anymore. That is why we have to estimate
the position of the IC sources.

Backprojection The ICA model assumes the signal to be an instantaneous mix of
the sources. Unfortunately, dendrites act as filters delaying the recorded spikes, as a
consequence more than one IC can be tuned to the same neuron and an IC may be tuned
to more than one neuron (Figure 2.8). Since each IC should represent the spiking activity
of the neuron it is focused on and MEArec [8] provides the spike trace (signals with spikes
only) of each neuron after a simulation, it is possible to match each IC to a spike trace
and viceversa by means of the correlation between the two. An IC i is matched to the
spike trace j as argmax(ci), where ci is a row of the correlation matrix and each element
ci,j is the correlation between the IC i and the spike trace j.

Although cleaning can be interpreted as removing some noise from the signal, it cannot
reject duplicates as they carry spikes as well. A solution to the problem is to project the
cleaned sources back to the original space thanks to the mixing matrix. After cleaning
the dimensionality of A is decreased by keeping the rows that correspond to a true source.
For example, if the IC number 4 is marked as true, the 4th row of A is kept (Figure 2.9).
Now the backprojection can be computed as:

V̄ = AT
c Sc (2.6)

where Ac and Sc are the cleaned mixing matrix and IC signals respectively (Figure 2.10).
Thanks to the backprojection we can tackle both the issue arisen from dendrites filtering
and increase the SNR of the signals. The first point is solved because we reconstruct the
original structure of the signals meaning there are not duplicates anymore. In the worst
case, the activity of neurons that led to duplicates is enhanced. The increase of SNR is
due to the cleaning step that removes a portion of the noise.

2.3.5. Small-Units Recovery

As shown in section 1.4, existing spike sorting algorithms perform bad when the SNR is
low, meaning they fail to discover neurons whose spike amplitude is small compared to the
noise. ICA has the ability to increase the SNR of a signal [25] which is further increased
after cleaning and backprojection, so it may address the limitation of modern sorters.

First, a spike sorting algorithm is run on a recording. The output provides the spike trains
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Figure 2.8: (A): Amplitude distribution of mixing matrix of a sample IC. It can be seen
that instead of being focused on a single region it is focused on at least two region, thus
that IC may be focused on more than one neuron. (B): Bar plot showing how many ICs
are focused on the same neuron. On the horizontal axis the ID of the unit in the simulated
recording; on the vertical axis the number of ICs focused to the same unit.

Figure 2.9: Cleaning of the mixing matrix. Example for a recording with 2 cells and a
tetrode as recording probe. On the left the 4 ICs estimated by ICA; the first two are
detected as false. At the center the full mixing matrix; as the first two ICs has been
marked as false, the first two rows are removed. On the right the cleaned mixing matrix,
keeping only the last two rows.
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Figure 2.10: Flowchart showing the steps from cleaning to backprojection. S is the
ICs matrix with shape NsourcesxNsamples, whose rows are the ICs. The cleaning selects
some rows of S and outputs the new ICs matrix with same number of samples but lower
number of rows and the indexes of selected rows. The indexes are then used to select
the rows of A obtaining Ac whose dimension is NselectedxNchannels. Finally Ac and Sc are
multiplied to project Sc back to the original space.

of each detected neuron that are the time instants in which the neuron fired. Second,
neuron templates are extracted from the recording. More in detail, given a spike ti of a
neuron i, from each channel the waveform is extracted by selecting n samples before ti

and m after. The resulting vector of samples wij is the waveform of spike ti recorded by
channel j. After the extraction of all the spikes, the vectors wij are used to build a matrix
of size NspikesxNsamplesxNchannels for each neuron. The waveforms wij are the rows of the
submatrix. The template Tij is the average of the columns of the submatrix. Now, for
each neuron we have a matrix of templates Ti whose shape is NsamplesxNchannels. Finally,
if the ground truth is available, we compare it with the sorting output to extract the well
detected units (see subsection 2.2.2). If the ground truth is not available, the well detected
units need to be inferred from the spike sorting output using ad-hoc quality metrics [18]
(a process we defined as automatic curation). We considered both the firing rate and the
Inter Spike Interval (ISI) violation ratio of a sorted unit. The firing rate is the average
spiking frequency of a unit, while the ISI violation ratio is the portion of spikes of a unit
that violate the refractory period (time interval in which a neuron is "recovering" from
a spike, meaning that it should not emit a spike within that time). The length of the
refractory period can be set by the user (equal to 1 ms by default). So, a unit i is marked
as well detected if:

