
Learning Trajectory Tracking For
An Autonomous Surface Vehicle In
Urban Waterways

Tesi di Laurea Magistrale in
Computer Science and Engineering
Ingegneria Informatica

Author: Toma Sikora

Student ID: 963884
Advisor: Prof. Riccardo Scattolini
Academic Year: 2021-22





i

Abstract

Roboat is an autonomous surface vessel (ASV) for urban waterways, developed as a
research project by the AMS Institute and the MIT. The platform can provide numerous
functions to a city, such as dynamic infrastructure or autonomous garbage collection.
The goal of this thesis project is to develop a learning-based controller for the Roboat
platform with the goal of improving robustness and generalization. When subject to
uncertainty in the model or external disturbances, the proposed controller should be
able to track set trajectories with less tracking error than the current Nonlinear Model
Predictive Controller (NMPC) used on the ASV.
To achieve this, a simulation of the system dynamics was developed based on research done
on the platform and previous literature. The simulation also includes the modelling of the
necessary uncertainties and disturbances. In this simulation, a trajectory tracking agent
was trained using the Proximal Policy Optimization algorithm which was then validated
and compared to the current control strategy both in simulation and in the real world.

Keywords: reinforcement learning, trajectory tracking, autonomous surface vessel, ur-
ban waterways, Model Predictive Control.





Abstract in lingua italiana

Roboat è un natante autonomo di superficie, o “Autonomous Surface Vessel” (ASV) per
corsi d’acqua urbani, sviluppato come progetto di ricerca dall’istituto AMS e dal MIT.
La piattaforma può fornire numerose funzioni a una città con corsi d’acqua, per esempio
utilizzandolo come infrastruttura dinamica o per la raccolta dei rifiuti.

Lo scopo di questa tesi è sviluppare un controllore di tipo learning-based per Roboat con
l’obiettivo di migliorare la robustezza del sistema a fronte di incertezza di modello o di
disturbi esterni. L’obiettivo del controllore è quello di seguire traiettorie date con un errore
di inseguimento inferiore rispetto a quello garantito da un algoritmo di Nonlinear Model
Predictive Controller (NMPC) già implementato sul sistema. Per raggiungere questo
scopo, è stato sviluppato un simulatore dinamico basato sull’analisi del funzionamento di
Roboat e facendo riferimento alla letteratura nel settore. Il simulatore realizzato include
anche un modello dell’incertezza e dei principali disturbi che agiscono sul sistema.

Successivamente, usando il simulatore, è stato creato un agente con l’algoritmo Proximal
Policy Optimization. L’agente è stato quindi convalidato e confrontato con l’attuale
strategia di controllo sia in simulazione che in esperimenti reali.

Parole chiave: veicoli autonomi, inseguimento di traiettorie, corsi d’acqua urbani, Re-
inforcement Learning, Model Predictive Control.





v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 ASV kinematics and dynamics 7
1.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Thruster dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Disturbances and uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Varying payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.2 Wind . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.3.3 Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3.4 Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.4 The complete model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Reinforcement Learning 17
2.1 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Q-learning, deep Q-learning, and variants . . . . . . . . . . . . . . . 19
2.2.2 Policy Gradient Methods . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.3 Proximal Policy Optimization . . . . . . . . . . . . . . . . . . . . . 21

2.3 Methodologies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.1 Trajectory tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.3.2 Vessel control with reinforcement learning . . . . . . . . . . . . . . 25
2.3.3 Real world system actuation through reinforcement learning . . . . 28

3 Simulation of the Roboat and design of the RL controller 31



3.1 Available ASV simulator survey . . . . . . . . . . . . . . . . . . . . . . . . 31
3.2 Roboat platform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3 Roboat simulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3.1 Path and trajectory planning . . . . . . . . . . . . . . . . . . . . . 37
3.3.2 Physical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.3.3 Nonlinear model predictive control . . . . . . . . . . . . . . . . . . 39

3.4 Reinforcement learning simulator . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.1 Environment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.4.2 Uncertainties and disturbances . . . . . . . . . . . . . . . . . . . . 42
3.4.3 Reward function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.4.4 Trajectory generation . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4.5 Algorithm setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.6 Learning process . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.5.1 Step response without disturbances or uncertainties . . . . . . . . . 50
3.5.2 Step response with disturbances or uncertainties . . . . . . . . . . . 54

4 Results 59
4.1 Trajectory tracking comparison in simulation . . . . . . . . . . . . . . . . . 60

4.1.1 Comparison without uncertainties and disturbances . . . . . . . . . 60
4.1.2 Comparison with uncertainties and disturbances . . . . . . . . . . . 63

4.2 Trajectory tracking comparison on the real system . . . . . . . . . . . . . . 71

5 Conclusions and future developments 77

Bibliography 79

List of Figures 85

List of Tables 89

Acknowledgements 91



1

Introduction

Water transport presents a highly efficient method of movement that has been used by
humans for thousands of years. Today it accounts for around 80% of international trade.
This setting, together with others, such as environmental monitoring, and search and
rescue, seeks reliable control systems. Recent advancements in control theory strive to
achieve that and reduce the difficulty of the human’s task in vessel control significantly.
The final objective in this process is making the system autonomous.

Autonomous vehicles are systems able to operate on their own in their designated envi-
ronment by sensing it through their sensors and acting on it with their actuators. The
last couple of decades saw their dramatic rise in forms vehicles in road, aerial, maritime,
and space settings.
Making a system autonomous presents a specific set of challenges that can roughly be
divided into these steps: localization, perception, planning, and control. Localization is
the process of determining ones state with respect to the environment. Perception entails
developing an understanding of ones environment. Planning is the process of determining
a sequence of valid future states to reach the designated goal state. The output of a plan-
ner can be a path or a trajectory, depending on whether the sequence of states includes
timing. And lastly, control translates the high-level plan into actions by determining the
low-level actuators behavior to track it.

The focus of this study is trajectory tracking for autonomous surface vehicles (ASVs).
Up until recently, most research in the field concerned large ships and tankers travelling
in open waters. This setting is characterized by massive, heavy vessels, slow dynamics
from low frequency waves, wind, and current, and a propeller and rudder actuation, as
explained in detail in [10].
However, recent technological advancements have given rise to another sub-field in the
area. The novel maritime solutions using small autonomous vessels, such as the Roboat
platform [37]. When moving in urban waterways, these smaller vessels encounter a differ-
ent set of difficulties and objectives. Now, situations like docking, maneuvering in tight
spaces, or performing evasive maneuvers upon encountering other boats, shift the focus
from energy consumption to high precision movement.



2 | Introduction

To achieve that, several significant challenges have to be overcome. To begin with, while
errors in control for large ships come mainly from low frequency waves, wind, and current,
ASVs in urban waterways are, on the other hand, affected mostly by varying payload,
wind, current, and high frequency waves. Firstly, due to the ASV’s own low weight,
varying payload changes the underwater hull shape, which in turn affects the thruster
dynamics. Secondly, the impact of wind on the system is more pronounced because a
significant portion of the vessel is above the waterline. Therefore, depending on the wind
parameters like the angle of attack, the wind acts as a force. Thirdly, the current acts as
a constant drift translating the system. And lastly, depending on the setting, high fre-
quency waves can act as weak pulses of force on the boat. Together, these effects render
control of an ASV in urban waterways a complex and specific problem.

State of the art

Similar vessel control problems, like dynamic positioning, way-point tracking, and autopi-
lots for course-keeping and trajectory tracking have been tackled in the past. Methods
used in solving those problems range from classical control, such as PID, LQG, and
NMPC controllers, Kalman filtering, underactuated control, feedback linearization, and
many more. An overview of the results of their implementation is provided in [12]. Let
us consider a few of them here.
To begin with, the use of PID controllers and Kalman filters is widespread with one of
the most basic problems in vessel control, dynamic positioning. It is defined as the act
of to keeping a floating vessel on a specified position by proper action of the propulsion
system of the vessel. One example of such an approach is [3], where the Kalman filter
and optimal control are used to position a ship. Furthermore, when considering tasks like
way-point tracking or autopilots for course-keeping and trajectory tracking, the use of
techniques such as LQG, NMPC and feedback linearization has been proposed. Using an
LQG for high-precision track control of ships was attempted successfully in [17]. NMPC,
another well established approach in literature, is chosen for many autopilot systems, in-
cluding the aforementioned Roboat platform. Detailed implementation of the controller
based on the static estimated model of the small scale of the system can be found in [36].
Feedback linearization has also been used extensively. For example in [11], it is applied
to automatic ship steering with a flexible design to allow easy optimization.

Although still in its early stages, research on small ASVs exists, for example [36] takes
on the problem of station keeping when exposed to current and wind. As for the urban
waterways setting, apart from the Roboat project [15, 37], there has been little to no



| Introduction 3

research.
With the increasing popularity of learning methods in control, some research has also
been done in vessel control. In [40], deep reinforcement learning with an actor critic ar-
chitecture was used to train a model to track a predefined trajectory for an autonomous
underwater vehicle (AUV). Moreover, in [7] an on-line selective reinforcement learning
approach combined with Gaussian Process (GP) regression for trajectory tracking is pre-
sented. In [21] deep reinforcement learning for trajectory tracking is used to control an
unmanned aerial vehicle. Although relatively recent, published around 5 to 10 years ago,
they are still ancient given the volatility with which this field is advancing.
Traditional control approaches, such as the nonlinear model predictive control (NMPC),
can have trouble with precise trajectory tracking when encountering mentioned difficul-
ties. To overcome the difficulties, reliable measurements of model parameters is needed.
However, filtering parameters with uncertainty is infeasible without data from proper
sensor. This is the case with the current control system for Roboat. Given its limited
knowledge of the dynamics of the system, the planned actuation does not yield expected
motion in the real world. This can lead to dangerous situations in some of the envisioned
use cases, like the situations mentioned before.

Problem statement

This thesis project presents an attempt to solve precise and robust trajectory tracking for
an autonomous surface vessel (ASV), specifically the Roboat platform, to sail in urban
waterways by using a novel architecture based on reinforcement learning.

For this purpose, the entire system, with the aforementioned disturbances and uncertain-
ties has to be modelled and considered in a simulator acting as its digital twin. This can
be done based on information about their behavior according to [10, 15]. However, these
disturbances cannot be measured directly in real time due to a lack of sensors and approx-
imating them reliably is unfeasible. Furthermore, modelling the system itself is difficult
because of varying thruster dynamics and unknown payload size and distribution. This
is because, the force which the thrusters output, depends on the vessel’s wake described
by the wake fraction number. This parameter changes significantly, as can be seen in
[10, 26]. The fact that the payload cannot be measured directly means we do not have
exact real time information about the systems mass.
The presented challenges mean that architectures presented in the past, like [1, 12], would
have limited success in precise trajectory tracking. They require a precise vessel model,
including the thrusters, and the spectrum of both disturbances and uncertainties, which



4 | Introduction

can only be roughly approximated in real time [10, 12].

Approach and contributions

Given the above-mentioned problems, we hypothesize that a learning-based controller can
be trained to perform precise trajectory tracking for the setting. Inspiration for such an
approach stems from recent breakthroughs in RL for robot locomotion by the Robotic
Systems Lab, presented in [20]. The paper presents a novel architecture and learning
approach to tackle the problem of robust locomotion of a quadrupedal robot. The main
problems it faces are environments with highly irregular profiles, deformable terrain, slip-
pery surfaces, and overground obstructions. These cannot be precisely modelled, nor
measured with available sensors. Therefore, their approach uses only proprioceptive sen-
sors as input, such as the inertial measurement unit and joint encoders. The success of
the approach, as well as the parallels to the Roboat setting (unmeasurable environment
factors: leg slip factor and wake fraction number of a boat’s hull, current strategies overly
complex yet not robust or general enough), give hope and motivate the work on a similar
controller.
To develop it, two main challenges will be considered. Firstly, a more advanced simulator
will be built based on the research done, including the approximation of aforementioned
factors (payload, wind, current, thrusters, and waves). Specifically for the thrusters, their
behavior will be approximated from odometry and localization data recorded from the
Roboat platform. Additionally, some of their parameters which cannot be calculated di-
rectly (such as the wake fraction number), will be randomized in the simulator.
Secondly, a controller will be trained in the developed simulator based on an RL paradigm
to track a given trajectory and to adjust to the disturbances and uncertainties within a
reasonable range. The learning process can then, if needed, be improved through an adap-
tive curriculum approach. Inspired by the automatic curriculum learning for RL agents
called Paired Open-Ended Trailblazer [35], it consists of gradually increasing the level of
difficulty of the environment that the agent faces based on the agent’s performance. The
more successful the agent is, the harder the challenges it faces get. This game like process
makes learning more natural and robust.



| Introduction 5

The document is divided as follows:

• Chapter 1 contains the theoretical background of vessel control containing. Firstly,
a general description of the kinematics and dynamics of a vessel is given, followed
by the thruster dynamics and disturbance and uncertainty effects on the system.
Secondly, specific details for the Roboat platform, for which the thesis is aimed for,
are also presented.

• Chapter 2 focuses on deep reinforcement learning methods and specific algorithms
used here. An introduction into the reinforcement learning field is given, with
the most important algorithms presented. Following this, methodologies used in
literature to solve the same or similar problems are presented as inspiration for this
study.

• Chapter 3 presents the implementation of a simulator of the Roboat platform from
the ground up. It is capable of simulating all desired effects, such as the distur-
bances, uncertainties, and thruster dynamics. Furthermore, it can also be used as
an environment for training reinforcement learning agents. Here, the specific imple-
mentation details used to create the framework for learning trajectory tracking for
the Roboat platform are presented.
To prove its worth, it is compared to the current simulator used by Roboat in a
number of metrics, followed by a demonstration of the disturbance and uncertainty
modelling.

• In chapter 4, the performed experiments and obtained results are presented. Firstly,
the process of the comparison in the simulator is explained in detail, followed by the
presentation of the comparison in multiple metrics, namely the tracking precision
and power consumption.
After this, the procedure and the results of the trials on the real life platform
are presented. Moreover, the problems encountered while performing the tests are
explained.

• In the end, the conclusion of the work is presented, together with future possible
improvements.





7

1| ASV kinematics and dynamics

To begin to understand how to control a vessel, as with all control problems, one has
to accurately model the system. Comprehensive work on the matter has been done by
one of the most prolific and important scientists in the field, Thor I. Fossen, whose book,
"Guidance and Control of Ocean Vehicles" [10] covers the process in length. Inspired by
it, this chapter provides an introduction into the basics of kinematics and dynamics of
the system.
The first part of the chapter presents a physical description of the system at hand, going
over the rigid body assumptions, introducing also the hydrodynamic forces and moments.
The system is finally described by its equations of motion. The second part of the chapter
introduces the thruster dynamics of a vessel, through which the system is actuated, focus-
ing on the ASV setting. The third part of the chapter revolves around the disturbances
and uncertainties that affect such a system the most in real world, like varying payload,
current, wind and waves. All of this is followed by mathematical equations describing the
matter. In the end, the system is presented in its entirety, putting it all together.

1.1. General

The motion of a vessel in a fluid can be described by a rigid body moving in 6 independent
degrees of freedom (DOF), necessary to determine both its position and orientation. In
marine literature these 6 DOF are called surge, sway, and heave for position, and roll,
pitch, and yaw for orientation. The notation that will be used in this study is presented
in Table 1.1.



