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Abstract

L’Assembly Line Balancing Problem (ALBP), consiste nel trovare un’assegnazione di
ogni task del processo di assemblaggio ad una e una sola stazione di lavoro. L’ALBP
è reso più complesso dalla stocasticità dei vari processi di assemblaggio nelle linee
moderne. Questo tipo di problema viene affrontato sia nella fase di design della
linea (Greenfield) che nelle fasi di modifica di una linea già esistente (Brownfield),
nel qual caso si parla di re-balancing. La caratteristica del re-balancing è la pos-
sibilità di raccogliere dati direttamente dalla linea già esistente. Questa tesi va ad
investigare il re-balancing di linee di assemblaggio di tipo paced, caratterizzate da
tempi di processo variabili con l’obiettivo di minimizzare il numero di stazioni da
aprire, dati sia il tempo di ciclo che un’affidabilità minima richiesta della linea. Lo
studio punta allo sviluppo di una metodologia totalmente data-driven in grado di
risolvere un re-balancing partendo dal Reliability-based Branch and Bound presen-
tato in Diefenbach and Stolletz (2020), ma utilizzando un ridotto numero di osser-
vazioni dei tempi di processo. L’utilizzo dell’algoritmo viene inserito all’interno di
una procedura che trae ispirazione dalla metodologia di Bootstrap, andando a creare
degli scenari da analizzare tramite un ricampionamento con sostituizione delle os-
servazioni iniziali, cos̀ı da diminuire il numero di dati necessari all’ottenimento di
un risultato affidabile. L’algoritmo viene inoltre affiancato a un processo di ottimiz-
zazione che mira a massimizare la capacità della linea di assemblaggio di svolgere
tutte le attività richieste in una stazione entro il tempo limite. L’analisi svolta va
a mostrare come la procedura sviluppata riesce a ridurre radicalmente la quantità
di dati originariamente richiesta dal Branch and Bound sviluppato da Diefenbach
and Stolletz (2020), comparandola non solo con quest’ultima ma anche con altri
approcci che utilizzano lo stesso algoritmo originale. I risultati mostrano non solo
una riduzione dei dati necessari, ma in molti casi anche una miglior performance
in termini di affidabilità della linea. Tutti i test numerici sono stati fatti su linee
con tempi di processo variabili, generate a partire da alcuni modelli deterministici
presenti in letteratura.
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Abstract

The Assembly Line Balancing Problem (ALBP) consists in the allocation of every
task of the assembly process to exactly one workstations. The ALBP is made more
complex by the stochasticity of the processes in the modern assembly lines. This
type of problem is faced in both the design phase of the line (Greenfield) and the
modification phases of already existing lines (Brownfield), in this case it is possi-
ble to talk about re-balancing. The main characteristic of the re-balancing is the
possibility to collect data directly from the existing line. This thesis investigates
the re-balancing of paced assembly lines, characterized by stochastic task times,
with the objective to minimize the number of workstations to open, given not only
the cycle time but also a minimum reliability required. The study is focused on
the development of a methodology able to solve the re-balancing problem from the
Reliability-based Branch and Bound presented by Diefenbach and Stolletz (2020),
but using a reduced number of observations of the task times. The algorithm is
inserted in a procedure inspired by the Bootstrap methodology, creating different
scenarios using the re-sampling with replacement of the initial observations, in order
to reduce the required number of samples. Furthermore, it is sequenced with an op-
timization process with the objective of maximizing the ability of the assembly line
to complete all the activity required in a workstation within the defined cycle time.
The analysis shows how the developed procedure is able to drastically reduce the
quantity of data required by the Reliability-based Branch and Bound developed by
Diefenbach and Stolletz (2020), comparing it not only to this algorithm but also to
other two approaches developed starting from that. In addition, the results highlight
in many cases also the capability to reach a balancing that performs better in terms
of reliability of the line. All the numerical tests are done on lines with variable task
times, created starting from some deterministic model in literature.
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Chapter 1

Introduction

The development of the assembly lines was a pivotal milestone for the evolution of

the humankind. The concept became popular after the second industrial revolution,

with the increase of the mass production. Moreover, some evidence of production

line organizations is present even before the industrial revolution, however they never

became popular in the industrial field. The invention of the first assembly line must

be accredited to Ransom Eli Olds, founder of the Oldsmobile. Thus, he was the

first inventor of this kind of process, with the purpose of producing the Oldsmobile

Curved Dash. In order to understand the possible benefits of this production philos-

ophy, Olds increased its production of 500%. Ford upgraded the same concepts to a

larger scale for its Model T. The concept of the assembly line is based on the break-

down of a complex production process, into a series of simpler tasks. Consequently,

this helps the increase of the effectiveness of the single operations, increasing the

production volumes and reducing dramatically the related costs. The development

of more efficient machines and transportation systems (e.g. steam powered conveyor

belts) increases the potentiality of this kind of production, making it the basis of

the mass production.

1.1 Definitions

The Assembly line is a production system composed by “a line of machines and

workers in a factory that a product moves along while it is being built or produced.

Each machine or worker performs a particular job that must be finished before the

product moves to the next position in the line.” (Cambridge Dictionary)
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The single operations can be called “task” and, when dealing with the balancing,

it is considered indivisible. The duration of a task i is called task time ti. The

task time can be deterministic (known and constant) or stochastic (affected by a

certain variability). Also, the tasks are grouped in a series of workstations j and

the sum of the task times associated to the workstation is the station time. It

is possible to define the cycle time c as the time between the completion of two

following finished products. The production rate is the inverse of the cycle time.

The cycle time and the station time can differ, leaving an amount of idle time to

the workstation. The assignment of a task to a workstation is, in most of the cases,

constrained by a series of technological aspects creating some precedences between

the tasks that must be respected. Various methods can be used to express and

represent those constraints, such as the precedence diagrams and/or matrixes like

the Hoffman matrix. (Hoffmann, 1963)

Figure 1.1: Precedence Graph (a); Precedence Table (b); Hoffman Matrix (c).

In the precedence diagram, each task is represented by a node and the precedences

are expressed through the usage of some arcs. An arc pointing from j to k represents

a precedence of the task j on the task k. For what concern the matrix, the presence of

Nt tasks will create a Nt×Nt matrix with rows and columns labelled with consecutive

task numbers. The position [j, k] will be equal to 1 if task j immediately precedes

task k, 0 otherwise.

1.2 Assembly Line Balancing Problem

A balance of the line is crucial to improve and to optimize the performances of

the line itself. The Assembly Line Balancing Problem (ALBP) consists in finding a

feasible line balance, which is an assignment of each task to exactly one workstation.

This must be done under a series of constraints that include also the precedences.
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It is possible to find in literature a large variety of approaches to the problem.

These kinds of solutions can be divided into two macro categories: Simple Assembly

Line Balancing Problems (SALBP) and General Assembly Line Balancing Problems

(GALBP).

1.2.1 Simple Assembly Line Balancing Problem (SALBP)

The Simple Assembly Line Balancing Problems (SALBPs) are more studied with

respect to their general counterpart. They have in common a series of hypothesis:

1. The assembly line refers to the mass-production of one homogeneous product

(unique).

2. The production process is considered given, it means that all the tasks are

perfomed in a predefined way and there are no production alternatives.

3. The line is paced defining a fixed cycle time.

4. The only assignment restrictions are provided by the precedence constraints.

5. The line is considered to have a serial layout.

6. Deterministic task times are considered.

7. No differences in terms of equipment and workers of the workstations are

considered.

8. Any task can be performed at any workstation, without any zoning restrictions.

9. Any task must be assigned to maximum one workstation (they cannot be split

among two or more stations).

Four different types of SALP can be identified in literature (Scholl and Becker,

2006a):

• SALBP - I: this type of problem was the most intensively studied. This has the

aim of the minimization of the Number of Workstations (m) given a certain

Cycle Time c.
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• SALBP - II: it is strictly related to the previous type of problem. Its aims are

the minimization of the Cycle Time (c) given a specific Number of Worksta-

tions m.

• SALBP - E: The aims of this approach is to maximize the Efficiency (E) of the

line trying to minimize both the Cycle Time (c) and the Number of Worksta-

tions (m) maintaining the feasibility and considering their interrelationship.

The line efficiency can be evaluated as the ratio between the sum of all the task

times and the product between the cycle time and the number of workstations.

• SALBP-F : this is a feasibility problem with the aim of understanding if a

feasible solution exists given a specific Cycle Time c and a specific Number of

Workstations m.

1.2.2 General Assembly Line Balancing Problem (GALBP)

The manufacturing systems nowadays are much more complex than in the past.

consequently, this led to a situation in which the assumptions used in the SALBP are

too simplistic and they cannot be used to represent a system. The actual systems are

characterized by a wide variety of constraints, layouts as well as objectives. Those

are the reasons that brought the research toward an evolution, trying to keep into

account possible aspects such set up times between the tasks, parallel workstations

and zoning restrictions. This new kind of approach was called General Assembly

Line Balancing Problem (GALBP). The hypothesis previously made, must be fine-

tuned in order to meet the new types of problems (Baybars, 1986):

1. One or more products can be manufactured.

2. A Set of processing alternatives can be given. Those are given by the fact

that in the design phase different processes are available to reach the same

goal. This result in different task sequences or even different tasks numbers,

by aggregating or desegregating some processes.

3. The line must be configured such that certain production quantities are satis-

fied for certain planning horizon.

4. The flow of the line is unidirectional (not necessarily serial).

5. The processing sequence of tasks is subjected to precedence restrictions.
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It can be seen how there is no longer the necessity of deterministic task times, there

can be other restriction besides the precedence, the task in some cases can be split

among two or more stations and all the stations are not necessarily equally equipped.

Morover, it was largely demonstrated that the presence of the human tasks creates

a variability inside the line. This can be addressed to variable status of the human’s

skills level, morale, concentration and more. The GALBP will be the topic of this

thesis and the literature about it will be further analysed in the following sections.

1.3 Scope of this study

Nowadays, almost all the methodologies to balance and to rebalance an assembly

line are based on the assumption that the task times follow specific distributions.

Most of the literature is based on normally distributed times.

In order to overcome this limit, a new approach was developed by Diefenbach and

Stolletz (2020). The details of their methodology are going to be explained in

Section 3.2. The new approach is totally independent from the distribution of the

task times. Nevertheless, a new limit appears from this, the need of a huge quantity

of observation of the task times.

The aim of this research is to find a procedure that, starting from the algorithm

developed by Diefenbach and Stolletz (2020), is able to overcome both the limit of

the knowledge of the distribution and of the huge amount of data required, being

characterized by:

• No assumption on task times distributions.

• Requires a reasonable amount of data to work.

Since the work is focused on the usage of the data collected directly from the as-

sembly lines, the collection of data requires the existence of the line. Therefore, it

is possible to talk about re-balancing of the line. This concept does not differ from

the “balancing” one except for the application. Usually, the re-balancing situation

is addressed as “Brownfield” approach; on the other hand, the building of a new

line from the ground up is addressed as “Greenfield” approach.

The work related to the creation of a new line does not end with the opening and this

stresses out the centrality of the re-balancing. Due to the complexity of the modern
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lines, affected by a huge number of variables and characteristics, it is practically

impossible to open an already perfectly optimized line.

Moreover, the stochasticity of the task can be related also to the presence of manual

operations. This type of tasks are characterized by a learning curve given by the

improvement of the skills of the worker, that represent another source of complexity.

Figure 1.2: Representation of the Learning Curve.
Source: Danford (2011)

Therefore, after the installment, the assembly line requires a period of observation,

to perform some improvements and modifications. This is the phase of the line

launch on which this work is mainly focused. The aim is to use the data collected

during the observation of the line in the first phase of the launch, after the warm up

and after the period of training of the workers, in order to identify an assignment

of the tasks that improve (if it exists) the configuration originally chosen.

Figure 1.3: Phases of an Assembly Line opening

1.4 Literature Contribution

The research developed in this thesis finds a specific spot in the literature about the

Assembly Line Balancing.
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This work is focused on the Stochastic Assembly Line Balancing Problem. The

assembly lines considered are paced lines characterized by stochastic task times. In

the industrial field there are two main ways of managing the stochasticity on the

assembly lines:

• Buffer Allocation: The usage of buffers between station allows to contain

the uncertainty given by the stochasticity. In this case, the study of the

line is not focused only on the allocation of the tasks to the workstations,

but includes also the buffer allocation problem. If the line is not properly

balanced and the buffers properly dimensioned, the line can suffer of blocking

and starving phenomena that can affect radically its performances. Usually,

with this approach, the stations are not forced to work within a cycle time,

therefore this solution is mainly used on the unpaced lines.

• Policies for non completion: In this case, specific policies are used for work-

pieces exceeding the cycle time at a station. Two main types of policies are

available. On one side, the line is stopped until the late job is completed, on

the other side the job is completed outside the line. The decision is usually

taken after a cost assessment. This approach is mainly used on the paced lines.

Since this work is focused on paced lines, the second approach, with the completion

outside the line, is the one considered. Due to the fact that in the research there

is no focus on the completion costs, there is no need to specify whether the pieces

that exceed the cycle time, conclude all the path along the line, doing all the work

that can be done without the completion of the previous task, or not.

Furthermore, no failures of the machines are considered. The failures can be some-

how considered in the stochasticity itself of the task times, but in general this takes

more into account micro stoppages of the machines and not a long failure that can

last for longer period of time. In practical terms, it will be shown in future sec-

tions how the developed methodology is based on the observation of the task times,

therefore can include long stoppages.

In terms of problem type, the one treated in this work is the stochastic ALBP of

Type 1, aimed at the minimization of the number of workstations to open, given

the cycle time.

Dealing with the stochastic ALBP, the reliability must be considered. It is the capa-

bility of the system to complete the tasks assigned to a station, without exceeding
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the cycle time. It is possible to talk about chance-constrained problem, when some

constraints are applied on this parameter. In literature, two main approaches to

consider the reliability are found.

The first one sets a constraint on the reliability of the single station. This approach

is the most frequent. The problem here is that it cannot handle problems with a

large number of workstations, because it does not take into account the reliability

of the entire line, that decreases exponentially with the increase of the number of

workstations.

The second one considers the reliability of the entire line. This approach to the

problem is the least investigated in literature. In particular, only four articles are

found managing the problem like this.

Liu et al. (2005) developed a bidirectional construction and a trade and transfer

heuristic procedure to minimize the cycle time. Chiang et al (2016) aim at the

minimization of the station of two-sided assembly lines, presenting a particle swarm

optimization algorithm, while Tang et al. (2017), with the same aim, a hybrid

teaching learning-based heuristic algorithm.

Finally, Diefenbach and Stolletz (2020) present a chance-constrained Reliability-

based Branch and Bound algorithm with the aim of minimizing the number of

workstations. The algorithm is the baseline of this research and will be further

explained in the following sections.

Looking at the chance constrained model, it is possible to divide the literature into

two classes:

• Class I: It is based on the assumption that the distributions followed by the

task times are known. Furthermore, two sub-classes can be distinguished. The

first one requires the assumption of specific distribution followed by the task

times. Most of those cases in literature are based on normal distribution. In

the second one, any distribution can be followed.

• Class II: it does not require any assumption on the distributions followed by

the processing times. Those approaches are based on the usage of the obser-

vation of the task times, it means that they are fully data-driven procedures.

According to this differentiation, it can be interesting to reason about the motiva-

tions to use one of the two approaches. When dealing with the ALBP it is possible
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to highlight two industrial situations, depending on the “status” of the line. As

previously said, it is possible to talk about greenfield when the line must be built

from scratch, while the problem is addressed as brownfield, when the line already

exists and must be modified and improved.

When dealing with the Class I methodologies, the mean and the variance or even

the Probability and the Cumulative Density Functions are required. The knowledge

of the distributions’ characteristics can come from both a theoretical assumption

about the tasks or from the analysis of datasets collected from an existing line. The

methodologies can either use directly those informations, or can sample from the

distribution to perform a Montecarlo simulation or similar. But with the knowledge

of the distribution, there is no limit about the data that can be sampled. This kind

of methods can be used for both Greenfield and Brownfield approach.

When using the Class II methodologies, the situation changes. Being fully data-

driven, these methodologies requires the existence of the assembly line to collect the

data. It makes them suitable only for the brownfield problem.

The focus of this work will be on this second class of problems and approaches. It

will be possible to discover how the algorithm proposed by Diefenbach and Stolletz

(2020) has excellent results when placed in the Class I, with no limitation on the

data that can be generated from the distributions. The problem arises when it is

included in the Class II approaches. This is due to the unreliability of the results

of the algorithm, when it is fed with reduced data-sets. This condition is extremely

probable in the reality of the industrial field. The collection of data on the assembly

lines has a non-negligible cost, due to the resources, technology and/or workforce

required. Therefore, it is common to be in the situation of a lack of observations

of the task times, that does not allow a proper analysis to estimate the followed

distribution.

The contribution of this research has two main objectives:

• Fill the gap in literature about fully Data-driven re-balancing methodologies

for the assembly lines.

• Develop a procedure that is able to use the potentiality of the RB&B developed

by Diefenbach and Stolletz (2020) with a reasonable amount of data to collect.
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Chapter 2

Literature Review

The GALBP embraces a big window of possibilities, in terms of constraints and ob-

jectives. Boysen et al. (2007) introduced a classification to create a system approach

to identify various types of GALBP. This classification is performed according to

three main dimensions:

• Precedence Graph Characteristics.

• Station and line characteristics.

• Objectives.

2.1 Precedence Graph Characteristics

A precedence graph consists of nodes representing the tasks of the entire process, as

previously described. In addition, six features can characterize it:

1. Product Specific Precedence Graph: the attribute explain whether a single

product is produced or several one must be considered simultaneously. For

the Assembly line balancing problem it is more important the degree of homo-

geneity between graphs than the number of different precedence graphs. The

attribute can assume three type of values:

(a) Single-model Line: the line can be related to a single product assembled,

or by different products characterized by the same precedence graph. In

this latter case, the various products do not need to be distinguished.
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(b) Multi-Model Line: different products are produced on the line, but the

production is organized in batches. Between the production of different

batches, a set up occurs, requiring non negligible amount of time and

resources.

(c) Mixed-Model Line: different models are present on the same system, but

their production process is similar enough to consider negligible setup

times. The different models are produced in an intermixed sequence.

2. Structure of the precedence graph: some researches are focused on precedence

graphs with special structures in order to develop better algorithms. The

attribute can assume two values:

(a) Special: the research is restricted to special structures like linear, diverg-

ing or converging structures.

(b) Common: the graph can have any acyclic structure.

3. Processing Times: task times can vary due to manual operations or machinery.

Three different types of times can be highlighted.

(a) Static and Deterministic: when the times have a very low variability.

This is the case of highly automated and reliable processes.

(b) Stochastic: when the variability of the time must be considered. This

is the particularly case of manual operations, where the variability is

introduced by the status of the worker in physical, physiological and

psychological terms.

(c) Dynamic Variation: this possibility arises due to some aspects like the

learning effect of the operators.

4. Sequence Dependent task time increments: those occurs when the sequence of

the operations influences their processing times. Three type of indicators can

be defined:

(a) No Consideration of sequence dependent task time increments.

(b) Possible additional time when two operations are executed one after the

other inside a station. This can be due to some specific setup operations.

(c) Additional time when the status achieved completing a particular task

has an effect on the processing time of other tasks executed later in the

same or in another station.
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5. Assignment restrictions: those can affect the grouping of tasks inside a station,

forcing or forbidding certain combinations. This attribute can assume nine

different values:

(a) No assignment or restriction considered.

(b) Link: a subset of tasks are linked, so that they must be assigned to the

same station.

(c) Incompatibility: a subset of tasks are incompatible and cannot be as-

signed to the same station.

(d) Cumulative: The subset of tasks is subjected to constraints on the cu-

mulated value of a particular attribute.

(e) Fixed: some tasks can be assigned only to specific stations, due to some

restriction on the movement of the resources.

(f) Exclusive: some tasks cannot be assigned to some stations.

(g) Type-based: some tasks must be assigned to stations of a certain type.

(h) Minimum: the assignment of a task must consider minimum distances in

terms of space times or sequence.

(i) Maximum: the assignment of a task must consider maximum distances

in terms of space times or sequence.

6. Processing alternatives: when there are different possible alternatives, the

process can change. The problem that arises is the decision, among the others,

of processing alternative. The attribute can assume 2 values:

(a) No consideration of the processing alternative.

(b) pa λ: differentiation of possible different alternatives, according to the

value of lambda.

2.2 Station and line characteristics

The line characteristics can be classified according to six attributes:

1. Movement of the workpieces: it is possible to distinguish two different type of

lines.
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(a) Paced Lines: in a paced assembly production system typically a common

cycle time is given, which restricts process times at all stations. ”The

pace is either kept up by a so called intermittent transport, where the

work-piece comes to a full stop at every station, but it is automatically

transferred as soon as a given time span is elapsed, or by continuously

advancing material handling device, e.g. a conveyor belt, which forces

operators to finish their operation before the work-piece has reached the

end of the respective station”. While in the case of the single-model

production this time has to be fulfilled, in the case of mixed-model pro-

duction it is usually fulfilled on average. In the case of the stochastic task

times, the restriction is respected with a certain probability. (Figure 2.1)

Figure 2.1: Paced Assembly Line example.

(b) Unpaced Lines: ”In unpaced lines, workpieces are transferred whenever

the required operations are completed, rather than being bound to a given

time span. It can be further distinguished as to whether all stations pass

on their workpieces simultaneously (synchronous) or whether each sta-

tion decides on transference individually (asynchronous)” (Boysen et al.,

2007). In case of synchronous configuration all the stations must wait

for the bottleneck (slowest station) to finish its operations, before all the

workpieces are moved to the next station. In case of asynchronous con-

figuration, the presence of some buffers placed between the workstations,

allows the movement of the workpieces as soon as the station in which

they are, finish its operations. This allows to decouple the workstations

giving more flexibility to the system.

2. Line Layout: it distinguishes the fact that the stations can be organized in a

line configuration or in a U-shape line layout. The latter can be characterized

also by n U-shaped segments.

3. Parallelization: there could be the possibility in which more than one parallel
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line should be balanced and configured. The parallelization can include also

the duplication of the resources in a single workstation.

4. Resource Assignment: usually, different type of resources can be necessary, in

order to provide technological capabilities in terms of station equipment. It is

possible to distinguish between:

(a) No explicit consideration of the resources.

(b) One equipment is chosen for each station, out of a set of alternatives. In

this case the balancing problem includes the equipment selection problem.

It is possible to talk in this case of the assembly line design problem.

(c) The equipment is configured in a station, along with the task assignment.

5. Station Dependent Time increments: the time of the workstation can increase

for different type of non-productive activities. Those unproductive activities

can be the transportation of the workpieces or the movement of the worker to

at the end of the cycle to return at the beginning of the station. It is therefore

possible to distinguish the cases when this happens or not.

6. Additional aspects of the line configuration: some additional aspects could be

necessary to be considered to balance the line. In those aspects there are:

(a) Buffers: if they are required, they must be allocated and dimensioned.

(b) Feeder: possible presence of feeder lines that requires another process of

task assignment.

(c) Material Boxes: they could be present and therefore dimensioned.

(d) Changes: in terms of the position of the workpiece for specific tasks.

2.3 Objectives

Finally, the classification can be focused on different types of objectives. It is im-

portant to underline that more than one objective can be selected by the following

group, in that case it is possible to talk about Multi-objective optimization. The

distinction is made between:

1. Minimization of the Number of Workstations (m): it is performed for a given

output target and a fixed cycle time.
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2. Minimization of the cycle time (c): the aim is to minimize the cycle time (or

maximize the production rate) given a fixed number of workstations.

3. Maximization of the efficiency (E): in this case it is possible to have constraints

on both the production rate and the number of workstations.

4. Minimization of the costs: given an output target the aim is to minimize the

costs, considering the cost of the tasks, of the equipment as well as wage costs.

5. Maximization of the profit: where the profit is defined as the difference between

the revenues on the production and the costs.

6. Smoothing of the station times: in this case the aim is to obtain similar work-

load in every station. It is possible to distinguish different types of smoothing:

(a) Horizontal Balance: Smoothing of the difference station time caused by

the different products in the mixed model.

(b) Vertical Balance: Smoothing of the station times, creating a balance over

all the station of the line

7. Minimization of the Incompletion Probability: the incompletion probability is

the probability that a task is not completed, leaving the piece unfinished with

the need of further working after the assembly cycle. It is minimized at every

workstation, trying to achieve a specific target for the entire line.

8. Minimization or maximization of an indicator created for specific application:

the indicator can be related to one or more characteristics of the line.

9. Feasibility: the research is focused on a feasible solution.

Creating an analogy with the classification of the SALBP provided by (Scholl and

Becker, 2006b), it is possible to highlight four macro categories focusing more on

the constraints than the objectives of the problem:

• GALBP-I: the problem is constrained in terms of Cycle Time (c).

• GALBP-II: The problem is constrained in terms of Number of Workstations

(m).

• GALBP-E: considers ranges of feasible values for both the cycle time (c) and

the number of workstations (m).
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• GALBP-F: both the cycle time (c) and the number of workstations (m) are

constrained.

2.4 Solution Methodologies

Looking at the possible solution methodology for the problem, it is possible to

highlight two main macro categories: Heuristic procedures and analytical/numerical

ones that look for an optimum.

Heuristic Procedures The needs for the development of Heuristic Procedures,

come from the nature of the problem. The ALBP is a NP-hard problem. It means

that the search for an optimum can require a lot of computational effort. The heuris-

tic procedures does not aim to reach an optimum, but just to achieve an adequate

solution in a small amount of time. Erel and Sarin (1998) developed a survey of the

heuristic methodologies used to solve both deterministic and stochastic ALBPs. In

this context, the analysis will be focused on the stochastic ones. They individuate

three main types of heuristic procedures for the resolution of the stochastic ALBP:

• Modified version of Single-Model Deterministic (SMD) problem Procedures.

Those procedures add to the SMD procedures a constraint in terms of re-

liability. From the SMD procedures it is possible to distinguish four main

categories:

– Single pass decision rules: they develop the solution by opening the sta-

tions one at the time, assigning the task to the open station according

to a defined priority rule. When the task considered or no task cannot

be assigned, the station considered is closed and another one is opened.

This procedure is repeated until all the tasks are assigned. The heuris-

tic procedure from Kottas and Lau (1973) is probably the most famous

example of this kind of procedures.

– Multiple single-pass decision rules: they start with the development of

more than one feasible solution through a single-pass approach, selecting

then the one resulting the best.

– Backtracking procedures: they are mainly developed into two stages. In

the first one or more feasible solutions are developed with one of the
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previous methodologies. Then, they try to improve them through some

iterative procedures. The most common are the simulated annealing al-

gorithms. They are a random search procedure often used when the

search space is discrete. This procedure allows to avoid the technique

to get stuck in local minimum. Another one are the Evolutionary al-

gorithms. They use mechanism inspired by biological evolution such as

mutation and reproduction. A set of candidates solutions are generated

and used as individuals of the population that is then treated according

to the type of algorithm. It is possible to distinguish between genetic

algorithms, where the evolution is inspired by Charles Darwin’s natural

selection theory and is performed by exchanging ”genes” between the

various solutions. Then it is possible to have an Ant Colony Optimiza-

tion algorithm, that simulate the creation of pheromones path as ants

do to direct each other to resources while exploring. Another type is

the Imperial Competitive Algorithm, that simulates the evolution of a

series of empires that fights against each other ending with just one win-

ner. And finally we have the Particle Swarm Optimization, where the

research is done using a ”swarm” of solutions moving, avoiding the usage

of a gradient.

• Simulation Techniques: Simulation allows to study the system building a

model of it. This allows to perform experiments on it and to study different

solutions. The deep analysis of the systems through simulation is nowadays

possible thanks to the increase of the computational power available. The bal-

ancing procedures can use simulation to approach the problem from different

perspectives.

• Single model stochastic procedures: those heuristic procedures were developed

specifically for the stochastic problem. For this reason, they consider costs

related to the incompletion of the tasks. The procedures in this category has

as objective function, the minimization of the total costs, composed by the

total labour cost and the total expected incompletion costs.

Optimum seeking procedures According to Hua et al. (2012, p. 57) an opti-

mum seeking method can be defined as: ”a method to find technological production

processes that are best in some sense, while using as few experiments as possible.

It is a scientific method for arranging experiments.” The complexity of the problem
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and the computational effort required in order to apply the optimum seeking strate-

gies are strictly dependent on the number of tasks. For the resolution of the ALBP

three main categories of optimum-seeking procedure can be highlighted:

• Chance-Constrained Linear Programming: it is one of the most common way

to approach a stochastic constrained optimization problem. It ensures that a

certain condition is met with a certain probability. It allows to address large-

scale complex optimization, under various uncertainties, developing a linear

program with constraints on the probability of realization of specific uncertain

parameters.

