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Abstract

The mitigation techniques employed by modern compilers and operating systems make it
more difficult to exploit vulnerabilities lying in a program. However, they can be usually
bypassed by simply leaking an address or some specific value stored in memory (e.g., a
stack canary). A very frequent method used to get a leak is exploiting an uninitialized
read vulnerability lying in the program. Indeed, stack and heap memory are often allo-
cated and deallocated according to the program’s needs and therefore the same memory
location can be re-used multiple times during program’s execution. This generates un-
intended overlaps in memory that, thanks to an uninitialized read, can be leveraged to
obtain a leak. A manual analysis to discover uninitialized reads in a binary and under-
stand if and how they can be exploited to obtain a leak is quite difficult and certainly
requires a large amount of time. So, we designed MemTrace, a dynamic instrumentation
tool that keeps track of the memory accesses performed by the executable and reports all
the detected memory overlaps. To keep track of the state of bytes in memory, MemTrace
uses a shadow memory that reflects the state (either initialized or uninitialized) of all the
bytes of the stack and the heap; while in order to keep track of transfers of uninitialized
bytes and to be able to detect the usage of uninitialized bytes, MemTrace implements a
taint analysis, that marks as tainted a byte which is read while in the uninitialized state.
By analyzing the report generated by MemTrace, the user can therefore detect poten-
tial leaking instructions together with the origin of the bytes it allows to read. To allow
MemTrace to explore more paths of a program, we then paired it with a fuzzer in order
to perform an automatic analysis of the binary. We tested MemTrace with 12 binaries
containing a known uninitialized read vulnerability. When the binaries were executed
with a crafted input triggering the vulnerability, MemTrace was always able to detect it;
while when used in combination with the fuzzer, MemTrace was able to automatically
detect the vulnerability for 8 of the tested binaries. In all the cases, MemTrace correctly
reported the memory overlaps, thus proving that the used approach is effective.

Keywords: dynamic analysis, instrumentation, memory overlaps, uninitialized read,
leaks, vulnerability





Abstract in lingua italiana

Le tecniche di mitigazione impiegate dai moderni compilatori e sistemi operativi rendono
più difficile sfruttare le vulnerabilità che si trovano in un programma. Tuttavia, di solito
possono essere aggirati tramite il leak di un indirizzo o di un valore specifico salvato in
memoria (ad esempio uno stack canary). Un metodo molto frequente utilizzato per ot-
tenere un leak è sfruttare una lettura non inizializzata che si trova nel programma. Infatti,
stack e heap vengono spesso allocati e deallocati in base alle esigenze del programma e
quindi la stessa area di memoria può essere riutilizzata più volte durante l’esecuzione. Ciò
genera degli overlap di memoria che, grazie a una lettura non inizializzata, possono essere
sfruttati per ottenere un leak. Un’analisi manuale per scoprire le letture non inizializ-
zate in un binario e capire se e come possano essere sfruttate è difficile e richiede una
grande quantità di tempo. Dunque, abbiamo sviluppato MemTrace, un tool di strumen-
tazione dinamica che tiene traccia degli accessi alla memoria eseguiti dal programma e
segnala tutti gli overlap di memoria rilevati. Per tenere traccia dello stato della memoria,
MemTrace utilizza una shadow memory che riflette lo stato di tutti i byte dello stack
e dello heap; mentre per tenere traccia dei trasferimenti di byte non inizializzati ed es-
sere in grado di rilevare l’utilizzo di tali byte, MemTrace implementa una taint analysis,
che contrassegna come tainted un byte che viene letto mentre si trova in uno stato non
inizializzato. Analizzando il report generato da MemTrace, l’utente può quindi rilevare
potenziali leak e verificare l’origine dei byte che quest’ultimo consente di leggere. Per per-
mettere a MemTrace di esplorare più percorsi di un programma, lo abbiamo combinato
ad un fuzzer. Abbiamo testato MemTrace con 12 binari contenenti una lettura non in-
izializzata nota. Quando i binari sono stati eseguiti con degli input in grado di triggerare
la vulnerabilità, MemTrace è sempre stato in grado di identificarla; mentre quando è stato
usato in combinazione con il fuzzer, MemTrace è riuscito ad identificare la vulnerabilità
per 8 dei binari testati. In tutti i casi, MemTrace ha riportato correttamente gli overlap
di memoria, dimostrando che l’approccio utilizzato è efficace.

Parole chiave: analisi dinamica, strumentazione, overlap di memoria, letture non in-
izializzate, leaks, vulnerabilità
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Introduction

Nowadays mitigation techniques against memory corruption vulnerabilities are commonly
implemented in essentially all the major operating systems and compilers. Techniques
such as stack canaries, W ⊕X and ASLR effectively raised the bar, thus increasing the
effort needed to write an exploit that allows to inject and execute arbitrary code, as it usu-
ally requires a leak that allows the attacker to get either the stored canary or the address
of some memory section or library function. A frequently used technique to get a leak
consists in exploiting uninitialized memory reads. Since memory is a limited resource,
it is continuously allocated and deallocated during a program’s execution according to its
needs. This way, memory locations can be reused multiple times, thus possibly generat-
ing some unintended overlaps. The combination of memory overlaps and uninitialized
memory reads may therefore allow obtaining a leak that may be used to bypass mitigation
techniques. Finding uninitialized reads in an executable and understanding if and how
they can be exploited to obtain a leak is a very difficult and time-consuming task which
may require hours, if not days, of analysis. This is especially true if we are dealing with
a big, complex program which may even use many external libraries.

Some of the existing tools allow analyzing a binary looking for possible uninitialized
reads ([36]). They, however, provide no insight information about what we can read from
them, thus leaving the responsibility to perform additional manual analysis to the user,
which must run the binary providing inputs and trying to figure out what is the origin of
bytes read through the uninitialized read. Even this may not be an easy task. Indeed, it
is possible that, due to different paths of execution triggered by different inputs, the bytes
read through the same uninitialized read come from different origins. It is even possible
that these bytes have been written by some instruction from another function executed
much earlier than the execution of the uninitialized read or that they have been written
by more than one instruction only partially filling a certain memory location, making the
analysis even more difficult. Other approaches to try and detect uninitialized reads or
leaks require the availability of the source code or to lift the binary to an intermediate
representation in order to perform static analysis ([21]), or they make use of symbolic
execution, associating symbolic expressions to addresses and trying to solve the constraints
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they represent in order to compute the base address of a memory section ([23]). For what
concerns the static analysis approach, we must consider 2 situations.

Source code required: closed-source software is always released without making the
source code publicly available, thus preventing the analysis.

Binary lifted to IR: static analysis performed on lifted binaries may generate many
false positives or false negatives due to the lack of semantic information about
symbols and variables which are lost during compilation.

The symbolic execution approach, instead, can be applied to binaries directly. However,
symbolic execution is known to be subjected to path explosion, which may slow down or
even prevent analysis with higher program complexity.
Moreover, in order to avoid execution getting stuck, symbolic execution engines usually
use models of the most frequent and complex library functions. Therefore, if the model
oversimplifies the actual function, the symbolic execution may generate many false pos-
itives or false negatives, and it can still get the analysis stuck if it is not implemented
at all.

We developed MemTrace, a new tool which makes use of Dynamic Binary Instrumenta-
tion (DBI) to detect uninitialized reads in a binary and report the memory overlaps
that are generated during its execution.
We then paired our tool with a well-known fuzzer (AFL++) in order to try and explore
as many execution paths as possible and report all the overlaps that may happen during
binary’s execution.
Finally, since it is even possible that a binary changes its behavior according to the argu-
ments it is executed with, we leveraged the fuzzer in order to try and perform command-
line arguments fuzzing as well.
We tested our tool with a set of binaries having known vulnerabilities. More specifically
we tested the tool with 4 real-world binaries; 3 binaries from Capture The Flag (CTF)
competitions; and 5 binaries from Cyber Grand Challenge (CGC) [3].
In most cases, the tool, paired with the fuzzer, was able to automatically report the known
vulnerability.
In all the cases, however, the tool was able to report the vulnerability, when it was trig-
gered by a manually crafted input.

In summary, our main contributions are the following:

• We leveraged DBI to perform a new kind of dynamic binary analysis, which aims
at reporting memory overlaps, i.e., uninitialized reads together with write accesses
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overlapping the same memory location

• We used a fuzzer to explore a program’s Control Flow Graph (CFG) and increase
coverage

• We leveraged the fuzzer to perform also command-line arguments fuzzing
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Mitigation techniques implemented by operating systems and compilers make it more
difficult to write exploits that allow to hijack control flow and, therefore, execute arbitrary
code. The main and most known techniques are stack canaries, W ⊕X and ASLR.

Stack canary

A stack canary [29] is a mitigation that is usually implemented as a cooperation among
the kernel, the compiler and the runtime libraries and that is useful to try and detect
return address tampering attempts performed through the exploitation of buffer overflows.
During compilation, the compiler will add some code to the program in order to be able
to (1) store the canary between the return address and local variables during functions
prologues and (2) check integrity of the canary during functions epilogues. Then, when
the program starts (i.e., during a call to execve system call), the kernel writes a random
value in the memory of the new process and the runtime library functions will use this
random value to compute the actual canary and store it in a well-known memory location.
The compiler generated, for each function prologue, the instructions required to load the
global canary from memory and store it on the stack.

The actual stack frame layout may be platform-dependent. Nevertheless, the usual
general layout expects the return address to be pushed on the stack before the local
variables, as depicted in Figure 1.1. In order to be effective, the stack canary must be
stored between the stored return address, which is the address of the instruction executed
right after the current function returns, and the current function’s local variables. This
way, if an attacker tries to exploit a buffer overflow to overwrite the saved return address,
it will also overwrite the stack canary. Simply overwriting the canary is not a problem,
and the function will continue executing as normal. However, during function’s epilogue,
right before it returns to its caller, the compiler added the code required to check the
value of the canary. If the value stored in the function’s frame is not the same as the one
stored in memory during program’s startup, the program will abort, avoiding executing
the return statement and therefore not jumping to whatever has been written in the
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return address memory location, thus not executing attacker’s code.

Saved Return Address

Saved Caller Frame
Pointer

Local variable 1

...

Stack
Pointer 

Higher Addresses

Lower Addresses

Frame
Pointer 

Local variable N

Current Stack 
Frame 

Previous Stack 
Frame 

Figure 1.1: Stack frame memory layout

W ⊕ X

It stands for Write XOR Execute. It is a mitigation technique implemented by operating
systems which allows a certain virtual memory page to be either writable or executable,
never both. By doing this, an attacker cannot be able to write arbitrary code in
memory (e.g., on the stack) and then execute it by replacing the stored return address
of the current function with the address of the written memory location. Let us consider
the two possible cases:

Writable, not Executable: the attacker can write arbitrary code at any address ⟨Addr⟩
in the range of the memory page. Assuming it can also replace the saved return
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address with ⟨Addr⟩, an error is thrown as soon as the return statement is executed,
as the page the address belongs to will be recognized as not executable.

Executable, not Writable: an error is thrown as soon as the attacker tries to write
anything inside any address belonging to the memory page, thus aborting execution.

Address Space Layout Randomization

ASLR is implemented by the operating system which sets the base of each memory section
(e.g., stack, heap, code, libraries, etc) to different addresses on each new execution of a
program. This prevents an attacker to be able to execute a program a first time to
retrieve interesting addresses (e.g., stack/heap buffers, canaries, functions...) and use the
acquired knowledge on a second execution of the same program. Let us consider the
simple example of Listing 1 and assume it has been compiled with neither stack canary
nor W ⊕X enabled.

1 #include <stdio.h>
2

3 void func(){
4 char buf [256];
5

6 scanf("%s", buf);
7 }
8

9 int main() {
10 func();
11 return 0;
12 }

Listing 1: Simple buffer overflow example

Function main will call function func, that simply declares the static char buffer and fills
it by calling scanf. scanf does not accept a length parameter, and the passed format
string does not specify a maximum length. This means that it is possible to completely
fill the buffer and write beyond that, and therefore, it is possible to overwrite the value
of the saved return address. If addresses were the same in 2 subsequent executions of the
program, the attacker could easily write an exploit in 2 phases:

1. Execute the program inside a debugger and identify the offset of the saved return
address from the end of the static buffer buf and the address of a writable and
executable buffer (since W ⊕X is disabled, it can be buf itself)

2. Execute the program inserting ⟨buf_len⟩ + ⟨ret_addr_offset⟩ random bytes fol-
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lowed by the bytes composing ⟨buf_addr⟩, where ⟨buf_len⟩ is the length of buffer
buf ; ⟨ret_addr_offset⟩ is the offset of the memory word containing the return
address from the last byte of buf ; and ⟨buf_addr⟩ is the address of the writable
and executable buffer filled with arbitrary code.