8 1| ASV kinematics and dynamics

DOF force and moment linear and angular velocity position and angle

1 x direction - surge X u x

2 y direction - sway Y v y

3 z direction - heave Z w z

4 rotation about x - roll K p ϕ

5 rotation about y - pitch M q θ

6 rotation around z - yaw N r ψ

Table 1.1: 6 DOF notation

To describe the movement of a rigid body in space, two different coordinate systems are
defined. One connected to an inertial reference frame, and the other connected to the
rigid body, relative to the first one. For this purpose, choosing a point on Earth’s surface
as the inertial reference frame is acceptable as the effects of Earth’s motion on the system
are negligible. Furthermore, the vessel’s center of gravity (COG) is a convenient point to
place the rigid body’s point of origin, as it is more or less static and usually presents a
point of symmetry. However, certain situations can render this assumption invalid. For
example, when loaded unevenly the COG of a small ASV can move and the control will
not have its expected effect. These types of situations will be explored later in the study.
Logically, position and orientation η should be relative to the inertial reference frame,
whereas linear and angular velocities ν should be relative to the vessels’s reference frame.
The notation and relation between the two is defined as follows:

η = [x, y, z, ϕ, θ, ψ] (1.1)

ν = [u, v, w, p, q, r] (1.2)

For ASVs in urban waterways, however, heave, roll, and pitch are close to zero due to
low accelerations and speeds. Furthermore, the disturbances and uncertainties do not
induce enough motion in those dimensions to significantly influence the vessel’s behavior.
Therefore, as is the case in literature, from now on, we will consider a 3 DOF system in
x, y, ψ with their velocities u, v, and r. They are related through the following equation:

η̇ = R(ψ) · ν (1.3)

where R(ψ) is the transformation matrix from the rigid body’s to the inertial frame.

The rigid body dynamics of the vessel can be derived using Lagrangian and Newtonian



1| ASV kinematics and dynamics 9

mechanics. The system is described with the following nonlinear dynamic equations:

Mν̇ +C(ν)ν +D(ν)ν + g(η) = τ (1.4)

where:
M = inertia matrix,
C(ν) = Coriolis and centripetal term matrix,
D(ν) = damping matrix,
g(η) = gravitational force and moment vector,
τ = vector of torques acting on the system such as the control inputs.

To complete the modelling of a vessel special care has to be given to hydrodynamic forces
and moments acting on the system. They describe the effects of fluid particle velocity
and acceleration on the immersed system and can be generally divided into two groups:
radiation induced forces and Froude-Kirchoff and diffraction forces. In the scope of this
study only the radiation induced forces will be considered as the Froude-Kirchoff and
diffraction forces concern a body restrained from oscillating which is not the case here.
The radiation induced forces are described as the sum of added mass, radiation induced
potential damping, and restoring forces.
Firstly, added mass represents the inertia added to the system due to the volume of sur-
rounding fluid deflected as a body moves through it. In reality, the whole fluid will be
accelerated to a certain degree, however approximating the effect with a matrix of con-
stants MA is precise enough according to literature [10].
Secondly, hydrodynamic damping is mainly caused by: radiation-induced potential damp-
ing, linear skin friction, wave drift damping, and vortex shedding. These effects can be
approximated with a damping matrices DL an DQ with linear and quadratic terms re-
spectively.
Lastly, the restoring forces are equivalent to the spring forces in a mass-damper-spring
system. However, they will not be considered here as their effect is negligible.



10 1| ASV kinematics and dynamics

1.2. Thruster dynamics

By and large, marine vessels are actuated through a combination of main thrusters, bow
thrusters, and a rudder system. Larger ships usually utilize one or two main thrusters
with propellers to propel the system and a rudder system to steer the ship. However,
smaller vessels, underwater systems, and ASVs are much more diverse in this regard.
One of the main reasons for this is different objectives. Whereas reduction of energy
consumption steers the design of large ships, smaller vessel design usually prioritizes
maneuverability and precise motion. In case of both large and small vessels the addition
of bow thrusters makes the system more maneuverable by actuating it perpendicularly
to the ship’s principle axis. Typically, ASVs and underwater systems use an "X" shaped
configuration to achieve holonomic motion. However, the system studied in this work
implements a cross-shaped actuator configuration. The reason being the significantly
higher efficiency index, the value is 0.5 for the "X" shaped and 1.0 for the cross-shaped
configuration as explained in chapter two of [36]. When considering a 3 DOF model of
the system, this configuration renders the system overactuated. Comparison between the
two configurations is shown in Figure 1.1.

(a) "X" thruster configuration (b) Cross-shaped thruster configu-
ration

Figure 1.1: Comparison between thruster configurations that allow holonomic motion of
the vessel in the horizontal plane.

Apart from some specific experimental examples, self propelled vessels generate thrust
through propeller rotation. The physics of propulsion systems is complicated enough to



1| ASV kinematics and dynamics 11

have a field of research dedicated to it, however, for the needs of this study, the following
simplification will suffice.

The thrust with which the system is actuated can be described as a nonlinear function
connecting the vehicle’s velocity vector ν and the number of propeller rotations per minute
(the control variable u), to the thrust output vector τ . By rotating, the propeller pushes
the fluid away from it, creating a pressure difference in front versus behind it. As the
fluid mass is accelerated in one direction, thrust is generated and the vessel travels in the
opposite direction. The generated thrust can be approximated with equations (1.5) and
(1.6), as described in the fourth chapter of [10]:

τ = ρD4KT (J0)|u|u (1.5)

J0 =
(1− ω)ν

uD
(1.6)

where:
ρ = the density of the fluid,
D = the propeller diameter,
KT = the thrust coefficient,
J0 = the advance number, defined with the equation (1.6),
ω = the wake fraction number.

Out of these parameters, the fluid density ρ and propeller diameter D are easily obtained
and generally considered static. The thrust coefficient KT is one of the most important
characteristics of a propeller, specific for every different propeller. Usually, the manufac-
turer of a given propeller provides it in the form of a graph, such as Figure 1.2. If not
provided by the manufacturer, it has to be approximated. And lastly, the wake fraction
number ω describes the relationship between the actual vessel’s speed and the speed of
fluid coming at the propeller. It depends on the shape of the immersed portion of the
vessel’s hull and the propeller positioning, but usually has a value between 0.1-0.4 [10].
In effect, it is a measure of how effective the propeller is. For smaller vessels, such as is
the case in this study, it is important to take the uncertainty of the wake fraction value
into account, as it can change the effect of thrusters significantly.



12 1| ASV kinematics and dynamics

Figure 1.2: Example of a thrust coefficient graph for a variable pitch propeller from [26],
provided by the propeller’s manufacturer. The graph presents the values of the thrust
coefficient (KT ), the torque coefficient (KQ), and efficiency (η) in relation to the advance
coefficient J , a value defined earlier in Figure 1.6. The full quasi linear downward lines
present the thrust coefficient number for different propeller pitch settings.



1| ASV kinematics and dynamics 13

1.3. Disturbances and uncertainties

As the vessel travels through a fluid, various disturbances and uncertainties act on it. On
one hand, the disturbances such as wind, current, and waves disturb the action behavior
of the system by generating forces and torques on it. On the other hand, uncertainties in
the system parameters, that arise from either not being able to measure them precisely
or because they change through time, make control of the system more difficult.

1.3.1. Varying payload

Firstly, the most pronounced uncertainty will be considered: varying payload. In case
the vessel is used for transportation, as it is in this study, and the mass of the payload
is significant with regards to the vessel’s own mass, there will be visible effects on the
system’s behavior, making the entire system less prone to acceleration. Not only do the
values of the mass matrix change, but also the thruster dynamics and the damping matrix,
due to the changes in the shape of the immersed portion of the vessel’s hull. This change
will, therefore, also be reflected on the wake fraction number ω. It should be noted
that both the magnitude and the placement of the payload can change the dynamical
properties, as different placement can change the hull shape hitting the incoming water
causing more or less drag.

1.3.2. Wind

Secondly, as a significant portion of any surface vessel is above water, the wind hitting
it applies forces and torques τw on the system. The effects of wind can be described
with a mean direction and a slowly varying speed. Modelling wind has been explored
in literature extensively and this specific study takes inspiration from [32]. They can be
condensed in a representation such as the equation (1.7):

τw =
1

2
ρaV

2
rw

 −cxAFW cos(γrw)

cyALW sin(γrw)

czALWLOA sin(2γrw)

 (1.7)

where:
γrw = apparent wind angle,
ρa = the density of air,
Vrw = apparent wind speed,
AFW = frontal projected windage area,



14 1| ASV kinematics and dynamics

ALW = lateral projected windage area,
LOA = vessel’s overall length,
ω = wind’s apparent angle of attack.

1.3.3. Current

Thirdly, the current acts as a translation of the vessel’s moving frame with a certain
velocity. Therefore, the effect current has on the system can be easily modelled with
two more parameters: the current speed Vc and heading β. This representation is well
established in literature, for example in chapter three of [10], and higher complexity would
only lead to increased computation time. The drifting effect is described by equations
(1.8) and (1.9).

uc = Vc cos(β − ψ) (1.8)

vc = Vc cos(β − ψ) (1.9)

where uc and vc present the current’s velocity in vessel’s surge and sway directions respec-
tively.

1.3.4. Waves

Lastly, the effect of wind generated waves on the vessel will be mentioned. Wind generated
waves are usually divided into two groups: low frequency and high frequency waves. As
the wind picks up, the drag on the surface creates the high frequency waves with low
amplitude. If the wind blows for long enough, low frequency with high amplitude develop.

The effect of waves is significant both on large and small vessel’s when the system operates
in open waters. However, when dealing with ASVs in urban waterways, mentioned low
frequency waves are not encountered. Moreover, the effect of high frequency waves on the
system is observed not high enough to be considered.



1| ASV kinematics and dynamics 15

1.4. The complete model

Finally, the equations of motion for the entire system can be written:

(MRB +MA)ν̇ +C(ν)ν +DL(ν)ν + νDQ(ν)ν + g(η) = τ + τE (1.10)

η̇ = R(ψ) · ν (1.11)

where the new terms are:
MRB +MA = rigid body and added mass terms,
DL(ν) = linear damping matrix,
DQ(ν) = quadratic damping matrix,
τE = vector of environmental torques.

Two things should be noted here. Firstly, the velocity vector ν now presents the relative
speed of the vessel with regards to the current. And secondly, the mass matrix is not
static, as it changes with the varying payload. Having defined the model of the system,
focus can be shifted to strategies with which to control it.





17

2| Reinforcement Learning

Computer science often fascinates by its ability to yield quantum leaps in progress by
taking inspiration from processes in the real world. One of the most glaring examples of
this is translating the process of learning from nature into a set of powerful optimization
algorithms that make up the subfield of machine learning called reinforcement learning.
This chapter provides an introduction into it and an overview of its current state of art.

The first part of this chapter serves as a general introduction into the idea behind rein-
forcement learning, with its brief history and description. The second part of the chapter
goes over the most popular reinforcement learning approaches, focusing control problems.
The third part of the chapter covers available methodologies to improve the learning
process and with it the resulting actor behavior.

2.1. General

Reinforcement learning has its roots in behavioral psychology of the early 20th century,
exploring the use of rewards and penalties to encourage a desired behavior. However, it
would not be until the second half of the century that great minds like Alan Turing and
Richard Bellman lay down the foundations of its theory. The idea behind it is simple: a
decision-making agent learns from a sequence of reward signals from the environment that
provide some indication of the quality of its behavior. The goal is to optimize the sum
of future rewards [31]. Figure 2.1 provides a general reinforcement learning environment
architecture.



18 2| Reinforcement Learning

Figure 2.1: Basic high level abstraction of the architecture of the agent-environment loop.
Image from OpenAI.

Basic reinforcement learning problems can be described through the notion of discrete-
time stochastic control processes called Markov Decision Processes (MDPs). It is defined
by a (S,A, Pa, Ra) tuple where:

• S is the set of possible states called the state space,

• A is the set of possible actions called the action space,

• Pa is the probability of action a taken in state s leading to state s′

• Ra is the immediate reward for taking action a in state s.

At each timestep, the process is in a state s. From that state, the agent chooses an action
a from a set of actions available in state s, called Γ(s). The process then changes to a
new state s′ based on the state transition function Pa(s, s′) and outputs a corresponding
reward Ra(s, s

′).
The agent’s behavior, or more specifically the choice of action in any given state, is defined
through the policy function π(s, a). A policy that maximizes the reward function in the
infinite horizon is called the optimal policy π∗(s, a). The goal of reinforcement learning
algorithms is to obtain this optimal policy for a given agent environment pair.

https://www.gymlibrary.ml/content/api/


2| Reinforcement Learning 19

2.2. Algorithms

Having defined the problem, some of the most important algorithms for reinforcement
learning in control can be explored. Firstly, Q-learning, deep Q-learning, and its variants
will be introduced, as one of the first model-free algorithms. The problem will then be
generalized to the continuous setting with policy gradient methods in which algorithms
like the proximal policy optimization [33] have proven to be successful.

2.2.1. Q-learning, deep Q-learning, and variants

Q-learning, introduced in late 20th century works as follows. Facing an unknown MDP
with discrete sets of possible states S and possible actions A, a Q-learning agent learns
an action-utility mapping function Q(s, a), giving the expected utility of taking a given
action a in a given state s [31]. The values of the Q(s, a) function are calculated according
to the update rule (2.1):

Qnew(st, at) = (1− α)Qold(st, at) + α(rt + γmaxa∈Γ(st)Q(st+1, a)) (2.1)

where:
st, st+1 = states at time t and t+1,
at = action taken at time t,
α = the learning rate of the algorithm,
rt = the immediate reward for taking action at from state st,
γ = the discount factor of the algorithm, defining the future reach of the cumulative
reward.

Moreover, in order not to get stuck in any local optima the agent should sometimes deviate
from this update rule and take a random action. Defining the frequency of this happening
is called "The Exploration Exploitation Dilemma". The most simple and efficient way to
implement this is the "epsilon greedy" approach (2.2):

at =

action with maxa∈Γ(st)Q(st+1, a) with probability 1− ϵ

random action with probability ϵ
(2.2)

By following the update rule (2.1) and exploring the problem for example with (2.2), as
the agent operates in the MDP, the values of Q(s, a) are proven to eventually lead to the
optimal policy π∗(s, a). The model-free nature of the algorithm comes from the fact that
the values of Pa are not used in the calculations, but are inherently approximated.



20 2| Reinforcement Learning

Q-learning proved to be an algorithm capable for solving many simple problems, such
as the game of Tic-Tac-Toe. However, since it can be applied only to discrete state and
action spaces, it suffers greatly from the curse of dimensionality. That is, discretization of
the state and action spaces for more complex problems in practice often leads to inefficient
learning.

To solve the curse of dimensionality, instead of a function Q(s, a) mapping predicted val-
ues for all possible state-action combinations, deep Q-learning approach utilizes a deep
neural network. The input into the network is the current state of the environment and
the predicted value for taking every possible action is generated as the output.
As for training the network, learning and updating is performed on the state-action pairs
as they arrive from the running simulation, with the loss function defined as the mean
squared error between the predicted and target Q-value. Unfortunately, since the target
values are calculated from the same changing neural network, the learning process is often
unstable. Furthermore, this training approach leads to considerable correlation between
neighbour states as incoming training batches contain similar data.
Two methods are used to combat this. Firstly, a second neural network is used to ap-
proximate the target Q-value. Its parameters are kept frozen for n iterations and updated
afterwards. The update consists of copying parameters from the prediction network, often
called the actor network, to the target network, often called the critic network. Second
method to solve correlation, called experience replay, includes storing past experience of
the agent in a buffer as the training set. This buffer is then randomly sampled to create
a training batch, reducing correlation greatly.

2.2.2. Policy Gradient Methods

A significant breakthrough in deep reinforcement learning performance came with the
introduction of policy gradient methods. These methods, instead of trying to approximate
the value of state-action pairs Q(s, a) and extracting a policy π(s, a) from that, aim to
directly optimize the agent’s policy.