• Dynamic Programming: it is based on simplifying a complex problem by break-

ing it into simpler sub-problems in a recursive way. Storing the results of the

sub-problems allows to reduce drastically the computational time.

• Branch and Bound techniques: usually used to solve combinatorial problems.

It entails a systematic enumeration of all candidates solutions. The algorithm

keeps the best solution found so far, while the large subset of partial solutions

are fathomed to identify those ones who cannot improve the current best, by

using upper and lower estimated bounds of the quantity being optimized, and

remove them from the following development of the solutions. The solutions

are usually represented by a rooted tree.

2.5 Literature Classification

The literature regarding the GALBP can be classified into macro categories accord-

ing to some of the previously introduced dimensions of the problem. Sivasankaran

and Shahabudeen (2014), defines eight type of Assembly Line Balancing Problems.

Half of them are related to the deterministic problem, while the others to the stochas-

tic one.

In particular, three dimensions of the problem are used for the classification of the

literature:

• Single or multi-model (considering also the mixed model).

• Deterministic or stochastic task times.
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• Straight line problem against U-shaped line.

This project is focused on the stochastic problem. For information regarding the

deterministic problem, the reader is referred to Erel and Sarin (1998); Scholl and

Becker (2006b). In the following, different literature categories will be analysed,

following an order given by the objective of the procedure.

Single-model Stochastic straight-type problem

It is possible to distinguish different branches of the Single-model Stochastic Straight-

type solution methodologies, looking at the objective function and at the resolution

methodologies.

One of the most common objectives in the literature regarding the single model

stochastic straight type line is the minimization of the number of workstation m.

Different articles face the problem through Dynamic Programming procedures. Kao

(1976), Sniedovich (1981) and Carraway (1989) develop solution based on dynamic

programming, looking for an optimum solution to the problem. Kao (1976), develops

a procedure based on the one formulated by Held and Karp (1962) for the deter-

ministic line. Hence, the optimal return value is the vector of the task assignments

and the recursive method for finding it is based on Preference Ordering Dynamic

Programming (Mitten, 1974). Sniedovich (1981) and Carraway (1989) propose a

model stemming from a modification of that of Kao (1976), trying to overpass its

sources of sub-optimality. Both of them develop methodologies that are not able to

always find an optimal solution, but the former, for simple lines (reduced number

of tasks) and with normally distributed task times, it is able to find an optimal or

sub-optimal solution in most of the cases. While, the latter highlights the superi-

ority in finding efficient solutions of one of the two algorithms developed. However,

both of them also explain how to address the possibility of negative task time (due

to the normal distribution).

It is possible to find papers focused on the development of some mathematical

models. For example, Sphicas and Silverman (1976) and Nkasu and Leung (1995)

develop two different mathematical models. The latter is a Computer-integrated

manufacturing assembly system design (CISMAD) and it integrates the Monte Carlo

simulation procedure with the COMSOAL-based assembly system design algorithm

structure. It specifies the cycle times and the task times and a confidence interval for
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them, in order to assign the tasks to the smallest number of workstation possible, by

generating all the feasible solutions and searching through them the ”optimal” one.

Also Ağpak and Gökçen (2007) develop a chance-constrained integer programming

model for both the straight line and the U-type lines. Diefenbach and Stolletz

(2020) proposed a Reliability-based Branch and Bound that directly works on the

observations of the task times. Being the baseline algorithm of this thesis, it will be

further explained in the following sections.

Different types of algorithms are developed, as well as heuristic procedures. The

paper by Özcan (2010) analyses the two-sided problem.This type of problem is

characterized by task performed in parallel on the two side of a station. It develop a

chance constrained piecewise-linear mixed integer program (CPMIP) to model and

solve the problem and also a solution approach with simulated annealing algorithm

was proposed. Hu et al. (2008) develop an enumerative algorithm, defining a time

transfer function and computing the earliest and the latest start time of a task,

considering precedence constraints. Chiang and Urban (2006) develop heuristic

methodologies, starting from the generation of a configuration, and then looking

for an improvement. Thus, all of the aforementioned methodologies aim at the

minimization of the number of workstationsm, consider the incompletion probability

(IP ), guaranteeing that for the single workstation or for the entire line, it does not

exceed a given threshold previously fixed.

Another objective well treated in the literature is the smoothing of workload be-

tween the various workstations. Roy et al. (2011) Roy and Khan (2011) proposed a

stochastic programming-based algorithm aimed at the minimization of the Balanc-

ing losses and the variance of the idle times. This variance is used as a measure for

system loss for the system and the algorithm is based on the assumption that ”The

stability of the total system is on maximum level when this variance is on minimum

level” (Roy et al., 2011, p. 331).

Consequently, different heuristic procedures are proposed by Moodie and Young

(1965); Reeve and Thomas (1973); Suresh and Sahu (1994); Suresh et al. (1996) .

These are all procedures starting from a first assignment and building of an initial

configuration. This configuration is then improved following the objective of maxi-

mizing a smoothing index, in order to distribute the workload among workstations.

The third important objective is the minimization of the cost function. The cost

function is usually composed by two parts: the incompletion costs and the operating
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costs. The incompletion costs depend on the incompletion probability. They are

evaluated considering the possible remedial policy to complete the unfinished prod-

uct. Usually two possibilities arises, the first is that before considering the finishing

of the uncompleted tasks, the procedures consider finishing as many tasks as pos-

sible on the line, taking into account the precedence constraints, while the second

is that the entire line is stopped until the uncompleted task is solved. In the first

case, once the unfinished product exit from the line, different policies are available.

The piece can be completed in site but in overtime or through dedicated stations

or outside through an outsourcing. Those possibilities bring to different costs. The

operating costs, on the contrary, depends only on the number of workstations and

on the cycle time.

Different heuristics approaches are developed to face this problem with both remedial

policies. Shin and Min (1991) develop a heuristic algorithm aiming at the most cost-

efficient solution for an assembly line in Just In Time (JIT) environments. They

explain that in the JIT environment, the effectiveness of the ALB depends on the

variability in task processing times, therefore it is more important to focus on the

prevention of line variance rather than the optimal balance of the assembly lines.

They adopt an operating policy similar to the mutual-relief movement approach.

The line is run so that, when a failure occurs at any workstation, the whole line is

stopped until the problem is solved. Lyu (1997), proposes a solution of the problem

based on the single-run optimization method. In particular, it starts from the work of

Suri and Leung (1989) that proposed a PARMSR (Perturbation-Analysis-Robbins-

Monro-Single-Run) algorithm. Both Shin and Min (1991); Kottas and Lau (1973,

1976, 1981) follow the first type of remedial policy, while Lyu (1997); Carter and

Silverman (1984) set the stoppage of the line every time the cycle time is exceeded.

Sarin et al. (1999); Tsujimura et al. (1995); Shttjb (1984) find an initial configuration

through different assignment methodologies. This configuration is then improved

trough heuristic or optimum seeking approaches. Sarin et al. (1999) propose a

heuristic enumeration methodology for the problem, where the remedial policy tends

to complete as many tasks as possible on-line and the remaining offline. Shttjb

(1984) follows the same remedial policy. Tsujimura et al. (1995) present a heuristic

genetic algorithm, that ”permit to code the solution in a chromosome structure

and the repetition of simple operators for these chromosomes in the evolutionally

process” (Tsujimura et al., 1995, p.543), for solving fuzzy ALBP. The use of genetic

algorithm to solve the problem is then further developed and studied in Gen et al.

(1996). Gökçen and Baykoç (1999), define a new remedial policy for the ALB
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problem. In their model, when an incompletion occurs, the incompleted unit is

moved to a mobile station where the operations are completed. In order to avoid

the idle time of the sequent station, this is fed by the buffer storage placed between

the two stations. When the units off-line, on the mobile station, is finished, it is

added to the mentioned buffer storage.

The solution proposed by Sarin and Erel (1990) is a cost function implemented in

a dynamic programming scheme that is then implemented heuristically. They also

propose a solution for larger problems (in terms of number of tasks), which divides it

into sub-problems, that are then solved through the methodology exposed, bringing

to some approximate solutions that are further improved through a branch and

bound procedures. Boysen and Fliedner (2008) discuss an algorithm to maximize

revenues and minimize the costs, decomposing the problem into two stages. In the

first stage a valid sequence of task is built, according to precedence restrictions, while

in the second stage the tasks are assigned to the workstation following a shortest

path procedure.

Another objective looking for a solution to the problem can be the minimization

of the cycle time c. The work from Hazır and Dolgui (2013) discuss a model aim-

ing at the creation of systems that hedge against disruptions. They present two

mathematical models developing also solution algorithms. The first model considers

just the interval uncertainty. Whereas the second one considers the uncertainty as

function of the number of operations in a station and is more complex compared to

the first one.

In terms of solution, the literature consists of nearly exclusively of heuristic pro-

cedures. Gu et al. (2006) develop an Electromagnetism like algorithm. It is a

generation-based optimization heuristic for global optimum optimization problems.

It starts sampling random points in a feasible region and use a mechanism similar

to the attraction-repulsion one from the electromagnetism theory, to move a popu-

lation of points toward optimality. Gen et al. (1996) propose a genetic algorithm to

solve the problem, with the objective to minimize the total operation time in each

workstation. Liu et al. (2005) present a bidirectional assignment heuristic algorithm

composed by a first stage of assignment of the task to the workstations, from both

forward and backward directions. In the second stage a trade and transfer procedure

is used in order to balance the workload among workstations.

The other objective for the problem can be the maximization of the efficiency E.
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This is the least treated problem, probably because of its non-linear objective func-

tion Zacharia and Nearchou (2013, p. 3034). Zacharia and Nearchou (2013) propose

a new modified genetic algorithm for the solution of the problem.

Lastly, different studies focus on more than one objective simultaneously. Cakir

et al. (2011) define a multi-objective optimization for the problem. Their model

considers the possibility of parallel workstations and focuses at first the distribution

of the workload among stations evenly, that is the equivalent of the minimization of a

smoothness index. Being possible the paralleling of the stations, the second objective

is the minimization of the costs related to labour and equipment requirements. In

fact, the parallelization of a workstation, means the duplication of all the equipment

and personnel.

Dong et al. (2018) define bi-criteria stochastic assembly line balancing that has

the objective to simultaneously minimize the cycle time and the equipment costs,

therefore the operating costs, through the use of a Particle Swarm Optimization

(PSO) algorithm. Gamberini et al. (2006, 2007) present new heuristic methods,

focusing on the rebalancing of existing lines. The objective of this methods is not

only the minimization of the cost related to the assembly process, but also the costs

related to the rebalancing itself, trying to minimize the task reassignment required

during the reconfiguration of the line. Zacharia and Nearchou (2012) propose a

method where the processing times are modelled as triangular functions and the

cost function is formulated as the weighted sum of multiple objectives that are the

minimization of both the cycle time and the smoothness index of the workload of

the line. While, Hamta et al. (2013) formulate a hybrid meta-heuristic approach

including Particle swarm optimization and Variable neighbourhood search. The

objective function in this case has three components: minimization of the cycle time,

of total equipment cost and of the smoothness index. Krishnan et al. (2016) propose

a model that use as objective function, the minimization of the difference in the Risk

Index (RI) between workstation, given precedence and cycle time constraints. The

RI is evaluated as the product of three components for each task, the delay index, the

contribution ratio and the criticality ratio, that represents respectively the number

of data points exceeding the cycle time, the contribution of each task to its total

cycle time and the magnitude of deviation away from the standard task time.

Objective Paper Methodology

Minimization m

Kao (1976) dynamic programming
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Sniedovich (1981) dynamic programming

Carraway (1989) dynamic programming

Sphicas and Silverman (1976) mathematical model

Nkasu and Leung (1995) COMSOAL

Ağpak and Gökçen (2007) chance contrained integer programming

Özcan (2010) CPMIP

Hu et al. (2008) Enumerative algorithm

Wu et al. (2008) Branch and Bound

Chiang and Urban (2006) Heuristic

Diefenbach and Stolletz (2020) Chance-constrained Branch and Bound

Smoothing

Procedure

Moodie and Young (1965) Heuristic

Reeve and Thomas (1973) Heuristic

Suresh and Sahu (1994) Heuristic

Suresh et al. (1996) Heuristic

Roy et al. (2011) stochastic programming-based algo-

rithm

Minimization of

costs

Kottas and Lau (1973) Heuristic algorithm

Kottas and Lau (1976) Heuristic algorithm

Kottas and Lau (1981) Heuristic algorithm

Carter and Silverman (1984) Heuristic algorithm

Shin and Min (1991) Heuristic algorithm

Lyu (1997) Single run optimization method

Sarin et al. (1999) Heuristic enumeration methodology

Tsujimura et al. (1995) Heuristic Genetic algorithm

Shttjb (1984) Heuristic algorithm

Henig (1986) Dynamic Programming

Wilson (1986) Dynamic Programming

Sarin and Erel (1990) Dynamic Programming

Boysen and Fliedner (2008) Two stage dynamic programming

Minimization of c

Gu et al. (2006) Electromagnetism like algorithm

Gen et al. (1996) genetic algorithm

Hazır and Dolgui (2013) mathematical models

Liu et al. (2005) bidirectional assignment heuristic algo-

rithm

Maximization Effi-

ciency

Zacharia and Nearchou (2013) genetic algorithm

Multi-objective

Cakir et al. (2011) multi-objective optimization

Dong et al. (2018) Particle Swarm Optimization

Gamberini et al. (2006) heuristic methods

Gamberini et al. (2007) heuristic methods

Zacharia and Nearchou (2012) heuristic methods

Hamta et al. (2013) hybrid meta-heuristic
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Krishnan et al. (2016) mathematical model

Table 2.1: Summary Literature Single-model Stochastich Straight-

type Line

Multi-model Stochastic straight-type problem

Under this category, fall both the multi-model and the mixed-model assembly lines.

The literature in this field is more limited with respect to the previous case, since the

majority of the publications about mixed and multi-model Assembly line balancing

address the deterministic case of the problem. All the methodologies

Only one article is found with the aim of minimizing the number of workstations.

Van Hop (2006) proposes a methodology to solve the mixed-model assembly line

balancing problem with a fuzzy heuristic improvement with this aim.

No specific model is found for what concern the usage of smoothness indexes, but

they are utilized in multi-objectives models.

With the objective of minimizing the total costs, Vrat and Virani (1976) develops a

heuristic algorithm for the mixed model assembly line. The procedures allows the

paralleling of the workstations.

For the minimization of the cycle time a comment similar to the smoothness indexes

can be done.

Finally, there are a series of methodologies characterized by multiple-objectives.

McMullen et al. (1997) present a heuristic methodology that permits task paralleling

to occur. In their paper, they evaluate different task selection rule through the

use of four performance indicators: Work-In-Progress, Inventory level, Flow time,

System Throughput, Unit labour cost, System Utilization and Percentage of Unit

Completed within the specified cycle time in each workstation. Furthermore, they

measure the ability of the layout to achieve the desired cycle time. They reduce

the mixed-model into a single model through the usage of composite task times and

then assign the tasks according to seven different rules, five of which are specifically

developed. Morover, McMullen et al. (1997) develop a Simulated annealing process.

Also in this case, the solution allows the paralleling of the stations to occurs. Six
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different objective function are investigated. The first three are the minimization of

the design costs, the minimization of the smoothness index and the minimization

of the probability of lateness. The other three objective functions are composite of

the previous ones. The paper investigates the difficulty of the multiple-objectives

model, due to possible contrasts that can arise between different ones. McMullen

and Tarasewich (2003) propose an Ant Technique to solve the problem, making

experiment with four different objective functions. The objectives tested were the

maximization of the Utilization of the assembly line, of the completion probability

and of a composite function between the previous two, or the minimization of the

design costs associated to the layout. McMullen and Tarasewich (2006) investigate

the problem building an objective function that is ”a linear combination of multiple

objectives associated with the line-balancing problem, such as required crew size,

system utilization, the probability of jobs being assembled within a certain time

frame, and system design cost”.

Liu et al. (2019) propose an integrated optimization based on the evaluation of

three types of time complexity on the mixed-model assembly line. The aim of

their model is to maximize the productivity, to minimize the complexity and also

to solve the buffer allocation problem minimizing the total buffer capacity of the

system. Mendes et al. (2005) developed an hybrid simulation and analytical model to

solve the mixed-model ALBP. With a simulated annealing meta-heuristic approach,

they derived different line configurations with the aim of minimizing the number

of workstations and to smooth the workload balance between the stations. The

various solutions are generated according to the possible different market share of

the products. Those solution are then investigated and fine-tuned through a discrete

event simulation model. Samouei et al. (2017) explored a mixed-model assembly

line with the objective to simultaneously maximize the system reliability and the

weighted line efficiency (therefore minimizing the number of workstations), while

minimizing the smoothness index. The procedure adopted is a Simulated annealing

algorithm. Whereas, Xu and Xiao (2008) deal with a special case of mixed-model

assembly line where the station lengths are longer than the distance conveyor moved

within one cycle time. They proposed a fuzzy α model, solved through the use of a

genetic algorithm, aimed at the minimization of the total overtime workload.
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Objective Paper Methodology

Minimization of m Van Hop (2006) heuristic improvement

Smoothing Proce-

dure

McMullen et al. (1997) Simulated annealing process

Minimization of

Costs

Vrat and Virani (1976) heuristic algorithm

? Simulated annealing process

McMullen and Tarasewich (2003) Ant Techinque

Multi-objective

McMullen et al. (1997) Simulated annealing process

McMullen and Tarasewich (2003) Ant Techinque

McMullen and Tarasewich (2006) Ant Techinque

Liu et al. (2019) integrated optimization

Mendes et al. (2005) hybrid simulation and analytical

model

Samouei et al. (2017) Simulated annealing

Minimization of

Lateness Probabil-

ity

McMullen et al. (1997) Simulated annealing process

Maximization of

Utilization

McMullen and Tarasewich (2003) Ant Techinque

Maximization of

completion proba-

bility

McMullen and Tarasewich (2003) Ant Techinque

Minimization of

the total overtime

workload

Xu and Xiao (2008) Genetic algorithm

Table 2.2: Summary Literature Review Multi-model Stochastic

Straight-type Line

Single-model Stochastic U-type Problem

The U-Type problem can leverage on a much smaller literature with respect to the

straight type problem. that is the reason why in this context no division will be

made between single and the multi-model.

Urban and Chiang (2006) propose an optimal solution methodology to address the

problem. The problem is modelled as a linear integer program, with the objective

to minimize the number of workstations. With the same aim in Chiang and Urban

(2006) a hybrid heuristic is presented, generating an initial feasible solution and
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then improving it. Baykasoglu and Özbakir (2007) introduce a novel algorithm that

includes the COMSOAL methodology and the Genetic Algorithm having the same

objective. Zhuo et al. (2011) Zuho et al (2011) develop a genetic algorithm as well.

Aydogan et al. (2019) explain a new novel Particle Swarm Optimization algorithm.

Guerriero and Miltenburg (2003) present a recoursive algorithm for finding the op-

timal solution when task completion times have any distribution function. They

provide also an equivalent shortest path method.

No particular model and solution methodology is found having the main objective

the smoothing of the workload.

Erel et al. (2005) develop a beam search methodology to solve the problem with the

aim of minimizing the expected costs, while Boysen and Fliedner (2008) provide an

algorithm with the same aim, that decomposes the original problem into two stages

solvable independently.

It is not possible to find literature focusing on the minimization of the cycle time.

For what concern the multi-objectives models, Delice et al. (2016) explain a method-

ology with the primary aim of minimizing the number of work position and as sec-

ondary one the minimization of the number of workstation. Agpak and Gökcen

(2007) discuss a model with the same objective function developing a chance con-

strained integer programming model to take into account also the minimum relia-

bility required. Bagher et al. (2011) introduce a new evolutionary algorithm, ICA,

with the aim of minimizing the number of work stations, as well as idle time in

each station and non-completion probabilities of each station. Finally, Dong et al.

(2014) investigate a method to evaluate the expected Work overload time and trys

to minimize it through the use of a simulated annealing algorithm.

Objective Paper Methodology

Minimization of m

Urban and Chiang (2006) linear integer program

Chiang and Urban (2006) hybrid heuristic algorithm

Baykasoglu and Özbakir (2007) COMSOAL methodology + Ge-

netic Algorithm

Zhuo et al. (2011) genetic algorithm

Aydogan et al. (2019) Particle Swarm Optimization

Guerriero and Miltenburg (2003) recoursive algorithm

Minimization of

costs

Erel et al. (2005) beam search methodology

Boysen and Fliedner (2008) two stage solving algorithm
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Multi-objective

Delice et al. (2016) mathematical model

Agpak and Gökcen (2007) chance constrained integer pro-

gramming

Bagher et al. (2011) evolutionary algorithm, ICA

Dong et al. (2014) simulated annealing algorithm

Table 2.3: Summary Literature Review Single-model Stochastic

U-type

Multi-Model Stochastic U-Type problem

The literature regarding this type of problem is really limited. Only two papers are

found about this specific problem.

The first one, by Özcan (2010) formulate a genetic algorithm in order to minimize

the cycle time, given a specific number of workstations.

The second one, by Agrawal and Tiwari (2008) present a collaborative ant colony

optimization algorithm. The distinctive characteristic of this article is that it is

based on the disassembly process instead of the assembly one.

Objective Paper Methodology

Minimization of m Özcan (2010) Genetic Algorithm

Minimization of c Agrawal and Tiwari (2008) Ant-colony optimization

Table 2.4: Summary Literature Review Multi-model Stochastic U-

type
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Chapter 3

Theoretical Background

3.1 Introduction to Bootstrap

The bootstrap methodology is a resampling with replacement method. Since it is

based on resampling, the results of the application of the Bootstrap are random

variable. In order to clearly understand the resampling and the bootstrap, the

concept of Empirical Distribution must be introduced. Given the sample x from

the distribution F

F −→ (x1, x2, . . . , xn) = x (3.1)

The Empirical Distribution Function F̂ is defined as the discrete distribution that

puts probability 1/n on each value xi

This is basically a representation in frequency of the available sample. It is im-

portant to notice that there is no loss of information moving between this type of

representation and the full data set. The empirical distribution and the sample set

are used in order to estimate a parameter, that is used as estimation of the real

distribution. This process is called Plug-in Principle

θ̂ = t(F̂ )→ θ = t(F ) (3.2)

The Bootstrap methodology is introduced by Efron (1979) as a computer-based

methodology to estimate the standard error of the estimate θ̂ = s(x) of a parameter

of interest (of a distribution) from a sample, therefore to understand how good the

plug-in principle is.
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Figure 3.1: Application of the Bootstrap Methodology
Source: Lorna (2019)

3.1.1 Process

To perform the bootstrap on a set of data, the two main elements of the methodology

must be introduced. Furthermore, it is important to specify that from now on, in

this section, all the elements related to the bootstrap will be characterized by a star.

The first element to introduce is the Bootstrap Sample. Given a data set x of size n,

a bootstrap sample is generated by resampling with substitution (so sampling from

the empirical distribution F̂ ) n elements from the available set.

F̂ → (x∗1, x
∗
2, . . . , x

∗
n) = x∗ (3.3)

It is possible to define the bootstrap sample x∗ as the resampled version of x

To each bootstrap sample corresponds a Bootstrap Replication of θ̂

θ̂∗ = s(x∗) (3.4)

Basically, starting from the original data, it is possible to create B bootstrap samples

of the same size of the original data. From each of those bootstrap sample it is

possible to evaluate the respective bootstrap estimate, obtaining a set ofB estimates.

To this set it is possible to apply further inference. (Figure 3.1)

31



The main advantages of the methodology are:

• Requires no theoretical calculation.

• Can be performed, no matter how complicated the estimator may be.

• It is easy to implement the bootstrap algorithm on a computer.

It is important to highlight also the assumptions made applying the methodology.

The first assumption is related to the size of the number of samples. The method

assumes that the original data sample is large enough so that the resampling dis-

tribution F̂ approaches the true distribution F of the random variable of interest.

To understand the meaning of large enough, Mooney et al. (1993) states that the

quality of the approximation is in general satisfactory for sample of size 30− 50.

The second assumption is related to the number of the bootstrap estimates, saying

that it is large enough, so that the bootstrapped estimate of the sampling distribu-

tion approximate the true distribution of the statistic. Again, the definition “large

enough” is quite vague, but we have empirical values provided by Efron and Tibshi-

rani (1994) stating that for standard error estimates values B = 50−200 are enough,

while much larger samples are required for the definition of confidence intervals. In

addition, they explain how having B > 1000 produces a slight improvement of the

bootstrap estimate of the sampling distribution, that is not worth the additional

computational effort required.

3.2 Baseline Reliability-based Branch and Bound

Diefenbach and Stolletz (2020) propose a Reliability-based Branch and Bound al-

gorithm (RB&B). Every information in this section is taken from Diefenbach and

Stolletz (2020). The aim of the algorithm is the minimization of the number of

stations m and it follows the following Chance-constrained mathematical model:

min
M∑
m=1

Zm (3.5)

s.t.
I∑
i=1

tn,i ·Xi,m ≤ c · Zm + (1−Bn) ·BigM m = 1, . . . ,M ;n = 1, . . . , N

(3.6)
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∑N
n=1Bn

N
≥ R (3.7)

M∑
m=1

Xi,m = 1 i = 1, . . . , I (3.8)

M∑
m=1

m ·Xi,m ≤
M∑
m=1

m ·Xj,m ∀(i, j) ∈ P (3.9)

Xi,m ∈ {0, 1} i = 1, . . . , I; m = 1, . . . ,M (3.10)

Zm ∈ {0, 1} m = 1, . . . ,M (3.11)

Bn ∈ {0, 1} n = 1, . . . , N (3.12)

The chance-constrained model proposed by Diefenbach and Stolletz (2020) uses three

types of binary variables:

• Xi,m : It is the assignment-variable. It is equal to 1 if task i is assigned to

station m and 0 otherwise.

• Zm: It is the station-variable. It is equal to 1 if station m is opened, 0

otherwise.

• Bn: It is the sample-variable. It is equal to 0 if the cycle time c is exceeded

for sample n at least at one station.

The objective function (3.5) minimize the number of opened stations. The constraint

(3.6) secure that the sum of the times of all the tasks assigned to a station m does

not exceed the cycle time c, if the Sample-variable Bn is equal to 1. It means that

if the cycle time is exceeded at least at one station, the sample-variable Bn has to

be equal to 0. The constraint (3.7) assure that at least a fraction R of samples do

not exceed the cycle time. The constraint (3.8) assure that each task is assigned to

exactly one workstation. The constraint (3.9) assure that the precedence relations

are respected. The constraints (3.10) - (3.12) defines the variables domains.

The procedure starts from the transformation of the Lower bounds used for the

deterministic model into lower bounds for the stochastic one. The transformation

proposed works for any bound already developed for the deterministic problem but

also for any bound that could be developed in future.

The transformation follows the following theorem:
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Theorem 1 Let the samples be ordered such that the lower bounds on the number

of stations for the deterministic problem for a single sample are increasing, i.e.

LB(n) ≤ LB(n+1) holds. Let LB(n̄) be the lower bound of sample n̄ with n̄ := dR ·
Ne. Then, LB(n̄) is a lower bound on the number of stations for the entire chance-

constrained model with respect to samples n ∈ {1, . . . , N} and the line reliability

R.

The transformation requires the evaluation of the lower bound for each of the N

samples. In particular, seven different lower bounds are used (the ones introduced

by Becker and Scholl (2006)) and the maximum between them is used as the initial

Global Lower Bound.

The RB&B open new nodes each time a new station is opened. Every node corre-

sponds to a partial assignment of the tasks to a station. Not every tasks must be

assigned in every node. The strategy used is bidirectional, so that the assignment is

tested simultaneously forward and backward. The two starting independent nodes

can lead to nodes that belong to both trees. The consideration of the partial as-

signment is necessary to respect the reliability constraints and allows to distinguish

between R-maximal station load, if none of the unassigned task can be assigned with-

out exceeding the reliability, and non R-maximal. The inclusion of both R-maximal

and non R-maximal nodes, brings to a significant increase of the branching tree

dimensions. In order to contain the “growing” of the tree, three different fathoming

strategies, to identify the nodes that are dominated, are used:

• Local Lower Bounds: Local lower bounds are calculated on each node, with

the same procedure used to evaluate the global lower bound, considering just

the non assigned tasks in each node. The node k can be fathomed if the sum

of the already open stations and the local lower bound is equal or bigger than

the current upper bound.

max{LLB1
k, . . . , LLB

7
k}+ used station of node k ≥ UB

• Dominance Rule: This rule performs a check on the non R-maximal nodes.

