
State Persistence in Noir

Tesi di Laurea Magistrale in
Computer Science Engineering - Ingegneria Infor-
matica

Author: Emmanuele Lattuada

Student ID: 990034
Advisor: Prof. Alessandro Margara
Co-advisors: Prof. Gianpaolo Cugola, Luca De Martini
Academic Year: 2022-23

i

Abstract

Noir is a new distributed system designed to process large amounts of data, it is scalable,
efficient, and fast. With its functionalities, it is possible to easily implement different
kinds of analyses and computations in just a few lines of code, while delivering excellent
performance in terms of execution times.

This thesis focuses on the study and implementation of state persistence in Noir, aiming
to make the system fault-tolerant. In the context of applications like Noir, involving long-
term executions on large datasets or streaming data, fault tolerance becomes a crucial
factor. By periodically saving the state of the system, the algorithm ensures that in the
event of a failure, such as a network error, the computation can resume from the last
saved state, avoiding the need to start from scratch.

The algorithm for state persistence has been designed to maintain Noir’s original archi-
tecture and design while allowing the periodic saving of a system snapshot to a reliable
external source. This enables recovery from the last saved state in case of a failure.

The algorithm has been tested, and the thesis includes a study and analysis of the ex-
periments conducted to understand the effects of the algorithm on Noir’s performance in
various situations and with different parameters.

Keywords: distributed systems, stream processing, state management, fault-tolerance

Abstract in lingua italiana

Noir è un recente sistema distribuito progettato per processare grandi quantità di dati
in maniera scalabile, efficiente e veloce. Le funzionalità che offre permettono di definire
in modo semplice e in poche righe di codice diversi tipi di analisi e computazioni e, allo
stesso tempo, di ottenere ottime performance sui tempi di esecuzione.

Il lavoro di questa tesi si concentra sullo studio e sull’implementazione della persistenza
dello stato in Noir, l’obiettivo è di rendere il sistema tollerante ai guasti. Il contesto
di applicazione di un sistema come Noir prevede esecuzioni molto lunghe su moli di dati
considerevoli, per questo motivo la tolleranza ai guasti diventa un fattore chiave. Salvando
periodicamente lo stato del sistema, nel caso in cui si verifichi un guasto come un errore
di rete, diventa possibile riprendere la computazione dall’ultimo stato salvato, evitando
così di dover ripartire da zero.

È stato progettato un algoritmo di persistenza dello stato che mantiene inalterato il design
e l’architettura di Noir e che allo stesso tempo permette di salvare periodicamente uno
snapshot del sistema su una sorgente esterna affidabile in modo che in caso di guasto sia
possibile recuperare l’ultimo stato salvato e ripartire da quello.

Questo algoritmo è stato testato e nella tesi è presente uno studio ed un’analisi degli es-
perimenti effettuati per cercare di comprendere gli effetti dell’algoritmo sulle performance
di Noir in diverse situazioni e al variare di diversi parametri.

Parole chiave: sistemi distribuiti, stream processing, gestione dello stato, tolleranza ai
guasti

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 Noir 3
1.1 Architecture . 4

1.1.1 Job graph and execution graph . 4
1.1.2 Next strategy and blocks . 6
1.1.3 Communication channels . 6

1.2 Scheduling and execution . 7
1.3 Operators . 8

1.3.1 Sources . 9
1.3.2 Sinks . 10
1.3.3 Data manipulations and filters . 10
1.3.4 Aggregates . 11
1.3.5 Partitioning . 12
1.3.6 Timestamps . 13
1.3.7 Join . 14
1.3.8 Windows . 15
1.3.9 Iterations . 16

2 Snapshot algorithms 19
2.1 Chandy-Lamport . 20
2.2 Asynchronous Barrier Snapshotting . 20
2.3 Other solutions . 22

vi | Contents

3 Snapshotting in Noir 25
3.1 Algorithm . 25
3.2 Operators state . 31

3.2.1 Sources . 32
3.2.2 Sinks . 33
3.2.3 Start . 33
3.2.4 End . 36
3.2.5 Fold . 36
3.2.6 Richmap . 37
3.2.7 Join . 38
3.2.8 Window . 40

3.3 Iterations . 44
3.3.1 Algorithm . 44
3.3.2 Replay . 55
3.3.3 Iterate . 55
3.3.4 IterationLeader . 56

3.4 Recovery . 57
3.5 Persistency Module . 59

3.5.1 Configuration . 59
3.5.2 PersistencyBuilder . 60
3.5.3 PersistencyService . 62
3.5.4 StateSaver . 62

3.6 Redis . 63

4 Performance evaluation 67
4.1 Comparison with original Noir . 72
4.2 Snapshot frequency by item vs by time . 74
4.3 Variations of different snapshot frequencies 76

4.3.1 Drift mitigation . 82
4.4 Iterations . 85

5 Conclusions and future developments 87

Bibliography 88

List of Figures 90

Listings 92

List of Tables 93

Acknowledgements 94

1

Introduction

The amount of data and information being generated is increasing rapidly every day.
Various scenarios, such as social media, the Internet of Things, commercial transactions,
and advertising, are constantly generating vast amounts of data that need to be processed
and analyzed efficiently. To address this need, faster and more efficient software is required
to process and extract insights and models from this data.

A very effective paradigm that has developed and spread in recent years is dataflow. This
approach focuses on data that are modeled as a flowing stream. Operations applied to
the data are functions and transformations that take an input data stream and produce
an output stream containing processed data. The collection of all functions applied to
the stream forms a directed graph of operators, where each node represents an operator
that performs a specific function or transformation. The edges in the graph represent
the communication channels between these operators. It is a directed graph because the
data flows in one direction, from the initial nodes of the graph, passing through various
operators for processing and manipulation, and reaching the final nodes of the graph
where the computation results are produced.

Compared to the traditional imperative programming model, the dataflow paradigm does
not have a single shared state or an explicit flow of control. Once the network of operators
and communication channels are defined and created, each operator works independently
with its own local state and control flow. This independence allows for easy and efficient
computation distribution across a cluster of hosts, as communication and synchronization
are managed automatically by the communication channels. Furthermore, the dataflow
model is highly scalable. You can handle higher workloads simply by adding more hosts
to the cluster and instantiating more operators without changing the system architecture.

Noir is a streaming and batch processing framework based on dataflow and developed by
a research team at Politecnico di Milano. It provides a set of APIs for conducting vari-
ous types of analyses and offers excellent performance when compared to other dataflow
frameworks.

This thesis work focuses on state persistence in Noir. The state in Noir consists of the

2 | Introduction

collection of internal and local states of each individual operator. To extract this state
during execution, a snapshot algorithm is required. A snapshot is a picture of the sys-
tem, it captures the states of the operators and the messages being exchanged through
communication channels.

The main purpose of state persistence is to make the system fault-tolerant. Reliable
periodic snapshots of the global state enable the system to restart from the last saved state
in case of failure. In the context of large volumes of data and resource-intensive executions,
as in the case of real-time stream processing, having fault-tolerance mechanisms to avoid
restarting processing from scratch in the event of an operator or connection failure is
essential. Persistence also enables the implementation of other features, such as the
ability to provide a queryable state and the capability to stop and resume execution from
an intermediate point.

The first chapter of this thesis introduces Noir, describing its architecture and key func-
tionalities. The second chapter explains what a snapshot algorithm is and provides an
overview of some snapshot algorithms, comparing the solutions implemented in other
frameworks. The third chapter details the snapshot algorithm we implemented in Noir,
examining the states of individual operators and the procedures we put in place to obtain
a consistent state. The fourth chapter presents the experiments conducted to study the
impact of the snapshot algorithm on the performance of Noir.

3

1| Noir

Noir[18] is a processing system for batch and streaming analysis written in Rust[7] and
based on the dataflow[15] paradigm. Its goal is to provide a high level of abstraction and
expressiveness but also to reach performances close to custom and ad-hoc implementation
written with tools and libraries at lower abstraction levels, like MPI[21] (Message Passing
Interface). Its design and some of its API are inspired by Apache Flink[20], a popular
open-source framework for stream processing also based on dataflow. Apache Flink has
also been the reference for evaluating Noir’s performances together with the custom im-
plementation of the same benchmarks written in MPI. Noir showed that it can achieve a
throughput up to x30 compared to Apache Flink and for some tasks, it has performances
close to custom MPI implementation.

Noir can handle bounded and unbounded streams of any type, the only required con-
straints are defined by the Data trait and ExchangeData trait depending on the specific
type of operator. This means that the user can create a stream of desired type but he
has to provide the implementation of the functions requested by these traits. Noir can
also manage keyed-streams that are streams of Key-Value tuples, this kind of stream
is composed of logically independent substreams, one for each key. In other words, if
two tuples have the same key they belong to the same substream, otherwise they are
processed separately as they belong to different substreams. To go into detail view the
section Partitioning of Operators. Another interesting stream is the one composed of
tuples Value-Timestamp, where each value is associated with a time. This can be used
for event processing as explained in the section Timestamp of Operators.

As in the dataflow model, Noir generates a network of operators with a directed graph.
The first nodes in the network are called Sources, last ones are called Sinks. Stream
tuples flow from one operator to the next one through communication channels. The type
StreamElement incorporates both tuple and metadata necessary for the correct execution
of the flow. In particular, StreamElement has these instances:

• Item(Out): tuple of the stream. Out is the generic type;

• Timestamped(Out, Timestamp): tuple of type Value-Timestamp;

4 1| Noir

• Watermark(Timestamp): special timestamp, view section Timestamps;

• FlushBatch: used to mark the end of a batch of data;

• FlushAndRestart: used to finish an iteration, view section Iterations;

• Terminate: used to notify the end of the stream and the end of the computation,
this is the last token received from each operator.

1.1. Architecture

This section explains the abstract model and the main concepts behind this framework.

1.1.1. Job graph and execution graph

The job graph is a directed graph that represents the operators and the relations between
them. Each node is an operator and each edge is a communication channel through which
data are exchanged from one operator to the next one.

Figure 1.1: Simple job graph.

Sources are the first operators in the graph while the last ones are the Sinks. The former
has the role of feeding the network with data, so it produces the tuples and sends them to
the next operators. Tuples can be generated at runtime (i.e. a sequence of numbers) or
can be taken from an external source like a file or a TCP channel. The latter is in charge
of handling computation results, it can collect results or do other actions specified by the
user.

The job graph can present cycles if there are iterative operators, this introduces some
complications as explained in later sections.

1| Noir 5

The execution graph is derived from the job graph. Most of the operators can be paral-
lelized and replicated to improve throughput, the execution graph contains all the replicas
of each operator in the job graph and all the connections between them. The number of
replicas of each operator is related to the specific operator, indeed there are some opera-
tors that cannot be replicated, for example, a Source that reads data from a TCP channel.
The execution graph depends on several things:

• the number of hosts and maximum parallelism limit of each of them fix the maximum
number of operator replicas that each host can instantiate,

• the replication constraints of each individual operator that specify the number of
replicas that each operator can have, operators with limited replication cannot be
replicated and have a single instance while operators with unlimited parallelism
can have an arbitrary number of replicas that is defined by the maximum available
parallelism given from the previous point,

• the communication mode from an operator to the following one defined by the Next
strategy (see next section) which specifies the connection topology.

Figure 1.2: Job graph and execution graph

In figure 1.2 we can see a simple job graph on the left and a possible corresponding exe-
cution graph on the right. The cluster is composed of 2 hosts with maximum parallelism
equal to 2 for both. The numbers associated with each operator on the right are the
replica indexes. For Source and Map operators there is unlimited parallelism while Re-
duce and Sink cannot be replicated. More details on these operators are provided in the

6 1| Noir

section Operators.

1.1.2. Next strategy and blocks

The Next strategy specifies the connection topology between an operator p and the next
operator n in the execution graph. There are 4 possible strategies:

• random: the data is sent to a replica of n randomly chosen,

• group by: the replica to which send data is deterministically chosen depending on
the data,

• only one: p and s have the same number of replicas and a replica of p sends all data
to only its corresponding replica of n, this means that each replica of p has just one
output channel and each replica of n has just one input channel to have a 1 to 1
connection,

• broadcast: each replica of p sends data to all replicas of n.

To optimize the execution, Noir groups operators into blocks. The grouping is based on
the Next strategy, indeed inside a block, there are only operators with Next strategy “only
one” and that don’t need the network layer. Each block starts with a special operator
called Start or with the Source operator and ends with another special operator called
End or the Sink operator. Operators inside a block are serially connected, one after the
other, and they make a so-called Operator Chain.

1.1.3. Communication channels

The communication channels between operators can be local or remote. The local ones
are in-memory channels that are used between operators on the same host. Remote
channels are constructed over TCP channels and they are used for communication between
operators on different hosts. Using local channels simplifies communication by avoiding
message serialization and deserialization and the overhead due to the network stack.
Remote channels are optimized and it is used the same TCP socket for multiple remote
channels. In particular, just one TCP socket is used to connect two blocks on different
hosts regardless of the number of instances (replicas) of the two blocks. In-memory
channels are based on the paradigm of multiple-producers and single-consumer and are
provided by crate Flume[3] (default) or crate Crossbeam[2] (available as a feature).

1| Noir 7

1.2. Scheduling and execution

Noir keeps all necessary information for the execution in a structure called Environment.
The creation of an Environment is the first thing to do to start a Noir program, it needs
a configuration as a parameter. The configuration specifies the execution mode, which
can be local or remote. Local execution does not need a cluster, all the code is executed
locally. This mode is mainly used for tests and debugging. Remote execution requires a
list with all hosts belonging to the cluster, corresponding ports to be used for connections,
and credentials to establish an SSH connection. It is also necessary to specify for each
host the maximum allowed parallelism, i.e. the maximum number of replicas that can be
instantiated for each operator. This parameter is also required in local execution mode
and is typically set to the host number of cores.

Once the Environment has been created, the next step is the cluster spawning with the
function “spawn_remote_workers()”. For each host listed in the configuration, an SSH
connection is established through which the executable and the configuration file can be
sent, after that the target host can launch the program.

The Environment structure also allows defining the Stream, it starts with the creation of
the Source and then gradually adds operators following the order of the flow, thus the
job graph is built. When you add an operator, the division into blocks is automatically
carried out and the various operators are scheduled. The stream must always end with a
Sink.

After the entire Stream is defined we can call the function “execute_blocking()”, this
function actually starts the data processing. First, the execution graph is generated, then
all connections are created on the base of the execution graph, and finally, through the
scheduler, all the blocks are instantiated and so also all the operators contained in each
block. Each block is handled by a dedicated worker and therefore by a dedicated thread.
The worker manages the block processing through the functions “setup()” and “next()”
provided by the operator chain.

8 1| Noir

// Get the configuration from command line arguments

let (config, _args) = EnvironmentConfig::from_args();

// Create a new environment

let mut env = StreamEnvironment::new(config);

// Spawn workers on remote hosts

env.spawn_remote_workers();

// Create a Source operator

let source = IteratorSource::new(0..100);

// Define the stream

let result = env

.stream(source)

.group_by(|i| i % 5)

.fold(Vec::new(), Vec::push)

.collect_vec();

// Start the processing

env.execute_blocking();

// Read and print result

if let Some(result) = result.get() {

println!("{result:?}");

}

Listing 1.1: Simple Noir program

1.3. Operators

Operators are a fundamental part of Noir because they contain all the logic needed for data
processing. All operators implement the trait Operator which defines the basic functions
that each operator must provide, in particular, the two most important functions are:

• setup(): function to initialize the operator, all that metadata generated after the
whole flow has been instantiated is passed to this function, this information includes
block coordinates, block replicas, and network topology.

• next(): function used to process the Stream, it is modeled as an iterator. This
means that this function always returns a StreamElement but all the logic and the
code necessary to get it depends on the operator and the specific implementation
of this function. Typically this function retrieves one or more StreamElement from

1| Noir 9

the previous operator, does some processing, and returns another StreamElement.

As mentioned earlier, the operators within a block form an Operator Chain where each
operator keeps track of the previous one. This model implies that each block has direct
access only to the last operator of the chain (an End or Sink operator). When setup()
and next() functions are called on an Operator Chain, these calls are done on the last
operator of the chain and then are recursively propagated to the previous operators up
to the first operator in the chain (a Start or a Source operator). In this way the program
control passes from the last to the first operator in the chain, this means that in the
Operator Chain, a StreamElement is not sent from one operator to the next one but is
requested from an operator to the previous one. The flow of next() calls is in the opposite
direction from the StreamElement flow through the Operator Chain. This is a pull-based
architecture.

The main operators available in Noir are described below, they are grouped according to
the kind of operations they perform.

1.3.1. Sources

The role of these operators is to inject tuples into the flow. Sources are the first nodes
in the job graph and they don’t have in-going edges but only out-going ones. Replication
constraints of this type of operator depend only on the specific Source. There are different
Source operators depending on the actual external source of the data:

• Channel: reads data from a channel, the channel can be an in-memory channel or
a network channel (TCP channel). Due to the single instance of the channel this
Source cannot be replicated.

• File: reads data from a file. The file is read line by line. This Source can be
replicated as long as the file is in the same location on all hosts. The file is split
into chunks and each replica reads only from its own chunk.