1. ISI violation ratioi ≤ 0.3
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2. Firing ratei ≥ 0.1 Hz

The values shown here are the default ones and taken from Hill et al. [18], but they can
be adjusted by the user to provide a more or less strict automatic curation. Once the
well detected units are identified, their spike trains are extracted from the sorting output
and templates are obtained from the template matrices Ti. All the spikes of the detected
units are removed from the signal by subtracting the templates channel by channel (Figure
2.11). The pseudo-code is the following:

for i = 1, ..., Nunits do
spike_train← all_spike_trains[i]

templates← all_templates[i]

for i = 1, ..., Nchannels do
for all t ∈ spike_train do
traces[t−nbefore : t+nafter, i]← traces[t−nbefore : t+nafter, i]−templates[:, i]

end for
end for

end for

Once all the detected spikes are removed, only undiscovered or badly discovered units
remain in the signal. Now, we can apply all the methods explained in the previous
sections of this chapter to enhance the SNR of undiscovered units that are still in the
signal after template subtraction. So, first we subsample the subtracted traces and run
ICA on the output. Then we apply cleaning and backprojection so that the back-
projected traces have a higher SNR, meaning spikes are enhanced with respect to the
noise. Finally, we run again the same spike sorting algorithm we ran at the beginning to
find new neurons. See Figure 2.12 for a simplified flowchart of the full small-unit recovery
algorithm.
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Figure 2.11: Template subtraction. On the left the trace recorded by a channel (vertical
lines shows the spike times) and templates of three units. The color code shows templates
and spike times of different units. On the right, the same time interval of the recording
after template subtraction.

Figure 2.12: The whole pipeline for recovery of small units
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The results are organized as follows: the first section shows ICA efficiency improvement;
the second section shows the performances of spike sorting algorithms run on the IC sig-
nals; the third section shows the SNR improvement after backprojection and cleaning;
the last section shows the performances of units recovery algorithm.

The results shown throughout the chapter are obtained from simulated recordings with
a duration of 120 s and a sampling rate of 32 kHz, for a total of 3’840’000 samples per
channel. The number of neurons is half the number of channels of the probe used to
simulate the recordings and the noise levels used are equal to 5, 10, 20, and 30 µV. The
last section also shows results from two real recordings taken from embryonic cortical
neurons of Wistar rats. The recordings are 5 minutes long and feature 534 and 529
channels.

3.1. Efficiency Improvement

Figure 3.1 compares the average time required by ICA to estimate the independent compo-
nents (red) and the average accuracy of Ironclust [23] (blue), as a proxy of the goodness
of the ICA model, run on the ICs as function of the percentage of detected peaks, for
the three probes used to simulate the recordings. Five recordings with noise_level=10

have been averaged for each probe. The time values in the plots were normalized by
the maximum elapsed time to provide an easier understanding of the percentage of time
saved as function of the number of detected peaks selected. The accuracy was only
evaluated on units whose SNR > 5 (see equation 3.2). The average number of peaks
detected were 57′222± 6′058, 33′235± 2′658 and 19′935± 2′992 for Neuropixels, squared
MEA and Neuronexus respectively. For each spike, a window of 1 ms before and 2 ms
after the spikes has been used, thus 96 samples have been selected per spike. From
3’840’000 samples per channel, using all the detected spikes the dataset dimension was
decreased to 2′458′775 ± 119′186 (35.97% reduction), 1′801′420 ± 97′566 (53.1% reduc-
tion), 1′118′709± 84′511 (70.8% reduction) samples per channel, for Neuropixels, squared
MEA and Neuronexus respectively. That dimensionality reduction led to a decrease of
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the running time from 5′251.59± 141.27 s to 2′562.60± 125.79 s (51.2% reduction), from
2′104.23± 382.93 s to 762.51± 117.75 s (63.8% reduction) and from 175.48± 43.17 s to
54.66 ± 15.95 s (58.34% reduction) for Neuropixels, squared MEA and Neuronexus re-
spectively. Conversely, the accuracy increased from 69.62± 3.59% to 73.12± 3.74%, from
42.3±3.29% to 44.3±1.8% and from 54.3±11.29% to 64.4±4.31% for Neuropixels, squared
MEA and Neuronexus. Decreasing the percentage of spikes used decreases both the esti-
mation time and the accuracy. For the lowest amount of spikes tested (20%) for Neuropix-
els, squared MEA and Neuronexus the dataset dimension was reduced to 826′128±70′449