With ASLR enabled this kind of two-steps approach will not work, because addresses will
be different during the second execution.

Mitigation techniques bypass

Stack canary, W ⊕ X and ASLR have all a thing in common: they can be bypassed if
we are able to leak information from program’s execution. This simply means that we
can still exploit a vulnerability even if mitigation techniques are enabled, but it requires
having more information, making it more difficult. Of course, since their objectives are
different, also the information required to bypass them will be different.

Stack canary: if we were able to leak the canary that is stored on the stack during a
function’s prologue, we could still exploit a buffer overflow vulnerability quite easily.
Indeed, knowing the value of the canary, we can simply overwrite it with its own
value, so that the canary check executed right before the return statement is passed
successfully, thus not aborting program’s execution. So function’s execution pro-
ceeds normally, executing the return statement and therefore jumping to whatever
address we stored instead of the actual return address.

W ⊕ X: we are not allowed to write arbitrary code in a buffer and then execute it because
a memory page is either writable or executable. However, usually, there are a lot of
functions in a single executable, especially if it makes use of external libraries, so we
can try to take advantage of existing executable code. Even better, we don’t really
need to execute whole functions: we can jump to small sequences of instructions
(gadgets) that allow us to move data to/from memory and jump to new sequences
of instructions until we reach our goal (e.g., spawn a shell). In any case, we need
to know the target address, i.e., the address of the instruction we want to jump to.
This is quite easy if ASLR is disabled, as we can perform a 2-steps exploitation as
described for the example in Listing 1. If instead ASLR is enabled (usually it is
enabled by default), we need to leak an address that allows us to compute the
target address.

ASLR: if enabled, it effectively randomizes the base address of each memory section
allocated inside a process’ address space. For clearness sake, and WLOG, consider



1| Motivation 9

the stack as a specific memory section and assume we are interested in a stack
address. Let us call ⟨Addr⟩ the target address and ⟨Base⟩ the address of the base
of the stack. In subsequent executions of the same program ⟨Addr⟩ and ⟨Base⟩
values will change because of ASLR. However, ⟨Offset⟩ = ⟨Base⟩ - ⟨Addr⟩ will
be constant over all the executions. The same is true for all the memory sections
allocated in the process’ address space, including the ones belonging to external
libraries. This means that it is enough to know just 1 address of a certain memory
section to be able to compute any address of the same section. So, if we are able
to leak any address belonging to the same section the target address belongs to, we
will be able to break ASLR and compute our target address.

It is worth noting that usually these mitigation techniques are all enabled by default.
So, if we want to write a working exploit, we will need to bypass all of them.

While it is not the only way that allows to obtain a leak, one possibility is to take
advantage of uninitialized reads. Indeed, since memory is a very limited resource,
programs always reuse the same memory locations multiple times. This is particularly
true for the stack and the heap, which are the memory sections where most of the variables
of a program are stored.

The stack is used to allocate function frames and the so-called automatic variables, which
are automatically allocated and deallocated when program’s flow respectively enters or
exits variables’ scope. Local variables are automatic variables whose scope is the function
that declared them. This means that they are automatically allocated on the stack when
the function begins (during function’s prologue) and deallocated when it returns (during
its epilogue). This continuous allocation and deallocation of memory allow local variables
of a function to use again the same space that was previously occupied by the stack frame
of another terminated function, thus creating unintended overlaps in memory. As a
consequence, if the program uses or prints the value of an uninitialized variable, it will
perform an uninitialized read that may allow us to retrieve the value of whatever was
written in the memory location now occupied by the uninitialized variable itself (e.g.,
another variable, a canary, an address, etc). As an example, consider the program in
Listing 2.

func1 is executed first, which declares 2 local variables, respectively of types int and
char* and initializes them before returning. Then func2 is called, which still declares
local variables of type int and char*, but does not initialize them. func1 is finished, so
func2 ’s frame will occupy the same memory which was occupied by func1 ’s frame and,
since it also declares the same number and types of variables, m and ptr will still contain
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1 #include <stdio.h>
2 #include <stdlib.h>
3

4 void func1(){
5 int n;
6 char* buf;
7

8 n = 12;
9 buf = (char*) malloc(sizeof(char) * 10);

10

11 printf("n=%d\nbuf=%p\n", n, buf);
12 }
13

14 void func2(){
15 int m;
16 char* ptr;
17

18 printf("m=%d\nptr=%p\n", m, ptr);
19 }
20

21 int main(){
22 func1();
23 func2();
24 return 0;
25 }

Listing 2: Stack overlap example

the bytes related to variables n and buf of the previously executed func1. Figures 1.2a
and 1.2b show the layouts of stack frames right before the call to printf for both func1
and func2, respectively, also showing the addresses and the values of the local variables.

The heap, on the other hand, is a memory section where dynamically allocated objects
are stored. This is usually handled manually by the programmer, which uses library
functions to allocate and deallocate chunks of memory on demand. Even in this case,
however, chunks are deallocated when the object they store is not useful anymore and
they can be allocated again whenever a new compatible chunk is requested. Although the
situation and the modality for allocations and deallocations are different, what we said for
the stack is valid also for the heap. Indeed, when a chunk is deallocated and reallocated
again, it will still contain the bytes related to the old, deallocated object. So, once again,
some unintended overlaps may be generated that allow to exploit an uninitialized read
to obtain a leak.

Nevertheless, it is not easy to detect uninitialized reads and, even if we were able to
find one, it is often very difficult to understand from where the read bytes come from
and, therefore, understand if and how I can obtain a useful leak. The most usual way of
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Saved Return Address

Saved Frame Pointer

buf = 0x5555555592a0

n = 12
SP 

Higher Addresses

Lower Addresses

FP 0x7fffffffdf90

0x7fffffffdf88

0x7fffffffdf84

(a) Frame layout for func1

Saved Return Address

Saved Frame Pointer

ptr = 0x5555555592a0

m = 12
SP 

Higher Addresses

Lower Addresses

FP 0x7fffffffdf90

0x7fffffffdf88

0x7fffffffdf84

(b) Frame layout for func2

Figure 1.2: Overlapping stack frames example

approaching a program looking for some leaks is by manually performing a combination
of static and dynamic analysis using tools like decompilers and debuggers. But such
kind of analysis may require a large amount of time. Even with simple programs, it may
require hours to analyze the possible memory overlaps to try and obtain a leak; while
the analysis of more complex programs may also require days or weeks of analysis.

1.1. State of the art

There are some existing tools that might help looking for leaks.

Memcheck

Memcheck [36, 42] is a dynamic analysis tool implemented using Valgrind [32] as a Dy-
namic Binary Instrumentation framework. It is designed as a memory error detector,
and can, therefore, detect and report the most common problems with memory manage-
ment. As stated by [42], the most common memory errors that Memcheck is able to
detect are:

• “illegal” accesses1 (e.g., heap/stack overrun, use-after-free)
1These are memory accesses that are perfectly legal from a permission point of view, but that access
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• usage of uninitialized values

• incorrect heap management

• overlapping src and dst pointers in memcpy and similar

• memory leaks2

Among the problems that Memcheck can detect, there are the usages of uninitialized
values. The tool will therefore report the address of instructions that use uninitialized
values, thus helping perform the first step toward the discovery of possible leaks. This,
however, is not the actual objective of the tool. Indeed, Memcheck is designed to be able
to report a large variety of memory errors that can reside in a program. This is mainly
done to simply make the developers aware of the possible error, which can cause a crash in
the program, or be an exploitable vulnerability. The real objective of the tool is, therefore,
helping find memory errors to support debugging and allow the developers to easily track
down and correct them. Moreover, being a dynamic analysis tool, it will return as a
result a report containing the possible memory errors of a single execution path of the
program. This means that, if nothing is reported, it does not mean that the program
does not contain any memory error, but that the execution of the program with the given
parameters does not contain memory errors. For instance, consider Listing 3. Function
func accepts an int parameter and, according to its value, will execute a branch of the
if-statement or the other. The then branch will perform an uninitialized read. However,
if Memcheck is launched with an input that never triggers the then branch, it will not
report any error.

Another main drawback of Memcheck is the number of reported errors. Indeed, since it
is thought to support software correction, it will report all the instructions that may be
involved in any of the memory errors Memcheck can detect. Even for the small example
in Listing 3, Memcheck reports, according to the taken paths3, up to 20 errors due to
the single uninitialized read at line 8. If the program is compiled keeping debugging
information (e.g., using flag -g with gcc) the tool is also able to print which line and
function caused the error, thus allowing a developer to easily track it down and fix it.
After an error is fixed, it is advisable to re-execute the analysis, because more than one
reported error may have been related to the same cause. In our example, for instance, all
the reported errors would be fixed by fixing the only instruction leading to an uninitialized

portions of memory that should not be accessed, because not considered in use
2Here it is intended as allocated memory whose pointer has been lost, and that therefore cannot be

freed anymore
3Based on the sequence of numbers passed to the function, Memcheck reports a different number of

errors. 20 is the maximum value achieved in just a few tests
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1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4

5 void func(int n){
6 char* buf;
7 if((n & 1) == 0){
8 printf("%s\n", buf);
9 }

10 else{
11 buf = strdup("Initialized string");
12 printf("%s\n", buf);
13 free(buf);
14 }
15 }
16

17 int main(){
18 int n;
19

20 scanf("%d", &n);
21 while (n != 0){
22 func(n);
23 scanf("%d", &n);
24 }
25

26 return 0;
27 }

Listing 3: Conditional uninitialized read

read (i.e., the call to printf in the then branch).

The high number of errors reported by Memcheck could make it difficult to find an
uninitialized read that may lead to a possible leak in more complex programs. Moreover,
even if we were able to find an interesting uninitialized read, no information is provided
by Memcheck about what can be read from that or where the read bytes come from. So,
it would still require the user to perform a manual analysis in order to understand if it
can obtain a leak.

Sleak

Sleak [23] makes use of a combination of static analysis and symbolic execution in order
to try and find paths in the binary that lead to possible leaks. As a first step, Sleak
lifts the binary to an intermediate representation that allows to build the CFG more
easily. The CFG is then used to perform a set of static analysis whose objectives are
(1) identify address variables, i.e., variables that might contain an address; (2) identify
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output functions, i.e., functions that print at least 1 of their parameters; and (3) identify
potentially leaking paths, i.e., paths that might print an address through any of the
output functions. The information retrieved from the static analysis is then used to
perform the symbolic execution of the identified paths.

Symbolic execution is an analysis technique that allows to set a symbolic expression as
a value for inputs or variables and to execute the instructions of the program in order
to update the symbolic expression, which simply represents a set of constraints over the
bits of the symbolic value. In this case, Sleak associates a symbolic expression to each
address variable identified during the static analysis and starts the symbolic execution.
The main problem of symbolic execution is path explosion. Indeed, if during execution
the condition of a branch depends on a symbolic expression (even partially), the symbolic
execution engine cannot decide which branch to take. So, it simply takes both of them, by
splitting execution into 2 independent states and adding to the symbolic expression the
constraints required to execute that specific branch. Given the huge number of branches
in a single program, it is possible that the execution state splits so many times that
it is infeasible to actually terminate the analysis due to the time required to carry on
each execution state. In an effort to deal with path explosion, Sleak does not execute the
whole program in the symbolic execution engine, but it takes advantage of the information
about possible leaking paths gathered through the static analysis in order to symbolically
execute only those interesting paths. In order to initialize the state of the program to
perform a coherent symbolic execution of a certain path, Sleak combines it with a real
execution of the program itself, which allows to extract context information and use it as
a starting point for the symbolic execution.

Once the symbolic execution of the paths is terminated, Sleak collects the set of final
symbolic expressions and computes the address of interesting objects (e.g., base addresses
of the stack, the heap or other memory sections) by simply providing to the constraint
solver a real value of the output of the program. Note that this kind of approach is
actually able to detect all types of possible leaks, not only the ones due to uninitialized
reads. However, although Sleak tries to deal with path explosion, it may still be a problem,
because some of the leaking paths identified with static analysis may still contain many
branches. Moreover, performing static analysis on a lifted binary may be a complex task,
because recovering a precise CFG is not straightforward. Indeed, as explained by [18],
it may require dealing, for instance, with indirect control flow transfer instructions (e.g.,
indirect calls) or optimizations that cause an unusual layout or usage of instructions,
like functions with multiple entry points, code shared among multiple functions or call
instructions used to push the instruction pointer on the stack. Since the quality of results
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of data flow analysis also depends on the quality of the CFG, any inaccuracy of the CFG
may affect its results, thus possibly detecting many potentially leaking paths and therefore
increasing the execution time of the whole analysis.