The policy is presented as a probability distribution, parameterized with a set of pa-
rameters θ, and optimized through gradient ascent on the expected reward obtained by
following that πθ(s, a). The parameter vector θ can take various forms, such as a neural
network or a genome in genetic algorithms, as the algorithm does not change with the
choice, only the update method. Today, using a neural network is the most popular ap-
proach as it proved most powerful in solving complicated tasks, for example humanoid



2| Reinforcement Learning 21

actuation.

To perform gradient ascent, the most commonly used gradient estimator ĝ is 2.3 obtained
by differentiating the loss LPG 2.4, and following the 2.5 update rule:

ĝ = Êt
[
∇tlogπθ(at|st)Ât

]
(2.3)

LPG(θ) = Êt
[
logπθ(at|st)Ât

]
(2.4)

θnew = θold + αĝ (2.5)

where:
logπθ(at|st) = the log probability of the output of the policy πθ in state st,
Ât = the estimator of the relative value taking the selected action at time t with regards
to the old policy, called the advantage function,
α = the learning rate.

These functions describe the desired learning behavior: if the expected advantage of
following the new policy with regard to the old policy is positive, the gradient will steer
the policy in that direction. If there is no expected advantage, this algorithm steers the
policy away. This approach is, however, very sensitive to the size of policy updates. Too
large of an update and the learning process is too noisy, too small and the progress is
extremely slow. This problem is caused by the advantage function Ât which, being a
neural network itself, is a noisy estimator. Therefore, a wrong estimate with a large
gradient could cause a significant setback.

2.2.3. Proximal Policy Optimization

Presented in 2017 in [33], the proximal policy optimization (PPO) is a policy gradient
method for reinforcement learning. Its predecessors, the trust region policy optimization
(TRPO) and actor-critic experience replay (ACER), although data efficient and with
reliable performance, proved to be too complicated and rigid. PPO, on the other hand,
is much simpler to implement, more general, and has better sample complexity.
The algorithm uses these two approaches: trust region methods and a clipped surrogate
objective. Firstly, trust region methods optimize the policy by making small improvements
on the policy chosen from a small region around the current policy called the trust region.
It uses a surrogate objective presented in 2.6 constrained with the size of the policy



22 2| Reinforcement Learning

update.

max
θ

Êt
[
πθ(at, st)

πθold(at, st)
Ât

]
= Êt

[
rt(θ)Ât

]
(2.6)

where:
πθ(at, st), πθold(at, st) = the new and old policy functions,
Ât = the estimator of the relative value of selected action at time t, called the advantage
function.

The new objective is to maximize the probability ratio between the policies multiplied
with the advantage function. This leads to small and steady policy updates, improving
the learning process.

Secondly, the clipped surrogate objective function is used to constrain the policy update
by weighing the advantage of the update to the size of the update. This strikes a good
balance between too large and too small policy updates using only first-order optimiza-
tion, while retaining the positive aspects of TRPO and ACER. The proposed clipped
surrogate objective function is presented in 2.7:

LCLIP (θ) = Êt
[
min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât)

]
(2.7)

where:
ϵ = a hyperparameter, for example 0.2,
clip(rt(θ), 1− ϵ, 1+ ϵ) = modifies the surrogate objective by clipping the probability ratio,
rt(θ) = immediate reward at time t.

The clipped surrogate objective function presents the main contribution of PPO because
it disincentivizes large updates and makes the learning process more robust. Furthermore,
it makes the implementation simpler while retaining the stability and reliability of trust-
region methods. At the time of writing, PPO outperforms other similar algorithms and
is used to learn a controller to track a trajectory in this study.



2| Reinforcement Learning 23

2.3. Methodologies

Having gone over the most important reinforcement learning algorithms, we can shift
focus to the setting in which it is being used. The design of the learning environment
depends in large part on the problem at hand. Recently, the mentioned algorithms have
been applied to a number of settings. This includes vintage computer games in [25],
traditional control problems like the inverted pendulum in [28], and even more complex
robotics tasks such as humanoid robot actuation in [16]. Through the years, various
methodologies formed to approach each one of them. This section gives more detail on
how to set up an environment for learning ASV trajectory tracking.

2.3.1. Trajectory tracking

As mentioned in the introduction, a trajectory tracking algorithm implies taking a timed
sequence of future states of the robot at hand as input, and calculating the necessary
actuation to achieve the desired behavior of tracking the trajectory. To learn a controller
to perform such a task, an environment needs to meet the following requirements.
Firstly, the agent needs to observe its current state and the desired trajectory. In the
setting considered in this study, the current state of the ASV can be condensed in a 6-
value vector of q = [x, y, ψ, u, v, r]. Furthermore, the future trajectory can be represented
with an array of vectors of the same type, either containing also the time t or without it,
if the time between neighbor states and the initial time is known and constant.

Figure 2.2: Visualization of a sinusoidal trajectory with timestep of 1s, each state defined
with the x, y, and ψ values.

Secondly, the agent needs to be able to actuate the system. For the Roboat platform,
with its four thrusters in a plus configuration, the actuation values can be condensed in
a 4-value vector of u = [f1, f2, f3, f4] presenting the forces applied by the thrusters.
And lastly, the agent needs to evaluate the consequences of its actions. This is tuned



24 2| Reinforcement Learning

through the design of the reward function. Considering the fact that its design can make
or break the learning process, it is regarded as one of the main aspects of the environment.
The reward function is in a lot of ways similar to any optimization function, for example
the MPC optimization function over a finite horizon. However, whereas the MPC opti-
mization function needs to closely define desired behavior, the reward function does not
need to be as descriptive. Since the learning process goes on for thousands of episodes,
depending on the complexity of the environment, the agent is usually able to extract good
policies from simple reward functions. For example, in one of the staple reinforcement
learning problems, the inverted pendulum (also known as the cart pole balancing), it is
simply defined as +1 for every step in which the pole is upright (+/ − 12 degrees offset
to 0 degrees).
In general, trajectory tracking for vessels is not an overly popular topic in the reinforce-
ment learning community. Most work considering trajectory tracking takes on aerial
or underwater vehicles. In [21] trajectory tracking for an unmanned aerial vehicles was
proved to outperform a traditional PID controller. The reward function used during the
training of a deep neural network controller was defined as 2.8:

R(t) =
1

2π
exp

(
−(∆Pt +∆Vt +∆Rt)

2

2

)
(2.8)

where:
∆Pt = absolute value of the difference between desired and current position vector,
∆Vt = absolute value of the difference between desired and current velocity vector,
∆Rt = absolute value of the difference between desired and current rotation vector.

In [40] the same was attempted for of autonomous underwater vehicle. The reward func-
tion in this study penalizes squared state error and goes a step further including an action
penalty 2.9:

r(st, at) =
[
−I (ŝt − st)

2 − Λa2t
]

(2.9)

where:
ŝt, st = the desired and current state at time t,
at = the action vector at time t,
I,Λ = positive definite functions.

However, a small caveat to this study is that a new controller is trained for each type of
trajectory. Therefore, the controller does not generalize for any trajectory but overfits to
the one it trained on.



2| Reinforcement Learning 25

2.3.2. Vessel control with reinforcement learning

As for surface vessels, this section lays out previous work on using reinforcement learning
for their actuation in various settings and goes over the suggested reward functions for
inspiration.

The problems of course tracking and path following are very popular topics in this field.
The first problem consists of steering the vessel to maintain the desired heading, while
path following includes also the actuation of the thrusters to maintain the desired surge
speed.
One of the first attempts of neural network based reinforcement learning control for path
following was presented in [41], to actuate an underactuated ship. A simple Actor Critic
reinforcement learning architecture was used to control the rudder angle. The reward
function included an elaborate combination of penalizing tracking error and control efforts
in a weighted exponential term.

In [39] the problem of path following for an unmanned surface vehicle (USV) is considered.
The only difference in their definition of the task versus trajectory tracking is the lack of
timing with way-points in the path. However, the reward function remains similar in the
two cases. The definition of the reward function in this study is quite elaborate, made up
of three summed parts 2.10, 2.11, and 2.12:

rχ̄ =


exp−k1 ∗ |χ̄| if i < 90deg

exp−k1 ∗ (χ̄− 180) if i ≥ 90deg

exp−k1 ∗ (χ̄+ 180) if i ≤ −90deg

(2.10)

rey = exp−k2 ∗ |ey| (2.11)

rσδ = exp−k3 ∗ σδ (2.12)

where:
χ̄ = the difference between the actual course angle and the desired course angle,
ey = the cross track error,
σδ = the standard deviation of the recent 20 steering input commands.

These three values encapsulate three important ideas: position error, course error, and
steady steering. However, the more complex the reward function, the harder it is to
tune its hyperparameters to achieve satisfactory learning. As a general rule of thumb,
one should keep the reward function as simple as possible while embedding the desired



26 2| Reinforcement Learning

behavior in it.

In [14] and [13] the path following problem for USVs was approached from a slightly
different angle, using a combination of adaptive control and deep reinforcement learning
algorithms. The idea is to develop a low level controller for surge speed and yaw angle
through deep reinforcement learning and then use it with adaptive dynamic programming
to perform the task. In both studies the Deep Deterministic Policy Gradient (DDPG)
algorithm was used.
When it comes to reward function shaping, they utilize very similar architecture to [39].
The reward function in [14] consists of parts to reward small heading error, tracking the
reference surge speed, and penalizing large standard deviation oscillations of the action
values. In [13], instead of the surge speed reward term, a term penalizing cross track error
is implemented. Moreover, in [14] the trained controller was deployed on a real USV.
It is interesting that both studies encountered choppy and erratic control as a results
of training in spite of the reward architecture. When deployed, this lead to reduced
performance and undesirable behaviour.

In [23] and [22] a deep reinforcement learning solution was developed for path following
of mariner vessels, a class of large ships, when faced with a current disturbance. In these
works, the deep reinforcement learning is in charge of controlling the vessel’s heading by
actuating the rudder.
The reward functions are a simple combination of penalizing cross track error and fast
rudder changes, similar to the examples above. Although reaching satisfying performance,
the behaviour of the control is still at times erratic, hinting possible problems when
deployed on the real system.
Another interesting remark in [22], is the introduction of transfer learning, used to avoid
learning from scratch when moving on to different reference path shapes.

Similarly, in [38] the problem of course tracking was considered with the DDPG algorithm.
The neural network was in charge of the rudder angle to keep the desired heading. In
this article, however, the reward function was kept as simple as possible, containing only
a linear term penalizing the heading error:

rt =

1− 2 ∗ |ψdt − ψt| |ψdt − ψt| ≤ 0.5

−|ψdt − ψt| |ψdt − ψt| > 0.5
(2.13)

where:
ψdt = is the desired heading angle in radians,
ψt = is the current heading angle in radians.



2| Reinforcement Learning 27

In [24], an advanced reinforcement learning based controller was developed for course
tracking in varying operational conditions for USVs. The work focused on a fully actuated
vessel and with elements inspired by reinforcement learning algorithms. The controller
was designed in such a way to enable stability analysis through Lyapunov stability theory.

Another popular topic is the problem of dynamic positioning of a vessel. In [42] the
implementation and performance testing of a reinforcement learning algorithm used for
dynamic positioning of a marine surface vessel is considered. The marine vessel in question
is actuated through a combination of two main rotating thrusters, and one bow thruster.
Using the PPO algorithm, explained in 2.2, a neural network was trained to guide a vessel
to a random position and keep that position. After training, the control scheme yielded
good performance and energy efficiency. In the end, it was tested and evaluated on a
model scale on the sea.
The reward function in this article was divided into four parts, described with Equa-
tions 2.14, 2.15, 2.16, 2.17, and 2.18:

d =
√
x̄2 + ȳ2 (2.14)

RGauss = cGauss exp−
1

2
∗ (d2 + 0.2 ∗ ψ̄2) (2.15)

RAS = max

(
0,

(
1− 0.1 ∗

√
d2 + 0.2 ∗ ψ̄2

))
+ cconst (2.16)

Rvel = −
√
cu ∗ u+ cv ∗ v + c ¯̇

ψ
∗ ¯̇ψ (2.17)

Ract = −
3∑
i

(cn,i ∗ |ni|+ cṅ,i ∗ ṅi + cα̇,i ∗ α̇i) (2.18)

where:
x̄, ȳ, ψ̄ = the body frame errors,
cGauss, cconst, cu, cv, c ¯̇ψ, cn,i, cṅ,i, cα̇,i = constants for balancing contributions,
ni, αi = the control variables defining the propeller RPM and orientation for thrusters.

The reasoning behind the complex structure of the reward function is the following. The
most significant part, RGauss, utilizes a multivariate Gaussian function to reward proximity
to the goal state in the (d, ψ) space. To combat sparsity, a second term RAS was added
to guide the algorithm. Furthermore, to avoid overshooting the goal position, a small
quadratic velocity cost Rvel was added, and finally, for energy efficiency Ract was added,
penalizing thruster actuation and its derivative.
Defined this way, the reward function contains information about the position, orientation,



28 2| Reinforcement Learning

and velocity error, as well as encouraging low actuation values and changes to reduce
energy consumption and thruster wear.

2.3.3. Real world system actuation through reinforcement learn-

ing

Once reinforcement learning algorithms became powerful enough, researchers started se-
riously experimenting with the transfer from simulation to the real world. These experi-
ments led to numerous problems born from the discrepancy between the simulation and
the real world. This section goes over the most significant findings in the field.

Since reinforcement learning algorithms learn to exploit the dynamics of the environment
they are trained in, the learned actuation policy usually contains oscillatory and unde-
sirable behavior, similar to the bang-bang controllers, for example explained in Example
10.0.1 of [34]. To avoid learning a controller of this nature, various approaches have been
proposed.
In [6], a new architecture called Policy Inertia Controller is presented to avoid severe ac-
tion oscillations that come from agents selecting very different actions within consecutive
steps and similar states. This approach significantly reduces action oscillations without
hampering the learning process.
Similarly, in [27] a regularization tool for the action policies called Conditioning for Ac-
tion Policy Smoothness is introduced. By adding temporal and spatial smoothness terms
to the loss function of the learning algorithm directly, this method shows consistent im-
provement in the smoothness of the learned policy, removing the high frequency elements
all together.

Two articles in particular, [8] and [19], provide a good systematic overview of the problems
faced in simulation to real transfer with reinforcement learning. In [8], nine unique chal-
lenges are presented, such as the limited amount of samples, satisfying safety constraints,
and system delays. Each of these challenges, they argue, is not considered adequately in
the current literature. In [19] the authors provide a number of successful transfer case
studies and outline outstanding challenges in the field and mitigation strategies.

When it comes to these successful implementations of reinforcement learning on real
systems, work from ETH Zurich on legged locomotion for quadrupeds presented in [20]
particularly stands out. The work consists of actuating a highly complex dynamical
system, a quadrupedal robot, to traverse a plethora of challenging terrains with zero-shot
generalization. To this end, they developed a novel teacher-student training architecture,
inspired by cutting edge findings such as the temporal convolutional networks from [2],



2| Reinforcement Learning 29

parametrized terrain generation from [35], and complex actuator modelling from [18]. This
work provides a goldmine of useful information for future works on successful simulation
to real transfer of reinforcement learning.





31

3| Simulation of the Roboat and

design of the RL controller

Given the sample hungry nature of reinforcement learning algorithms, training on real
systems is rarely feasible. Therefore, it has become common practice to create a simulation
of the systems in code, making it as realistic as possible while keeping the simulation
complexity fairly low. The controller is trained first in the simulation, then transferred to
the real world, where fine tuning can be performed if needed. The simulation of the true
system is often called its "digital twin".
This chapter introduces various available simulators for the ASV setting, as well as the
process of building the one used to train a controller in this study. Firstly, an overview of
the simulators free to use for this setting is given. Secondly, the current simulator used by
the Roboat team to simulate their platform is described. And lastly, the new simulator
built for reinforcement learning is presented, with the rationale on why such a simulator
is needed for the purposes of this study.