• Csv: reads data from a CSV file, similar to FileSource but specific to this format,
indeed it provides several configuration parameters to read and extract tuples from
the CSV format. Similar to FileSource, this Source can be replicated if the file is
present in the same location on all hosts.

• Iterator: generates data from an iterator, this type of Source is very flexible and
useful because, through the abstraction of the iterator[9], it is possible to generate
all kinds of data sequences. This Source cannot be replicated because the iterator
cannot be parallelized.

10 1| Noir

• Parallel Iterator: similar to IteratorSource. This Source requires a generation
function as a parameter, the function is used to generate the iterators for each
replica of these operators. The generation function uses the replica ID and the
overall number of replicas to produce the right iterator for each instance.

1.3.2. Sinks

These operators are the nodes at the end of the job graph and they don’t have out-
going edges. They receive and manage processing results. Like Sources, the replication
constraints depend on the specific type of Sink. There are two main types of Sinks:

• ForEach: is used to perform operations on each element that arrives at the operator.
In other words, it is possible to specify a procedure to be applied to each result that
arrives at the ForEach operator. This Sink can be replicated since the operations
to be performed on each element depend only on the element itself.

• Collect: as the name suggests, is used to collect all processing results into a single
structure that can be returned to the user. Since it is a collection operation it is
required to be performed on a single instance and therefore this Sink cannot be
replicated. There are several implementations of the Collect operator that differ in
how results are collected. For example, the CollectVec operator collects all results
in a Vec while the CollectCount operator sums all results it receives and returns to
the user only the sum of all the results.

1.3.3. Data manipulations and filters

This kind of operator includes simple operators such as:

• Map: applies a transformation to each tuple it processes. An example of a trans-
formation might be an arithmetic operation if the tuples are numbers or a transfor-
mation to uppercase letters if the tuples are literal characters or strings.

• Filter: applies a filter to each tuple. If the filter condition is satisfied then the tuple
is forwarded to the next operator otherwise the tuple is removed from the stream.
An example might be a filter with a threshold where tuples with a value above the
threshold are discarded.

• Flatten: is used to decompose a tuple into multiple tuples, for example, the opera-
tor can receive as input a vector of integers and have single integers as output, when
the operator receives the vector it returns as output every single integer contained

1| Noir 11

in the vector.

These operators have no state because the operations they perform depend only on the
tuple being processed at that time and not on those processed in the past. For the same
reason they have no replication constraints and they can have an arbitrary number of
replicas.

These operators are used to implement other operators such as FilterMap and FlatMap.
The former is the union of Map and Filter operations, the map function must return an
Option where the tuples that are discarded by the Filter become None. The latter is the
union of Map and Flatten operators, thus the map function can return 0, 1, or n tuples.

Sometimes it is necessary to do operations on the current tuple that also consider past
received tuples. In this case, the operator needs to keep a state of the computation. Rich
operators have been developed to support this kind of scenario. These operators keep an
internal state that is used to process tuples and can be updated for each processed tuple.
An example scenario that requires the use of rich operators is the following: we want to
filter out all sequential duplicates, in other words, we don’t want two consecutive identical
tuples in the output stream. The simple Filter operator is not sufficient to implement this
condition, but RichFilterMap allows us to do it. The state to be maintained is the last
tuple processed by the operator, and the filter condition is that the current tuple must be
different from the saved one.

Rich operators don’t have replication constraints but keep in mind that the state of these
operators is local and is not shared among replicas. Consider the previous example,
if the operator RichFilterMap is replicated and the stream without duplicates is entirely
collected by a CollecVec, the collected stream may contain two consecutive identical tuples
if those tuples are flowed in two different replicas of RichFilterMap.

Rich operators in Noir are:

• RichMap: rich version of Map. This operator takes a FnMut closure that specifies
the mapping function. The mapping function is cloned for each replica.

• RichFilterMap: rich version of FilterMap, is implemented with RichMap.

• RichFlatMap: rich version of FlatMap, is implemented with RichMap.

1.3.4. Aggregates

These operators are used to extract aggregate data from the stream. They require a func-
tion that describes how to aggregate all the tuples they receive into a single accumulator.

12 1| Noir

They need to process the entire stream to compute the final result and as soon as the
result is ready is forwarded to the next operator. There are two types of operators: Fold
and Reduce. Fold takes as input the initial value of the accumulator and the aggregation
function; the type of the accumulator and the type of the tuple can be different. Reduce,
on the other hand, takes as input only the aggregation function, and the accumulator is
initialized to the first tuple of the stream. Both operators are blocking and cannot be
replicated because they need all the tuples of the stream to produce the final result.

To mitigate this constraint there is a distributed version of these operators where the
aggregation operation is split into two phases. In the first phase, a partial calculation
of the aggregate is performed by each replica on its portion of the stream; in the second
phase, the partial results are aggregated. The computation of partial results can be done
in parallel while the computation of the final result cannot because all partial results are
needed to compute the final result. AssociativeFold and AssociativeReduce require two
aggregation functions: the first to compute the partial results, and the second to produce
the final result from all partial results.

Figure 1.3: Fold vs AssociativeFold

Noir also provides some common useful aggregates like max, min, sum, count, and some
others. All these functions are built on top of the Fold operator, also the Reduce operator,
and the associative versions are all built on top of the Fold operator.

1.3.5. Partitioning

This category includes those operators that allow splitting the stream into logically inde-
pendent substreams and redistributing the tuples to all the different replicas of the next

1| Noir 13

operator. There are two ways to split and distribute the stream: random distribution or
key-based distribution. The first method is implemented in the Shuffle operator, each
received tuple is forwarded to one of the next replicas, chosen randomly. This operator
allows parallelism changes in the flow, typically it is used after those operators that cannot
be replicated to allow parallelization for subsequent operators

Partitioning by key, on the other hand, is done through GroupBy. The operator requires
a function used to compute the key starting from the tuple, after that the stream becomes
a KeyedStream where the elements will be tuples composed of the key and the old element.
The key also determines the replica of the next operator to forward the tuple to. All tuples
with the same key are sent to the same replica.

The KeyBy operator just performs the computation of the key and the transformation
of the stream into a KeyedStream. All created tuples are sent to the next operator with
OnlyOne strategy, the next operator receives tuples with different keys, and it is not
guaranteed that all tuples with the same key arrive at the same replica.

The UnKey operator is the opposite of the KeyBy; it turns a KeyedStream into a simple
stream by removing the key from the key-value tuple and returning only the value.

1.3.6. Timestamps

When data streams represent a series of events, the concept of time is also important for
processing purposes. For example, if the Sources receive readings from sensors, it is useful
to know the time at which the reading was taken because it can be a relevant factor for
analysis purposes. Two important times can be distinguished: event time and processing
time. The former represents the time when the event occurred, for example, the time
when the reading was taken from the sensor. The event time is fixed and depends only
on the event. The latter represents the time when the data is processed, unlike the first
this is not fixed and can change each time the data passes through the operators.

Noir implements the AddTimestamps operator that allows you to specify the logic to
get the event time from each tuple, for example by extracting the value from one of the
tuple attributes. This operator also modifies the token that contains the tuple in the
flow, changing it from Item(item) to Timestamped(item, event time) so that subsequent
operators can properly handle the event.

It may happen that events flowing through the network are not sorted by event time
and that event A arrives before event B despite the event time of A being later than the
event time of B. This is why there are special mechanisms for dealing with late arrivals:

14 1| Noir

watermarks.

The Watermark is a special token that represents a barrier. When an operator receives
a watermark it records the timestamp contained in it and from that instant all events
that arrive with an event time lower than the watermark are discarded. In other words,
the watermark establishes a validity limit for events late arrivals. If an event arrives too
late, it is no longer relevant for analysis.

1.3.7. Join

Another useful operation that is frequently applied to streams is the join. If we consider
two streams as two tables with a potentially unbounded number of entries, then the join
operation between two streams is similar to the SQL join command applied to the two
tables. Also in this context, the join is applied on a specific field of the tuple and we can
distinguish 3 modes:

• Inner: the output consists of all the tuples that have a match in both the left
stream and the right stream, the produced tuple has type <Left, Right>

• Left: all tuples in the left stream are present in the output, while only those tuples
of the right stream that match are present, the produced tuple has type <Left,
Option<Right». The tuples of left that do not match in output become (Left,
None).

• Outer: all tuples of left and right are present, and the produced tuple has type
<Option<Left>, Option<Right».

All 3 types of joins require the specification of the ship strategy and the local strategy.
The ship strategy defines how the tuples of left and right streams are distributed among
all the replicas of the Join. These are the options:

• Hash Repartition: as with the group-by operator, tuples are distributed by key.

• Broadcast-forward: tuples in the left stream keep their own distribution while tuples
in the right stream are broadcast to all replicas.

The algorithm used to check tuple matching can be chosen from the following local strate-
gies:

• Hash Join: the tuples of the two streams are maintained in two hash tables indexed
by the key.

• Sort and Merge: the tuples of the two streams are maintained in memory and sorted

1| Noir 15

by key.

For timestamped streams, there is also the IntervalJoin operator, which allows tuples of
two streams to be associated based on their timestamps. Specifically, a left stream tuple
with timestamp tl is associated with a right stream tuple with timestamp tr if and only
if tl - lower_bound < tr < tl + upper_bound, where lower_bound and upper_bound
are the parameters passed to the operator. In other words, two tuples are joined if their
event times are close enough.

1.3.8. Windows

The window is another useful and common abstraction used for stream analysis. It allows
to split the stream into portions, called windows, and to perform independent processing
on each window. The size of windows can be defined by three different properties:

• Count: the number of tuples is the parameter to get the window, so the order in
which tuples arrive influences the content of the windows.

• EventTime: windows are made on the base of the event time. In this case, the
role of the watermark becomes crucial since it can sign the closing of the windows.

• ProcessingTime: windows are sized on the processing time.

The ways in which windows are created are:

• Sliding: windows are defined by 2 parameters: size and step. The first indicates the
length of the window, the second indicates how often a new window is created. If
step < size the windows have overlapping, which means that a tuple can be present
in multiple windows.

• Tumbling: windows are defined only by the size parameter that specifies the length,
when a window is closed, immediately a new window is opened. These windows don’t
have overlaps.

• Session: this type requires the window to contain all consecutive elements that
have a distance less than or equal to the gap parameter. This mode is available only
for temporal windows, it is not supported by Count Windows.

16 1| Noir

Figure 1.4: Windows examples

1.3.9. Iterations

Iterative operators are a special kind of operators that require a separate discussion be-
cause they introduce loops into the dataflow graph. This implies that a tuple may flow
through the same operator several times, which may cause some issues and some proper-
ties such as proper termination and exit from the loop, assurance that no tuple is lost in
the loop, and proper handling of watermarks need to be guaranteed. Typically iterations
are stateful in the sense that at each iteration the state is used for computation and a
new state is created. This leads to an additional problem: a mechanism is needed to
synchronize state access by all replicas to ensure consistency of shared state and avoid
deadlocks.

Noir provides two operators for iterative computations: Iterate and Replay. The former
transforms the stream at each iteration and has two outputs: the transformed stream and
the final state. The latter always iterates over the initial stream and has only the final state
as output. The structure of these operators is similar; Iterate and Replay receive data
from the previous blocks and, at each iteration, send it to the body. All computation and
processing that has to be repeated at each iteration is contained in the body of the loop;
it consists of a dataflow in an independent scope with respect to the operators outside the
loop. The task of the body is to generate the delta updates, which are the updates to the

1| Noir 17

state obtained at each iteration. For the Iterate operator, the body also has the role of
generating the new tuples to be used at the next iteration. The delta updates are sent to
the Iteration Leader, which is a special, non-replicated operator (it has a single instance)
that cannot be controlled from the outside. The task of the Iteration Leader is to compute
the new state at each iteration via the delta updates. Once all the stream tuples have
been sent to the body, Iterate or Replay sends the FlushAndRestart token to the body.
When the body operators receive the FlushAndRestart they know that the iteration has
ended, so they send the computed delta update to the IterationLeader and reset their
internal state to be ready to start a new iteration. The Iteration Leader waits for delta
updates from all body replicas, after which it updates the state and sends it to all replicas
of the Iterate or Replay operator. Both operators are blocking and work only on bounded
streams. In fact, they need to receive all stream elements before they can complete even
the first iteration, and they need the entire stream to complete the iteration and compute
the new state. The incoming stream is stored by both operators, Replay holds it until
the end of the computation and uses an index to scroll it while Iterate replaces it with
the new stream generated at each iteration. After sending the FlushAndRestart token,
the Iterate or Replay operator must wait for a new state from the IterationLeader before
starting a new iteration. This architecture ensures state consistency and synchronization
for state reads and writes, and also allows the creation of nested iterations. At the end
of the computation, when the Terminate token flows through the body and arrives at the
IterationLeader, the loop ends, and the final state contained in the IterationLeader is sent
to subsequent operators in the network. The Iterate operator also has a second output
through which it sends the new stream generated by the last iteration. The body also
can execute the Join operator with a stream from outside the loop, called side input. The
side input needs to be a bounded stream and it is entirely read and cached during the
first loop iteration similar to what happens to the input stream of Iterate and Replay.

Figure 1.5: Replay operator

18 1| Noir

The figure 1.5 represents the iteration structure of the Replay operator with replication
equal to two. The Body is composed of some operators. The state update edge represents
the channel used to send the newly computed state from the IterationLeader to all replicas
of Replay.

Figure 1.6: Iterate operator

The figure 1.6 represents the Iterate structure. This presents some differences with respect
to Replay. The feedback edges from the Body’s replicas to Iterate’s replicas are the channel
used to send the tuples computed by the Body for the new stream. The dashed edges
going out from Iterate represent the channels used to output the new stream with the
tuples generated during the last iteration.

19

2| Snapshot algorithms

A simple program generally consists of variables and instructions that operate on them;
the content of the variables at a given time of execution is called the state of the program.
If we think of a bit more complex system, the state can be a database. In the dataflow
paradigm, on the other hand, there is no shared global state but each operator has its
own independent local state, the only data shared between operators are stream tuples
and other metadata necessary for the proper functioning of the system that are exchanged
via message. The state of a distributed dataflow system consists of the internal states of
each operator and the messages that are being exchanged.

Snapshot algorithms[23] aim to save the global state of a distributed system on a durable
and reliable source. A snapshot is a kind of picture of the system at a given instant that
captures the local state of each individual component and the messages that the com-
ponents are exchanging at that instant. Typically, snapshot algorithms involve periodic
checkpoints.

There are two ways to perform a checkpoint:

• blocking: execution stops, no more messages are exchanged, and only the internal
states of the components are saved. If stopping and restarting execution is done
correctly without losing or changing the order of tuples, the snapshot is consistent.

• non-blocking: it allows you to take a snapshot without stopping the execution.
In this case, it is more complex to guarantee snapshot consistency. In fact, it may
happen that checkpoints of individual operators are not performed at the same time
for all operators, so different algorithms adopt different strategies to make sure that
a consistent snapshot can always be achieved.

The recovery phase involves resetting the state to the last valid snapshot and resuming
computation from that point. The choice of algorithm best suited to the specific case de-
pends on the architecture and implementation of the system and the following evaluation
metrics:

• checkpoint overhead: the increase in execution time due to the snapshot procedure.

20 2| Snapshot algorithms

• recovery latency: the time required to recover computation from a saved snapshot.

2.1. Chandy-Lamport

Chandy-Lamport[17] is a distributed snapshot algorithm for a general distributed system
and is the base of some other specific algorithms. It considers a distributed system as
a set of processes that communicate with each other with messages exchanged through
channels. Processes have their local internal state and there is not a global state shared
between them. If we represent the system as a graph, the processes are the nodes and
communication channels are the edges.

It works under the following assumptions:

• Any two processes of the system are connected by a communication channel (strongly
connected graph)

• FIFO communication channels

• Reliable channels and processes

Any process can initiate the snapshot by executing these steps:

1. Record its local internal state

2. Send a specific token on all its outgoing channels

3. Start a local snapshot by recording incoming messages

The same procedure is executed when a process receives the token for the first time. When
any process receives a token it stops recording incoming messages from that channel. All
messages other than tokens are processed transparently and without any interference
from the snapshot. When a process receives the token from each incoming channel it can
consider its local snapshot complete and can send it to a single collector of the global state.
The algorithm terminates and the global state is available when all processes receive the
token on each of their in-going channels, which means when all processes complete their
local snapshots.

2.2. Asynchronous Barrier Snapshotting

Apache Flink supports fault tolerance by implementing this snapshot algorithm[16]. From
the generic Chandy-Lamport algorithm that works on strongly connected generic graphs
has been derived this specific algorithm for directed graphs that covers the case of both

2| Snapshot algorithms 21

acyclic and cyclic graphs. As the name suggests, the idea is to create a snapshot of the
global state of the system incrementally with a special token that flows in the operator
network and acts as a barrier to delimit the portion of the stream already processed
included in the snapshot from the portion not included in the snapshot.