(88.5% reduction), 513′235± 3′6854 (96.64% reduction) and 299′260± 40′834 (92.21% re-
duction) respectively and the elapsed time decreased to 802.32±91.01 s, 255.06±51.37 s,
16.28±5.47 s, while the accuracy decreased to 69.3±3.17%, 39.76±2.13%, 47.8±12.18%
for Neuropixels, squared MEA and Neuronexus respectively. The algorithms were run
on an Ubuntu server with 32 cores (Intel(R) Xeon(R) CPU E7- 4870 @ 2.40 GHz) and
128 GB of RAM.

From the results we can say that it is possible to decrease the dimensionality of the input
dataset without lowering the goodness of the estimated ICs. Indeed, the largest ∆s of
accuracy equal 3.82% and 4.54% for Neuropixels and squared MEA respectively. The
accuracy values for Neuronexus have larger oscillations as the largest ∆ equals 16.4%.
That may be due to the lower spatial information provided by the Neuronexus probe
which makes the results more sensitive to the number of peaks. It may also be confirmed
by the larger standard deviation of the accuracy which suggests that the IC estimation
on Neuronexus recordings is more influenced by neurons position with respect to the IC
estimation on Neuropixels and squared MEA recordings.
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Figure 3.1: The plots show the accuracy of Ironclust (blue) and ICA running time (red)
as function of the number of samples. The time values were normalized by ICA running
time on the full dataset. For each probe - Neuropixels probe (128 channels, figure (A)),
a squared MEA probe (100 channels, figure (B)) and a Neuronexus probe (32 channels,
figure (C)) - 5 simulated recordings, 120 s long and with noise level equal to 10 µV, have
been averaged for the plots. full refers to the full and original dataset, all peaks means all
detected peaks have been used for subsampling and x% peaks means x% of all detected
peaks have been used. The time required by ICA decreases by decreasing the number
of detected peaks used. Conversely, the accuracy slightly improves when all peaks are
used, but overall we can say it is fairly constant for Neuropixels and squared MEA. On
the contrary, the accuracy on Neuronexus has larger oscillations and standard deviation
which may be due to the lower spatial resolution of Neuronexus probe with respect to the
spatial resolution provided by Neuropixels and squared MEA.
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3.2. Event detection on the ICs

The Independent Components estimated by ICA are focused on the neuronal sources
which increases the SNR of neurons [25]. Therefore, the event detection should perform
better on the ICs than on the raw recording. To test that assumption, the accuracy of
Ironclust [23] run on both IC signals and raw recordings has been compared. Figure 3.2
shows the results for Neuronexus, squared MEA and Neuropixels probes. The red lines
refer to the accuracy on the recording, while the blue ones to the accuracy on the ICs.
Ironclust [23] with Neuronexus probe (Figure 3.2.A) achieves 70.67±9.69% of accuracy
on recordings with noise_level = 5 and 44.5± 6.08% on IC signals estimated from the
same recordings. The accuracy in both cases decreases as the noise level increases. The
lowest values at noise_level = 30 are 15.34±2.45% on recordings and 11.94±3.98% on
IC signals. Regarding squared MEA (Figure 3.2.B) the performances of the sorters are
slightly lower than the previous case on both signals. Moreover, the accuracy difference
between recordings and IC signals is greater. At noise_level = 5 the accuracy on
recordings is 54.72±4.69% while on the IC signals is 17.98±5.33%. At noise_level = 30

the accuracy on recordings drops to 17.65±1.41% and to 8.55±1.44% on IC signals. The
same trend is shown by performances of Ironclust [23] with Neuropixels probe (Figure
3.2.C) with 72.6 ± 2.91% and 37.31 ± 3.8% accuracy on recordings and IC signals with
noise_level = 5 and with 15.65± 1.32% and 3.8± 1.51% accuracy on recordings and IC
signals with noise_level = 30. The same comparison was made running Herdingspikes

[17] and Kilosort2 [32] but both failed when run on the IC signals.