Finally, Sleak needs to detect output functions to find interesting paths for symbolic
execution. If the program has been compiled stripping all the symbols information, the
tool needs to find by itself the boundaries of functions in the executable and identify
which of them are actually output functions. Functions boundaries detection in stripped
binaries is still an open research topic as it needs to address many challenges ([9, 28]).
Since it is not its main concern, Sleak performs boundaries detection by simply scanning
the whole binary looking for functions prologues ad epilogues. After boundaries detection
is done, Sleak uses a heuristic to distinguish output functions: a function is marked as an
output function if it invokes the write system call and it passes one of its parameters to
the invoked write system call. While this approach should work well with the most simple
programs, it might not work with more complex cases like real-world stripped binaries,
where functions prologues and epilogues can be optimized or removed and function calls
can be avoided by means of procedure inlining.

1.2. Goals

Our objective is to design a tool that allows analyzing any binary executable looking
for memory overlaps that may lead to information disclosure and that circumvents or
addresses the main limitations of the existing similar tools. With memory overlap, we
intend a set of instructions composed by an uninitialized memory read and all the
memory writes that have previously written in the same memory location and have not
been completely overwritten, where a memory location is identified by an address and a
size.

Since symbolic execution has some very strict intrinsic limitations, we want to simply
avoid that. Also, since we are going to deal with memory accesses, static analysis may
be a quite complex approach due to memory aliasing, which would force us to perform
alias analysis. Besides not being always possible, it might be quite inaccurate, especially
since we would work with a CFG built from a lifted binary. Therefore, we decided to
leverage Binary Instrumentation.

Binary instrumentation allows to add, remove or modify the control flow of a binary
executable in order to modify or observe its behavior. There are, mainly, 2 distinct
approaches to instrumentation:
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Static Instrumentation: instrumentation code is actually added inside the executable.
While it should be faster than dynamic instrumentation, its main drawback is the
lack of run-time information (e.g., memory addresses), which might make it difficult
to implement analysis functions. Also, adding or modifying instructions in a binary
executable might break the program itself (e.g., if the inserted code modifies a regis-
ter which is later required). For this reason, it is usually done when the source code
is available, so that it is possible to perform the instrumentation at compile time,
when the compiler has all the information to add instructions without compromising
program’s behavior.

Dynamic Instrumentation: instrumentation code is called while the binary is exe-
cuted, so analysis functions will have all the run-time information available. This
makes it easier to implement analysis functions, but introduces a bigger overhead
due to the number of jumps from application code to analysis code and vice versa.

Again, we want to analyze memory accesses of a binary executable, so Dynamic Binary
Instrumentation is the approach that better fits our needs.
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2.1. Overview

As shown by Figure 2.1, MemTrace takes an executable as input together with a set of
command-line arguments and some user input, if required by the executable itself. The
main idea behind MemTrace is to execute the binary with the given arguments and keep
track of all the executed memory accesses. This way, as soon as it detects an uninitialized
memory read, MemTrace can report it and look backward at which memory writes were
executed last on the same memory location.

Executable

Command-line
Arguments

User input

MemTrace

Overlaps
Report

Figure 2.1: MemTrace inputs and output

As a means to keep track of the state of bytes in memory (i.e., either initialized or
uninitialized), MemTrace uses a shadow memory which associates a bit to each byte
of memory used by the analyzed application, so that every time it detects a read memory
access, it can easily and quickly check the state of the read memory location.

During a program’s execution, it is not rare that some values are copied into other registers
or other memory locations. So, in order to deal with these data transfers, we also designed
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a taint analysis that allows MemTrace to keep track of copies of uninitialized bytes and
therefore detect also indirect uninitialized reads and usages of uninitialized bytes.

2.2. Approach

MemTrace makes use of DBI in order to analyze the instructions executed by a binary
and detect the ones performing a memory access. Memory accesses are divided into 2
categories: write accesses and read accesses. Whenever a memory access is detected,
MemTrace will store information about it, so that it will be possible to review the whole
history of executed memory accesses. By doing this, MemTrace is able to group read
memory accesses with all the write memory accesses that overlap the same memory
location and are not completely overwritten before the execution of the read access itself.
In order to achieve its goal, however, MemTrace must also be able to recognize read
accesses that read uninitialized data. In order to do that, MemTrace must know, at any
moment, the state of memory bytes. For this purpose, we designed and implemented a
shadow memory.

As the name suggests, a shadow memory is a data structure that mirrors the actual mem-
ory used by the application, thus allowing to store information about memory content. In
this case, MemTrace leverages the shadow memory to store state information about every
single byte of memory, which can be either initialized or uninitialized. So, when Mem-
Trace detects a read memory access, it can query the shadow memory to check whether
the data the program is going to read is initialized or not.

Since our objective is to try and report uninitialized reads that possibly lead to a leak, not
all the uninitialized reads performed during a program’s execution are really interesting.
Indeed, the bytes read by an uninitialized read access may be simply loaded into a register,
but then they may never be used by any instruction, or they may be used only by a cmp
or test instruction to evaluate the condition of a branch. In those cases, the uninitialized
read cannot lead to a leak. Moreover, it often happens that the same value is copied in
more registers or even in other memory locations. In order to be able to keep track of
usages, transfers and copies of uninitialized bytes, MemTrace implements a taint analysis.
A taint analysis is a sort of data-flow analysis which simply marks some data as tainted
according to some criterion and keeps track of those tainted data to mark as tainted
also every other piece of data that depends on that. Since it requires keeping track of
uninitialized bytes, the taint analysis performed by MemTrace marks as tainted all the
bytes that are in the uninitialized state when a memory read accesses them. Then, the
taint analysis proceeds following the flow of the tainted bytes and marking as tainted all
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of their copies. In summary, the taint analysis is helpful to (1) reduce false positives
by ignoring uninitialized reads whose bytes are never used by any other instruction (and
therefore cannot lead to a leak); (2) reduce false negatives by detecting usages of copies
of uninitialized bytes; and (3) detect and correctly report indirect uninitialized reads.

With the term false positives, we mean overlaps where the uninitialized read access is
actually executed, but it is not caused by errors in the program (e.g., it is caused by
compiler optimizations) or the read uninitialized bytes are never actually used; instead,
we refer as false negatives those uninitialized read accesses actually performed by the
program whose bytes are used by at least an instruction but which are not detected by
MemTrace. Finally, we call indirect uninitialized read any read access that reads
copies of some uninitialized bytes which have been stored in another memory location
(e.g., by a call to memcpy).

In order to achieve its objectives, the taint analysis required to design a new component.
Indeed, while the shadow memory allows to keep track of loads and stores of uninitialized
bytes, it does not allow to follow the propagation of uninitialized bytes within registers.
For this reason, we designed a Shadow Register File, that, as the name suggests, works
similarly to the shadow memory and is responsible for keeping information about the bytes
stored inside registers, so that MemTrace can know, in every moment, their state.

By using both the shadow memory and the shadow register file, the taint analysis is
always able to detect and manage usages and copies of uninitialized bytes, thus successfully
reducing the number of false positives and false negatives. However, being able of following
the flow of uninitialized bytes is still not enough to allow MemTrace correctly report the
indirect uninitialized reads. Indeed, thanks to the taint analysis, MemTrace is certainly
able to detect when the program is reading from a memory location where a copy of some
uninitialized bytes have been stored, but it will not be able to trace the original memory
read access that first loaded the uninitialized bytes from memory.

Let us consider, for example, Listing 4. The call to printf at line 19 will read bytes
copied by the previous call to strcpy at line 16. Those bytes were not initialized after the
allocation at line 15, therefore, the call to printf will perform an indirect uninitialized
read. However, the bytes read and used by printf are actually initially loaded from
memory by strcpy, which stores a copy of them inside stackBuf. In such a case, we would
like MemTrace to report the instruction Iread within strcpy that performed the original
uninitialized read. To enable this capability, besides propagating the state of the copied
bytes, the taint analysis must also propagate the origin of the uninitialized bytes. In
the context of taint analysis, we call an origin the first memory access that loaded the
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uninitialized bytes stored in a register or in a memory location. So, in the example of
Listing 4, the origin of the uninitialized bytes read by printf is instruction Iread executed
by strcpy.

1 #include <stdio.h>
2 #include <stdlib.h>
3 #include <string.h>
4

5 void func(){
6 char* heapBuf;
7 char stackBuf [64];
8

9 // Write something in the heap buffer
10 heapBuf = (char*) malloc(sizeof(char) * 64);
11 strcpy(heapBuf , "Lorem ipsum dolor sit amet , consectetur adipiscing

elit vivamus");
12 free(heapBuf);
13

14 // Using glibc implementation , the following malloc will return the
same memory location occupied by the previous allocation of heapBuf

15 heapBuf = (char*) malloc(sizeof(char) * 64);
16 strcpy(stackBuf , heapBuf);
17

18 // +16 becauce glibc implementation overwrites the first 16 bytes when
a chunk is allocated again , thus initializing them

19 printf("%s\n", stackBuf + 16);
20 }
21

22 int main() {
23 func();
24 return 0;
25 }

Listing 4: Indirect uninitialized read example

In order to efficiently propagate origins, MemTrace makes use of a Tag Manager which
assigns an integer tag to each origin, so that it is sufficient to propagate only the tag,
instead of propagating all the information about the origin itself. Given an integer tag,
the tag manager is of course able to return a reference to the corresponding memory
access, so that it is possible, at any moment, to retrieve information about the origin of
uninitialized bytes.

While MemTrace can be used as a standalone tool to detect the uninitialized reads per-
formed by a certain execution path of a program, it is actually designed to be used in
combination with a fuzzer. So, the analysis should be as fast as possible. For this reason,
the report generated by MemTrace is not in a textual form, but it is in a custom binary
format. This is simply done to avoid spending time formatting in a human-readable way
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Figure 2.2: Block diagram of MemTrace

all the information about the detected overlaps, thus reducing the time required to gener-
ate the report file. In order to generate the textual, human-readable report, it is therefore
required to use an external parser, which is able to parse the binary report and print the
contained information in a set of well-formatted tables.

Figure 2.2 shows the structure of MemTrace and the interactions among its main compo-
nents.

2.3. Implementation

MemTrace has been implemented as a dynamic binary analysis tool using Intel PIN [30]
as the underlying DBI framework. It is composed of a set of analysis functions, each of
which handles a different situation, so that their implementation is as simple as possible.
Having more independent analysis functions also allows to simply avoid executing them
when they are not needed, instead of introducing a branch for each different case in a
single huge function.

Each executed instruction is analyzed and managed accordingly to its type. Instructions
are indeed broadly distinguished into 2 types: if the instruction performs at least a memory
access (either write or read or both), the main analysis function is executed in order to
keep track of the performed access; while if it does not perform any memory access,
another analysis function is executed, which will be better explained later in this section.

As mentioned in Section 2.2, a shadow memory is used in order to keep track of the state
of memory bytes, which can be either initialized or uninitialized. Having just 2 possible
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values, the state of a byte of memory can be represented using only 1 bit: as shown by
Figure 2.3, it will be set to 1 if the corresponding byte is initialized ; it is set to 0 otherwise.
So, the shadow memory will associate 1 bit to each byte of memory used by the analyzed
application, thus reducing by 1

8
the amount of memory required to mirror its state. The

shadow memory essentially works as an ideal hash table, thus uniquely associating each bit
of the shadow memory to only one byte of the actual process memory, therefore avoiding
collisions. Working as an hash table, update and lookup operations are very fast (i.e.,
O(1)), and the absence of collisions allows to avoid the linear cost due to the presence
of multiple elements in the same bucket, thus making it very efficient. Even the “hash”
computation, which we call shadow address, is very fast, as it simply requires to compute
the byte offset of the accessed byte from the beginning of the memory and add the same
value as a bit offset from the beginning of the shadow memory.

? ???Process
Memory S irt n ??g ? ??? ? ??? ??

