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Abstract

Multi-zone sound field synthesis is a branch of sound field synthesis in which we reproduce
different pressure fields inside multiple regions. Is a complex and challenging problem in
acoustic signal processing that is increasingly being required to be addressed. In this
thesis, we propose a technique for multi-zone sound field synthesis based on a deep neu-
ral network. Most of the nowadays approaches focus on the reproduction of a desired
sound field in a target bright region, while attenuating the acoustic potential energy in a
second target dark region. One of the main issues of these methods is in their ability to
accurately reproduce the bright zone, without failing on attenuating the second region.
Acoustic Contrast Control has been demonstrated to be the best-performing technique
in terms of attenuation of the dark zone, at the cost of a high error in the bright re-
gion. In the proposed technique we synthesise the estimated pressure field through a
Uniform Linear Array of loudspeakers and follow the Pressure Matching and Amplitude
Matching approaches, in which the driving signals to reproduce a sound field are retrieved
by minimising the reproduction error at a discrete set of control points. Following deep
learning’s recent widespread adoption in the acoustic signal processing field we perform
the minimisation by applying an encoder-decoder-structured Convolutional Neural Net-
work. Through simulations and numerical experiments, we compare the performance of
the aforementioned methods with the proposed technique and demonstrate how the latter
can overcome the trade-off between the accuracy of the reproduction in the bright zone
and the acoustic contrast between the two target regions.

Keywords: multizone soundfield synthesis, personal audio, pressure matching, deep
learning, convolutional neural network





Abstract in lingua italiana

La riproduzione multizona del campo sonoro è un branca della sintesi dei campi sonori
che si occupa di riprodurre diversi campi di pressione in regioni multiple dello spazio. È
un problema complesso e impegnativo nell’elaborazione dei segnali acustici che sta diven-
tando sempre più necessario da affrontare. In questa tesi, proponiamo una tecnica per
la sintesi del campo sonoro multi-zona basata su una rete neurale profonda. La mag-
gior parte degli approcci attuali si focalizzano sulla riproduzione di un campo sonoro
desiderato in una regione luminosa, mentre attenuano l’energia potenziale acustica in una
seconda regione scura. Uno dei problemi principali di questi metodi sta nella loro capac-
ità di riprodurre con precisione la zona luminosa, senza mancare di attenuare la seconda
regione. Acoustic Contrast Control ha dimostrato di essere la tecnica più performante
in termini di attenuazione della zona scura, al costo di un errore elevato nella regione
luminosa. Nella tecnica proposta sintetizziamo il campo di pressione stimato attraverso
una serie lineare uniforme di altoparlanti e seguiamo gli approcci proposti nei metodi di
Pressure Matching e Amplitude Matching, in cui i segnali di azionamento per riprodurre
un campo sonoro sono ottenuti minimizzando l’errore di riproduzione in un insieme dis-
creto di punti di controllo. In seguito alla recente adozione diffusa dell’apprendimento
profondo nell’elaborazione del segnale acustico, eseguiamo la minimizzazione applicando
una rete neurale convoluzionale basata sulla struttura encoder-decoder. Attraverso sim-
ulazioni ed esperimenti numerici, confrontiamo le prestazioni dei suddetti metodi con la
tecnica proposta e dimostriamo come quest’ultima riesca superare il compromesso tra la
precisione della riproduzione nella zona luminosa e il contrasto acustico tra le due regioni
obiettivo.

Parole chiave: Sintesi acustica multizona, audio personale, Pressure Matching, ap-
prendimento profondo, rete neurale convoluzionale
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1

Introduction

Sound Field Synthesis (SFS) methods use multiple loudspeakers (secondary sources) to
synthesize a desired pressure field in a target region of space. SFS has been an active
research field in acoustics for several decades, with applications in immersive, virtual
and augmented reality, telepresence, gaming, noise cancellation, and personal sound zone
generation.

SFS methods can be classified into two categories. Classical approaches, such as Wave
Field Synthesis and Ambisonics, are based on analytic methods derived from the Helmholtz
equation and assume large continuous distributions of loudspeakers. Wave Field Synthesis
(WFS) [9, 54] reproduces the desired sound field by leveraging on the Huygens principle
and on large numbers of regularly displaced loudspeakers. Ambisonics [4, 24, 26, 60] is
based on the analysis of the sound field in terms of first-order spherical harmonics and
reproduces accurately the pressure field in a limited region of space denoted sweet spot.
To achieve larger listening areas High Order Ambisonics (HOA) [48] considers also higher
order spherical harmonics.
The other class of methods uses optimisation-based techniques that mathematically min-
imize the error between the synthesised and desired sound fields in a target region of
space. Pressure Matching (PM) and (weighted) Mode Matching (MM) are examples of
optimisation-based SFS methods. Pressure Matching techniques [32, 37, 44, 47] are based
on the minimisation of the reproduction error at a fixed number of positions in the lis-
tening area, denoted as control points (CPs). Given the desired pressure in the CPs and
the transfer functions - i.e. the acoustic functions that describe how sound propagates
between a speaker and a microphone - the driving signal is obtained through regularised
least squares. PM it’s widely used in practice because of its simple implementation and
flexibility on secondary sources placement [33]. Mode matching techniques [10, 35, 52]
aim at minimising the difference between the modes of the wavefunction used to expand
the sound field of the desired and reproduced pressure field at a single control point.
Since numerical-optimisation-based methods enable us to generate complex sound fields
with a flexible array geometry of loudspeakers, they have a broad range of practical ap-
plications.
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In personal audio applications [11], it is often necessary to synthesise different sound
fields inside multiple regions. This problem is knwon as the multizone sound field synthe-
sis (MZ-SFS) problem [29, 56, 61, 64]. For example, an MZ-SFS problem could be the
synthesis of plane waves with different propagation angles inside two regions. However, it
is sometimes difficult to achieve accurate synthesis in such a control problem because its
physical feasibility becomes significantly low depending on the desired propagation angles
of the plane waves and the chosen system layout. Furthermore, in some applications, it
is desired to generate sound fields of certain acoustic power levels, e.g. it could be neces-
sary to have the acoustic power distribution high in one region and suppressed in another
region [11]. In previous studies, this kind of MZ-SFS problem has been addressed by the
Acoustic Contrast Control (ACC) and Amplitude Matching (AM) approaches.
ACC [15, 17], aims to maximise the ratio between the acoustic potential energy between
two regions. However, the synthesised power distribution by ACC cannot be guaranteed
to be flat inside the target region, as only the total energy is taken into account. Another
drawback of ACC is that it can’t be applied to generating sound fields in more than two
regions at different acoustic potential energy. Furthermore, it completely discards any
kind of information about the two desired sound fields; it only focuses on maximising
the acoustic contrast by just considering the transfer functions between loudspeakers and
control points in the two regions.
Amplitude Matching [1, 34], following the same rationale of PM, is based on a numerical
optimisation that aims to minimise the error between amplitude distributions of synthe-
sised and desired sound fields. Being a non-linear optimisation problem it is necessary
to adopt a non-linear optimisation algorithm to obtain the optimal solution. However,
to be able to represent a desired sound field over the target region, and not only its
power distribution, the algorithm is also usually initialised with the optimal solution of
the PM method, as otherwise the phase information would be completely discarded. PM-
initialised AM is slightly less accurate in the reproduction w.r.t. PM but is capable of
achieving a larger improvement in terms of acoustic contrast. However, it doesn’t reach
the upper bound of ACC in terms of acoustic contrast.

More recently, following its widespread adoption in the acoustic signal processing field [14],
deep learning techniques have also been applied to sound field synthesis. In [43] mono
audio recordings are converted into First-Order Ambisonics (FOA) signals by taking ad-
vantage of a 360° video camera through a NN. In [25] HOA encoding process’ frequency
is expanded through a learning-based model while in [50] Ambisonics signals are upscaled
through a NN. Also in [63] spherical harmonic coefficients in sound field recording are esti-
mated using feed-forward NN. In [46] the optimal number of driving signals are calculated
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through a NN. In [39] has been proposed a method to localise sound sources’ Direction Of
Arrival (DOA) using a neural network and two differential microphone arrays. A neural
network is also been applied in [16] for the inference of a Room Impulse Response (RIR)
to an audio signal, by just using photos of the environment. Deep Learning methods were
demonstrated to be successful also in tasks such as the characterisation of reverberant
environments [18] and echo cancellation [38]. Recently, it was proposed a technique for
sound field synthesis using irregular arrays, that is based on the compensation of driving
signals [20]. All the above studies demonstrate how methods based on Deep Learning can
outperform classical methods. The only drawback of these techniques is that there is a
need of dealing with a large amount of data, real or simulated.

Recently in [51] a multi-zone environment in harsh conditions has been synthesised using
a neural network. Their method can achieve a high acoustic contrast while keeping at
low values the reproduction error. However, to be able to counter the harsh conditions,
in their layout they surrounded with a Uniform Circular Array the bright zone with sec-
ondary sources. It’s an effective technique, but in most practical scenarios the target
regions are on the same side w.r.t. the loudspeaker distribution, i.e. both zones are inside
the UCA or both zones are outside the UCA. In their setup, most of the loudspeakers are
used in order to reproduce the desired pressure fields, while only the secondary sources
near the quiet zone focus on generating disruptive interferences.
Our approach will follow the procedure shown in [19], in which they estimate the driving
signals directly through a Convolutional Neural Network from the sound field measured
at a set of control points.
Encouraged by their results, in this manuscript we propose a Deep Learning-based Pres-
sure Matching technique for the synthesis of Multi-Zones (MZ-DLPM), i.e. we set two
different target zones with different acoustic potential energy. Another main difference
from their work is in the layout. We used a Uniform Linear Array (ULA) instead of
surrounding the controlled environment with a UCA. The main reason behind this choice
is that ULAs are already commercially available as soundbars, while UCA’s set nowadays
are mainly used for research purposes. Since no ground truth for the desired driving
signals is available, the network is optimised by computing the loss between the desired
and estimated sound field, obtained by convolving the estimated driving signals with the
appropriate Green’s function. Through simulations, we compare the performances of the
proposed technique with AC, the original PM approach and its AM variant, and find
out that the proposed method can overcome the trade-off between accuracy and acoustic
contrast.

The rest of this thesis is organised as follows. In Chapter 1 prior works on sound field
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synthesis methods are briefly summarised. We provide a list of the main SFS techniques
used over the years, addressing their advantages and drawbacks. We will also stress
how the research is focusing on the application of optimisation-based methods when it
comes to MZ-SFS. Chapter 2 is dedicated to the coverage of the theoretical background
used throughout the thesis. We introduce the main concepts of acoustics applied in the
optimisation-based algorithms and then we make a brief introduction to Deep Learning
techniques, focusing on Convolutional Neural Networks. The problem statement on MZ-
DLPM is described in Chapter 3 along with the proposed algorithm implementation.
Experimental results are presented and discussed in Chapter 4. We provide simulation
and evaluation results to validate our method, analysing how it performs when compared
with the state-of-the-art methods. Finally, Chapter 5 concludes this thesis and proposes
future works.
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1| State of the Art

This chapter reports the most recent and successful techniques for Sound Field Synthesis
(SFS), with a particular focus on their applications to the creation of Personal Sound
Zones (PSZ). We talk about SFS when we aim to use a superposition of sound fields
emitted by a combination of elementary sound sources to create a sound field with desired
properties over a given area. While we refer to PSZs sound field synthesis, multi-zone
sound field synthesis or sound field control (SFC) when the objective is to create multiple
sound zones with different sound content inside the same acoustic environment using an
array of loudspeakers.