It works under these assumptions:

• FIFO communication channels

• Reliable channels and processes

• Channels can be blocked or unblocked, when they are blocked they can buffer mes-
sages but they cannot deliver any message until they have been unblocked

The snapshot procedure in the case of directed acyclic graph (DAG), that is without
iterations is the following:

1. A central coordinator injects a special snapshot token into all Sources, that save
their state and forward the token to the next operators,

2. When an operator within the network receives a snapshot token from one of its
input channels, it blocks that channel and continues to receive messages only from
its unblocked channels,

3. When an operator receives the snapshot token from its only unblocked channel, it
saves its internal state and forwards the token to the next operators,

4. When all Sinks receive the snapshot token and save their internal state the snapshot
is complete.

With this procedure it is possible to avoid saving the tuples received during the snapshot
thus the state is lighter, however, the price to pay is a lower asynchronous execution due
to the token alignment done by blocking the channels.

In the case of cyclic graphs, thus in the presence of iterations, we have iteration-specific
operators that have standard input channels and a back-edge channel from the end of the
loop that is used to send the results of an iteration to the head of the loop in order to
start a new iteration. For this type of operator, the procedure does not work since the
operator would wait indefinitely for the snapshot token from the back-edge but this can
never arrive since it has not yet entered the loop. The procedure for cyclic graphs is the
same as the acyclic procedure for all operators that do not receive data from back-edges,
while for all operators (the iteration-specific operators) that have a back-edge between
the input channels it works like this:

22 2| Snapshot algorithms

1. when it receives the snapshot token from a standard channel it blocks that channel,

2. when it receives the token from the last standard unblocked channel, it makes a
copy of its state and forwards the token (it does not unblock standard channels)

3. from that moment it buffers all tuples received from the back-edge

4. when the snapshot token arrives from the back-edge, it saves the state copy and the
buffer with all tuples received from the back-edge

5. finally unlocks all standard channels and continues execution

2.3. Other solutions

There are different algorithms and implementations to perform snapshots. Here I will
introduce some examples.

Naiad[19] is a distributed dataflow system for batch and stream processing based on
timely dataflow that can support cyclic dataflows. It provides fault tolerance with a
synchronous blocking snapshot algorithm that works like this:

1. when it’s time to do a snapshot it stops message delivery

2. it flushes message queues, messages are saved in buffers

3. each process checkpoints its own local internal state

4. execution restart and message buffers are flushed

5. the checkpoint is complete after it has been saved

To recover the execution after a failure, the last saved checkpoint is taken and each process
sets its local internal state to the checkpoint. This snapshot procedure has a high impact
on throughput and latency.

Apache Samza[10] is a distributed streaming processing system designed for low-latency,
highly scalable data stream processing. Originally developed by LinkedIn, it later became
an Apache project. Its primary use cases include streaming ETL, event-based applica-
tions, and real-time streaming analytics. In Samza, a Stream is divided into independent
partitions, and each partition is an ordered and replayable sequence of tuples. Each tuple
is associated with an offset that uniquely identifies it within the partition. The offsets are
ordered within the partition, allowing you to identify the position of a tuple within the
stream. The stream is very similar to a Kafka[4] topic, which is one of the most commonly
used brokers for managing Samza streams. Processing operations are performed through

2| Snapshot algorithms 23

Tasks. Typically, a task reads tuples from one or more streams and produces an output
stream or writes results to a database. A task is uniquely associated with a partition of
the input stream. Therefore, if there are three tasks, the input stream must have three
partitions. A task can read from a partition starting from any offset, making tasks in-
dependent of each other. The checkpointing[11] algorithm leverages stream properties to
determine how far the stream has been processed. When it is time to create a checkpoint,
it saves the current offsets of all input partitions. When restarting from that checkpoint,
Samza starts reading partitions from the saved offsets. Two checkpointing solutions are
possible: saving checkpoints locally to disk or using a dedicated stream. The former
requires to re-instantiate the task on the same machine to recover the state, while the
latter avoids this problem. In most cases, a specific Kafka topic is used. To maintain
the internal state[12] of the operator, another dedicated stream called the "changelog"
is used. All changes to the internal state are saved in this stream. To recover a specific
state, you can read the changelog until the desired offset to retrieve all modifications to
the internal state.

Apache Storm[13] is a distributed real-time computation system also based on the
dataflow paradigm. Its use case is the reliable processing of unbounded data streams for
applications like real-time analytics, online machine learning, ETL, and all other data-
intensive contexts. Its operator graph is called "topology" and is composed of Spouts
and Bolts. A Spout is similar to a Source in Noir; its task is to produce tuples for
processing, getting them from an external source. Bolts, on the other hand, contain the
processing functions to be applied to the stream, such as filters, aggregates, joins, and so
on. The fault tolerance mechanism is based on checkpoints and tuple acknowledgment.
The checkpoint[14] algorithm works as follows:

1. A special Spout called "CheckpointSpout" generates a special tuple called "Check-
pointTuple."

2. The CheckpointTuple flows through a separate dedicated stream, which is wired by
the topology builder and has the CheckpointSpout as root.

3. When a Bolt receives the CheckpointTuple, it saves its internal state, acknowledges
the CheckpointTuple, and forwards the CheckpointTuple to the next Bolt.

4. If a Bolt has multiple input streams, it has to wait for the CheckpointTuple on all
its inputs before proceeding with the checkpoint.

5. When all Bolts acknowledge the CheckpointTuple, the checkpoint is complete and
committed.

24 2| Snapshot algorithms

Spouts do not save any state because they use a tuple acknowledgment mechanism to
determine which tuples were successfully processed. When a tuple has been fully processed
by the entire topology, an acknowledgment is executed on it, indicating to the Spout that
the tuple has been successfully processed. In case of a failure, the "fail()" method is
executed, indicating to the Spout that it needs to replay that tuple because the processing
was not successful.

25

3| Snapshotting in Noir

Before going into the details of the snapshot algorithm, we need to consider some aspects
of Noir architecture and the goals we want to achieve. The purpose of state persistence
is to be able to resume execution from an intermediate point of the computation without
having to start from scratch. The ideal use case for which the snapshot algorithm has
been modeled is as follows: saving the state at regular time intervals so that the impact
on performance is relatively low but at the same time ensures that there is always a global
state that is not too outdated for the application context. In other words, this algorithm
is designed to be applied to long-term and computationally expensive executions or for
unbounded streams (i.e., continuous processing), where snapshots are taken at a frequency
that allows the time needed for recovery and reprocessing of lost tuples to be compatible
with the specific scenario, and where the impact of snapshots on throughput and latency is
acceptable. For example, consider a processing scenario that involves training a machine
learning model that takes hours to complete; it may be reasonable to use a snapshot
frequency of a few minutes. Another choice made in the implementation of the algorithm
is to favor fail-free execution, meaning to limit the time cost of the snapshot procedure.
This is why we chose a non-blocking snapshot algorithm to limit the overhead associated
with the snapshot procedure. Additionally, Noir does not have a centralized coordinator,
making the implementation of a non-blocking algorithm much simpler.

3.1. Algorithm

We start with some assumptions about the guarantees provided by Noir:

• Communication channels are reliable and guarantee FIFO orders.

• Processes (operators) are reliable.

These assumptions satisfy the requirements of the ABS algorithm but not the ones of
Chandy-Lamport. In fact, it is not true that all operators are connected by a communi-
cation channel, but this is not a problem. Using an approach similar to ABS, a special
snapshot message can be propagated through the network of operators from Sources to

26 3| Snapshotting in Noir

Sinks. After all operators have saved their states, we obtain a global snapshot of the
system.

The special message consists of a snapshot token containing the identifier of the snapshot,
referred to as SnapshotId.

pub struct SnapshotId {

snapshot_id: u64,

terminate: bool,

pub(crate) iteration_stack: Vec<u64>,

pub(crate) iteration_index: Option<u64>,

}

Listing 3.1: SnapshotId structure

The SnapshotId has the role to uniquely identify the global state taken during that snap-
shot, and it contains the following:

• snapshot_id: a sequential index starting from 1 and incremented by 1 each time a
new snapshot is started,

• terminate: a flag that indicates whether it is a Terminate Snapshot (explained
further below),

• iteration_stack: a secondary index used for iterations (see the Iterations section),

• iteration_index: another index to distinguish iteration loops (see the Iterations
section).

The indices of SnapshotIds must always guarantee the following properties:

• Monotonicity: It is not possible to take two snapshots with the same index, and it
is not possible to take a snapshot with an index lower than a previously taken snap-
shot. Otherwise, an operator could save two different states in the same snapshot,
leading to an inconsistent and invalid snapshot.

• Regularity: The index of the snapshot must be equal to the index of the last
taken snapshot plus one. This is crucial because it allows us to determine if an
operator has taken a specific snapshot by knowing only the last taken snapshot. In
other words, if the last snapshot taken by an operator has an index of “i”, then the
operator has also taken all previous snapshots with an index less than “i”.

Some examples of sequences of SnapshotId:

3| Snapshotting in Noir 27

S1, S2, S2 Wrong: violate monotonicity property and regularity property
S1, S2, S4 Wrong: violate regularity property, S3 has not been taken
S2, S3, S4 Wrong: the index must start from 1, the only case where it does not start

from 1 is when restarting from a saved snapshot, in which case it starts
from the index following the snapshot since all previous ones are still
saved and valid

S1, S2, S3 Ok: complies with all the properties

Table 3.1: Properties of SnapshotId.

Snapshot tokens are generated by Sources independently; there is no central coordina-
tor responsible for producing and injecting tokens into the dataflow. The generation of
snapshot tokens can be configured based on the number of generated tuples or at regular
time intervals (see the Configuration section for more details). However, it is important to
note that, given the pull-based architecture of the operators, token generation only occurs
when the operator immediately downstream of the Source calls the "next()" function on
the Source.

Snapshot generation is implemented and managed by the SnapshotGenerator structure.
With each "next()" call, the Source checks if the conditions for generating the snapshot
token (either a specified number of generated tuples or an expired time interval) are met.
If the conditions are met, the SnapshotGenerator is reset, setting the number of produced
tuples back to 0 and resetting the timer for the interval. Then, it returns the snapshot
token. If the conditions are not met, it increments the tuple counter and then generates
and returns a new tuple.

When an operator receives a snapshot token, it follows the following snapshot procedure:

1. The operator receives a snapshot token with index "i" from one of its input channels
"channel1."

2. It makes a copy of its internal state.

3. It sends the snapshot token to the downstream operators.

4. For each input channel other than "channel1," all tuples that arrive before the
snapshot token with index "i" are buffered.

5. Both the buffered tuples and the non-buffered ones are processed as usual.

6. When the token with index "i" has been received from all inputs, the state is saved.

28 3| Snapshotting in Noir

In the end, the operator state consists of its internal state and the buffer containing the
tuples received during the snapshot.

Figure 3.1: Snapshot algorithm

The figure 3.1 shows step-by-step the operations of the algorithm:

1. Initial situation: an operator receiving data from three channels is represented, and
the contents of the channels are also shown.

2. The operator reads snapshot token S1 from the second channel, makes a copy of its
internal state and forwards S1 to the output channel.

3. The operator reads tuple "a" from the first channel, adds it to the queue for tuples
received during the snapshot, processes it, and forwards it to the output channel.
Then, the operator also reads token S1 from the first channel. At this point, any
tuples arriving from the first channel will no longer be added to the queue. Token
S1 is not forwarded because it has already been sent.

4. The operator first reads "b" from the first channel and then "c" from the second
channel. In both cases, it simply processes and forwards the two tuples; they are
not saved in the queue because both the first and second channels have already sent
token S1.

5. The operator reads "d" from the third channel; this channel has not yet sent S1, so
the tuple is added to the queue. Then it is processed and forwarded.

3| Snapshotting in Noir 29

6. The operator reads S1 from the third channel. At this point, it has completed the
snapshot procedure and can save the state, which consists of the copy of its internal
state made in step 2 and the queue with tuples "a" and "d."

This kind of procedure avoids blocking channels as Flink does but it requires saving
the queue with the tuples received during the snapshot. This can consume a significant
amount of memory and result in very large snapshots. However, in Noir, only the Start
operator and the iterative operators have multiple input channels. All other operators
have a single input channel, making the procedure much simpler and lightweight:

1. The operator receives a snapshot token "i" from its single input channel.

2. It saves its internal state.

3. It forwards the snapshot token to the downstream operators.

Iterative operators are addressed in the "Iterations" section because they require a dedi-
cated algorithm due to the introduction of cycles within the operator graph and because
of their specific implementation and functioning.

A snapshot is considered complete only when all operators in the network have saved their
respective states. With this procedure, it is possible for Sinks to save their state before
other internal operators in the network. Therefore, the only way to ensure that you have a
complete snapshot is to verify that all operators have saved the state corresponding to the
SnapshotId contained in the token. This means that by setting a high enough frequency
for generating snapshot tokens, it could happen that a new snapshot is initiated without
the previous one being completed. However, this is not a problem. Operators with
multiple input channels can maintain partial states for each ongoing snapshot. This is
explained in detail in the section describing the state of the Start operator.

Another situation that requires attention is when some Sources terminate before others.
This is a relatively common event due to the asynchronous and uncoordinated nature of
Sources. When this happens, it is possible that the active Sources continue to produce
snapshot tokens while the Sources that have terminated can no longer do so. This could
lead to the storage of incomplete snapshots and, if the Sources are heavily imbalanced,
result in periods without snapshots. For this reason, a special Terminate Snapshot has
been introduced. Its SnapshotId has the "terminate" flag set to true, indicating that it
is the last snapshot taken by an operator before terminating processing. The Terminate
Snapshot is implicitly taken before forwarding the Terminate token to the next operator.
Terminate SnapshotId does not flow through the network like normal SnapshotIds because
it is closely tied to the Terminate token. The index of the SnapshotId is determined by

30 3| Snapshotting in Noir

those saved previously, thanks to the properties of monotonicity and regularity.

When an operator with a single input channel receives a Terminate token, it saves its
state with the special Terminate SnapshotId and forwards the Terminate token to the
next operator.

For operators with multiple input channels, the procedure is a bit more complex:

1. The operator receives a Terminate token on channel "a."

2. If there is an ongoing snapshot, it removes "a" from the list of channels that are
waiting for the snapshot token.

3. If there are other channels that still need to send the Terminate token, the operator
does not send anything to the downstream operators but waits to receive a message
from the other channels.

4. If this is the last Terminate (all other channels have already sent it), the operator
does a Terminate Snapshot and forwards the Terminate token to the downstream
operators.

Figure 3.2: Terminate snapshot

The figure 3.2 represents the evolution of the algorithm in the case of early termination

3| Snapshotting in Noir 31

of a Source (op3). In the initial situation (top part of the figure) we have op1 and op2
which are two operators that have taken snapshots until S4 and are going to produce more
tuples and more snapshots tokens. On the other hand, we have op3, which has completed
its work and has sent the Terminate token. The last snapshot taken by op3 is S2, so
the central operator is still waiting for tokens S3 and S4 from op3 in order to save their
respective snapshots. When the central operator receives the Terminate token from op3,
it knows that no more messages will arrive from that operator. Therefore, it can conclude
and save snapshots S3 and S4. If the central operator then reads S5 from op1, as shown
in the lower part of the figure, it will follow the normal snapshot procedure but will not
expect to receive S5 from op3. In other words, S5 is complete and can be saved as soon
as it arrives from op2.

3.2. Operators state

Each operator saves its state autonomously and independently. This state is identified by
a key formed by the combination of the operator coordinates and the SnapshotId. The
operator coordinates uniquely identify each individual replica of every operator present
in the execution graph. The coordinates consist of the following identifiers:

• Block of ownership

• Host on which it is instantiated

• Replica identifier

• Operator index within the operator chain

The state of the operators is a generic type that implements the ExchangeData trait:

ExchangeData: Data + Serialize + for<’a> Deserialize<’a>

"Serialize and Deserialize" are used to serialize and deserialize the state, while "Data" is
a super-trait of "ExchangeData" that all types within a stream must implement:

Data: Clone + Send + ‘static

The ExchangeData trait is also implemented by all those types that use the network layer.

We can categorize Noir operators into two categories: stateless and stateful. The
former does not have an internal state; the operations they perform on the tuple depend
only on the tuple itself. The data structures of these operators contain only information
that can be determined before processing. For example, the operator coordinates are a
piece of data that does not change during the computation, it is assigned during setup

32 3| Snapshotting in Noir

and remains unchanged. For this reason, it is not necessary to save it in the snapshot.
Stateless operators do not save any state to be persisted; when they receive a snapshot
token, they simply forward it to the next operator. Some examples of stateless operators
are Map, Filter, and Flatten.

Here are the main stateful operators and the state persisted in the snapshot.

3.2.1. Sources

In general, the state of a Source is used to precisely determine the tuples between snap-
shots, providing the ability to regenerate any lost tuples not included in the snapshot.
The state of Sources depends on the specific type of Source:

• Channel: It is stateless and does not keep the received tuples in memory. Therefore,
it has no way of receiving the same tuple again.

• CSV: The state is the byte position within the CSV file at which the Source has
reached during reading.

• File: The state is the byte position within the file at which the Source has reached
during reading.

• Iterator: The state is the number of elements generated up to that point. To
return to the saved state, you simply need to consume the iterator again for the
saved number of times.

• Parallel Iterator: The state is analogous to the simple version. For each replica,
the number of elements generated up to the snapshot moment is saved. Since the
function that generates the iterator for each replica is deterministic and based on
the replica index, we are ensured that the same iterators are always assigned to the
same replicas.