This category of nodes can be fathomed if it cannot lead to an improvement in

terms of reliability. This means that it can be fathomed if it exist a different

node that has at least the same task assigned, that requires the same or less

number of stations and has the same or higher reliability.
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• Logical Test: It checks that the branch following a node can lead to a feasible

solution. This is done, by evaluating the number of samples for which the cycle

time is exceeded for any assignment in node k. “The node can be fathomed if

the line reliability of node k minus the percentage of additionally guaranteed

incomplete samples is less than R.” (Diefenbach and Stolletz, 2020, p.14)

The application of the algorithm is limited by the availability of data regarding the

task times. This limitation will be further investigated in the following sections.

3.3 Variability of the Algorithm Outcome

The RB&B developed in Diefenbach and Stolletz (2020) was tested on a series of

instances. The problem instances were based on the benchmark set of Scholl (1993),

considering instances up to 21 tasks. These ones were proposed as deterministic

instances, that were made stochastic through the creation of some probability dis-

tribution functions, starting from the deterministic times of Scholl. The settings

considered in this work are part of those included in the study of Diefenbach and

Stolletz (2020) and any difference will be specified in the relative section. To gener-

ate the data of the stochastic lines, the task times are sampled from a Normal and a

Gamma distribution. Since in literature coefficient of variations up to 0.5 are consid-

ered (Liu et al., 2005), three different values are used for the coefficient of variation

CV ∈ {0.1, 0.3, 0.5}. The coefficient of variation is used to evaluate the parameters

of the two distributions. For the Normal distribution, the location parameter is the

mean of the task times, while the scale parameter is represented by CV · t̄i, where t̄i

is the mean of the task times for the task i. For the Gamma distribution, the shape

parameter is represented by k = 1
CV 2 while the scale parameter as θ = t̄i · CV 2

For each model, different cycle times are tested. All the instances can be seen in

Table 3.1.

Model CV Cycle Time

Mertens

0.1 7, 8, 10, 15

0.3 10.15.18

0.5 15, 18

Jaeschke

0.1 7, 8, 10, 18

0.3 10, 18

0.5 18
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Jackson

0.1 9, 10, 13, 14, 21

0.3 10, 14, 21

0.5 14, 21

Table 3.1: Summary Instances Considered

The study of the influencing parameters is developed into three main steps:

• Single Run: One single run with different values of N , has been done for

each setting.

• Independent Replications: Different independent runs of the algorithm are

performed for each experimental settings. This is done for two different values

of N .

– N = 10000: 10 Independent replications performed.

– N = 100: 1000 Independent replications performed.

• Bootstrap Methodology: The results of the algorithm are investigated

through a Bootstrap Inspired approach.

3.3.1 Single Run

In order to evaluate the effects of N on the results of the algorithm, every instance

is tested, performing a single run of the algorithm for seven different values of

N . The values tested are N = {1, 10, 50, 100, 1000, 5000, 10000}. The first value

is an extreme value for which the problem becomes deterministic, with task times

randomly generated. The experiments are performed using randomly generated task

times.

It is important to remember that the algorithm is a Chance-constrained Branch

and Bound, therefore a value for the reliability must be specified. In this case

R = 95% is used. Since, especially for the smaller values of N , there is the chance

that the randomly generated task times cannot respect this reliability threshold,

the algorithm is modified in order to avoid the stoppage in this situation. In these
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cases, the reliability threshold is lowered to the maximum threshold possible with

the available data.

These runs show a variability between the results depending on the number of sam-

ples as can be seen in the example of Figure 3.2. The idea is that the variability of

the results has a relation also with other characteristics of the instance evaluated.

This kind of preliminary observations define the necessity of a deep investigation.

To highlight proper relationship between parameters and assignments and number

of stations to open, the running of independent replications is needed.

Figure 3.2: Example of Jackson model, Gamma distributed data with c = 21 for
different CV values.

3.3.2 Independent Replications

The previous experiments give a first highlight on a variability of the results that

must be deeply investigated. With this scope, different independent replications are

performed. Only two line configurations are tested: Mertens (7 tasks) and Jackson

(11 Tasks). Two values of N are used. 10 independent replication are performed for

N = 10′000, while 1000 independent replications are performed for N = 100.

The results in terms of number of different minimum number of workstations to open

and assignments found are reported in Table 3.2 for the configurations generated

with the Gamma distribution. The same data from the configurations obtained with

the Normal Distribution are reported in A.1.
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Line

configu-

ration

CV c Different

Outcomes

N = 10′000

Different

Assign-

ments

N = 10′000

Different

Outcomes

N = 100

Different

Assign-

ments

N = 100

Mertens

0.1
7 1 1 2 7

8 1 1 2 2

10 1 1 2 13

15 1 1 1 2

18 1 1 1 2

0.3

10 1 1 3 11

15 1 1 2 17

18 1 1 1 7

0.5
15 1 1 4 79

18 1 1 2 61

Jackson

0.1
9 1 1 2 16

10 1 1 2 28

13 1 1 1 10

14 1 1 1 11

21 1 1 1 4

0.3

13 1 1 3 191

14 1 1 3 73

21 1 1 2 58

0.5
14 2 5 2 243

21 1 1 3 279

Table 3.2: Summary Independent Replication Experiments

The experiments’ results for all the instances tested with N = 10′000 provide the

same number of stations opened. The only exception to this result is:

Model = Jackson

Distribution = Gamma

CV = 0.5

c = 14

It is possible to state that the results obtained for N = 10′000 can be considered as
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the correct results from now on. For the aforementioned exception the independent

replications are performed again with N = 20′000. It results in a number of opened

stations equal to 9 and just one task assignment.

Looking at the results it is possible to highlight the main trend of the influencing

parameters. Two significant behaviour can be highlighted.

Figure 3.3: Effect of CV on the different Number of Assignments and resulting
workstations among the replications performed with N = 100 for both Mertens and
Jackson configurations created with a Gamma distribution.

First of all, the uncertainty given by a limited number of task times samples is

strictly related to the coefficient of variation (CV ) of the task times. For lower

coefficient of variation, the achieved number of stations is always the same and it is

the same given by the replications done with N = 10′000. Increasing the coefficient

of variation, the number of solutions often increases for both the configurations

analysed. This effect is amplified for the number of assignments found. (Figure 3.3)

Figure 3.4: Effect of c on the different Number of Assignments and resulting work-
stations among the replications performed with N = 100 for both Mertens and
Jackson configurations created with a Gamma distribution.

The second main behaviour highlighted is the relation with the cycle time. It is

observed how for higher cycle time the solution is more robust, achieving lower
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Figure 3.5: Number of different Assignments found for different values of CV and
the two distributions

number of different outcomes. This was an expected result, because a larger time

bucket, for each station, to fit the tasks, results in more flexibility in the assignment.

Due to this flexibility, it can be observed how for the number of assignments it is not

possible to observe the same trend. The number of resulting assignments between

the replication is extremely variable and no particular trend can be identified.

Finally, it is important to notice also the effect of the distribution. With the Normal

distribution all the times sampled below the zero were transformed into a 0. This

seems to have an effect on the results, bringing in general to a lower number of

stations. To explain this phenomenon, it is possible to think about the tail of a

Gamma distribution, that is higher with respect to the right tail of a Normal one.

This led to a more frequent sampling of higher task times, bringing to a lower

reliability with the same number of stations. Therefore, it is possible to say that

also the distribution have an impact on the results.

Furthermore, both the distribution and the coefficient of variation have a relation

with the number of assignments achieved. In Figure 3.5 it is possible to observe

that more assignments are observed genereting from a Gamma distribution and

with higher values for the CV .

3.3.3 Parameters influencing the algorithm’s results

Looking at the outcomes of all the tests performed so far, it is possible to see which

are and with which trend some parameters influence the outcome of the algorithm:

1. Number of Samples: In general, it is possible to observe that the higher

the number of sample available, the more reliable will be the result.
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2. Cycle Time: For higher values of the cycle time, the results are more trustful.

This can be explained due to the idle time. The larger the cycle time the

higher the idle time available assigning one task to a station. It means that

the algorithm has more “freedom” in the assignment. This allows to generate

a robust solution. On the other side it is important to notice that not always

the smaller the cycle time the less reliable the result. For smaller values of the

cycle time the assignment is much more constrained, this can lead to a much

more “guided” assignment. Therefore, it is possible to say that the relation

with the cycle time is not linear. Even if, in general, the higher the cycle

time the better, there are some specific values that lead to solutions that are

extremely unreliable. This behaviour occurs in the cases that are somehow

“borderline”. Those are the values of the cycle time for which the result is in

the proximity of the change, making difficult to distinguish the correct solution

between two different values.

3. Coefficient of Variation: Being a proxy of the variability of the data, the

bigger the coefficient of variation the more the results will be affected by a

variability. Therefore, it is possible to say the the lower the coefficient of

variation the better.

4. Shape of the distribution: The used distribution has an impact on the

results. The output using the data generated from a Gamma distribution are

always less reliable than the ones generated from a Normal distribution. In

order to take into account the distribution and its shape the main parameters

that can be considered are the Skewness or the Kurtosis. Further investigation

will be performed in the following sections.

5. Model: The model has an impact on the results. The relationship is not

completely clear and must be further investigated. In fact, the complexity of

the model cannot be measured just in terms of number of tasks. Also the

constraints must be considered. One parameter that can be used is the Order

Strength (OS).
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Chapter 4

Solution Methodology

4.1 Bootstrap application

The algorithm from Diefenbach and Stolletz (2020) is included in a bootstrap in-

spired procedure to deeply investigate the relations between the influencing parame-

ters and to analyse the capability of reaching the correct solution. The procedure is

tested among two line layouts between the ones analysed by Diefenbach and Stolletz

(2020): Jackson line configuration with 11 tasks and Mertens configuration with 7

tasks. All the settings of the two layouts, presented in Table 3.1, are taken into ac-

count. The models, introduced by Scholl (1993), are characterized by deterministic

task times. They are made stochastic through the same procedure seen in Section

3.2. The idea, inspired by the bootstrap methodology, is to re-sample with replace-

ment the task times sets (of size N) available, generating B independent new task

times sets of size N . The algorithm is then fed with those time sets and the results

analysed.

Figure 4.1: Explanation of the applied resampling.

Considering tn,i as the n−th time sample of the i−th task, it is possible to represent

all the task times observations as in Figure 4.1. The re-sampling is applied on the
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task times sequence, meaning that the single re-sampled observation is a row of the

matrix {ti,n, ..., ti,N}.

Each bootstrap sample is used as input for the algorithm. It means that, in this

application, the bootstrap estimates will be the results of the RB&B. In Figure

4.2 all the steps of the bootstrap methodology are depicted: the sampling with

replacement from the original dataset (generation of Bootstrap Samples Set 1, Set

2, . . . ); Application of the RB&B to each Bootstrap Sample (Generation of the

Bootstrap Estimate Res 1, Res 2, . . . ); Identification of the best solution.

Figure 4.2: Application of the bootstrap methodology

4.1.1 Test of the Bootstrap Methodology

The first experiments are performed for three configurations of the line, respectively

with 7 tasks (Mertens), 9 tasks (Jaeschke) and 11 tasks (Jackson). The original

data-sets are generated using both a Normal and a Gamma distribution. The pro-

cedure was applied with N = {100, 500, 1000} and setting B = 1000 1. The results

of the application of the procedure to data-sets generated with a Gamma distribu-

tion are reported in Table 4.1. The ones with a Normal one are reported in the

Appendix A.1.1. Both the tables report the number of times, the outcome from the

1The reason behind this choice is related to the fact that in literature it is the highest suggested
values as explained in Section 3.1.1

43



RB&B applied to 10′000 observation data-set appears between the 1000 bootstrap

replications.

The first analysis carried out, points out how the most frequent solution in terms

of number of workstations is not always the same of the RB&B applied to 10′000

data. The conclusion is that, in most of the cases the bootstrap cannot solve the

problem by simply re-sampling the data available generating possible scenarios.

Config. CV c N = 100 N = 500 N = 1000

Mertens

0.1

7 1000 1000 1000
8 750.4 996.7 999.8
10 288.3 511.3 738.2
15 1000 1000 1000
18 1000 1000 1000

0.3
10 607.5 961.8 985
15 948.6 947 991
18 998.9 1000 1000

0.5
15 424.7 834.4 990.3
18 260.2 406 618.5

Jaeschke

0.1

7 0 0 0
8 760.7 992.9 1000
10 280.8 664.9 847.3
18 1000 1000 1000

0.3
10 505 899.5 877.5
18 762.1 921.4 904.2

0.5 18 228.4 473.8 802.3

Jackson

0.1

9 788 997.8 1000
10 322.1 633.8 791.6
13 985.8 1000 1000
14 1000 1000 1000
21 1000 1000 1000

0.3
13 96.3 373.4 696.6
14 815 997.8 1000
21 257.3 787.8 897.9

0.5
14 826.1 647.7 495.7
21 91 725.1 770.7

Table 4.1: Number of appearances between the 1000 bootstrap replications, of the
outcome in terms of minimum number of workstations from the application of the
RB&B to 10′000 observations.
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4.1.2 Application of the Bootstrap inspired Methodology to

real case Data

It is decided to see the effects of the Bootstrap inspired Procedure on a real prob-

lem data. The data used are collected on a Bosch Assembly Line considered in

Pesavento (2018). The line is characterized by 15 different tasks. In Table 4.2 the

characteristics of the data after a statistical analysis are summarized.

Task # Ob-
serva-
tion

Mean Variance Chosen Dis-
tribution

Chi-
square
Test

P value

1 98 3.2922 0.7135 LogNormal Reject 0.0057
2 98 3.7069 0.5788 Gamma Cannot

Reject
0.082747

3 98 3.6932 1.0781 Gamma Cannot
Reject

0.2176

4 98 3.3181 0.5933 Gamma Cannot
Reject

0.2695

5 110 3.1148 1.1 Gamma Cannot
Reject

0.0808

6 111 3.7079 0.969 Gamma Cannot
Reject

0.5313

7 118 4.0639 0.4467 Gamma Cannot
Reject

0.0608

8 119 3.2436 0.015 Gamma Reject 3.674 · 10−6

9 119 1.2299 0.131 Lognormal Cannot
Reject

0.0858

10 119 3.1622 0.6891 Gamma Cannot
Reject

0.1903

11 150 20.3109 0.115 Gamma Reject 5.595 · 10−6

12 50 20.0892 0.0081 Deterministic
13 50 15.0558 0.0038 Deterministic
14 150 21.781 0.1062 Gamma Cannot

Reject
0.56961

15 112 9.654 0.1178 Gamma Reject 0.0001

Table 4.2: Summary of Bosch Data

In the summary, it is possible to observe the limited availability of data and the

different availability of observations depending on the task considered. Since the

algorithm requires the same number of observations for each task, a manipulation

of the data is required to achieve this consistency. The first option consists of the

cutting of the data-set according to the least observed tasks. This will bring to a
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Figure 4.3: Manipulation Process of the Data from the Bosch Assembly Line.

data-set of just 50 observations for each task, having a huge loose in the information

provided by the data. Since the two tasks, for which 50 observations are available,

are deterministic, it is decided to proceed differently applying two steps that is

possible to observe in Figure 4.3:

1. The first step consist into the duplication of the data regarding the two de-

terministic tasks. At the end of this step, the tasks with 50 observations ends

with 100 observations.

2. The second step consists into the cutting of the data-set according to the least

observed stochastic task. The data-set end to have 98 observations for each

task.

The running of the procedure is performed for different values of B, in order to

investigate the influence of this parameter. Three main results are collected and

investigated from the procedure:

• Number of different Results (minimum number of workstations to open) Achieved.

• Number of different Assignment Achieved.

• Computational Time Required.

The results in terms of number of stations opened are summarized in Table 4.3

From the results, it is possible to evince some interesting behaviours. First of all,

the results in terms of number of stations are not influenced by the value of B,

but are strongly influenced by the values of c. This can be explained by the small

amount of data available. The situation of uncertainty come from the value of c
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c
B

100 200 300 400 500 600 700 800 900 1000

22 7 7 7 7 7 7 7 7 7 7
23 7 7 7 7 7 7 7 7 7 7
25 6, 7 6, 7 6, 7 6, 7 6, 7 6, 7 6, 7 6, 7 6, 7 6, 7
27 6 6 6 6 6 6 6 6 6 6
30 6 6 6 6 6 6 6 6 6 6
35 5, 6 5, 6 5, 6 5, 6 5, 6 5, 6 5, 6 5, 6 5, 6 5, 6
40 4 4 4 4 4 4 4 4 4 4
45 3, 4 3, 4 3, 4 3, 4 3, 4 3, 4 3, 4 3, 4 3, 4 3, 4
50 3 3 3 3 3 3 3 3 3 3

Table 4.3: Results application of the Procedure to Bosch Data

in those cases when the setting is somehow “borderline” between one or the other

number of stations. This variability comes for the stochasticity of the resampling

with replacement methodology. In fact, the resampled data bring to a specific

output, so, if the methodology resample most of the times sets below the average,

the bootstrap estimate will result in the smaller number of workstations. On the

contrary, if the resampling methodology will resample the majority of task times sets

over the average values, the Bootstrap estimate will result in the higher number of

workstations opened. If a decision must be made only with this type of methodology,

two possible approaches are possible:

1. The simplest path is to make a conservative choice, choosing the highest num-

ber of workstations, that can cover all the possibilities.

2. The second possibility is to collect more data regarding the task times. Of

course, this type of path requires the possibility to collect new data on the

tasks location.

The second interesting aspect of the results is strictly related to the assignments

of the tasks. The number of different assignments in relation with B and c can

be found in Table 4.4. This is clearly influenced by the choice of B. The general

trend is that the bigger the value of B the more different assignments are obtained.

This kind of behaviour can be explained again by the stochasticity of the resam-

pling process. In particular, the more the bootstrap samples generated (and so the

bootstrap estimate) the more possible scenarios are investigated. This highlights

the importance of using a high value of B, in order to be sure to investigate all the

frequent scenarios.
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c
B

100 200 300 400 500 600 700 800 900 1000

22 2 2 2 2 3 2 3 2 2 2
23 6 7 6 7 8 8 8 8 8 8
25 11 12 13 17 15 16 15 15 16 16
27 3 3 4 5 5 5 5 5 5 5
30 4 4 4 4 4 4 5 5 4 4
35 3 4 5 5 5 5 5 5 5 5
40 2 2 2 2 2 2 2 2 2 2
45 4 4 4 4 4 4 4 4 4 4
50 2 2 2 2 2 2 2 2 2 2

Table 4.4: Assignments application of the Procedure to Bosch Data

It would be recommended to focus on the most frequent scenarios rather than in-

vestigating the whole range of possible outcomes. This can be addressed to the

fact that, in order to balance the line, it is important to work in the most frequent

settings and not to adjust it on the basis of an exceptional task times sequence.

This allows to cover the majority of the situations without lowering the performance.

In general, there is no interest in investigating the assignments that appears one time

between 1000 bootstrap estimates. Therefore there is no such necessity in using such

high values of B.

After the generation of several Bootstrap estimates, it is possible to study the var-

ious assignments by looking at the reliability of the various settings. If a deeper

investigation is required, it is possible to test the various assignments through sim-

ulation models, allowing to better assess the system in order to choose the best

assignment. The main problem related to that is that the RB&B does not per-

form an optimization of the task assignment, meaning that it stops with the first

assignment respecting one of the stopping conditions.

The last noticeable outcome of this application to real data is related to the com-

putational times. The values are summarized in Table 4.5.

Plotting the resulting computational times (Figure 4.4), it is possible to see a linear

growing trend following the growing of B, for all the cycle times tested. This trend

was expected, since the only difference in the process between different B values,

consists only in the number of times the resampling is performed. It is basically the

same process repeated different times. The interesting aspect of the results comes

from the values itself of the computational times: they are characterized for the
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c
B

100 200 300 400 500 600 700 800 900 1000

22 26 46 60 92 107 129 165 194 212 233
23 23 36 55 72 93 128 143 168 178 207
25 231 505 791 1030 1296 1559 1787 2031 2384 2677
27 22 42 63 86 106 125 142 163 182 205
30 24 38 50 68 87 112 141 149 165 195
35 293 558 827 1080 1476 1642 1942 2215 2482 2753
40 21 44 71 84 104 117 150 168 156 176
45 25 48 73 104 130 155 190 224 260 278
50 19 34 51 67 85 101 121 140 153 172

Table 4.5: Computational Times application of the Procedure to Bosch Data

most of the cases by low values.

Figure 4.4: Computational Times with Bosch Data, for different values of B with
different values of cycle time c

The two exceptions to this are the cases with the cycle time c = 25 and c = 35 for

which more than one possible number of station results. Therefore, it is possible
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to connect this increase in the computational time, to the higher variability that

must be managed by the algorithm and the process in general. The third setting,

for which more than one value for the number of stations is achieved, is the one

with c = 45. Even if the values reached are not as high as the ones reached in the

previous cases.

4.1.3 Results analysis

To deeper investigate the reasons behind the limit of the bootstrap itself in bringing

to the correct results as the most frequent, an analysis on the single samples is

performed. The idea is to highlight at first the potential presence of recurrent

samples that bring to an incorrect result. If this presence is discovered, an analysis

of the specific samples is performed.

The experiments are done for the same two models on which the bootstrap inspired

procedure was tested, but only for the cycle time values for which more than one

result in terms of resulting number of stations was achieved in the independent

replications experiments (Section 3.3.2).

The analysis is carried out by plotting the frequency of each sample, for each result-

ing number of stations, as an histogram as in Figure 4.5.

The resulting sample of interest are summarized in Table 4.6.

Model CV Distribution Cycle

Time

# different

Results

Noticeable sets (b)

Mertens

0.1

Normal

7 1

8 2 (47, 78, 94)

10 2 (69, 100)

Gamma

7 1

8 2 (32, 39, 49)

10 2 No particular set arises

0.3

Normal
10 1

15 1

Gamma
10 2 No particular set arises

15 2 (41, 76, 82)

0.5

Normal
15 3 (36,78)

18 1

Gamma
15 3 (35, 71)

18 2 (3, 80)
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Jackson

0.1

Normal
9 2 (49)

10 2 (47, 90, 92)

Gamma
9 2 (18, 59, 90)

10 2 No particular set arises

0.3

Normal

13 1

14 2 (29, 54, 73)

21 1

Gamma

13 2 (73)

14 3 (34, 75, 100)

21 2 (65, 84)

0.5

Normal
14 3 (28, 57, 62, 82, 100)

21 1

Gamma
14 3 (85)

21 2 (82)

Table 4.6: Experiments to find characteristics of ”bad” sets.

In the example provided in Figure 4.5, the correct outcome is a resulting number of

stations equal to 7. Examining the resulting minimum number of stations to open

for the two wrong results that occurs, it is possible to notice that for the case with

6 stations to open no particular task time sequence stand out. On the contrary

five different tasks sequences stand out for the case in which 8 different station are

opened by the algorithm.

Figure 4.5: Example of the analysis with the histogram plots.

This kind of reasoning is performed for each experiment. All the sequences pointed

out, are then analysed individually, in order to figure out if some specific character-

istics are present. For each of them the following parameters are evaluated for each

task:
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• Mean.

• Variance.

• Minimum.

• Maximum.

• Skewness.

• Kurtosis.

• Coefficient of Variation.

Looking at the more frequent sets for the various replications, it is possible to notice

that the minimum and the maximum coefficient of variation of the set between the

various tasks, are always respectively below and over the one used to sample the

times. Other similar behaviour can be observed also for the other parameters. This

enforce the hypothesis that there is no particular characteristics of the sequence

which brings to higher or lower number of workstations with respect to the optimal

solution. It is possible to conclude that there is no specific characteristic of the task

times sequences, that leads to an incorrect results, is just the combination of times

for the various tasks.
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4.2 Problem Definition: Optimization of the Task

allocation

As previously said, the objective function of the algorithm proposed by Diefenbach

and Stolletz (2020) is expressed as:

min
M∑
m=1

Zm

Therefore, two main output are obtained by the algorithm. The first one is a vector

Xi,m that represent an assignment of the task to the various stations. It is important

to highlight that this assignment is not optimized, it is the first tested assignment

that respect the constraints of the mathematical model proposed and achieve the

conditions to stop the Reliability-based Branch and Bound presented in Diefenbach

and Stolletz (2020). The second output will be a vector Zm so that the sum of its

elements represent the minimum number of workstations to be opened according to

the problem.

When the algorithm is inserted in the Bootstrap Inspired Procedure, B different

datasets DBb are created resampling with replacement the original one and they can

be called bootstrap samples. Those bootstrap samples represents different scenarios.

The RB&B will be applied to each of them generating B different output, related to

each bootstrap sample. In particular it is possible to identify a series of assignments

that will not be considered since they are not optimized and a series of Zb
m with

b ∈ {1, . . . , B}.

For each of those scenarios, it is possible to define the number of stations to open

as:

M b =
M∑
m=1

Zb
m

Differently from the previous model, in which the number of workstations is not

constrained, by fixing both a number of workstations to open M b, specific for each

scenario, and the cycle time c, common to all the B bootstrap samples analyzed,

it is now possible to develop an ALBP-F problem with the aim of optimizing the

task assignment in each of those scenarios. The aim of this model is to maximize

the reliability of the system, therefore the percentage of completed jobs over the

observations available. The variables of the problem can be defined as:
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• Bb
n : it is the sample variable. It is equal to 0 if the cycle time c is exceeded

for sample n at least at one station, for the b− th bootstrap sample.

• Xb
i,m: it is the station-variable. It is equal to 1 if task i is assigned to station

m and 0 otherwise, relative to the b− th bootstrap sample.

The constraints of this problem must reflect the fact that each task have to be

assigned to exactly one workstation. Furthermore, the precedence relationships

must be respected.

The mathematical model of the problem can then be expressed as:

max
N∑
n=1

Bb
n/N (4.1)

s.t.
I∑
i=1

tn,i ·Xb
i,m ≤ c+ (1−Bb

n) ·BigM m = 1, . . . ,M ;n = 1, . . . , N

(4.2)

M∑
m=1

Xb
i,m = 1 i = 1, . . . , I (4.3)

M∑
m=1

m ·Xb
i,m ≤

M∑
m=1

m ·Xb
j,m ∀(i, j) ∈ P (4.4)

Xb
i,m ∈ {0, 1} i = 1, . . . , I;m = 1, . . . ,M (4.5)

Bb
n ∈ {0, 1} n = 1, . . . , N (4.6)

The objective function (4.1) maximize the reliability for the sets of data available.

The constraint (4.2) ensures that the sum of all task times assigned to station m

stays within the cycle time c if the sample-variable Bb
n is equal to 1. In case of a

sample n that exceeds the cycle time, Bb
n must be set equal to 0 in order to respect

the condition. The constraint (4.3) assure that each task is assigned to exactly one

workstation. The constraint (4.4) takes into account the precedence that must be

respected. The constraints (4.5) and (4.6) define the domain of the variables.
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In order to solve the problem, the mathematical model will be solved for b ∈
{1, . . . , B}, therefore it will be solved B times, one for each bootstrap sample gen-

erated. This will generate at the maximum B different possible assignment. Each

of them will be tested in order to find the most robust.

The entire Bootstrap inspired procedure with the optimal task assignment search

requires an inizialization that includes the collection of the data. The steps of the

procedure are:

1. Creation of the Data-set DS from the collected data and set of c, B and b = 0

2. Set R to the desired minimum value for the reliability and b = b+ 1. If b ≤ B

go to Step 3, Otherwise go to Step 9

3. Generation of DSb by resampling with replacement DS.

4. Evaluation of the maximum reliability achievable Rmax by DSb. If RmaxâR go

to step 6 otherwise go to Step 5.

5. Set R = Rmax

6. Application of the RB&B to DSb, generating M b

7. Application of the task assignment optimization, GeneratingOTAb. IfOTAb ∈
OTAS go to Step 2 otherwise go to Step 8.

8. Add OTAb to OTAS. Go to step 2.

9. Stop.

The flow chart of the entire procedure is shown in Figure 4.6

4.2.1 Selection Procedure

Once the various optimal task assignments are collected in OTAS, a decision must

be taken to identify the best option.

To define it, a multi-stage ranking and selection procedure is used, generating new

Data-sets DSn, resampling with replacement the original dataset DS.