We will use the term secondary sources to define these elementary sources. Loudspeakers
are used when it comes to real-life experimentations. The term secondary source repre-
sents the fact that such a sound source is not the primary source of the auditory event
which is desired to be evoked in the listener. Another expression that will be frequently
used in this thesis is virtual sources. We refer to a virtual source when we have the sound
field generated by the source, but not the source itself. Therefore, to easily describe a
relation between secondary and virtual sources, we can say that secondary sources, are
the emitting sources used to synthesize the soundfield that would be generated by the
virtual sources if they were present, as described in figure 1.1.

Figure 1.1: Secondary sources synthesising a sound field emitted by a virtual source.
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In the following, we will first give an overview to the approaches that rely on a physical
model to obtain the desired sound field.
In our context, physical models are used to describe the spatial characteristics of an
object (e.g., a sound source). This includes object’s location and radiation properties.
For example, with a physical model, a virtual source can be defined using an appropriate
coordinate system, specifying both its location and directionality. In SFS, the model is
used to define an acoustic scene and properly describe its properties.

In our investigation we adopt a physical model that represents sounds fields using the
Single Layer Potential (SLP), as introduced in [2]. This representation, relies only on
two key factors, a spatio-temporal impulse and a driving function: here spatio-temporal
impulses are to be considered as the emission of a spherical or circular wave in a free field
(i.e. a field free from reflections); while the driving functions, sometimes called densities
can be defined as the weights to be applied to each source to render the desired sound
field.
Within this representation, spatio-temporal impulses are easily describable. What tech-
niques that rely on the SLP focus on is to obtain the appropriate driving function. Many
of the methods that will be described, are based on this representation.
Specifically, we will introduce Vector-Based Amplitude Panning (VBAP) [49], Arbitrary
Order Ambisonics [24], Wave Field Synthesis (WFS) [9] and Plenacoustic [12] rendering
in this sense.

Then, we will describe how the research is trying to be independent from physical models,
with methods for which there is parameters optimisation. For this purpose, Pressure
Matching (PM) [44], Mode-Matching (MM) [10, 48, 58] and Deep Learning-based methods
are presented and analysed, and the main advantages of not relying on physical models
are shown.

Ultimately, Multizone Sound Field methods are introduced, as they are the main focus of
this research. It is shown how the most used methods behave in this context and which
are their advantages and disadvantages. As it will emerge from this chapter, when it
comes to PSZs, optimisation methods are used.
In recent years, following the success achieved in other topics concerning acoustics such as
speech recognition [40], characterisation of reverberant environments [18], Room Impulse
Response (RIR) inference [16], echo cancellation [38] and Direction of Arrival (DOA) es-
timation [39], a DL approach have been proposed to address the aforementioned task in
a harsh environment [51].
The success of Neural Networks (NN) in all these fields and in particular of Convolutional
Neural Networks (CNNs) is related to their ability to find patterns and local correlation in



1| State of the Art 7

their inputs: this characteristic has been particularly successfull when using spectrograms
of speech signals in input [6], since there are local correlation both in time and frequency
[7]. Due to their spatial correlation also Sound Fields are appropriate to be used as in-
puts to CNNs. Furthermore, NNs have the ability to learn non-linear behaviours, and
this makes it convenient to use them to learn driving functions, that are non-linear.
However, to the best of our knowledge, not much research has been done with NNs, and
for all of the reasons described above, our work tries to fit in this is gap in the literature.
The work done in [51] focus on rendering of the sound field in a harsh environment, and
to achieve this result in their layout they’ve surrounded the bright zone with secondary
sources.
Our approach tries to synthesize a Multizone environment in an ideal anechoic environ-
ment and without surrounding the bright zone. For our purpose, we used a ULA and we
placed the two zones one the same side with respect to the secondary sources. Despite
they explored the ability to learn non-linearities of NNs by using a Multi-Layer Percep-
tron, in their system the local spatial correlation of Sound Fields are not investigated.
For our work, we considered more appropriate to use a CNN, since it’s able to recognize
local correlations of its input.

1.1. Sound Field Synthesis

In recent times, audiophiles and researchers have been interested in what is called "spatial
audio". The goal of spatial audio techniques is to recreate sound and timbre qualities
of acoustic scenes, along with the position, orientation of sound sources, and shape and
characteristics of the environment. In this sense, complex techniques have been developed
that can evoke the impression of being "immersed" in a reproduced acoustic scene.

These representations are categorized as model-based or data-driven depending on whether
the acoustic scene has been characterized through a physical model as stated above or
whether displayed objects already contain all the spatial information. With the second
category the system used has not only to extract the driving signals but also the spatial
information of objects present in the environment, e.g. sound sources and microphones.
Most of the following methods have been developed in both data-driven and model-based
directions. For our scope, we concentrate in the following description in the model-based
scenarios as the technique proposed in this work rely on a physical model.
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1.1.1. Model-based Methods

We talk of model-based SFS methods when we use a physical model to describe all the in-
formation about virtual or secondary sources. Typically, the type of information encoded
in the model refers to the location of the object and the type of radiation, which in most
straightforward cases are plane or spherical waves.

The simplest known method with wide commercial use is Vector-Based Amplitude Pan-
ning (VBAP) [49]. Vector-Based Amplitude Panning is the evolution of the standard
Stereophony panning, from two to multiple channels. In its simplest form, i.e. in a
2D horizontal plane reproduction case, behaves as a pair-wise Stereophony panning tech-
nique: each phantom source1 is reproduced only by the two speakers closest to its position.
VBAP can also be used to reproduce sources in a 3D space using three speakers for each
source instead of one, where the third loudspeaker is not on the same plane of the other
two, as shown in Fig 1.2.

Figure 1.2: Configuration for 3D VBAP. The phantom source can be placed in the triangle
formed by the loudspeakers. Image taken from [49].

The techniques based on this concept, however, are not flexible. Firstly, are able to
reproduce the desired environment only in the so-called sweet spot, that is in the position
equidistant from all the secondary sources; as the listener moves away from this sweet
spot, each phantom source will be perceived as coming from the closest loudspeaker - for
each couple of secondary sources - to the listener. Secondly, regarding reproduction, the

1Is inappropriate to talk about virtual sources in the context of Amplitude Panning as the sound field
created by two loudspeakers is generally very different from that of a real source[3]
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same loudspeaker layout must be set up to reproduce a specific environment, and this
layout must have a regular geometry. At last, is not possible to render phantom sources
in position closer to the surface occupied by the loudspeakers, only in between and/or
farther. From the above description we can deduce that is not fitting to talk about sound
field synthesis when we talk about VBAP, because even if the result obtained is similar,
its goal is to place sources in the environment and not to render a specific sound field.
Still it was necessary to describe it, since when it comes to spatialisation, is the most
widespread configuration both in houses and theaters due to its simplicity, computational
efficiency, and the ability to achieve good results for stationary listeners.

Another classic technique for which much research has been done, is Ambisonics [24].
The authors of this technique, noticed that in those years (70’s) there wasn’t any system
capable of encoding (and also decoding) the directionality of a sound and in particular
the information concerning the relationship between a direct sound and its early-and-late
reflections [24]. Ambisonics was born as a data-driven technique, and in fact its focus was
to be able to reconstruct a defined ambience after an acquisition with specifically designed
microphones, as shown in Fig 1.3.

Figure 1.3: Basic features of ambisonic reproduction. As described in [24]

Since it relies on a characterization of the sound field in terms of spherical (or circular)
harmonics, this technique can be used to reconstruct a virtual venue described through
a physical model. The main difference with standard panning methods is that for the
reproduction of the sound field, there isn’t a direct one-to-one correlation channel-to-
speaker, but in each channel are encoded information about physical properties of the
acoustic field. From this we can derive that the sound field is represented by a set of
signals that is independent from the setup of loudspeakers. In fact, in Ambisonics systems
the number of channels is lower than the number of loudspeakers used to reproduce the
sound field. From this characteristic it follows that not only secondary sources closest to
the desired source direction are used, but all loudspeakers contribute to the rendering of
each virtual source, as shown in Fig 1.4.
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(a) (b) (c)

Figure 1.4: The colored speakers denote the active speakers. (a) The virtual source
constitutes a point source. (b) Stereo amplitude panning of virtual source. (c) Ambisonic
amplitude panning of virtual source. Image from [55]

Even though a sound field at any point can be characterised with a spherical harmonics
expansion [59], is also true that there is a direct correlation between the number of orders
n of the expansion used to describe the sound field and the number of secondary sources
necessary to decode the information, i.e. (n + 1) ∗ ∗2. For this reason, in practical
implementations, the order of the expansion is truncated. And depending on the order
used we talk about Ambisonics if we use just the 0th and 1st orders or Higher Order
Ambisonics, if also higher orders are used. Thankfully zeroth and first order spherical
harmonics already contain respectively information about pressure field and the three
components of particle velocity. Higher orders, represent non-redundant combinations of
higher gradients.

The main idea behind this method is to use a set of loudspeakers to reproduce a desired
sound field in a specific region inside the volume delimited by the speakers, assuming that
the secondary sources are at an infinite distance. A consequence of this last assumption is
that in standard Ambisonics systems, loudspeakers are modeled as plane waves emitters.
This is a model mismatch leads to artefacts since actual loudspeakers behave similarly to
point sources [3].

In Ambisonics, depending the order to which the spherical harmonic expansion is trun-
cated, there is a strong correlation between the radius of the listening area and the max-
imum frequency that can be correctly reproduced. This correlation is expressed in the
Relative Truncation Error Bound Theorem [30], from which we can deduce that in first-
order Ambisonics to have a listening area with a radius of 1 meter, the maximum re-
producible frequency without artefacts - to be precise, with a reproduction error upper
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bounded to 0.16127 - is around 40 Hz; vice-versa if our goal is to reproduce a sound wave
at high frequency like for example 7 kHz, the radius of the listening area cannot exceed
6 millimetres. These values, are to be considered valid just for First-Order Ambisonics.
In fact, the main advantage of HOA is that as we increase the number of the order, these
constraints are relaxed.

The major advantages of this method are its low complexity and the low minimum number
of speakers needed to reproduce the field, which is only four.

Many variants address the minor reproduction zone issue; Near-field Compensated Higher
Order Ambisonics (NFC-HOA) is the most successful [22]. The near-field term means that
the secondary sources are assumed to be at a finite distance, i.e. monopoles. While the
higher-order term, as described above, is connected to the mathematical model used for
Ambisonics. For NFC-HOA, only circular or spherical secondary sources distribution are
used since these are the only distributions for which there is a closed-form solution of the
driving function.

Wave Field Synthesis (WFS) is one of the best-known methods for sound field reproduc-
tion [9]. One of the main differences with the NFC-HOA approach lies in the different
choice of mathematical model. This method is based on Huygens’s Principle, which states
that any point on a propagating wavefront can be a point source for producing spherical
secondary waves, as shown in Fig 1.5 .

Figure 1.5: Simple WFS implementation following Huygens Principle. Image taken from
[9]

One of the essential advantages of WFS with respect to NFC-HOA is its independence
from secondary source distribution. It is being demonstrated to work with planar, linear,
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spherical, circular and irregular distributions. Another significant advantage is that the
reproduction region is the whole area delimited by the speakers. However, in WFS is
not possible to enlarge the area bounded by the loudspeakers without increasing their
number; for NFC-HOA systems, it does not matter what the size of the bounded area is,
the number of secondary sources needed to reproduce the sound field in the desired region
does not change.