0 321Byte  
Offset 4 765 8 11109 12 151413 16 191817 2120

0 000Shadow
Memory 1 111 1 001 0 000 0 000 00

0 321Bit 
Offset 4 765 8 11109 12 151413 16 191817 2120

Figure 2.3: Shadow memory used by MemTrace

Unlike [31], MemTrace does not need to cover the whole process address space. Indeed,
MemTrace is meant to keep track of uninitialized reads happening on the stack or on
the heap, so it is sufficient to mirror only those memory regions with the shadow memory.
Still, there are some difficulties that need to be addressed. First of all, both the stack
and the heap may allocate memory pages that are not actually used by the process. This
is done simply because the allocation of new memory pages is performed through the
invocation of system calls, and is therefore considered an expensive operation. So, in
order to avoid allocating memory pages too frequently, a whole block of memory pages
are initially allocated for the stack and the heap. If some of these pages are never used by
the program, it is not useful to mirror them with the shadow memory. Then, notice that
the stack and the heap may require to allocate new pages during program’s execution, so,
MemTrace cannot know on process startup how many pages they will need. Finally, the
program may allocate more than a single heap. Therefore, to keep track of the memory
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accesses performed during execution, MemTrace must be able to handle all of them. For
these reasons, MemTrace’s shadow memory is not implemented as a single huge block of
sequential shadow addresses, but it is partitioned and allocated on demand.

In practice, the stack and each allocated heap will be mirrored by their own independent
shadow memories, which will be composed of only a few pages at the beginning. If
required, then, new pages will be allocated to a shadow memory, and, as depicted by
Figure 2.4, the new page will be made virtually sequential with the previously allocated
ones by adding them to a vector containing all the shadow pages belonging to the same
region. This way, we can keep track of the state of each byte of process memory efficiently
without consuming too much memory uselessly. Of course, the computation of the shadow
address is made a bit more complex, as it is not sufficient anymore to compute the byte
offset of the actual address and add it as a bit offset on the shadow memory. However,
it is still very fast to be computed, as it only involves some arithmetic operations using
division and modulo operators, just like an actual hash computation.

S.1Process
Memory

Shadow
Memory

S.2 S.3

SS.1 SS.2

H1.1 H1.2 H1.3

SH1.1 SH1.2 SH1.3

H2.1

SH2.1 SH2.2

Legend:
S.n => Page n of Stack 
Hm.n => Page n of Heap m 
SS.n => Page n of Shadow Stack 
SHm.n => Page n of Shadow Heap m

Figure 2.4: Shadow Memory Implementation

To deal with indirect uninitialized reads, false positives and false negatives, we imple-
mented a taint analysis as a set of analysis functions and auxiliary data structures. In
order to reduce the number of reported false positives, MemTrace should ignore those
uninitialized reads whose bytes are not used by any other instruction, or which are used
only by data transfer instructions (e.g., mov) or cmp instructions. Indeed, uninitialized
reads usually simply load some values from memory to registers. In order to detect bytes
usage, we need to check which registers are used as a source for the execution of an in-
struction. This is not a straightforward task, and in order to accomplish that, we needed
to implement a Shadow Register File. Its objective is actually the same as the shadow
memory, as it is meant to mirror the current state of each byte of every register in the
processor. However, it is not implemented as the shadow memory due to some major
differences. First of all, registers have a fixed size, so it is not needed to implement the on
demand allocation of shadow pages, as we can allocate all the space we need on program’s
startup. Since the information stored in the shadow registers is the same stored in the
shadow memory (i.e., byte’s state is either initialized or uninitialized), we still associate
a single bit of the shadow register to a whole byte of the corresponding architectural
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Figure 2.5: Aliasing set for register RAX

register, so one memory page is enough to allocate space for all the shadow registers of
an x86_64 architecture.

While the on demand allocation is not requested, the implementation of the shadow
register file is actually more complex than the shadow memory. This is because the
physical register file of a processor contains many registers which can be very different
both in size and in behavior. Indeed, modern processors usually make use of different
sets of registers according to the type of instruction that will use them (e.g., integer,
floating point, vector registers). Moreover, there are also sets of aliasing registers, which
are registers that might be different in size and behavior, but that partially overlap.
For instance, consider registers rax, eax, ax, al, ah in x86_64 architectures. As shown by
Figure 2.5, these registers simply consider different portions of the same set of bytes. This
means, for example, that if we write bytes inside register rax, also its aliasing registers
will be written. Sometimes, also the other way around is true. For instance if we write
register eax, register rax will be completely overwritten, filling the most significant bytes
with 0.

The shadow register file hides all the complexities related to different types of registers
and aliasing sets, exposing a very simple interface to the other components, which can
use it as an intermediary to request to update or query a certain register. As can be
inferred from the class diagram depicted by Figure 2.6, the shadow register file will then
select the actual implementation of the correct register, which takes into account all the
properties of the register itself, such as the size, the aliasing registers and their behavior
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(e.g., overwrites its super-register or not).

By using the shadow memory and the shadow register file, we managed to implement an
effective taint analysis as a set of analysis functions to be executed either before or instead
of the main analysis. Indeed, regardless an instruction performs a memory access or not,
the following analysis functions are executed in order and before the main analysis
is executed:

checkSourceRegisters: checks the registers used as a source by the instruction. Re-
quests the shadow register file to query them all and, if any of them contains at least
1 uninitialized byte, it retrieves the origin of the byte and reports it. This function
is skipped if the instruction is a data transfer or a cmp instruction.

checkDestRegisters: checks the registers used as a destination by the instruction. It
reinitializes them as completely initialized as it will be written by the instruction.
If the instruction also loads uninitialized bytes into the same register, the main
analysis function will update its state later.

After checkSourceRegisters and checkDestRegisters analysis are executed, the instruction
is inspected to verify whether it accesses memory. If it does, the main analysis is executed.
If the main analysis detects an uninitialized read there are 2 cases to consider:

Instruction is a data transfer: in this case, the instruction simply loads the read value
into some register. The state of the corresponding shadow register is updated, and
the memory access is left pending in a dedicated data structure. If any subsequent
instruction will use any of the uninitialized bytes it read, the memory access will be
reported, otherwise it will simply be discarded.

Instruction immediately uses the value loaded from memory: the memory access
is immediately reported. Since it is not left pending, there’s no need to keep track
of the uninitialized bytes, because their origin has already been reported.

If instead the instruction does not perform any memory access, the register propagation
function is executed instead of the main analysis. This function is responsible to prop-
agate the state of each byte from the source to the destination registers. This last job is
particularly complex and will be further discussed in Section 2.4.

To complete the discussion about taint analysis, we must finally speak about how we keep
track of the origins of uninitialized bytes. When an uninitialized read occurs and simply
loads bytes into some register, it is not immediately reported, but it is temporarily stored
in an auxiliary data structure and will be permanently stored only when a subsequent
instruction uses any of its uninitialized bytes. The data structure containing all the
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information about an uninitialized read is the origin for all the uninitialized bytes read
by the corresponding instruction. In order to allow MemTrace to report the instruction
that loaded the uninitialized bytes, it must propagate the information about their origin.
The most straightforward method would be to copy the whole data structure representing
the uninitialized read access every time the uninitialized bytes are propagated somewhere
else. This, however, is not very efficient, as it requires performing many copies of a
complex data structure composed of several fields. For this reason, we implemented a tag
manager, which is responsible for uniquely associating an integer value, which we called
tag, to a memory access.

The implementation of the tag manager is quite simple, as it mainly consists of a map
associating a tag to a memory access. Since we also required a unique association, the
tag manager also holds another similar map that does the opposite association, i.e., it
associates a memory access to a tag (key and element of the map data structures are
reversed). While this essentially doubles the space required to keep track of a single
memory access, it also allows to quickly find out if a certain memory access already has
a tag associated and, if it does, to retrieve the corresponding tag without scanning the
whole tag/access map. Finally, the tag manager also holds a reference count for each
tag. The reference count is not really necessary, but it allows to free memory allocated
to the association of a certain tag when it is not useful anymore, thus reducing the total
amount of space occupied by the maps. Indeed, whenever a reference count drops to 0,
it means the associated memory access has been already managed or has been ignored
for some reason (e.g., never used uninitialized bytes and the register holding its bytes
has been overwritten) and therefore we can safely remove it from the maps. Without the
reference count, the tag manager would still work correctly, but all the non-referenced
memory accesses would be left in the maps, thus consuming memory.

2.4. Challenges

Memory accesses tracing

The first evident difficulty we had to face is related to the number of memory accesses
performed in a program. Indeed, even if we write just a few lines of source code, after the
compilation and linking phases the resulting executable may need to perform thousands
or even hundreds of thousands of memory accesses. It would consume too much memory
to keep track of them all and it is not actually useful. Moreover, we need to store
information about the accesses we want to keep track of in some data structures and that
is a non-instantaneous operation. In fact, every data structure has an asymptotic cost for
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insertion, deletion and lookup operations. Therefore, if we insert such a high number of
memory accesses in the same data structure, the time required to perform these operations
may grow higher and higher, thus increasing the overall analysis execution time, possibly
making the analysis infeasible with some complex binaries.

Since we are only interested in uninitialized memory reads and in the memory writes
whose bytes are read by those uninitialized reads, we can discard all the other memory
accesses. While this is quite easily done with read accesses, as we know whether the
memory location it reads from is initialized or not when it is executed, it is more difficult
for write accesses. Indeed, we cannot know or predict if a certain write access is writing
bytes that will be later read by an uninitialized read, so we still need to keep track of every
executed write access. However, in order to try and mitigate the problem, we make use of
an additional map associating to each AccessIndex, which represents a memory location
and therefore is composed by an address and a size, the last write access that wrote the
memory location it represents. This way, every write access will overwrite the previous one
that wrote something in the same memory location, instead of allocating more memory
to add an entry in the data structure, thus discarding some of the write accesses that
don’t need to be tracked. Note that the additional map also allows to avoid checking the
relative execution order of the write accesses performed on a certain memory location, as
only the last one is actually stored. When MemTrace needs to store an uninitialized read
access, it will also inspect this additional map, and will permanently store all the write
accesses that overlap the uninitialized read, even partially.

By discarding the initialized memory reads and using the additional map for write ac-
cesses, we effectively reduced the analysis execution time and memory consumption, mak-
ing the analysis feasible also for complex real-world binaries.

System call tracing

System calls allow any application to request a service to the operating system’s kernel.
Being defined by the system’s ABI, system calls are intrinsically platform dependent.
Intel PIN is able to detect when a system call is executed, but it cannot trace its behavior
in a generic way because each system call has its own specific behavior. For this reason, it
is not possible to simply rely on the DBI framework to get the memory accesses performed
during system calls execution.

In order to solve this issue, we designed a system call manager whose job is to work
as an intermediary between some analysis functions and a platform-specific system call
handlers header file (Figure 2.8). To extract the memory accesses executed during a
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certain system call, the following sequence of operations is executed:

1. OnSyscallEntry is executed by Intel PIN whenever a system call begins. It re-
trieves the system call number and its arguments and sends them to the system call
manager.

2. OnSyscallExit is executed by Intel PIN right after a system call terminated its
execution. It will send the return value to the system call manager

3. After the system call manager received the arguments and the return value of the
executed system call, it will call a specific handler modeling the behavior of the
system call itself, which will return the set of executed memory accesses, if any.

4. The system call manager simply returns the set of memory accesses to OnSyscallExit,
which will add them to the set of memory accesses performed by the program.

The detailed sequence of requests and responses performed by each component of Mem-
Trace can be seen in the sequence diagram depicted in Figure 2.7.

Using such an intermediary component allows to decouple the generic behavior of any
system call from the specific behavior of each system call on a certain platform, thus
allowing to easily extend the tool by replacing only the specific behavior implementa-
tion, if needed, keeping the intermediate system call manager and the analysis functions
untouched.

Dynamic memory allocation functions

Objects that require to be allocated dynamically are usually stored on the heap. Unlike
the stack, the heap usually requires to be handled manually by the developer, which
can call specific functions in order to allocate or deallocate chunks of memory. These
functions are usually implemented in a system library (e.g., glibc) and their behaviors
are not standardized, making them intrinsically platform dependent. In particular, every
implementation of the dynamic memory allocation functions may manage the heap in
different ways (e.g., brk vs mmap) and may use a different layout for the metadata stored
in a chunk. In order to be able and correctly keep track of memory accesses performed
on dynamically allocated chunks, MemTrace requires to have some knowledge about the
behavior of memory allocation functions.