All stateful Sources have a state of fixed size because they only save a kind of index
that allows identification of the snapshot point. The type of Source affects the type of
guarantees that can be provided. A stateless Source, not having the ability to regenerate
previous tuples, can provide at-most-once semantics. Stateful Sources, on the other hand,
can provide exactly-once semantics as they can regenerate tuples from the exact snapshot
point.

3| Snapshotting in Noir 33

3.2.2. Sinks

The state of Sinks, if provided, contains the partial results generated by the network up
to the snapshot moment. As suggested by the name, Collect-type Sinks maintain results
and have a state:

• CollectVec: The state is the vector containing the results received up to the snap-
shot moment. The state size is variable and depends on the number of elements
produced by the processing.

• CollectCount: The state is an accumulator with the sum of the elements received
up to the snapshot. Therefore, the state size is fixed.

The ForEach operator, on the other hand, is stateless; it performs the specified procedure
on each result it receives without maintaining any state.

Again, the type of Sink affects the guarantees. A stateless Sink can provide at-least-
once semantics because it may produce the same result multiple times. A stateful Sink,
on the other hand, can provide exactly-once semantics. When considering both Sources
and Sinks together, we can determine the overall guarantees that can be offered by the
network:

Source Sink Overall guarantees
stateless stateless none
stateless stateful at-most-once
stateful stateless at-least-once
stateful stateful exactly-once

Table 3.2: Sources and Sinks guarantees

3.2.3. Start

It is the only operator that can have multiple input channels (excluding iterative opera-
tors). This makes the snapshot procedure more complex, and the saved state includes the
internal state of the operator and the buffer with tuples received during the snapshot.

To manage partial states during execution, it uses a HashMap:

SnapshotId - (StartState, Set<Coord>)

The SnapshotId is the key that identifies the ongoing snapshots and the tuple (Start
state, Set of coordinates) contains the state to be persisted and the set of coordinates

34 3| Snapshotting in Noir

that is used to keep track of previous operators that have not yet sent the token with that
SnapshotId.

The Start state includes both the internal state of the operator and the queue with tuples
received during the snapshot. It is composed of:

• missing_flush_and_restart: The number of previous operators that still need
to send the FlushAndRestart token,

• watermark_frontier: A structure that manages received watermarks,

• wait_state: A flag indicating if the Start operator needs to wait for a state update
(this is used for iterations, as explained later),

• receiver_state: Start can have a SingleReceiver if it receives data from the replicas
of a single operator or a BinaryReceiver if it receives data from the replicas of two
different operators (thus receiving data from two different streams, as in the case
of Join, for example). This field is used to save the state of the receiver. The
differences between the two types of receivers and the state of each are described
below,

• message_queue: A queue containing the tuples received during the snapshot.

The type of receiver, in addition to influencing the information to be persisted in the
state, changes the snapshot procedure.

The SingleReceiver has no state because it only handles receiving new batches of data
from the replicas of the previous operator without performing any analysis.

When a snapshot token arrives at the Start operator, the following procedure is executed:

1. Check if this SnapshotId is already arrived

2. If it has, remove the sender from the set of previous replicas for this snapshot

(a) If the set is empty, the snapshot is complete and can be removed from the
HashMap and persisted.

3. If it has not arrived:

(a) Get current state (tuples in message_queue will be added later)

(b) Create a set with the coordinates of all previous replicas except the one that
sent the token

i. If the set is empty, persist the state

3| Snapshotting in Noir 35

ii. Otherwise, add a new entry in the HashMap with the SnapshotId and the
tuple (Start state, coordinates set)

(c) Send the snapshot token to the next operator

Upon the arrival of any tuple, the Start operator checks for ongoing snapshots. If such
snapshots exist, it searches for all partial snapshots in which the sender of this tuple
is included in the set of coordinates of the previous replicas. For each of those partial
snapshots, the tuple is added to the message_queue state field.

When a Terminate token arrives, the coordinate of the replica that sent it is removed from
the set of coordinates in each partial snapshot. The arrival of the Terminate token signals
that the stream from which it comes has terminated and no more messages will be sent
from that stream. Furthermore, all operators through which that Terminate token has
flowed have taken a Terminate snapshot. Therefore, all partial snapshots that the Start
operator is currently taking do not need to wait for their respective snapshot tokens from
that stream. The Start operator, in turn, performs a Terminate snapshot after receiving
Terminate tokens from all its previous replicas and before sending the Terminate token
to the next operator.

When recovering from a snapshot, the Start operator must process all the tuples within
the message_queue before it can receive and process new tuples.

In the case of a BinaryReceiver, things become a bit more complicated. This type of
receiver is responsible for receiving new batches of data from two different streams (con-
veniently referred to as left and right) and performs the following operations:

1. It wraps the elements from the left and right streams in a specific structure defined
as BinaryElement.

2. If one of the two streams is cached, it manages the cache by inserting the new
tuples or retrieving tuples from the cache if the cached stream has already been
fully cached.

In order to execute these operations, the BinaryReceiver maintains a state that can be
modified based on the tuples present in the batch it is analyzing. Furthermore, it processes
an entire batch of data before forwarding it to the Start operator. To obtain a consistent
state, it is necessary to implement a snapshot procedure inside the BinaryReceiver similar
to the one explained earlier and to leave the Start operator with the task of receiving
the BinaryReceiver state once the snapshot is complete, adding it to its own state, and
persisting it. BinaryReceiver will also keep the queue with messages received during the
snapshot.

36 3| Snapshotting in Noir

Similar to the Start operator, the BinaryReceiver manages its ongoing partial snapshots
using a HashMap:

SnapshotId - (BinaryReceiverState, Set<Coord>)

The state of the BinaryReceiver includes:

• left: The state of the SideReceiver for the left stream.

• right: The state of the SideReceiver for the right stream.

• message_queue_left: A queue containing messages from the left stream received
during the snapshot. These messages are not individual tuples but entire batches
of tuples.

• message_queue_right: A queue containing messages from the right stream re-
ceived during the snapshot.

• Some other data: necessary to recover a consistent state.

The SideReceiver state on each side is responsible for saving the number of FlushAn-
dRestart tokens that are still pending and the potential cache if the stream is cached.

3.2.4. End

This operator is located at the end of a block and is responsible for sending data to the
next operators according to the Next strategy defined by the stream. Stream elements
are grouped into batches, with each batch containing the coordinate of the block to which
End belongs (to allow the operator receiving the batch to know who sent it) and a queue
of stream elements. Since batching does not require any state, this operator is stateless
and does not persist any state.

3.2.5. Fold

The state of the Fold operator is composed of:

• accumulator: the partial result calculated with all the tuples received before the
snapshot token,

• timestamp: the maximum timestamp received so far, if present,

• watermark: the maximum watermark received so far, if present,

• other parameters that allow restoring the operator to a consistent state.

3| Snapshotting in Noir 37

The size of the Fold operator state depends on the type of accumulator.

The KeyedFold operator, designed for keyed streams, has a state composed of:

• accumulators: each key belongs to a different substream, so there is an accumula-
tor for each key. A HashMap indexed by key is used to store all the accumulators.

• ready_elements: a vector with complete results for all substreams. This is gen-
erated after the arrival of the FlushAndRestart token, and the results are moved
from the HashMap to this vector to be forwarded to the next operators with future
calls to "next()". This field is not present in the simple Fold operator because it
produces a single result that it forwards to the next operator as soon as it receives
a FlushAndRestart token from the previous operator. Here, instead, a result is
produced for each key, necessitating this support vector.

• timestamps: the maximum timestamp received so far, if present. Also here, it needs
to be divided by key, so a Key-Option<Timestamp> HashMap is used.

• watermark: the maximum watermark received so far, if present.

• other parameters that allow restoring the operator to a valid state.

The size of the KeyedFold operator state is variable because it depends on the number
of different keys arriving at the operator. For each new key that arrives, a new entry is
added to the HashMap. Clearly, the type of accumulator also influences the state size.

3.2.6. Richmap

As explained earlier, this operator applies a function to the input tuple to generate another
output tuple. The mapping function is a closure[8] of the type:

FnMut((&Key, Out)) → NewOut

Here, Key is the generic type for the key, and Out and NewOut are the generic types
for the input and output tuples, respectively. The closure type FnMut indicates that this
closure can be executed multiple times and captures mutable references from the context
where it is defined, which it uses to generate the new tuple. The tuple (&Key, Out) is due
to the fact that this type of operator is applied to KeyedStreams. To separately handle
substreams created by different keys, the operator maintains a key-closure HashMap. This
way, there is a mapping function for each substream, and consequently, the state of the
function is independent for each substream.

When a new key arrives at the operator, a new entry is added with the key and a copy

38 3| Snapshotting in Noir

of the mapping function. When a tuple with a known key arrives, the closure is retrieved
from the HashMap, and the new tuple is computed. In the case of a simple stream, a
dummy key is added that is the same for all tuples. This way, you get a KeyedStream
consisting of a single substream containing all the tuples.

The state for this operator corresponds to the state of the closures contained in the
HashMap. However, from inside the operator, there is no control over the closure state
since it is captured from the context in which it is defined. For this reason, a persistent
version of the RichMap operator has been implemented. This version is very similar to
the original one, except for the closure type. The function type for mapping becomes:

Fn((&Key, Out), &mut State) → NewOut

The Fn closure type captures only immutable references, so there is no mutable state over
which we have no control. The state is now explicitly passed through a mutable reference
State. Like the original version, this operator is applied to KeyedStream and handles
multiple substreams through a HashMap. The difference is that now the HashMap is of
type Key-State and contains the state of each substream, while the mapping function is
unique and is applied to all tuples along with the state corresponding to the key. The
operator also requires the state with which to initialize the HashMap. The state saved by
the operator is the entire map with keys and states present at the time of the snapshot.
The size of the state depends on the number of different keys processed and the size of
the State type.

3.2.7. Join

As mentioned earlier, Noir supports Inner Join, Left Join, and Outer Join operations, pro-
viding various strategies for distributing tuples among replicas and searching for matching
tuples. However, concerning simple (non-keyed) streams, there are only two actual opera-
tors that perform the Join operation, and they differ from each other on the local strategy
used for matching tuples:

• JoinLocalSortMerge: This operator uses two vectors to keep the tuples of the
two streams in memory. It needs to store all tuples from both streams before it can
search for matches and produce output results.

• JoinLocalHash: This operator uses two HashMaps to store the tuples. Results
are produced as tuples arrive, comparing them with those that arrived earlier.

The ship strategy, which determines how tuples from both streams are distributed among
the various Join replicas, only affects the Next strategy of the blocks through which the

3| Snapshotting in Noir 39

left and right streams arrive. In the case of Hash Repartition, the final blocks of both
left and right streams have a GroupBy Next strategy so tuple distribution is based on
the tuple key. However, in the case of Broadcast-forward, the final blocks of the right
stream still have a GroupBy Next strategy, while the final blocks of the left stream have
an OnlyOne Next strategy indicating that the left stream tuples maintain their existing
locality. The type of Join (Inner, Left, or Outer) is passed as a parameter to the two
operators and is used to determine how to handle tuples that do not find a match.

State of JoinLocalSortMerge:

• left: a vector containing tuples arriving from the left stream.

• right: a vector containing tuples arriving from the right stream.

• Other parameters, including two flags indicating if both streams have sent all their
tuples.

State of JoinLocalHash:

• left: A structure that manages and stores tuples received from the left stream,
which contains a HashMap indexed by key to store the tuples.

• right: A similar structure is used for tuples received from the right stream.

For KeyedStreams, there are two additional operators that implement the join function:

• JoinKeyedInner: Performs an Inner Join between the left and right streams,
using local hash as the local strategy. Its state contains two HashMaps that store
the tuples from the left and right streams received up to the snapshot moment.

• JoinKeyedOuter: Performs an Outer Join between the left and right streams, also
using local hash strategy. Therefore, its state contains two HashMaps with tuples
from both streams.

The last type of join to analyze is IntervalJoin. This operator also needs to store tuples
in memory and uses a queue for the left stream and a HashMap for the right stream. As
one can imagine, the state of this operator contains both the queue for the left stream
and the HashMap for the right stream, along with other necessary information to enable
recovery from the saved state.

In summary, regardless of the type of join and how it is implemented, it is necessary to
store all or some of the tuples from two streams. Consequently, the state to be persisted
contains the stored tuples up to the snapshot moment. This, of course, affects the size of
the state saved in the snapshot.

40 3| Snapshotting in Noir

3.2.8. Window

Noir abstracts all the logic and processing of the windows into a single operator called
WindowOperator. There are two fundamental traits that characterize and specify the
behavior of windows:

• WindowManager: This trait defines when to open and close windows accord-
ing to the specific type of window. The window types can include CountSliding,
EventTimeSliding, EventTimeSession, and so on. The process() function is used to
process a new tuple arriving at the operator and contains all the logic for managing
windows.

• WindowAccumulator: This trait specifies the operations to be performed on
the elements within the windows. Typically, these operations involve aggregation
functions such as Sum, Min, Max, First, and so on. This trait also has a process()
function used to process new tuples.

These two traits work together to define how the windowing operations should be handled
in Noir.

The WindowOperator works with KeyedStreams, although it can also be used with simple
Streams. Similar to other operators, it uses a HashMap indexed by key to manage sub-
streams generated by different keys. This HashMap contains WindowManagers as values,
each handling windows for the respective substream. Some examples of WindowManagers
include:

• CountWindowManager

• EventTimeWindowManager

• ProcessingTimeWindowManager

• SessionWindowManager

The names of these managers indicate the windowing logic they implement. For the first
three, there are both sliding and tumbling versions.

All these types of WindowManagers maintain a queue of open windows, referred to as
Slots, containing different data, depending on the nature of the window. However, all
types of window slots have a field reserved for the Accumulator, which holds the window
content. When a WindowManager receives a new tuple, it determines which slot (window)
it belongs to and passes the new tuple to the corresponding Accumulator. The Accumu-
lator processes the data incrementally, so the window content corresponds to the result

3| Snapshotting in Noir 41

obtained from the tuples belonging to the window that have arrived up to that point. In
other words, the Accumulator contains a partial result until the last tuple belonging to
the window is processed, at which point the result is complete. The Accumulator then
returns this result to the WindowManager, which closes and removes the window from the
queue. The WindowManager subsequently returns the result to the WindowOperator.

The state consists of the open windows at the time of the snapshot. However, it depends
on the specific WindowManager and WindowAccumulator. For this reason, the Win-
dowManager and WindowAccumulator traits have get_state() and set_state() functions
added. This allows the WindowOperator to retrieve and set the state for any implemen-
tation of WindowManager and WindowAccumulator.

The state of some WindowManagers and their respective Slots:

• CountWindowManagerState: This state represents CountWindowManager and con-
tains a queue of SlotStates, each corresponding to an open window. Each SlotState
includes:

– The number of tuples already processed

– The state of the Accumulator

– The optional timestamp of the last processed tuple

• EventTimeWindowManagerState: This state is specific to EventTimeWindowMan-
ager and includes the last received watermark and a queue of SlotStates. For each
SlotState, you can find:

– The window opening timestamp

– The window closing timestamp

– The state of the Accumulator

– A flag indicating whether the window is still active

• ProcessingTimeWindowManagerState: This state is for ProcessingTimeWindow-
Manager and contains a queue of SlotStates. Each SlotState is composed of:

– The time elapsed since the window opened

– The time remaining until the window closes

– The system time at the moment of the snapshot

– The state of the Accumulator

42 3| Snapshotting in Noir

– A flag indicating whether the window is still active

• SessionWindowManagerState: For SessionWindowManager, the state includes an
optional SlotState specifying:

– The state of the Accumulator

– The time elapsed since the arrival of the last tuple

– The system time at the moment of the snapshot

The state of the Accumulators corresponds to the partial result computed until the snap-
shot token arrives.

In the case of recovery from a snapshot using the set_state() method, the state of Win-
dowManagers and Accumulators is restored. However, it is important to note that for
ProcessingTime windows and Session windows, it is not guaranteed that processing will
produce the same results. This is because these types of windows rely on system time,
which changes from the moment the state is taken to when recovery is performed.

To maintain window consistency, the time elapsed from the snapshot moment to the
recovery moment is considered. Specifically, ProcessingTime windows maintain the start
and end times of the window as absolute times, and Session windows maintain the arrival
time of the last tuple as an absolute time. In other words, the time that elapses between
taking the snapshot and restoring the system is an interval during which no tuples can
arrive, and there is no guarantee that the tuples arriving after recovery will have the same
processing time as they would have had during normal execution without recovery.

3| Snapshotting in Noir 43

Figure 3.3: ProcessingTime window recovery

In figure 3.3, we can see a ProcessingTime Sliding window (size: 3, slide: 2). The top part
represents a normal execution, while the bottom part illustrates the effects of recovering
from the state saved in the snapshot. The tuples received after the snapshot no longer
have the same processing time, which leads to modifications in the windows after the
snapshot moment.

Figure 3.4: Session window recovery

44 3| Snapshotting in Noir

The figure 3.4 shows the possible effects of recovery from a snapshot on a SessionWindow
with a gap of duration 2. Here again, the recovery results in a change in the processing
time of the tuples after the snapshot, which in turn modifies the content and duration of
the windows.