Since each alternative assignment will be tested on the same data-set in order to

evaluate the reliability, it is possible to state that all the alternatives are compared

using common random numbers.
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Figure 4.6: Flow Chart representing the Bootstrap Inspired Procedure with task
assignment optimization.
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The procedure used is a multi-stage ranking and selection procedure. It takes the

observation from each population one-at-the-time and eliminates alternatives that

seems dominated.

Three parameters must be specified a priori:

• P ∗: It is the probability of achieving the optimal selection.

• δ∗: It is an indifference-zone. It represent the sensitivity with which the pro-

cedure is able to distinguish differences between the alternatives.

• n0 : Number of initial dataset generated and used to test the different assign-

ment.

The first step of the procedure include the evaluation of two constants.

η = 1/2[(
2 · (1− P ∗)

(k − 1)
)

−2
n0−1 − 1]

h2 = 2 · η · (n0 − 1)

Generating n0 Dataset DSn it is possible to evaluate an initial sample of the obser-

vations called Yi,j with 1 ≤ j ≤ n0 and 1 ≤ i ≤ k representing the alternatives.

For each population the sample mean Ȳi(n0) of the observations is evaluated and

based on this mean, and on the sample variance of the difference between the alter-

natives i and l that is evaluated as:

S2
i,l =

1

n0 − 1

n0∑
i=1

(Yi,j − Yl,j − [Ȳi(n0)− Ȳl(n0)])
2

For all i 6= l set Ni,l = bh2 S
2
i,l

δ∗2
c and then set Ni = maxi 6=lNi,l

If n0 > maxiNi stop and select the population (or more than one) with the largest

sample mean Ȳi(n0) as one having the largest mean. Otherwise set a counter r = n0

and go to the screening phase.

If |I| > 1 generate a new scenario and take an additional observation Yi,r+1 of the

reliability for those scenarios i ∈ I

Finally set r = r + 1
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The procedure stops when one of these condition is met:

• |I| = 1: The optimal configuration is found.

• If r = maxiNi + 1: stop and select one assignment from the ones having the

index i ∈ I

The procedure can be described by the following steps:

1. Set I = OTAS and evaluation of two constants η and h2.

2. Generating n0 Dataset DSn.

3. Evaluation of an initial sample of the observation called Yi,j with 1 ≤ j ≤ n0

and 1 ≤ i ≤ k representing the alternatives.

4. Evaluation of the sample mean of the observation Ȳi(n0) for each of the pop-

ulation i ∈ I.

5. Set r = n0.

6. Evaluation of the sample variance of the difference between the alternatives i

and l as:

S2
i,l =

1

n0 − 1

n0∑
i=1

(Yi,j − Yl,j − [Ȳi(r)− Ȳl(r)])2 ∀i 6= l,∀i, l ∈ I

7. For all i 6= l set Ni,l = bh2 S
2
i,l

δ∗2
c and then set Ni = maxi 6=lNi,l. If n0 > max(Ni)

go to Step 13, Otherwise go to Step 8.

8. Iold = I

9. Evaluation of

Wil(r) = max{0, δ
∗

2r
(
h2S2

il

(δ∗)2
− r)}

10. Set I = {i : i ∈ Iold and Ȳi ≥ Ȳl(r)−Wil(r),∀l ∈ Iold, l 6= i}. If |I| = 1 go to

Step 14, otherwise go to Step 11

11. Create one additional Dataset DSn by resampling with replacement the orig-

inal one DS.
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12. Evaluation of the Reliability of the new dataset Yi,r+1 for each configuration

i ∈ I.

13. Set r = r + 1. If r < maxiNi + 1 Go to Step 5, otherwise go to Step 14 .

14. Select the best configuration between the ones having index i ∈ I.

The flowchart of the ranking and selection procedure is represented in Figure 4.7.

If, when the procedure stops, the set I contains more than one configuration, it is

possible to choose between the different assignments remaining, looking at different

performances. Since the main focus of this work is the rebalancing of an existing

line, a parameter indicating the “distance” between the new configuration and the

original one is the most appropriate evaluation to do.

Two different indexes are considered for this purpose, the first one is the Mean

Similarity Factor (MSF) from Gamberini et al (2007), the other one is the Manhattan

distance between the assignment as coordinates.

4.2.2 Developed procedure

The developed procedure can be finally summarized in 5 main steps:

1. Collection of the data from the already existing line.

2. Creation of the Bootstrap Samples, by resampling with replacement the orig-

inal data-set.

3. Application of the RB&B from Diefenbach and Stolletz (2020) to each Boot-

strap Sample

4. Application of the Optimization of the task assignment to each Bootstrap

sample

5. Application of the Multi-stage Ranking and Selection Procedure.
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Figure 4.7: Flow Chart Ranking and Selection Procedure

60



Chapter 5

Experimental Campaign

The previously defined procedure must be tested to evaluate its capabilities. In

order to do so, three deterministic model from Scholl (2006) will be used, that are

made stochastic as explained in the previous sections.

5.1 Experimental Setting

The model used are: Mertens, characterized by seven tasks, Jaeschke, characterized

by nine tasks and Jackson characterized by eleven tasks.

The deterministic task times are used as means of a distribution to generate the

data. In particular three values of the coefficient of variation are used (CV =

{0.1, 0.3, 0.5}) to sample the data from a Gamma distribution.

The preliminary step is the generation of the data. In particular 10′000 observation

for each of the 9 settings described are created.

Different approaches are tested, in order to evaluate the capabilities of the developed

procedure with a fair comparison. In particular, the approaches tested are.

• Application of the RB&B to the entire dataset (10′000 observations).

• Application of the RB&B to a reduced dataset (100 observations).

• Application of the optimization procedure to the output of the RB&B applied

on the entire dataset (10′000 observations).
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• Application of the optimization procedure to the output of the RB&B applied

on a reduced dataset (100 observations).

• Application of the Bootstrap Inspired Procedure on a reduced Dataset (100

observations), followed by a multistage Ranking and Selection process.

• Application of the developed methodology on a reduced Dataset (100 obser-

vations).

To test the performances of the various approaches, it has been decided to perform

5 replications of the experiment. Therefore 5 datasets for each of the 9 settings are

created, for a total of 45 datasets.

The application of the different procedures is performed using one value of the cycle

time for each dataset generated but 5 different values of the target for the reliability.

To perform the comparison, all the assignments resulting from each approach, are

tested on the original dataset with 10′000 samples of the task times.

5.1.1 Application of the RB&B

In order to evaluate the performances of the new procedure, the first step is the

application of the Reliability Branch and Bound on the 10′000 observation generated.

The total number of instances analysed is then 45, for each of the replications. The

results of the first replication are reported in Table 5.1

Mod. Distr. CV c [s] R∗ [%] Assignment R [%]

Mertens Gamma

0.1 7

75 1, 1, 4, 5, 2, 3, 6 92.2

80 1, 1, 4, 5, 2, 3, 6 92.2

85 1, 1, 4, 5, 2, 3, 6 92.2

90 1, 1, 4, 5, 2, 3, 6 92.2

95 1, 2, 3, 1, 4, 6, 5 94.76

0.3 10

75 1, 1, 5, 2, 2, 3, 4 83.61

80 1, 1, 5, 2, 2, 3, 4 83.61

85 1, 1, 2, 2, 3, 5, 4 92.5

90 1, 1, 4, 4, 2, 3, 5 92.5

95 1, 1, 4, 5, 2, 3, 6 95.53

0.5 15

75 1, 1, 2, 3, 1, 2, 3 76.99

80 1, 1, 4, 2, 1, 2, 3 81.8

85 1, 1, 3, 3, 1, 2, 4 85.32
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90 2, 2, 3, 5, 3, 4, 5 92.17

95 1, 1, 5, 1, 3, 4, 2 95.08

Jaeschke Gamma

0.1 7

75 1, 3, 2, 4, 6, 5, 4, 7, 8 91.96

80 1, 3, 2, 4, 6, 5, 4, 7, 8 91.96

85 1, 3, 2, 4, 6, 5, 4, 7, 8 91.96

90 1, 3, 2, 4, 6, 5, 4, 7, 8 91.96

95 1, 2, 3, 4, 5, 7, 6, 6, 8 94.73

0.3 10

75 1, 2, 2, 3, 4, 5, 6, 4, 6 78.34

80 1, 2, 2, 3, 4, 5, 5, 4, 6 81.15

85 1, 2, 3, 4, 5, 7, 6, 6, 8 94.73

90 1, 2, 2, 3, 5, 4, 3, 6, 7 92.63

95 1, 2, 3, 4, 5, 7, 7, 6, 8 95.63

0.5 18

75 1, 1, 1, 2, 2, 2, 3, 3, 3 76.53

80 1, 1, 1, 2, 3, 2, 2, 3, 4 90.3

85 1, 1, 1, 2, 3, 2, 2, 3, 4 90.3

90 1, 1, 1, 2, 3, 2, 2, 3, 4 90.3

95 1, 2, 1, 2, 3, 3, 2, 4, 5 97.16

Jackson Gamma

0.1 9

75 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 81.66

80 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 81.66

85 1, 2, 2, 4, 1, 3, 5, 3, 5, 6, 7 88.95

90 1, 1, 3, 2, 4, 3, 6, 4, 7, 5, 8 93.15

95 1, 4, 3, 2, 1, 5, 3, 6, 4, 7, 8 95.08

0.3 13

75 1, 1, 3, 4, 1, 2, 4, 2, 5, 3, 5 76.79

80 1, 3, 2, 4, 5, 3, 5, 3, 6, 5, 6 86.86

85 1, 1, 4, 2, 2, 1, 4, 3, 5, 6, 6 87.67

90 1, 2, 2, 4, 5, 3, 5, 3, 6, 5, 6 92.96

95 1, 1, 3, 2, 1, 4, 3, 5, 4, 6, 7 95.31

0.5 14

75 1, 2, 2, 4, 1, 2, 5, 3, 6, 5, 6 77.35

80 1, 2, 3, 5, 1, 2, 6, 4, 6, 7, 7 81.73

85 1, 4, 3, 2, 5, 5, 5, 6, 7, 8, 8 85.15

90 1, 4, 3, 2, 1, 4, 4, 5, 6, 7, 8 90.33

95 1, 3, 5, 2, 7, 3, 7, 4, 8, 6, 9 91.67

Table 5.1: Results of the Application of the RB&B to the full

Datasets in the first replication.

Looking at the results, it is important to remark how the RB&B developed by

Diefenbach and Stolletz (2020) stops when it finds the first assignment satisfying

the stopping conditions, meaning that the assignment is not optimized. In some

cases, it is possible to observe the same result for different values of the reliability
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target chosen. This happens when naturally that assignment is the first analysed

during the running of the branch and bound.

5.1.2 Application of the RB&B to a reduced dataset

Since the procedure will be applied on 100 data, the RB&B has been applied also to

a reduced dataset, composed by the first 100 observations of the entire task times

set (the same dataset on which the procedure will be applied). In this way it has

been possible to perform a fair comparison.

The resulting assignment is then tested on the entire set of data to evaluate the

reliability. The results of the first replication are reported in Table 5.2. In the table,

it is also reported the percentage variation of the performances with respect to the

RB&B applied to the full dataset.

Mod. Distr. CV c [s] R∗ [%] Assignment R [%] Variation

Mertens Gamma

0.1 7

75 1, 1, 4, 5, 2, 3, 6 92% 0%

80 1, 1, 4, 5, 2, 3, 6 92% 0%

85 1, 1, 4, 5, 2, 3, 6 92% 0%

90 1, 1, 4, 5, 2, 3, 6 92% 0%

95 1, 2, 3, 1, 4, 6, 5 95% 0%

0.3 10

75 1, 1, 5, 2, 2, 3, 4 84% 0%

80 1, 1, 5, 2, 2, 3, 4 84% 0%

85 1, 1, 5, 2, 2, 3, 4 84% -10%

90 1, 1, 4, 4, 2, 3, 5 93% 0%

95 1, 2, 3, 3, 4, 6, 5 94% -2%

0.5 15

75 1, 1, 2, 3, 1, 2, 3 77% 0%

80 2, 3, 4, 2, 3, 4, 2 80% -3%

85 1, 1, 3, 3, 1, 2, 4 85% 0%

90 1, 1, 1, 2, 2, 3, 4 90% -2%

95 1, 1, 1, 2, 2, 3, 4 90% -5%

Jaeschke Gamma

0.1 7

75 1, 3, 2, 4, 6, 5, 4, 7, 8 92% 0%

80 1, 3, 2, 4, 6, 5, 4, 7, 8 92% 0%

85 1, 3, 2, 4, 6, 5, 4, 7, 8 92% 0%

90 1, 2, 3, 4, 5, 7, 7, 6, 8 92% 0%

95 1, 2, 3, 4, 5, 7, 6, 6, 8 95% 0%

0.3 10

75 1, 2, 2, 3, 4, 5, 6, 4, 6 78% 0%

80 1, 1, 2, 3, 5, 4, 3, 6, 7 83% 3%

85 1, 1, 2, 3, 5, 4, 3, 6, 7 83% -7%

90 1, 2, 2, 3, 5, 4, 3, 6, 7 93% 0%

95 1, 2, 3, 4, 5, 7, 7, 6, 8 96% 0%
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0.5 18

75 1, 1, 1, 2, 2, 2, 3, 3, 3 77% 0%

80 1, 1, 1, 2, 2, 2, 3, 3, 4 80% -12%

85 1, 1, 1, 2, 3, 2, 2, 3, 4 90% 0%

90 1, 1, 1, 2, 3, 2, 2, 3, 4 90% 0%

95 1, 2, 1, 2, 2, 3, 3, 3, 4 92% -6%

Jackson Gamma

0.1 9

75 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82% 0%

80 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82% 0%

85 1, 2, 2, 3, 2, 5, 4, 5, 4, 6, 7 86% -4%

90 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 7 89% -4%

95 1, 4, 3, 2, 1, 5, 3, 6, 4, 7, 8 95% 0%

0.3 13

75 1, 3, 1, 2, 4, 3, 4, 3, 4, 5, 5 71% -8%

80 1, 4, 1, 2, 2, 4, 3, 5, 3, 6, 6 77% -12%

85 1, 1, 4, 2, 1, 1, 4, 3, 6, 5, 6 81% -8%

90 1, 5, 2, 3, 4, 5, 4, 5, 4, 6, 6 87% -6%

95 1, 2, 2, 3, 4, 5, 4, 5, 4, 6, 6 93% -2%

0.5 14

75 1, 4, 2, 3, 5, 4, 5, 4, 5, 6, 6 72% -6%

80 1, 1, 3, 4, 3, 1, 5, 2, 5, 6, 6 74% -9%

85 1, 2, 2, 3, 2, 5, 4, 5, 4, 6, 6 78% -8%

90 1, 2, 2, 3, 1, 4, 4, 5, 7, 6, 7 83% -8%

95 1, 2, 2, 3, 2, 4, 4, 5, 6, 7, 8 89% -3%

Table 5.2: Results of the Application of the RB&B to the reduced

Datasets

Looking at the results, it is possible to observe that the application to a reduced

dataset always bring to a final assignment that end in a reliability equal or lower

than the previous one. This happens with only one exception in the first replication

and similar results are obtained also in the other replications.

5.1.3 Optimization of RB&B results

The effect of the optimization of the task assignment (explained in Section 4.2) has

been tested as well. The optimization is applied to the results of the RB&B applied

to both the entire dataset and the reduced one. The results of the first replication

are summarized in the Table 5.3

65



Optimization

Complete

Dataset

Optimization

Reduced

Dataset

Mod. Distr. CV c [s] R∗ [%] R [%] Var. R [%] Var.

Mertens Gamma

0.1 7

75 95% 3% 95% 3%

80 95% 3% 95% 3%

85 95% 3% 95% 3%

90 95% 3% 95% 3%

95 95% 0% 95% 0%

0.3 10

75 93% 11% 93% 11%

80 93% 11% 93% 11%

85 93% 0% 93% 0%

90 93% 0% 93% 0%

95 97% 1% 97% 1%

0.5 15

75 80% 3% 80% 3%

80 92% 13% 90% 10%

85 92% 8% 90% 5%

90 98% 6% 90% -2%

95 98% 3% 90% -5%

Jaeschke Gamma

0.1 7

75 95% 3% 95% 3%

80 95% 3% 95% 3%

85 95% 3% 95% 3%

90 95% 3% 95% 3%

95 95% 0% 95% 0%

0.3 10

75 81% 4% 81% 4%

80 81% 0% 93% 15%

85 93% 4% 93% 4%

90 93% 1% 93% 1%

95 96% 1% 96% 1%

0.5 18

75 79% 3% 77% 0%

80 95% 5% 92% 2%

85 95% 5% 92% 2%

90 95% 5% 92% 2%

95 98% 1% 92% -5%

Jackson Gamma

0.1 9

75 89% 9% 89% 9%

80 89% 9% 89% 9%

85 89% 0% 89% 0%

90 100% 7% 89% -4%

95 100% 5% 100% 5%

0.3 13

75 77% 0% 77% 0%

80 94% 9% 93% 7%

85 94% 8% 93% 6%

90 94% 2% 93% 0%
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95 97% 2% 93% -3%

0.5 14

75 77% 0% 78% 1%

80 85% 4% 78% -5%

85 91% 7% 78% -8%

90 91% 1% 83% -8%

95 92% 0% 89% -3%

Table 5.3: Results of the optimization of the solution of the RB&B

As expected, the optimization of the task assignment of the solution of the RB&B

applied to all data, brings to an improvement. In addition, also the gap in the

performances between the application to the 10′000 data and the one on 100 data is

reduced, leading in most of the cases to an optimized solution with 100 observations,

that is better than the non optimized one with 10′000.

5.1.4 Application of the Bootstrap Procedure

Before the test of the entire procedure, a test of just the bootstrap inspired proce-

dure, without the optimization, is performed, in order to understand if the optimiza-

tion process will lead to certain improvement or not. In this case, 500 Bootstrap

replications are performed using just the first 100 observations. The choice between

the assignments highlighted is done through a ranking and selection process, like

the one used in the procedure with the optimization. Different values of delta are

used, chosen through preliminary studies. For all the instances a value n0 = 100 is

used.

In the cases in which the Ranking and Selection procedure highlights more than

one solution, the decision will be made manually, looking not only at the resulting

average reliability, but also at the “distance” between the assignment selected and

the original assignment, picking an assignment with a trade-off between those two

values. In those cases, the original assignment is considered the one resulting from

the application of the RB&B applied to the entire 10′000 observations long dataset.

The resulting assignment from the Ranking and Selection process, is then tested on

the original full dataset.
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Mod. Distr. CV c [s] R∗ [%] Assignment R [%] Variation

Mertens Gamma

0.1 7

75% 1, 1, 4, 5, 2, 3, 6 92% 0%

80% 1, 1, 4, 5, 2, 3, 6 92% 0%

85% 1, 2, 3, 1, 4, 6, 5 95% 3%

90% 1, 2, 3, 1, 4, 6, 5 95% 3%

95% 1, 2, 3, 1, 4, 6, 5 95% 0%

0.3 10

75% 2, 2, 4, 4, 3, 6, 5 93% 11%

80% 1, 1, 4, 4, 2, 3, 5 93% 11%

85% 1, 1, 4, 5, 2, 3, 6 96% 3%

90% 1, 2, 3, 3, 4, 6, 5 94% 1%

95% 1, 2, 3, 1, 4, 6, 5 97% 1%

0.5 15

75% 1, 1, 3, 3, 1, 2, 4 85% 11%

80% 1, 1, 1, 2, 2, 3, 4 90% 10%

85% 4, 4, 6, 5, 6, 7, 5 92% 8%

90% 1, 2, 5, 1, 3, 4, 1 95% 3%

95% 3, 3, 5, 5, 4, 7, 6 98% 3%

Jaeschke Gamma

0.1 7

75% 1, 3, 2, 4, 6, 5, 4, 7, 8 92% 0%

80% 1, 3, 2, 4, 6, 5, 4, 7, 8 92% 0%

85% 1, 2, 3, 4, 5, 7, 6, 6, 8 95% 3%

90% 1, 2, 3, 4, 5, 7, 6, 6, 8 95% 3%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 95% 0%

0.3 10

75% 1, 1, 2, 3, 5, 4, 3, 6, 7 83% 6%

80% 1, 2, 2, 3, 5, 4, 3, 6, 7 93% 14%

85% 1, 2, 2, 3, 5, 4, 6, 6, 7 93% 4%

90% 1, 2, 2, 3, 5, 4, 5, 6, 7 93% 1%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 96% 1%

0.5 18

75% 1, 1, 1, 2, 3, 2, 2, 3, 4 90% 18%

80% 1, 1, 1, 2, 3, 2, 2, 3, 4 90% 0%

85% 1, 1, 1, 2, 2, 3, 2, 3, 4 92% 2%

90% 1, 2, 1, 2, 3, 3, 2, 4, 4 95% 5%

95% 1, 2, 1, 2, 4, 3, 2, 4, 5 98% 1%

Jackson Gamma

0.1 9

75% 1, 2, 2, 3, 2, 5, 4, 5, 4, 6, 7 86% 5%

80% 1, 1, 3, 2, 3, 3, 5, 4, 6, 5, 7 86% 5%

85% 1, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7 89% 0%

90% 1, 4, 3, 2, 1, 5, 3, 6, 4, 7, 8 95% 2%

95% 1, 3, 3, 2, 1, 4, 4, 5, 7, 6, 8 99% 5%

0.3 13

75% 1, 5, 2, 3, 4, 5, 4, 5, 4, 6, 6 87% 13%

80% 1, 5, 2, 3, 4, 5, 4, 5, 4, 6, 6 87% 0%

85% 1, 1, 4, 2, 2, 1, 5, 3, 6, 5, 6 87% -1%

90% 1, 2, 2, 3, 4, 2, 4, 5, 4, 6, 6 93% 0%

95% 1, 1, 3, 2, 1, 3, 5, 4, 6, 5, 6 92% -3%

0.5 14

75% 1, 1, 2, 4, 1, 2, 5, 3, 6, 5, 6 77% -1%

80% 1, 1, 2, 3, 1, 2, 4, 5, 7, 6, 7 79% -3%
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85% 1, 1, 2, 4, 1, 2, 6, 3, 6, 5, 7 83% -3%

90% 1, 2, 2, 3, 2, 4, 4, 5, 6, 7, 8 89% -1%

95% 1, 2, 2, 3, 2, 4, 4, 5, 6, 7, 8 89% -3%

Table 5.4: Results of the Application of the Bootstrap Procedure

without the optimization.

Looking at the results, it is possible to observe how often the Bootstrap application

brings to a solution that is better than the one achieved by applying the RB&B

with 10′000 data. This can be explained through the capability of the Bootstrap

procedure to explore the domain of the results, highlighting more than one solution

and choosing the best one. It must be underlined how the running of the Bootstrap

procedure with a reduced number of observations, leads several times to an assign-

ment characterized by a significantly lower reliability, with respect to the one from

the application of the RB&B to the entire dataset.

Therefore, it is possible to state that this kind of approach will not lead to an

improvement of the solution, but it will just increase the variability of the results

exploring the domain of the solutions.

5.1.5 Application of the Developed Procedure

The last step is the application of the procedure to a reduced quantity of data. In

particular, only the first 100 observation of the generated data will be used to test

the procedure.

The data used here correspond to 1% (100 obs.) of the data originally generated

(10′000 obs.). This can be translated in the collection of the data of the line lasting

1% required to achieve reliable results using just the RB&B by Diefenbach and

Stolletz (2020). The Procedure developed in this work is applied to all the instances

explained in the previous section.

The selection of the optimized assignment from the subset OTAS is performed

through the Ranking and Selection procedure using different values of delta, chosen

with preliminary studies. For all the instaces a value n0 = 100 is used.

As in the previous Section, when the Ranking and Selection procedure highlights

more than one solution, the choice is made manually.
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To perform a comparison, the assignment chosen by the procedure must be tested

on the same datasets used to run the RB&B. Therefore, a simulation to evaluate

the reliability on the entire dataset is performed.

Firstly, the results will be observed for each model.

In general, it is expected to observe higher improvements on the instances with lower

values of reliabilities used as targets. This happens because while the RB&B stops

finding the first assignment that respects that stopping conditions, the procedure is

aimed at optimizing the assignment to maximize the reliability.

The first model analysed is the Mertens with 7 tasks. The comparison of the results

for the first replication is reported in Table 5.5.

Distr. CV c [s] R∗ [%] δ # Cho-

sen Ass.

Assignment R Improvement

Gamma

0.1 7

75 0.01 26 1, 1, 5, 3, 2, 4, 6 0.922 0%

80 0.01 25 1, 1, 4, 5, 2, 3, 6 0.922 0%

85 0.01 24 1, 1, 2, 5, 3, 4, 6 0.922 0%

90 0.01 27 1, 1, 3, 5, 2, 4, 6 0.922 0%

95 0.01 28 1, 2, 3, 1, 4, 6, 5 0.9476 0%

0.3 10

75 0.01 1 1, 1, 2, 2, 3, 4, 5 0.925 11%

80 0.01 6 1, 1, 4, 4, 2, 3, 5 0.925 11%

85 0.01 7 1, 1, 2, 2, 3, 5, 4 0.925 0%

90 0.01 1 1, 2, 4, 1, 3, 6, 5 0.9658 4%

95 0.01 30 1, 2, 3, 1, 4, 5, 6 0.9658 1%

0.5 15

75 0.01 1 1, 1, 3, 2, 2, 4, 3 0.9221 20%

80 0.01 1 1, 1, 3, 2, 3, 4, 2 0.9217 13%

85 0.01 1 1, 1, 3, 2, 3, 4, 2 0.9217 8%

90 0.01 1 1, 1, 4, 2, 2, 5, 3 0.9655 5%

95 0.01 1 1, 1, 3, 3, 2, 4, 5 0.9777 3%

Average 5.36%

Table 5.5: Results of the Application of the Procedure on Mertens

model

In some of the cases the two methodologies bring to the same result, with no im-

provements in terms of reliability, but it is important to highlight how in none of

the instances of this model the procedure brings to a result that is worse than the

one from the RB&B. On average an improvement of 5% is observed. The second
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model analysed is the Jaeschke with 9 tasks. (Table 5.6)

Distr. CV c [s] R∗[%] δ # Cho-

sen Ass.

Assignment R Improvement

Gamma

0.1 7

75 0.01 17 1, 3, 2, 4, 6, 5, 6, 7, 8 0.9473 3%

80 0.01 16 1, 3, 2, 4, 6, 5, 6, 7, 8 0.9473 3%

85 0.01 16 1, 3, 2, 4, 6, 5, 6, 7, 8 0.9473 3%

90 0.01 17 1, 3, 2, 4, 6, 5, 6, 7, 8 0.9473 3%

95 0.01 18 1, 2, 3, 4, 5, 7, 6, 6, 8 0.9473 0%

0.3 10

75 0.01 1 1, 2, 2, 3, 5, 4, 6, 6, 7 0.9332 19%

80 0.01 1 1, 2, 2, 3, 5, 4, 5, 6, 7 0.9333 15%

85 0.01 1 1, 2, 2, 3, 5, 4, 5, 6, 7 0.9333 -1%

90 0.01 1 1, 2, 3, 4, 6, 5, 7, 7, 8 0.9643 4%

95 0.01 1 1, 2, 3, 4, 5, 6, 7, 7, 8 0.9643 1%

0.5 18

75 0.01 1 1, 2, 1, 2, 2, 3, 4, 3, 4 0.9218 20%

80 0.01 1 1, 2, 1, 2, 3, 3, 2, 4, 4 0.9492 5%

85 0.01 1 1, 2, 1, 2, 3, 3, 2, 4, 4 0.9492 5%

90 0.01 1 1, 2, 1, 2, 3, 3, 2, 4, 4 0.9492 5%

95 0.01 1 1, 2, 1, 2, 4, 3, 5, 4, 5 0.9815 1%

Average 7.06%

Table 5.6: Results of the Application of the Procedure on Jaeschke

model

As the previous model, in some cases no improvements are present. It is also possible

to see that in one case out of the 30 tested for this model, the procedure bring to

a result worse than the one from the RB&B. The diminishing of the reliability is

around 1.4% so, certainly not a huge reduction, but it is not even negligible and it

is worth of noticing.

The average improvement for this model is 7%

The last model analysed is the Jackson with 11 tasks. (Table 5.7)

Distr. CV c [s] R∗[%] δ # Cho-

sen Ass.