3.1. Available ASV simulator survey

Supporting many studies conducted on control of different vessel systems, a plethora of
frameworks have been created. Understandably, each one of them is tailor made for the
problem at hand, making it more or less suitable for this study. These simulators can
be categorized based on the types of vessels available, the degree of complexity of the
physics simulated (for example fluid dynamics or basic kinematics and dynamics), or the
simulated disturbances (for example varying payload, wind, current, waves, thruster dy-
namics). To get a sense of the diversity of available platforms, Figure 3.1 provides some
examples.



32 3| Simulation of the Roboat and design of the RL controller

Figure 3.1: Examples of different ASV platforms.

Following a thorough research of available simulators, six promising candidates were taken
in consideration for the purposes of this study. Table 3.1 presents a high level rundown
of their capabilities, followed by a small overview of each and every one.

Simulator VRX USV LSA UWSim RaiSim Gazebo ShipAI

Vessel WAM-V 4 basic models Custom Custom Custom Custom
Physics complexity Intermediate Advanced Intermediate Advanced Basic Basic
Payload Yes Yes Yes Yes Yes Yes
Wind Yes Yes No No No No
Current No Yes No No No No
Waves Yes Yes Yes No No No
Thruster dynamics Yes Yes Yes No Yes No

Table 3.1: Available ASV simulators considered

• Gazebo: classic.gazebosim.org

General Gazebo is a multipurpose simulator applicable to a number of unmanned
systems including aerial, ground, surface, and underwater vehicles. Its goal is
to enable rapid robot design, testing, and training of AI algorithms in realistic

https://classic.gazebosim.org/


3| Simulation of the Roboat and design of the RL controller 33

scenarios. It is written in C++ and can be used on top of ROS and upgraded
to simulate new systems.

Strengths This simulator is a highly modular (large part of available ASV simula-
tors have Gazebo at its core) and popular simulation tool in the robotics com-
munity. It offers basic ingredients to build complex physical systems quickly
and freedom in the design of the simulated platform.

Weaknesses Most works using Gazebo, nonetheless, focus on aerial, ground, and
underwater systems, with only a few concerning ASVs. Additionally, although
it offers the tools needed to simulate the desired disturbances, the simulator
by itself offers none of them out of the box, and the process is unnecessarily
complex.

• VRX simulator: github.com/osrf/vrx

General The simulator is designed with the RobotX competition in mind (erau-
robotx.org/competitions), with the goal of finding innovative approaches to
problems such as autonomous sensing and mission implementation. It is in-
tended as a fist step toward solving challenges in the competition. The sim-
ulation is built in C++ around a wave adaptive modular platform (WAM-V)
used in the competition, an example of which can be seen in 3.1, and includes
aspects of the environment such as some of the disturbances and even obstacles.

Strengths This simulator is built on top of the Gazebo package for the Robotic
Operating System (ROS) and completely open sourced. As part of the simula-
tor, parametrized models for wave and wind disturbances is implemented. The
physical wave model is based on the Gerstner waves and the two-parameter
Pierson Moskowitz spectrum and the wind model is represented with the mean
and variance based on the Harris spectrum [4]. Moreover, the propulsion model
is parametrized with the number and allocation of thrusters.

Weaknesses However, being built for the WAM-V platform, changing the physical
properties to suit the Roboat platform to a high degree is not possible. Fur-
thermore, although parametrized, the propulsion model cannot be adjusted to
resemble the plus configuration of the Roboat platform.

• USV sim LSA: github.com/disaster-robotics-proalertas/usv_sim_lsa

General Built for the purpose of developing and testing control and trajectory
strategies for USVs in disaster scenarios [29], this simulator offers four different
boat models (rudder boat, differential boat, airboat, and sailboat) and a com-

https://github.com/osrf/vrx
https://www.eraurobotx.org/competitions
https://www.eraurobotx.org/competitions
https://github.com/disaster-robotics-proalertas/usv_sim_lsa


34 3| Simulation of the Roboat and design of the RL controller

plex disturbance simulation. It is written mostly in Python on top of Gazebo
and uses multiple additional packages such as the OpenFoam computational
fluid dynamics (CFD) simulator (openfoam.com) for wind currents.

Strengths Among all the simulators considered, USV sim LSA offers by far the
most precise open source physics simulation. The four available boat models are
divided in a multibody system of six parts with fixed joints to simulate realistic
wave buoyancy effect. Moreover, three types of disturbances are modelled
through CFD: wind currents, water currents, and waves. The way in which
they affect the system can be "local", "global" or turned off completely.

Weaknesses However, all this comes at a cost of performance. Since the simulator
was built with only testing in mind, the goal was to reach the highest level
of realism possible. Unfortunately, although extremely powerful, this makes it
unusable for reinforcement learning.

• UWSim: irs.uji.es/uwsim

General Although originally built with underwater systems in mind, this simulator
can also be used for surface vessels. Built as a ROS package in C++, it is
modular, extensible, light, and offers basic wave simulation. However, it is
mainly used as a visualization tool for other modules such as Gazebo, which is
then responsible for dynamics and control.

Strengths Being a native ROS package, UWSim is easily plugged into any ROS
based framework such as the Roboat platform. Moreover, the simulator does
include disturbance models to some degree and customizable vessel model.

Weaknesses Sadly, UWSim lacks models of important disturbances studied in this
work like current and wind. Furthermore, modeling more realistic boat behav-
ior is either unfeasible or requires significant work.

• RaiSim: raisim.com

General RaiSim is a multibody physics engine for simulating robotic systems and
training AI algorithms on them. Written in C++ it is one of the fastest physics
engines today, easy to use with almost no dependences. It gained popularity
through a number of papers published recently, like [20] in which it was used to
create a highly realistic quadrupedal robot and train a reinforcement learning
agent for its locomotion.

Strengths In RaiSim one can create a highly customizable system and define dis-

https://www.openfoam.com/
https://www.irs.uji.es/uwsim/
https://raisim.com/


3| Simulation of the Roboat and design of the RL controller 35

turbances and uncertainties through available its tools. Moreover, advanced
reinforcement learning algorithms can be trained natively in it with proven
speed and quality. It is, therefore, a great example of such architecture.

Weaknesses Unfortunately, simulating surface and underwater systems with dis-
turbances and uncertainties would have to be done from scratch as it is still
not available in the simulator. And since it is close sourced doing so might
prove difficult, if not impossible.

• ShipAI: github.com/jmpf2018/ShipAI

General A ship simulator wrapping basic ship physics and navigation in a re-
inforcement learning module created for the purposes of [9]. It comes with
implementations of Deep Q-Network and Deep Deterministic Policy Gradient
algorithms for ship navigation. The ship dynamics can be adapted for any
platform and so can the reinforcement learning algorithm parameters such as
the reward function and state design.

Strengths ShipAI is an open sourced simulator already built on the OpenAI gym
model making it simple, yet immensely modular, standardized, and capable.
It is yet another successful example of wrapping a vessel simulation in a rein-
forcement learning module.

Weaknesses The simulator considers only propeller rudder actuation systems mean-
ing it cannot be used in this study. Additionally, it includes no disturbance or
uncertainty models, nor offers considerable flexibility with the learning algo-
rithms.

An overarching theme through the research done on available simulators is that using
prebuilt ASV systems for reinforcement learning purposes introduces significant overhead
in communication which would render the learning process painstakingly slow.
And in the same way, starting from simulators not originally built with ASV platforms in
mind leads to tweaking complex frameworks to simulate the necessary dynamics instead
of their initial usecase, creating multiple unsupervised dependencies in the process.
Therefore, for the purposes of this study and inspired by the listed frameworks, a new
simulator of the Roboat platform’s dynamics was built. Written in Python, following
the OpenAI gym architecture, it is fast and modular with regards to both training new
reinforcement learning algorithms and deployment as a ROS node controller. Moreover,
the kinematics, dynamics, uncertainties and disturbances described in Chapter 1 have
been included in code and available for both training and testing.

https://github.com/jmpf2018/ShipAI
https://www.gymlibrary.ml/


36 3| Simulation of the Roboat and design of the RL controller

3.2. Roboat platform

Roboat is a novel ASV platform (roboat.org) with the mission of unlocking the potential
of urban waterways through cutting-edge autonomous technologies and design. The four
meter long vessel is designed to enable maximum payload and docking through six latching
modules. Actuated through a combination of two main thrusters for cruising and two bow
thrusters for precise movement (as described in Section 1.2), it can carry up to 6 people
with a maximum payload of 1000kg. Furthermore, its rectangular shape makes generating
infrastructure such as bridges possible, and its modular deck allows changing the boat
functionality. The platform implements four main functionalities: transport, garbage
collection, on-demand delivery of goods, and dynamic infrastructure.
The full scale vessel is fitted with an array of sensors for the tasks of perception and
localization. These include a dual RTK GPS for heading and centimeter-level precise
positioning, a 128-beam LiDAR for obstacle detection, a set of cameras for each latching
module, and an IMU. Moreover, the latching system consists of 6 mechanical robotic arms
guided by cameras. Based on ROS, computation is done on an Intel NUC computer, with
a Raspberry Pi 4 used for image processing. Finally, the entire system is powered by a
12kWh battery yielding about 12 hours of autonomy.
The autonomy framework developed for navigation is implemented in C++ in the ROS
environment with state estimation running at 100 Hz and all the other algorithms 10 Hz.
An example of a Roboat vessel can be seen in 3.1.

3.3. Roboat simulator

Before deployment on the real life platform, new functionalities of the autonomous pack-
age can be tested on the system’s so-called "digital twin". Built in Gazebo, it entails
a physical simulation of the vessel, the sensors, the environment of Amsterdam canals
with obstacles, the latching mechanism, and basic thruster dynamics. Since ROS pack-
ages work in a decoupled manner, switching between running the system in simulation
or on the real platform is as easy as changing one parameter. Running the Roboat ROS
framework virtually looks like 3.2.

https://roboat.org/


3| Simulation of the Roboat and design of the RL controller 37

Figure 3.2: The Roboat simulation user interface.

The user interface of the simulation consists of the following parts. Firstly, two windows
open up upon initialization, one presenting RVIZ visualization of the environment and
the other an instruction stack dialogue defining the sequences to be run. The RVIZ win-
dowis divided in typical fashion: the ROS topic selection list, the main 3D environment
visualization, and the camera feed from the vessel. The grey 3D mesh presents the vessel
itself, the thick green line is the global path, the darker, thin green line is the local path,
the red arrow at the end of the global path is the goal state, the yellow line is the past
traversed path, the purple line is the future path predicted by the NMPC. Furthermore,
to the vessel’s right are the u, v, r velocities, and to the right are the force values for the
thrusters denoted in newtons.

3.3.1. Path and trajectory planning

The path planning module is divided in two parts: the global planner and the local
planner. Given the desired goal state, the global planner calculates a high level path
starting from the current state. It is formulated as a graph search problem on a sparse
directed graph G = (V,E) that represents the topological map of the Amsterdam canals,
V being the canal intersections and E the canal segments. The global path is the shortest
path from the current to the goal state, calculated through an A* search.



38 3| Simulation of the Roboat and design of the RL controller

Starting from the global path, the local planner plans a sequence of states for the future 6
seconds, taking into account distance from detected obstacles and overall length. Finally,
the trajectory is created by interpolating the local path and calculating the required
speeds, adhering to canal speed limits and physical limitations of the system.
The framework architecture is presented in 3.3. Interesting parts regarding trajectory
tracking in the architecture are: the path planner, the physical model, and the NMPC
controller.

Figure 3.3: The Roboat navigation stack architecture.

3.3.2. Physical model

The platform is described as a 3 degree-of-freedom system with the 6 dimension state
containing the global x, y, and ψ, and local surge, sway, and yaw velocities u, v, and
r. As presented in Chapter 1 the physical model can be described with the nonlinear
differential equation:

η = [x, y, ψ] (3.1)



3| Simulation of the Roboat and design of the RL controller 39

ν = [u, v, r] (3.2)

η̇ = R(ψ) · ν̇ (3.3)

ν̇ =M−1τ −M−1(C(ν) +D(ν)) (3.4)

τ = Bu =

1 1 0 0

0 0 1 1
a
2

−a
2

b
2

− b
2



f1

f2

f3

f4

 (3.5)

In the equations, M presents the symmetric, positive-definite mass matrix, C presents
the skew-symmetric matrix of Coriolis and centripetal forces, D the positive-semi-definite
drag matrix, and B is the control matrix defining the thruster cross configuration. R(ψ)

is the rotation matrix between the global and body reference frames. Moreover, τ presents
the actuation force vector from the thrusters, and u the control vector.

3.3.3. Nonlinear model predictive control

At the time of writing, the Roboat platform utilizes an NMPC for trajectory tracking
with constant physical parameters of the system. The NMPC problem is formulated as
an optimization of a least square function penalizing deviations of state qk and control
uk from the reference trajectory over a given horizon Nc, presented in 3.6:

min
qk,uk

1

2

[
j+Nc−1∑
k=j

(∣∣∣qk − qrefk

∣∣∣2
Wq

+
∣∣∣uk − urefk ∣∣∣2

Wu

+
∣∣∣qNc − q

ref
Nc

∣∣∣2
WNc

)]
(3.6)

where:
qj = the current estimated state,
qk,uk = the state and control vectors,
qrefk ,urefk = the state and control references,
qNc, q

ref
Nc

= the terminal state vector and reference,
Wq,Wu,WNc = the weight matrices for deviation penalization.

The weights are set in such a way that they penalize position and orientation error ap-
proximately three times as much as velocity error. The same goes for using the bow
thrusters, the use of which is discouraged through the cost seven times that of the main



40 3| Simulation of the Roboat and design of the RL controller

thrusters, as they are less efficient at higher speed cruising.
This approach to control works perfectly well in controlled and static environments. How-
ever, as stated in the Introduction, with the increase in the mismatch between the model
and the real world system the deviation from the planned trajectory increases too.

3.4. Reinforcement learning simulator

When it comes to more complex environments, control algorithms require elaborate mod-
els of the system which can prove too difficult to obtain. An example of such systems
are legged robots in challenging environments, a setting taken on by in [20]. To overcome
this, focus has somewhat shifted to learning approaches in control, enabled by the recent
rise in computation power. Although partially sacrificing insight into the algorithm, when
correctly set up, these algorithms find intrinsically organic and robust solutions. To train
such a controller, it is common practice to build a "digital twin" of the real system. The
following section presents the simulator built for the purposes of this study.

3.4.1. Environment setup

The recent rise and popularity of reinforcement learning has in a large part been possible
due to its open source nature. Today, having a new environment in which to test rein-
forcement learning algorithms open for anyone to use is industry standard. One of the
first to start this trend was a research and development company OpenAI (openai.com).
In [5] they proposed a toolkit for reinforcement learning research called a "gym", which
provides a common interface for any general task to be solved. The toolkit is continuously
being developed and updated, with tens of available environments including games like
Atari Breakout, bio inspired robot control problems such as bipedal and multi legged
walkers, traditional robot control problems such as the inverted pendulum, and many
more, as can be seen in Figure 3.4.

https://openai.com/


3| Simulation of the Roboat and design of the RL controller 41

Figure 3.4: Examples of gym environments visualized from [5].