3.3. Iterations

Iterations require a dedicated snapshot procedure due to their unique functioning, as
described in Chapter 2.3.9. The main challenges are as follows:

A. Iterations require the entire stream, meaning that to complete the first iteration,
you need to consume the entire stream. Additionally, iterations are blocking, in the
sense that you cannot start a new iteration until the previous one has finished. This
means that when the first iteration is completed, the Sources have already produced
the entire stream, and their workers may have terminated. As a result, they can
no longer generate and provide snapshot tokens to the flow. This requires finding a
way to take snapshots during all subsequent iterations after the first one.

B. Snapshot tokens cannot pass through the same operator more than once because
doing so would result in an operator taking a snapshot with a SnapshotId that has
been used in the past, violating the monotonicity property of SnapshotIds.

C. The state used within iterations is synchronized among all replicas. Therefore, snap-
shots must be taken during the same iteration by all replicas of the iterative operator
and by all operators contained within the iteration body. If two different replicas of
an iterative operator take snapshots in two different iterations, the resulting global
state is inconsistent, and recovery from it is not possible.

3.3.1. Algorithm

The algorithm we have designed aims to address the issues described as follows:

A. During the first iteration, snapshot tokens are generated exclusively by the Sources.
They flow through the iteration body and reach the IterationLeader, which keeps
track of the last persisted snapshot. From the second iteration onward, it is the
IterationLeader that takes care of generating new snapshot tokens starting from the
last SnapshotId it has tracked.

B. When the snapshot token reaches the end of the iteration, it is not sent back to the
beginning of the loop like all other tuples. Instead, it is forwarded to the operators

3| Snapshotting in Noir 45

following the loop. This ensures that it does not pass through the same operator
more than once.

C. The IterationLeader includes any snapshot tokens in the message used to send the
state produced during an iteration. This guarantees that snapshots are taken during
the same iteration by all replicas of the operators within the loop.

Figure 3.5: Nested iterations

In the figure 3.5, there is an example of nested iterations, where the body of one itera-
tion contains another iteration. In this scenario, we have two IterationLeaders generating
snapshot tokens, which can cause some issues. When the innermost IterationLeader pro-
duces a token, it may not reach the outer Replay before the next outer iteration begins.
As a result, operators may take the snapshot during different iterations, and the global
state reported for that SnapshotId becomes inconsistent.

To address this, within an iteration, the SnapshotIds contain an additional piece of in-
formation indicating the iteration level. Specifically, a stack called "iteration stack" is
used. All snapshot tokens within a loop have a stack with a length equal to the loop level.
Tokens generated outside the loop (by a Source or by an IterationLeader at a lower level)
have a "0" in the iteration stack at the position corresponding to the loop level for the
current iteration. All snapshots generated by the IterationLeader at a specific iteration
have a consecutive number.

If we consider the previous figure, we have three different stack levels:

• Snapshots outside both iterations have an empty stack, so they are of the form S1[],

46 3| Snapshotting in Noir

S2[], S3[], ...

• Snapshots inside the first iteration but outside the second have a stack with one
level, so they are of the form S2[0], S2[1], S2[2], S3[0], ...

• Snapshots inside both iterations have a stack with two levels, so they are of the
form S2[0,0], S2[1,0], S2[1,1], S2[1,2], S2[1,3], S2[2,0], S3[0,0], ...

If we define a new order and a new distance metric between two SnapshotIds, the prop-
erties of monotonicity and regularity remain valid. The new order between SnapshotIds
is as follows:

• Sa < Sb if the index of "a" is smaller than the index of "b," or if the indexes are
the same and when scanning the stack from the outermost level to the innermost
level, the first position with different indexes has the index of "a" greater than that
of "b."

• Sa = Sb if the index of "a" is equal to the index of "b," and when scanning the stack
from the outermost level to the innermost level, all levels present in both stacks are
equal.

• Sa > Sb in all other cases.

Some examples:

S1 [] < S2 [] lower index
S1 [0] < S1 [1] lower level 1

S1 [0, 1, 0] < S1 [0, 1, 1] lower level 3
S1 [0, 1, 0] < S2 [0, 0, 0] lower index

S1[] = S1[1, 1] same index and no different levels since the first stack is
empty

S1 [0, 2] = S1 [0, 2, 1] same index and equal common levels of the stack

Table 3.3: Order of SnapshotId with iteration stack.

The new distance metric to determine if a SnapshotId Sa is consecutive to Sb is as
follows:

• The index of Sa is equal to that of Sb plus one, and the stack of Sa contains only 0.

• Or, when scanning the stack from the outermost level to the innermost level, the
first position with a different index has the index of "a" equal to that of "b" plus

3| Snapshotting in Noir 47

one, and all subsequent positions in the stack of Sa contain only 0.

Some examples:

S1 [] → S2 [] index incremented by 1
S1 [0] → S1 [1] stack level one incremented by 1

S1 [0, 1, 0] → S1 [0, 1, 1] stack level three incremented by 1
S1 [0, 1] !→ S1 [0, 3] stack level two incremented by 2
S1 [0, 1] !→ S2 [0, 2] index incremented by 1 but stack level two is not 0

Table 3.4: Distance of SnapshotId with iteration stack.

Snapshot procedure used during the first iteration:

1. When a snapshot token arrives at the iterative operator from the input channel, a
level with a value of 0 is added to its iteration stack. The operator saves its internal
state and forwards the new token to the operators in the body.

2. The operators in the body take the snapshot as usual.

3. When the IterationLeader receives the token for the first time, it copies it and saves
its internal state. Then, it removes the last level from the iteration stack of the
SnapshotId and forwards the new token to the external output channel of the loop.

4. After the IterationLeader has received all delta updates related to the first iteration,
it initializes its SnapshotGenerator with the SnapshotId of the last taken snapshot.
This last snapshot is also the last snapshot taken by all operators inside the loop.

After the first iteration is completed:

1. Before the IterationLeader sends the message with the new state to the replicas of the
iterative operator, it checks if the SnapshotGenerator has produced a SnapshotId.

2. If there is a SnapshotId, the IterationLeader takes that snapshot and then it adds
the SnapshotId to the message containing the new state to be sent to the replicas
of the iterative operator.

3. When an iterative operator completes an iteration, it waits for a message from the
IterationLeader. When this message arrives, it sets the new state and checks if a
SnapshotId is also present.

4. If there is a SnapshotId, it follows the procedure to save its internal state and sends
a stream element containing the SnapshotId to the operators in the body. This way,

48 3| Snapshotting in Noir

the snapshot token is the first element in the stream that flows into the body.

5. When the token returns to the IterationLeader, it is simply ignored, and it is not
sent to operators outside the loop.

With this procedure, snapshots taken during iterations remain invisible to the outside of
the loop. In other words, the iterative operator, as seen from the outside, behaves like
any other blocking operator (such as the Fold). This snapshot algorithm maintains this
isolation because the snapshot tokens generated within the loop do not exit from it.

Figure 3.6: Iterations algorithm

The figure 3.6 represents the snapshot algorithm for iterative operators. In the blue
rectangles, we can see the queues with SnapshotIds related to the snapshots taken by
each operator. We look in detail at what happens at each step:

1. We are in the first iteration, the Source has produced a snapshot token S1[], which
has already traversed the entire loop body and has reached the Sink.

3| Snapshotting in Noir 49

2. We are in one of the loop iterations (not the first). The snapshot token S1[1] is
produced by the IterationLeader and has already traversed the entire body. The
token does not exit the loop.

3. The same situation as step 2 is repeated, and one or more iterations have passed
since snapshot S1[1].

4. The loop has completed all iterations and requested new tuples from the Source.
The Source has finished and sends the Terminate token, which flows through the
network and reaches the Sink. S2 is the Terminate snapshot.

In the case of iteration loops on parallel streams or sequential iteration loops, we want to
maintain the independence of each loop. In other words, when we search for the last valid
SnapshotId to resume from, we want the iteration stacks of two parallel or sequential
loops to be considered separately. This way, they can restart from the last completed
iteration independently of the progress of the other loop.

Figure 3.7: Parallel and sequential loops

In the figure 3.7, two situations are depicted:

• Parallel loops: Suppose we take a snapshot at each iteration. The upper loop has
reached iteration 10, while the lower one is at iteration 100. If we do not consider
the two loops as independent, upon restarting, the lower loop would restart from
iteration 10, losing the subsequent iterations.

• Sequential loops: Until the first loop has completed all its iterations, it will not
produce any stream to feed into the second loop. In the figure, the first loop has
completed 100 iterations and finished, while the second loop is at iteration 10. When
we restart, we want to return to the same situation and avoid restarting both loops
from iteration 10.

50 3| Snapshotting in Noir

For this reason, the parameter "iteration index" was introduced within the SnapshotId.
This parameter is used to identify iteration loops within the dataflow. Two parallel or
sequential loops have different indexes, while two nested loops have the same index, as
the inner loop belongs to the outer loop.

The properties of the SnapshotId remain valid, and the ordering and distance between
two SnapshotIds change as follows:

• If the iteration index of Sa is the same as that of Sb, use the rules stated previously.

• If it is different, then the iteration stack is not considered for comparison, and Sa
and Sb can never be consecutive. In other words, an operator can never save two
SnapshotIds with different iteration indexes.

Examples (the iteration index is enclosed in round brackets):

S1 [] () < S2 [] () same iteration index (none), what was previously stated holds
S1 [3] (1) = S1 [4] (2) different iteration index, just consider the main index which

is the same
S1 [1] (1) < S2 [1] (2) different iteration index, just consider the main index which

is different

Table 3.5: Order of SnapshotId with iteration index.

S1 [] () → S2 [] () same iteration index (none) and index incremented by 1
S1 [0] (1) → S1 [1] (1) same iteration index and stack level one incremented by 1
S1 [0] (1) !→ S1 [1] (2) different iteration index

Table 3.6: Distance of SnapshotId with iteration index.

The iteration index is set when the SnapshotId enters and exits the loop, similar to what
happens with the iteration stack. When a snapshot token enters a loop, it is set with the
specific iteration index of that loop, and when it exits the loop, it is reset to the value it
had before entering the loop.

A fundamental requirement of this algorithm is that all replicas of the iterative operator
must receive the same snapshot tokens as input. In other words, all replicas must save
their state with the same SnapshotId before completing the first iteration. Otherwise,
there is an alignment problem that invalidates the algorithm.

3| Snapshotting in Noir 51

Figure 3.8: Alignment problem

The figure 3.8 represents the alignment problem for the Replay operator in the case
of two replicas. Snapshot tokens S1, S2, and S3 arrive from the input stream to the
upper replica, while the lower replica only receives tokens S1 and S2. During the first
iteration, the tokens pass through Replay and the operators in the loop before reaching
the IterationLeader. Note that inside the loop, a position with index 0 has been added in
the iteration stack of the SnapshotIds. When the IterationLeader receives the token with
SnapshotId S3 [0], it begins the procedure to take a snapshot of S3 [0] and forwards S3 to
the output stream operators. However, it cannot complete this snapshot at the end of the
first iteration. This means that from the second iteration onwards, the IterationLeader
can generate snapshot tokens starting from the SnapshotId S2 [1] and continuing with
S2 [2], S2 [3], and so on. When the lower replica of the Replay receives the token S2
[1] from the IterationLeader, it saves the state normally and proceeds. However, when
S2 [1] arrives at the upper replica, it cannot save the state because it would violate the
monotonicity property of snapshots.

Two solutions have been implemented to solve this problem, which differ in the constraints
they require and the contexts in which they can be applied.

The first solution is to block the generation of snapshot tokens from the Sources and
perform a single snapshot with index 1 before each Source emits the FlushAndRestart
token. In this way, we can ensure that during the first iteration, only the token S1 arrives
from all replicas. From the second iteration onwards, the IterationLeader produces tokens

52 3| Snapshotting in Noir

like S1[1], S1[2], S1[3], and once the processing is complete, all operators from both internal
and external streams to the cycle will perform the Terminate Snapshot S2.

With this solution, the snapshot frequency set through configuration only affects the
snapshots generated inside the loop. The external operators before the loop take a snap-
shot only after consuming the entire stream, while the operators following the loop take
a snapshot before receiving the results from the loop with the S1 snapshot and before
ending the processing with the Terminate Snapshot.

The second available solution is to insert a block for aligning snapshots between the input
stream and the loop. Starting from the input stream, the following operators are added:

• End: with a GroupByReplica strategy, specifically implemented for this context.

• Start: this operator allows snapshot alignment, as all replicas of this Start will
forward exactly the same SnapshotIds to the subsequent operators.

• End: with an OnlyOne strategy, to close the block in such a way that it can consume
the entire stream and save the special Terminate snapshot, as the iterative operator
consumes the stream only until the FlushAndRestart.

• Start: to receive the input stream and forward it to the iterative operator.

Figure 3.9: Alignment block

The GroupByReplica strategy works similarly to the GroupBy strategy, with the difference
that instead of selecting the receiver replica based on the tuple, the End operator forwards
all tuples to the replica with the same ID. In this way, the tuples remain on the same
host, preserving data locality and reducing the performance impact thanks to in-memory
communication channels that avoid the overhead of serialization/deserialization and the
network layer.

3| Snapshotting in Noir 53

Figure 3.10: Alignment block behavior

The figure 3.10 illustrates how the alignment block allows the same SnapshotIds to reach
the loop for each replica.

The first solution, compared to the alignment block, is more efficient because it avoids
adding additional operators and blocks. However, it prevents taking snapshots during the
first iteration, except for the snapshot before the FlushAndRestart. If the operator graph
includes a series of operators that apply many complex functions to the stream before
passing it to the loop, then it is preferable to use the second solution, which allows you
to take snapshots during that pre-iteration processing phase. In all other cases, the first
solution is preferable since, if you do not apply many complex operators and functions
before the loop, the time required to obtain the entire stream during the first iteration
can become negligible compared to the time spent completing all the other iterations.

To choose which of the two solutions to use, you can use the configuration parameter
"iterations snapshot alignment." When set to "true," it selects the first solution, and
when set to "false," it implements the second solution with the alignment block.

In the case of loops on parallel streams, it is not advisable to use the alignment block. If
the two loops receive SnapshotIds with different indices before starting the iterations, it
means that in case of recovery from an intermediate state, one of the two loops must redo
all the iterations. For example, if loop1 reaches the snapshot S5 [100], and loop2 reaches
the snapshot S6 [100], in case of recovery, you start from S5, and loop2 must redo all the
iterations from the beginning.

54 3| Snapshotting in Noir

Another critical situation is related to side inputs, which occur when there is a Join within
the body of an iteration with an external stream, referred to as a "side stream" or "side
input." During the first iteration, the side stream is read entirely and stored in a cache.
From the second iteration onwards, the side stream is read from the cache. Here too,
there is the issue of snapshot alignment, especially when the side-stream processes more
records than the main-stream.

Figure 3.11: Alignment problem with side inputs

The figure 3.11 illustrates a potential critical scenario where the main input produces only
S1[], while the Source of the side input generates S1[] and S2[]. The operators located
after the Start operator that receives the side input also take a snapshot of S2[0], but this
token has never passed through Replay and the first operators in the loop body. When
the first iteration is completed, the IterationLeader generates token S2[1] and sends it to
Replay, which, however, has S1[0] as the last saved snapshot. In this situation, there are
only two possibilities, both of which are incorrect:

1. Saving S2[1], but this violates the regularity property of snapshots and generates
an error.

2. Saving S2[0] first and then S2[1], but in this case, S2[0] would be saved during
the first iteration for some operators and during the second iteration for others,
generating inconsistency.

Therefore, it is essential that both the main-stream and the side-stream produce the same

3| Snapshotting in Noir 55

SnapshotIds. To achieve this, the first solution must be used. If the "iterations snapshot
alignment" configuration parameter is set to "false," the program will panic.

3.3.2. Replay

The state of the Replay operator contains two main components:

• The state of the loop taken at the iteration when the snapshot is performed.

• A queue containing the stream that is provided to the body at each iteration.

The snapshot procedure slightly differs depending on the channel from which the snapshot
token arrives. When a snapshot token arrives from the input stream (input channel),
which is from outside the loop, the procedure is as follows:

1. Modify the SnapshotId contained in the token by adding a level to the iteration
stack and setting the iteration index.

2. Copy and persist the state.

3. Forward the token to the body of the loop.

On the other hand, when the snapshot token arrives from the IterationLeader (state
update channel):

1. Copy and persist the state.

2. Forward the token to the body of the loop.

Despite this operator having two input channels, they work in mutual exclusion. This
means that snapshot tokens generated outside the loop (those with a 0 at the correspond-
ing level of the iteration stack) only arrive from the input channel, while tokens generated
inside the loop only arrive from the state update channel.

3.3.3. Iterate

The state of the Iterate operator contains three main components:

• The state of the loop taken at the iteration when the snapshot is performed.

• A queue with the stream sent to the body.

• A queue with the stream received from the operators within the loop (feedback
input).