Once again, we decoupled the generic behavior from the specific behavior of these
functions in order to easily allow extending the tool. Indeed, as shown by Figure 2.8, the
main analysis function will interact with an external header file requesting the information
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Figure 2.7: Sequence diagram of the System Call Manager
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it needs by simply calling functions from a fixed interface whose objectives are summirized
in Table 2.1. This way, the main analysis function can retrieve all the platform-specific
information it needs and the tool can be easily extended to new platforms or even custom
implementations of the memory allocation functions by simply implementing a new header
file which adheres to the required interface.
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Objective Reason

Retrieve the beginning of the
allocated chunk given the ad-
dress returned by a call to mal-
loc or similar

In some implementations, malloc returns an address
different from the address of the allocated chunk to
allow storing both metadata and the payload in the
same chunk

Retrieve the size of the allo-
cated chunk given the address
of the chunk itself

MemTrace must know the size of the allocated
chunk in order to correctly update the correspond-
ing shadow memory

Retrieve the upper bound of
the main heap

It is possible to allocate and use multiple heaps in the
same program. For instance, on Ubuntu, using glibc
implementation, the main heap is always increased
by using brk/sbrk system call, while additional heaps
can be allocated through a call to mmap. MemTrace
supports the usage of multiple heaps, but if the main
heap is managed through brk, it must compute the up-
per bound from the address of the top chunk 1, whose
position w.r.t. the last allocated chunk may differ ac-
cording to the specific implementation of malloc

Retrieve a set of pairs (⟨Addr⟩,
⟨Size⟩) that should be consid-
ered uninitialized after a call to
free (or similar)

The allocated chunks contain some metadata used by
the memory allocation functions. On some systems,
some of these metadata are written only once and
kept untouched over all the allocations of the same
chunk. So, if we consider those metadata as uninitial-
ized after a call to free, we may generate many false
positives as they may be read by subsequent calls to
malloc. By implementing an ad-hoc function provid-
ing this kind of information, we can avoid those false
positives, but of course, this requires in-depth knowl-
edge about how malloc manages metadata

Table 2.1: Objectives of functions in the malloc handlers header file
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Figure 2.8: Complete structure of MemTrace

Heap shadow memory reinitialization

While it is clear that the effect of a call to free should reinitialize (i.e., set to an unini-
tialized state) the shadow memory associated to the freed chunk, it was not immediately
clear when to reinitialize it. There are, indeed, 2 possibilities: reinitialize the shadow
memory before the actual execution of function free or after its execution. Both the
approaches have some drawbacks.

After free: free may write some metadata inside the chunk it deallocated that are later
used by subsequent calls to malloc. By reinitializing the shadow memory associated
to the chunk after the execution of free, subsequent calls to malloc will see the
location of the metadata as uninitialized, thus generating false positives.

Before free: free itself will read chunk’s bytes in order to perform some checks on meta-
data. So, if we reinitialize the shadow memory before it executes, free will see the
memory location of the metadata as uninitialized, thus generating false posi-
tives.

By testing both the approaches with simple custom programs that just kept allocating
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and deallocating chunks, neither of the methods appeared to be appreciably better than
the other.

To solve this issue, we keep track of the write accesses performed during a call to free in
a dedicated data structure. After free returns, we first reinitialize the shadow memory
associated to the freed chunk and then we iterate over all the write accesses performed
by free to set again the corresponding shadow memory as initialized. The number
of write accesses performed by free inside the chunk is quite limited, so this operation
does not require too much time, but it effectively reduces the number of reported false
positives, as the subsequent calls to malloc will see the memory locations written by free
as initialized.

Memory allocations preceding entry point

Sometimes, it is possible that calls to malloc happen before the entry point of the program
is executed, usually due to some library initialization. But since we are interested in the
overlaps generated during the execution of a program, MemTrace starts tracing memory
accesses starting from the entry point. This causes mainly 2 problems: (1) if the program
accesses some of the heap chunks allocated before the entry point execution, those accesses
are always considered uninitialized, thus generating false positives; (2) if many chunks
are allocated before the entry point execution (so that a whole memory page is completely
allocated) and they are not traced by MemTrace and the program tries to access any of
those chunks, a segmentation fault signal is thrown, because that memory page has no
shadow memory associated.

As a solution, MemTrace partially keeps track of memory allocations executed before the
entry point by setting as completely initialized any chunk that is allocated and resetting
any chunk as uninitialized when it is freed. This tracing is partial because it does not re-
ally mirror the actual state of the memory, but it assumes any chunk as either initialized or
uninitialized, regardless of the instructions actually accessing it. While this approach may
ignore some uninitialized reads that may happen during libraries initialization, it’s worth
reiterate that we are interested in the overlaps generated by the program, and therefore
the accesses executed before the program starts are out of the scope of MemTrace. So,
this method allows us to deal with the mentioned problems, without affecting too much
the overall execution time. More specifically, we completely solved the segmentation fault
problem, because by keeping track of all the allocations, every allocated chunk will have
a shadow memory associated; and we greatly mitigated the problem with the generated
false positives, because all the chunks allocated during libraries initialization will be set
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as initialized when the program accesses them.

Optimized strings functions

Modern processors often include vector extensions that allow it to execute SIMD2 instruc-
tions. These instructions may be used to optimize portions of code that should repeatedly
execute the same code on multiple data of the same type, and that are therefore usually
implemented as a loop. By using vector instructions, indeed, it is possible to use a single
instruction to simultaneously execute the same operation on a vector of similar data, thus
reducing the number of iterations of the loop. In recent implementations of glibc3 the
same optimization technique has been used to optimize the functions related to string
operations (e.g., strlen, strcmp, strcat, etc). Indeed, in the C language, strings are just
an array of characters (i.e., char), and each char is represented by 1 byte. Instead of
managing 1 byte at a time, the library leverages the SIMD instructions, if available, in
order to manage a whole vector of bytes.

Consider, for instance, function strlen. This function simply scans the string from the
address it accepts as a parameter looking for a string terminator (i.e., byte ’\0’) and
returns the number of characters composing the string. The most straightforward way
of implementing strlen consists in writing a while loop to scan each byte one by one
and return when byte ’\0’ is found. The actual implementation does something similar,
but, instead of considering one byte at a time, it considers a vector of 16 bytes at each
iteration of the loop. SIMD instructions, indeed, allow to perform the following sequence
of operations:

1. compare all the bytes of the vector to byte ’\0’ simultaneously.

2. extract a bitmask representing the result of the comparisons.

3. store the index of the first set bit in a register. This is the number of characters
that compose the string.

With this sequence of operations, it is possible to find the string terminator, also reduc-
ing the number of iterations of the loop. Similarly, all the functions related to strings
have been optimized. As a consequence, these functions may execute some uninitialized
reads not really because they are caused by an error in the program, but simply be-
cause the applied optimizations make the used SIMD instructions read beyond the string
terminator.

2Single Instruction Multiple Data
3MemTrace has been tested on Ubuntu with glibc-2.31 installed
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Let’s consider strlen again and assume its parameter is the string “Lorem ipsum justo.”,
which is 18 bytes long. The optimized version of strlen will load the first 16 bytes (bytes
0 ∼ 15) of the string (V1 in Figure 2.9) and compare them to byte ’\0’. Since none of
them is the terminator, the comparison will fail with all the bytes and therefore a new
iteration begins. So strlen loads bytes 16 ∼ 31 (V2 in Figure 2.9) and compares them to
byte ’\0’. The string terminator is found at index 2 of this vector (starting from 0), and
adding this index to the number of bytes already compared in previous iterations (16)
we obtain the correct size of the string. Note, however, that the function had to load 32
bytes to compute the result, whereas the string was only 18 bytes long. This means that
strlen loaded bytes beyond the end of the string, which are potentially uninitialized.

L o r e m i p s u m j u s t

o . \0 ? ? ? ? ? ? ? ? ? ? ? ? ?

V1

V2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Offset

Figure 2.9: Loaded byte vectors from the example string. The reported offset is relative
to the beginning of the string.

Every call to a string function can, therefore, generate false positives and, since these
functions are widely used, the total amount of generated false positives may be very
high. Since we are working with binaries, we don’t have any information about the
function being executed, so we cannot know when an uninitialized read is performed
during the execution of a string function. In order to solve this issue, we implemented
a quite simple but effective heuristic. When MemTrace detects an uninitialized read
it assumes it is a false positive due to a string function if all the conditions listed in
Table 2.2 hold simultaneously. Note that these conditions are evaluated on each loaded
vector individually, and therefore conditions 2 and 3 may happen simultaneously on the
same string. Let us better explain the meaning of conditions 1 ∼ 3.

Condition 1: the string is shorter than 16 bytes and its pointer does not satisfy the
alignment required by the executed SIMD instruction (Figure 2.10a)

Condition 2: the string pointer does not satisfy the alignment required by the executed
SIMD instruction, but it’s long enough to fill the vector of bytes (Figure 2.10b)

Condition 3: the string has a length which is not a multiple of the vector size, so when
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the end of the string is loaded, the bytes beyond the string terminator are uninitial-
ized (Figure 2.10c)

Condition Reason

Access size is higher or equal to 16 bytes Optimized string functions usually load
vectors of bytes whose size is at least 16
bytes

The instruction is not a system call Some system calls may access memory
reading more than 16 bytes. For in-
stance, a call to write may be incorrectly
recognized as a false positive if we apply
the heuristic also to system calls

The accessed memory location contains at
least 1 initialized null byte (byte ’\0’, i.e.,
the string terminator)

Strings are usually terminated with a
null byte written right after the last byte
of the string. If there is no initialized
null byte, it is not likely that the consid-
ered uninitialized read is due to string
function optimizations

(1) There is more than 1 uninitialized inter-
val OR

Conditions 1 ∼ 3 are used to recognize
all the possible layouts for the bytes of
a string(2) there is only 1 uninitialized interval,

which begins at index 0 and ends before the
first initialized null byte is found OR

(3) there is only 1 uninitialized interval,
which begins after the first initialized null
byte is found

Table 2.2: Conditions for the string functions heuristic

With this heuristic, the previous example will not generate any false positive, because
MemTrace will recognize the uninitialized read as part of an optimized string function
(condition 3 is satisfied), thus ignoring it. Unfortunately, this is not enough to really mit-
igate the problem, because the actual optimizations applied to string functions sometimes
also leverage loop unrolling. In some cases, indeed, the function will load more than 1
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? ? ? c1 c2 c3 c4 c5 c6 \0 ? ? ? ? ? ?V1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Offset

(a) Condition 1

? ? ? c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13V1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Offset

(b) Condition 2

c1 c2 c3 c4 c5 c6 c7 c8 c9 \0 ? ? ? ? ? ?V1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15Offset

(c) Condition 3

Figure 2.10: Possible string layouts

vector at a time (usually 4), and then it will manage all of them one after another, before
a new iteration of the loop begins, thus still possibly generating false positives. In or-
der to clarify which is the actual problem, let us consider again the string “Lorem ipsum
justo.”, whose size is 18 bytes. If loop unrolling is not applied, as we said, no uninitialized
reads are reported thanks to the heuristic. However, let’s assume loop unrolling is applied
and that 4 vectors are loaded (Figure 2.11). In this case, not only bytes 16 ∼ 31 from the
string pointer may contain uninitialized bytes, but also the last 2 loaded vectors may be
completely uninitialized.

Our heuristic requires to detect at least 1 initialized null byte to be triggered, so the
uninitialized reads performed while loading the last 2 vectors of bytes are not recognized
as part of a string function optimization, and therefore are not ignored. To fix this, we
still leverage the heuristic. In fact, when it is triggered we assume that the program is
probably executing an optimized string function. So, after the heuristic is applied once,
we simply ignore all the completely uninitialized reads, as they are probably due to
the loop unrolling optimization, until a return instruction is executed, meaning that the
string function terminated. With this simple extension, our example does not generate
any false positive even if loop unrolling is applied and, after some tests, the heuristic is
actually able to ignore most of the uninitialized read performed due to the optimizations
in string functions.

The issue, however, is not completely solved, as some cases may still generate false
positives as well as false negatives. The first sources of false positives are the strings
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L o r e m i p s u m j u s t

o . \0 ? ? ? ? ? ? ? ? ? ? ? ? ?

V1

V2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Offset

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?V3

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?V4

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Figure 2.11: Loaded byte vectors from the example string with loop unrolling. The
reported offset is relative to the beginning of the string.

whose size (terminator included) is equal to a multiple of the vector size. In these cases,
indeed, the string terminator will be stored as the last byte of the vector. So, the whole
vector will be initialized, and therefore will not trigger the heuristic. If loop unrolling is
not applied, this should not be a problem, as the function should return as soon as the
terminator is detected. But if it is applied, all the vectors loaded after the terminator
may be completely uninitialized and, since the heuristic has not been triggered, they are
not recognized as part of string function optimizations and therefore reported. This is,
however, a quite rare situation, as it requires a strict condition to be verified. Moreover,
our taint analysis helps by ignoring those vectors which are loaded into a register but
never used by any instruction different from a cmp instruction or one of its variants, thus
further reducing the number of reported false positives.