Mathematical models give an optimal solution for a continuous distribution of secondary
sources in all the SFS techniques. It is essential to underline that this is an ideal case and
that we must deal with a discrete and limited distribution of loudspeakers in practical
cases. With this constraint, solutions provided by these methods are valid up to a specific
frequency, depending on the distance between loudspeakers. Once we go higher this
frequency, artefacts arise. This phenomenon, called spatial aliasing, leads to different
effects depending on the method. For example, in NFC-HOA, there is a considerable
reduction of the maximum listening area dimensions, while in the WFS, the artefacts are
distributed homogeneously in the listening area. Is noteworthy that spatial aliasing is one
of the major drawbacks when it comes to use irregular set-ups for WFS [21].

The spacing between secondary sources is the last consideration regarding the differences
between the two model-based methods. While for WFS, there is a straight correlation
with the minimum wavelength of the reproduced field and the spacing between secondary
sources, in NFC-HOA is also essential to consider the ratio between the region bounded
by loudspeakers and the maximum reproduction area; as a rule of thumb, once this ratio
is above 1.4, NFC-HOA systems are more flexible in terms of loudspeakers spacing w.r.t.
WFS.

A last and more recent technique is the Plenacoustic rendering method [12, 13]. This
technique is drawn from on the Plenacoustic Function (PAF) [5], which was introduced to
determine the whole sound field inside the studied volume by measuring it in specific con-
trol points. This method was further improved in order to be able to give also directional
information.

As described in [5] the field is modelled in terms of acoustic rays since has been demon-
strated to be more efficient than previous models when it comes to the description of
complex fields, even though simple fields may lack accuracy. As control points are used a
Uniform Linear Array (ULA); in this way, with spatial filtering, it is possible to determine
the acoustic ray passing through the centre of the array. Finally, sub-arrays are used to
identify the acoustic ray passing through the centre of each of them. In this way, at the
end of the procedure, is obtained a sampling of all the acoustic rays passing through the
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ULA.

From this analysis approach, it was developed a synthesis technique following the same
principle.
It starts with a plane wave decomposition of the sound field to be rendered. Then a ULA
of loudspeakers is used and to its sub-arrays are given specific wavefront components
to be rendered. It is like having a set of acoustic beams that braid to give the desired
acoustic field. It is essential to underline that with this method, we include the directional
information of the virtual source already in the rendering framework without the need
for a previous analysis of the sound field to be rendered, like in NFC-HOA and WFS. It
is being demonstrated [12] that this method is more accurate and computationally more
efficient than previous methods. Another advantage is that to reconstruct the desired field
is optional to surround the area of interest. As in WFS, it does not have the constraint
of NFC-HOA to define a listening region. A simple set of soundbars could commercially
implement this method.

1.1.2. Optimisation-based Methods

Optimisation-based methods are not to be considered an alternative to the model-based
methods but as a sub-category. These techniques always start from a physical model and,
through an optimisation process, e.g. minimisation of the error produced and desired
pressure field values or modes, lead to the reproduction of the desired sound field. One of
the main advantages of all these approaches is that they are independent of the system
layout since the synthesis process consists only of the minimisation or maximisation of
some parameters unrelated to the physical model. Thanks to this characteristic, these
methods are widely studied when it comes to the synthesis of complex sound fields, and
are also being used in research for the synthesis of multi-zones.

In recent years mode matching-based SFS have gained considerable attention [10, 48], due
to the fact that it requires only one control point. In mode matching-based methods, the
desired sound field is first described in terms of circular or spherical harmonics expansion,
depending if we are in the 2D or 3D case. Then the same is done with the reproduced
sound field. Finally, the solution is obtained by matching the desired and reproduced
sound field coefficients with mode-by-mode matching.

It should be clear that a arbitrary order Ambisonics method is a mode-matching method.
The particularity of Ambisonics is that it is applicable only with circular and spheri-
cal configurations because these are the only configurations for which exists a definitive
solution for each mode.
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A significant advantage of this method is that since it is based on the calculation of the
modes, it needs to use only a control point to confront the desired sound field, since from
that control point is done the spherical harmonics expansion.

Pressure Matching [44] is the first proposed technique that is based on the concept of
optimisation-based methods. This procedure searches for the driving function that min-
imises the difference between the desired and synthesised pressure fields in specific Control
Points (CPs). The main advantage of this method is that there is a closed-form solution
for the estimation of the driving function, which depends only on the transfer function
between the secondary sources and the control points and, of course, on the desired sound
field to be reproduced.

In its original form, the optimisation procedure is performed through Least Squares (LS),
and the error is measured on the pressure values assumed by the field in the CPs. Alter-
natively, the error is measured on the amplitude of the sound field without considering
the phase (Amplitude Matching) [34].

More recently, also Deep Learning (DL) methods have been applied to the problem of
sound field synthesis. These inherently fall in the category of optimisation-based ap-
proaches due to the functioning of Deep Neural Networks (DNN). DNNs are a valuable
tool for describing non-linear behaviour, and the filtering applied by the driving function
is non-linear for each speaker and between speakers.

Even though the results in standard conditions are not much different from other optimi-
sation methods, these techniques were robust when applied in different acoustic problems
in reverberant or noisy environments [39].

1.2. Multi-Zone Sound Field Generation

We talk about Multi-Zone SFS methods when we try to render simultaneously two or more
sound fields with different characteristics in different zones inside the same environment,
as shown in Fig 1.6.

Sound zones permit to enjoy different audio scenes in the same acoustic environment with-
out disturbing each other. The research is focused on transmitting specific information
to a region of interest by leaving also a quite zone as in classic Active Noise Control [41],
i.e. synthesising zones with a high difference in acoustic energy [17]. In other words, the
techniques proposed in the literature aim to maximize the sound field energy in one zone
of the space and to minimize it in another one. In these cases, it is frequently used to call
bright and dark zones to define the two areas, respectively.
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Figure 1.6: Personal Sound Zones. Image taken from [1]

The same Pressure Matching method itself, when presented, can also be applied to the
problem of multi-zone rendering [47].

An alternative for PM is the Acoustic Contrast Control (ACC) method [17]. This tech-
nique is not well suited for scenarios different from the bright-vs-dark framework or when
the controlled zones are generally more than two. In this approach, the energy ratio be-
tween the two zones is maximised. The comparison between the ACC and PM methods
revealed that they perform best in their respective designated purposes. While PM excels
in reproducing the bright zone due to its minimization of reproduction error, ACC is
better suited for attenuating the dark zone [53].

A framework based on Variable Span Linear Filters (VSLF) [8] used to describe speech en-
hancement algorithms has been proposed. Variable Span Linear Filters are filters formed
from linear combinations of the eigenvectors from the joint diagonalisation of the noise
and desired signal correlation matrices. Its fundamental parameters are the number of
eigenvectors used, and the rank of the correlation matrix of the desired field. By properly
designing these filters, it is possible balance as desired by the user the trade-off between
signal distortion and noise suppression.

Following the same logic, Variable Span Trade-off filters (VAST) are proposed for the
problem of sound zone design in [37]. Here the filters are obtained from the joint di-
agonalisation of the spatial correlation matrices of the bright and dark zone, and the
trade-off in designing the filters is between the reproduction error in the bright zone and
the acoustic contrast. There is also a direct parallelism between the "special" cases of
VSLF and VAST filters: for example, by choosing only the eigenvector corresponding to
the highest eigenvalue we derive respectively a filter that gives the highest SNR and the
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highest AC (ACC); in their respective field these are both approaches with the highest
distortion. With the aforementioned framework, of which PM and ACC are special cases,
it is possible to get intermediate results that can represent the sound zone control analou-
gus of speech enhancement or noise suppression algorithms like the Minimum Variance
Distortionless Response (MVDR), the Wiener Filter etc.

Amplitude Matching is a variant of a PM that has been investigated in recent years. It
has been noticed that ACC, even if it can achieve excellent results in terms of acoustic
contrast, cannot match the energy distribution of the desired field inside the two zones,
which should be homogenous. The difference with respect to the PM method is that, by
taking the absolute value of the desired and reproduced field in the optimisation process,
it completely discards the phase and introduces a nonlinearity w.r.t. PM. Unfortunatelly,
the Least Squares (LS) optimisation algorithm has a closed form solution only for linear
problems, and for this reason, Amplitude Matching has no closed-form solution. However,
the fields obtained with AM have a homogeneous energy distribution inside the two zones.
For what concerns the main metrics used to evaluate multi-zone systems - i.e. the acoustic
contrast and reproduction error - AM has intermediate results between PM and ACC.

1.3. Conclusive Remarks

In this chapter, we have presented various techniques that have been used for the synthesis
of sound fields. Classic techniques, WFS and Ambisonics, have been described in detail.
Even though these approaches are not recent, they are still widely studied nowadays, and
many variants have been made to overcome their limitations. Limitations that in both
cases can be summed up in a necessity of an enormous amount of loudspeakers to correctly
render a sound field that can reach high frequencies in a sufficiently-wide reproduction
area.

Based on the PAF, it has presented a more recent method that can render broad sound
fields, but has yet to be explored much since it still needs many speakers to render complex
sound fields.

Since these limitations are constantly present in all these model-based techniques, the
research moved towards optimisation methods. For these cases, the parameters optimised
are independent of the physical model and there is also an independency of the optimal
solution from the layout. Still, physical constraints persist, and as for other techniques
these methods achieve better results with more loudspeakers. However, their advantage
is in the capacity to not degenerate too much as we decrease the number of sources or use
irregular configurations. Furthermore, we can find the first experimentation with Neural
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Networks within these methods.

The last part of this chapter describes current methods for the synthesis of personal sound
zones, which is also the focus of this manuscript. Due to the complexity of the sound
fields to be rendered, most methods are optimisation-based for these cases. The two
methods that achieved better results have been presented - PM and ACC - and some of
their variants.

It is noticeable how multi-zone sound field synthesis can be a critical aspect in the creation
of immersive and personalized audio experiences in complex acoustic spaces. Conventional
sound field synthesis techniques often rely on acoustic models, which may not accurately
capture the complex behaviour of sound waves in such environments. Still, there is a
need to improve the effectiveness and accuracy of these techniques. Deep Learning is a
promising approach for enhancing multi-zone sound field synthesis. Due to their ability to
learn complicated behaviours, deep neural networks could be used to model and reproduce
complex sound fields more accurately. The next chapter will describe the mathematical
theory and physics constraints in acoustics and some of the statistics behind Deep Learn-
ing to fully understand the method proposed in this thesis. In later chapters, it will be
described the presented method and it will be shown results compared with some of the
most current techniques.
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2| Theoretical Background

The first part of this chapter will introduce the theoretical aspects necessary to properly
describe a sound field. The obtained model will then be applied to the multi-zone synthesis
problem. We’ll represent aforementioned problem into its main configurations. It is shown
how the Sound Field Control problem can be formulated in terms of linear and non-linear
optimisation, despite the original physical model used: in fact an optimisation procedure
is shown both for methods that rely on a model based on the Kirchoff-Helmholtz Integral
2.7 and on spherical harmonics 2.22.

In the second part of this chapter it’ll be shown the rationale behind deep learning theory.
After a brief introduction to Machine Learning, a detailed description of Deep Learning
algorithms, which are also used in this thesis, is presented. The description will be based
on the standard and oldest configuration - i.e. Feed Forward Networks - and then extended
to the Convolutional Neural Networks.

As it will be described in the chapter, acoustic fields are complex systems, and traditional
methods for obtaining informative features can be challenging. Therefore, the choice of
using a DNN in this work is also guided by the fact that it can automatically extract
relevant features that reflect the characteristics of the data for a specific problem.