Assignment R Improvement

Gamma

0.1 9

75 0.01 1 1, 1, 2, 3, 4, 2, 5, 4, 6, 5, 7 0.8868 9%

80 0.01 1 1, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7 0.8868 9%

85 0.01 1 1, 2, 2, 3, 4, 4, 4, 5, 7, 6, 8 0.9967 12%

90 0.01 25 1, 2, 2, 3, 4, 4, 4, 5, 7, 6, 8 0.9967 7%
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95 0.01 34 1, 4, 3, 2, 1, 5, 4, 6, 5, 7, 8 0.9946 5%

0.3 13

75 0.01 1 1, 1, 2, 3, 2, 2, 4, 5, 4, 6, 6 0.9439 23%

80 0.01 1 1, 1, 2, 4, 2, 2, 5, 3, 6, 5, 6 0.9398 8%

85 0.01 1 1, 1, 3, 2, 3, 3, 5, 4, 6, 5, 6 0.9398 7%

90 0.01 1 1, 1, 2, 3, 2, 2, 5, 4, 6, 5, 6 0.9398 1%

95 0.01 1 1, 2, 2, 3, 4, 4, 6, 5, 6, 7, 7 0.9564 0%

0.5 14

75 0.01 1 1, 1, 2, 3, 2, 2, 5, 4, 6, 5, 6 0.7798 1%

80 0.01 1 1, 1, 2, 4, 5, 2, 6, 3, 6, 5, 7 0.8495 4%

85 0.01 1 1, 1, 3, 2, 5, 3, 6, 4, 6, 5, 7 0.8495 0%

90 0.01 1 1, 4, 3, 2, 3, 4, 4, 5, 7, 6, 8 0.9096 1%

95 0.01 1 1, 4, 3, 2, 3, 4, 4, 6, 5, 7, 8 0.9096 -1%

Average 7.51%

Table 5.7: Results of the Application of the Procedure on Jackson

model

As the previous two models, for some instances there is no change in the perfor-

mances. For the majority of the instances there is a significant improvement and for

two instances the procedure results with a negligible lower reliability with respect

to the simple application of the RB&B. The average improvement is 7%

Looking at the entire set of results the procedure show a beneficial behaviour with

respect to the simple application of the Reliability branch and bound. In 37 instances

over 45 it results in a significant improvement of the performance of the chosen

assignment. Only in two cases it results in a reduction of the performance, 2 of

which are negligible.

5.1.6 Results

To compare the capabilities of the procedure with respect to the other approaches,

it is necessary to observe how many times the procedure achieves a better result

with respect to the other solutions. This analysis is performed looking at all the

instances of the five replications. In the Table 5.8 and in Figure 5.1, it is represented

the number of times the procedure achieves a better, equal or worse result with

respect to the approach of the corresponding column.
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vs.

RB&B on 10’000

obs

Opt. RB&B

on 10’000 obs.

RB&B on 100

obs.

Opt. RB&B

on 100 obs.

Bootstrap

procedure

Higher 192 57 204 111 131

Equal 22 99 18 92 73

Lower 11 69 3 22 21

Table 5.8: Number of times the procedure achieve a higher, equal

or lower results with respect to the other approaches

It is possible to highlight how the procedure achieve an equal or a better result

in most of the cases, if compared to all the other methodologies except one. It

outperforms all the approaches but the optimization performed on the results of the

RB&B applied to the entire dataset. Most of the times the two approaches reach the

same solutions and it is not possible to state which one is better, since the difference

between the number of times that one, or the other, reaches a better solution is not

significant.

Figure 5.1: Comparison of the results of the developed methodology with the other
approaches between the 225 tested instances.

The beneficial behaviour of the procedure comes from the quantity of data needed
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to feed it. In Table 5.9 it is possible to see the time required to collect the 10′000

observations with the highest cycle time c value for each of these lines, and the one

to collect the 100. The reduction is significant.

Model c Time 10000 Observations [Hours] Time 100 Observations [min]

Mertens 15 41.67 25

Jaeschke 18 50 30

Jackson 14 38.89 23.33

Table 5.9: Observation time of the each model with the highest

cycle time.

5.1.7 Sensitivity

Given those results it would be interesting to perform a sensitivity analysis on the

procedure, increasing the number of observations used to feed it. This kind of study

will show up to which point it is necessary to increase the collection of data using

the procedure, to reach a result that is at least equal to the one provided by the

optimization after the RB&B on 10′000 data.

It is decided to apply the procedure to the first 500 observations of the 10′000

generated. Due to constraints related to time and computational power availability,

this kind of comparison is performed only to the five replication of the Mertens (7

tasks) and Jaeshke (9 tasks) configurations.

The results of the application of the procedure are reported in Table 5.10

Model CV c R* Ass. Procedure

(500 obs)

R Procedure

(500 obs)

Mertens7

0.1 7

75% 1, 2, 5, 1, 3, 4, 6 95%

80% 1, 2, 5, 1, 3, 4, 6 95%

85% 1, 2, 5, 1, 3, 4, 6 95%

90% 1, 2, 5, 1, 3, 4, 6 95%

95% 1, 2, 4, 1, 5, 6, 3 95%

0.3 10

75% 1, 1, 4, 4, 2, 3, 5 93%

80% 1, 1, 4, 4, 2, 3, 5 93%

85% 1, 1, 2, 2, 3, 5, 4 93%

90% 1, 2, 4, 1, 3, 5, 6 97%
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95% 1, 2, 4, 1, 3, 5, 6 97%

0.5 15

75% 1, 1, 3, 1, 2, 3, 2 80%

80% 1, 1, 2, 3, 2, 4, 3 92%

85% 1, 1, 2, 4, 2, 3, 4 92%

90% 1, 1, 2, 4, 2, 3, 4 92%

95% 1, 1, 2, 2, 3, 4, 5 98%

Jaeschke9

0.1 7

75% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

80% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

85% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

90% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

95% 1, 3, 2, 4, 5, 7, 6, 6, 8 95%

0.3 10

75% 1, 2, 2, 3, 5, 4, 4, 5, 6 81%

80% 1, 2, 2, 3, 4, 6, 5, 5, 7 93%

85% 1, 2, 2, 3, 4, 5, 6, 6, 7 93%

90% 1, 2, 2, 3, 5, 4, 6, 6, 7 93%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 96%

0.5 18

75% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

80% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

85% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

90% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

95% 1, 1, 2, 2, 3, 4, 4, 3, 5 98%

Table 5.10: Results application of the procedure with 500 observa-

tions.

The results are then compared with the results of the optimization applied on the

results of the RB&B implemented on 10′000 observations. Between the 150 instances

investigated, it is possible to notice that:

• 20 times out of 150 the procedure outperforms the optimization of the results

of the RB&B.

• 118 times out of 150 the two approaches lead to the same results.

• 12 times out of 150 the procedure achieves a worse result in terms of reliability.

On that results it is possible to state that the two approaches lead in general to

similar results. The advantage of using the procedure can be found in the input

cost required to achieve a reliable solution. The 500 observations used to run the
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entire procedure represent the 5% of the 10′000 required to run the RB&B. Thinking

about the 18s of the Jaeschke configuration, only 2.5 hours of data collection are

required, while 50 hours for the running of the RB&B. The time required for the

three systems to collect the data is represented in Figure 5.2.

Figure 5.2: Comparison of time required to collect data.

5.1.8 Complex System

The models tested in the previous sections represents simple lines. The most complex

configuration is Jackson characterized by 11 tasks and 13 precedence relations to

take into account. In order to understand the applicability of the system for future

development, it has been decided to test the procedure on the Mitchell configuration,

with 21 tasks and 27 precedence relations to consider.

Rel. Target RB&B on 10′000 obs. Procedure

75 76% 99% (29%)

80 81% 99% (22%)

85 94% 99% (5%)

90 94% 99% (5%)

95 96% 99% (2%)

Table 5.11: Results of the RB&B and the procedure on 21 tasks

configuration

The task times observations are created using a CV = 0.1 and the RB&B is applied
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with 5 different reliability targets R∗ = {75%, 80%, 85%, 90%, 95%}. The cycle time

used is c = 21 These configurations are tested with 5 independent replications.

The comparison is made between the RB&B applied to 10′000 observations and the

developed procedure applied to 500 observations.

The average between the 5 replications is reported in Table 5.11

It is possible to observe how the outcome of the procedure outperform in all the

instances tested the one from the RB&B. The main drawback is related to the

computational times. The repeated application of the optimization to the Bootstrap

samples requires a huge effort that must be kept in consideration.

This represents the main limit of the procedure. The necessity of hundreds of ap-

plications of both the RB&B and the optimization problem is expensive in terms

of computational power required. This leaves space for further development of the

procedure.

77



Chapter 6

Conclusions

This work is focused in finding a new evolution to the stochastic assembly line

balancing problem. A gap in literature is discovered, due to the extremely limited

presence of data-driven methodologies with this purpose. One of the few approach

of this kind is the one proposed by Diefenbach and Stolletz (2020). Nonetheless, it

is affected by limitations coming from it sample-path nature.

A data-driven method finds straightforward the optimal solution for the entered

dataset, bringing to an outcome that is reliable only if the dataset truly represent

the line, therefore, only if it is “large enough”. This straightforwardness become the

major limit of this approach when the collection of the data results difficult and/or

onerous.

The aim of this work was to create a methodology able to investigate the line starting

from a limited dataset, bringing to a solution that can be an optimum for the line

and not only for the dataset available. In order to accomplish this target, the thesis

starts from the algorithm developed in Diefenbach and Stolletz (2020).

The first step was to identify how the small amount of data available will create

variability into the results of the Reliability-Based Branch & bound developed by

Diefenbach and Stolletz (2020). This kind of study allows to define on one side the

parameters that influence the results and on the other side a threshold in the data

required to achieve a reliable solution. This threshold was identified to be 10′000

observation for each task time.

When the number of observations for each task results to be lower than this value,

the need of exploration of the field of the solution found by the RB&B arises. To
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satisfy this need, the algorithm was inserted in a Bootstrap inspired procedure, where

different scenarios are created resampling with replacement the original dataset. The

RB&B was applied to each of those scenarios obtaining a series of possible results,

each of which has the same importance.

In order to achieve a single task assignment as an outcome, an optimization of the

assignment for each of the results and a ranking and selection procedure was needed.

Those two steps were sequenced to the Bootstrap inspired procedure, creating a

complete methodology able to provide a finite solution to the problem starting from

a reduced dataset.

This methodology is then tested on a series of instances generated according to the

most common way in literature, making stochastic some deterministic benchmark

models from Scholl (2006).

The procedure was compared to more than one approach:

• The RB&B from Diefenbach and Stolletz (2020), applied on 10′000 observa-

tions.

• An Optimization of the tasks assignment after the application of the RB&B

applied on 10′000 observations.

• The RB&B applied on 100 observations.

• An Optimization of the tasks assignment after the application of the RB&B

applied on 100 observations.

• The RB&B inserted in a Bootstrap inspired procedure, sequenced with a rank-

ing and selection procedure (with no optimization). This approach was applied

on 100 Observations.

The methodology developed was tested using only 100 observations. It shows good

performances, not only using 1% of the data with respect the ones required by

the RB&B, but also outperforming almost all the other approaches, bringing to

results that are characterized by an equal or even higher reliability achieved. The

only approach that resulted with slightly better performances is the application of

the optimization after the RB&B on the 10’000 dataset. Hence, it was decided to

perform a sensitivity analysis increasing the data used in the developed methodology.

It was tested with 500 samples for each task time. This analysis showed a reduction
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of the gap between the two procedures that achieved the same result in most of the

cases. In this case the benefits of using the developed methodology are the usage

of 5% of the input data required by the simple usage of the RB&B followed by the

optimization problem.

Finally it was decided to test the procedure on a more complex configuration with

21 tasks. This test is performed for just a restricted number of instances and the

comparison was performed only between the procedure developed and the RB&B

applied to the entire dataset (10′000 observations). The developed procedure outper-

form the RB&B for all the instances tested. This result shows how the effectiveness

of the developed methodology is not limited by the characteristics of the analysed

configuration.

This kind of methodology, being based on the real observation of the task times,

requires the existence of the studied line to be applied, but can find a wide ap-

plication in real life for different reasons. First of all, it is common to deal with

stochastic tasks in today’s industrial environment. This happens with both manual

and automated tasks. Then, the fact that an existing line is required, makes this

procedure suitable to perform a re-balancing of the line, that is a common process

after the opening of new one. Being the performance of a line subject to a wide

variety of influencing parameter, after the theoretical study that lead to the opening

of the line, some adjustments are always required after the opening, moving tasks

between stations to optimize the overall behaviour.

At the same time, some limitations can be identified in the procedure. First of all its

applicability it is intended to be reduced with the advent of industry 4.0 that allows

a smoother and easier collection of data on the lines. Nonetheless, as previously

said, the data collection will always have a cost and there will always be cases in

which the observation of the line must be limited as much as possible.

Furthermore, the biggest limit of the procedure can be highlighted from the per-

formed tests. The computational effort required by the procedure cannot be ne-

glected. The generation of all the scenarios and the application of the branch and

bound and of the optimization problem to all the Bootstrap samples generated re-

quire a substantial computational power. The requested power increases with the

complexity of the configurations, limiting the instances on which the procedure can

be tested in this work.

Based on these limits, it is possible to find space for future development and im-
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provement. One of the possibilities is the structuring of the entire procedure in

order to reduce the overall computational times. In this context the optimization

is performed through the “Optimization Toolbox” in MatLab. Possible ways to im-

prove the efficiency of the procedure can be studied, looking at the relation between

the complexity of the line and the number of bootstrap estimate required to achieve

reliable results. The development of a new optimization procedure can help in the

reduction of the time required from this part of the developed methodology.

Finally, it would be interesting to run an experimental campaign both on data from

real lines with the availability of collection of huge quantities of data and from a

more complex systems. This would allows to test the performance on the real field

and to perform a proper stress test of the procedure, opening to a new research to

deal with higher complexity.

In general, the literature about data-driven stochastic assembly line balancing re-

mains poor. Therefore, any kind of study that enlarge the knowledge about this

type of problem and this type of approach to the solution is useful to create a sub-

stantial literature about one of the problems that is quite close to the reality and

can find huge practical applications. The limited amount of assumptions required

on this types of problems makes it worth it for future investigations.
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Appendix A

Appendix

A.1 RB&B Replications with data from a Normal

Distribution

Line

configu-

ration

CV c Different

Outcomes

N = 10′000

Different

Assign-

ments

N = 10′000

Different

Outcomes

N = 100

Different

Assign-

ments

N = 100

Mertens

0.1
7 1 1 2 5

8 1 1 2 2

10 1 1 2 13

15 1 1 1 2

18 1 1 1 2

0.3

10 1 1 3 9

15 1 1 2 11

18 1 1 1 6

0.5
15 1 1 2 31

18 1 1 2 16

Jackson

0.1
9 1 1 2 27

10 1 1 2 22

13 1 1 2 10

14 1 1 1 10

21 1 1 1 4

0.3

13 1 1 2 50

14 1 1 2 67

21 1 1 2 42

0.5
14 1 1 3 305

21 1 1 2 80
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Table A.1: Summary Independent Replication Experiments on

data from a Normal Distribution.

A.1.1 Application of the Bootstrap Methodology with B =

1000 Bootstrap replications to data-set with N = 100, 500, 1000

Config. CV c N = 100 N = 500 N = 1000

Mertens7

0.1

7 1000 1000 1000
8 938.5 999.6 1000
10 224.5 634 674.5
15 1000 1000 1000
18 1000 1000 1000

0.3
10 711.4 861.6 887.9
15 996.5 999.9 1000
18 992.6 1000 1000

0.5
15 951.8 983.9 985.6
18 999.7 999.7 1000

Jaeschke9

0.1

7 1000 1000 1000
8 862.2 997.5 1000
10 355.8 557.5 687.3
18 1000 1000 1000

0.3
10 887.7 817.4 916.3
18 944.2 1000 1000

0.5 18 998.5 1000 1000

Jackson11

0.1

9 650.9 995.1 1000
10 411.7 514.4 660.4
13 988.2 1000 1000
14 999.5 1000 1000
21 1000 1000 1000

0.3
13 992.4 1000 1000
14 346.5 938.1 996.8
21 945.5 922.3 851.6

0.5
14 342.3 875.5 969.6
21 999.2 1000 1000

Table A.2: Number of appearances between the 1000 bootstrap replication, of the
outcome in terms of minimum number of workstations from the application of the
RB&B to 10′000 observations.
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A.1.2 Application of the RB&B to the full dataset

Application of the RB&B to the full dataset (10’000 observations) of all the 5 repli-

cations.

Rep. Mod. CV c [s] R∗ [%] Assignment R [%]

Rep 1

Mertens

0.1 7

75% 1, 1, 4, 5, 2, 3, 6 92%

80% 1, 1, 4, 5, 2, 3, 6 92%

85% 1, 1, 4, 5, 2, 3, 6 92%

90% 1, 1, 4, 5, 2, 3, 6 92%

95% 1, 2, 3, 1, 4, 6, 5 95%

0.3 10

75% 1, 1, 5, 2, 2, 3, 4 84%

80% 1, 1, 5, 2, 2, 3, 4 84%

85% 1, 1, 2, 2, 3, 5, 4 93%

90% 1, 1, 4, 4, 2, 3, 5 93%

95% 1, 1, 4, 5, 2, 3, 6 96%

0.5 15

75% 1, 1, 2, 3, 1, 2, 3 77%

80% 1, 1, 4, 2, 1, 2, 3 82%

85% 1, 1, 3, 3, 1, 2, 4 85%

90% 2, 2, 3, 5, 3, 4, 5 92%

95% 1, 1, 5, 1, 3, 4, 2 95%

Jaeschke

0.1 7

75% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

80% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

85% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

90% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

0.3 10

75% 1, 2, 2, 3, 4, 5, 6, 4, 6 78%

80% 1, 2, 2, 3, 4, 5, 5, 4, 6 81%

85% 1, 2, 2, 3, 4, 6, 7, 5, 7 89%

90% 1, 2, 2, 3, 5, 4, 3, 6, 7 93%

95% 1, 2, 3, 4, 5, 7, 7, 6, 8 96%

0.5 18

75% 1, 1, 1, 2, 2, 2, 3, 3, 3 77%

80% 1, 1, 1, 2, 3, 2, 2, 3, 4 90%

85% 1, 1, 1, 2, 3, 2, 2, 3, 4 90%

90% 1, 1, 1, 2, 3, 2, 2, 3, 4 90%

95% 1, 2, 1, 2, 3, 3, 2, 4, 5 97%

Jackson

0.1 9

75% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%

80% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%

85% 1, 2, 2, 4, 1, 3, 5, 3, 5, 6, 7 89%

90% 1, 1, 3, 2, 4, 3, 6, 4, 7, 5, 8 93%

95% 1, 4, 3, 2, 1, 5, 3, 6, 4, 7, 8 95%

0.3 13

75% 1, 1, 3, 4, 1, 2, 4, 2, 5, 3, 5 77%

80% 1, 3, 2, 4, 5, 3, 5, 3, 6, 5, 6 87%
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85% 1, 1, 4, 2, 2, 1, 4, 3, 5, 6, 6 88%

90% 1, 2, 2, 4, 5, 3, 5, 3, 6, 5, 6 93%

95% 1, 1, 3, 2, 1, 4, 3, 5, 4, 6, 7 95%

0.5 14

75% 1, 2, 2, 4, 1, 2, 5, 3, 6, 5, 6 77%

80% 1, 2, 3, 5, 1, 2, 6, 4, 6, 7, 7 82%

85% 1, 4, 3, 2, 5, 5, 5, 6, 7, 8, 8 85%

90% 1, 4, 3, 2, 1, 4, 4, 5, 6, 7, 8 90%

95% 1, 3, 5, 2, 7, 3, 7, 4, 8, 6, 9 92%

Rep 2

Mertens

0.1 7

75% 1, 1, 4, 5, 2, 3, 6 92%

80% 1, 1, 4, 5, 2, 3, 6 92%

85% 1, 1, 4, 5, 2, 3, 6 92%

90% 1, 1, 4, 5, 2, 3, 6 92%

95% 1, 2, 3, 1, 5, 6, 4 95%

0.3 10

75% 1, 1, 5, 2, 2, 3, 4 83%

80% 1, 1, 5, 2, 2, 3, 4 83%

85% 1, 1, 2, 2, 3, 5, 4 92%

90% 1, 1, 4, 4, 2, 3, 5 92%

95% 1, 1, 4, 5, 2, 3, 6 95%

0.5 15

75% 1, 1, 2, 3, 1, 2, 3 77%

80% 1, 1, 4, 2, 1, 2, 3 82%

85% 1, 1, 3, 3, 1, 2, 4 85%

90% 2, 2, 5, 4, 3, 4, 5 90%

95% 1, 1, 2, 3, 4, 5, 3 96%

Jaeschke

0.1 7

75% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

80% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

85% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

90% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

0.3 10

75% 1, 2, 2, 3, 4, 5, 6, 4, 6 79%

80% 1, 2, 2, 3, 4, 5, 5, 4, 6 82%

85% 1, 2, 2, 3, 4, 6, 7, 5, 7 89%

90% 1, 2, 2, 3, 5, 4, 3, 6, 7 92%

95% 1, 2, 3, 4, 5, 7, 7, 6, 8 95%

0.5 18

75% 1, 1, 1, 2, 2, 2, 3, 3, 3 76%

80% 1, 1, 1, 2, 3, 2, 2, 3, 4 90%

85% 1, 1, 1, 2, 3, 2, 2, 3, 4 90%

90% 1, 1, 2, 2, 3, 4, 4, 3, 4 91%

95% 1, 2, 1, 2, 3, 3, 2, 4, 5 97%

Jackson

0.1 9

75% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%

80% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%

85% 1, 2, 2, 3, 2, 5, 4, 5, 4, 6, 7 85%

90% 1, 1, 3, 2, 4, 3, 6, 4, 7, 5, 8 93%

95% 1, 3, 3, 2, 1, 5, 4, 6, 4, 7, 8 95%
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0.3 13

75% 1, 1, 3, 4, 1, 2, 4, 2, 5, 3, 5 77%

80% 1, 3, 2, 4, 5, 3, 5, 3, 6, 5, 6 88%

85% 1, 1, 5, 2, 2, 1, 5, 3, 6, 4, 6 87%

90% 1, 2, 2, 4, 5, 3, 5, 3, 6, 5, 6 93%

95% 1, 1, 3, 2, 1, 4, 3, 5, 4, 6, 7 95%

0.5 14

75% 1, 2, 2, 4, 1, 2, 5, 3, 5, 6, 6 78%

80% 1, 2, 3, 5, 1, 2, 6, 4, 6, 7, 7 82%

85% 1, 6, 3, 2, 3, 6, 4, 7, 5, 8, 8 85%

90% 1, 4, 3, 2, 1, 4, 4, 5, 6, 7, 8 90%

95% 1, 5, 2, 3, 2, 5, 4, 6, 7, 8, 9 91%

Rep 3

Mertens

0.1 7

75% 1, 1, 4, 5, 2, 3, 6 92%

80% 1, 1, 4, 5, 2, 3, 6 92%

85% 1, 1, 4, 5, 2, 3, 6 92%

90% 1, 1, 4, 5, 2, 3, 6 92%

95% 1, 2, 3, 1, 4, 6, 5 95%

0.3 10

75% 1, 1, 5, 2, 2, 3, 4 84%

80% 1, 1, 5, 2, 2, 3, 4 84%

85% 1, 1, 2, 2, 3, 5, 4 93%

90% 1, 1, 4, 4, 2, 3, 5 93%

95% 1, 1, 4, 5, 2, 3, 6 96%

0.5 15

75% 1, 1, 2, 3, 1, 2, 3 77%

80% 1, 1, 4, 2, 1, 2, 3 82%

85% 1, 1, 3, 3, 1, 2, 4 85%

90% 2, 2, 3, 5, 3, 4, 5 92%

95% 1, 1, 2, 4, 3, 5, 4 96%

Jaeschke

0.1 7

75% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

80% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

85% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

90% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

0.3 10

75% 1, 2, 2, 3, 4, 5, 6, 4, 6 79%

80% 1, 2, 2, 3, 4, 5, 5, 4, 6 81%

85% 1, 2, 2, 3, 4, 6, 7, 5, 7 89%

90% 1, 2, 2, 3, 5, 4, 3, 6, 7 92%

95% 1, 2, 3, 4, 5, 7, 7, 6, 8 95%

0.5 18

75% 1, 1, 1, 2, 2, 2, 3, 3, 3 76%

80% 1, 1, 1, 2, 3, 2, 2, 3, 4 90%

85% 1, 1, 1, 2, 3, 2, 2, 3, 4 90%

90% 1, 1, 2, 2, 3, 4, 4, 3, 4 91%

95% 1, 2, 1, 2, 3, 3, 2, 4, 5 97%

Jackson

0.1 9

75% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%

80% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%

85% 1, 2, 2, 4, 1, 3, 5, 3, 5, 6, 7 89%
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90% 1, 1, 3, 2, 4, 3, 6, 4, 7, 5, 8 93%

95% 1, 3, 3, 2, 1, 4, 4, 5, 6, 7, 8 99%

0.3 13

75% 1, 1, 3, 4, 1, 2, 4, 2, 5, 3, 5 76%

80% 1, 5, 2, 3, 4, 5, 4, 5, 4, 6, 6 87%

85% 1, 1, 5, 2, 2, 1, 5, 3, 6, 4, 6 88%

90% 1, 2, 2, 3, 4, 5, 4, 5, 4, 6, 6 93%

95% 1, 1, 3, 2, 1, 4, 3, 5, 4, 6, 7 95%

0.5 14

75% 1, 2, 2, 4, 5, 3, 5, 3, 6, 5, 6 77%

80% 1, 2, 3, 5, 1, 2, 6, 4, 6, 7, 7 81%

85% 1, 4, 3, 2, 4, 5, 6, 5, 6, 7, 8 86%

90% 1, 4, 2, 3, 2, 4, 4, 5, 6, 7, 8 90%

95% 1, 3, 2, 6, 7, 3, 7, 4, 8, 5, 9 91%

Rep 4

Mertens

0.1 7

75% 1, 1, 4, 5, 2, 3, 6 92%

80% 1, 1, 4, 5, 2, 3, 6 92%

85% 1, 1, 4, 5, 2, 3, 6 92%

90% 1, 1, 4, 5, 2, 3, 6 92%

95% 1, 2, 3, 1, 4, 6, 5 94%

0.3 10

75% 1, 1, 5, 2, 2, 3, 4 84%

80% 1, 1, 5, 2, 2, 3, 4 84%

85% 1, 1, 2, 2, 3, 5, 4 92%

90% 1, 1, 4, 4, 2, 3, 5 92%

95% 1, 1, 4, 5, 2, 3, 6 96%

0.5 15

75% 1, 1, 2, 3, 1, 2, 3 77%

80% 1, 1, 4, 2, 1, 2, 3 81%

85% 1, 1, 4, 3, 2, 4, 3 89%

90% 2, 2, 5, 3, 3, 4, 5 92%

95% 1, 1, 2, 4, 3, 5, 4 96%

Jaeschke

0.1 7

75% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

80% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

85% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

90% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

0.3 10

75% 1, 2, 2, 3, 4, 5, 6, 4, 6 79%

80% 1, 2, 2, 3, 4, 5, 5, 4, 6 81%

85% 1, 2, 2, 3, 4, 6, 7, 5, 7 90%

90% 1, 2, 2, 3, 5, 4, 3, 6, 7 92%

95% 1, 2, 3, 4, 5, 7, 7, 6, 8 95%

0.5 18

75% 1, 1, 1, 2, 2, 2, 3, 3, 3 75%

80% 1, 1, 1, 2, 3, 2, 2, 3, 4 89%

85% 1, 1, 1, 2, 3, 2, 2, 3, 4 89%

90% 1, 1, 1, 2, 3, 2, 3, 3, 4 91%

95% 1, 2, 1, 2, 3, 3, 2, 4, 5 97%

Jackson

0.1 9

75% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%
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80% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%

85% 1, 2, 2, 3, 2, 5, 4, 5, 4, 6, 7 86%

90% 1, 1, 3, 2, 3, 3, 6, 4, 7, 5, 8 90%

95% 1, 3, 3, 2, 1, 4, 4, 5, 7, 6, 8 99%

0.3 13

75% 1, 1, 3, 4, 1, 2, 4, 2, 5, 3, 5 77%

80% 1, 5, 2, 3, 4, 5, 4, 5, 4, 6, 6 87%

85% 1, 1, 5, 2, 2, 1, 5, 3, 6, 4, 6 87%

90% 1, 2, 2, 3, 4, 5, 4, 5, 4, 6, 6 93%

95% 1, 1, 3, 2, 1, 4, 3, 5, 4, 6, 7 96%

0.5 14

75% 1, 2, 2, 4, 5, 3, 5, 3, 6, 5, 6 78%

80% 1, 2, 3, 5, 1, 2, 6, 4, 6, 7, 7 82%

85% 1, 4, 3, 2, 3, 4, 4, 5, 6, 7, 7 85%

90% 1, 4, 3, 2, 1, 4, 4, 5, 6, 7, 8 91%

95% 1, 4, 2, 3, 2, 4, 4, 5, 6, 7, 8 91%

Rep 5

Mertens

0.1 7

75% 1, 1, 4, 5, 2, 3, 6 92%

80% 1, 1, 4, 5, 2, 3, 6 92%

85% 1, 1, 4, 5, 2, 3, 6 92%

90% 1, 1, 4, 5, 2, 3, 6 92%

95% 1, 2, 3, 1, 4, 6, 5 95%

0.3 10

75% 1, 1, 5, 2, 2, 3, 4 84%

80% 1, 1, 5, 2, 2, 3, 4 84%

85% 1, 1, 2, 2, 3, 5, 4 93%

90% 1, 1, 4, 4, 2, 3, 5 93%

95% 1, 1, 4, 5, 2, 3, 6 96%

0.5 15

75% 1, 1, 2, 3, 1, 2, 3 77%

80% 1, 1, 4, 2, 1, 2, 3 82%

85% 1, 1, 3, 3, 1, 2, 4 85%

90% 2, 2, 3, 5, 3, 4, 5 92%

95% 1, 1, 2, 4, 3, 5, 4 96%

Jaeschke

0.1 7

75% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

80% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

85% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

90% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

0.3 10

75% 1, 2, 2, 3, 4, 5, 6, 4, 6 79%

80% 1, 2, 2, 3, 4, 5, 5, 4, 6 81%

85% 1, 2, 2, 3, 4, 6, 7, 5, 7 89%

90% 1, 2, 2, 3, 5, 4, 3, 6, 7 92%

95% 1, 2, 3, 4, 5, 7, 7, 6, 8 95%

0.5 18

75% 1, 1, 1, 2, 2, 2, 3, 3, 3 76%

80% 1, 1, 1, 2, 3, 2, 2, 3, 4 90%

85% 1, 1, 1, 2, 3, 2, 2, 3, 4 90%

90% 1, 1, 2, 2, 3, 4, 4, 3, 4 91%
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95% 1, 2, 1, 2, 3, 3, 2, 4, 5 97%

Jackson

0.1 9

75% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%

80% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%

85% 1, 2, 2, 4, 1, 3, 5, 3, 5, 6, 7 89%

90% 1, 1, 3, 2, 4, 3, 6, 4, 7, 5, 8 93%

95% 1, 3, 3, 2, 1, 4, 4, 5, 6, 7, 8 99%

0.3 13

75% 1, 1, 3, 4, 1, 2, 4, 2, 5, 3, 5 76%

80% 1, 5, 2, 3, 4, 5, 4, 5, 4, 6, 6 87%

85% 1, 1, 5, 2, 2, 1, 5, 3, 6, 4, 6 88%

90% 1, 2, 2, 3, 4, 5, 4, 5, 4, 6, 6 93%

95% 1, 1, 3, 2, 1, 4, 3, 5, 4, 6, 7 95%

0.5 14

75% 1, 2, 2, 4, 5, 3, 5, 3, 6, 5, 6 77%

80% 1, 2, 3, 5, 1, 2, 6, 4, 6, 7, 7 81%

85% 1, 4, 3, 2, 4, 5, 6, 5, 6, 7, 8 86%

90% 1, 4, 2, 3, 2, 4, 4, 5, 6, 7, 8 90%

95% 1, 3, 2, 6, 7, 3, 7, 4, 8, 5, 9 91%

Table A.3: Results of the Application of the RB&B to the full

Datasets in all the replications.
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A.1.3 Application of the RB&B to the reduced Dataset.