Another situation that may generate false positives is when the compiler performs proce-
dure inlining of the string functions. This does not seem to happen very frequently, but
when it happens, the memory accesses size is usually below 16 bytes, thus not satisfying
the heuristic condition.

False negatives, instead, are mainly caused by optimizations performed by the compiler
in other functions or portions of the program. Indeed, it is possible that the compiler
uses the same set of SIMD instructions used to optimize string functions to optimize
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also other loops dealing with arrays of data (e.g., an array of integer values). If any of
those instructions satisfy the condition that triggers the string function heuristic, it will
be ignored and may ignore all the subsequent loads of completely uninitialized vectors,
if any. Unlike false positives, which are reported and can be manually verified through
a debugger, we have no information available to try and verify false negatives. For this
reason, it is not really possible to quantify or even qualitatively say how many of them are
generated. To avoid possibly ignoring relevant uninitialized reads, however, we made the
scope of applicability of the heuristic tunable. By default, it is applied only to instructions
belonging to the libraries loaded by the executable, so that any optimization applied by
the compiler to the code of the program will not be ignored. This, of course, does not
solve the problem for other optimized functions implemented into libraries (e.g., memcpy),
but, if needed, it is possible to completely disable the heuristic or even enable it also for
binary’s code.

Finally, we noticed that most of the uninitialized reads reported by instructions in opti-
mized string functions were false positives. In an attempt to further reduce the reported
false positives, we also implemented a post-process filter that makes use of pyelftools [17]
to parse the debug information of the standard library (usually installed by default in
operating systems) and filters out all the uninitialized reads performed by instructions
belonging to string functions. Just like the string heuristic, also the filter can be disabled.

As we will better see in Chapter 4, the usage of the heuristic and the filter effectively
reduce the number of reported false positives, still allowing to detect actual uninitialized
reads throughout the executable.

Stack clash mitigation

Every process running on a computer divides its virtual address space into memory re-
gions, or sections. One of these regions is used as the stack, which grows from higher
addresses toward lower addresses. If the stack grows too much, it could collide (or clash)
with other memory regions (e.g., the heap, the stack of other threads, etc..), thus pos-
sibly allowing an attacker to use stack variables to access other regions or, conversely,
use objects stored in the colliding memory region to access the stack. As a mitigation
technique, the operating system usually allocates a stack guard page right after the last
page of the stack. This way, if a program tries to access any address in the guard page,
an error is thrown, and execution is therefore interrupted. This is, however, not enough:
if the program allows to choose somehow the growth of the stack (through a dynamic
stack allocation) or any function’s frame requires to allocate big portions of the stack, it
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is possible to allocate more than 1 memory page of stack, thus possibly go beyond the
guard page and therefore bypass the applied mitigation. For this reason, major compil-
ers implemented a new mitigation technique, that, combined with the stack guard page,
further reduces the possibility to exploit stack clash vulnerabilities.

The stack clash mitigation [4] implemented by compilers simply divides big stack allo-
cations into a sequence of smaller allocations, so that it is never possible to bypass the
guard page. More precisely, allocations that are bigger than a memory page are per-
formed as explained by the pseudocode of Algorithm 2.1, whose schema is also depicted
in Figure 2.12.

Algorithm 2.1 Stack clash mitigation
1: remaining_size = requested_allocation_size
2: while remaining_size >= PAGE_SIZE do
3: SP = SP − PAGE_SIZE
4: remaining_size = remaining_size− PAGE_SIZE
5: probe_allocated_stack()
6: end while
7: SP = SP − remaining_size

1. Page size
allocation 2. Probe 4. Tail allocation

remaining_size >= PAGE_SIZE

Figure 2.12: Stack clash mitigation scheme

The probe implementation is not standard, and therefore it can change according to the
specific implementation of the compiler. In all the cases, however, it consists of a memory
access to the newly allocated stack space. If the performed access is a read access, then it
will be an uninitialized read, and it will be therefore reported by MemTrace. Since it is
not so rare that a function requires a frame bigger than a memory page and functions are
usually called more than once during program execution, this mitigation may generate
many false positives if a read access is used as a probe (e.g., like in GCC).

In order to reduce the number of reported false positives due to stack clash mitigation,
we implemented some analysis functions whose objective is simply to detect instructions
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that perform stack allocations (which are simple sub instructions where the first operand
is the stack pointer) and update an object representing the last executed stack allocation
accordingly. If during the main analysis function we detect an uninitialized read that
immediately follows a stack allocation whose size is equal to the page size and that is
accessing any address of the just allocated stack space, then we assume it is due to the
stack clash mitigation, and therefore ignore it. Notice that this does not completely solve
the problem. Indeed, stack clash mitigation implementations may slightly differ from the
scheme depicted in Figure 2.12. This usually can happen when dynamic stack allocation is
used. In these cases, the compiler may add a probe before a stack allocation or after a tail
allocation. Both these kinds of probes are not distinguishable from actual and possibly
relevant uninitialized reads, and therefore cannot be ignored, thus generating a false
positive. Notice, however, that this situation is quite rare, and therefore the number of
reported false positives is very limited.

Finally, if the program allocates exactly a page size of stack, and it is compiled without
the stack clash mitigation, it is possible that MemTrace will ignore the uninitialized read
executed immediately after the stack allocation, if any, thus generating a false negative.
However, this situation is extremely rare, as it requires a very strict condition to be
verified, thus making the number of possibly generated false negatives very low.

Propagation of bytes state

As explained in Section 2.2, we implemented a taint analysis in order to keep track of
uninitialized bytes and their origin. To do that, MemTrace must be able to propagate the
state of bytes from source to destination whenever a data transfer instruction is executed.
The difficult thing about this task is that every instruction has its own semantic and
many of them may use registers of different types or sizes as source and destination or
may access a memory location whose size is different from the size of the registers used
as operands. Therefore, it is required to know how a specific instruction transfers bytes.
Of course, given the huge amount of instructions and the complexity of their semantics,
it is not feasible to use a single huge if or switch statement to manage every single
instruction the program may use. So, we implemented an instruction manager, which
is responsible for checking the instruction the program is going to execute and call the
correct instruction handler.

This component is quite similar to the system call manager : the instruction manager
works as an intermediary, exposing a simple and common interface to the other compo-
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nents (Figure 2.13) and, according to the opcode4 it receives as a parameter, it will relay
the request to a specific instruction handler, which models the data transferring behavior
of the actual instruction. In order to make MemTrace easily extensible, we divided the
specific handlers in 2 major classes, as shown by Figure 2.13:

Mem instructions: instructions reading/writing bytes from/to memory (i.e., loads and
stores

Reg instructions: instructions simply copying bytes from a set of registers to another
one

To reduce the number of required specific handlers, we also implemented a default handler
for each class of data transfer (i.e., load, store, propagate) which allow to correctly handle
most of the instructions.

InstructionManager

- memEmulators: Map<Opcode, MemInstructionEmulator>
- regEmulators: Map<Opcode, RegInstructionEmulator>
- defaultLoad: MemInstructionEmulator
- defaultStore: MemInstructionEmulator
- defaultRegPropagate: RegInstructionEmulator

+ handle( Opcode inst, MemoryAccess access,
  List<ShadowRegister> srcRegs, List<ShadowRegister> dstRegs) 
+ handle( Opcode inst, List<ShadowRegister> srcRegs, 
  List<ShadowRegister> dstRegs)

<<Interface>> 
MemInstructionEmulator

+ handle( MemoryAccess access, List<ShadowRegister> srcRegs,
  List<ShadowRegister> dstRegs) 

<<Interface>> 
RegInstructionEmulator

+ handle( List<ShadowRegister> srcRegs,
  List<ShadowRegister> dstRegs) 

DefaultLoadInstruction
DefaultStoreInstruction

MemFstInstruction

MemVpbroadcastInstruction

. . .

DefaultPropagateInstruction
FstInstruction

VpbroadcastInstruction

MovsdInstruction

. . .

Figure 2.13: Conceptual class diagram of the Instruction Manager

To try and understand which instructions required a specific handler, we made the instruc-
4Portion of an instruction uniquely associated to the instruction itself and therefore allowing to rec-

ognize it.
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tion manager create a secondary report which simply contains a list of all the instructions
it receives where source and destination registers have a different size or the accessed mem-
ory location has a size different from the size of the registers used as operands. Then, we
launched MemTrace with the whole suite of utilities from Coreutils and other programs
used for tests and validation, and we manually scanned the reports and verified whether
each reported instruction was correctly handled by the default handlers or not. If it was
not, the instruction required a specific handler. Using this approach, we implemented a
total of 12 specific instruction handlers. Of course, it is possible we missed some instruc-
tions requiring a specific handler, and therefore there might be some incorrectly handled
instructions. However, we will see in Chapter 4 that the implemented handlers seem to
be enough to correctly detect uninitialized reads.

Finally, notice that if any instruction has no specific handler and has not been verified as
correctly handled by the default handlers, it is reported in the secondary report created
by the instruction manager, thus allowing the user to be aware of the possibly missing
handler, which can be easily implemented and added to extend the tool with a minimum
amount of changes to the existing source code.

Zeroing XOR

Table 2.3 reports the truth table of the XOR operator. As it depicts, if the XOR is
applied to 2 bits with the same value, the result is always 0. This is true also if we extend
the XOR operator to be a bitwise register operator. Indeed, the bitwise xor instruction
executes a xor of the bits from the source registers that occupy the same position i, and
stores the result at position i of the destination register (that coincides with the first
source register), as shown by Figure 2.14. So, if we execute a xor instruction using the
same register twice as operands, we are essentially setting that register to 0. Moreover,
in x86 architectures, a xor instruction is smaller than a mov instruction used to load an
immediate into a register with size bigger than 1 byte. For this reason, often compilers
leverage the xor instruction as an optimization to set a register to 0.

⊕ 0 1

0 0 1

1 1 0

Table 2.3: Truth table of XOR operator

When this happens, if the register that is being zeroed contains an uninitialized byte, the
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7 6 5 4 3 2 1 0Source
register 1 7 6 5 4 3 2 1 0Source

register 2

XOR XOR XOR XOR XOR XOR XOR XOR

Figure 2.14: Bitwise xor instruction schema for 8 bit registers

taint analysis will detect the uninitialized byte usage, and therefore will report its origin.
While it is true that the uninitialized byte is being read and used by an instruction, in
this case the instruction is simply used to set to 0 that register, thus overwriting the
register’s content. Therefore, in these cases, we don’t want MemTrace to consider the
instruction as a usage of uninitialized bytes. The solution to this problem is quite simple.
Indeed, it is sufficient to perform a check on the instruction before calling the taint analysis
functions. If it is a zeroing xor , function checkSourceRegisters, which is the one that
reports the corresponding uninitialized reads if uninitialized bytes are detected inside any
source register, is simply skipped. Note that function checkDestRegisters is still executed,
so that the destination shadow register is updated coherently, thus setting all of its bits
as initialized, because the zeroing xor is setting the destination register to 0.

In order to detect zeroing xors, MemTrace performs the checks reported in Algorithm 2.2:
first, it verifies that the opcode of the instruction being executed is the opcode of a XOR
instruction; then, it checks the number of source and destination registers and, finally, it
checks whether the source registers are the same register. This way, all the uninitialized
bytes usages due to zeroing xors are ignored by MemTrace, thus reducing the number of
false positives.

Finally, note that while the xor instruction can use memory operands as source or des-
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tination, it is not possible to have a zeroing xor acting directly in memory, because x86
ISA does not support xor instructions using 2 memory operands as sources.

Algorithm 2.2 Zeroing xor recognition
1: procedure isZeroingXor(inst):
2: if inst.opcode == XOR_OPCODE and inst.srcRegs.size == 2 and

inst.dstRegs.size == 1 and inst.srcRegs[0] == inst.srcRegs[1] then
3: return true
4: end if
5:
6: return false
7: end procedure

XSAVE and XRSTOR

According to [27], x86 architectures use xsave and xrstor instructions in order to store
and restore, respectively, a full or partial copy of the processor state components at the
memory location specified by the address used as an operand. In practice, they are used
to store and restore a copy of the processor’s registers in memory. If xsave stores a register
containing some uninitialized bytes, and then the program overwrites that register, we
would like that MemTrace was able to restore the uninitialized state of the register when
xrstor is called, otherwise the state of the shadow register would not reflect the state of
the corresponding architectural register.