The results may point out that existing spike sorting algorithms should not be run directly
on the ICs. After projecting the data into the IC space, the structure of the recorded
signals changes. Before the projection a spike is recorded by a group of close channels,
while after the projection a spike should be present in one IC only. Therefore, the high
spatial information provided by high-density probes may be condensed by ICA. Moreover,
since spikes in the ICs may be shifted in time an alignment step should be included to
correct for the shifting as done by Buccino and colleagues [9]. That is why structural and
temporal changes may undermine the performance of the sorter.
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Figure 3.2: The plots show the average accuracy of Ironclust on 4 sets of 5 recordings
simulated with Neuronexus (32 channels, (A)), squared MEA (100 channels, (B)) and
Neuropixels probe (128 channels, (C)). The noise level increases across the sets from 5
to 30. In blue the accuracy of the algorithm on IC signals, in red its accuracy on the
raw recordings. For every probe as the noise level increases, the accuracy decreases in
both cases. For all the three plots the performance of Ironclust is higher when it is run
on the raw signals rather than running it on the ICs. The greatest difference is on the
squared MEA probe (figure (B)) at 5 µV of noise level with more than 30% of difference.
The disparity tends to decrease increasing the noise level, very likely because of a lower
performance of the sorter at large noise levels.
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3.3. SNR improvement

Dendrites filtering properties delay the propagation of APs within a neuron. The conse-
quence is that spikes generated close to the soma and the ones generated along dendrites
by the same AP are recorded at different time instants. That induces ICA to interpret
spikes coming from the soma and the ones coming from the dendrites as belonging to
different sources.

Backprojecting the ICs to the recording space reconstructs the original structure of the
data which tackles the problem of duplicate sources. Moreover, thanks to the cleaning
process, backprojecting the IC signals decreases the noise level of the traces increasing
their SNR which is computed as:

traces_snri =
max(tracesi)

noise_leveli
(3.1)

where noise_leveli is computed internally by SpikeInterface as the Median Absolute
Deviation of the trace. Figure 3.3.A compares a snippet of a trace after backprojection
(orange) and the same one before backprojection (blue). After backprojection the
trace has a lower noise level while the amplitude of the spikes is preserved. This sentence
is confirmed in Figures 3.3.B, 3.3.C and 3.3.D, where the left panel in each figure compares
the SNR of all traces before and after backprojection for the three probes used during
the simulation, while the right one shows the count of traces whose SNR increased (green)
or decreased (red). For Neuronexus (32 channels), squared MEA (100 channels) and
Neuropixels (128 channels) the number of traces whose SNR increased are 27 out of 32,
99 out of 100 and 124 out of 128.

Thanks to SpikeInterface again and the availability of ground-truth data, it is possible
to compare how well defined the spikes of each unit are by computing what in the package
is defined as units_snr. It is computed as:

units_snrj =
max(waveformsj)

noise_leveli
(3.2)

where waveformsj is a vector collecting all spike waveforms from unit j and noise_leveli

is the noise level of the trace from which the spike given by max(waveformsj) is ex-
tracted. Figures 3.4.A and 3.4.B compares two couples of waveforms before and after
backprojection, showing that the waveform are well preserved. Figures 3.4.C, 3.4.D
and 3.4.E compare units_snr before and after backprojection for Neuronexus (simu-
lated recordings with 16 neurons), squared MEA (simulated recordings with 50 neurons)
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and Neuropixels (simulated recordings with 64 neurons) probes respectively. The bar plots
count the number of units whose SNR increased (green) or decreased (red). The SNR

of neurons improved too, even though the improvement is lower than the one achieved
for the traces. The best improvement was received by Neuropixels for which 41 out of 64
neurons got an improvement in the SNR. Regarding squared MEA, the SNR improved
for 30 out of 50 neurons, while Neuronexus got the lowest improvement as the SNR