56 3| Snapshotting in Noir

The snapshot procedure for Iterate is a bit more complex than Replay because this oper-
ator has a third input channel (feedback channel) where the new stream generated by the
body is sent, and it also has a second output channel (output stream channel). When a
snapshot token arrives from the input stream (input channel), which is from outside the
loop, the procedure is as follows:

1. Modify the SnapshotId contained in the token by adding a level to the iteration
stack and setting the iteration index.

2. Copy the state.

3. Forward the token to the body of the loop.

4. Forward the original token (with the unmodified SnapshotId) to the output stream
channel.

5. When the same snapshot token arrives on the feedback channel, modify the copy of
the state taken earlier by adding all the messages received on the feedback channel
before the snapshot token. After that, persist the state.

On the other hand, when the snapshot token arrives from the IterationLeader (state
update channel):

1. Copy and persist the state.

2. Forward the token to the body of the loop.

It is not necessary to wait for the token to arrive from the feedback channel because the
snapshot token is the first message sent and received on the feedback channel (even in the
case of side input, the first processed message always comes from the non-cached stream).
Additionally, these snapshot tokens are not sent to the output stream channel because
they remain within the loop without ever leaving it.

3.3.4. IterationLeader

The IterationLeader contains the following elements in its state:

• The state of the loop taken at the iteration in which the snapshot is executed.

• Other parameters, such as the number of delta updates yet to be received.

The IterationLeader has two output channels: the "state update channel" for sending
data to the iterative operator and the "state output channel" for sending data to external
operators following the loop.

3| Snapshotting in Noir 57

During the first iteration of the loop, when a new snapshot token arrives, the Itera-
tionLeader executes the following procedure:

1. It saves the last received SnapshotId.

2. It persists its state.

3. It modifies the SnapshotId by removing the last level from the iteration stack, and
if it is not in a nested loop, it also removes the iteration index.

4. It sends the token with the modified SnapshotId to the state output channel.

Once the first iteration is completed, the SnapshotGenerator is initiated with the last
received SnapshotId. Each time an iteration finishes and the new state is computed, it
checks whether the conditions for taking a snapshot are met. If affirmative, the Itera-
tionLeader:

1. Persists the state.

2. Adds the new SnapshotId to the "state update" message sent via the "state update
channel."

Again, this is an internal snapshot within the loop and is not sent to the "state output
channel."

3.4. Recovery

The recovery procedure is executed if specified in the persistency configuration. The "try
restart" flag indicates whether you want to perform a recovery or start from scratch,
while the "restart from" parameter allows you to specify the index of the snapshot from
which you want to restart. If not specified, you will start from the most recent complete
snapshot. There are some edge cases to consider, such as:

• The snapshot specified in "restart from" is not complete or does not exist at all: In
this case, you will start from the latest complete snapshot.

• There are no complete snapshots saved: In this case, you will start from scratch as
in normal execution.

The first phase of the procedure occurs once the stream is defined and when the job graph
is complete. From the job graph, a list is derived containing the coordinates of all stateful
operators in the network. This list is passed to the "find_snapshot()" function, which
determines the snapshot to restart from. This function first calculates the most recent

58 3| Snapshotting in Noir

complete snapshot and then, if "restart from" is set, selects the minimum between the
calculated snapshot and "restart from."

Given the properties of monotonicity and regularity of SnapshotIds, we can be sure that
this function always returns a valid SnapshotId. The function for calculating the latest
valid snapshot looks for the last saved snapshot for each coordinate and then takes the
minimum among all the indexes. Here again, the monotonicity and regularity of the
SnapshotIds guarantee a valid result. This function has no impact on the saved snapshots
because it only performs read operations. It is important that it remains this way because
this procedure is executed in parallel on all hosts, and any modification could lead to
invalid results and errors.

If there are loops in the operator graph, it is necessary to determine the iteration stack to
restart from for each of them. Once the index of the SnapshotId to restart is determined,
a specific function is called to find the iteration stack for each group of operators with
different iteration indexes. This function generates a HashMap with the iteration index
as the key and the corresponding iteration stack as the value. As a result, each operator
restarts from a SnapshotId determined by its specific iteration index.

The index of the snapshot to restart from and the iteration stacks are saved within the
PersistencyBuilder structure. After that, the normal process continues with deploying the
network by instantiating and starting the various blocks. In the metadata passed to the
setup() function of each operator, there is a reference to the PersistencyBuilder. During
setup, each operator generates the PersistencyService structure through the Persistency-
Builder, which provides the index of the SnapshotId to restart from and the HashMap of
iteration stacks to restart from.

This leads to the second phase, in which each operator attempts to restart from the
calculated snapshot. This function first determines the correct SnapshotId to restart from
by combining the index and the corresponding iteration stack. After that, it deletes all
persisted snapshots with a SnapshotId greater than the one from which we want to restart.
This is done to avoid conflicts when the operator saves new snapshots because, after
recovery, the sequence of SnapshotIds will continue from the one from which we restarted.
Once the snapshots are deleted, the function tries to retrieve the state corresponding to
the restart SnapshotId and returns it to the operator. The operator sets its internal state
to the saved state and is ready to resume processing.

3| Snapshotting in Noir 59

3.5. Persistency Module

This module contains all the needed structures and functions to provide state persistence.

3.5.1. Configuration

PersistencyConfig is a new piece of information added to Noir configuration. It contains
all the parameters required to define the settings for executing snapshots and their per-
sistence. When not explicitly specified, the program runs without taking any snapshots.

pub struct PersistencyConfig {

pub server_addr: String,

pub try_restart: bool,

pub clean_on_exit: bool,

pub restart_from: Option<u64>,

pub snapshot_frequency_by_item: Option<u64>,

pub snapshot_frequency_by_time: Option<Duration>,

pub iterations_snapshot_alignment: bool,

}

Listing 3.2: PersistencyConfig

Each field has a specific role:

• server_addr: Specifies the Redis URL to connect to, including the IP address,
port, and password.

• try_restart: When set to true, it indicates a desire to restart from a saved state.
If set to false, the execution starts from scratch.

• clean_on_exit: This parameter is used to clean the datastore once the execution
is completed.

• restart_from: Indicates the snapshot to restart from. The program resumes from
the saved state only if it is a valid and complete snapshot.

• snapshot_frequency_by_item: Specifies the frequency of generating snapshots
based on the number of tuples.

• snapshot_frequency_by_time: Similar to the previous parameter, but time-
based. It uses a Duration type to specify the minimum time between the generation
of two consecutive snapshot tokens.

60 3| Snapshotting in Noir

• iteration_snapshot_alignment: Determines which solution to implement for
snapshot alignment in case of iteration. If set to true, all Sources do not generate
snapshot tokens except a single snapshot before FlushAndRestart.

As mentioned earlier, snapshot generation occurs asynchronously and independently for
each replica of Source operators (and potentially for the IterationLeader). Therefore,
when setting the frequency based on the number of tuples, the following scenarios can
happen:

• The count is performed independently for each Source. For example, if you have a
file with 1000 rows and four Sources reading it, and you choose a snapshot frequency
of 50 elements, each Source will generate 5 snapshot tokens since each Source reads
250 rows.

• In cases where one replica, say R1, of a Source reads faster than another replica,
say R2, there can be some time between the generation of snapshot tokens by R1
and R2. This time gap can lead to a significant increase in the size of the state
for subsequent Start operators that receive tuples from both replicas. This issue is
discussed further in the Performance chapter.

• For IterationLeader, the counting is not based on tuples but on the iterations per-
formed.

For these reasons, generating snapshots based on the number of elements is primarily
useful for testing and debugging.

Generating snapshots based on time allows for a more aligned generation of snapshot
tokens. When the time interval set by the frequency expires, a snapshot token is generated.
It is important to note that the pull-based architecture of operators does not allow for
perfect alignment, and the token is generated and forwarded to the subsequent operators
only when a new tuple is requested to the Source. With time-based generation, in cases
where Sources read at different speeds, the number of tuples between two snapshot tokens
can vary because the faster Source can produce more tuples compared to the slower one.

3.5.2. PersistencyBuilder

This structure is instantiated within the Scheduler because it performs tasks both before
and after processing. This implies that there is an instance of PersistencyBuilder for each
host in the cluster.

This structure is responsible for the following tasks:

3| Snapshotting in Noir 61

• Determining the snapshot from which to resume.

• Managing the StateSaver.

• Generating a PersistencyService for each operator.

• Cleaning the storage of all saved snapshots.

The “function find_last_snapshot()” is responsible for determining the snapshot from
which to resume. This function is executed before instantiating the blocks with the
operators to ensure that no operator can modify the saved snapshots (by saving a new
state or deleting a saved state). To determine the last complete snapshot, it is necessary to
provide the function with a list of coordinates for all stateful operators in the network, as
each state takes snapshots independently. This is crucial because it is the only point in the
code where the global snapshot is considered rather than individual operator snapshots.
Coordinates are calculated in advance while constructing the stream, and this is a delicate
operation. Omitting a coordinate can lead to uncertainty regarding whether the snapshot
calculated by the function is indeed the last valid snapshot. On the other hand, if an
extra coordinate is added, the function will not find any valid global snapshots.

The generation of PersistencyService for each operator occurs during the setup of each
operator. A field has been added to the metadata passed to the setup function, containing
a reference to PersistencyBuilder. During the generation, the information needed to
retrieve the SnapshotId indicating the state from which to resume is passed to each
operator.

If specified in the configuration, PersistencyBuilder deletes every saved state after pro-
cessing has concluded. For this operation, specifying the list of coordinates from which to
delete every saved state is also necessary. However, given that this type of operation mod-
ifies the datastore and can be performed in parallel by the instances of PersistencyBuilder
present on each host, a reduced list containing only the coordinates of the operators that
have been instantiated on that specific host is passed to the function. This way, each
instance of PersistencyBuilder, and thus each host, deletes only the snapshots related to
the operators instantiated on the same host.

The following table provides an overview of the functions offered by PersistencyBuilder
categorized by the Noir execution phase:

62 3| Snapshotting in Noir

Stream
definition

Start
execution

Operators
setup

Operators
processing

End
execution

Compute a list
of coordinates
of stateful
operators

Find the
snapshot from
which to
restart

Generate Per-
sistencyService
for each
operator

Stop the
StateSaver

Create the
StateSaver

If needed, clear
the datastore

Table 3.7: PersistencyBuilder functions

3.5.3. PersistencyService

This structure provides operators with all the necessary functions for the snapshot and
recovery procedures. In particular, the main functions are:

• State saving

• State recovery

• Resuming from a snapshot

For state saving, it is necessary to provide the operator coordinates, the SnapshotId,
and the state. There is a specific function for saving a Terminate Snapshot that does
not require providing the SnapshotId but calculates it automatically from the last saved
SnapshotId. This function serializes the state and sends it to the dedicated StateSaver
thread, which is responsible for persisting the snapshots to Redis.

State recovery is performed by specifying the operator coordinates and SnapshotId. This
function is blocking and used only during the setup for the recovery procedure.

The “restart_from_snapshot()” function is used to retrieve the actual SnapshotId from
which to resume, as explained in the Recovery section.

3.5.4. StateSaver

The purpose of this structure is to manage a worker thread for the asynchronous saving of
operator states during snapshots. Each host has its own StateSaver, created and managed
by the PersistencyBuilder. The worker thread has an in-memory channel through which it
receives states from various operators. When all operators finish processing, a termination

3| Snapshotting in Noir 63

message is sent to the StateSaver, which completes processing the messages in the channel
and returns. This approach allows the operator to avoid halting computation until the
snapshot is saved in Redis. Instead, the operator simply serializes the state, sends it to
the StateSaver, and can then continue processing.

Figure 3.12: StateSaver

The figure 3.12 illustrates the process of saving the state using StateSaver. The operator
sends its coordinates, the SnapshotId, and the serialized state in the message. With this
information, StateSaver can save the data in Redis, as explained in the subsequent section.
The order in which messages arrive at StateSaver is not relevant when they come from
different operators. In such cases, it does not matter whether the state of Op1 is saved
before that of Op2, and vice versa. However, it is imperative that the order of messages
sent by the same operator remains unchanged; otherwise, it would violate the properties
of SnapshotId monotonicity and regularity, leading to an error. The in-memory channel
used is multiple-producers single-consumer, so it provides this guarantee. This means
that if the operator sends messages with the correct SnapshotIds, we can be sure that the
order of those messages is maintained.

3.6. Redis

Redis[5] (REmote DIctionary Server) is a key-value store that can be used as a database,
cache, or message broker. It offers various data structures such as strings, lists, and sets.
Redis manages data in memory, making it highly performing and fast. Simultaneously,
it ensures reliability and persistence through periodic data saving to disk. These features
make it an excellent choice as a datastore for high-throughput, low-latency applications,
as seen in the case of Noir.

The Redis-rs[6] crate integrates Redis into Rust, providing a rich and comprehensive set

64 3| Snapshotting in Noir

of features and APIs. The r2d2 feature enables the creation of pooled connections that
optimize and speed up connections to Redis. By using pooled connections, you can avoid
creating a new connection for each operation. Once a new connection is created and used,
it remains active and can be reused for any future operations.

The RedisHandler structure is responsible for interfacing with Redis and providing Noir
with all the necessary functions to implement the snapshot algorithm. This structure
requires a configuration string that specifies the address, port, and password, which is set
through the "server addr" field of PersistencyConfig.

RedisHandler offers the following functions:

• State save: Given the operator’s coordinate, SnapshotId, and serialized state, it
saves the state.

• Find the last saved SnapshotId: Given the operator coordinates, it finds the last
saved SnapshotId.

• Find the last iteration stack corresponding to the last saved SnapshotId, given the
SnapshotId index.

• Find the saved state: Given the operator coordinate and SnapshotId, it retrieves
the saved state.

• State delete: Given the operator coordinate and SnapshotId, it deletes the saved
state.

Every time an operator saves its state in Redis, the following operations are performed:

1. The serialized state is saved with a key that is a concatenation of the operator
coordinates and the SnapshotId.

2. The SnapshotId is appended to a list with the key being the operator coordinates.

3. If the SnapshotId has a non-empty iteration stack, it is also appended to another
list with the key being the operator coordinates and the SnapshotId index.

3| Snapshotting in Noir 65

Figure 3.13: Redis data structure

The figure 3.13 represents the data saved in Redis as a result of the snapshots taken by
various operators:

• Operator 1 has taken a single snapshot with SnapshotId S1, and the key under which
the state is saved is C1 + S1, which is the concatenation of the operator coordinate
and the SnapshotId. The list of SnapshotIds contains only S1.

• Operator 2 has saved two states, and the keys used for them differ based on the
SnapshotId. The list contains two SnapshotIds: S1 and S2. For both Operator 1
and Operator 2, the SnapshotIds did not include an iteration stack, so the second
list was not used.

• Operator 3 has taken three snapshots: S1[0], S2[0], and S2[1]. In this case, the list
for iteration stacks is used. Specifically, a list is created for each different index of
SnapshotIds.

The list of SnapshotIds allows you to retrieve the last SnapshotId taken without having
to scan the entire list, as it is always found in the last position. The list of iteration stacks
allows you to immediately retrieve the last iteration stack corresponding to the index of
the SnapshotId. Thanks to the properties of SnapshotIds, this allows us to determine
with certainty what the last saved SnapshotId is and whether an operator has saved a
state with a specific SnapshotId.

The functions for finding the last SnapshotId and the last iteration stack respectively
read the last positions of the two lists. The function for finding the state returns the

66 3| Snapshotting in Noir

state with the key formed by the operator coordinate and the specified SnapshotId. The
function that deletes a specific snapshot not only removes the state but also deletes the
corresponding entries in the two lists.

67

4| Performance evaluation

One of Noir’s key strengths lies in its excellent performance. Therefore, we conducted
some experiments to study and to try to quantify the impact of the snapshot algorithm
on execution times. The impact of the snapshot algorithm on execution times is influenced
by several factors:

• The operators in the job graph: stateless operators add minimal overhead, while
stateful operators vary in terms of procedures and states.

• The execution graph: the number of operator replicas affects the state of the Start
operator and the complexity of its snapshot procedure.

• Snapshot frequency: a higher frequency results in more snapshots, which, in turn,
increases execution time.

• The size of the states of the operators.

• The speed of Redis requests.

The following sections present some of the experiments conducted along with an analysis
of the obtained results. The benchmarks used for these experiments are Nexmark[22] and
Wordcount.

Nexmark is a set of queries commonly used to evaluate the performance of stream process-
ing systems. These queries are based on an auction system modeled with three entities:
person, auction, and bid. There are eight queries that require various analyses and oper-
ations, including filtering, joining, and windowing. Below there are the operator graphs
for each of the 8 queries.

Figure 4.1: Nexmark query 0 job graph

68 4| Performance evaluation

Figure 4.2: Nexmark query 1 job graph

Figure 4.3: Nexmark query 2 job graph

Figure 4.4: Nexmark query 3 job graph

Figure 4.5: Nexmark query 4 job graph

4| Performance evaluation 69

Figure 4.6: Nexmark query 5 job graph

Figure 4.7: Nexmark query 6 job graph

Figure 4.8: Nexmark query 7 job graph

70 4| Performance evaluation

Figure 4.9: Nexmark query 8 job graph

Wordcount is a benchmark that aims to calculate the word occurrences in a text docu-
ment. There are many possible implementations in Noir for this problem, but for these
experiments, three, in particular, have been chosen:

• wc-fold: each word is mapped with a single occurrence, and these occurrences are
sent to the Fold operator, which sums them for each word.