2.1. Sound Field Control

Before defining the Sound Field Control problem, we first describe some preliminary
concepts of acoustics and spatial audio.

An acoustic field is a real-valued scalar function that represent the pressure, here defined
as p(r, t), with t ∈ R, denoting the time and s ∈ R3, denoting the space. Acoustic fields
in volumes where active sources are present, satisfy the Inhomogeneous Wave Equation

∇2p(r, t)− 1

c2
∂2p(r, t)

∂t2
= −∂q(r, t)

∂t
, (2.1)

being q(r, t) flow per unit volume or excitation caused by a source, and c the speed of
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sound. Due to its time-harmonic behaviour the acoustic field can be redefined by applying
the Fourier Transform as P (r, ω)e−jωt, with ω being the angular frequency.

In this domain, acoustic fields of (2.1) are described by the Inhomogeneous Helmholtz
Equation

∇2P (r, ω) +
(ω
c

)2

P (r, ω) = −jωQ(r, ω), (2.2)

In the following we’ll use apexs ′ to refer to points in the space and the time instants of
secondary sources. By considering a spatio-temporal impulse at (r′, t′), as excitation term
we can model the secondary source as

q(r, t) = δ(r − r′)δ(t− t′), (2.3)

being δ(·) Dirac’s delta. As described in [59], by replacing the exctitation term of (2.1)
with (2.3) we therefore obtain

g(r|r′, t) = 1

∥r − r′∥
δ(t− ∥r − r′∥

c
), (2.4)

G(r|r′, ω) = e−j(ω
c
)∥r−r′∥

4π∥r− r′∥
, (2.5)

as solutions to the wave and Helmholtz equation, respectively.

The equation (2.5) is called Green’s function and represents in the frequency domain the
sound field in r resulting from a spatio-temporal impulse in r′. However, usally we have
a complex excitation term. In these cases, the Green function can be used to describe
arbitrary solutions of the wave equation through the Single Layer Potential

P (r, ω) =
∮
∂Ω

G(r|r′, ω)D(r′, ω)dr′, r′ ∈ ∂Ω, (2.6)

being ∂Ω the surface of the volume under consideration.

The following introduction will be based on [2]. The SLP has a direct derivation from the
Kirchoff-Helmholtz (K-H) integral that is one of the essential theorems in acoustics. It
states that the sound pressure is completely determined within a volume free of sources,
if sound pressure and velocity are determined in all points on its surface
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a(r)P (r, ω) =
∮
∂Ω

(G(r|r′, ω)⟨∇p(r, ω), n̂(r′)⟩|r=r′+

−P (r′, ω)⟨∇G(r|r′, ω), n̂(r′)⟩) dA(r′), r′ ∈ ∂Ω

, (2.7)

with a(r) being the discrimination term, defined as

a(r) =


1, if r ∈ Ωi

1
2
, if r ∈ ∂Ω

0, if r ∈ Ωe

. (2.8)

In the 2.7 ∂Ω denotes a surface enclosing the source-free volume Ωi, A(r′) an infinitesimal
surface element of ∂Ω, r′ a point on ∂Ω; while Ωe denotes the domain outside ∂Ω; n̂ is
the unit vector pointing in direction inward the surface normal.

Green’s function directional gradient ⟨∇G(r|r′, ω), n̂(r′)⟩ can be interpreted as the spatio-
temporal transfer function of a dipole sound source whose main axis lies parallel to n̂.
Thus, the K-H integral can be seen as made of two components displayed on the boundary
of the source-free volume, one representing a layer of secondary monopole sources and a
second layer of secondary dipole sources. A sound field synthesized with such a distribution
would exhibit the desired properties, i.e. the reproduced field would match the desired
one.

The reader may understand that having two superimposed layers of loudspeakers is quite
impractical. In fact, usually the dipole layer is discarded. The first component of the K-H
integral is what is called the acoustic SLP (2.6). By comparing (2.6) and (2.7) we can
deduce that the function D(r′, ω) in 2.6 represent the gradient of the sound pressure in
direction of the inward pointing surface normal on ∂Ω, and in this work will be termed
as distribution density of the potential, driving function or volume velocity.

With nowadays technology continuous distribution of loudspeakers are not feasible. Hence,
in practical implementation discrete distribution are used. With L loudspeakers the above
definition of the SLP 2.6 can be discretised as

P (r, ω) =
L∑
l=1

G(r|r′l, ω)D(r′l, ω). (2.9)

Most of the SFC techniques rely on specific control points used to evaluate the reproduced
field, i.e. the microphones used to measure the pressure values. We’ll define a matrix rep-
resenting the Green function between M control points and L control sources, the vector
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representing the driving signal to each speaker and the pressure field vector describing
the values of the pressure field in each point in space as

G(r|r′, ω) =


G(r1|r′1, ω) · · · G(r1|r′L, ω)

... . . . ...
G(rM |r′1, ω) · · · G(rM |r′L, ω)

 , (2.10)

d(r′, ω) =


D(r′1, ω)

...
D(r′L, ω)

 , (2.11)

p(r, ω) =


P (r1, ω)

...
P (rM , ω)

 . (2.12)

2.1.1. Pressure Matching

Pressure Matching, was first introduced by Nelson et. al [44] in the early nineties as a
least square optimisation-based technique for sound field synthesis. In [47] the pressure
matching method was first applied to the synthesis of personal sound zones. The present
exposition will adhere to the last-mentioned problem description.

Even though, the mechanism of this procedure could be applied by considering multiple
zones, in the following description we’ll consider a case with a bright zone and a dark
zone, being 2M the total number of control points of the desired zones to synthesize,
precisely Mb and Md are the points referred to the bright and dark zone, respectively. We
define the desired sound field values at the control points as

P des(rm, ω) =


∑L

l=1G(rm|r′l, ω)D(r′l, ω), m = 1, . . . ,Mb

0, m = Mb + 1, . . . ,Mb +Md

. (2.13)

The goal of this technique, as shown in Fig. 2.1, is to minimise the squared error be-
tween the values of the desired pressure field P des(rm, ω) and the estimated pressure field
P est(rm, ω) at the control points, and can be written (by omitting the arguments r and
ω) as

J (d) = min
d∈CL

|Gd− pdes|2 + ι|d|2, (2.14)
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where ι is a regularization parameter used to constrain the power, and J (d) is the function
to be minimised.

Figure 2.1: Scheme of the Pressure Matching algorithm

From this formulation, applying a Least Squares (LS) linear regression problem, we can
obtain the closed-form solution

d̂pm = (GHG + ιIL)−1GHpdes, (2.15)

with the subscript pm denoting we refer to the optimal driving function given by the
minimisation procedure, the apex H denoting the Hermitian matrix and IL the L × L

identity matrix.

2.1.2. Acoustic Contrast Control

The Acoustic Contrast Control (ACC) technique represents a sound zoning approach
that aims to optimise the mean squared sound pressure within a specified zone, while
maintaining a constant pressure level in the surrounding zones, as shown in Fig. 2.2. In
the following description we will comply with its original formulation, which allows for
the synthesis of only two zones. However is been recently demonstrated that is possible
to use it for the synthesis of more than just one dark zone [1].
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Figure 2.2: Schematic of the acoustic zones. The subscripts b and q refer to the bright
and quite zones, respectively. Image from [17].

We will term bright the zone to which the mean squared sound pressure is optimised,
while the surrounding zones will be termed as dark or quite. The Acoustic Contrast (AC)
is the ratio between the acoustic potential energy in the bright zone and the acoustic
potential energy in the dark zone. Thus, is necessary to express this ratio using driving
vectors in the form of a cost function to be optimised. The averaged acoustic potential
energy of a controlled zone can be written as

e(ω) =

∫
V
p(r, ω)∗p(r, ω) dV

V
, (2.16)

where the apex ∗ denotes the complex conjugate and V the volume of the control zone
considered. This expression can be re-written as

e(ω) = dH(ω)(

∫
V
G(r|r′, ω)HG(r|r′, ω) dV

V
)d(ω) = dH(ω)R(ω)d(ω), (2.17)

where R is the spatial correlation of the pressure field in the controlled zone produced by
each control source. With this definitions we can derive an expression for a cost function
to maximise the Acoustic Contrast. The AC can then defined as

β(ω) =
eb(ω)

eq(ω)
=

dH(ω)Rb(ω)d(ω)
dH(ω)Rq(ω)d(ω)

, (2.18)

and the optimisation problem can be formulated as

max
d(ω)∈CL

β(ω). (2.19)

Since the pressure fields produced by each control source, i.e. the sources used to synthe-
size the two zones, are linearly independent within the total zone of interest, the Hermitian
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(a) (b)

Figure 2.3: Spherical Bessel Function of (a) First and (b) Second kind.

matrix Rq has full rank L and is invertible. Thanks to this characteristic it is possible
to obtain a closed-form solution for the volume velocity vector that maximizes β as the
eigenvector that corresponds to the largest eigenvalue of the matrix

R−1
q (ω)Rb(ω) (2.20)

It’s noteworthy that the position of the control sources and of the control zones have to
be determined.

2.1.3. Mode Matching

The mode-matching method aims to match the modes of the synthesized and desired
sound fields at a certain control point. A mode in the three-dimensional (3D) context
usually means a spherical wavefunction, by which a sound field can be expanded. The
spherical wavefunctions, which are the products of spherical Bessel functions 2.3 and
spherical harmonics 2.4, are solutions of the Helmholtz equation. The usage of the just
represented model is a major difference between the mode-matching method and the
pressure-matching method. However, it is necessary in the mode-matching method to
truncate the modes, which strongly affects its reproduction accuracy, depending if the
truncation order is excessively large or small.

We can represent the basis solutions to the Helmholtz equation (2.2) in spherical coordi-
nates as

P (r, ω) = R(r)Θ(θ)Φ(ϕ) = R(r)Y m
o (θ, ϕ), (2.21)
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Figure 2.4: Spherical harmonics up to the third order. Image from [62]

with Θ(θ) and Φ(ϕ) representing respectively the co-elevation and azimuth dependencies
components and with R(r) being the radial component. Y m

o (θ, ϕ) incorporates the angular
dependencies and is called spherical harmonic function

Y m
o (θ, ϕ) = (−1)m

√
(2o+ 1)(o− |m|)!

4π(o+ |m|)!
ejmϕP |m|

o (cos θ), (2.22)

where m denotes the degree of the spherical harmonic and o its order. Possible configu-
rations of spherical harmonics are shown in Fig 2.4.

While radial dependency for interior field problems can be expressed in terms of Bessel
functions

R(r) = R1jo(
ω

c
r) +R2yo(

ω

c
r), (2.23)

where jo and yo refer to the Bessel functions of first and second kind, respectively.

A generic interior field can then be expressed using the Inverse Spherical Harmonics (ISH)
expansion.

P (r, ω) =
∞∑
o=0

o∑
m=−o

(Co,m(ω)jo(
ω

c
r) +Bo,m(ω)yo(

ω

c
r))Y m

o (θ, ϕ). (2.24)

We can characterize the sound field with the sets of coefficients Co,m, Bo,m, that hereafter
will be termed as modes.

All mode-matching methods try to synthesize a desired sound field by matching the modes
of the reproduced field with the desired ones. It can be observed that with the presented
characterization the number of modes to be matched should reach infinity. In practice, the
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order of the spherical harmonics is truncated to an arbitrary degree M , and consequently
of the maximum order O.