increased for 9 out of 16 neurons.
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Figure 3.3: (A): Snippet of signal of a channel from squared MEA simulated recording
before and after backprojection. The noise level of the backprojected signal (in orange)
is smaller than the noise of the original one, while the amplitude of the spikes is preserved.
(B), (C) and (D) are scatterplots comparing the traces SNR before backprojection
(horizontal axis) and after (vertical axis). Each point represents a channel and it is colored
red if its SNR decreased after backprojection, while it is green if its SNR increased. The
bar plots show the count of red and green dots in each scatter plot. Figure (B) shows
results for a 32 channel recording for which the SNR of 27 out of 32 channels improved.
Figure (C) shows results for a 100 channel recording for which the SNR of 99 out of 100
channels improved. Figure (D) shows the results for a 128 channel recording for which
the SNR of 124 out of 128 channels improved.
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Figure 3.4: Figures (A) and (B) show the waveforms of two units before (left of each
image) and after (right of each image) backprojection for a simulated recording with
64 neurons and 128 channels. It can bee seen the shapes of the waveforms are not
distorted by the backprojection. Figures (C) (Neuronexus), (D) (squared MEA) and
(E) (Neuropixels) show the same information of the previous figure but in this case
the values on the horizontal and vertical axis are the neuron SNRs before and after
backprojection respectively. The number of units whose SNR improved is 9 out of
16 for Neuronexus, 30 out of 50 for squared MEA and 41 out of 64 for Neuropixels (it
received the best improvement).
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3.4. Units Recovery

Bad performances of spike sorting algorithms on low-SNR recordings cause them to miss
units of small dimensions. The ability of ICA to increase the SNR of a signal can solve
that problem, but applying event detection directly on the IC signals can cause new
issues as ICA modifies the structure of the data (see section 3.2). Backprojecting the
ICs to the original space after proper cleaning solves that problem and still increases the
SNR of the recording. Therefore, once the large units (detected during a first round of
spike sorting) are removed from the signal (decreasing the SNR of the traces as shown
in Figure 3.5), ICA can enhance the activity of units remained in the residual recording.
Figures 3.6.A, 3.6.B and 3.6.C compare the average accuracy of Kilosort2 before (blue)
and after (orange) small-units recovery as function of the noise level in the recordings
for the three probes used during simulations: Neuronexus (32 channels, figure (A)),
squared MEA (100 channels, figure (B)) and Neuropixels (128 channels, figure (C)). For
every probe the best improvement is achieved at noise_level = 5. The starting accuracy
improved from 74.53±10.34% to 82.27±2.9%, from 47.1±1.0% to 64.88±4.71% and from
59.15±1.13% to 80.75±0.74% for Neuronexus, squared MEA and Neuropixels respectively.
If the noise level increases, the performance of Kilosort2 decreases but the accuracy
still improves after the recovery, even though by a lower amount, for squared MEA and
Neuropixels. More in detail, at noise_level=30 (the highest noise level simulated) the
starting accuracy improves from 14.91± 1.77% to 19.76± 2.42% and from 10.53± 1.95%
to 17.56 ± 1.96% for squared MEA and Neuropixels respectively. A different behavior
is shown for Neuronexus probe as at the same noise level the accuracy remained still at
12.15± 3.73%.

Figure 3.6 summarizes the average improvement after units recovery for three different
spike sorting algorithms: Herdingspikes [17], Ironclust [23] and Kilosort2 [32]. The
results show that the improvement is strongly influenced by the noise level of the signal
as at noise_level=5 the ∆accuracy values are 3.87± 0.2%, 9.12± 0.1% and 10.8± 0.2%
for Neuronexus, squared MEA and Neuropixels respectively, while at noise_level=30

the improvement drops to 0%, 2.43 ± 0.32% and 3.52 ± 0.23% for Neuronexus, squared
MEA and Neuropixels respectively. Moreover, the improvement on Neuronexus recordings
is much lower (≈ 4%) than the one on squared MEA and Neuropixels recordings (≈
9% and ≈ 11%) suggesting that the higher spatial resolution of the last two probes
may improve the output of ICA. Finally, Figure 3.6.D shows also a low variance of the
average improvement (almost null for every point apart from Neuronexus recordings at
noise_level=10 and noise_level=20 when the standard deviation is 0.8% and 1.3%
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Figure 3.5: Example to show how the channel SNRs change after removing well detected
units from the recording. The example shows the result for a recording simulated with
squared MEA (50 neurons, 100 channels). It can be seen that the SNR of 87 out 100
channels decreased after template subtraction.

respectively), meaning the variability of results shown by Figure 3.6 is influenced more
by the sorting algorithm rather than being influenced by ICA.