• wc-fold-assoc: this version uses associative folding to avoid a network shuffle.

• wc-fast: also using associative folding, but the local folds process an entire line of
the file.

Below there are the operator graphs:

Figure 4.10: Wordcount fold version

4| Performance evaluation 71

Figure 4.11: Wordcount associative fold version

Figure 4.12: Wordcount fast version

All benchmarks have been run on remote server sola1.dei.polimi.it:

Operating System Debian GNU/Linux 11 (bullseye)
Kernel Linux 5.10.0-23-amd64
Architecture x86-64
CPU Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz
CPU Cores 12
CPU Threads 24
RAM 64 GB

Table 4.1: Remote server specifications

The Redis server runs locally with this configuration:

io−threads 4
appendonly no
save

Listing 4.1: RedisConf

Using the Criterion[1] crate, statistics on multiple consecutive runs are obtained to analyze
the average time, throughput, distribution, outliers, and other useful metrics. In addition
to these insights, the number of taken snapshots and the total size of all states saved
in Redis are recorded. The number of taken snapshots corresponds to the maximum

72 4| Performance evaluation

number of snapshots taken by any operator within the network, so it is possible that
some operators took fewer snapshots with respect to the retrieved number. The total size
of the states is calculated as the sizes of all the data saved in Redis during the execution.

4.1. Comparison with original Noir

The comparison with the original version of Noir, without state persistence, is performed
by comparing the results of the Nexmark and Wordcount benchmarks between the original
version of Noir and this version with unconfigured persistence (disabled). In the absence
of configured persistence, the following steps are skipped:

• Creation of the PersistencyBuilder structure and, consequently, the creation and
start of StateSaver (meaning no connection to Redis).

• Computation of the list with the coordinates of stateful operators.

• Creation of PersistencyService for each stateful operator during the setup phase.

• No state saving.

The first experiment focused on the Nexmark benchmark, which was executed with max-
imum available parallelism (12) and an input stream of 100’000 tuples, and later with
1’000’000 tuples.

nexmark query original persist None compare
nx 0 6,76 (± 0,08) ms 7,04 (± 0,01) ms 4%
nx 1 6,94 (± 0,01) ms 7,08 (± 0,01) ms 2%
nx 2 6,99 (± 0,01) ms 7,11 (± 0,01) ms 2%
nx 3 8,90 (± 0,02) ms 9,28 (± 0,01) ms 4%
nx 4 19,3 (± 0,1) ms 19,9 (± 0,1) ms 3%
nx 5 7,99 (± 0,02) ms 8,58 (± 0,01) ms 7%
nx 6 19,5 (± 0,1) ms 20,2 (± 0,1) ms 4%
nx 7 7,18 (± 0,01) ms 7,69 (± 0,01) ms 7%
nx 8 9,72 (± 0,01) ms 9,99 (± 0,01) ms 3%

Table 4.2: Nexmark 100K original vs persistence disabled

4| Performance evaluation 73

nexmark query original persist None compare
nx 0 65,7 (± 0,9) ms 68,3 (± 0,1) ms 4%
nx 1 67,4 (± 0,1) ms 68,5 (± 0,1) ms 2%
nx 2 67,6 (± 0,1) ms 68,9 (± 0,1) ms 2%
nx 3 82,6 (± 0,1) ms 86,6 (± 0,1) ms 5%
nx 4 244 (± 3) ms 246 (± 2) ms 1%
nx 5 76,8 (± 0,1) ms 86,5 (± 0,1) ms 13%
nx 6 252 (± 3) ms 255 (± 2) ms 1%
nx 7 69,2 (± 0,1) ms 73,8 (± 0,1) ms 7%
nx 8 85,8 (± 0,1) ms 89,5 (± 0,1) ms 4%

Table 4.3: Nexmark 1M original vs persistence disabled

Figure 4.13: Nexmark 100K original vs per-
sistence disabled

Figure 4.14: Nexmark 1M original vs persis-
tence disabled

If we exclude nx-5 with an input stream of 1,000,000 tuples, for all the others, the overhead
remains below 10%.

Wordcount was also executed with the maximum available parallelism (12) using a text
document with 100,000 lines and then with 1,000,000 lines.

wordcount original persist None compare
wc-fast 40,1 (± 0,1) ms 49,7 (± 0,1) ms 24%
wc-fold-assoc 183 (± 1) ms 185 (± 1) ms 1%
wc-fold 221 (± 1) ms 232 (± 1) ms 5%

Table 4.4: Wordcount 100K original vs persistence disabled

74 4| Performance evaluation

wordcount original persist None compare
wc-fast 397 (± 1) ms 492 (± 1) ms 24%
wc-fold-assoc 1,83 (± 0,01) s 1,83 (± 0,01) s 0%
wc-fold 2,17 (± 0,01) s 2,26 (± 0,01) s 4%

Table 4.5: Wordcount 1M original vs persistence disabled

Figure 4.15: Wordcount 100K original vs
persistence disabled

Figure 4.16: Wordcount 1M original vs per-
sistence disabled

The overhead of wc-fold and wc-fold-assoc is in line with the results of Nexmark, while
the 24% overhead of wc-fast is hard to explain, especially when compared to an execution
with persistence enabled in which multiple snapshots are taken (see the tables in the next
section).

4.2. Snapshot frequency by item vs by time

As explained in the previous chapters, snapshot frequency should ideally be set based on
time because the one using tuple counting is primarily used for testing and debugging as
it does not allow for generating aligned snapshot tokens. However, it can be interesting
to quantify the difference in terms of execution time that is achieved by using time-based
frequency versus item-based frequency.

4| Performance evaluation 75

wc-fast wc-fold-assoc wc-fold
snapshot frequency 4 ms 18 ms 25 ms
execution time 483 (± 3) ms 1,91 (± 0,02) s 2,67 (± 0,05) s
mean taken
snapshots

116 102 106

size of stored data 5,09 MB 3 MB 71 MB

Table 4.6: Wordcount snapshot by time

wc-fast wc-fold-assoc wc-fold
execution time 468 (± 4) ms 1,90 (± 0,01) ms 12,2 (± 0,2) s
mean taken
snapshots

101 101 101

size of stored data 5,03 MB 3,03 MB 1,46 GB

Table 4.7: Wordcount snapshot by item

For all experiments, a text file with 1,000,000 rows and maximum available parallelism
(12) was used. Different behaviors are observed depending on the benchmark. For wc-fast
and wc-fold-assoc, the execution times are nearly the same (according to the number of
taken snapshots), while for wc-fold, the execution time changes by an order of magnitude.
The same pattern occurs in the size of states stored in Redis. This behavior is due to
the arrangement of Start operators within the job graph and the operators that precede
them.

In the case of wc-fast and wc-fold-assoc, there are two Start operators, both with the
NextStrategy: OnlyOne. The first Start operator receives tuples only from the corre-
sponding replica of the preceding block, so it has only one input. The second Start
operator, which is not replicated, receives data from all replicas of the preceding block,
meaning it has multiple inputs and maintains a message queue in the state. However, the
presence of the Fold operator implies that the stream is fully consumed before the Fold
emits tuples with results. This means that the second Start operator will always save a
state with an empty message queue until the entire stream has been consumed. Therefore,
if non-aligned snapshot tokens flow through the network, their effects are negligible.

In the case of wc-fold, there are also two Start operators, but the first has the NextStrat-
egy: GroupBy and receives all the tuples generated by the Sources. This implies that

76 4| Performance evaluation

the Start state always contains a message queue, and the queue size is determined by
the alignment of the incoming snapshot tokens. If Sources produce tuples at different
rates, the item-based frequency causes the fast Source to generate many snapshot tokens
that arrive quickly at the next block, while the slow Source generates fewer tokens that
arrive later than those from the fast Source. This creates long message queues, leading
to increased execution times and larger states saved, as shown by data.

4.3. Variations of different snapshot frequencies

Below are presented the results of some experiments where the snapshot frequency varies
with different values. The Nexmark benchmark was executed with the maximum available
parallelism (12), an input stream of 1,000,000 tuples, and a batch size of 1024. Different
snapshot frequencies are used for Query 4 and Query 6. We can group Nexmark queries
into three categories according to the overhead caused by the snapshot procedure:

• nx-0, nx-1, nx-2, nx-7

• nx-3, nx-5, nx-8

• nx-4, nx-6

For nx-0, nx-1, nx-2, and nx-7, the impact of the snapshot algorithm is low. nx-0, nx-1,
and nx-2 have only the ParallelIterator Source operator that persists the state, and its
state has a fixed size, consisting only of an integer. nx-7 includes other stateful operators
like Window and Start operators. The size of the state of the Window operator is limited
by the number of open windows at the time of the snapshot, and the size of the state
of the Start operator is fixed since Start receives data only from one replica, keeping the
message queue always empty. Table 4.8 presents the obtained results.

For nx-3, nx-5, and nx-8, the variation in snapshot frequency has more pronounced effects,
partly due to the presence of Start operators that receive data from multiple replicas.
Table 4.9 shows the obtained results.

Similarly, for nx-4, and nx-6, the variation in snapshot frequency has pronounced effects,
as indicated by the data in Table 4.10.

4| Performance evaluation 77

nx query
snapshot
frequency

execution time taken snapshots datastore size

nx 0 T 61,2 (± 1,4) ms 1 3,56 KB
50 ms 71,0 (± 0,1) ms 2 5,06 KB
20 ms 71,2 (± 0,1) ms 4 8,25 KB
10 ms 72,0 (± 0,2) ms 7 13,6 KB
5 ms 74,3 (± 0,2) ms 14 24,2 KB

nx 1 T 68,3 (± 0,1) ms 1 3,56 KB
50 ms 71,5 (± 0,3) ms 2 5,06 KB
20 ms 71,6 (± 0,1) ms 4 8,25 KB
10 ms 72,3 (± 0,2) ms 7 13,6 KB
5 ms 74,7 (± 0,2) ms 14 24,2 KB

nx 2 T 69,0 (± 0,1) ms 1 3,56 KB
50 ms 72,2 (± 0,1) ms 2 5,06 KB
20 ms 72,3 (± 0,1) ms 4 8,25 KB
10 ms 74,3 (± 0,3) ms 7 13,6 KB
5 ms 75,8 (± 0,3) ms 14 24,2 KB

nx 7 T 74,5 (± 0,1) ms 1 11,1 KB
50 ms 77,2 (± 0,1) ms 2 16,4 KB
20 ms 78,9 (± 0,3) ms 4 27,5 KB
10 ms 83,0 (± 0,3) ms 9 50,3 KB
5 ms 90,4 (± 0,7) ms 18 89,0 KB

Table 4.8: Nexmark q0, q1, q2, q7 various snapshot frequencies

78 4| Performance evaluation

nx query
snapshot
frequency

execution time taken snapshots datastore size

nx 3 T 83 (± 1) ms 1 20,1 KB
50 ms 98 (± 3) ms 2 8,27 MB
20 ms 104 (± 2) ms 5 31,3 MB
10 ms 125 (± 2) ms 8 51,2 MB
5 ms 184 (± 3) ms 17 113 MB

nx 5 T 85 (± 1) ms 1 15,3 KB
50 ms 93 (± 1) ms 2 2,61 MB
20 ms 103 (± 1) ms 5 10,1 MB
10 ms 129 (± 1) ms 12 27,1 MB
5 ms 249 (± 5) ms (30-40) 86,1 MB

nx 8 T 84 (± 1) ms 1 30,7 KB
50 ms 88 (± 1) ms 2 2,56 MB
20 ms 106 (± 1) ms 5 18,2 MB
10 ms 127 (± 2) ms 9 28,9 MB
5 ms 192 (± 3) ms 20 57,3 MB

Table 4.9: Nexmark q3, q5, q8 various snapshot frequencies

nx query
snapshot
frequency

execution time taken snapshots datastore size

nx 4 T 185 (± 1) ms 1 26,8 KB
90 ms 300 (± 5) ms 3 93,9 MB
70 ms 359 (± 8) ms 4 142 MB
50 ms 634 (± 53) ms 8 326 MB
30 ms 1499 (± 125) ms (16-30) 942 MB

nx 6 T 188 (± 1) ms 1 59,0 KB
90 ms 307 (± 7) ms 3 96,3 MB
70 ms 372 (± 15) ms 4 147 MB
50 ms 644 (± 66) ms 8 324 MB
30 ms 1872 (± 335) ms (16-40) 1,13 GB

Table 4.10: Nexmark q4, q6 various snapshot frequencies

4| Performance evaluation 79

Figure 4.17: Nexmark query 0, 1, 2, 7 Figure 4.18: Nexmark query 3, 5, 8

Figure 4.19: Nexmark query 4, 6

In tables 4.9 and 4.10, there are rows highlighted in red, indicating the presence of drift.
For those experiments we see a notable increase in execution times and the size of saved
states, furthermore, there is a lot of variability in the number of snapshots taken and
consequently in execution times.

The drift phenomenon represents a misalignment in the generation of snapshot tokens
due to the fact that Sources produce data at a faster rate than the subsequent blocks take
to process it. This leads to a pause in the generation of tuples from the Sources to allow
the subsequent blocks to process and consume previously generated data. However, if the
time during which the Source is paused exceeds the snapshot interval, once the Source
resumes producing tuples, its SnapshotGenerator generates snapshot tokens that it could
not produce when the Source was inactive. This can result in the generation of several
snapshot tokens very close together and delayed from the time they were supposed to be
produced.

80 4| Performance evaluation

Figure 4.20: Snapshot generation drift

In the figure 4.20, we observe the representation of snapshot generation in normal time
(top) and with drift (bottom). In normal generation, there may be delays, as seen for S4,
but the delay is less than the snapshot interval and is recovered. With drift, the delay
exceeds the snapshot interval and causes the close emission of multiple snapshot tokens.
The misalignment of snapshot tokens leads to an increase in the overhead of the algorithm
and the size of the saved states, similar to what occurs with item-based frequency in the
previous section.

This can result in a further slowdown of subsequent blocks due to the snapshot procedure
triggered by these tokens. The Start operators at the beginning of the block have to deal
with several snapshots simultaneously that arrive non-aligned in time. This increases
the number of messages saved in the queues, leading to higher memory consumption and,
consequently, an increase in time. If the slowdown of subsequent blocks increases the time
during which the Sources do not produce tuples, the delay of snapshot tokens accumulates,
triggering a cascading effect that leads to an exponential increase in execution times and
saved snapshots.

Drift can be detected from the logs; a warning is logged every time the SnapshotGenerator
timer has a duration greater than twice the snapshot interval. This indicates that the
SnapshotGenerator will produce two or more closely spaced snapshot tokens. The presence
of drift depends mainly on the difference in speed between the production of tuples by
the Sources and the processing of tuples by subsequent blocks, imposing a lower limit on
the snapshot frequency.

However, it is essential to keep in mind that these experiments are conducted in a context
different from the ideal use case. In an ideal scenario, snapshot frequencies and execu-

4| Performance evaluation 81

tion times are orders of magnitude higher, and it is unlikely that the input stream is a
sequence of integers generated at runtime. Typically, the data to be processed is read
from an external source, which should make Sources slower, reducing the likelihood of
drift occurrence.

The Wordcount benchmark, with maximum available parallelism (12) and an input stream
of 1,000,000 tuples, produced the results in table 4.11.

wordcount
snapshot
frequency

execution time taken snapshots datastore size

wc-fast T 392 (± 1) ms 1 13,2 KB
100 ms 397 (± 1) ms 4 168 KB
50 ms 400 (± 1) ms 8 374 KB
10 ms 425 (± 2) ms 42 1,97 MB
5 ms 464 (± 3) ms 90 3,99 MB

wc-fold- T 1,78 (± 0,01) s 1 17,9 KB
assoc 500 ms 1,81 (± 0,01) s 4 111 KB

100 ms 1,86 (± 0,04) s 19 563 KB
50 ms 1,87 (± 0,04) s 37 1,08 MB
10 ms 1,97 (± 0,01) s 180 5,28 MB

wc-fold T 2,43 (± 0,04) s 1 16,9 KB
500 ms 2,45 (± 0,06) s 5 2,85 MB
100 ms 2,46 (± 0,05) s 25 16 MB
50 ms 2,53 (± 0,05) s 51 33,7 MB
10 ms 3,00 (± 0,02) s 297 204 MB

Table 4.11: Wordcount various snapshot frequencies

82 4| Performance evaluation

Figure 4.21: Wordcount benchmark

Similarly to Nexmark, the overhead introduced by snapshots varies depending on the spe-
cific benchmark and snapshot frequency. For Wordcount, we observe that the cost factor
determined by the snapshot algorithm is influenced by the presence of Start operators
with NextStrategy: GroupBy. These benchmarks, executed with these parameters, do
not exhibit the drift phenomenon.