The choice of the order is usually driven by two reasons, depending by the context: when
it comes to simulations, the order that gives the best result is chosen empirically; while in
practical situations the order is upper bounded by the maximum number of loudspeakers
available, since there is a direct correlation between the maximum order used and the
number of loudspeakers used. Thus, the expression 2.24 can be approximated

P (r, ω) ≈
O∑

o=0

o∑
m=−o

(Co,m(ω)jo(
ω

c
r))Y m

o (θ, ϕ). (2.25)

Recently a Weighted Mode-Matching (WMM) technique [35] has been proposed, where
the order that leads to the minimum reproduction error is obtained by means of an
optimization procedure.

In the following description we’ll use
∑

o,m to express
∑O

o=0

∑o
m=−o.

With the goal of having

Co,m(rc, ω)des = Co,m(rc, ω)syn, (2.26)

with the superscripts syn and des used to refer to the synthesized and desired sound fields
respectively, we can obtain a result by solving

min
d∈CL

∑
o,m

|Co,m(rc, ω)
des − Co,m(rc, ω)

syn|2 + ιdHd. (2.27)

Here rc represents the expansions center, that in our case is the origin of our system. The
solution of 2.27 can be expressed as

d̂mm = (Amm + λIL)−1bmm, (2.28)

with Amm ∈ CLxL and bmm ∈ CL given by

(Amm)l1,l2 =
∑
o,m

CG
l1,o,m

(rc) ∗ CG
l2,o,m

(rc), (2.29)

(bmm)l =
∑
o,m

CG
l,o,m(rc) ∗ Cdes

o,m(rc). (2.30)

Here, (·)l1,l2 denotes the (l1, l2)
th element of the matrix, (·)l denotes the lth element of the



28 2| Theoretical Background

vector, and the apex G denotes that the coefficients are referred to the spherical expansion
of the Green’s function. For the synthesis of multiple zones Ωq, with q = {0, . . . , Q}, the
problem 2.27 is reformulated as

min
d∈CL

Q∑
q=0

γq
∑
o,m

|Co,m(rc, ω)
des,q − Co,m(rc, ω)

syn|2q + λdHd, (2.31)

where γq is a constant parameter used to weight all the square differences.

The optimum solution, is then obtained as

d̂mm,Q = (

Q∑
q=0

γqAq
mm + λIL)−1

Q∑
q=0

γqbq
mm. (2.32)

2.1.4. Amplitude Matching

Amplitude Matching aims to minimize the error between amplitude distributions of syn-
thesized and desired sound fields. In some applications, it is necessary to synthesize a
sound field of the desired amplitude inside the target region, whereas the phase of the
desired sound field is arbitrary [11]. Thus, more than actually reproduce a specific sound
field, the result obtained is to have an equal power distribution over the target zone by
optimising the desired amplitude and discarding the phase. In Amplitude Matching’s opti-
misation procedure is present a modulus operator. This leads to a non-linear optimisation
problem, which requires non-linear optimization algorithms.

In order to solve the Amplitude Matching problem, it is usually applied the Minimisation-
Maximisation [34].
As many others non-linear optimisation algorithms the basis of the method is to construct
a surrogate linear function of the non-linear objective function (at each iteration). So
reformulating Pressure Matching minimisation problem (2.14) by adding the amplitude
constraint it becomes

min
d∈CL

J (d) = ∥|Gd| − |pdes|∥2 + ι∥d∥2, (2.33)

where | · | is the element-wise absolute value. The monotonic decrease in the objective
function can be guaranteed by alternately updating the variable of the surrogate function
and the variable to be optimized. We first define the variable of the surrogate function as

vk = |pdes| exp (j arg(Gdk)),∀dk ∈ CL, (2.34)
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Figure 2.5: Traditional expert system used to process some data

where arg(·) is the argument of a complex variable and k is index of the iteration. Then
we can define the surrogate function as

J +(d|vk) = ∥Gd − vk∥2 + ι∥d∥2 ≥ J (d). (2.35)

Thus, by alternately updating vk and dk we obtain a solution for the driving signal d as

vk = |pdes| exp (j arg(Gdk)), (2.36)

dk+1 = mind ∈ CLJ +(d|vk) = (GHG + ιIL)−1GHvk. (2.37)

The monotonic non-increase of the objective function can be verified as

J (dk+1) ≤ J +(dk+1|vk) ≤ J +(dk|vk) = J (dk) (2.38)

This algorithm is iterated until a stopping condition is met, e.g. a threshold for the
variation of J (dk) or dk.

2.2. Deep Learning

Deep Learning is a sub-category of Machine Learning (ML), which is a branch of the
Artificial Intelligence field. With ML we use the available data to automatically learn
from the data itself the set of rules and algorithms needed to perform a determined task.
By comparing Figs. 2.5 and 2.6 we can see an example on how ML could be applied for
a generic task. The procedure by which the model learns the function that maps input
to output is called training. Basically, as described in Fig. 2.7 the ML model is trained
using a dataset, called training set, and later tested on a different dataset that must not
contain the same examples of the training set, called test set.

Usually, machine learning’s models are not fed with raw data, but with data that has
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Figure 2.6: ML system used to learn a set of rules that can be applied to process data

Figure 2.7: Schematic of ML system usage

passed through preprocessing operations. Through this process some aspects of the input
are extracted using well-known, established algorithms and procedures. The outputs of
the preprocessing steps are called features and the choice of the right ones to use is
fundamental to obtain a model capable to perform the chosen task. This pre-processing
step is commonly called feature engineering (FE).

2.2.1. Features

A Neural Network (NN) is a class of machine learning models inspired by the structure and
function of biological neurons. It is composed of layers of artificial neurons that process
input data and produce corresponding output data. We call a layer a set of artificial
neurons that process input data and produce corresponding output data: as shown in
Fig. 2.8, these sets of neurons are organized into a sequential or hierarchical structure,
with the input of one layer serving as the output of the preceding layer.

One of the main advantages of Neural Networks, if compared to standard Machine Learn-
ing methods, is that they don’t need any feature extraction procedure. NN models can
be fed with raw data, and the features are automatically extracted as part of the learning
procedure; in this case we talk about feature learning (FL). Basically every layer extracts
features from the previous layer. Thus, first layers will extract low-level features, and as
we go deep in the network, higher-level features are derived. The last layer can be used
for many purposes, for example classification and regression.
Hence, classification and regression are computed based on the features which correspond
to the higher level of abstraction.
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Figure 2.8: Simple NN Architecture composed by 3 layers of 2, 3 and 1 neurons, respec-
tively

An issue that is frequently encountered is that is not easy to understand what the features
extracted by a deep learning model represent: usually for engineered features, there is a
strong background theory related to the field of research; in deep learning models, fea-
tures are obtained through probability and statistics, applied to a non-linear optimisation
procedure.

2.2.2. Learning

To describe the learning procedure is necessary to explain how is structured the "oldest"
family of Neural Networks, called Multi-Layer Perceptron (MLP) or Feed-Forward Dense
Neural Networks (FFDNN). A Feed-Forward Neural Network is composed by a series of
layers, where each layer itself composed by a set of elemental operators. What these
elemental operators - called Neurons or Perceptron - do is to take an input signal z, apply
a weight y, add a bias term v and then apply an activation function ϵ to produce an
output signal. This description can be synthesized in Fig. 2.9 and the following function

f (z|η) := ϵ(yT z + v), (2.39)

where η = (y, v, ϵ) are the parameters updated at each iteration. Weights represent the
strength of the connections between the input and the output, while the biases control the
threshold for the following activation. Activations are a crucial elements when it comes to
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Figure 2.9: Description of operations performed by a single Perceptron

Figure 2.10: Rectified Linear Unit

the learning procedure: these are non-linear transfer functions that determine the output
and make the neural network a non-linear model; without them a neural network would
simply be a linear combination with biases. One of the most used activations is the
Rectified Linear Unit (ReLU) [42] shown in Fig. 2.10, that saturates to zero all negative
results

ϵReLU(z) = max(0, z). (2.40)

As described above, the intermediate layers can be interpreted as feature extractors. By
jointly optimising the intermediate and output layers, the model finds a feature extractor
which processes the data so that the output layer performs well.

Parameters are estimated by an iterative method. The method used to optimize the
parameters is the Gradient Descent (GD), i.e. through the gradient the model learns
how it changes the function as we change its weights. We’ll refer to the scaling factor
as learning rate lr ∈ (0, 1], that is the size of the step taken at each iteration for the
exploration of the space of solutions.
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The learning algorithm that NNs use to compute the gradient weights is called back-
propagation [27]. The name of the algorithm is due to the fact that the error at the
output layer is propagated to the previous layers.

In DL, is very rare and improbable to have a convex function to optimize, so we also have
local minima and not only a global one. To avoid to get stuck in local minima, Stochastic
Gradient Descent is used (SGD), that is a stochastic approximation of GD where the
whole dataset is replaced with randomly selected samples of the data, called batch: the
gradient direction is estimated from these randomly selected samples. The size of this
minibatch must ensure that we get enough stochasticity to avoid local minima. It behaves
in an erratic way, and this randomness helps to avoid getting trapped before reaching the
function’s minimum, and so to find a better (or hopely the best) solution.

We refer to the term training to the process of learning the parameters, i.e. the optimi-
sation is done during training time, in which we try to fit the parameters.

2.2.3. Loss

In Deep Learning, the optimisation process involves learning parameters through a con-
tinuous and differentiable loss function, which compares the predicted output with the
actual output, or Ground Truth (GT). Back-propagation of the gradient is used to update
the parameters η iteratively until the desired result is reached.

Also the choice of the loss function is fundamental, for enabling successful model train-
ing. Specifically, selecting an appropriate loss function is necessary for the model to be
trainable and converge to an optimal solution. One of the simplest loss functions that can
be thought is the Mean-Squared Error (MSE), i.e. the mean of the squared differences
between the obtained and desired result

MSE =

∑N
n=1(pdes(n)− pout(n))

2

N
, (2.41)

where N is the length of the vector containing the examples evaluated and the subscripts
des and out indicate if we’re referring to the desired or obtained output, respectively.

2.2.4. Convolutional Neural Networks

Convolutional networks also known as convolutional neural networks, or CNNs, are a spe-
cialized kind of neural network for processing data that has a known grid-like topology.
An example is image data, which can be thought of as a 2-D grid of pixels. The name
“convolutional neural network” indicates that the network employs a mathematical op-
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eration called convolution which is a specialised kind of linear operation. Convolutional
networks are simply neural networks that use convolution or correlation in place of general
matrix multiplication in at least one of their layers.

First, differently from MLPs where every input of a layer interacts with every output of
the previous layer, in convolutional networks typically we have sparse interactions. This
is accomplished by using kernels - the CNN counterpart of MLP’s neurons, also called
filters - smaller than the input. In this way, in image processing we can detect meaningful
features such as edges with kernels that occupy only a small number of pixels.

Secondly, the sharing of parameters between filters lead CNNs to be equivariant to trans-
lations, i.e. if we move an object in the input, its representation will move the same
amount in the output.
This is useful for when we know that some function of a small number of neighboring
pixels is useful when applied to multiple input locations. For example, when processing
images it could help to detect edges in the first layer of a convolutional network. The same
edges appear more or less everywhere in the image, so it is practical to share parameters
across the entire image.

Like in standards MLPs we have biases and activation functions, but the main difference
- as described above - is that the activation is not applied to an inner product but to a
correlation, i.e. Eq. (2.42) becomes

fCNN(z|η) := ϵ(z ∗ yT + v), (2.42)

with ∗ representing the convolution operation.

The good thing about CNNs is that layers at different depths tend to specialize to different
patterns, rather than abstracting the previous layer as in FFDNNs.