Unfortunately, while Intel PIN is able to detect when these instructions are used, it does
not keep track of which registers are copied/restored. Indeed, the instructions do not
accept an explicit set of register operands, but they use some control registers in order to
select them. This means that MemTrace cannot rely completely on the information the
underlying DBI framework makes available about xsave and xrstor instructions. For this
reason, we implemented a specific analysis function which is invoked by MemTrace when
either xsave or xrstor is executed. Based on the description from [27], we implemented
an analysis function that reads the control registers to verify which registers are involved
and mimics the behavior of xsave and xrstor. Notice that the actual implementation
of these instructions also copies and restores the values stored in the control or status
registers of the processor. Those registers hold values used by the processor to change
or control its internal behavior or to evaluate conditions for branches. So, they are not
directly accessible by the program and therefore they cannot contain bytes loaded by an
uninitialized read memory access. For this reason, MemTrace does not trace them, and
therefore the xsave/xrstor handler does not take them into consideration. This means
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that the analysis function only partially models the actual behavior of the instructions,
thus storing and restoring the state only for the registers which are used by the program
to hold temporary values (e.g., integer, floating point or vector registers). By using this
additional analysis function, MemTrace is able to correctly handle xsave and xrstor in
case any register was uninitialized.
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MemTrace is a dynamic analysis tool and, as such, has an intrinsic limitation: it can only
report overlaps detected in the execution path the program traverses. In order to partially
deal with this limitation, we combined MemTrace with AFL++ [20], which is one of the
most effective and widely used fuzzers. By fuzzing the binary, AFL++ will generate a
lot of inputs, that, as shown by Figure 3.1, can be subsequently used as an input for the
program executing it through MemTrace.

MemTraceAFL++
Executable

Initial
testcases

Arguments

Inputs

Binary
reports

Merging
script

Textual
merged
report

Figure 3.1: Block diagram of MemTrace combined with AFL++

AFL++ is designed to try and explore as many paths as possible and it will store only
those inputs that it considers interesting, which are, mainly, the ones crashing the program
and the ones which explore new paths w.r.t. previous executions. So, by using the inputs
generated by the fuzzer to execute the program with MemTrace, we are able to explore
more execution paths. However, a single execution of a program with MemTrace will
generate a single binary report file, containing information about the overlaps detected in
that specific path. By executing MemTrace once for each input generated by the fuzzer, it
will generate as many binary reports, and even if we passed them all through the parser to
generate the textual report, they would be too many to be manually checked and extract
some useful results. So, we implemented a merging script that uses the binary report
parser to extract information about overlaps from every binary report generated during
the combined execution of AFL++ and MemTrace and then merges them all in a merged



50 3| Fuzzing

report which collects, in a single textual file, the summary of the results obtained in all
the executions.

The merged report is composed by a sequence of tables, one for each instruction performing
an uninitialized memory read. This means that if 2 different executions of the program
executed the same instruction performing an uninitialized read, those overlaps will be
merged and reported in the same table. Notice, however, that if ASLR is enabled in the
system, different executions of the program will load the same instruction at a different
absolute address. So, in order to recognize the table a certain instruction should be
reported in, we need to consider the relative offset of the instruction from the base of its
memory region. This way all the instructions with the same offset from a specific memory
region are reported in the same table.

The objective of MemTrace is to report overlaps, that we defined as a set composed by
an uninitialized read and an access set, i.e., the set of instructions that wrote the bytes
it read. So, each table is composed by more overlaps. In order to avoid confusion and
redundancy, identical overlaps are not reported twice, but each of them also contains a
counter reporting the number of inputs that were able to generate the considered overlap,
giving the user some insight about how difficult it is to generate such an overlap. Given 2
overlaps, they are considered different if (a) they have different access sets, that is, the
instructions that wrote the bytes read by the uninitialized read are different; or (b) their
uninitialized reads have different uninitialized intervals, i.e., the interval of indices con-
taining uninitialized bytes; or (c) the uninitialized reads access different memory locations.
Again, in order to deal with ASLR, memory locations are reported as couples composed
by an offset from the beginning of the memory region they belong to (e.g., the heap) and
a size. Figure 3.2 shows an example of tables reported in a merged report, highlighting
the type of information it contains and where it can be found.

Besides helping explore more execution paths, the fuzzer is helpful also because it allows
detecting those uninitialized reads that can be somehow controlled. Indeed, if we want to
exploit an uninitialized read to obtain a leak, we would need to control either the content
of the memory location it reads from or the memory location itself. So, it would be
useless to report uninitialized reads that always read from the same memory location and
always read the same bytes. MemTrace does not actually consider the content of memory
locations (i.e., the actual bytes read), but if a certain table in the merged report only
contains a single overlap, it is likely not to be useful to obtain a leak, and therefore, we can
avoid reporting it, thus making the merged report much clearer. Moreover, all the overlaps
with an empty access set, which are the ones composed of an uninitialized read reading
a memory location that has never been written by the program since its beginning, are
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not reported at all. This is done because those uninitialized reads will read unpredictable
bytes from memory, and MemTrace cannot, therefore, give any information about the
origin of the bytes read. However, if needed, MemTrace can be easily configured to report
both single overlap tables and empty access set overlaps by using specific command-line
options.

Since MemTrace analyzes executable binaries, it cannot really distinguish which unini-
tialized reads actually lead to information disclosure. However, by inspecting the merged
report and analyzing its overlaps (e.g., through a debugger) the user can see which are
the uninitialized reads in the program that can lead to a leak and the reported overlap
sets are helpful to understand if and how it is possible to control them to get arbitrary
information.

Finally, notice that, as a side effect, MemTrace also helps detect other types of vulnera-
bilities involving an uninitialized read. For instance, if a program allows a user to write
from stdin in a certain buffer and during execution it happens that the buffer overlaps an
uninitialized function pointer, MemTrace will report the uninitialized read caused by the
call to the function pointer and, analyzing the report, it is easy to see that it’s possible
to directly control the target of the call instruction from stdin, thus allowing to execute
arbitrary code. We’ll describe more in depth a case of such an example in Chapter 4.

Command-line arguments fuzzing

Sometimes the command-line arguments passed to a program may change program’s
behavior, thus making the execution traverse paths that would not be taken otherwise. In
order to deal with this, we leveraged the fuzzer once again. Extending an example provided
within AFL++’s repository [1], we implemented a library for AFL++ that allows to fuzz
also the arguments passed to the fuzzed program. The library simply implements a hook
for function __libc_start_main, which is responsible to prepare and call function main
during a program’s startup. So, the call to __libc_start_main is intercepted and, before
calling the original version of the function, some of the bytes generated by the fuzzer
are used as a command-line argument, updating argc and argv accordingly. Finally, the
original __libc_start_main is called, passing it the new values of argc and argv. The
generated arguments are stored and, as depicted in Figure 3.1, they are subsequently
used to execute again the same binary within MemTrace. This way, the fuzzer may help
traverse new paths in the executable, thus increasing the coverage. Of course, fuzzers
are not really designed to fuzz command-line arguments, so it is possible that many
inputs generated with argv fuzzing enabled pass to the program invalid arguments, which
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may cause the program to exit early. However, as we will better see in Chapter 4, this
approach is good enough to find some vulnerabilities which are triggered only if some
specific command-line arguments are used. Obviously, it comes with some drawbacks,
which will be explained in Chapter 6.
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===============================================
0x1318(0x7fe265b6d223): /lib/x86_64-linux-gnu/libc.so.6 loaded at @ 0x7fe265add000                                                             
===============================================
Generated by 7 inputs:
Slave_0/id:000003,sig:06,src:000001,time:6221,op:havoc,rep:8
Reads 8 bytes from <stack_base> - 2648
***********************************************
   0x1318 (0x7fe265b6d1d9):  W 8 B @ (sp - 8); (bp - 216); [0 ~ 7]
   *0x1318 (0x7fe265b6d223):  R 8 B @ (sp + 24); (bp - 216); [0 ~ 7]
***********************************************

Generated by 7 inputs:
Slave_0/id:000003,sig:06,src:000001,time:6221,op:havoc,rep:8
Reads 8 bytes from <stack_base> - 2616
***********************************************
   0x1318 (0x7fe265b6d287):  W 8 B @ (sp - 8); (bp - 184); [0 ~ 7]
   *0x1318 (0x7fe265b6d223):  R 8 B @ (sp + 24); (bp - 184); [0 ~ 7]
***********************************************

[...]

===============================================
===============================================

===============================================
0x138c(0x556116e4b38c): /home/guest/Scrivania/CTFs/zer0ptsCTF/a.out loaded at @ 0x556116e4a000
===============================================
Generated by 22 inputs:
Slave_0/id:000003,sig:06,src:000001,time:6221,op:havoc,rep:8
Reads 8 bytes from <stack_base> - 2408
***********************************************
   0x1543 (0x7fe265b72103):  W 8 B @ (sp - 8); (bp - 935677480); [0 ~ 7]
   *0x138c (0x556116e4b38c):  R 8 B @ (sp + 8); (bp - 72); [0 ~ 7]
***********************************************

Generated by 1 inputs:
Slave_0/id:000035,src:000001,time:53514,op:havoc,rep:16
Reads 8 bytes from <stack_base> - 488
***********************************************
     0x1353 (0x7f3935874d33):  W 8 B @ (sp + 2088); (bp + 280); [0 ~ 7]
=> 0x1277 (0x55a5e2805277):  W 1 B @ (sp + 12); (bp - 20); [4 ~ 4]
    *0x138c (0x55a5e280538c):  R 8 B @ (sp + 8); (bp - 72); [0 ~ 7]
***********************************************

[...]

===============================================
===============================================

Overlap

Table

Memory region 
info

Inputs counter

Memory location info

Path of the input
causing the overlap

Written indices

Uninitialized interval

Access set

Uninitialized read

Figure 3.2: Portion of a merged report
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We performed 2 types of tests:

Timing: since we want to use MemTrace in combination with a fuzzer, execution time is
a major concern, because if the overhead introduced by the analysis to the execution
of a program was too heavy, it would be infeasible to execute it with every generated
input.

Functional: of course we want to verify MemTrace works well and is actually able to
reach the objectives it is designed for.

4.1. Timing tests

As a first obvious attempted method to compute the overhead of MemTrace, we collected
the time required to execute a program and the time required to execute the same program
(with the same parameters and inputs) within MemTrace. However, we noticed that most
of the time consumed by MemTrace was actually spent by the underlying DBI framework
to load the executable and all the libraries it requires, so we decided to try and isolate
the overhead introduced by the actual analysis by the one introduced by Intel PIN. In
order to compute the analysis overhead introduced by MemTrace we required to collect
the following information for a certain program P:

⟨NullT ime⟩: time required to execute program P within Intel PIN, but with no analysis
functions registered.

⟨InstrumentedT ime⟩: time required to execute program P within MemTrace

We collected the required data for the utilities from Coreutils and computed the overhead
of the analysis as a multiplication factor as

⟨Overhead⟩ = ⟨InstrumentedT ime⟩
⟨NullT ime⟩

(4.1)

As shown by Table 4.1, MemTrace analysis is, on average, about 8 times slower than the
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execution with no analysis. In order to enable a comparison, since it is also implemented
as a dynamic binary instrumentation tool, we did the same thing by collecting the exe-
cution times with and without registered analysis using Memcheck as an analysis tool.
Computing the analysis overhead for Memcheck using Equation (4.1) again, we found
out that Memcheck analysis is, on average, about 2 times slower than execution with no
analysis (Table 4.2) and, therefore, that MemTrace is about only 4 times slower than
Memcheck. Considering the additional amount of analysis performed by MemTrace on
every memory access, this is quite a reasonable and satisfying result.

Note, however, that the multiplication factors we computed for both MemTrace and
Memcheck are not constant. Indeed, being both of them dynamic binary instrumentation
tools, the actual execution time highly depends on several variables, such as the length
of the input, the number of executed instructions, the number of memory accesses, the
number of executed system calls, etc... In any case, the comparison can still be considered
valid, as it was performed by comparing the same programs executed using the same
inputs, thus fixing most of the variables mentioned above.