How to recognize the well detected units may not be trivial if ground-truth data are not
available. The approach suggested by the present work, defined by us automatic curation,
consists in removing units with very low firing rate and with high ISI violation ratio. The
first three plots of Figure 3.7 compare the accuracy of Kilosort2 after recovery when
the well detected units are removed based on ground-truth data (blue) and when they are
removed with automatic curation (orange). Regarding Neuronexus (A) and Neuropixels
(C) the difference in accuracy is almost null. The highest difference for Neuropixels is at
noise_level=10 when the accuracy decreases from 59.87± 3.01% to 56.91± 3.7%, while
for Neuronexus it is at noise_level=30 when the accuracy, counter intuitively, increases
from 12.15 ± 3.73% to 16.06 ± 3.78%. Regarding squared MEA (B) the difference is
larger especially at noise_level=5 when it decreases from 65.41± 4.35 to 54.9± 5.68%.
To evaluate the average accuracy difference (accuracywell_detected − accuracyauto_curation)
the results of Herdingspikes[17], Ironclust[23] and Kilosort2 [32] have been averaged
and shown by Figure 3.7.D. The plot shows the same tendency of Figures 3.7.A, 3.7.B
and 3.7.C as the highest ∆accuracy is related to squared MEA at noise_level=5 and
equal to 7.11% while the ∆accuracy on Neuropixels and Neuronexus is much lower and
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equal to 1.92% and 1.62% at the same noise level. Moreover, it is interesting to note
that the difference on Neuropixels remains ≈ 2% and that the accuracy on Neuronexus
for noise_level=20 and noise_level=30 becomes negative and equal to −1.02% and
−0.69%, meaning it increases with automatic curation.
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Figure 3.6: The plots (A), (B) and (C) show the average accuracy of Kilosort2 be-
fore (blue) and after (orange) units recovery on recordings simulated with three different
probes: Neuronexus (Figure (A)), squared MEA (Figure (B)) and Neuropixels (Figure
(C)). The best improvement is achieved ad 5 µV of noise level when the accuracy im-
proves by 7.16%(A), 17.78%(B) and 21.6%(C). The improvement decreases by increasing
the noise level. At 30 µV of noise level the accuracy remained still at 12.15 ± 3.73%
for Neuronexus while the improvement drops to 4.85% and 7.03% for squared MEA and
Neuropixels respectively. The plot in figure (D) shows the average accuracy improvement
for Kilosort2, Herdingspikes and Ironclust algorithms on recordings simulated with
Neuronexus (magenta), squared MEA (blue) and Neuropixels (orange) with increasing
noise level. The algorithm performs better, on average, on squared MEA and Neuropixels
recordings than on Neuronexus recordings, with an exception at 20 µV of noise level.



50 3| Results

5noise 10noise 20noise 30noise

10

20

30

40

50

60

70

80

90

Ac
cu

ra
cy

 (%
)

Neuronexus 32ch.
Accuracy with "well detected"
Accuracy with automatic curation

(A)

5noise 10noise 20noise 30noise

20

30

40

50

60

70

Ac
cu

ra
cy

 (%
)

SqMEA 100ch.
Accuracy with "well detected"
Accuracy with automatic curation

(B)

5noise 10noise 20noise 30noise

20

30

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

Neuropixels 128ch.
Accuracy with "well detected"
Accuracy with automatic curation

(C)

5noise 10noise 20noise 30noise

0

2

4

6

Ac
cu

ra
cy

 (%
)

Average accuracy with automatic curation
Accuracy on SqMEA
Accuracy on Neuropixels
Accuracy on Neuronexus

(D)

Figure 3.7: The plots in figures (A), (B) and (C) compare the accuracy of Kilosort2

after recovery when well detected units are found exploiting ground truth data and when
they are removed by automatic curation. The performance on Neuronexus (A) and Neu-
ropixels (C) is similar to the ideal case, as the largest decrease is on Neuropixels at 10 µV
of noise level when it decreases by only 1.96%. The performance even increase by 3.91%

for Neuronexus at 30 µV of noise level. On squared MEA (B) the algorithm behaves
differently as the accuracy decreases by a larger amount equal to 10.51% at 5 µV of
noise level. The plot of figure (D) shows the average accuracy difference for Kilosort2,
Herdingspikes and Ironclust algorithms on recordings simulated with Neuronexus (ma-
genta), squared MEA (blue) and Neuropixels (orange) with increasing noise level. The
accuracy decrease is fairly constant for Neuropixels and ≈ 2% while it is larger for squared
MEA at low noise levels. Indeed, it is equal to 7.11% at 5 µV of noise level. For large
noise levels (20 µV and 30 µV) the accuracy does not decrease, but improves by 1.02%