Convolutional Neural Networks are the most common tool used in image processing and
computer vision. We can apply them to any kind of data that is in matrix form, e.g.
time-frequency representation of audio signals and pressure field representations. We can
imagine treating our acoustic fields as if they are images from which we try to learn edges
and corners, e.g. directions and radiation properties of pressure waves.

2.2.5. Conclusive Remarks

In the first section of this chapter, we described the main mathematical and physical
concepts related to acoustics, needed in order to develop the technique proposed in this
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thesis, particularly the concepts used for SFS and SFC. We’ve made a detailed description
of the most used techniques, namely Pressure Matching, Acoustic Contrast Control, Mode-
Matching and Amplitude Matching. All the above-mentioned methods are at the state-
of-the-art for what concerns the multi-zone sound field synthesis problem. They all have
in common that they try to calculate the optimal driving functions with by means of
an optimisation problem: for most of the approaches the problem is linear and thus
they present a closed-form solution; the only exception is for the Amplitude Matching
algorithm, for which an iterative procedure is necessary since the problem to solve presents
a non-linearity.

The second part of this chapter gave a brief description of the basic concepts behind the
functioning of Deep Neural Networks. It is shown the optimisation mechanism of Neural
Networks and why CNNs achieve greater results w.r.t. standard MLPs. NNs are based on
an optimisation procedure, this make them perfectly fit the purpose of finding an optimal
driving function to synthesize a sound field, in particular with multi-zones.

It’s noticeable how each of the SFC methods optimises differently due to the fact that
they aim at reaching different objectives. Deep Learning could easily be applied to each
of these optimisation problems. In this work we focus on the reproduction of the desired
pressure field through the minimisation of the reproduction error, since our goal is to
correctly reproduce a pressure field.
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3| Proposed Method

In this chapter we will describe the proposed method in detail, from the mathematical
theory used, to the design of the Neural Network. After a first formulation of our problem,
we carry a detailed description of the proposed model. The last part of this chapter is
focused on the explaination of our training procedure.

The objective of our system is to to correctly reproduce a desired sound field in a deter-
mined area, while attenuating the pressure field in a different a different zone, inside the
same environment. Our problem follows the rationale of the Pressure Matching method
presented in 2.1.1, i.e. to minimise the error between our estimation and the ground truth
at the control points inside the two regions. The main difference with the aforementioned
approach is that the optimisation is not performed through Least Squares, but through a
Deep Neural Network 2.2.4.

Through the adoption of a neural network model is possible to find a solution that analyse
the non-linearities of the system. This last characteristic is not possible to be investigated
in PM since LS is an algorithm that can be applied only to linear problems. Our network
is designed to extrapolate from the values at the control points of a desired pressure field
the driving signals that allow us to replicate the sound field in a determined region of our
environment. Due to the different characteristic of the sound zones to be synthesized,
during the training we treat bright and dark zones differently.

3.1. Problem Formulation

Let us consider - as shown in Fig 1.6 - L loudspeakers deployed in positions r’l, l = 1, · · · , L
and M control points rm, m = 1, · · · ,M used to measure the pressure in the qth area, being
q = 1, · · · , Q and Q the number of examined regions inside the considered environment
Q. The goal of a SFS technique is to obtain the optimal driving function d(r’, ω) that
allows us to best approximate the desired acoustic field. By expressing each term of the
discrete Single Layer Potential (2.9) in terms of vectors as defined in (2.12), (2.11) and
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(2.10), we can reformulate the equation as

p(r, ω) =
L∑
l=1

G(r|r′l, ω)d(r′l, ω). (3.1)

It’s noteworthy that the set of points computed of the pressure field directly depends on
the set of points considered in the transfer function loudspeaker-to-point G(r|r′l, ω). That
means, that even though for training procedure we only compute the pressure field at the
control points, we could use the same driving function to compute the entire acoustic
scene inside our environment Q: the only difference needed to obtain such result would
be to use a transfer function that considers every point inside Q.

In the proposed method, we apply a Deep-Learning based Pressure Matching (DLPM)
approach as proposed in [19] and modify it in order to perform the synthesis of multiple
acoustic scenes, precisely for the optimal formulation of the driving function. Our pro-
cedure follows the Pressure Matching technique for multi-zone synthesis as described in
2.1.1, but the main difference is in the optimisation algorithm: instead of using the Least
Square regression, we used a DNN.
Thus, by reformulating PM’s minimisation problem (2.14), we can express our optimisa-
tion problem as

min
ddlpm∈CL

M∑
m=1

|G(rm)ddlpm − pdes(rm)|2, (3.2)

where ddlpm is the output of our optimisation procedure, i.e. the DNN training.

In classic DL methods, a NN is fed with some input data, and the output of the system
is compared with a predefined ground truth, by means of a loss function that often needs
to be minimised.

For our problem we don’t have a ground truth set of driving functions, but a set of ground
truth sound fields is easily obtainable as described in Sec. 2.1. Hence, instead of directly
use driving functions for the comparison, we apply the loss to two sound fields. For this
purpose, we use the output of our system, i.e. the estimated driving function dest(r’, ω),
to obtain our estimated pressure field pest(r, ω) through the vectorised discrete SLP (3.1),
and we apply the loss function to compare our estimated acoustic field with the desired
one pdes(r, ω) at the control points.

The input of the neural network model consists of the pressure field of the desired bright
zone pdes

b (r, ω). We omit the dark zone because it’s an area where all values are equal,
hence it would not add any discriminative information from the learning purpose. Follow-
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ing [36], we don’t feed the proposed model with complex matrixes representing pressure
fields, but as input we used a vector containing a concatenation of real and imaginary
parts, i.e.

p̃des
b (r, ω) =

[
ℜ(pdes

b (r, ω)

ℑ(pdes
b (r, ω)

]
, (3.3)

with ℜ(·) and ℑ(·) representing the real and imaginary part of a complex number, respec-
tively.
We will use U to refer to a series of nested functions that represent our Neural Network,
defined as

U(·) = ⃝I
i=1fi = fI ◦ · · · ◦ f1. (3.4)

Thus, the solution of our system can be expressed by

ddlpm = U(p̃des
b ), (3.5)

where ddlpm is a vector containing the driving signals that minimise the error between the
desired and estimated pressure fields.

3.2. Deep Learning for Multi-zone Sound Field Syn-

thesis

In this section we will present the model for multi-zone synthesis. A first part will be
dedicated to the depiction of the network architecture. The second part of this section will
describe the training procedure used for our purpose. A 2D sound field in the frequency
domain can be represented by a complex matrix, whose entries represent the pressure
values at specific points in the space, conveniently taken from a grid. Hence, given the
success of convulotional neural networks in computer vision it is straightforward to use a
pressure fields as input to a CNN.

Our model it’s composed by an encoder-decoder part, with a physics inference for the
calculation of the loss during training. The physic inference consists in the application of
some of the acoustics principles described in 1.1, i.e. in our loss we estimate our pressure
field by convolving the estimated driving functions with the loudspeaker-to-CP transfer
functions.

The principle of our global system - i.e. to replicate at the output its input - makes the
use of an encoder-decoder structure a suitable choice for our objective.
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3.2.1. Neural Network Architecture

In the following description we present the details of the neural network architecture used
to perform multi-zone sound field synthesis. As already proposed in [36], we use only
real values as inputs, by concatenating the real and imaginary part. We adopt a Neural
Network that follows the basis of an encoder-decoder structure. The encoder takes as
input the pressure field and outputs with the bottle-neck layer high-level features. The
decoder takes as input the high-level features from the encoder and learns the optimal
driving function.

In the above and following descriptions, we use the term decoder to refer to the part after
the bottle-neck layer, and encoder for the previous part. The structure is shown in tables
3.1 3.2, and Figs 3.1 3.2.
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Layer
Type

Output Parameters Filters/Units Kernel Stride Activation

Input [(450, 64, 1)] 0

Conv2D [(225, 32, 32)] 230720 32 3× 3 2× 2 PReLU

BN [(225, 32, 32)] 128

Conv2D [(225, 32, 32)] 239648 32 3× 3 1× 1 pReLU

Conv2D [(113, 16, 64)] 134208 64 3× 3 2× 2 PReLU

BN [(113, 16, 64)] 256

Conv2D [(113, 16, 64)] 152604 64 3× 3 1× 1 PReLU

Conv2D [(57, 8, 128)] 134208 128 33× 3 2× 2 PReLU

BN [(57, 8, 128)] 512

Conv2D [(57, 8, 128)] 205952 128 3× 3 1× 1 PReLU

Conv2D [(29, 4, 256)] 324864 256 3× 3 2× 2 PReLU

BN [(29, 4, 256)] 1024

Conv2D [(29, 4, 256)] 619776 256 3× 3 1× 1 PReLU

Conv2D [(15, 2, 512)] 1195520 512 3× 3 2× 2 PReLU

BN [(15, 2, 512)] 2048

Conv2D [(15, 2, 512)] 2375168 512 3× 3 1× 1 PReLU

Flatten [(15360)] 0

Dense [(8)] 122888 8

Reshape [(4, 2, 1)] 0

Table 3.1: Encoder Architecture and Parameters
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Layer
Type

Output Parameters Filters Kernel Stride Activation

Conv2DT [(8, 4, 512)] 21504 512 3× 3 2× 2 PReLU

Conv2DT [(8, 4, 512)] 2376192 512 3× 3 1× 1 PReLU

Conv2DT [(16, 8, 256)] 1212672 256 3× 3 2× 2 PReLU

Conv2DT [(16, 8, 256)] 622848 256 3× 3 1× 1 PReLU

Conv2DT [(32, 16, 128)] 360576 128 3× 3 2× 2 PReLU

Conv2DT [(32, 16, 256)] 213120 128 3× 3 1× 1 PReLU

Conv2DT [(64, 32, 64)] 204864 64 3× 3 2× 2 PReLU

Conv2DT [(64, 32, 64)] 168000 64 3× 3 1× 1 PReLU

Conv2DT [(128, 64, 32)] 280608 32 3× 3 2× 2 PReLU

Conv2DT [(128, 64, 32)] 271392 32 3× 3 1× 1 PReLU

Conv2DT [(128, 64, 1)] 289 1 3× 3 1× 1

Table 3.2: Decoder Architecture and Parameters

The encoder is composed of 10 convolutional layers having (i) 32, (ii) 32, (iii) 64, (iv) 64,
(v) 128, (vi) 128, (vii) 256, (viii) 256, (ix) 512, (x) 512 filters, respectively. The first layer
takes as input the vector p̂des

b (r, ω) ∈ R2M×K , being K the number of frequencies used for
training; while the output of the last layer is then flattened to a monodimensional vector.
The bottle-neck layer, that contains the highest-level features is a dense layer composed
of (2L/32)(K/32) neurons.
The decoder is composed of 10 de-convolutional layers that mirror the encoder. Thus the
number of filters increases, being respectively (xi) 512, (xii) 512, (xiii) 256, (xiv) 256,
(xv) 128, (xvi) 128, (xvii) 64, (xviii) 64, (xix) 32, (xx) 32 filters, respectively. The input
of the decoder is the output of the bottle-neck, reshaped as a (2L/32)(K/32)× 1 tensor;
the output is a tensor of shape (2L)(K)× 1.