Application of the RB&B to the reduced dataset (100 observations) of all the 5

replications.

Rep. Mod. CV c [s] R∗ [%] Assignment R [%]

Rep 1

Mertens7

0.1 7

75% 1, 1, 4, 5, 2, 3, 6 92%

80% 1, 1, 4, 5, 2, 3, 6 92%

85% 1, 1, 4, 5, 2, 3, 6 92%

90% 1, 1, 4, 5, 2, 3, 6 92%

95% 1, 2, 3, 1, 4, 6, 5 95%

0.3 10

75% 1, 1, 5, 2, 2, 3, 4 84%

80% 1, 1, 5, 2, 2, 3, 4 84%

85% 1, 1, 5, 2, 2, 3, 4 84%

90% 1, 1, 4, 4, 2, 3, 5 93%

95% 1, 2, 3, 3, 4, 6, 5 94%

0.5 15

75% 1, 1, 2, 3, 1, 2, 3 77%

80% 2, 3, 4, 2, 3, 4, 2 80%

85% 1, 1, 3, 3, 1, 2, 4 85%

90% 1, 1, 1, 2, 2, 3, 4 90%

95% 1, 1, 1, 2, 2, 3, 4 90%

Jaeschke9

0.1 7

75% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

80% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

85% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

90% 1, 2, 3, 4, 5, 7, 7, 6, 8 92%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

0.3 10

75% 1, 2, 2, 3, 4, 5, 6, 4, 6 78%

80% 1, 1, 2, 3, 5, 4, 3, 6, 7 83%

85% 1, 1, 2, 3, 5, 4, 3, 6, 7 83%

90% 1, 2, 2, 3, 5, 4, 3, 6, 7 93%

95% 1, 2, 3, 4, 5, 7, 7, 6, 8 96%

0.5 18

75% 1, 1, 1, 2, 2, 2, 3, 3, 3 77%

80% 1, 1, 1, 2, 2, 2, 3, 3, 4 80%

85% 1, 1, 1, 2, 3, 2, 2, 3, 4 90%

90% 1, 1, 1, 2, 3, 2, 2, 3, 4 90%

95% 1, 2, 1, 2, 2, 3, 3, 3, 4 92%

Jackson11

0.1 9

75% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%

80% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%

85% 1, 2, 2, 3, 2, 5, 4, 5, 4, 6, 7 86%

90% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 7 89%

95% 1, 4, 3, 2, 1, 5, 3, 6, 4, 7, 8 95%

0.3 13

75% 1, 3, 1, 2, 4, 3, 4, 3, 4, 5, 5 71%

80% 1, 4, 1, 2, 2, 4, 3, 5, 3, 6, 6 77%
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85% 1, 1, 4, 2, 1, 1, 4, 3, 6, 5, 6 81%

90% 1, 5, 2, 3, 4, 5, 4, 5, 4, 6, 6 87%

95% 1, 2, 2, 3, 4, 5, 4, 5, 4, 6, 6 93%

0.5 14

75% 1, 4, 2, 3, 5, 4, 5, 4, 5, 6, 6 72%

80% 1, 1, 3, 4, 3, 1, 5, 2, 5, 6, 6 74%

85% 1, 2, 2, 3, 2, 5, 4, 5, 4, 6, 6 78%

90% 1, 2, 2, 3, 1, 4, 4, 5, 7, 6, 7 83%

95% 1, 2, 2, 3, 2, 4, 4, 5, 6, 7, 8 89%

Rep 2

Mertens7

0.1 7

75% 1, 1, 4, 5, 2, 3, 6 92%

80% 1, 1, 4, 5, 2, 3, 6 92%

85% 1, 1, 4, 5, 2, 3, 6 92%

90% 1, 2, 3, 1, 5, 6, 4 95%

95% 1, 2, 3, 1, 5, 6, 4 95%

0.3 10

75% 1, 1, 2, 4, 2, 3, 5 69%

80% 1, 1, 2, 4, 3, 5, 4 83%

85% 1, 1, 2, 2, 3, 5, 4 92%

90% 1, 1, 4, 4, 2, 3, 5 92%

95% 1, 1, 4, 5, 2, 3, 6 95%

0.5 15

75% 1, 1, 3, 2, 1, 2, 3 79%

80% 1, 1, 4, 2, 1, 2, 3 82%

85% 1, 1, 3, 3, 1, 2, 4 85%

90% 2, 2, 4, 3, 4, 5, 3 92%

95% 1, 1, 2, 4, 3, 5, 4 96%

Jaeschke9

0.1 7

75% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

80% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

85% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

90% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

95% 1, 2, 3, 4, 5, 7, 7, 6, 8 92%

0.3 10

75% 1, 1, 2, 3, 5, 4, 4, 5, 6 74%

80% 1, 1, 2, 3, 5, 4, 3, 6, 7 83%

85% 1, 1, 2, 3, 5, 4, 3, 6, 7 83%

90% 1, 2, 2, 3, 5, 4, 6, 6, 7 93%

95% 1, 3, 2, 4, 6, 5, 4, 7, 8 95%

0.5 18

75% 1, 1, 1, 2, 2, 2, 3, 3, 3 76%

80% 1, 1, 1, 2, 3, 2, 2, 3, 3 76%

85% 1, 1, 1, 2, 2, 3, 3, 2, 3 79%

90% 1, 1, 1, 2, 3, 2, 2, 3, 4 90%

95% 1, 1, 1, 2, 2, 3, 2, 3, 4 91%

Jackson11

0.1 9

75% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%

80% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%

85% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%

90% 1, 1, 3, 2, 4, 3, 5, 4, 5, 6, 7 89%

95% 1, 1, 3, 2, 4, 3, 6, 4, 7, 5, 8 93%
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0.3 13

75% 1, 2, 1, 2, 2, 4, 3, 4, 3, 5, 5 71%

80% 1, 2, 1, 2, 3, 3, 4, 3, 4, 5, 5 73%

85% 1, 1, 5, 2, 2, 1, 5, 3, 6, 4, 6 87%

90% 1, 1, 5, 2, 1, 2, 5, 3, 6, 4, 6 89%

95% 1, 2, 2, 3, 4, 5, 4, 5, 4, 6, 6 93%

0.5 14

75% 1, 2, 2, 4, 1, 2, 5, 3, 6, 5, 6 78%

80% 1, 2, 2, 5, 1, 3, 6, 4, 7, 6, 7 81%

85% 1, 2, 2, 4, 1, 2, 5, 3, 5, 6, 7 83%

90% 1, 2, 5, 3, 1, 2, 5, 4, 6, 7, 8 88%

95% 1, 2, 2, 3, 2, 4, 4, 5, 6, 7, 8 89%

Rep 3

Mertens7

0.1 7

75% 1, 1, 4, 5, 2, 3, 6 92%

80% 1, 1, 4, 5, 2, 3, 6 92%

85% 1, 1, 4, 5, 2, 3, 6 92%

90% 1, 1, 4, 5, 2, 3, 6 92%

95% 1, 2, 3, 1, 4, 6, 5 95%

0.3 10

75% 1, 1, 5, 2, 2, 3, 4 84%

80% 1, 1, 5, 2, 2, 3, 4 84%

85% 1, 1, 5, 2, 2, 3, 4 84%

90% 3, 3, 6, 6, 4, 5, 7 93%

95% 1, 1, 4, 5, 2, 3, 6 96%

0.5 15

75% 1, 1, 2, 3, 1, 2, 3 77%

80% 1, 1, 2, 3, 1, 2, 3 77%

85% 1, 1, 3, 3, 1, 2, 4 85%

90% 1, 1, 1, 2, 2, 3, 4 89%

95% 1, 1, 5, 1, 2, 3, 4 95%

Jaeschke9

0.1 7

75% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

80% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

85% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

90% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

0.3 10

75% 1, 2, 2, 3, 4, 5, 6, 4, 6 79%

80% 1, 2, 2, 3, 4, 5, 6, 4, 6 79%

85% 1, 2, 2, 3, 4, 6, 7, 5, 7 89%

90% 1, 2, 2, 3, 5, 4, 3, 6, 7 92%

95% 1, 2, 3, 4, 5, 7, 8, 6, 8 92%

0.5 18

75% 1, 1, 1, 2, 2, 2, 3, 3, 3 76%

80% 1, 1, 1, 2, 3, 2, 2, 3, 3 76%

85% 1, 1, 1, 2, 2, 3, 3, 2, 3 78%

90% 1, 1, 1, 2, 3, 2, 2, 3, 4 90%

95% 1, 1, 1, 2, 2, 3, 2, 3, 4 91%

Jackson11

0.1 9

75% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%

80% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%

85% 1, 2, 2, 4, 1, 3, 5, 3, 6, 5, 7 89%
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90% 1, 1, 3, 2, 4, 3, 6, 4, 7, 5, 8 93%

95% 1, 4, 3, 2, 1, 5, 3, 6, 4, 7, 8 95%

0.3 13

75% 1, 3, 2, 4, 5, 3, 5, 3, 6, 5, 6 86%

80% 1, 2, 2, 4, 5, 3, 5, 3, 6, 5, 6 92%

85% 1, 2, 2, 4, 5, 3, 5, 3, 6, 5, 6 92%

90% 1, 2, 2, 4, 4, 3, 5, 3, 6, 5, 6 93%

95% 1, 1, 3, 2, 1, 4, 3, 5, 4, 6, 7 95%

0.5 14

75% 1, 1, 4, 2, 5, 1, 5, 3, 5, 6, 6 72%

80% 1, 1, 3, 2, 2, 1, 3, 4, 6, 5, 6 72%

85% 1, 2, 2, 4, 1, 3, 5, 3, 7, 6, 7 80%

90% 1, 2, 6, 4, 2, 2, 6, 3, 7, 5, 8 89%

95% 1, 4, 2, 3, 2, 4, 4, 5, 6, 7, 8 90%

Rep 4

Mertens7

0.1 7

75% 1, 1, 4, 5, 2, 3, 6 92%

80% 1, 1, 4, 5, 2, 3, 6 92%

85% 1, 1, 4, 5, 2, 3, 6 92%

90% 1, 1, 4, 5, 2, 3, 6 92%

95% 1, 1, 4, 5, 2, 3, 6 92%

0.3 10

75% 1, 1, 5, 2, 2, 3, 4 84%

80% 1, 1, 5, 2, 2, 3, 4 84%

85% 1, 1, 2, 4, 3, 5, 4 84%

90% 1, 1, 4, 4, 2, 3, 5 92%

95% 1, 2, 3, 1, 4, 6, 5 96%

0.5 15

75% 1, 1, 2, 3, 1, 2, 3 77%

80% 1, 1, 2, 3, 1, 2, 3 77%

85% 1, 1, 4, 2, 1, 2, 3 81%

90% 1, 1, 1, 2, 2, 3, 4 89%

95% 2, 2, 4, 2, 4, 5, 3 90%

Jaeschke9

0.1 7

75% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

80% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

85% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

90% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

0.3 10

75% 1, 1, 2, 3, 5, 4, 3, 5, 6 74%

80% 1, 2, 2, 3, 4, 5, 6, 4, 6 79%

85% 1, 2, 2, 3, 5, 4, 3, 5, 6 81%

90% 1, 2, 2, 3, 5, 4, 3, 6, 7 92%

95% 1, 2, 2, 3, 5, 4, 3, 6, 7 92%

0.5 18

75% 1, 1, 1, 2, 2, 3, 2, 2, 3 75%

80% 1, 1, 1, 2, 3, 2, 2, 3, 4 89%

85% 1, 1, 1, 2, 3, 2, 2, 3, 4 89%

90% 1, 1, 1, 2, 3, 2, 2, 3, 4 89%

95% 1, 1, 2, 2, 3, 3, 4, 4, 4 93%

Jackson11

0.1 9

75% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%
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80% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%

85% 1, 1, 3, 2, 2, 3, 5, 4, 6, 5, 7 83%

90% 1, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7 90%

95% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 7 89%

0.3 13

75% 1, 3, 1, 2, 4, 3, 4, 3, 4, 5, 5 71%

80% 1, 1, 3, 4, 3, 2, 4, 2, 5, 3, 5 70%

85% 1, 1, 4, 2, 2, 1, 5, 3, 5, 4, 6 82%

90% 1, 2, 2, 4, 5, 3, 5, 3, 6, 5, 6 93%

95% 1, 2, 2, 4, 2, 3, 5, 3, 6, 5, 6 94%

0.5 14

75% 1, 1, 4, 2, 5, 1, 5, 3, 5, 6, 6 73%

80% 1, 2, 2, 4, 5, 3, 5, 3, 6, 5, 6 78%

85% 1, 2, 2, 4, 1, 2, 5, 3, 5, 6, 6 78%

90% 1, 3, 5, 2, 1, 3, 5, 4, 6, 7, 7 82%

95% 1, 4, 3, 2, 1, 4, 4, 5, 6, 7, 8 91%

Rep 5

Mertens7

0.1 7

75% 1, 1, 4, 5, 2, 3, 6 92%

80% 1, 1, 4, 5, 2, 3, 6 92%

85% 1, 1, 4, 5, 2, 3, 6 92%

90% 1, 1, 4, 5, 2, 3, 6 92%

95% 1, 2, 3, 1, 4, 6, 5 95%

0.3 10

75% 1, 1, 5, 2, 2, 3, 4 84%

80% 1, 1, 5, 2, 2, 3, 4 84%

85% 1, 1, 5, 2, 2, 3, 4 84%

90% 3, 3, 6, 6, 4, 5, 7 93%

95% 1, 1, 4, 5, 2, 3, 6 96%

0.5 15

75% 1, 1, 2, 3, 1, 2, 3 77%

80% 1, 1, 2, 3, 1, 2, 3 77%

85% 1, 1, 3, 3, 1, 2, 4 85%

90% 1, 1, 1, 2, 2, 3, 4 89%

95% 1, 1, 5, 1, 2, 3, 4 95%

Jaeschke9

0.1 7

75% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

80% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

85% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

90% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

0.3 10

75% 1, 2, 2, 3, 4, 5, 6, 4, 6 79%

80% 1, 2, 2, 3, 4, 5, 6, 4, 6 79%

85% 1, 2, 2, 3, 4, 6, 7, 5, 7 89%

90% 1, 2, 2, 3, 5, 4, 3, 6, 7 92%

95% 1, 2, 3, 4, 5, 7, 8, 6, 8 92%

0.5 18

75% 1, 1, 1, 2, 2, 2, 3, 3, 3 76%

80% 1, 1, 1, 2, 3, 2, 2, 3, 4 90%

85% 1, 1, 1, 2, 3, 2, 2, 4, 4 88%

90% 1, 2, 1, 2, 2, 3, 3, 3, 4 91%
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95% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

Jackson11

0.1 9

75% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%

80% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%

85% 1, 2, 2, 4, 1, 3, 5, 3, 6, 5, 7 89%

90% 1, 1, 3, 2, 4, 3, 6, 4, 7, 5, 8 93%

95% 1, 4, 3, 2, 1, 5, 3, 6, 4, 7, 8 95%

0.3 13

75% 1, 3, 2, 4, 5, 3, 5, 3, 6, 5, 6 86%

80% 1, 2, 2, 4, 5, 3, 5, 3, 6, 5, 6 92%

85% 1, 2, 2, 4, 5, 3, 5, 3, 6, 5, 6 92%

90% 1, 2, 2, 4, 4, 3, 5, 3, 6, 5, 6 93%

95% 1, 1, 3, 2, 1, 4, 3, 5, 4, 6, 7 95%

0.5 14

75% 1, 1, 4, 2, 5, 1, 5, 3, 5, 6, 6 72%

80% 1, 1, 3, 2, 2, 1, 3, 4, 6, 5, 6 72%

85% 1, 2, 2, 4, 1, 3, 5, 3, 7, 6, 7 80%

90% 1, 2, 6, 4, 2, 2, 6, 3, 7, 5, 8 89%

95% 1, 4, 2, 3, 2, 4, 4, 5, 6, 7, 8 90%

Table A.4: Results of the Application of the RB&B to the Reduced

Datasets in all the replications.
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A.1.4 Optimization of the RB&B results applied on the full

dataset

Rep. Mod. CV c [s] R∗ [%] Assignment R [%]

Rep 1

Mertens7

0.1 7

75% 1, 2, 6, 1, 4, 5, 3 95%

80% 1, 2, 6, 1, 4, 5, 3 95%

85% 1, 2, 6, 1, 4, 5, 3 95%

90% 1, 2, 6, 1, 4, 5, 3 95%

95% 1, 2, 6, 1, 4, 5, 3 95%

0.3 10

75% 1, 1, 2, 2, 4, 5, 3 93%

80% 1, 1, 2, 2, 4, 5, 3 93%

85% 1, 1, 2, 2, 4, 5, 3 93%

90% 1, 1, 2, 2, 4, 5, 3 93%

95% 1, 2, 3, 1, 5, 6, 4 97%

0.5 15

75% 1, 2, 3, 1, 2, 3, 1 80%

80% 1, 1, 3, 2, 2, 4, 3 92%

85% 1, 1, 3, 2, 2, 4, 3 92%

90% 1, 1, 3, 3, 2, 4, 5 98%

95% 1, 1, 3, 3, 2, 4, 5 98%

Jaeschke9

0.1 7

75% 1, 3, 2, 4, 5, 6, 7, 7, 8 95%

80% 1, 3, 2, 4, 5, 6, 7, 7, 8 95%

85% 1, 3, 2, 4, 5, 6, 7, 7, 8 95%

90% 1, 3, 2, 4, 5, 6, 7, 7, 8 95%

95% 1, 3, 2, 4, 5, 6, 7, 7, 8 95%

0.3 10

75% 1, 2, 2, 3, 4, 5, 3, 4, 6 81%

80% 1, 2, 2, 3, 4, 5, 3, 4, 6 81%

85% 1, 2, 2, 3, 4, 6, 5, 5, 7 93%

90% 1, 2, 2, 3, 4, 6, 5, 5, 7 93%

95% 1, 2, 3, 4, 5, 6, 7, 7, 8 96%

0.5 18

75% 1, 1, 1, 2, 2, 3, 3, 2, 3 79%

80% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

85% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

90% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

95% 1, 1, 2, 2, 4, 3, 3, 4, 5 98%

Jackson11

0.1 9

75% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 7 89%

80% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 7 89%

85% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 7 89%

90% 1, 3, 3, 2, 4, 4, 4, 5, 6, 7, 8 100%

95% 1, 3, 3, 2, 4, 4, 4, 5, 6, 7, 8 100%

0.3 13

75% 1, 1, 3, 4, 2, 2, 4, 2, 5, 3, 5 77%

80% 1, 1, 2, 4, 2, 2, 5, 3, 5, 6, 6 94%

85% 1, 1, 2, 4, 2, 2, 5, 3, 5, 6, 6 94%

90% 1, 1, 2, 4, 2, 2, 5, 3, 5, 6, 6 94%
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95% 1, 1, 2, 5, 4, 2, 6, 3, 6, 4, 7 97%

0.5 14

75% 1, 4, 3, 2, 2, 5, 3, 5, 4, 6, 6 77%

80% 1, 2, 2, 3, 5, 4, 6, 4, 6, 5, 7 85%

85% 1, 4, 2, 3, 2, 4, 4, 5, 6, 7, 8 91%

90% 1, 4, 2, 3, 2, 4, 4, 5, 6, 7, 8 91%

95% 1, 2, 6, 5, 7, 2, 7, 3, 8, 4, 9 92%

Rep 2

Mertens7

0.1 7

75% 1, 2, 3, 1, 4, 5, 6 95%

80% 1, 2, 3, 1, 4, 5, 6 95%

85% 1, 2, 3, 1, 4, 5, 6 95%

90% 1, 2, 3, 1, 4, 5, 6 95%

95% 1, 2, 3, 1, 4, 5, 6 95%

0.3 10

75% 1, 1, 4, 4, 2, 3, 5 92%

80% 1, 1, 4, 4, 2, 3, 5 92%

85% 1, 1, 4, 4, 2, 3, 5 92%

90% 1, 1, 4, 4, 2, 3, 5 92%

95% 1, 2, 5, 1, 3, 6, 4 96%

0.5 15

75% 1, 1, 3, 1, 2, 3, 2 80%

80% 1, 1, 2, 4, 2, 3, 4 92%

85% 1, 1, 2, 4, 2, 3, 4 92%

90% 1, 1, 2, 2, 4, 5, 3 98%

95% 1, 1, 2, 2, 4, 5, 3 98%

Jaeschke9

0.1 7

75% 1, 2, 3, 4, 6, 5, 7, 7, 8 95%

80% 1, 2, 3, 4, 6, 5, 7, 7, 8 95%

85% 1, 2, 3, 4, 6, 5, 7, 7, 8 95%

90% 1, 2, 3, 4, 6, 5, 7, 7, 8 95%

95% 1, 2, 3, 4, 6, 5, 7, 7, 8 95%

0.3 10

75% 1, 2, 2, 3, 5, 4, 4, 5, 6 82%

80% 1, 2, 2, 3, 5, 4, 4, 5, 6 82%

85% 1, 2, 2, 3, 4, 6, 5, 5, 7 93%

90% 1, 2, 2, 3, 4, 6, 5, 5, 7 93%

95% 1, 3, 2, 4, 5, 7, 6, 6, 8 96%

0.5 18

75% 1, 1, 1, 2, 2, 3, 3, 2, 3 79%

80% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

85% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

90% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

95% 1, 2, 1, 2, 4, 3, 3, 4, 5 98%

Jackson11

0.1 9

75% 1, 1, 2, 4, 3, 2, 5, 3, 6, 5, 7 88%

80% 1, 1, 2, 4, 3, 2, 5, 3, 6, 5, 7 88%

85% 1, 1, 2, 4, 3, 2, 5, 3, 6, 5, 7 88%

90% 1, 4, 2, 3, 2, 4, 4, 5, 6, 7, 8 100%

95% 1, 4, 2, 3, 2, 4, 4, 5, 6, 7, 8 100%

0.3 13

75% 1, 1, 3, 4, 2, 2, 4, 2, 5, 3, 5 77%

80% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 6 95%
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85% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 6 95%

90% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 6 95%

95% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 7 97%

0.5 14

75% 1, 1, 2, 4, 2, 2, 5, 3, 6, 5, 6 78%

80% 1, 1, 2, 5, 4, 2, 6, 3, 6, 4, 7 85%

85% 1, 4, 2, 3, 2, 4, 4, 5, 7, 6, 8 91%

90% 1, 4, 2, 3, 2, 4, 4, 5, 7, 6, 8 91%

95% 1, 4, 2, 3, 4, 6, 4, 7, 5, 8, 9 91%

Rep 3

Mertens7

0.1 7

75% 1, 2, 6, 1, 4, 5, 3 95%

80% 1, 2, 6, 1, 4, 5, 3 95%

85% 1, 2, 6, 1, 4, 5, 3 95%

90% 1, 2, 6, 1, 4, 5, 3 95%

95% 1, 2, 6, 1, 4, 5, 3 95%

0.3 10

75% 1, 1, 2, 2, 4, 5, 3 93%

80% 1, 1, 2, 2, 4, 5, 3 93%

85% 1, 1, 2, 2, 4, 5, 3 93%

90% 1, 1, 2, 2, 4, 5, 3 93%

95% 1, 3, 6, 1, 4, 5, 2 97%

0.5 15

75% 1, 2, 3, 1, 2, 3, 1 80%

80% 1, 1, 2, 4, 2, 3, 4 92%

85% 1, 1, 2, 4, 2, 3, 4 92%

90% 1, 1, 2, 2, 4, 5, 3 98%

95% 1, 1, 2, 2, 4, 5, 3 98%

Jaeschke9

0.1 7

75% 1, 2, 3, 4, 5, 7, 5, 6, 8 95%

80% 1, 2, 3, 4, 5, 7, 5, 6, 8 95%

85% 1, 2, 3, 4, 5, 7, 5, 6, 8 95%

90% 1, 2, 3, 4, 5, 7, 5, 6, 8 95%

95% 1, 2, 3, 4, 5, 7, 5, 6, 8 95%

0.3 10

75% 1, 2, 2, 3, 5, 4, 4, 5, 6 81%

80% 1, 2, 2, 3, 5, 4, 4, 5, 6 81%

85% 1, 2, 2, 3, 5, 4, 5, 6, 7 93%

90% 1, 2, 2, 3, 5, 4, 5, 6, 7 93%

95% 1, 2, 3, 4, 5, 7, 5, 6, 8 96%

0.5 18

75% 1, 1, 1, 2, 2, 3, 3, 2, 3 78%

80% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

85% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

90% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

95% 1, 2, 1, 2, 3, 4, 4, 3, 5 98%

Jackson11

0.1 9

75% 1, 3, 3, 2, 1, 4, 5, 4, 6, 5, 7 89%

80% 1, 3, 3, 2, 1, 4, 5, 4, 6, 5, 7 89%

85% 1, 3, 3, 2, 1, 4, 5, 4, 6, 5, 7 89%

90% 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8 100%

95% 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8 100%
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0.3 13