Furthermore, an API like this gives the developers an opportunity to quickly implement
their own environments based on the same architecture and easily use learning algorithms
on it. To use this interface the following requirements have to be met:

• Attributes:

Observation space Defines the data structure that describes the manner in which
the agent senses the environment. For example, the type Box encodes the
agent’s observation in a multidimensional array, with each dimension having a
specified range.

Action space Defines the data structure that describes the manner in which the
agent operates in the environment. For example, the type Discrete encodes
actions as a vector of discrete values from a specified range.

• Methods:

Step A function that runs one timestep of the environment’s dynamics. The input
into the method is an action vector from the action space and it returns a
tuple of (observation, reward, done, info). The observation is the state of the
environment after the timestep, reward is calculated from a reward function
such as the ones presented in 2.3.1 as a result of the change, done is the episode
termination signal, and info as optional information in the form of a dictionary.

Reset A function that resets the environment to initial conditions and returns the
initial observation from the observation space.

To model the system at hand, the observation space is defined as an array of continuous
values containing the values of the position difference between the current and the desired
state in the vessel’s reference system, the lookahead heading error, the current and desired



42 3| Simulation of the Roboat and design of the RL controller

values surge, sway, and rotational velocities, and the values of actuation for the last step.
This results in a vector of 14 values:

observation =



∆x

∆y

cos∆ψ

sin∆ψ

u

ur

v

vr

r

rr

u1,t−1

u2,t−1

u3,t−1

u4,t−1



(3.7)

The lookahead heading error ψ is divided into cosψ and sinψ because of discontinuity
around 0 value and multiple possible definitions of the same angle, similar to [20]. Using
the lookahead heading error instead of the current one was found to improve the learning
process, inspired by trajectory tracking algorithms for cars.
Furthermore, the action space is defined as a four number vector with values between
[−1, 1]. These are then mapped linearly to maximum and minimum main and bow
thruster force values, taking into account a small loss of efficiency when operating in
reverse.
The step and reset functions define the interaction between the simulated environment and
the learning algorithm. As described, the step function takes as input an action vector,
performs step in system’s dynamics of one timestep with the desired actuation, calculates
the reward according to the reward function, and outputs a (observation, reward, done, info)

tuple. And lastly, just like at initialization, the reset function restores the initial state
for the system, generates a new trajectory to be tracked, and initiates uncertainties and
disturbances.

3.4.2. Uncertainties and disturbances

These are implemented according to the research presented in 1.3. Firstly, the payload is
varied by multiplying the mass matrix with a random value uniformly distributed from



3| Simulation of the Roboat and design of the RL controller 43

[1, 2]. This results in an increase of up to 1169 kg. The specific terms in the 3 DOF are
then modified separately with a small Gausian noise.
Secondly, the wind is described as a force and torque acting on the system, with the
apparent wind speed Vrw and the wind’s apparent angle of attack ω. The maximum value
is defined as 10 m/s, being the maximum speed of the wind measured on the real system
and the angle is taken at random.
And lastly, the current is described as a constant drift of the moving reference frame, with
speed Vc and heading β. Maximum value of the current is defined as 0.5 m/s according
to information available on the internet. All of these effects can be turned on or off in a
given environment.

3.4.3. Reward function

Based on research presented in 2.3.1, the reward function is defined through the deviation
from the desired state and the use of thrusters.

rt =

exp
(
−k1 ∗∆q2xy,t

)
+ exp (−k2 ∗∆ψ2

t )− k3 ∗ ucost,t − k4 ∗∆ucost,t if ηerror,t ≤ 5

−100 if ηerror,t > 5

(3.8)

∆qxy,t =
√

(x̂t − xt)2 + (ŷt − yt)2 (3.9)

ucost,t = k5 ∗ (u21,t + u22,t) + k6 ∗ (u23,t + u24,t) (3.10)

∆ucost,t =
4∑
i=1

|(ui,t − ui,t−1)| (3.11)

where:
∆qxy,t = the Euclidian distance between the current and desired position at time t,
∆ψt = the difference between the current and desired heading at time t,
ucost,t = the weighted sum of actuation values,
∆ucost,t = the derivative cost of actuation calculated as the sum of differences from state
t-1 to t,
ki(i = 1, ..., 6) = constants balancing the effect of each component on the learning process.



44 3| Simulation of the Roboat and design of the RL controller

The parameter values balancing the reward function are given in Table 3.2.

Parameter k1 k2 k3 k4 k5 k6

Value 3 3 1 0.5 0.1 0.7

Table 3.2: Constant values in the reward function

Defined like this, the reward function guides the learning process towards precise state
tracking through a high reward around the desired state and a Gaussian dropoff around
it, and low actuation values both in magnitude and the rate of change. For better un-
derstanding, the Gaussian terms of the reward function for the pose are visualized in
Figure 3.5.

Figure 3.5: Plots of the Gaussian terms of the reward function for Euclidian position error
and heading error.

3.4.4. Trajectory generation

To run the "data hungry" learning algorithm in the simulated environment, each episode
needs a reference trajectory to track. Of course, in order for the algorithm to generalize,
these reference trajectories should cover as many different situations as possible. Depend-
ing on the desired task, this problem can be approached in many ways. For example, for
the task of dynamic positioning the desired final state in the current state’s proximity can
be picked at random and changed upon holding it for some time.

On the other hand, inspiration for trajectory tracking can be found in traditional vessel
performance tests. The same reasoning of trajectory generalization mentioned before ap-
plies to testing the performance of traditional tracking controllers. Therefore, a trajectory



3| Simulation of the Roboat and design of the RL controller 45

generator module was built to train the algorithm, based on a combination of the most
prominent tests in literature, for example Chapter 5 of [10].

The trajectories generated by the generator cover trajectories with: straight line speed
tracking, circles of different turning radii and speed, sine wave shaped trajectories with
varying amplitude, period, and speed. These are stored as arrays of 600 states, presenting
a 60 seconds long timeframe with 0.1s sampling frequency. Examples of the types of
trajectories can be seen in 3.6. Once filled with states, the trajectory is randomly rotated
to get a richer training dataset and better generalization.

Figure 3.6: Examples of a straight, circular, and sine trajectories. The visualized states
are sampled every 1s for clarity.



46 3| Simulation of the Roboat and design of the RL controller

3.4.5. Algorithm setup

With the popularization of the reinforcement learning field in recent years, various toolkits
offering implementations of complex algorithms for fast and reliable prototyping have been
developed. One of the most prominent such toolkits is called the Stable Baselines3. Com-
pletely open sourced, Stable Baselines3 is a set of improved implementations of Reinforce-
ment Learning (RL) algorithms based on OpenAI Baselines (github.com/openai/baselines).
This toolset is its major structural refactoring. Unlike OpenAI Baselines, a unified struc-
ture for all algorithms, unified code style, thorough documentation, and additional algo-
rithms, such as SAC and TD3 are available. More on the Stable Baselines3 framework
can be seen in [30].
Table 3.3 presents the best candidates for training a trajectory tracking network, all of
which are provided by the Stable Baselines3 framework. The choice of the PPO algorithm
was made due to: availability of Box action spaces (not provided by the DQN), support
for multiprocessing, and speed (PPO is an evolution of the slower TRPO, combining the
ideas from TRPO and A2C as explained in 2).

Algorithm Type Box Multiprocessing

DQN Value No Yes
A2C Policy Yes Yes
TRPO Policy Yes Yes
PPO Policy Yes Yes

Table 3.3: Comparison between considered RL algorithms.

Furthermore, Figure 3.7 from [33] provides a comparison of a number of reinforcement
learning algorithms in the OpenAI Walker2d environment. The relevance of this lies in
the fact that this environment closely resembles the problem at hand in the environment
architecture: observation shape (reflecting robot’s current physical state), problem gener-
ation (parametrized generation of terrain similar to trajectory generation), action space
(continuous, controlling the forces and torques of actuators), reward shape (early termi-
nation and energy cost). From the Figure it is clear PPO outperforms other algorithms
on a similar problem, further enforcing the choice of algorithm for the problem at hand.

https://github.com/openai/baselines


3| Simulation of the Roboat and design of the RL controller 47

Figure 3.7: Comparison of performance between a number of reinforcement learning al-
gorithms in the OpenAI Walker2d environment, a bipedal robot simulation.

Another useful component of the Stable Baselines3 framework is a function called
evaluate_policy(model, env, n_eval_episodes), which enables users to easily com-
pare the quality of trained policies. It takes three parameters as input: the model net-
work of the learned policy, the environment in which to run the agent, and the number of
episodes to run. The output is the mean reward per episode and the standard deviation
of reward per episode reward acquired in episodes run.

3.4.6. Learning process

After taking all the necessary steps to set up the algorithm and the environment, a rein-
forcement learning algorithm can start to learn. To track the improvements, the process is
usually observed through a number of metrics. For environments that implement episode
termination based on the performance the most telling are the average episodic reward
and the average episode length. An increase in both of those metrics signals improved
performance. Figure 3.7 is a typical example of the learning progress shown through the
average episodic return.

To better convey how the algorithm improves over time, Figure 3.8 provides snippets of
the model tracking performance immediately after initialization, after 100000, 200000,
500000, and finally one million steps of training. As the reference trajectory, a sine wave
with a period of 15 m, an amplitude of 2 m, and a forward speed of 0.6 m/s is given,
providing a challenging, yet fairly traversable task for the algorithm. The dashed orange



48 3| Simulation of the Roboat and design of the RL controller

line presents the reference trajectory and the blue line the actual trajectory of the vessel
for that episode. As explained before, the episode terminates when the current position
goes beyond 5 m from the reference position.
The tracking obviously improves with more timesteps, starting from random weights and
finding a crude policy already after 100000 steps of training. Slowly, the algorithm fine
tunes the policy, exhibiting smooth behavior and high precision after one million steps.

Figure 3.8: Visualization of intermediate trajectory tracking training results for the RL
controller after initialization, 100000, 200000, 500000, and 1000000 training steps.



3| Simulation of the Roboat and design of the RL controller 49

Figure 3.9 presents the plot of the episodic reward through the one million timesteps of
training. From the Figure, it can be seen that in the first 5̃00000 steps the algorithm
learns the dynamics of the environment in large leaps, increasing the episodic reward
drastically.Following this, the algorithm’s improvement slows down, with the episodic
reward plateauing at around 650. The training is stopped here to avoid overfitting and
loss in generalization ability.

Figure 3.9: Plot of the episodic reward throughout one million steps of training. Orange
line presents the moving average with a window size 50, light orange presents the standard
deviation of the value.

Having obtained satisfactory performance from the algorithm, tests comparing it to the
current NMPC controller can be performed. The results of the comparison are presented
in Chapter 4.



50 3| Simulation of the Roboat and design of the RL controller

3.5. Comparison

Before proceeding to train a control algorithm for the problem at hand, one must prove
that the simulator in which the learning process is executed correctly approximates the
real system. Furthermore, in order to compare the performance of the learned policy with
the traditional NMPC algorithm, which can be run only in the Roboat simulation, one
must validate that the new simulation closely resembles the simulation in ROS.
One way to approach this is to check the response of both the simulators when excited
with the same actuation vectors. And in order to validate them against the real system
the same can be done on the physical platform, be it in a more modest manner, as real
world testing entails infrastructure complications such as launching and sail scheduling.
In this study, the system’s behavior will firstly be tested without the disturbances to
validate the reinforcement learning simulator against the Roboat simulator. Secondly,
the behavior when facing varying payload, current, and wind will be studied. This will
be done only in x axis as the same behavior applies to all 3 DOF.

3.5.1. Step response without disturbances or uncertainties

The experiments were done in the following manner: a step function climbing to the max-
imum available thruster RPM was given as a command to three different combinations
of thrusters inducing motion in the system’s 3 DOF. The response was recorded as an
array of states and compared both in magnitude and difference between the two. Fig-
ures 3.10, 3.11, and 3.12 present the result visualizations.
Furthermore, to get a sense of the magnitude of the effect of disturbances and uncertain-
ties the deffect induced by edge cases in varying payload, current, and wind is presented.
These responses can be seen in Figures 3.13, 3.14, and 3.15.



3| Simulation of the Roboat and design of the RL controller 51

Figure 3.10: Simulator comparison between the Roboat simulator and the reinforcement
learning simulator. X and u step response, followed by the difference between the two.

In Figure 3.10 the maximum thrust command was given to the two main thrusters,
amounting to a straight, forward motion. The top two graphs contain the compari-
son between step responses in both position and velocity, and the bottom two contain
the difference between the simulators in position and velocity. Comparing the difference
between the responses, it is obvious the simulators work almost identically. The terminal
velocity of the vessel is equal for both simulators and the rampup very similar.



52 3| Simulation of the Roboat and design of the RL controller

Figure 3.11: Simulator comparison between the Roboat simulator and the reinforcement
learning simulator. Y and v step response, followed by the difference between the two.

In Figure 3.11 the maximum thrust command was given to the bow thrusters to induce
sideways motion. The position difference settles at around 0.5m, which is not negligible,
however, it can be attributed to initial thruster noise in the Roboat simulator leading to
the accumulation. Other than that, the responses are once again very similar, with the
terminal velocities equal, and the difference between the two is minimal.



3| Simulation of the Roboat and design of the RL controller 53

Figure 3.12: Simulator comparison between the Roboat simulator and the reinforcement
learning simulator. ψ and r step response, followed by the difference between the two.

Lastly, Figure 3.12 contains the response to the maximum RPM given to the main
thrusters, but in different directions. This induces a torque rotating the vessel. The
saw-like appearance of yaw is thanks to the nature of angle notation, jumping between
π and −π. The same reason causes the three spikes in the yaw difference graph, which
have been canceled for more clear visualization. Still, the difference in both orientation
and speed is minimal.

These three figures clearly show that the physics dynamics of the reinforcement learn-
ing simulator closely resemble those of the Roboat simulator. The small differences in
position and velocity responses can be attributed to effects such as the added thruster
noise and computation latency of the ROS communication frmework in the Roboat simu-
lator. Therefore, the reinforcement learning simulator is a valid starting point for learning



54 3| Simulation of the Roboat and design of the RL controller

actuation for the Roboat platform.

3.5.2. Step response with disturbances or uncertainties

As explained in the Introduction, varying payload, current, and wind significantly affect
the dynamics of the system. To train an algorithm robust to these effects, an environment
capable of simulating them realistically is needed. In the reinforcement learning simula-
tor built for the purposes of this study, the effects of disturbances and uncertainties was
implemented as described in 1.3. Figures 3.13, 3.14, and 3.15 provide visualization of the
magnitude of their effect on the same step response experiment as in Figure 3.10.

Figure 3.13: Visualization of the payload uncertainty effect. X and u step response,
followed by the difference between the two.



3| Simulation of the Roboat and design of the RL controller 55

In Figure 3.13, the vessels 3 DOF mass matrix was changed from the original values of
1169, 1450, and 3800, to 1600, 2000, and 5000 respectively. This is approximately the
behavior of the system with six people on board. As can be observed from the graphs,
this induces a significant error in the vessel’s position, with the final value of around 3m.
Moreover, the extra weight induces slower acceleration resulting in up to 1m/s speed error.
Generally, increased payload changes the dynamics of the system affecting the acceleration
resulting from the thrusters. The larger the payload, the lower the acceleration. A residual
effect of the increased payload would also be the increased drag of the vessel and changed
thruster dynamics, however, the magnitude of these effects is much lower.

Figure 3.14: Visualization of the current disturbance effect. X and u step response,
followed by the difference between the two.

In Figure 3.14 a current is acting on the vessel head on at a speed of 0.5 m/s. This induces
a constant drift of the body of water resulting in a steadily increasing position error. It



56 3| Simulation of the Roboat and design of the RL controller

should be noted that u represents the body frame velocity in which the current induced
error is not visible, looking similar to behavior without the current disturbance. However,
in plotting the global position x, it can clearly be seen.