All convolutional layers have a kernel size of 3 × 3. Both in the encoder and decoder,
all layers have Parametric ReLU (PReLU)[28] as activation function, odd layers have a
stride of 2× 2, have a stride of 1× 1. PReLU 3.3, can be defined as

ϵPReLU(z) = max(0, z) + αmin(0, z), (3.6)

and is a variant of the ReLU activation function that allows the slope of the negative
part of the function to be learned during training; this makes the activation function more
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Figure 3.1: Schematic representation of the Encoder. For simplicity we represent only the
layers with stride 2× 2, the reshape layer and their outputs. The Encoder takes as input
the concatenation of the real and imaginary part and outputs high-level features.
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Figure 3.2: Schematic representation of the Decoder. For simplicity we represent only
the layers with stride 2× 2 layer and their outputs. The decoder takes as input high-level
features, and outputs the concatenation of the real and imaginary part of the driving
function.
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Figure 3.3: Parametric Rectified Linear Unit with various values of α

flexible and can improve the model’s ability to capture complex nonlinear relationships
in the data.

In the encoder’s odd layers, kernels are regularised using the L2 regularisation [45]. Every
convolutional layer’s input is zero-padded evenly in the left/right and up/down parts.
With this configuration, in layers with stride = (1× 1), the output has the same size as
the input. At the output of the bottle-neck layer is applied a L1L2 regularisation [23].

3.2.2. Procedure

In this section we present a formal description of how the proposed model can be trained.
Terming as S, the set of virtual sources placed outside the listening environment Q, and
using the subscript cp to underline that we consider only the M control points, we use
transfer functions to compute the pressure field pdes

b,cp(rcp) emitted by each virtual source
rs ∈ S, i.e.

pdes
b,cp(rcp) = G(rcp|r′s), cp = 1, . . .M , and s ∈ S. (3.7)

For simplicity, in the above definition, we omit the frequency argument ω. This omission
is used to represent that the computation is for every ωk frequencies, with k = 1, . . . , K.
This notation will be maintained during the following description. Since we are considering
only control points, (3.5) can hence be reformulated as

ddlpm = U(p̃des
b,cp). (3.8)
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As shown in section 3.2.1, the output of our DNN is a real tensor ddlpm ∈ R2L×K×1.
With this shape is possible to characterise the first dimension of the tensor as being the
concatenation of real and imaginary part. This characterisation allow us to reorganise
our model in a complex formulation as

dC
dlpm,l = ddlpm,l + jddlpm,L+l, l = 1, . . . , L (3.9)

being dC
dlpm the complex reformulation of our estimated driving signal, and j the imaginary

unit.

With this complex formulation of our driving signal, we can now use the vectorised equa-
tion for discrete Single Layer Potential (3.1), to compute our estimated pressure field at
the control points as

pest
b,cp(rcp) =

L∑
l=1

G(rb,cp|r′l)dC
dlpm(r

′
l), (3.10)

pest
d,cp(rcp) =

L∑
l=1

G(rd,cp|r′l)dC
dlpm(r

′
l). (3.11)

In the last equations we can see hoe once we have a driving function, the pressure zone
of the pressure field to be synthesised depends only on the transfer function G.

The derivation of our loss function is based the Mean Absolute Error, i.e.

MAE =
(|pdes

s − pest
s |)∑

s s
, s ∈ S, (3.12)

where ps is used to represent a generic pressure field produced by a virtual source s.

Using L(·, ·) to refer to a loss function, we describe our loss as

LMAE(pdes
cp ,pest

cp ) = (λabs(||pdes
b,cp| − |pest

b,cp||) + (|∠pdes
b,cp − ∠pest

b,cp|))+

+λd(λabs(||pdes
d,cp| − |pest

d,cp||)
, (3.13)

where the absence of the rs is used to represent the whole batch over which the loss is
computed, and λabs and λdark are two weights empirically estimated. Note that since our
goal is to correctly reproduce the bright zone and only to attenuate the dark zone, we
completely discarded the phase of the dark zone.
A schematic representation of the training procedure is shown in Fig. 3.4.
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Figure 3.4: Schematic representation of the training procedure

3.3. Conclusive Remarks

In this chapter, we presented the problem formulation and the procedure used to find the
optimal driving function to minimise error between the estimated and desired pressure
fields. We described the problem of multi-zone sound field control through an array of
loudspeakers. The goal of our system was to find the optimal driving vector containing
the weights to be applied to each loudspeaker to reproduce our desired pressure field.
Following the Pressure Matching approach, the reproduced field was estimated using a
set of control points inside our regions of interest. We proposed a deep network, where
the convolutional part was inspired by the structure of autoencoders, and the output was
computed through a multi-layer perceptron.

Our model takes as input the concatenation of the real and imaginary parts of a pressure
field, and outputs the concatenation of real and imaginary parts of a driving function.
The output, is then recomposed as a complex vector and convolved to loudspeaker’s Green
Functions to obtain our estimated field.

Finally for the comparison of the estimated and desired pressure fields we used the mean
absolute error as a loss function: we compared separately and weighted the sum of the
MAEs for the bright and dark zones; furthermore, for the bright zone we compared
separately the MAEs of the amplitude and the phase and weighted their sum, while for
the dark zone we only used the MAE of the amplitudes.
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4| Results

In this chapter we present simulation results aiming to demonstrate the effectiveness of the
proposed technique, namely MZ-DLPM, when compared with state-of-the-art methods
such as Pressure Matching (PM), Amplitude Matching (AM), and Acoustic Contrast
(AC).
We conduct numerical experiments in a 3D sound field to evaluate our proposed method
and perform the evaluation for the pressure values in the horizontal plane where the
loudspeakers are placed.

In the first section we present the metrics that will be used in order to evaluate the models.
We mainly use metrics that are frequently used in the field of PSZ reproduction. In order
to compare the wave fronts we also applied a metric coming from the field of computer
vision.

In the second section we present the setup used to obtain our results. We firstly describe
the physical layout, consisting on the considered environment and the distribution of
control points and secondary sources. We then move to the virtual layout, describing how
the virtual sources are placed and modeled.

The last part of the chapter is dedicated to the presentation of the obtained results and
corresponding discussions and interpretations.

In the following, we’ll term as bright the zone with high acoustic power, and dark or quite
the zone with low acoustic power.

4.1. Evaluation Metrics

In this section we describe the evaluation metrics we will use to asses the performance of
our system and the rationale behind each choice. We will use the subscripts des and est
to refer to the pressure values taken by the desired and estimated pressure fields. The
expression ground truth is also used to refer to the desired pressure field, and the terms
synthesised and predicted will be used as alternative to "estimated".
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4.1.1. Mean Squared Error

We measure the reproduction error between the desired and estimated field by applying
the MSE as defined in 2.41 to their complex values. To have insights on which are the
components of the pressure field that are better reproduced, we measure the MSE also for
the amplitude and phase values of the two acoustic fields, separately. The three metrics
are termed as MSE, MSEabs and MSEangle, and are defined as

MSE =

∑N
n=1(pdes(rn, ω)− pest(rn, ω))

2

N
, (4.1)

MSEabs =

∑N
n=1(|pdes(rn, ω)| − |pest(rn, ω)|)2

N
, (4.2)

MSEangle =

∑N
n=1(∠pdes(rn, ω)− ∠pest(rn, ω))

2

N
, (4.3)

where | · | represent the absolute value operator, ∠· the phase operator and N is the
number of evaluation points.

4.1.2. Image Similarity

As described in 3.2.2 the MSE mainly provides a mean error over all locations between
the two acoustic fields. Due to the square operation, a high MSE value may result from a
poor perfomance locally, while performing well in the remaining spatial locations. Hence,
following [19], we also compute the Structural Similarity Index Measure (SSIM) [57],
which is usually applied in image processing problems. SSIM is used to quantify how
much two images are similar, being 1 the value obtained in the case of two identical
images. Considering two matrices Pdes(ω),Pest(ω) ∈N×N is defined as

SSIM(Pdes,Pest) =
(2µPdes

µPest + c1)(2σPdes,Pest + c2)

(µ2
Pdes

+ µ2
Pest

+ c1)(σ2
Pdes

+ σ2
Pest

+ c2)
, (4.4)

where µ is the mean of the corresponding matrix entries, σ2 the estimate of the variance
of the entries, σpdes,pest is the covariance estimate between the entries pdes and pest; c1
and c2 are constants meant to stabilise the division for small denominators.
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4.1.3. Acoustic Contrast

The Acoustic Contrast (AC), as described in 2.1.2 is the ratio between the acoustic po-
tential energy between two considered zones. It can be applied in order to measure how
the noise or the energy is distributed inside an environment, once a desired pressure field
is synthesised in a determined region. For our purpose, we use the AC to compare the
energy difference between the bright and dark zones. By using the definitions of acoustic
potential energy (2.16), (2.17) and considering that we have a discrete representation of
the pressure fields, we redefine AC as

AC =
eb(n)

ed(n)
=

∑N
n=1 p

∗
b(n)pb(n)∑N

n=1 p
∗
d(n)pd(n)

, (4.5)

where the apex ∗ denotes the complex conjugate and the subscripts b and d refer to the
bright and dark zones respectively.

4.2. Setup and Dataset Generation

In this section we describe how we set up the system used in order to simulate the
environment. In the first part we focus on the considered environment, by showing the
room we use and how we position secondary sources and control points. We also show
how we compute two different sets of points: a sparse set of control points for the training
of the model and a dense set of evaluation points for the evaluation of our system.

The second part of this section is dedicated to description of the generation of our datasets.
We show the signals used to represent our virtual sources and how we set the parameters
of our model for the training procedure.

4.2.1. Reproduction System Layout

As shown in Fig 4.1 our environment is a free-field cubic room of dimensions [−2m, 2m]×
[−2m, 2m] × [0m, 4m] , with the position r0 = (0m, 0m, 2m) being its centre and origin.
Two square target regions for the generation of the two zones with high-and-low acoustic
potential energy are placed.
The bright evaluation zone is centered at (0.0m, 0.5m, 2m) m and has a side of 0.5 m,
while the dark evaluation zone is centered at (0.0m,−0.5m, 2m) and has the same side of
the bright zone.

We can define the two regions Ab and Ad with two different sets of points each. We refer
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(a) (b)

Figure 4.1: Experimental setting in (a) 2D plane (b) 3D environment.

to evaluation points to define the points used for the evaluation of our system, i.e. the
ones over which the metrics are calculated. This point distribution is dense, i.e. with a
spacing of δeval ≈ 0.02 m. While we refer to control points to define the points used for
training our system, precisely the ones over which the loss is minimised. Control points
are more sparse since they have a spacing of δcp ≈ 0.05 m. Furthermore the zone covered
by the control points is enlarged w.r.t. to the evaluation zone. In facts the control zones
have the same center of evaluation zones, but their side is of 0.6 m.

To sum up the above description, the evaluation zone is composed by 512 evenly dis-
tributed points in an area of 0.25 m2, while the control zone is composed by 128 evenly
distributed points in an area of 0.36 m2. We’ll use the subscripts eval and cp to refer to
evaluation and control points, respectively.

To reproduce the desired sound field we use a Uniform Linear Array (ULA) of L = 64

secondary sources, linearly distributed in the range −1.5m× [−1.5m, 1.5m]× 2m. With
this configuration, the spacing between secondary sources is δl ≈ 0.05m. Hence, since -
as mentioned in Ch. 1 - closed-cabinet loudspeakers behave similarly to point sources, we
can model our secondary sources using the Green’s Function (2.5).
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Figure 4.2: Virtual sources distribution for the generation of train set and test set

4.2.2. Training and Test Sets

In order to train the network we consider a dataset of S virtual sources, with a cardinality
of #S = 1500. We then separate our dataset in two datasets Strain and Sval for training
and validation, respectively. These two datasets have a cardinality of #Strain = 1200

and #Sval = 300. The Strain and Sval sets are generated by randomly sampling from
the whole dataset. The sources of S are placed in a rectangular area covering the range
[−3.75m,−1.75m] × [−1.5m, 1.5m] × 2m, with a spacing of 0.04 m along the x axis and
a spacing of 0.1 m along the y axis. A last dataset Stest of cardinality #Stest = 1500 is
created by shifting the S by 0.02m on the x axis and by 0.05 on the y axis. The latter is
the dataset that be we use to test our system and compare the results with other methods.
A representation of the above description is in Fig. 4.2.