and 0.69%.
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Real recordings Figure 3.8 shows the results for units recovery on two real recordings
with 529 and 536 channels running Kilosort2 [32] and Ironclust [23]. The blue bar
refers to the amount of new units found during the first run, the orange one refers to
the amount of units found after recovery using automatic curation to identify the well
detected units. We attempted to run Herdingspikes [17] as well but it did not converge
even during the first round of spike sorting. The performances of the two algorithms
greatly differ as Kilosort2 [32] found 187 and 201 neurons during its first run, while
Ironclust [23] found only 21 and 26 units. After units recovery both algorithms found
new units. Indeed, Kilosort2 [32] found 52 and 43 new units on 526 channels and
539 channels recording respectively, while Ironclust [23] found 12 and 17 new units on
the two recordings. Nevertheless, it is not possible to tell how well (or bad) the sorters
performed and if the new units found after units recovery correspond to real neurons or
if they are false positives.
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Figure 3.8: Performance of units recovery on real recordings. (A): the results of
Kilosort2 that found 52 and 43 new units on the recording with 526 and 539 chan-
nels respectively. (B): the results of Ironclust which found 12 and 17 new units.
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Independent Component Analysis is a blind source separation technique aiming to
unmix a signal into its sources, increasing its SNR. This is why it can be a useful tool
to analyze neuronal recordings. The application of ICA in spike sorting has gained new
interest due to increasing number of electrodes in the recording devices. Indeed, ICA
requires that the number of sources generating the signal is at most equal to the number
of recording channels. This assumption is closer to be satisfied when neuronal activity
is recorded by High-Density Micro-Electrode Arrays (HD-MEAs), given their very
high spatial resolution. ICA-based spike sorting algorithms apply event detection and
clustering directly on the ICs as they have an higher SNR [25]. Therefore, existing spike
sorting algorithms have been tested on IC signals after improving the computational
efficiency of ICA. Next, a new approach for the application of ICA has been proposed.

Efficiency Improvement Due to the sparsity of firing rates [42], the dimensionality of
the input dataset can be reduced by selecting the spikes only. The new dataset is more
focused on the spiking activity which can improve the estimation of the Independent
Components. Indeed, after subsampling, the time required by ICA for the estimation
of the mixing matrix decreased by 63.8% in the best case (squared MEA probe) while
the accuracy increased by 2% in the same case. The increase in accuracy is not high,
but remember here the goal was to decrease the efficiency. The accuracy improvement,
even if small, is a well appreciated side effect. Moreover, the running time can be further
decreased by sub-sampling the dataset using an user-defined percentage of the detected
spikes. In this case, even if some important information for the estimation of the ICs is
removed, the accuracy is fairly stable. Indeed, for the lowest percentage of spikes tested
(20%) the accuracy only decreased by 2.54% with respect to the highest value, meaning
that it was almost equal to the performance obtained on the full dataset.

For all the three probes the elapsed time decrease with the amount of spikes used. On the
contrary, the accuracy has a different behavior for squared MEA and Neuropixels with
respect to Neuronexus. For squared MEA and Neuropixels the accuracy can be considered
fairly independent from the percentage of spikes, while for Neuronexus the accuracy has
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larger variations. The different behavior may be due to the lower spatial resolution of
Neuronexus that makes the output of ICA more dependent on the position of the neurons.
It is also worth to notice that the accuracy values for the Neuronexus probe have a far
greater standard deviation than the accuracy values of squared MEA and Neuropixels,
making the results less reliable.

Event detection on the ICs ICA-based spike sorting algorithms apply event detection
and clustering directly on the IC signals [9, 25, 28] with good results thanks to the
improved SNR of neuronal signals [25]; following the same approach three spike sorting
algorithms have been run on the estimated Independent Components. Despite the good
premise the results did not replicate the expectations. Two out of three applied algorithms
(Herdingspikes and Kilosort2) failed. Ironclust did not fail, but for every tested
recording the accuracy on the ICs was lower than the accuracy on the raw recording.