Figure 3.15: Visualization of the wind disturbance effect. X and u step response, followed
by the difference between the two.

Finally, in Figure 3.15 the effect of wind can be observed, blowing head on at a speed
of 10 m/s (approximately equal to the maximum wind speed of 5 on the Beaufort scale,
measured on the real system, in the Amsterdam canals). The wind acts as a slowly varying
force on the system, and its effect can be approximated as such with a randomly initialized
constant strength. Depending on the principal wind direction, the resulting force acting
on the system is changed because of the wind force. This changes the acceleration of the
system and properties of both position and velocity plots. Upon reaching the terminal



3| Simulation of the Roboat and design of the RL controller 57

state, a small speed error is visible in the plots, resulting in a slow increase of the position
error. The effect of wind is relatively small compared to payload and current.

These Figures clearly demonstrate the limited ability of the current simulator. Further-
more, even though the newly developed simulator makes the inclusion of the most sig-
nificant effects possible, due to the fact that direct measurement of their parameters is
infeasible, a traditional controller cannot be easily upgraded to take these effects into
account. Therefore, the hypothesis of this study is that a learning approach can be used
to solve the problem.





59

4| Results

This chapter presents the findings of the study through a comparison of the current and the
novel approach to trajectory tracking. The comparison is done between two algorithms:
the original NMPC and the reinforcement learning algorithm.

The results of the learning process will be shown in the following manner. Firstly, the
performance of the NMPC and the reinforcement learning algorithm will be compared
in simulation without the presence of uncertainties and disturbances. Following this, the
same will be done with the inclusion of uncertainties and disturbances.

The comparison is done through the use of multiple metrics. Firstly, the tracking pre-
cision of the algorithms is compared with the Euclidian distance between the current
position and the desired position on the reference trajectory. The general performance of
the controllers is compared with the Root Mean Squared Error (RMSE) of that distance.
Secondly, the average power usage of a given algorithm is measured with the Equation 4.1:

Paverage =
N∑
i=1

(|f i1|+ |f i2|+ |f i3|+ |f i4|) ∗ |ui|
N

(4.1)

where N is the number of data points, ui is the surge speed of the vessel at time i and f ij
is the force command for thruster j at time i.

All of the tests were carried out with sinusoidal trajectories as reference as they entail
acceleration, deceleration, rotation, and coupled motion in surge, sway, and yaw degrees
of freedom. This reference trajectory is calculated as follows:

yr = A sin(
2π

T
xr) (4.2)

where A is the amplitude in meters and T is the period in meters. The sine wave is then
sampled to get motion of different speeds. The reference trajectory in the following tests
has an amplitude of 2 meters, a period of 10 meters, and a speed of 0.6 m/s. A sine wave
trajectory with these values provides a challenging tracking task for a controller given the



60 4| Results

physical and dynamical properties of the vessel.

Having compared the algorithms in simulation, the same will be done on the real system.
Since varying payload being the only disturbance that can be reliably measured, most
focus will be given to the testing of its effects. For what concerns the current and wind,
given the fact that it is infeasible to precisely measure the magnitude of current and wind,
only approximations will be given.

4.1. Trajectory tracking comparison in simulation

As described, this section contains the comparison between the performance of the NMPC
and the reinforcement learning algorithm in simulation. The first comparison is without
the inclusion of the disturbances and uncertainties, followed by a comparison with their
inclusion.

4.1.1. Comparison without uncertainties and disturbances

The tests were set up as follows. The vessel’s state was initialized to the values of the
first state in the reference trajectory: x and y position to 0, yaw to the initial heading
of the sine, the surge, sway, and rotation speeds to 0. Afterwards, the system’s behavior
was simulated for 500 steps of 0.1 s or 50 s in total. The following Figures contain the
results of these tests.



4| Results 61

Figure 4.1: Comparison between the NMPC and RL algorithm trajectory tracking perfor-
mance. Trajectories of NMPC, RL, and reference sine on the top graph. Tracking error
of NMPC and RL on the bottom graph.

Figure 4.1 contains two graphs: the graph on the top provides the comparison between
the performance in the x-y plane, and the graph on the bottom provides the comparison
of the magnitude of the tracking error for each timestep. It is important to note that in
the Roboat simulator, some noise with mean 0 N and standard deviation 1.5N is added to
the force values upon initialization, however, the effect of this is negligible in the NMPC
tests.
It is clear from the x-y graph that both controllers are capable of tracking the reference
trajectory successfully. The average position error of the NMPC during the episode is
0.3018 m and the average position error of the RL algorithm is 0.2836 m. Comparing
these values, the tracking error for the RL algorithm is 6.03% smaller compared to that
of the NMPC.
Generally, it can be said that the RL algorithm behaves in a more reactive manner with
regards to the increase of the tracking error, leading to a less sine-like trajectory at times
almost perfectly aligned with the reference. On the other hand, the NMPC produces a



62 4| Results

trajectory closer in shape to a sine wave with a more steady tracking error. This behavior
can be explained with the shorter future horizon available to the RL algorithm.

Figure 4.2: Comparison between the NMPC and RL algorithm trajectory tracking per-
formance. Force allocation of NMPC (top) and RL (bottom) for tracking the sinewave
trajectory.

The control forces of the algorithms that resulted in such behavior are presented in Fig-
ure 4.2. The graph on top contains the forces allocated by the NMPC, whereas the bottom
graph contains the same for the RL algorithm.
The average power usage of the NMPC controller calculated with 4.1 is 323.7134 W and
that of the RL algorithm is 491.3406 W. Therefore, on average the RL algorithm uses up
51.78% more power than the NMPC controller.
Although similar in the metrics, the controllers differ significantly in the shape of the
actuation curves. While the NMPC exhibits smooth and continuous commands, those of
the RL algorithm are very volatile and discontinuous. The noisy behavior is an artifact of
the random initialization of weights in the training process and the availability of imme-
diate effect of a force command on the system. This however, comes at a cost of higher



4| Results 63

power usage. As can be seen later, this does not translate to the real world, where the
response is slower and less reliable.
As expected, besides the volatile nature of RL, the actuation of the controllers is fairly
similar with NMPC utilizing bow thrusters for rotation of the vessel to a higher degree.

4.1.2. Comparison with uncertainties and disturbances

Having compared the performance of the controllers without the effect of uncertainties and
disturbances, the same can be done with their inclusion. Since varying payload produces
the largest tracking error in the real world tests done on the platform, it will be considered
first.

The comparison is done in exactly the same manner as before, the only significant dif-
ference being the addition of payload of around 50% of the vessel’s own weight. This is
simulated by changing the diagonal values of the mass matrix according to the vectors
in 4.3, from the old values on the left to the new values on the right.

m11

m22

m33

 =

1169kg1450kg

3800kg


m11

m22

m33

 =

1753.5kg2175kg

5700kg

 (4.3)



64 4| Results

Figure 4.3: Comparison between the NMPC and RL algorithm trajectory tracking per-
formance with payload equal to 50% of vessel’s mass. Trajectories of NMPC, RL, and
reference sine on the top graph. Tracking error of NMPC and RL on the bottom graph.

The graphs visualizing the explained tests are presented in Figure 4.3. Once again, both
controllers exhibit relatively good performance in tracking the desired trajectory. How-
ever, the effect of the added payload is clearly visible as the tracking is less tight than
in the previous case. This is most noticeable in the crests of the sines when achieving
maximum amplitude of the sine. In these runs, the average position error of the NMPC
during the episode increased to 0.6979 m, whereas the average position error of the RL
algorithm increased to 0.5386 m. Comparing these values, the tracking error for the RL
algorithm is now 22.83% smaller compared to that of the NMPC.
Just like before, the RL algorithm is more reactive and NMPC remains steady. How-
ever, for the NMPC the added weight induces lag and overshoot which it fails to cancel.
On the other hand, RL algorithm’s reactive behavior lets it cancel out the effects more
successfully leading to a lower average tracking error.



4| Results 65

Figure 4.4: Comparison between the NMPC and RL algorithm trajectory tracking per-
formance with payload equal to 50% of vessel’s mass. Force allocation of NMPC (top)
and RL (bottom) for tracking the sinewave trajectory.

The forces allocated by the controllers to achieve such behavior are presented in Figure 4.4
in the same manner as with the previous test.
The average power usage of the NMPC calculated with 4.1 with the added weight has
risen to 559.3913 W and the average power usage of the RL algorithm to 742.1449 W.
This means that the RL algorithm used 32.67% less power than the NMPC algorithm in
this case.
As it was in the previous case, the RL algorithm retains its volatile actuation nature and
the NMPC continuous. However, the RL algorithm actuation curve does not oscillate as
severely as before. This can be explained with the slower response of the system caused
by the excess weight leading to slower changes in the state values based on which the RL
algorithm chooses its control network output.

Now we can turn to the effect of the second most significant disturbance for the Roboat
vessel: current. Once again, the comparison is carried out in the same manner as the



66 4| Results

original one with the addition of a current disturbance moving the vessel with a speed of
0.5 m/s in the direction of the negative y axis, perpendicular to the general movement
direction. This direction was found to be the most difficult to deal with for the controllers.
As previously stated, the maximum current speed is taken from online data, although the
actual values in Amsterdam city canals are much lower.

Figure 4.5: Comparison between the NMPC and RL algorithm trajectory tracking per-
formance with a current of 0.5 m/s acting on the system. Trajectories of NMPC, RL, and
reference sine on the top graph. Tracking error of NMPC and RL on the bottom graph.

The data collected for the comparison with the current disturbance is presented in Fig-
ure 4.5 in the same manner as the previous graphs. Once more, the initial state between
the two simulations was almost identical, however, the RL algorithm catches up with the
sine wave more aggressively.
The effect of the current disturbance is clearly visible in both cases, pushing the boat away
from the reference sine. The NMPC tracking suffers much more from the disturbance since
it does not output adequate forces to compensate for the current until the reference gets
farther away, resulting in an initial accumulation of the position error. Once an equilib-



4| Results 67

rium is found the error stabilizes. The RL algorithm, on the other hand, reacts quickly to
the increase in position error which stabilizes around a lower value. The average position
error of the NMPC during the episode was 1.6810 m, whereas for the RL algorithm it
was 0.5803. The error for the RL algorithm was, therefore, 65.48% lower than that of the
NMPC. The bad performance of the NMPC is expected as at every timestep it wrongly
predicts the future trajectory as if there was no current causing constant sideways drift.

Figure 4.6: Comparison between the NMPC and RL algorithm trajectory tracking per-
formance with a current of 0.5 m/s acting on the system. Force allocation of NMPC (top)
and RL (bottom) for tracking the sinewave trajectory.

Just like before, the actuation graphs resulting in this behavior are presented in Figure 4.6.
The average power usage of the NMPC in this comparison was 412.3100 W and for the
RL algorithm 460.2448 W. Put in other words, the RL algorithm used up 11.63% more
power than the NMPC. There are two interesting outtakes from the actuation graphs.
Firstly, the initial force output of the RL algorithm is much more aggressive enabling it
to catch up with the reference sine wave quicker. The NMPC on the other hand gradually
increases the forces as it drifts away from the reference resulting in a more sluggish



68 4| Results

response. Secondly, due to this slow initial reaction the NMPC later compensates the
current effect throughout the episode with the main thrusters outputting positive force
at the same time when moving against the current.

In the end, the effect of wind disturbance on the controller’s performance will be studied.
As stated in Chapter 1, the wind is approximated as a combination of forces and torques
acting on a system. It is defined by its speed and the angle of attack with regards to the
vessel. Moreover, the maximum speed of the ever wind measured during real world tests
in Amsterdam canals was 5 on the Beaufort scale, or around 9 m/s. Once again, the most
difficult task for the controllers was found to be with wind coming from the negative y
axis. This was simulated for both controllers and the results are shown in the following
Figures.

Figure 4.7: Comparison between the NMPC and RL algorithm trajectory tracking per-
formance with a wind of speed 9 m/s acting on the system. Trajectories of NMPC, RL,
and reference sine on the top graph. Tracking error of NMPC and RL on the bottom
graph.

The results of the runs with wind disturbance are presented in Figure 4.7 in the same



4| Results 69

manner as before. In the beginning, the RL algorithm once again reacts faster to the error
buildup than the NMPC. From the position and error graphs, it is obvious that such a
wind disturbance has a significant effect on the system.
The average position error throughout the episode for the NMPC was 1.8032 m, and
1.701 m for the RL algorithm. The RL algorithm’s error is on average, therefore, 5.69%
lower than that of the NMPC. When looking at the position error through time, it can
be seen that both controllers fail to cancel the effect of wind with the error increasing as
the episode goes on.

Figure 4.8: Comparison between the NMPC and RL algorithm trajectory tracking per-
formance with a wind of speed 9 m/s acting on the system. Force allocation of NMPC
(top) and RL (bottom) for tracking the sinewave trajectory.

The actuation graphs for the wind disturbance comparison can be seen in Figure 4.8
presented like in the previous cases.
In this comparison, the average power usage of the NMPC was 184.7790 W, and for
the RL algorithm 300.3304 W. In other words, the RL algorithm used up 62.53% more
power than the NMPC. Looking at the comparison, the RL algorithm again gives a strong



70 4| Results

initial force to reach the reference, this time closer to the maximum thrust value of 1680
N for the main thrusters. Furthermore, the timeline can be divided into sections in which
the controllers try to move forward, with both main thrusters giving positive force, and
sections in which they turn, with the main thrusters working in opposite directions. It is
interesting to note that the NMPC uses much less force when turning, letting the wind
torque turn it clockwise. The RL algorithm on the other hand struggles to track the
reference state and at times tries to turn even with position error prioritizing yaw rather
than position.

Table 4.1 provides a comparison between the previously presented experiments in con-
sidered metrics in one place. In general, the RL algorithm successfully learned to track
trajectories, outperforming the NMPC even in the undisturbed setting in terms of posi-
tional error. However, this comes at a significant power usage cost, as the NMPC uses
significantly less power to achieve similar tracking performance. Moreover, the transient
behaviour of RL is highly undesirable for real world actuators, leading to high wear and
shortened life. Furthermore, it assumes that the real system responds to such behaviour
accordingly which, as can be seen in the following section, does not hold.

In terms of different disturbances, they all induce more error in their own way. By looking
at the values in the table it would seem that current and wind present more of a problem
than varying payload. This is true for the extremes, however, varying payload is present
in all the use cases of the Roboat platform, whereas the values of current and wind are
in general much lower in the Amsterdam canals.

Scenario Undisturbed Added payload Current Wind

Avg. pos. error NMPC (m) 0.3018 0.6979 1.6810 1.8032
Avg. pos. error RL (m) 0.2836 0.5836 0.5803 1.701
Difference between RL and NMPC in % -6.03% -22.83% -65.48% -5.69%
Avg. power consumption NMPC (W) 323.7134 559.3913 412.3100 184.7790
Avg. power consumption RL (W) 491.3406 742.1449 460.2448 300.3304
Difference between RL and NMPC in % 51.78% 32.67% 11.63% 62.53%

Table 4.1: Comparison between the NMPC and the RL algorithm in the evaluated metrics:
average position error and power consumption.