The signals emitted by the virtual sources are sinusoids, with K = 64 frequency values
linearly spaced between 23.4375 Hz and 1500 Hz.
Since we consider a free-field environment, we can model also the transfer functions as
spatio-temporal impulses with the Green’s Function defined in (2.5), as done with the
secondary sources.

We train our model for 5000 epochs and apply early stopping with a patience of 100

epochs, tracking the value of the loss of Sval. Approximately the overall training lasts for
≈ 500 epochs. We adopt the Adaptive Moment (Adam) optimiser [31], that is a stochastic
gradient descent method that adapts its learning rate during the training phase. Finally,
we initialise the learning rate lr = 0.001 and set the parameters for the loss (3.13) λabs = 25
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(a) (b) (c)

Figure 4.3: Pressure field emitted by virtual point source at position rŝ (a) without
normalisation, (b) normalised w.r.t. the amplitude at position r0 and (c) expressed in
dB.

and λdark ≈ 1.

4.3. Discussion

In this section we qualitatively and numerically compare the proposed technique with
some of the state-of-the-art approaches described in Ch. 2, namely Pressure Matching,
Acoustic Contrast Control and Amplitude Matching. For the qualitative comparison we
show and discuss the resulting pressure fields obtained by each method. For the numerical
comparison we use the metrics described in 4.1 - i.e. MSE 4.1.1, SSIM 4.1.2 and AC 4.1.3
- to show the behaviour of each technique as a function of frequency and position.

Before presenting the results related to the whole dataset, we show an example of the gen-
erated sound fields for a single virtual source located outside our considered reproduction
zone at position rŝ = [−3.75m, 1.5m, 2m] emitting a spherical wave at frequency fk = 961

Hz, as shown in Fig. 4.3.

In Fig. 4.4, we can see the characteristics of each of the considered techniques as real
pressure fields, while in Fig. 4.5 are shown the amplitude and phase distribution of the
same acoustic scenes. PM tends to accurately confine the two evaluation zones and focuses
the reproduction only on those areas. Amplitude matching has a similar behavior to PM;
despite its capability to reproduce a bright zone with a higher acoustic potential energy,
the waves reproduced tend to be more similar to plane waves. ACC is capable of achieving
a great acoustic contrast, by generating a bright area with a very high acoustic potential
energy. However, the pressure waves reproduced are completely different w.r.t. the desired
ones. Finally, the proposed method is able achieve an acoustic contrast similar to the ACC
while maintaining the directionality of the desired pressure field. It’s interesting to notice
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how, despite being out of the scope of our work, the proposed technique is able to maintain
a point-source-like phase distribution along the whole environment.

For the numerical evaluation, firstly we use the MSE, MSEabs and MSEangle averaged
over all test positions as function of frequency fk for all the evaluation points A 4.6
comprising both evaluation points of the bright zone Ab and the evaluation points of the
dark zone Ad 4.7.

It is clear how the proposed method is capable of being more accurate. As expected,
between the other methods, the one that best performs in terms reproduction error is the
PM when we consider the complex pressure field.
If we further analyse the results, we can see that our method outperforms the other
techniques both in terms of error of the amplitude and phase. Also in this case is expected
for the Amplitude Matching to perform better when considering only the amplitude w.r.t.
considering the whole values. Acoustic Contrast Control is by far the one that creates a
major distortion in the reproduced sound field.
It’s noteworthy how by separately optimising the amplitude and the phase, our approach
is able to achieve great results in terms of phase accuracy.

In the same way we show the MSE, MSEabs and MSEangle averaged over all frequencies
as a function of the distance to the line that connects the centres of Ab (0m, 0.5m, 2m)
and Ad (0m,−0.5m, 2m). Also this simulation is performed for the evaluation points of
the bright and dark zones separately 4.13 and together 4.12.

Also in this situation our approach has a reproduction error clearly lower w.r.t. the other
approaches. It is interesting to note how all techniques have the same performance trend.
There could be two complementary reasons to explain this trend.
Firstly the tendency is more pronounced in the dark zone, which could mean that is harder
in general to attenuate a zone when the pressure values in the bright zone are higher, i.e.
when it’s necessary a greater contrast: farther virtual sources have more space to decrease
their amplitude and could be that the values of the pressure field are already low when
the pressure wave arrives to the bright zone.
However this trend is present also in the bright zone. This could suggest, that for multi-
zone systems is easier to reproduce plane waves, w.r.t. spherical waves: even though we
used points sources as virtual sources, the waves coming farther w.r.t. the origin will tend
to flatten.
Also with this representation is straightforward how the phase benefits by the separated
optimisation.

The SSIM results are computed only for the bright zone. The average over all test positions
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(a) (b)

Figure 4.4: In top-bottom order, acoustic fields of MZ-DLPM, PM, ACC and AM (a)
without and (b) with normalisation w.r.t. the amplitude at position r0
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(a) (b) (c)

Figure 4.5: In top-bottom order, acoustic fields of MZ-DLPM, PM, ACC and AM of (a)
amplitude distribution of the acoustic fields, (b) amplitude distribution of the acoustic
fields expressed in dB, (c) phase distribution of the acoustic fields.



58 4| Results

Figure 4.6: MSE as a function of frequency in A

(a) (b)

Figure 4.7: MSE as a function of frequency in (a) Ab and (b) Ad

Figure 4.8: MSE of the absolute values as a function of frequency in A



4| Results 59

(a) (b)

Figure 4.9: MSE of the absolute values as a function of frequency in (a) Ab and (b) Ad

Figure 4.10: MSE of the phase as a function of frequency in A

(a) (b)

Figure 4.11: MSE of the phase as a function of frequency in (a) Ab and (b) Ad
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Figure 4.12: MSE as a function of the position in the x axis in A

(a) (b)

Figure 4.13: MSE as a function of the position in the x axis in (a) Ab and (b) Ad

Figure 4.14: MSE of the absolute values as a function of the position in the x axis in A
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(a) (b)

Figure 4.15: MSE of the absolute values as a function of the position in the x axis in (a)
Ab and (b) Ad

Figure 4.16: MSE of the phase as a function of the position in the x axis in A

(a) (b)

Figure 4.17: MSE of the phase as a function of frequency in (a) Ab and (b) Ad
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(a) (b)

Figure 4.18: SSIM as a function of (a) the position in the x axis and (b) frequency in Ab

and over all frequencies are shown in Fig. 4.18.

In this case there is a strong trend, that shows how performance degrade as we increase the
frequency. Since we are below aliasing condition and we are considering only the bright
zone, it is possible that this tendency is correlated with the trend of the reproduction
error of the phase in the bright zone 4.11a. By considering a human empirical evaluation
of two pressure fields coming from the same position, what could be perceived in a case
like ours - where the amplitude error is small - is the difference in the phase. Since SSIM
aims to evaluate the similarity between two images, this could be the reason for this trend.
For what concerns its dependency from the position also here there is a small tendency
of reaching a better performance as we come closer to the origin.
At first sight this behaviour seems in contrast w.r.t. to the one of the MSE 4.13, however
SSIM is less bounded by the single values of the pressure fields and more correlated to
their statistical distribution. This means that the similarity between the distribution of
the pressure field values increases as we go closer to the origin.
Also this metric shows how our methods tends to better represent the desired pressure
field in the bright zone.

Finally Fig. 4.19 show the Acoustic Contrast computation as a function of frequency and
position, respectively.

The proposed technique achieves a great result in terms of acoustic contrast, being able
to surpass ACC for low frequencies, and achieving by far a higher contrast w.r.t. AM and
PM. However as we approach higher frequencies the ACC outperforms our method.
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(a) (b)

Figure 4.19: AC as a function of (a) the position in the x axis and protect(b) frequency
in A

4.4. Conclusive Remarks

In this chapter, we presented the configuration used perform our simulations. We used
an anechoic shoebox room (4 × 4 × 4) to represent a free field. Inside this environment
we placed 256 control points in the two regions Ab, Ad under study. To reproduce the
estimated sound fields we used ULA of secondary sources.
We then described the procedure used for the generation of our datasets. We used two
different datasets for training and testing composed by 1500 virtual sources each emitting
sinusoidal signals at 64 different frequencies.
In the last part of the chapter we show how our method performs compared with other
state-of-the-art systems. For the comparison we used two classic metrics used for the
evaluation of multi-zone problems, namely MSE and AC, and also used a metric used in
computer vision that for our scope takes into consideration the statistic distribution of
the pressure values, i.e. SSIM.
From the comparison is evident, how our method outperforms all the other approaches
in all the tested metrics: is capable of maintaining a small reproduction error, while also
achieving a high acoustic contrast and a distribution similar w.r.t. the ground truth.

It’s noteworthy how approaches described in the literature tend always to choose between
the trade-off accuracy-vs-contrast. When it comes to accuracy, PM and and WMM are the
two methods that till this day achieved the best results. While for the acoustic contrast,
the ACC is considered as an upper-bound to refer to, since it’s an algorithm that aims
to only maximise it. Hence, the fact that our method has in most cases simultaneously
both a greater accuracy w.r.t. PM and a greater AC w.r.t. ACC is a great achievement.
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5| Conclusions and Future

developments

In this thesis we have presented a technique for multi-zone sound field synthesis through
a deep neural network. Our method aims to synthesise a desired pressure field over two
target regions using multiple secondary sources, precisely a Uniform Linear Array (ULA)
of loudspeakers. We characterised two target regions with high and low acoustic potential
energy, termed as bright and dark, respectively. Our goal was to find the optimal driv-
ing function to apply to the loudspeakers, through a Deep Learning-based optimisation.
Specifically, for our purpose we retrieved the desired driving signals by feeding the ground
truth sound field at a series of control points into an Encoder-Decoder-structured Convo-
lutional Neural Network. Since we didn’t have a set of ground truth driving signals, we
first convolved the output of our model with the acoustic transfer function between the
loudspeaker positions and the control points, obtaining our estimated pressure field. We
then computed the loss between the ground truth and estimated sound field at control
points by weighting separately the bright and dark zone, and by weighting separately the
amplitude and phase of the bright zone.
Since the dark region was modeled as matrix of near-zero values, we omitted its points
from the input of the CNN, as it wouldn’t give any discriminative information for learning
purposes. For the same reason, in the loss function, we only considered its amplitude,
since adding its phase information would over-complicate the training procedure without
necessarily improving the performance.

We compared the proposed technique with other state-of-the-art methods for multi-zone
sound field synthesis, namely Pressure Matching (PM), Acoustic Contrast Control (ACC),
and Amplitude Matching (AM). Results demonstrate the effectiveness of the proposed
method and the ability to overcome the trade-off between accuracy of the reproduction in
the bright zone and AC between the acoustic potential energy of the two target regions.
Precisely our method was able to achieve an acoustic contrast at the same level of the
ACC method, that is usually by far the best-performing technique for such metric, and
simultaneously maintain a reproduction error lower then PM and AM.
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Future works could include noise and reverberation into the environment. A further study
could aim to analyse the behaviour of the proposed system as we change the number
and/or position of control points. Also how a reduction of the number of loudspeakers
impacts on the performance could be of interest. Finally, the proposed method could be
tested for the synthesis of more then two zones.
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