4.3.1. Drift mitigation

To attempt to eliminate drift, we reconsidered the initial assumptions about the proper-
ties of the SnapshotId. In particular, by removing the regularity property, it is possible to
avoid generating and injecting tokens too late into the network. Specifically, we want to
prevent the accumulation of snapshot tokens. Therefore, the SnapshotGenerator, based
on the time elapsed since the last snapshot, directly generates just one token with the
higher id compatible with the elapsed time, bypassing all the previous ones. The Snap-
shotGenerator skips the generation of a snapshot when it can generate one with a higher
SnapshotId and if the Source has not emitted any other tuples since the last snapshot
token. In other words, it avoids generating snapshots that would lead to saving identical
states. In figure 4.22, the generation with drift is depicted at the top, and at the bottom,
it illustrates how the generation changes by skipping snapshots that are too late, such as
S2, S4, and S5.

4| Performance evaluation 83

Figure 4.22: Snapshot generation: skip too late snapshots

This modification affects the snapshot procedure performed by the Start operators:

1. Check if this SnapshotId is already arrived

2. If it has not arrived:

(a) Check if Start has previously received bigger SnapshotIds

(b) If no:

i. Copy the current state and add this partial snapshot to the HashMap

ii. This snapshot token will be sent to the next operator

(c) If yes, this snapshot won’t be taken, this token is only used by the next point
to conclude previous ongoing snapshots, if any.

3. Find all ongoing snapshots with SnapshotId less or equal to this one

4. For each of them

(a) Remove the sender of this snapshot from the set of previous replica coordinates

(b) If the set is empty, the snapshot is complete, remove it from the HashMap and
persist it

For Iterative operators, some modifications are necessary:

• The SnapshotGenerator of the IterationLeader continues to generate snapshot to-
kens following the regularity property since the generation is synchronized with the
iterations.

84 4| Performance evaluation

• The snapshot alignment solution through the alignment block is no longer valid
because the Start operator can take different snapshots depending on the order
in which it receives snapshot tokens from the preceding replicas. Therefore, in the
case of iterations, it is mandatory to use the alignment solution in which the Sources
produce only one snapshot token. Given that the behavior of the IterationLeader
remains unchanged, everything else remains as before.

The procedure for determining the last snapshot changes too. The function "find last
snapshot", which searches for the last valid snapshot, remains unchanged and always
returns the minimum of the last snapshots saved for each operator. However, the "restart
from" function called by each operator during the setup phase has been modified. In
the case where the snapshot calculated by "find last snapshot" has been saved by the
operator, it resumes normal operation from that snapshot. On the other hand, if the
operator has not saved that snapshot, it restarts from the smallest snapshot greater than
that. Consider, for instance, a scenario with three operators that have persisted snapshots
as shown in table 4.12. The function “find last snapshot” takes the minimum between S7,
S5, S6; which is S5. The function “restart from” returns S7 for op1, S5 for op2 and S6 for
op3.

Operator List of persisted snapshots
op 1 S1, S2, S4, S7
op 2 S1, S2, S4, S5
op 3 S1, S2, S4, S6

Table 4.12: Example of computation of last snapshot

Through the Nexmark benchmark, we can observe the differences between the version
with drift and the version in which snapshots too delayed are skipped. Regarding queries
0, 1, 2, 3, 7, and 8, no differences were detected between the two versions, while for queries
4, 5, and 6, the results are presented in the table 4.13.

4| Performance evaluation 85

nx query
snapshot
frequency

execution time taken snapshots datastore size

nx 4 T 185 (± 1) ms 1 26,8 KB
90 ms 298 (± 5) ms 3 93,9 MB
70 ms 370 (± 10) ms 4 146 MB
50 ms 561 (± 16) ms 8 288 MB
30 ms 1165 (± 50) ms (15-20) 717 MB
15 ms 3048 (± 104) ms (40-55) 1,92 GB

nx 5 T 85 (± 1) ms 1 15,3 KB
50 ms 93 (± 1) ms 2 2,61 MB
20 ms 103 (± 1) ms 5 10,1 MB
10 ms 128 (± 1) ms 12 27,1 MB
5 ms 237 (± 5) ms (30-37) 81,5 MB
4 ms 307 (± 5) ms (40-50) 114 MB

nx 6 T 188 (± 1) ms 1 59,0 KB
90 ms 309 (± 8) ms 3 96,3 MB
70 ms 368 (± 11) ms 4 147 MB
50 ms 600 (± 38) ms 8 302 MB
30 ms 1258 (± 62) ms (15-24) 775 MB
15 ms 3051 (± 115) ms (43-57) 1,93 GB

Table 4.13: Nexmark q4, q5, q6 skip too late snapshots

As one can see, this modification reduces the impact of drift; however, it is not possible to
eliminate misalignment entirely, and there is no assurance that all replicas of the Source
skip precisely the same snapshots. Due to the independence of the Sources, it can happen
that the snapshots skipped by one replica differ from those skipped by another replica,
leading to the generation and propagation of misaligned snapshots nonetheless.

4.4. Iterations

For iterative operators, we compare the behavior, varying the number of iterations, be-
tween two snapshot alignment solutions: inhibit Source snapshot token generation (isa)
and the snapshot alignment block (align-block).

The benchmark consists of a Filter operator that only allows prime numbers to pass
through in the input-generated stream. To verify if a number is prime, it searches for

86 4| Performance evaluation

all divisors from 2 to the square root of the number, which is a quite computationally
expensive operation. The Filter is followed by a loop that iterates over the stream with
prime numbers a fixed number of times. This setup allows us to observe the differences
between the two alignment solutions and how they change as the number of iterations
varies. Specifically, as long as the number of iterations is low, the main computation is
performed by operators preceding the loop, resulting in significant differences in execution
times and the number of snapshots taken. As the number of iterations increases, most
of the computational load switches to the iterative operator, reducing the percentage
differences in execution times and the number of snapshots taken.

In the following charts 4.23 4.24 4.25, execution times are plotted against the snapshot
frequency in the case of three different executions with 10, 100, and 500 iterations, re-
spectively. The input stream has a size of 10,000,000 tuples, and the maximum available
parallelism (12) is utilized. As with the previous benchmarks, the frequency "T" indicates
that no snapshot frequency has been set, and only the Terminate snapshot is saved.

Figure 4.23: Iteration benchmark: 10 itera-
tions

Figure 4.24: Iteration benchmark: 100 itera-
tions

Figure 4.25: Iteration benchmark: 500 iterations

87

5| Conclusions and future

developments

Noir is an excellent streaming and batch processing framework that enables various types
of computations and analyses on bounded and unbounded streams, outperforming even
Apache Flink. However, it lacks fault tolerance, and in the event of a failure of an operator
or a connection, all ongoing execution results are lost.

With the work of this thesis, it is now possible to periodically persist the state, allowing
recovery from the last saved system state in case of failure. The implemented snapshot
algorithm works independently and without any central coordinator, preserving Noir’s
original architecture and design.

The analyses of benchmark results seek to understand and provide an idea of the impact
on performance due to state persistence and how it varies based on stream characteristics
and specifications. The most significant aspect that emerged from the analyses is the
impact of snapshot token alignment among different replicas. This algorithm performs
better when the snapshot tokens are generated and propagated in a more aligned manner.
This implies that to enhance the performance of this algorithm, strategies should be
explored to improve the alignment of snapshot tokens. Alternatively, it is necessary to
design a mechanism that efficiently handles misaligned snapshots, such as improving the
management and storage of partial snapshots for the Start operator.

A possible future development is to implement state persistence as a feature. With a
compile-time feature flag, it is possible to remove the code used for state persistence at
compile time, reducing the gap between the execution time of the original Noir and the
version with state persistence disabled.

Another useful improvement could be automatic failure detection and restart, masking
a failure completely from the user. Although it may not be possible to recover from all
types of errors, for example, if the error is inherent to the tuples, it will reoccur even after
restart. The fail detection phase must be able to distinguish between recoverable failures
and unrecoverable failures.

88

Bibliography

[1] criterion - rust. URL https://docs.rs/criterion/latest/criterion/.

[2] Crossbeam. URL https://docs.rs/crossbeam/latest/crossbeam/.

[3] Flume. URL https://docs.rs/flume/latest/flume/.

[4] Apache kafka. URL https://kafka.apache.org/.

[5] Redis, . URL https://redis.io/.

[6] redis - rust, . URL https://docs.rs/redis/latest/redis/.

[7] The rust programming language, . URL https://doc.rust-lang.org/book/.

[8] Rust closures, . URL https://doc.rust-lang.org/book/ch13-01-closures.

html.

[9] Rust iterator, . URL https://doc.rust-lang.org/std/iter/trait.Iterator.

html.

[10] Apache samza, . URL https://samza.apache.org/.

[11] Apache samza - checkpointing, . URL https://samza.incubator.apache.org/

learn/documentation/0.7.0/container/checkpointing.html.

[12] Apache samza - state management, . URL https://samza.incubator.apache.org/

learn/documentation/0.7.0/container/state-management.html.

[13] Apache storm, . URL https://storm.apache.org/.

[14] Apache storm - state management, . URL https://storm.apache.org/releases/

2.5.0/State-checkpointing.html.

[15] T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J. Fernández-Moctezuma,
R. Lax, S. McVeety, D. Mills, F. Perry, E. Schmidt, and S. Whittle. The
dataflow model: A practical approach to balancing correctness, latency, and cost
in massive-scale, unbounded, out-of-order data processing. Proc. VLDB Endow., 8

https://docs.rs/criterion/latest/criterion/
https://docs.rs/crossbeam/latest/crossbeam/
https://docs.rs/flume/latest/flume/
https://kafka.apache.org/
https://redis.io/
https://docs.rs/redis/latest/redis/
https://doc.rust-lang.org/book/
https://doc.rust-lang.org/book/ch13-01-closures.html
https://doc.rust-lang.org/book/ch13-01-closures.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://doc.rust-lang.org/std/iter/trait.Iterator.html
https://samza.apache.org/
https://samza.incubator.apache.org/learn/documentation/0.7.0/container/checkpointing.html
https://samza.incubator.apache.org/learn/documentation/0.7.0/container/checkpointing.html
https://samza.incubator.apache.org/learn/documentation/0.7.0/container/state-management.html
https://samza.incubator.apache.org/learn/documentation/0.7.0/container/state-management.html
https://storm.apache.org/
https://storm.apache.org/releases/2.5.0/State-checkpointing.html
https://storm.apache.org/releases/2.5.0/State-checkpointing.html

5| BIBLIOGRAPHY 89

(12):1792–1803, aug 2015. ISSN 2150-8097. doi: 10.14778/2824032.2824076. URL
https://doi.org/10.14778/2824032.2824076.

[16] P. Carbone, G. Fóra, S. Ewen, S. Haridi, and K. Tzoumas. Lightweight asynchronous
snapshots for distributed dataflows. 06 2015.

[17] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states
of distributed systems. ACM Trans. Comput. Syst., 3(1):63–75, feb 1985. ISSN
0734-2071. doi: 10.1145/214451.214456. URL https://doi.org/10.1145/214451.

214456.

[18] E. Morassutto and M. Donadoni. Noir : design, implementation and evaluation
of a streaming and batch processing framework. Master’s thesis, ING - Scuola di
Ingegneria Industriale e dell’Informazione, 2021. URL https://hdl.handle.net/

10589/180143.

[19] D. Murray, F. McSherry, R. Isaacs, M. Isard, P. Barham, and M. Abadi. Naiad: A
timely dataflow system. pages 439–455, 11 2013. doi: 10.1145/2517349.2522738.

[20] C. Paris, K. Asterios, E. Stephan, M. Volker, H. Seif, and T. Kostas. Apache flink™:
Stream and batch processing in a single engine. IEEE Data Engineering Bulletin,
38, 01 2015.

[21] C. The MPI Forum. Mpi: A message passing interface. In Proceedings of the 1993
ACM/IEEE Conference on Supercomputing, Supercomputing ’93, page 878–883, New
York, NY, USA, 1993. Association for Computing Machinery. ISBN 0818643404. doi:
10.1145/169627.169855. URL https://doi.org/10.1145/169627.169855.

[22] P. A. Tucker, K. Tufte, V. Papadimos, and D. Maier. Nexmark – a benchmark
for queries over data streams draft. 2002. doi: 10.1145/2517349.2522738. URL
https://datalab.cs.pdx.edu/niagara/pstream/nexmark.pdf.

[23] X. Wang. A comprehensive study on fault tolerance in stream processing systems.
Frontiers of Computer Science, 16, 09 2020. doi: 10.1007/s11704-020-0248-x.

https://doi.org/10.14778/2824032.2824076
https://doi.org/10.1145/214451.214456
https://doi.org/10.1145/214451.214456
https://hdl.handle.net/10589/180143
https://hdl.handle.net/10589/180143
https://doi.org/10.1145/169627.169855
https://datalab.cs.pdx.edu/niagara/pstream/nexmark.pdf

90

List of Figures

1.1 Simple job graph. 4
1.2 Job graph and execution graph . 5
1.3 Fold vs AssociativeFold . 12
1.4 Windows examples . 16
1.5 Replay operator . 17
1.6 Iterate operator . 18

3.1 Snapshot algorithm . 28
3.2 Terminate snapshot . 30
3.3 ProcessingTime window recovery . 43
3.4 Session window recovery . 43
3.5 Nested iterations . 45
3.6 Iterations algorithm . 48
3.7 Parallel and sequential loops . 49
3.8 Alignment problem . 51
3.9 Alignment block . 52
3.10 Alignment block behavior . 53
3.11 Alignment problem with side inputs . 54
3.12 StateSaver . 63
3.13 Redis data structure . 65

4.1 Nexmark query 0 job graph . 67
4.2 Nexmark query 1 job graph . 68
4.3 Nexmark query 2 job graph . 68
4.4 Nexmark query 3 job graph . 68
4.5 Nexmark query 4 job graph . 68
4.6 Nexmark query 5 job graph . 69
4.7 Nexmark query 6 job graph . 69
4.8 Nexmark query 7 job graph . 69
4.9 Nexmark query 8 job graph . 70

| List of Figures 91

4.10 Wordcount fold version . 70
4.11 Wordcount associative fold version . 71
4.12 Wordcount fast version . 71
4.13 Nexmark 100K original vs persistence disabled 73
4.14 Nexmark 1M original vs persistence disabled 73
4.15 Wordcount 100K original vs persistence disabled 74
4.16 Wordcount 1M original vs persistence disabled 74
4.17 Nexmark query 0, 1, 2, 7 . 79
4.18 Nexmark query 3, 5, 8 . 79
4.19 Nexmark query 4, 6 . 79
4.20 Snapshot generation drift . 80
4.21 Wordcount benchmark . 82
4.22 Snapshot generation: skip too late snapshots 83
4.23 Iteration benchmark: 10 iterations . 86
4.24 Iteration benchmark: 100 iterations . 86
4.25 Iteration benchmark: 500 iterations . 86

92

Listings
1.1 Simple Noir program . 8
3.1 SnapshotId structure . 26
3.2 PersistencyConfig . 59
4.1 RedisConf . 71

93

List of Tables

3.1 Properties of SnapshotId. 27
3.2 Sources and Sinks guarantees . 33
3.3 Order of SnapshotId with iteration stack. 46
3.4 Distance of SnapshotId with iteration stack. 47
3.5 Order of SnapshotId with iteration index. 50
3.6 Distance of SnapshotId with iteration index. 50
3.7 PersistencyBuilder functions . 62

4.1 Remote server specifications . 71
4.2 Nexmark 100K original vs persistence disabled 72
4.3 Nexmark 1M original vs persistence disabled 73
4.4 Wordcount 100K original vs persistence disabled 73
4.5 Wordcount 1M original vs persistence disabled 74
4.6 Wordcount snapshot by time . 75
4.7 Wordcount snapshot by item . 75
4.8 Nexmark q0, q1, q2, q7 various snapshot frequencies 77
4.9 Nexmark q3, q5, q8 various snapshot frequencies 78
4.10 Nexmark q4, q6 various snapshot frequencies 78
4.11 Wordcount various snapshot frequencies 81
4.12 Example of computation of last snapshot 84
4.13 Nexmark q4, q5, q6 skip too late snapshots 85

94

Acknowledgements

I would like to thank Professor Alessandro Margara, Professor Gianpaolo Cugola, and
Luca De Martini for their invaluable support and assistance throughout the completion
of this thesis.

I also thank my parents, Angela and Giandomenico, and my sister, Anna, for their moral
and financial support received throughout my university studies.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Noir
	Architecture
	Job graph and execution graph
	Next strategy and blocks
	Communication channels

	Scheduling and execution
	Operators
	Sources
	Sinks
	Data manipulations and filters
	Aggregates
	Partitioning
	Timestamps
	Join
	Windows
	Iterations

	Snapshot algorithms
	Chandy-Lamport
	Asynchronous Barrier Snapshotting
	Other solutions

	Snapshotting in Noir
	Algorithm
	Operators state
	Sources
	Sinks
	Start
	End
	Fold
	Richmap
	Join
	Window

	Iterations
	Algorithm
	Replay
	Iterate
	IterationLeader

	Recovery
	Persistency Module
	Configuration
	PersistencyBuilder
	PersistencyService
	StateSaver

	Redis

	Performance evaluation
	Comparison with original Noir
	Snapshot frequency by item vs by time
	Variations of different snapshot frequencies
	Drift mitigation

	Iterations

	Conclusions and future developments
	Bibliography
	List of Figures
	Listings
	List of Tables
	Acknowledgements