4| Results 71

4.2. Trajectory tracking comparison on the real sys-

tem

After concluding that the RL algorithm successfully performs trajectory tracking in sim-
ulation, it was time to test it on the vessel in the real world. For deployment, a new node
was created in the ROS framework to enable communication with different parts of the
system, such as the local planner for observations and the thrusters for actuation. The
node was written in Python and enables the user to load and use the neural network as a
controller for the system. As previously mentioned, the framework runs on a Intel NUC
system with the control nodes working at 10 Hz just like the NMPC.
Similar to the studies explained in 2.3, when attempting to deploy a low level neural
network controller directly on a real system after training only in simulation, a number of
problems arise that cause the algorithm to fail. These problems range from unexpected
software behavior, sensor noise and latency, to model discrepancies. Furthermore, debug-
ging on the real system is much more time consuming and complex than in simulation.
This section introduces the encountered problems and gives solutions to some of them,
and hints for future work for the rest. Moreover, the best results, after applying the
changes necessary for the algorithm to work in the real world, are presented.

Different planner behavior The first problem was encountered already in deploying
the learned algorithm in the Roboat C++ simulator. To ensure a certain structure
of the trajectory and avoid exceptions caused by badly formed trajectories, a mod-
ule had been implemented to work in between the commanded trajectory and the
actual future trajectory published. This module enforces the future trajectory does
not exceed maximum speed of the vessel by interpolating between neighbor points in
the trajectory. This, however, led to a differently structured future trajectory being
fed to the controller confusing the learned algorithm. Moreover, the future trajec-
tory would change at every step as result of the interpolation process. To fix this,
a different module had to be implemented to override this behavior and get the in-
put closer to what the algorithm learned on in the reinforcement learning simulation.

Measurement noise The second significant cause of bad performance was measurement
noise from the sensors. This was only discovered once on the vessel in real life and
it stems from the imperfect nature and irregular latency of the measurements. The
effect of this is cleaerly visible in the vessel’s odometry, which is filtered with an
extended Kalman filter from the internal measurement unit (IMU) and the two GPS



72 4| Results

units. Given the very high accuracy of the GPSs used, the odometry is calculated
from their relative position at 10Hz. In between measurements, the value is filled
with IMU data, working at 500Hz. As it was found, however, the GPS’s measure-
ment updates often come with a delay between the two, causing the signal to be
choppy. This, in turn, due to very high certainty in the GPS’s measurement in the
covariance matrix, causes the filtered value to be choppy as well. This effect can
clearly be seen in Figure 4.9, presenting 1s of vessel’s surge motion at around 0.6
m/s in an x and y plot. This excerpt contains around 10 updates from each GPS,
each one causing a small jump in the output signal.

Figure 4.9: x and y plot of 1s of the vessel’s odometry signal in forward motion with surge
speed of around 0.6 m/s.

This was mitigated by adjusting the values in the covariance matrix to improve
smoothness and adding state noise in the reinforcement learning simulator to ac-
count for the effect during the training process as well.

Model differences The third and most potent difference discovered between the simu-
lation and the real world system is a combination of physical and thruster model
errors. Firstly, the parameters of physical model were found to be slightly different
than those used originally in simulation. The reason for this lies in the imperfect
feedback from the thrusters, which in turn caused the parameter estimation to be
slightly off. As for the thruster behavior in general, it turned out to be signifi-
cantly different than expected. The thruster manufacturer provides control through
controlling the force setpoint, however, the tracking performance is underwhelming.
Upon deeper inspection, the thruster response was found to be a compound problem



4| Results 73

with a command-to-thruster delay of between 0.5s - 1s, a proprietary PID controller
implemented by the manufacturer to track the propeller RPM, and thruster dynam-
ics as explained in 1.2. To reach the desired force, the proprietary software chooses
an RPM setpoint for the PID from data collected in a Bullard pull test. This yields
realtively good performance when moving at a constant speed, but leads to signifi-
cant tracking error whenever changing speeds.
Multiple approaches were tried to get the thruster response in the reinforcement
learning simulator closer to real life, such as adding random noise to the values,
autoregressive and moving average processes, and thruster dynamic modelling. In
the end, a combination of a random noise and a moving average with a window of
size 5 applied to the actuation vector yielded best results. This made the actuation
more robust and the algorithm seems to learn the slower and unreliable nature of the
actuation. Furthermore, the model was finally able to function upon deployment of
the model in real life. More detailed and precise modelling of the thruster behavior,
from a control signal to the actual thrust output could be a very interesting study
case in itself.

After implementing the mitigation techniques described above, the algorithm was able
to somewhat successfully perform trajectory tracking. The following contains the results
obtained in one of the test runs on the real system in Amsterdam, with the reinforcement
learning getting a headstart from the NMPC to catch up with the sine, as with the de-
layed response of the real system it was unable to do so itself. During the experiment, two
people sat onboard supervising the process, increasing the mass of the system to around
1330 kg, with very weak wind (around 2 on the Beaufort scale) and negligible current.



74 4| Results

Figure 4.10: Comparison between the NMPC and RL algorithm trajectory tracking per-
formance on the real Roboat vessel. Trajectories of NMPC, RL, and reference sine on the
top graph. Tracking error of NMPC and RL on the bottom graph.

In the same manner as before, Figure 4.10 presents the comparison in trajectory tracking
performance of the considered algorithms, this time performed on the real system. Both
experiments are started with the NMPC in charge and once the reference is caught up
with (at around 11s) the RL algorithm takes over.
During the episode the average tracking error for the NMPC was 0.4587 m whereas that
of the RL algorithm was 0.8721 m, making the RL algorithm perform 90.10% worse than
the NMPC. From the graph on the bottom it is clear that the RL algorithm performes
significantly worse than the NMPC. It can also be observed that once RL takes over,
the movement of the vessel lags behind the reference turning later than desired. This is
a direct result of the delay between the control signal and thrusters reaction, which can
also be felt in real life from observing the control vector and actual movement of the vessel.



4| Results 75

Figure 4.11: Comparison between the NMPC and RL algorithm trajectory tracking per-
formance on the real Roboat vessel. Force allocation of NMPC (top) and RL (bottom)
for tracking the sinewave trajectory.

Lastly, Figure 4.11 contains the comparison between the NMPC and RL algorithms in
terms of force allocation for the previous episode. Once again, the RL takes over only
after the NMPC catches up with the reference trajectory.
During the episode, the average power usage of the NMPC algorithm was 161.4688 W,
whereas that of the RL algorithm was 543.6210 W. To put it into perspective, the RL
algorithm really struggles, using up 336.67% more power than the NMPC when deployed
on the real system. From the Figure, it is jarring to see just how much more the RL
algorithm struggles, constantly overreacting to not getting the desired timely actuation
and oscillating between strong left and strong right turning. This behavior is highly
undesirable as when switching the direction of rotation, the propeller loses function for a
short amount of time as it spins up the water flow through it, as explained in 1.2. This
further exaggerates the actuation delay to beyond 2s.

In conclusion, all of this makes the real life performance very different from what the



76 4| Results

algorithm experiences in the reinforcement learning simulator. It is also amazing to see
how little the NMPC performance is impacted by these differences as it works almost
the same in the real life as it does in the simulation. This is in large part thanks to the
temporal and spatial smoothness of its actuation signal. Because of this, the small errors
in odometry and thrust delays do not change the actuation signal significantly. The same
cannot be said for the reinforcement learning algorithm, as these small differences break
the Markov assumption and lead to significant changes in actuation signals. This, without
adequate response, leads to poor performance in real life versus the simulation.
However, novel research, for example the Conditioning for Action Policy Smoothness
algorithm (CAPS) from [27], indicates it is possible to improve the temporal and spatial
smoothness of RL algorithms which gives hope for future improvements to translate the
performance improvement with uncertainties and disturbances from simulation to the real
system.



77

5| Conclusions and future

developments

The hypothesis of this thesis was that a learning-based controller can be trained to perform
precise trajectory tracking for an ASV, more specifically the Roboat platform. To that
end, a simulator of the system dynamics was developed based on research done on the
platform and previous literature, with the modelling of the necessary uncertainties and
disturbances. This simulator was then wrapper in a gym environment to facilitate the
testing of reinforcement learning algorithms for the vessel and an additional module was
created for the generation of various trajectories. This setup is modular in terms of
vessel type, its thruster configuration, the choice of reinforcement learning algorithms,
and disturbances and uncertainties.
Having done so, an agent was trained in the environment to perform trajectory tracking
using the Proximal Policy Optimization algorithm. The obtained controller was then first
compared in simulation with the current NMPC approach used on the vessel. Such a
controller was able to outperform the NMPC in simulation in terms of trajectory tracking
precision, although at a significant cost of high power consumption and erratic control
signals. The controller was then deployed on the real system, where its performance
deteriorated significantly, as it is not robust to differences between the real world and
the simulated system. In the end, a study of problems causing the tracking to fail was
performed with some of them being successfully solved and others needing further work.

To conclude, an agent trained through reinforcement learning can be used to perform
trajectory tracking successfully. Obtaining such a controller takes as little as half an
hour of training in simulation and it learns to deal with uncertainties and disturbances
without information about them. However, it is of upmost importance to get the simulated
environment as close to the real world as possible, as the described approach is not robust
enough. Not doing so can lead to failure when attempting to deploy the model from
simulation to real life.
Furthermore, for the learned controller to be useful in everyday function of the Roboat
platform, the set of trajectories used for training has to be enriched with trajectories



78 5| Conclusions and future developments

containing sideways motion, acceleration, and dynamic positioning.

As for future developments of the approach, in the short term much more work should be
done on the system model and robustness. Firstly, better parameter estimation is needed,
with the inclusion of the Coriolis terms. This also includes the coupled effect of varying
payload and payload distribution on the mass, damping, and Coriolis terms. Furthermore,
a better model of the thruster dynamics is needed. When it comes to improving actuation
signals, in the short term, novel approaches such as the CAPS algorithm from [27] are
likely to make the system less sensitive to model discrepancies.
On the other hand in the long term, possible combinations of reinforcement learning
with traditional approaches, such as those in [24], [14], and [13] should be considered.
Moreover, curriculum learning for improved generalization and live parameter estimation
using motion encoders could be exciting and useful new directions for the project.

Finally, this work shows that reinforcement learning might not be robust enough for
critical real world applications yet, but recent developments hint it might get there in the
near future.



79

Bibliography

[1] A. Andre do Nascimento. Robust model predictive control for marine vessels. Mas-
ter’s thesis, KTH, School of Electrical Engineering and Computer Science (EECS),
2018.

[2] S. Bai, J. Z. Kolter, and V. Koltun. An empirical evaluation of generic convolutional
and recurrent networks for sequence modeling, 2018. URL https://arxiv.org/abs/

1803.01271.

[3] J. Balchen, N. Jenssen, E. Mathisen, and S. Saelid. Dynamic positioning of floating
vessels based on kalman filtering and optimal control. pages 852 – 864, 01 1981. doi:
10.1109/CDC.1980.271924.

[4] B. Bingham, C. Agüero, M. McCarrin, J. Klamo, J. Malia, K. Allen, T. Lum, M. Raw-
son, and R. Waqar. Toward maritime robotic simulation in gazebo. In OCEANS
2019 MTS/IEEE SEATTLE, pages 1–10, 2019. doi: 10.23919/OCEANS40490.2019.
8962724.

[5] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba. Openai gym, 2016. URL https://arxiv.org/abs/1606.01540.

[6] C. Chen, H. Tang, J. Hao, W. Liu, and Z. Meng. Addressing action oscillations
through learning policy inertia, 2021. URL https://arxiv.org/abs/2103.02287.

[7] M. De Paula and G. G. Acosta. Trajectory tracking algorithm for autonomous vehi-
cles using adaptive reinforcement learning. In OCEANS 2015 - MTS/IEEE Wash-
ington, pages 1–8, 2015. doi: 10.23919/OCEANS.2015.7401861.

[8] G. Dulac-Arnold, D. Mankowitz, and T. Hester. Challenges of real-world reinforce-
ment learning, 2019. URL https://arxiv.org/abs/1904.12901.

[9] J. Figueiredo and R. Rejaili. Deep reinforcement learning algorithms for ship nav-
igation in restricted waters. Mecatrone, 3, 12 2018. doi: 10.11606/issn.2526-8260.
mecatrone.2018.151953.

https://arxiv.org/abs/1803.01271
https://arxiv.org/abs/1803.01271
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/2103.02287
https://arxiv.org/abs/1904.12901


80 | Bibliography

[10] T. Fossen. Guidance and Control of Ocean Vehicles. Wiley, 1994. ISBN
9780471941132. URL https://books.google.hr/books?id=cwJUAAAAMAAJ.

[11] T. Fossen and M. Paulsen. Adaptive feedback linearization applied to steering of
ships. Modeling, Identification and Control: A Norwegian Research Bulletin, 14, 03
1995. doi: 10.4173/mic.1993.4.4.

[12] T. I. Fossen. A survey on nonlinear ship control: from theory to practice. IFAC
Proceedings Volumes, 33(21):1–16, 2000. ISSN 1474-6670. doi: https://doi.org/10.
1016/S1474-6670(17)37044-1. URL https://www.sciencedirect.com/science/

article/pii/S1474667017370441. 5th IFAC Conference on Manoeuvring and Con-
trol of Marine Craft (MCMC 2000), Aalborg, Denmark, 23-25 August 2000.

[13] A. Gonzalez-Garcia, H. Castañeda, and L. Garrido. Usv path-following control based
on deep reinforcement learning and adaptive control. In Global Oceans 2020: Sin-
gapore – U.S. Gulf Coast, pages 1–7, 2020. doi: 10.1109/IEEECONF38699.2020.
9389360.

[14] A. Gonzalez-Garcia, D. Barragan-Alcantar, I. Collado-Gonzalez, and L. Gar-
rido. Adaptive dynamic programming and deep reinforcement learning for the
control of an unmanned surface vehicle: Experimental results. Control Engi-
neering Practice, 111:104807, 2021. ISSN 0967-0661. doi: https://doi.org/10.
1016/j.conengprac.2021.104807. URL https://www.sciencedirect.com/science/

article/pii/S0967066121000848.

[15] H. Halvorsen, H. Øveraas, O. Landstad, V. Smines, T. Fossen, and T. Johansen. Wave
motion compensation in dynamic positioning of small autonomous vessels. Journal of
Marine Science and Technology, 26:1–20, 09 2020. doi: 10.1007/s00773-020-00765-y.

[16] T. Hester, M. Quinlan, and P. Stone. Generalized model learning for reinforcement
learning on a humanoid robot. In 2010 IEEE International Conference on Robotics
and Automation, pages 2369–2374, 2010. doi: 10.1109/ROBOT.2010.5509181.

[17] T. Holzhüter. Lqg approach for the high-precision track control of ships. IEE Pro-
ceedings - Control Theory and Applications, 144:121–127(6), March 1997. ISSN 1350-
2379. URL https://digital-library.theiet.org/content/journals/10.1049/

ip-cta_19971032.

[18] J. Hwangbo, J. Lee, A. Dosovitskiy, D. Bellicoso, V. Tsounis, V. Koltun, and M. Hut-
ter. Learning agile and dynamic motor skills for legged robots. Science Robotics, 4
(26):eaau5872, 2019.

https://books.google.hr/books?id=cwJUAAAAMAAJ
https://www.sciencedirect.com/science/article/pii/S1474667017370441
https://www.sciencedirect.com/science/article/pii/S1474667017370441
https://www.sciencedirect.com/science/article/pii/S0967066121000848
https://www.sciencedirect.com/science/article/pii/S0967066121000848
https://digital-library.theiet.org/content/journals/10.1049/ip-cta_19971032
https://digital-library.theiet.org/content/journals/10.1049/ip-cta_19971032


| Bibliography 81

[19] J. Ibarz, J. Tan, C. Finn, M. Kalakrishnan, P. Pastor, and S. Levine. How to
train your robot with deep reinforcement learning: lessons we have learned. The
International Journal of Robotics Research, 40(4-5):698–721, jan 2021. doi: 10.1177/
0278364920987859. URL https://doi.org/10.1177%2F0278364920987859.