75% 1, 1, 3, 4, 2, 2, 4, 2, 5, 3, 5 76%

80% 1, 2, 2, 4, 1, 3, 5, 3, 6, 5, 6 94%

85% 1, 2, 2, 4, 1, 3, 5, 3, 6, 5, 6 94%

90% 1, 2, 2, 4, 1, 3, 5, 3, 6, 5, 6 94%

95% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 7 97%

0.5 14

75% 1, 1, 2, 3, 2, 2, 5, 4, 6, 5, 6 78%

80% 1, 4, 3, 2, 3, 4, 4, 5, 7, 6, 7 84%

85% 1, 4, 2, 3, 2, 4, 4, 6, 5, 7, 8 90%

90% 1, 4, 2, 3, 2, 4, 4, 6, 5, 7, 8 90%

95% 1, 2, 5, 3, 2, 2, 7, 4, 8, 6, 9 91%

Rep 4

Mertens7

0.1 7

75% 1, 3, 6, 1, 4, 5, 2 94%

80% 1, 3, 6, 1, 4, 5, 2 94%

85% 1, 3, 6, 1, 4, 5, 2 94%

90% 1, 3, 6, 1, 4, 5, 2 94%

95% 1, 3, 6, 1, 4, 5, 2 94%

0.3 10

75% 1, 1, 3, 3, 2, 4, 5 92%

80% 1, 1, 3, 3, 2, 4, 5 92%

85% 1, 1, 3, 3, 2, 4, 5 92%

90% 1, 1, 3, 3, 2, 4, 5 92%

95% 1, 2, 4, 1, 3, 5, 6 96%

0.5 15

75% 1, 2, 3, 1, 2, 3, 1 80%

80% 1, 1, 4, 2, 2, 3, 4 92%

85% 1, 1, 4, 2, 2, 3, 4 92%

90% 1, 1, 2, 2, 4, 5, 3 97%

95% 1, 1, 2, 2, 4, 5, 3 97%

Jaeschke9

0.1 7

75% 1, 3, 2, 4, 5, 7, 5, 6, 8 95%

80% 1, 3, 2, 4, 5, 7, 5, 6, 8 95%

85% 1, 3, 2, 4, 5, 7, 5, 6, 8 95%

90% 1, 3, 2, 4, 5, 7, 5, 6, 8 95%

95% 1, 3, 2, 4, 5, 7, 5, 6, 8 95%

0.3 10

75% 1, 2, 2, 3, 4, 5, 3, 4, 6 81%

80% 1, 2, 2, 3, 4, 5, 3, 4, 6 81%

85% 1, 2, 2, 3, 5, 4, 6, 6, 7 93%

90% 1, 2, 2, 3, 5, 4, 6, 6, 7 93%

95% 1, 3, 2, 4, 6, 5, 6, 7, 8 96%

0.5 18

75% 1, 1, 1, 2, 2, 3, 3, 2, 3 77%

80% 1, 2, 1, 2, 3, 3, 2, 4, 4 94%

85% 1, 2, 1, 2, 3, 3, 2, 4, 4 94%

90% 1, 2, 1, 2, 3, 3, 2, 4, 4 94%

95% 1, 2, 1, 2, 3, 4, 4, 3, 5 98%

Jackson11

0.1 9

75% 1, 2, 2, 5, 1, 3, 6, 3, 6, 4, 7 89%

80% 1, 2, 2, 5, 1, 3, 6, 3, 6, 4, 7 89%

85% 1, 2, 2, 5, 1, 3, 6, 3, 6, 4, 7 89%
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90% 1, 3, 3, 2, 1, 4, 4, 5, 6, 7, 8 99%

95% 1, 3, 3, 2, 1, 4, 4, 5, 6, 7, 8 99%

0.3 13

75% 1, 1, 3, 4, 2, 2, 4, 2, 5, 3, 5 77%

80% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 6 94%

85% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 6 94%

90% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 6 94%

95% 1, 4, 3, 2, 1, 4, 3, 5, 4, 6, 7 96%

0.5 14

75% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 6 79%

80% 1, 4, 3, 2, 1, 4, 4, 6, 5, 7, 7 85%

85% 1, 4, 3, 2, 1, 4, 4, 6, 5, 7, 7 85%

90% 1, 4, 2, 3, 4, 4, 4, 6, 5, 7, 8 91%

95% 1, 4, 2, 3, 4, 4, 4, 6, 5, 7, 8 91%

Rep 5

Mertens7

0.1 7

75% 1, 2, 6, 1, 4, 5, 3 95%

80% 1, 2, 6, 1, 4, 5, 3 95%

85% 1, 2, 6, 1, 4, 5, 3 95%

90% 1, 2, 6, 1, 4, 5, 3 95%

95% 1, 2, 6, 1, 4, 5, 3 95%

0.3 10

75% 1, 1, 2, 2, 4, 5, 3 93%

80% 1, 1, 2, 2, 4, 5, 3 93%

85% 1, 1, 2, 2, 4, 5, 3 93%

90% 1, 1, 2, 2, 4, 5, 3 93%

95% 1, 3, 6, 1, 4, 5, 2 97%

0.5 15

75% 1, 2, 3, 1, 2, 3, 1 80%

80% 1, 1, 2, 4, 2, 3, 4 92%

85% 1, 1, 2, 4, 2, 3, 4 92%

90% 1, 1, 2, 2, 4, 5, 3 98%

95% 1, 1, 2, 2, 4, 5, 3 98%

Jaeschke9

0.1 7

75% 1, 2, 3, 4, 5, 7, 5, 6, 8 95%

80% 1, 2, 3, 4, 5, 7, 5, 6, 8 95%

85% 1, 2, 3, 4, 5, 7, 5, 6, 8 95%

90% 1, 2, 3, 4, 5, 7, 5, 6, 8 95%

95% 1, 2, 3, 4, 5, 7, 5, 6, 8 95%

0.3 10

75% 1, 2, 2, 3, 5, 4, 4, 5, 6 81%

80% 1, 2, 2, 3, 5, 4, 4, 5, 6 81%

85% 1, 2, 2, 3, 5, 4, 5, 6, 7 93%

90% 1, 2, 2, 3, 5, 4, 5, 6, 7 93%

95% 1, 2, 3, 4, 5, 7, 5, 6, 8 96%

0.5 18

75% 1, 1, 1, 2, 2, 3, 3, 2, 3 78%

80% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

85% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

90% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

95% 1, 2, 1, 2, 3, 4, 4, 3, 5 98%

Jackson11

0.1 9

75% 1, 3, 3, 2, 1, 4, 5, 4, 6, 5, 7 89%
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80% 1, 3, 3, 2, 1, 4, 5, 4, 6, 5, 7 89%

85% 1, 3, 3, 2, 1, 4, 5, 4, 6, 5, 7 89%

90% 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8 100%

95% 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8 100%

0.3 13

75% 1, 1, 3, 4, 2, 2, 4, 2, 5, 3, 5 76%

80% 1, 2, 2, 4, 1, 3, 5, 3, 6, 5, 6 94%

85% 1, 2, 2, 4, 1, 3, 5, 3, 6, 5, 6 94%

90% 1, 2, 2, 4, 1, 3, 5, 3, 6, 5, 6 94%

95% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 7 97%

0.5 14

75% 1, 1, 2, 3, 2, 2, 5, 4, 6, 5, 6 78%

80% 1, 4, 3, 2, 3, 4, 4, 5, 7, 6, 7 84%

85% 1, 4, 2, 3, 2, 4, 4, 6, 5, 7, 8 90%

90% 1, 4, 2, 3, 2, 4, 4, 6, 5, 7, 8 90%

95% 1, 2, 5, 3, 2, 2, 7, 4, 8, 6, 9 91%

Table A.5: Results of the Optimization performed after the appli-

cation of the RB&B to the full Datasets in all the replications.
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A.1.5 Optimization of the RB&B results applied on the re-

duced dataset

Rep. Mod. CV c [s] R∗ [%] Assignment R [%]

Rep 1

Mertens

0.1 7

75% 1, 2, 6, 1, 4, 5, 3 95%

80% 1, 2, 6, 1, 4, 5, 3 95%

85% 1, 2, 6, 1, 4, 5, 3 95%

90% 1, 2, 6, 1, 4, 5, 3 95%

95% 1, 2, 6, 1, 4, 5, 3 95%

0.3 10

75% 1, 1, 4, 4, 2, 3, 5 93%

80% 1, 1, 4, 4, 2, 3, 5 93%

85% 1, 1, 4, 4, 2, 3, 5 93%

90% 1, 1, 4, 4, 2, 3, 5 93%

95% 1, 2, 3, 1, 5, 6, 4 97%

0.5 15

75% 1, 2, 3, 1, 2, 3, 1 80%

80% 1, 1, 1, 2, 2, 4, 3 90%

85% 1, 1, 1, 2, 2, 4, 3 90%

90% 1, 1, 1, 2, 2, 4, 3 90%

95% 1, 1, 1, 2, 2, 4, 3 90%

Jaeschke

0.1 7

75% 1, 3, 2, 4, 5, 6, 7, 7, 8 95%

80% 1, 3, 2, 4, 5, 6, 7, 7, 8 95%

85% 1, 3, 2, 4, 5, 6, 7, 7, 8 95%

90% 1, 3, 2, 4, 5, 6, 7, 7, 8 95%

95% 1, 3, 2, 4, 5, 6, 7, 7, 8 95%

0.3 10

75% 1, 2, 2, 3, 4, 5, 5, 4, 6 81%

80% 1, 2, 2, 3, 4, 6, 4, 5, 7 93%

85% 1, 2, 2, 3, 4, 6, 4, 5, 7 93%

90% 1, 2, 2, 3, 4, 6, 4, 5, 7 93%

95% 1, 2, 3, 4, 5, 6, 5, 7, 8 96%

0.5 18

75% 1, 1, 1, 2, 2, 3, 2, 2, 3 77%

80% 1, 2, 1, 2, 2, 3, 4, 3, 4 92%

85% 1, 2, 1, 2, 2, 3, 4, 3, 4 92%

90% 1, 2, 1, 2, 2, 3, 4, 3, 4 92%

95% 1, 2, 1, 2, 2, 3, 4, 3, 4 92%

Jackson

0.1 9

75% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 7 89%

80% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 7 89%

85% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 7 89%

90% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 7 89%

95% 1, 4, 3, 2, 3, 4, 4, 6, 5, 7, 8 100%

0.3 13

75% 1, 1, 3, 4, 1, 2, 4, 2, 5, 3, 5 77%

80% 1, 1, 2, 3, 1, 2, 4, 5, 4, 6, 6 93%

85% 1, 1, 2, 3, 1, 2, 4, 5, 4, 6, 6 93%

90% 1, 1, 2, 3, 1, 2, 4, 5, 4, 6, 6 93%
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95% 1, 1, 2, 3, 1, 2, 4, 5, 4, 6, 6 93%

0.5 14

75% 1, 3, 3, 2, 3, 5, 4, 5, 4, 6, 6 78%

80% 1, 3, 3, 2, 3, 5, 4, 5, 4, 6, 6 78%

85% 1, 3, 3, 2, 3, 5, 4, 5, 4, 6, 6 78%

90% 1, 3, 3, 2, 3, 4, 4, 5, 7, 6, 7 83%

95% 1, 3, 3, 2, 3, 4, 4, 5, 6, 7, 8 89%

Rep 2

Mertens

0.1 7

75% 1, 2, 4, 1, 3, 5, 6 95%

80% 1, 2, 4, 1, 3, 5, 6 95%

85% 1, 2, 4, 1, 3, 5, 6 95%

90% 1, 2, 4, 1, 3, 5, 6 95%

95% 1, 2, 4, 1, 3, 5, 6 95%

0.3 10

75% 1, 1, 2, 2, 3, 5, 4 92%

80% 1, 1, 2, 2, 3, 5, 4 92%

85% 1, 1, 2, 2, 3, 5, 4 92%

90% 1, 1, 2, 2, 3, 5, 4 92%

95% 1, 1, 3, 5, 2, 4, 6 95%

0.5 15

75% 1, 1, 2, 1, 2, 3, 3 78%

80% 1, 1, 2, 4, 2, 3, 4 92%

85% 1, 1, 2, 4, 2, 3, 4 92%

90% 1, 1, 3, 3, 2, 4, 5 98%

95% 1, 1, 3, 3, 2, 4, 5 98%

Jaeschke

0.1 7

75% 1, 2, 3, 4, 5, 6, 7, 7, 8 95%

80% 1, 2, 3, 4, 5, 6, 7, 7, 8 95%

85% 1, 2, 3, 4, 5, 6, 7, 7, 8 95%

90% 1, 2, 3, 4, 5, 6, 7, 7, 8 95%

95% 1, 2, 3, 4, 5, 6, 7, 7, 8 95%

0.3 10

75% 1, 2, 2, 3, 4, 5, 5, 4, 6 82%

80% 1, 2, 2, 3, 4, 5, 4, 6, 7 93%

85% 1, 2, 2, 3, 4, 5, 4, 6, 7 93%

90% 1, 2, 2, 3, 4, 5, 4, 6, 7 93%

95% 1, 2, 3, 4, 6, 5, 7, 7, 8 96%

0.5 18

75% 1, 1, 1, 2, 2, 3, 3, 2, 3 79%

80% 1, 1, 1, 2, 2, 3, 3, 2, 3 79%

85% 1, 1, 1, 2, 2, 3, 3, 2, 3 79%

90% 1, 2, 1, 2, 3, 4, 3, 3, 4 93%

95% 1, 2, 1, 2, 3, 4, 3, 3, 4 93%

Jackson

0.1 9

75% 1, 1, 3, 2, 5, 3, 6, 4, 6, 5, 7 90%

80% 1, 1, 3, 2, 5, 3, 6, 4, 6, 5, 7 90%

85% 1, 1, 3, 2, 5, 3, 6, 4, 6, 5, 7 90%

90% 1, 1, 3, 2, 5, 3, 6, 4, 6, 5, 7 90%

95% 1, 4, 3, 2, 3, 4, 4, 5, 6, 7, 8 100%

0.3 13

75% 1, 2, 1, 2, 3, 3, 4, 3, 4, 5, 5 73%

80% 1, 2, 1, 2, 3, 3, 4, 3, 4, 5, 5 73%

103



85% 1, 1, 2, 4, 3, 2, 5, 3, 5, 6, 6 94%

90% 1, 1, 2, 4, 3, 2, 5, 3, 5, 6, 6 94%

95% 1, 1, 2, 4, 3, 2, 5, 3, 5, 6, 6 94%

0.5 14

75% 1, 2, 2, 4, 2, 2, 5, 3, 6, 5, 6 76%

80% 1, 1, 3, 2, 3, 4, 3, 5, 4, 6, 7 83%

85% 1, 1, 3, 2, 3, 4, 3, 5, 4, 6, 7 83%

90% 1, 3, 3, 2, 4, 4, 4, 5, 7, 6, 8 90%

95% 1, 3, 3, 2, 4, 4, 4, 5, 7, 6, 8 90%

Rep 3

Mertens

0.1 7

75% 1, 2, 3, 1, 4, 5, 6 95%

80% 1, 2, 3, 1, 4, 5, 6 95%

85% 1, 2, 3, 1, 4, 5, 6 95%

90% 1, 2, 3, 1, 4, 5, 6 95%

95% 1, 2, 3, 1, 4, 5, 6 95%

0.3 10

75% 1, 1, 4, 4, 2, 3, 5 93%

80% 1, 1, 4, 4, 2, 3, 5 93%

85% 1, 1, 4, 4, 2, 3, 5 93%

90% 1, 2, 4, 1, 3, 7, 5 97%

95% 1, 3, 5, 1, 4, 6, 2 97%

0.5 15

75% 1, 2, 3, 1, 2, 3, 1 80%

80% 1, 2, 3, 1, 2, 3, 1 80%

85% 1, 1, 3, 2, 2, 4, 3 92%

90% 1, 1, 3, 2, 2, 4, 3 92%

95% 1, 1, 2, 2, 4, 5, 3 98%

Jaeschke

0.1 7

75% 1, 3, 2, 4, 5, 6, 7, 7, 8 95%

80% 1, 3, 2, 4, 5, 6, 7, 7, 8 95%

85% 1, 3, 2, 4, 5, 6, 7, 7, 8 95%

90% 1, 3, 2, 4, 5, 6, 7, 7, 8 95%

95% 1, 3, 2, 4, 5, 6, 7, 7, 8 95%

0.3 10

75% 1, 2, 2, 3, 4, 5, 6, 4, 6 79%

80% 1, 2, 2, 3, 4, 5, 6, 4, 6 79%

85% 1, 2, 2, 3, 5, 4, 7, 6, 7 89%

90% 1, 2, 2, 3, 5, 4, 7, 6, 7 89%

95% 1, 2, 3, 4, 5, 6, 8, 7, 8 92%

0.5 18

75% 1, 1, 1, 2, 2, 2, 3, 3, 3 76%

80% 1, 1, 1, 2, 2, 2, 3, 3, 3 76%

85% 1, 1, 1, 2, 2, 2, 3, 3, 3 76%

90% 1, 2, 1, 2, 3, 3, 3, 4, 4 94%

95% 1, 2, 1, 2, 3, 3, 3, 4, 4 94%

Jackson

0.1 9

75% 1, 1, 2, 4, 3, 2, 5, 3, 6, 5, 7 89%

80% 1, 1, 2, 4, 3, 2, 5, 3, 6, 5, 7 89%

85% 1, 1, 2, 4, 3, 2, 5, 3, 6, 5, 7 89%

90% 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8 100%

95% 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8 100%
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0.3 13

75% 1, 1, 5, 4, 4, 2, 5, 2, 6, 3, 6 93%

80% 1, 1, 5, 4, 4, 2, 5, 2, 6, 3, 6 93%

85% 1, 1, 5, 4, 4, 2, 5, 2, 6, 3, 6 93%

90% 1, 1, 5, 4, 4, 2, 5, 2, 6, 3, 6 93%

95% 1, 1, 5, 2, 2, 3, 6, 3, 6, 4, 7 95%

0.5 14

75% 1, 1, 3, 2, 3, 3, 5, 4, 6, 5, 6 78%

80% 1, 1, 3, 2, 3, 3, 5, 4, 6, 5, 6 78%

85% 1, 3, 3, 2, 4, 4, 4, 5, 7, 6, 7 84%

90% 1, 2, 2, 3, 4, 5, 4, 6, 5, 7, 8 89%

95% 1, 2, 2, 3, 4, 5, 4, 6, 5, 7, 8 89%

Rep 4

Mertens

0.1 7

75% 1, 2, 5, 1, 3, 4, 6 94%

80% 1, 2, 5, 1, 3, 4, 6 94%

85% 1, 2, 5, 1, 3, 4, 6 94%

90% 1, 2, 5, 1, 3, 4, 6 94%

95% 1, 2, 5, 1, 3, 4, 6 94%

0.3 10

75% 1, 1, 3, 3, 2, 4, 5 92%

80% 1, 1, 3, 3, 2, 4, 5 92%

85% 1, 1, 3, 3, 2, 4, 5 92%

90% 1, 1, 3, 3, 2, 4, 5 92%

95% 1, 2, 5, 1, 4, 6, 3 96%

0.5 15

75% 1, 2, 3, 1, 2, 3, 1 80%

80% 1, 2, 3, 1, 2, 3, 1 80%

85% 1, 1, 2, 1, 2, 3, 4 90%

90% 1, 1, 2, 1, 2, 3, 4 90%

95% 1, 1, 2, 1, 3, 5, 4 95%

Jaeschke

0.1 7

75% 1, 3, 2, 4, 5, 6, 5, 7, 8 95%

80% 1, 3, 2, 4, 5, 6, 5, 7, 8 95%

85% 1, 3, 2, 4, 5, 6, 5, 7, 8 95%

90% 1, 3, 2, 4, 5, 6, 5, 7, 8 95%

95% 1, 3, 2, 4, 5, 6, 5, 7, 8 95%

0.3 10

75% 1, 2, 2, 3, 4, 5, 5, 4, 6 81%

80% 1, 2, 2, 3, 4, 5, 5, 4, 6 81%

85% 1, 2, 2, 3, 4, 5, 5, 4, 6 81%

90% 1, 2, 2, 3, 5, 4, 6, 6, 7 93%

95% 1, 2, 2, 3, 5, 4, 6, 6, 7 93%

0.5 18

75% 1, 1, 1, 2, 2, 3, 2, 2, 3 75%

80% 1, 2, 1, 2, 3, 3, 4, 4, 4 93%

85% 1, 2, 1, 2, 3, 3, 4, 4, 4 93%

90% 1, 2, 1, 2, 3, 3, 4, 4, 4 93%

95% 1, 2, 1, 2, 3, 3, 4, 4, 4 93%

Jackson

0.1 9

75% 1, 3, 3, 2, 1, 4, 5, 4, 6, 5, 7 89%

80% 1, 3, 3, 2, 1, 4, 5, 4, 6, 5, 7 89%

85% 1, 3, 3, 2, 1, 4, 5, 4, 6, 5, 7 89%
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90% 1, 3, 3, 2, 1, 4, 5, 4, 6, 5, 7 89%

95% 1, 3, 3, 2, 1, 4, 5, 4, 6, 5, 7 89%

0.3 13

75% 1, 1, 3, 4, 2, 2, 4, 2, 5, 3, 5 77%

80% 1, 1, 3, 4, 2, 2, 4, 2, 5, 3, 5 77%

85% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 6 94%

90% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 6 94%

95% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 6 94%

0.5 14

75% 1, 2, 2, 3, 1, 5, 4, 5, 4, 6, 6 79%

80% 1, 2, 2, 3, 1, 5, 4, 5, 4, 6, 6 79%

85% 1, 2, 2, 3, 1, 5, 4, 5, 4, 6, 6 79%

90% 1, 4, 2, 3, 2, 4, 4, 5, 6, 7, 7 85%

95% 1, 4, 3, 2, 4, 4, 4, 6, 5, 7, 8 91%

Rep 5

Mertens

0.1 7

75% 1, 2, 3, 1, 4, 5, 6 95%

80% 1, 2, 3, 1, 4, 5, 6 95%

85% 1, 2, 3, 1, 4, 5, 6 95%

90% 1, 2, 3, 1, 4, 5, 6 95%

95% 1, 2, 3, 1, 4, 5, 6 95%

0.3 10

75% 1, 1, 4, 4, 2, 3, 5 93%

80% 1, 1, 4, 4, 2, 3, 5 93%

85% 1, 1, 4, 4, 2, 3, 5 93%

90% 1, 2, 4, 1, 3, 7, 5 97%

95% 1, 3, 5, 1, 4, 6, 2 97%

0.5 15

75% 1, 2, 3, 1, 2, 3, 1 80%

80% 1, 2, 3, 1, 2, 3, 1 80%

85% 1, 1, 3, 2, 2, 4, 3 92%

90% 1, 1, 3, 2, 2, 4, 3 92%

95% 1, 1, 2, 2, 4, 5, 3 98%

Jaeschke

0.1 7

75% 1, 3, 2, 4, 5, 6, 7, 7, 8 95%

80% 1, 3, 2, 4, 5, 6, 7, 7, 8 95%

85% 1, 3, 2, 4, 5, 6, 7, 7, 8 95%

90% 1, 3, 2, 4, 5, 6, 7, 7, 8 95%

95% 1, 3, 2, 4, 5, 6, 7, 7, 8 95%

0.3 10

75% 1, 2, 2, 3, 4, 5, 6, 4, 6 79%

80% 1, 2, 2, 3, 4, 5, 6, 4, 6 79%

85% 1, 2, 2, 3, 5, 4, 7, 6, 7 89%

90% 1, 2, 2, 3, 5, 4, 7, 6, 7 89%

95% 1, 2, 3, 4, 5, 6, 8, 7, 8 92%

0.5 18

75% 1, 1, 1, 2, 2, 2, 3, 3, 3 76%

80% 1, 2, 1, 2, 3, 3, 3, 4, 4 94%

85% 1, 2, 1, 2, 3, 3, 3, 4, 4 94%

90% 1, 2, 1, 2, 3, 3, 3, 4, 4 94%

95% 1, 2, 1, 2, 3, 3, 3, 4, 4 94%

Jackson

0.1 9

75% 1, 1, 2, 4, 3, 2, 5, 3, 6, 5, 7 89%
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80% 1, 1, 2, 4, 3, 2, 5, 3, 6, 5, 7 89%

85% 1, 1, 2, 4, 3, 2, 5, 3, 6, 5, 7 89%

90% 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8 100%

95% 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8 100%

0.3 13

75% 1, 1, 5, 4, 4, 2, 5, 2, 6, 3, 6 93%

80% 1, 1, 5, 4, 4, 2, 5, 2, 6, 3, 6 93%

85% 1, 1, 5, 4, 4, 2, 5, 2, 6, 3, 6 93%

90% 1, 1, 5, 4, 4, 2, 5, 2, 6, 3, 6 93%

95% 1, 1, 5, 2, 2, 3, 6, 3, 6, 4, 7 95%

0.5 14

75% 1, 1, 3, 2, 3, 3, 5, 4, 6, 5, 6 78%

80% 1, 1, 3, 2, 3, 3, 5, 4, 6, 5, 6 78%

85% 1, 3, 3, 2, 4, 4, 4, 5, 7, 6, 7 84%

90% 1, 2, 2, 3, 4, 5, 4, 6, 5, 7, 8 89%

95% 1, 2, 2, 3, 4, 5, 4, 6, 5, 7, 8 89%

Table A.6: Results of the Optimization performed after the appli-

cation of the RB&B to the reduced Datasets in all the replications.
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A.1.6 Application of the Bootstrap Procedure

Rep. Mod. CV c [s] R∗ [%] Assignment R [%]

Rep 1

Mertens

0.1 7

75% 1, 1, 4, 5, 2, 3, 6 92%

80% 1, 1, 4, 5, 2, 3, 6 92%

85% 1, 2, 3, 1, 4, 6, 5 95%

90% 1, 2, 3, 1, 4, 6, 5 95%

95% 1, 2, 3, 1, 4, 6, 5 95%

0.3 10

75% 2, 2, 4, 4, 3, 6, 5 93%

80% 1, 1, 4, 4, 2, 3, 5 93%

85% 1, 1, 4, 5, 2, 3, 6 96%

90% 1, 2, 3, 3, 4, 6, 5 94%

95% 1, 2, 3, 1, 4, 6, 5 97%

0.5 15

75% 1, 1, 3, 3, 1, 2, 4 85%

80% 1, 1, 1, 2, 2, 3, 4 90%

85% 4, 4, 6, 5, 6, 7, 5 92%

90% 1, 2, 5, 1, 3, 4, 1 95%

95% 3, 3, 5, 5, 4, 7, 6 98%

Jaeschke

0.1 7

75% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

80% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

85% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

90% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

0.3 10

75% 1, 1, 2, 3, 5, 4, 3, 6, 7 83%

80% 1, 2, 2, 3, 5, 4, 3, 6, 7 93%

85% 1, 2, 2, 3, 5, 4, 6, 6, 7 93%

90% 1, 2, 2, 3, 5, 4, 5, 6, 7 93%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 96%

0.5 18

75% 1, 1, 1, 2, 3, 2, 2, 3, 4 90%

80% 1, 1, 1, 2, 3, 2, 2, 3, 4 90%

85% 1, 1, 1, 2, 2, 3, 2, 3, 4 92%

90% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

95% 1, 2, 1, 2, 4, 3, 2, 4, 5 98%

Jackson

0.1 9

75% 1, 2, 2, 3, 2, 5, 4, 5, 4, 6, 7 86%

80% 1, 1, 3, 2, 3, 3, 5, 4, 6, 5, 7 86%

85% 1, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7 89%

90% 1, 4, 3, 2, 1, 5, 3, 6, 4, 7, 8 95%

95% 1, 3, 3, 2, 1, 4, 4, 5, 7, 6, 8 99%

0.3 13

75% 1, 5, 2, 3, 4, 5, 4, 5, 4, 6, 6 87%

80% 1, 5, 2, 3, 4, 5, 4, 5, 4, 6, 6 87%

85% 1, 1, 4, 2, 2, 1, 5, 3, 6, 5, 6 87%

90% 1, 2, 2, 3, 4, 2, 4, 5, 4, 6, 6 93%

95% 1, 1, 3, 2, 1, 3, 5, 4, 6, 5, 6 92%
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0.5 14