We speculate that the spatially redundant information of high-density configurations,
which is condensed in the ICA space, might be used by the spike sorters and this could
explain the decrease in accuracy. In addition to that, when the recordings are projected
into the IC space the time structure may change slightly and then the estimated spike
times do not match the ground-truth information. A possible solution is to align the IC
signals to the original recording as shown by Buccino and colleagues [9].

SNR improvement Due to the filtering properties of the dendrites, spikes happening
close to the soma are recorded at different time instants with respect to spikes happening
at the dendrites, and this violates the instantaneous linearity assumption of the ICA
formulation. That may result in the estimation of duplicate sources, which can be removed
by ad-hoc processes [9]. Another possibility is to project the IC signals back to the original
space so that the original data structure is reconstructed. Moreover, after the cleaning
process a portion of the noise is removed from the data. That increases both the SNR

of the signal in each channel and the SNR of neurons, even though the increase is lower
in the latter case. Indeed, the SNR of some units decrease after backprojection. It is
due to a non-excellent performance of the cleaning process which removed ICs that were
focused on neurons instead of carrying noise only, so the spikes of those neurons have
been removed from the signal.

Increasing the SNR of recordings is very important in signal processing, especially for
spike sorting purposes as spikes are enhanced with respect to the noise. That result carries
two main consequences: spike detection, which is still strongly dependent on the noise
level of the recording [27], is improved; the activity of small neurons, difficult to detect
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(see section 1.4), is enhanced. Those results are what inspired the following approach.

Units recovery Many spike sorting algorithms exist, but, at the moment of writing,
none can perform well on small SNR recordings. Low firing rates, small neurons or a noisy
probe are only some of the factors that can lead to low SNR recordings. Therefore, it can
be assumed that sorters can correctly identify only relatively large neurons. If we remove
from the original recording the spikes from neurons that were identified by spike sorters, we
obtain a recording with a low SNR which carry the activity of small neurons. Running ICA
on the residual recording, cleaning the estimated sources and backprojecting the signals
to the original space can enhance the SNR of residual units. Now, if the sorter is run
again it is able to detect new neurons that were not detected during its first application.
Understanding which neurons have been well detected after the first round is not trivial
without ground-truth information. We implemented a relatively simple solution which
removes the units with very low firing rate (below 0.1 Hz) and with high ISI violation
ratio (higher than 0.3). The proposed approach achieves results comparable to the ideal
case (availability of ground-truth data) for Neuronexus and Neuropixels probes, but it
achieves a lower performance on the squared MEA probe (see Figure 3.7.B). This means
that the performance of our automatic curation may vary across different probes.

The small-unit recovery algorithm is strongly influenced by both the probe used and
by the noise level of the signal. Indeed, the higher the spatial resolution and the lower
the noise level, the higher the improvement after units_recovery; that strengthen the
assumption of applying ICA on HD-MEA recordings.

Future Development The problem of duplicate sources has been solved by backpro-
jecting the ICs back to the original space after cleaning but the estimation can be im-
proved further using convolutive ICA (cICA) instead of the classical one [28]. It estimates
a set of mixing matrices delayed in time, which can help to solve the problem of dupli-
cates due to phase shift introduced by dendrites. Moreover, the cleaning process may be
improved by fusing the current method based on skewness with the spatial information
provided by the mixing matrices, i.e. if they are focused on a specific region of the probe
or not (see Figure 2.7).

The main limitation of small-units recovery algorithm lies in removing all units that have
been well detected during the first run of spike sorting without removing any non-well
detected unit. That is trivial if ground-truth data are available, but it is tricky if they are
not. As of now we implemented in the algorithm a relatively simple automatic curation
which marks as well detected the units with an ISI violation ratio lower than 0.3 and a
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firing rate in an interval set by the user and by default larger than 0.1 Hz. Despite the
results are quite close to the ideal case (availability of ground-truth data), sometimes the
algorithm may fail and the performance steeply decreases, meaning it could be improved
by using a more complex set of quality metrics (see SpikeInterface paper [10] for an
exhaustive list).

In conclusion, this thesis presented possible solutions to cope with major ICA limitations
for spike sorting purposes and it explored different applications of ICA for spike sorting.
Starting from applications suggested by the literature, this work proposed a new approach
of ICA to improve the performance of spike sorting algorithms on low-SNR recordings.
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