[20] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter. Learning quadrupedal
locomotion over challenging terrain. Science Robotics, 5(47), oct 2020. doi: 10.1126/
scirobotics.abc5986. URL https://doi.org/10.1126%2Fscirobotics.abc5986.

[21] Y. Li, H. Li, Z. Li, H. Fang, A. K. Sanyal, Y. Wang, and Q. Qiu. Fast and ac-
curate trajectory tracking for unmanned aerial vehicles based on deep reinforce-
ment learning. In 2019 IEEE 25th International Conference on Embedded and
Real-Time Computing Systems and Applications (RTCSA), pages 1–9, 2019. doi:
10.1109/RTCSA.2019.8864571.

[22] A. B. Martinsen and A. M. Lekkas. Curved path following with deep reinforce-
ment learning: Results from three vessel models. In OCEANS 2018 MTS/IEEE
Charleston, pages 1–8, 2018. doi: 10.1109/OCEANS.2018.8604829.

[23] A. B. Martinsen and A. M. Lekkas. Straight-path following for underactu-
ated marine vessels using deep reinforcement learning. IFAC-PapersOnLine,
51(29):329–334, 2018. ISSN 2405-8963. doi: https://doi.org/10.1016/j.ifacol.
2018.09.502. URL https://www.sciencedirect.com/science/article/pii/

S2405896318321918. 11th IFAC Conference on Control Applications in Marine Sys-
tems, Robotics, and Vehicles CAMS 2018.

[24] A. B. Martinsen, A. Lekkas, S. Gros, J. Glomsrud, and T. Pedersen. Reinforcement
learning-based tracking control of usvs in varying operational conditions. Frontiers
in Robotics and AI, 7, 03 2020. doi: 10.3389/frobt.2020.00032.

[25] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing atari with deep reinforcement learning, 2013. URL https:

//arxiv.org/abs/1312.5602.

[26] A. F. Molland, S. R. Turnock, and D. A. Hudson. Ship Resistance and Propulsion-
Second Edition, pages i–ii. Cambridge University Press, 2 edition, 2017.

[27] S. Mysore, B. Mabsout, R. Mancuso, and K. Saenko. Regularizing action policies for
smooth control with reinforcement learning, 2020. URL https://arxiv.org/abs/

2012.06644.

[28] S. Nagendra, N. Podila, R. Ugarakhod, and K. George. Comparison of reinforcement

https://doi.org/10.1177%2F0278364920987859
https://doi.org/10.1126%2Fscirobotics.abc5986
https://www.sciencedirect.com/science/article/pii/S2405896318321918
https://www.sciencedirect.com/science/article/pii/S2405896318321918
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/1312.5602
https://arxiv.org/abs/2012.06644
https://arxiv.org/abs/2012.06644


82 | Bibliography

learning algorithms applied to the cart-pole problem. In 2017 International Confer-
ence on Advances in Computing, Communications and Informatics (ICACCI), pages
26–32, 2017. doi: 10.1109/ICACCI.2017.8125811.

[29] M. Paravisi, D. H. Santos, V. Jorge, G. Heck, L. M. Gonçalves, and A. Amory. Un-
manned surface vehicle simulator with realistic environmental disturbances. Sensors,
19(5), 2019. ISSN 1424-8220. doi: 10.3390/s19051068. URL https://www.mdpi.

com/1424-8220/19/5/1068.

[30] A. Raffin, A. Hill, A. Gleave, A. Kanervisto, M. Ernestus, and N. Dormann.
Stable-baselines3: Reliable reinforcement learning implementations. Journal of Ma-
chine Learning Research, 22(268):1–8, 2021. URL http://jmlr.org/papers/v22/

20-1364.html.

[31] S. Russell and P. Norvig. Artificial Intelligence: A Modern Approach. Prentice Hall
Press, USA, 3rd edition, 2009. ISBN 0136042597.

[32] E. I. Sarda, H. Qu, I. R. Bertaska, and K. D. von Ellenrieder. Station-keeping control
of an unmanned surface vehicle exposed to current and wind disturbances. Ocean
Engineering, 127:305–324, 2016. ISSN 0029-8018. doi: https://doi.org/10.1016/j.
oceaneng.2016.09.037. URL https://www.sciencedirect.com/science/article/

pii/S0029801816304206.

[33] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms, 2017. URL https://arxiv.org/abs/1707.06347.

[34] R. Tedrake. Underactuated Robotics. 2022. URL http://underactuated.mit.edu.

[35] R. Wang, J. Lehman, J. Clune, and K. O. Stanley. Paired open-ended trailblazer
(poet): Endlessly generating increasingly complex and diverse learning environments
and their solutions, 2019. URL https://arxiv.org/abs/1901.01753.

[36] W. Wang, L. Mateos, S. Park, P. Leoni, B. Gheneti, F. Duarte, C. Ratti, and D. Rus.
Design, modeling, and nonlinear model predictive tracking control of a novel au-
tonomous surface vehicle. 05 2018. doi: 10.1109/ICRA.2018.8460632.

[37] W. Wang, B. Gheneti, L. A. Mateos, F. Duarte, C. Ratti, and D. Rus. Roboat: An
autonomous surface vehicle for urban waterways. In 2019 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 6340–6347, 2019. doi:
10.1109/IROS40897.2019.8968131.

[38] Y. Wang, J. Tong, T.-Y. Song, and Z.-H. Wan. Unmanned surface vehicle course
tracking control based on neural network and deep deterministic policy gradient

https://www.mdpi.com/1424-8220/19/5/1068
https://www.mdpi.com/1424-8220/19/5/1068
http://jmlr.org/papers/v22/20-1364.html
http://jmlr.org/papers/v22/20-1364.html
https://www.sciencedirect.com/science/article/pii/S0029801816304206
https://www.sciencedirect.com/science/article/pii/S0029801816304206
https://arxiv.org/abs/1707.06347
http://underactuated.mit.edu
https://arxiv.org/abs/1901.01753


5| BIBLIOGRAPHY 83

algorithm. In 2018 OCEANS - MTS/IEEE Kobe Techno-Oceans (OTO), pages 1–5,
2018. doi: 10.1109/OCEANSKOBE.2018.8559329.

[39] J. Woo, C. Yu, and N. Kim. Deep reinforcement learning-based controller for path
following of an unmanned surface vehicle. Ocean Engineering, 183:155–166, 2019.
ISSN 0029-8018. doi: https://doi.org/10.1016/j.oceaneng.2019.04.099. URL https:

//www.sciencedirect.com/science/article/pii/S0029801819302203.

[40] R. Yu, Z. Shi, C. Huang, T. Li, and Q. Ma. Deep reinforcement learning based
optimal trajectory tracking control of autonomous underwater vehicle. In 2017 36th
Chinese Control Conference (CCC), pages 4958–4965, 2017. doi: 10.23919/ChiCC.
2017.8028138.

[41] L. Zhang, L. Qiao, J. Chen, and W. Zhang. Neural-network-based reinforcement
learning control for path following of underactuated ships. In 2016 35th Chinese Con-
trol Conference (CCC), pages 5786–5791, 2016. doi: 10.1109/ChiCC.2016.7554262.

[42] S. S. Øvereng, D. T. Nguyen, and G. Hamre. Dynamic positioning using
deep reinforcement learning. Ocean Engineering, 235:109433, 2021. ISSN 0029-
8018. doi: https://doi.org/10.1016/j.oceaneng.2021.109433. URL https://www.

sciencedirect.com/science/article/pii/S0029801821008398.

https://www.sciencedirect.com/science/article/pii/S0029801819302203
https://www.sciencedirect.com/science/article/pii/S0029801819302203
https://www.sciencedirect.com/science/article/pii/S0029801821008398
https://www.sciencedirect.com/science/article/pii/S0029801821008398




85

List of Figures

1.1 Comparison between thruster configurations. . . . . . . . . . . . . . . . . . 10
1.2 Example of a thrust coefficient graph for a variable pitch propeller from [26]. 12

2.1 Basic high level abstraction of the architecture of the agent-environment
loop. Image from OpenAI. . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2 Visualization of a sinusoidal trajectory with timestep of 1s, each state de-
fined with the x, y, and ψ values. . . . . . . . . . . . . . . . . . . . . . . . 23

3.1 Examples of different ASV platforms. Military USV: https://www.naval-
technology.com/projects/fleet-class-common-unmanned-surface-vessel-cusv/,
Roboat: https://roboat.org/, Saildrone: https://www.saildrone.com/, WAM-
V: https://wam-v.com/wam-v-16-asv. . . . . . . . . . . . . . . . . . . . . . 32

3.2 The Roboat simulation user interface. . . . . . . . . . . . . . . . . . . . . . 37
3.3 The Roboat navigation stack architecture. . . . . . . . . . . . . . . . . . . 38
3.4 Examples of gym environments visualized from [5]. . . . . . . . . . . . . . 41
3.5 Plots of the Gaussian terms of the reward function for Euclidian position

error and heading error. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6 Examples of a straight, circular, and sine trajectories. The visualized states

are sampled every 1s for clarity. . . . . . . . . . . . . . . . . . . . . . . . . 45
3.7 Comparison of performance between a number of reinforcement learning

algorithms in the OpenAI Walker2d environment, a bipedal robot simulation. 47
3.8 Visualization of intermediate trajectory tracking training results for the RL

controller after initialization, 100000, 200000, 500000, and 1000000 training
steps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.9 Plot of the episodic reward throughout one million steps of training. Or-
ange line presents the moving average with a window size 50, light orange
presents the standard deviation of the value. . . . . . . . . . . . . . . . . . 49

3.10 Simulator comparison between the Roboat simulator and the reinforcement
learning simulator. X and u step response, followed by the difference be-
tween the two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

https://www.gymlibrary.ml/content/api/
https://www.naval-technology.com/projects/fleet-class-common-unmanned-surface-vessel-cusv/
https://www.naval-technology.com/projects/fleet-class-common-unmanned-surface-vessel-cusv/
https://roboat.org/
https://www.saildrone.com/
https://wam-v.com/wam-v-16-asv


86 | List of Figures

3.11 Simulator comparison between the Roboat simulator and the reinforcement
learning simulator. Y and v step response, followed by the difference be-
tween the two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.12 Simulator comparison between the Roboat simulator and the reinforcement
learning simulator. ψ and r step response, followed by the difference be-
tween the two. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.13 Visualization of the payload uncertainty effect. X and u step response,
followed by the difference between the two. . . . . . . . . . . . . . . . . . . 54

3.14 Visualization of the current disturbance effect. X and u step response,
followed by the difference between the two. . . . . . . . . . . . . . . . . . . 55

3.15 Visualization of the wind disturbance effect. X and u step response, fol-
lowed by the difference between the two. . . . . . . . . . . . . . . . . . . . 56

4.1 Comparison between the NMPC and RL algorithm trajectory tracking per-
formance. Trajectories of NMPC, RL, and reference sine on the top graph.
Tracking error of NMPC and RL on the bottom graph. . . . . . . . . . . . 61

4.2 Comparison between the NMPC and RL algorithm trajectory tracking per-
formance. Force allocation of NMPC (top) and RL (bottom) for tracking
the sinewave trajectory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.3 Comparison between the NMPC and RL algorithm trajectory tracking
performance with payload equal to 50% of vessel’s mass. Trajectories of
NMPC, RL, and reference sine on the top graph. Tracking error of NMPC
and RL on the bottom graph. . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.4 Comparison between the NMPC and RL algorithm trajectory tracking per-
formance with payload equal to 50% of vessel’s mass. Force allocation of
NMPC (top) and RL (bottom) for tracking the sinewave trajectory. . . . . 65

4.5 Comparison between the NMPC and RL algorithm trajectory tracking per-
formance with a current of 0.5 m/s acting on the system. Trajectories of
NMPC, RL, and reference sine on the top graph. Tracking error of NMPC
and RL on the bottom graph. . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.6 Comparison between the NMPC and RL algorithm trajectory tracking per-
formance with a current of 0.5 m/s acting on the system. Force allocation
of NMPC (top) and RL (bottom) for tracking the sinewave trajectory. . . . 67

4.7 Comparison between the NMPC and RL algorithm trajectory tracking per-
formance with a wind of speed 9 m/s acting on the system. Trajectories of
NMPC, RL, and reference sine on the top graph. Tracking error of NMPC
and RL on the bottom graph. . . . . . . . . . . . . . . . . . . . . . . . . . 68



| List of Figures 87

4.8 Comparison between the NMPC and RL algorithm trajectory tracking per-
formance with a wind of speed 9 m/s acting on the system. Force allocation
of NMPC (top) and RL (bottom) for tracking the sinewave trajectory. . . . 69

4.9 x and y plot of 1s of the vessel’s odometry signal in forward motion with
surge speed of around 0.6 m/s. . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.10 Comparison between the NMPC and RL algorithm trajectory tracking per-
formance on the real Roboat vessel. Trajectories of NMPC, RL, and refer-
ence sine on the top graph. Tracking error of NMPC and RL on the bottom
graph. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.11 Comparison between the NMPC and RL algorithm trajectory tracking per-
formance on the real Roboat vessel. Force allocation of NMPC (top) and
RL (bottom) for tracking the sinewave trajectory. . . . . . . . . . . . . . . 75





89

List of Tables

1.1 6 DOF notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 Available ASV simulators considered . . . . . . . . . . . . . . . . . . . . . 32
3.2 Constant values in the reward function . . . . . . . . . . . . . . . . . . . . 44
3.3 Comparison between considered RL algorithms. . . . . . . . . . . . . . . . 46

4.1 Comparison between the NMPC and the RL algorithm in the evaluated
metrics: average position error and power consumption. . . . . . . . . . . . 70





91

Acknowledgements

As a final note, I would like to write a couple of words for the people who meant the most
to me throughout the process.

Firstly, I want to thank my supervisor prof. Riccardo Scattolini, for having led me through
the entire process and given me strong support in control theory, a field I love, but have
not officially studied. He made himself ever available and helpful, timely responding any
questions I had.

I would also like to thank the Roboat team and the entire AMS institute, a group of
very talented and important, but wonderful people for giving me the opportunity to be
a part of an exciting robotics project and to live in Amsterdam for one month, making
me feel as one of them. Especially, I would like to thank Jonathan, a robotics engineer
from the Roboat team and the supervisor of my work on their side, thank you for being
a phenomenal mentor, as well as a great friend.

And finally, most of all I would like to thank my family and Ivana for provided me with
endless love and support.




	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	ASV kinematics and dynamics
	General
	Thruster dynamics
	Disturbances and uncertainties
	Varying payload
	Wind
	Current
	Waves

	The complete model

	Reinforcement Learning
	General
	Algorithms
	Q-learning, deep Q-learning, and variants
	Policy Gradient Methods
	Proximal Policy Optimization

	Methodologies
	Trajectory tracking
	Vessel control with reinforcement learning
	Real world system actuation through reinforcement learning


	Simulation of the Roboat and design of the RL controller
	Available ASV simulator survey
	Roboat platform
	Roboat simulator
	Path and trajectory planning
	Physical model
	Nonlinear model predictive control

	Reinforcement learning simulator
	Environment setup
	Uncertainties and disturbances
	Reward function
	Trajectory generation
	Algorithm setup
	Learning process

	Comparison
	Step response without disturbances or uncertainties
	Step response with disturbances or uncertainties


	Results
	Trajectory tracking comparison in simulation
	Comparison without uncertainties and disturbances
	Comparison with uncertainties and disturbances

	Trajectory tracking comparison on the real system

	Conclusions and future developments
	Bibliography
	List of Figures
	List of Tables
	Acknowledgements