75% 1, 1, 2, 4, 1, 2, 5, 3, 6, 5, 6 77%

80% 1, 1, 2, 3, 1, 2, 4, 5, 7, 6, 7 79%

85% 1, 1, 2, 4, 1, 2, 6, 3, 6, 5, 7 83%

90% 1, 2, 2, 3, 2, 4, 4, 5, 6, 7, 8 89%

95% 1, 2, 2, 3, 2, 4, 4, 5, 6, 7, 8 89%

Rep 2

Mertens

0.1 7

75% 1, 1, 4, 5, 2, 3, 6 92%

80% 1, 2, 3, 1, 5, 6, 4 95%

85% 1, 2, 3, 1, 5, 6, 4 95%

90% 1, 2, 3, 1, 5, 6, 4 95%

95% 1, 2, 3, 1, 5, 6, 4 95%

0.3 10

75% 1, 1, 4, 4, 2, 3, 5 92%

80% 1, 1, 4, 4, 2, 3, 5 92%

85% 1, 2, 3, 1, 4, 6, 5 96%

90% 1, 2, 3, 1, 4, 6, 5 96%

95% 1, 2, 3, 1, 4, 6, 5 96%

0.5 15

75% 1, 1, 3, 3, 1, 2, 4 85%

80% 4, 4, 6, 5, 6, 7, 5 92%

85% 4, 4, 6, 5, 6, 7, 5 92%

90% 3, 3, 6, 4, 5, 7, 4 96%

95% 1, 1, 4, 4, 2, 3, 5 98%

Jaeschke

0.1 7

75% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

80% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

85% 1, 2, 3, 4, 5, 7, 7, 6, 8 92%

90% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

0.3 10

75% 1, 2, 2, 3, 4, 6, 7, 5, 7 89%

80% 1, 2, 2, 3, 4, 6, 7, 5, 7 89%

85% 1, 2, 3, 4, 5, 7, 8, 6, 8 92%

90% 1, 2, 3, 4, 6, 5, 7, 7, 8 96%

95% 1, 2, 3, 4, 6, 5, 7, 7, 8 96%

0.5 18

75% 1, 1, 1, 2, 2, 3, 3, 2, 3 79%

80% 1, 1, 1, 2, 3, 2, 2, 3, 4 90%

85% 1, 1, 1, 2, 3, 2, 2, 3, 4 90%

90% 1, 1, 1, 2, 2, 3, 3, 3, 4 91%

95% 1, 1, 2, 3, 4, 3, 3, 4, 5 95%

Jackson

0.1 9

75% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%

80% 1, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7 88%

85% 1, 1, 3, 2, 4, 3, 5, 4, 5, 6, 7 89%

90% 1, 1, 3, 2, 5, 3, 6, 4, 7, 5, 8 94%

95% 4, 7, 6, 5, 7, 8, 7, 9, 8, 10, 11 100%

0.3 13

75% 1, 5, 2, 3, 4, 5, 4, 5, 4, 6, 6 88%

80% 1, 1, 5, 2, 1, 2, 5, 3, 6, 4, 6 89%

85% 1, 3, 2, 3, 4, 5, 4, 5, 4, 6, 6 90%

109



90% 1, 2, 2, 3, 4, 5, 4, 5, 4, 6, 6 93%

95% 1, 1, 4, 3, 5, 2, 6, 2, 6, 5, 7 96%

0.5 14

75% 1, 2, 5, 3, 1, 2, 5, 4, 7, 6, 7 82%

80% 1, 3, 5, 2, 1, 3, 5, 4, 6, 7, 8 88%

85% 1, 2, 5, 4, 2, 2, 5, 3, 6, 7, 8 89%

90% 1, 2, 2, 3, 2, 4, 4, 5, 6, 7, 8 89%

95% 1, 2, 2, 3, 2, 4, 4, 5, 6, 7, 8 89%

Rep 3

Mertens

0.1 7

75% 1, 1, 4, 5, 2, 3, 6 92%

80% 1, 1, 4, 5, 2, 3, 6 92%

85% 1, 2, 3, 1, 4, 6, 5 95%

90% 1, 2, 3, 1, 4, 6, 5 95%

95% 1, 2, 3, 1, 4, 6, 5 95%

0.3 10

75% 1, 1, 5, 2, 2, 3, 4 84%

80% 1, 1, 5, 2, 2, 3, 4 84%

85% 2, 2, 5, 5, 3, 4, 6 93%

90% 1, 1, 5, 3, 2, 6, 4 96%

95% 1, 3, 6, 1, 4, 5, 2 97%

0.5 15

75% 1, 1, 3, 3, 1, 2, 4 85%

80% 1, 1, 1, 2, 2, 3, 4 89%

85% 1, 1, 1, 4, 2, 3, 4 90%

90% 1, 1, 5, 1, 2, 3, 4 95%

95% 3, 3, 5, 5, 4, 7, 6 98%

Jaeschke

0.1 7

75% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

80% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

85% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

90% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

0.3 10

75% 1, 3, 2, 3, 4, 6, 7, 5, 7 80%

80% 1, 2, 2, 3, 5, 4, 3, 6, 7 92%

85% 1, 2, 2, 3, 5, 4, 3, 6, 7 92%

90% 1, 2, 3, 4, 5, 7, 8, 6, 8 92%

95% 1, 2, 3, 4, 5, 7, 8, 6, 8 92%

0.5 18

75% 1, 1, 1, 2, 3, 2, 2, 3, 4 90%

80% 1, 1, 1, 2, 2, 3, 3, 3, 4 91%

85% 1, 1, 1, 2, 2, 3, 3, 3, 4 91%

90% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

95% 1, 2, 1, 2, 3, 3, 4, 4, 5 97%

Jackson

0.1 9

75% 1, 1, 3, 2, 2, 3, 5, 4, 6, 5, 7 82%

80% 1, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7 89%

85% 1, 1, 2, 4, 3, 2, 5, 3, 6, 5, 7 89%

90% 1, 4, 3, 2, 1, 5, 3, 6, 4, 7, 8 95%

95% 1, 3, 3, 2, 1, 4, 4, 5, 6, 7, 8 99%

0.3 13

75% 1, 2, 2, 4, 5, 3, 5, 3, 6, 5, 6 92%
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80% 1, 2, 2, 4, 4, 3, 5, 3, 6, 5, 6 93%

85% 1, 1, 3, 2, 5, 4, 5, 4, 5, 6, 6 92%

90% 1, 1, 3, 2, 5, 4, 5, 4, 5, 6, 7 95%

95% 1, 2, 2, 4, 1, 3, 5, 3, 5, 6, 7 97%

0.5 14

75% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 6 78%

80% 1, 1, 2, 4, 2, 1, 5, 3, 6, 7, 8 82%

85% 1, 2, 2, 4, 5, 2, 5, 3, 6, 7, 8 87%

90% 1, 4, 2, 3, 2, 4, 4, 5, 6, 7, 8 90%

95% 1, 4, 2, 3, 2, 4, 4, 5, 6, 7, 8 90%

Rep 4

Mertens

0.1 7

75% 1, 1, 4, 5, 2, 3, 6 92%

80% 1, 1, 4, 5, 2, 3, 6 92%

85% 1, 1, 4, 5, 2, 3, 6 92%

90% 1, 1, 4, 5, 2, 3, 6 92%

95% 1, 2, 3, 1, 4, 6, 5 94%

0.3 10

75% 2, 2, 5, 5, 3, 4, 6 92%

80% 1, 1, 4, 4, 2, 3, 5 92%

85% 1, 1, 4, 5, 2, 3, 6 96%

90% 1, 2, 6, 1, 4, 5, 3 96%

95% 1, 2, 3, 1, 4, 6, 5 96%

0.5 15

75% 2, 3, 4, 2, 3, 4, 2 80%

80% 1, 1, 4, 3, 2, 4, 3 89%

85% 1, 1, 1, 2, 2, 3, 4 89%

90% 1, 1, 2, 4, 3, 5, 4 96%

95% 1, 2, 3, 4, 4, 6, 5 96%

Jaeschke

0.1 7

75% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

80% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

85% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

90% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

95% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

0.3 10

75% 1, 2, 2, 3, 4, 5, 3, 4, 6 81%

80% 1, 2, 2, 3, 4, 6, 7, 5, 7 90%

85% 1, 2, 2, 3, 5, 4, 3, 6, 7 92%

90% 1, 2, 2, 3, 4, 5, 6, 6, 7 93%

95% 1, 2, 3, 4, 5, 6, 7, 7, 8 96%

0.5 18

75% 1, 1, 2, 2, 3, 4, 4, 3, 4 91%

80% 1, 1, 2, 2, 3, 4, 4, 3, 4 91%

85% 1, 1, 2, 2, 3, 4, 3, 3, 4 93%

90% 1, 1, 2, 2, 3, 3, 4, 4, 4 93%

95% 1, 2, 2, 3, 3, 4, 5, 4, 5 97%

Jackson

0.1 9

75% 1, 1, 4, 3, 4, 2, 5, 2, 5, 6, 7 84%

80% 1, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7 90%

85% 1, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7 90%

90% 1, 2, 2, 4, 1, 3, 5, 3, 5, 6, 7 89%
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95% 1, 3, 3, 2, 1, 5, 4, 6, 4, 7, 8 95%

0.3 13

75% 1, 3, 2, 4, 5, 3, 5, 3, 6, 5, 6 87%

80% 1, 2, 2, 4, 5, 3, 5, 3, 6, 5, 6 93%

85% 1, 2, 2, 4, 5, 3, 5, 3, 6, 5, 6 93%

90% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 6 94%

95% 1, 3, 3, 2, 1, 3, 5, 4, 6, 5, 7 96%

0.5 14

75% 1, 2, 2, 4, 1, 3, 5, 3, 5, 6, 6 79%

80% 1, 2, 2, 4, 1, 2, 5, 3, 6, 5, 7 84%

85% 1, 4, 3, 2, 1, 4, 4, 5, 6, 7, 8 91%

90% 4, 7, 6, 5, 7, 7, 7, 8, 9, 10, 11 91%

95% 4, 7, 6, 5, 7, 7, 7, 8, 9, 10, 11 91%

Rep 5

Mertens

0.1 7

75% 1, 1, 4, 5, 2, 3, 6 92%

80% 1, 1, 4, 5, 2, 3, 6 92%

85% 1, 2, 3, 1, 4, 6, 5 95%

90% 1, 2, 3, 1, 4, 6, 5 95%

95% 1, 2, 3, 1, 4, 6, 5 95%

0.3 10

75% 1, 1, 5, 2, 2, 3, 4 84%

80% 1, 1, 5, 2, 2, 3, 4 84%

85% 1, 1, 5, 3, 2, 6, 4 96%

90% 1, 2, 3, 1, 4, 6, 5 97%

95% 1, 3, 6, 1, 4, 5, 2 97%

0.5 15

75% 2, 3, 4, 2, 3, 4, 2 80%

80% 1, 1, 1, 2, 2, 3, 4 89%

85% 1, 1, 1, 4, 2, 3, 4 90%

90% 4, 4, 5, 7, 5, 6, 7 92%

95% 1, 1, 2, 2, 4, 5, 3 98%

Jaeschke

0.1 7

75% 1, 3, 2, 4, 6, 5, 4, 7, 8 92%

80% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

85% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

90% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

0.3 10

75% 1, 3, 2, 3, 4, 6, 7, 5, 7 80%

80% 1, 2, 2, 3, 5, 4, 3, 6, 7 92%

85% 1, 2, 3, 4, 5, 7, 8, 6, 8 92%

90% 1, 2, 3, 4, 5, 7, 8, 6, 8 92%

95% 1, 2, 3, 4, 5, 7, 8, 6, 8 92%

0.5 18

75% 1, 1, 1, 2, 2, 3, 2, 3, 4 91%

80% 1, 1, 1, 2, 2, 3, 3, 3, 4 91%

85% 1, 1, 1, 2, 2, 3, 3, 3, 4 91%

90% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

95% 1, 2, 1, 2, 3, 3, 4, 4, 5 97%

Jackson

0.1 9

75% 1, 1, 3, 2, 2, 4, 3, 5, 4, 6, 7 82%

80% 1, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7 89%
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85% 1, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7 89%

90% 1, 4, 3, 2, 1, 5, 3, 6, 4, 7, 8 95%

95% 1, 3, 3, 2, 1, 4, 4, 5, 6, 7, 8 99%

0.3 13

75% 1, 2, 2, 4, 5, 3, 5, 3, 6, 5, 6 92%

80% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 6 94%

85% 1, 1, 5, 4, 3, 2, 5, 2, 6, 3, 6 93%

90% 1, 1, 5, 4, 3, 2, 5, 2, 6, 3, 7 96%

95% 1, 2, 3, 4, 1, 2, 5, 6, 5, 7, 8 98%

0.5 14

75% 1, 1, 2, 4, 2, 2, 5, 3, 5, 6, 6 78%

80% 1, 2, 2, 3, 1, 4, 6, 4, 6, 5, 7 84%

85% 1, 4, 3, 2, 4, 5, 4, 6, 5, 7, 8 90%

90% 1, 4, 3, 2, 3, 4, 4, 5, 6, 7, 8 90%

95% 1, 4, 3, 2, 3, 4, 4, 5, 6, 7, 8 90%

Table A.7: Results of the experiments of the Bootstrap Procedure.
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A.1.7 Application of the developed Procedure

Rep. Mod. CV c [s] R∗ [%] Assignment R [%]

Rep 1

Mertens

0.1 7

75% 1, 1, 5, 3, 2, 4, 6 92%

80% 1, 1, 4, 5, 2, 3, 6 92%

85% 1, 1, 2, 5, 3, 4, 6 92%

90% 1, 1, 3, 5, 2, 4, 6 92%

95% 1, 2, 3, 1, 4, 6, 5 95%

0.3 10

75% 1, 1, 2, 2, 3, 4, 5 93%

80% 1, 1, 4, 4, 2, 3, 5 93%

85% 1, 1, 2, 2, 3, 5, 4 93%

90% 1, 2, 4, 1, 3, 6, 5 97%

95% 1, 2, 3, 1, 4, 5, 6 97%

0.5 15

75% 1, 1, 3, 2, 2, 4, 3 92%

80% 1, 1, 3, 2, 3, 4, 2 92%

85% 1, 1, 3, 2, 3, 4, 2 92%

90% 1, 1, 4, 2, 2, 5, 3 97%

95% 1, 1, 3, 3, 2, 4, 5 98%

Jaeschke

0.1 7

75% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

80% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

85% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

90% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

0.3 10

75% 1, 2, 2, 3, 5, 4, 6, 6, 7 93%

80% 1, 2, 2, 3, 5, 4, 5, 6, 7 93%

85% 1, 2, 2, 3, 5, 4, 5, 6, 7 93%

90% 1, 2, 3, 4, 6, 5, 7, 7, 8 96%

95% 1, 2, 3, 4, 5, 6, 7, 7, 8 96%

0.5 18

75% 1, 2, 1, 2, 2, 3, 4, 3, 4 92%

80% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

85% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

90% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

95% 1, 2, 1, 2, 4, 3, 5, 4, 5 98%

Jackson

0.1 9

75% 1, 1, 2, 3, 4, 2, 5, 4, 6, 5, 7 89%

80% 1, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7 89%

85% 1, 2, 2, 3, 4, 4, 4, 5, 7, 6, 8 100%

90% 1, 2, 2, 3, 4, 4, 4, 5, 7, 6, 8 100%

95% 1, 4, 3, 2, 1, 5, 4, 6, 5, 7, 8 99%

0.3 13

75% 1, 1, 2, 3, 2, 2, 4, 5, 4, 6, 6 94%

80% 1, 1, 2, 4, 2, 2, 5, 3, 6, 5, 6 94%

85% 1, 1, 3, 2, 3, 3, 5, 4, 6, 5, 6 94%

90% 1, 1, 2, 3, 2, 2, 5, 4, 6, 5, 6 94%

95% 1, 2, 2, 3, 4, 4, 6, 5, 6, 7, 7 96%
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0.5 14

75% 1, 1, 2, 3, 2, 2, 5, 4, 6, 5, 6 78%

80% 1, 1, 2, 4, 5, 2, 6, 3, 6, 5, 7 85%

85% 1, 1, 3, 2, 5, 3, 6, 4, 6, 5, 7 85%

90% 1, 4, 3, 2, 3, 4, 4, 5, 7, 6, 8 91%

95% 1, 4, 3, 2, 3, 4, 4, 6, 5, 7, 8 91%

Rep 2

Mertens

0.1 7

75% 1, 2, 4, 1, 3, 5, 6 95%

80% 1, 2, 4, 1, 3, 5, 6 95%

85% 1, 2, 4, 1, 3, 5, 6 95%

90% 1, 2, 4, 1, 3, 5, 6 95%

95% 1, 2, 3, 1, 5, 6, 4 95%

0.3 10

75% 1, 1, 2, 2, 3, 5, 4 92%

80% 1, 1, 4, 4, 2, 3, 5 92%

85% 1, 3, 4, 1, 5, 6, 2 96%

90% 1, 2, 3, 1, 4, 6, 5 96%

95% 1, 2, 4, 1, 3, 5, 6 96%

0.5 15

75% 1, 1, 2, 3, 2, 4, 3 92%

80% 1, 1, 2, 4, 2, 3, 4 92%

85% 1, 2, 2, 1, 3, 4, 1 91%

90% 1, 1, 4, 4, 2, 3, 5 98%

95% 1, 1, 3, 3, 2, 5, 4 98%

Jaeschke

0.1 7

75% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

80% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

85% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

90% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

0.3 10

75% 1, 2, 2, 3, 5, 4, 5, 6, 7 93%

80% 1, 2, 2, 3, 4, 6, 4, 5, 7 93%

85% 1, 2, 3, 4, 5, 7, 6, 6, 8 96%

90% 1, 2, 3, 4, 5, 7, 6, 6, 8 96%

95% 1, 3, 2, 4, 5, 7, 6, 6, 8 96%

0.5 18

75% 1, 1, 1, 2, 2, 3, 3, 2, 3 79%

80% 1, 2, 1, 2, 3, 4, 3, 3, 4 93%

85% 1, 2, 1, 2, 3, 3, 4, 4, 4 93%

90% 1, 2, 1, 2, 3, 3, 3, 4, 4 94%

95% 1, 3, 2, 3, 4, 4, 5, 5, 5 94%

Jackson

0.1 9

75% 1, 1, 2, 5, 4, 2, 6, 3, 6, 4, 7 90%

80% 1, 1, 2, 5, 4, 2, 6, 3, 6, 4, 7 90%

85% 1, 4, 3, 2, 1, 5, 4, 6, 5, 7, 8 99%

90% 1, 4, 3, 2, 3, 4, 4, 5, 7, 6, 8 100%

95% 1, 4, 3, 2, 1, 4, 4, 5, 7, 6, 8 99%

0.3 13

75% 1, 1, 5, 3, 4, 2, 5, 2, 6, 4, 6 94%

80% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 6 95%

85% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 6 95%
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90% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 6 95%

95% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 7 97%

0.5 14

75% 1, 4, 3, 2, 1, 4, 3, 5, 4, 6, 7 84%

80% 1, 4, 2, 3, 4, 5, 4, 6, 5, 7, 8 91%

85% 1, 3, 3, 2, 4, 4, 4, 6, 5, 7, 8 90%

90% 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8 90%

95% 1, 3, 3, 2, 4, 4, 4, 5, 7, 6, 8 90%

Rep 3

Mertens

0.1 7

75% 1, 2, 4, 1, 3, 5, 6 95%

80% 1, 2, 4, 1, 3, 5, 6 95%

85% 1, 2, 4, 1, 3, 5, 6 95%

90% 1, 2, 4, 1, 3, 5, 6 95%

95% 1, 2, 3, 1, 4, 6, 5 95%

0.3 10

75% 1, 1, 2, 2, 3, 4, 5 93%

80% 1, 1, 3, 3, 2, 4, 5 93%

85% 1, 1, 2, 2, 3, 5, 4 93%

90% 1, 2, 5, 1, 4, 6, 3 97%

95% 1, 3, 5, 1, 4, 6, 2 97%

0.5 15

75% 1, 2, 2, 1, 3, 4, 1 91%

80% 1, 1, 4, 2, 2, 3, 4 92%

85% 1, 1, 3, 2, 2, 4, 3 92%

90% 1, 1, 2, 2, 4, 5, 3 98%

95% 1, 1, 2, 2, 3, 4, 5 98%

Jaeschke

0.1 7

75% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

80% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

85% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

90% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

0.3 10

75% 1, 2, 2, 3, 4, 5, 4, 6, 7 93%

80% 1, 2, 2, 3, 4, 5, 4, 6, 7 93%

85% 1, 2, 2, 3, 4, 6, 5, 5, 7 93%

90% 1, 3, 2, 4, 5, 7, 6, 6, 8 96%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 96%

0.5 18

75% 1, 2, 1, 2, 3, 3, 3, 4, 4 94%

80% 1, 1, 2, 2, 3, 3, 3, 4, 4 94%

85% 1, 2, 1, 2, 3, 3, 2, 4, 4 95%

90% 1, 1, 2, 2, 3, 3, 3, 4, 4 94%

95% 1, 2, 2, 3, 4, 4, 3, 5, 5 96%

Jackson

0.1 9

75% 1, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7 89%

80% 1, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7 89%

85% 1, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7 89%

90% 1, 3, 3, 2, 4, 4, 4, 5, 7, 6, 8 100%

95% 1, 3, 3, 2, 1, 4, 4, 5, 6, 7, 8 99%

0.3 13

75% 1, 3, 3, 2, 1, 5, 4, 5, 4, 6, 6 93%
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80% 1, 3, 3, 2, 1, 4, 5, 4, 5, 6, 6 93%

85% 1, 4, 3, 2, 2, 4, 3, 5, 4, 6, 7 96%

90% 1, 1, 3, 5, 4, 2, 6, 2, 6, 4, 7 96%

95% 1, 1, 4, 5, 3, 2, 6, 2, 6, 3, 7 96%

0.5 14

75% 1, 1, 3, 2, 3, 3, 5, 4, 5, 6, 6 78%

80% 1, 1, 3, 2, 3, 3, 6, 4, 6, 5, 7 84%

85% 1, 4, 2, 3, 2, 4, 4, 5, 7, 6, 8 90%

90% 1, 4, 2, 3, 2, 4, 4, 5, 6, 7, 8 90%

95% 1, 4, 2, 3, 2, 4, 4, 5, 7, 6, 8 90%

Rep 4

Mertens

0.1 7

75% 1, 2, 4, 1, 3, 5, 6 94%

80% 1, 2, 4, 1, 3, 5, 6 94%

85% 1, 2, 4, 1, 3, 5, 6 94%

90% 1, 2, 4, 1, 3, 5, 6 94%

95% 1, 2, 3, 1, 4, 6, 5 94%

0.3 10

75% 1, 1, 2, 2, 3, 5, 4 92%

80% 1, 1, 4, 4, 2, 3, 5 92%

85% 1, 2, 3, 1, 5, 6, 4 96%

90% 1, 3, 6, 1, 4, 5, 2 96%

95% 1, 2, 5, 1, 3, 4, 6 96%

0.5 15

75% 1, 2, 3, 1, 2, 3, 1 80%

80% 1, 1, 2, 1, 2, 3, 4 90%

85% 1, 1, 2, 1, 2, 4, 3 90%

90% 1, 1, 3, 2, 2, 4, 5 96%

95% 1, 2, 6, 1, 3, 5, 4 98%

Jaeschke

0.1 7

75% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

80% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

85% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

90% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

95% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

0.3 10

75% 1, 2, 2, 3, 4, 5, 5, 4, 6 81%

80% 1, 2, 2, 3, 5, 4, 5, 6, 7 93%

85% 1, 2, 2, 3, 4, 6, 5, 5, 7 93%

90% 1, 3, 2, 4, 5, 7, 5, 6, 8 96%

95% 1, 3, 2, 4, 5, 7, 6, 6, 8 96%

0.5 18

75% 1, 2, 1, 2, 3, 3, 2, 4, 4 94%

80% 1, 2, 1, 2, 3, 3, 2, 4, 4 94%

85% 1, 2, 1, 2, 3, 3, 2, 4, 4 94%

90% 1, 2, 1, 2, 3, 3, 2, 4, 4 94%

95% 1, 1, 2, 2, 3, 4, 3, 3, 5 98%

Jackson

0.1 9

75% 1, 3, 3, 2, 1, 4, 5, 4, 5, 6, 7 89%

80% 1, 2, 2, 4, 1, 3, 6, 3, 6, 5, 7 89%

85% 1, 2, 2, 5, 1, 3, 6, 3, 6, 4, 7 89%

90% 1, 3, 3, 2, 1, 4, 6, 4, 6, 5, 7 89%
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95% 1, 4, 2, 3, 1, 4, 4, 5, 7, 6, 8 100%

0.3 13

75% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 6 94%

80% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 6 94%

85% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 6 94%

90% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 6 94%

95% 1, 2, 2, 3, 4, 2, 5, 4, 6, 5, 7 96%

0.5 14

75% 1, 4, 3, 2, 1, 5, 3, 5, 4, 6, 6 79%

80% 1, 2, 2, 4, 1, 2, 5, 3, 6, 5, 7 84%

85% 1, 4, 3, 2, 4, 4, 4, 5, 7, 6, 8 91%

90% 1, 4, 2, 3, 2, 4, 4, 6, 5, 7, 8 91%

95% 1, 4, 2, 3, 2, 4, 4, 5, 6, 7, 8 91%

Rep 5

Mertens

0.1 7

75% 1, 2, 4, 1, 3, 5, 6 95%

80% 1, 2, 4, 1, 3, 5, 6 95%

85% 1, 2, 4, 1, 3, 5, 6 95%

90% 1, 2, 4, 1, 3, 5, 6 95%

95% 1, 2, 3, 1, 4, 6, 5 95%

0.3 10

75% 1, 1, 2, 2, 3, 4, 5 93%

80% 1, 1, 3, 3, 2, 4, 5 93%

85% 1, 2, 6, 1, 3, 4, 5 97%

90% 1, 2, 3, 1, 4, 5, 6 97%

95% 1, 2, 4, 1, 3, 5, 6 97%

0.5 15

75% 1, 2, 3, 1, 2, 3, 1 80%

80% 1, 1, 3, 2, 2, 4, 3 92%

85% 1, 1, 4, 2, 2, 3, 4 92%

90% 1, 1, 2, 3, 2, 4, 3 92%

95% 1, 1, 2, 2, 4, 5, 3 98%

Jaeschke

0.1 7

75% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

80% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

85% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

90% 1, 3, 2, 4, 6, 5, 6, 7, 8 95%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 95%

0.3 10

75% 1, 2, 2, 3, 5, 4, 5, 6, 7 93%

80% 1, 2, 2, 3, 4, 6, 4, 5, 7 93%

85% 1, 3, 2, 4, 5, 6, 7, 7, 8 96%

90% 1, 3, 2, 4, 6, 5, 6, 7, 8 96%

95% 1, 2, 3, 4, 5, 7, 6, 6, 8 96%

0.5 18

75% 1, 1, 2, 2, 3, 3, 3, 4, 4 94%

80% 1, 2, 1, 2, 3, 3, 3, 4, 4 94%

85% 1, 1, 2, 2, 3, 3, 3, 4, 4 94%

90% 1, 2, 1, 2, 3, 3, 3, 4, 4 94%

95% 1, 2, 2, 3, 4, 4, 3, 5, 5 96%

Jackson

0.1 9

75% 1, 1, 2, 4, 3, 2, 5, 3, 6, 5, 7 89%

80% 1, 1, 2, 4, 3, 2, 5, 3, 6, 5, 7 89%
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85% 1, 1, 3, 2, 4, 3, 5, 4, 6, 5, 7 89%

90% 1, 3, 3, 2, 4, 4, 4, 5, 7, 6, 8 100%

95% 1, 3, 3, 2, 1, 4, 4, 5, 6, 7, 8 99%

0.3 13

75% 1, 1, 2, 3, 4, 2, 5, 4, 5, 6, 6 94%

80% 1, 1, 5, 2, 4, 3, 5, 3, 6, 4, 6 93%

85% 1, 2, 2, 3, 1, 4, 5, 4, 5, 6, 6 93%

90% 1, 2, 2, 3, 1, 4, 6, 4, 6, 5, 7 97%

95% 1, 3, 6, 2, 1, 3, 7, 4, 7, 5, 8 98%

0.5 14

75% 1, 4, 3, 2, 3, 4, 3, 5, 4, 6, 7 82%

80% 1, 2, 2, 3, 4, 4, 4, 5, 6, 7, 8 90%

85% 1, 4, 2, 3, 2, 4, 4, 5, 6, 7, 8 90%

90% 1, 4, 2, 3, 2, 4, 4, 6, 5, 7, 8 90%

95% 1, 4, 3, 2, 3, 4, 4, 6, 5, 7, 8 90%

Table A.8: Results of the experiments of the developed methodol-

ogy
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