Begin of Table 4.1

Utility NullTime(ms) InstrumentedTime(ms) Analysis overhead

dd 753 6265 8.32

b2sum 553 4393 7.94

base32 542 3939 7.26

base64 534 4004 7.49

basename 514 3675 7.14

cat 457 3574 7.82

chgrp 675 4815 7.13

chmod 511 3753 7.34

chown 709 4896 6.90

cksum 534 3949 7.39

sort 637 5173 8.12
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Continuation of Table 4.1

Utility NullTime(ms) InstrumentedTime(ms) Analysis overhead

comm 535 4179 7.81

cp 589 4684 7.95

csplit 597 4500 7.53

cut 550 4023 7.31

date 602 4524 7.51

df 865 7342 8.48

dir 694 5338 7.69

dircolors 525 3880 7.39

dirname 510 3631 7.11

du 1089 12326 11.31

echo 498 3669 7.36

env 531 3890 7.32

expand 534 3894 7.29

expr 569 4043 7.10

factor 514 3763 7.32

fmt 699 5231 7.48

fold 671 5204 7.75

getlimits 75 71 .94

groups 708 4802 6.78

head 668 5205 7.79

hostid 770 5385 6.99

id 926 7772 8.39
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Continuation of Table 4.1

Utility NullTime(ms) InstrumentedTime(ms) Analysis overhead

join 666 5425 8.14

link 443 3380 7.62

ln 447 3426 7.66

ls 802 6804 8.48

md5sum 504 4119 8.17

mkdir 552 4200 7.60

mkfifo 532 4307 8.09

mknod 911 5070 5.56

mktemp 478 4090 8.55

mv 561 4426 7.88

nice 408 3148 7.71

nl 551 4223 7.66

nproc 513 3802 7.41

numfmt 581 4463 7.68

od 643 5219 8.11

paste 502 3892 7.75

pinky 663 5529 8.33

printenv 533 3871 7.26

printf 563 4103 7.28

ptx 803 6501 8.09

pwd 529 3767 7.12

readlink 511 3666 7.17



4| Validation 59

Continuation of Table 4.1

Utility NullTime(ms) InstrumentedTime(ms) Analysis overhead

realpath 523 3823 7.30

rm 71 71 1.00

rmdir 473 3478 7.35

seq 8867 31139 3.51

sha1sum 543 4461 8.21

sha224sum 557 4651 8.35

sha256sum 547 4831 8.83

sha384sum 567 4830 8.51

sha512sum 562 4763 8.47

shred 531 3978 7.49

shuf 578 4426 7.65

sleep 1445 4783 3.31

split 638 5319 8.33

stat 1032 8595 8.32

stty 675 5636 8.34

sum 495 3929 7.93

tac 471 3742 7.94

tail 670 5356 7.99

touch 480 3546 7.38

truncate 631 4924 7.80

tty 506 3697 7.30

uname 492 3693 7.50



60 4| Validation

Continuation of Table 4.1

Utility NullTime(ms) InstrumentedTime(ms) Analysis overhead

unexpand 510 3946 7.73

uniq 554 4087 7.37

unlink 463 3472 7.49

uptime 799 6492 8.12

users 490 3399 6.93

vdir 1231 10103 8.20

wc 589 4362 7.40

who 491 3669 7.47

whoami 690 4762 6.90

Average 7.45

End of Table 4.1

Table 4.1: MemTrace timing test
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Begin of Table 4.2

Utility NullTime(ms) InstrumentedTime(ms) Analysis overhead

dd 479 935 1.95

b2sum 443 841 1.89

base32 429 806 1.87

base64 433 816 1.88

basename 430 785 1.82

cat 441 799 1.81

chgrp 480 857 1.78

chmod 423 800 1.89

chown 483 849 1.75

cksum 434 793 1.82

sort 454 889 1.95

comm 447 826 1.84

cp 471 892 1.89

csplit 433 837 1.93

cut 436 847 1.94

date 449 845 1.88

df 519 954 1.83

dir 474 916 1.93

dircolors 428 816 1.90

dirname 436 780 1.78

du 738 1441 1.95

echo 450 779 1.73
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Continuation of Table 4.2

Utility NullTime(ms) InstrumentedTime(ms) Analysis overhead

env 450 833 1.85

expand 470 819 1.74

expr 445 846 1.90

factor 439 835 1.90

fmt 470 847 1.80

fold 472 864 1.83

getlimits 6 13 2.16

groups 450 869 1.93

head 462 873 1.88

hostid 474 932 1.96

id 523 994 1.90

join 423 792 1.87

link 425 776 1.82

ln 413 774 1.87

ls 550 1004 1.82

md5sum 438 817 1.86

mkdir 471 866 1.83

mkfifo 458 859 1.87

mknod 462 851 1.84

mktemp 424 798 1.88

mv 455 860 1.89

nice 402 740 1.84
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Continuation of Table 4.2

Utility NullTime(ms) InstrumentedTime(ms) Analysis overhead

nl 470 828 1.76

nproc 454 791 1.74

numfmt 435 829 1.90

od 444 866 1.95

paste 444 806 1.81

pinky 464 875 1.88

printenv 449 790 1.75

printf 421 803 1.90

ptx 480 938 1.95

pwd 390 755 1.93

readlink 388 737 1.89

realpath 391 734 1.87

rm 5 6 1.20

rmdir 420 731 1.74

seq 6838 7370 1.07

sha1sum 440 1179 2.67

sha224sum 493 915 1.85

sha256sum 564 913 1.61

sha384sum 416 826 1.98

sha512sum 420 827 1.96

shred 396 760 1.91

shuf 430 824 1.91
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Continuation of Table 4.2

Utility NullTime(ms) InstrumentedTime(ms) Analysis overhead

sleep 1414 1797 1.27

split 451 864 1.91

stat 577 1107 1.91

stty 466 903 1.93

sum 455 838 1.84

tac 453 836 1.84

tail 480 855 1.78

touch 392 815 2.07

truncate 442 866 1.95

tty 426 893 2.09

uname 402 769 1.91

unexpand 428 794 1.85

uniq 488 784 1.60

unlink 536 951 1.77

uptime 511 1047 2.04

users 404 789 1.95

vdir 582 1157 1.98

wc 433 845 1.95

who 407 796 1.95

whoami 464 850 1.83

Average 1.86
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Continuation of Table 4.2

Utility NullTime(ms) InstrumentedTime(ms) Analysis overhead

End of Table 4.2

Table 4.2: Memcheck timing test



66 4| Validation

4.2. Functional tests

4.2.1. Goals

MemTrace can be used either as a standalone tool or in combination with a fuzzer to try
and explore more execution paths of the binary under analysis. For this reason, we set
up 2 different types of functional tests, each with its own goal.

Uninitialized reads detection

In order to be able to report memory overlaps, MemTrace must obviously be able to detect
uninitialized read accesses. To test its capability to detect and report uninitialized
reads, we used some real-world binaries and binaries from some past CTF competitions
with well-known vulnerabilities, so that we could easily verify the obtained results, and
we executed them through MemTrace using the command-line arguments and/or the
inputs that triggered the known vulnerabilities.

Fuzzing efficacy

Once we verified the capability of MemTrace to report uninitialized reads, we were in-
terested in figuring out whether its combined execution with AFL++ was effective. To
do this, we leveraged the very same binaries used for the validation of uninitialized reads
detection capability. This time, however, we wanted to know if the fuzzer was able to
generate the inputs and command-line arguments required to trigger the known vulner-
abilities in the binaries, so we used, as initial testcases for the fuzzer, some random or
simple inputs that did not trigger the vulnerability, and we used the generated inputs and
arguments to analyze the binary through MemTrace.
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4.2.2. Dataset

We tested MemTrace with a set of binaries having known vulnerabilities. More specifically
we tested the tool with the binaries listed in Table 4.3. Note that we compiled CGC
binaries from https://github.com/GrammaTech/cgc-cbs, which is a porting of the CGC
binaries to Linux.

4.2.3. Experimental setup

Uninitialized reads detection

This experiment has been performed on a local machine running Ubuntu, with glibc-2.31
installed and very limited resources, namely 4 GB of memory and 2 CPUs. For each
binary listed in Section 4.2.2, we crafted an input triggering the known uninitialized read
vulnerability, and we simply launched MemTrace executing the binary with the crafted
input. Then, we generated the textual report through the binary report parser and we
manually verified all the reported overlaps, i.e., we verified that the reported read
accesses were actually uninitialized and verified that the bytes they read had actually
been written by the write accesses reported in their access set. Each execution required
just a few seconds to terminate, including the time consumed by the underlying DBI
framework to load the executable and start execution.

Fuzzing efficacy

Since fuzzing is a quite heavy task and may work better when more instances run in
parallel, we performed this experiment in a docker container on a remote machine with
many more resources available, namely 40 CPUs and about 370GB of memory. The
container was run with an Ubuntu image, with glibc-2.31 installed. As a dataset, we used
again the same binaries listed in Section 4.2.2. This time, however, we used MemTrace
combined with AFL++ to verify whether the combined execution is actually able to
automatically identify vulnerabilities in a program without requiring the user to manually
craft a triggering input. For each binary listed in Section 4.2.2, we ran 4 parallel instances
of the fuzzer for 8 hours using, as initial testcases, only simple or random inputs. When
possible, we even enabled arguments fuzzing. In the end, a merged report was generated
for each tested binary by using the merging script and we manually verified them similarly
as we have done for the previous tests.

https://github.com/GrammaTech/cgc-cbs
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4 real-world binaries

cbor2json from OOCBORRT

https://github.com/objsys/oocborrt

Commit de254ab4193f6b9d865213a35482b65b7be01dee

CVE-2020-24753

md2html from MD4C

https://github.com/mity/md4c

Commit aa654230915db7439eb22ae8b0d6c58f4409e17d

CVE-2021-30027

cp from Coreutils-6.9.90

Vulnerability description:

https://github.com/coreutils/coreutils/blob/master/
NEWS, line 3294

Fix commit: a54e8bb8a547c2ee9147865e2eb42eece69e8072

tail from Coreutils-7.6

Vulnerability description:

https://github.com/coreutils/coreutils/blob/master/
NEWS, line 2551

Fix commit: fc4d3f63b0c64992014b035e8b780eb230e0c855

3 binaries from Cap-
ture The Flag (CTF)
competitions

Contacts from picoCTF 2018

Full Protection from ASIS CTF 2020

Stopwatch from zer0ptsCTF 2021

5 binaries from Cy-
ber Grand Challenge
(CGC)

Accel - KPRCA_00013

TextSearch - KPRCA_00036

HackMan - KPRCA_00017

TFTTP - NRFIN_00012

SSO - NRFIN_00033

Table 4.3: Validation dataset

https://github.com/objsys/oocborrt
https://github.com/mity/md4c
https://github.com/coreutils/coreutils/blob/master/NEWS
https://github.com/coreutils/coreutils/blob/master/NEWS
https://github.com/coreutils/coreutils/blob/master/NEWS
https://github.com/coreutils/coreutils/blob/master/NEWS
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4.3. Results

4.3.1. Uninitialized reads detection

For almost all the binaries in the dataset, MemTrace successfully identified the known
vulnerability, thus reporting the instruction performing the uninitialized read and all
the write accesses, if any, whose bytes have been read by the read access. The only
binary in the dataset for which MemTrace was not able to report the vulnerability has
been md2html. Listing 5 shows the portion of source code of md2html that contains the
vulnerability.

1 /*
2 ** From src/md4c.c.
3 ** The last part of the if condition (namely "CH(off) == _T(’#’)") is

comparing 2 characters and is responsible for the uninitialized read.
Indeed , under certain conditions , off can be increased higher or

equal to the size of the document content.
4 */
5

6 [...]
7

8 /* Check for ATX header.*/
9 if(line ->indent < ctx ->code_indent_offset && CH(off) == _T(’#’)) {

10 unsigned level;
11 if(md_is_atxheader_line(ctx , off , &line ->beg , &off , &level)) {
12 line ->type = MD_LINE_ATXHEADER;
13 line ->data = level;
14 break;
15 }
16 }
17

18 [...]
19

20

Listing 5: md2html source code (CVE-2021-30027 )

By observing the source code and referring to CVE-2021-30027, the vulnerability lies in
the comparison of 2 characters. In the executable, this comparison is performed by using
a cmp instruction. As explained in Chapter 2, MemTrace does not report the uninitialized
read if the read bytes are used only by a cmp instruction, because it surely cannot lead to
information disclosure. For this reason, MemTrace did not report the known vulnerability
in md2html and, since it is due to an aware design decision of the tool, it is not really to
be considered as a false negative.

For most of the tests, as shown by Table 4.4, no false positives were generated and,
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when there were some, they were very limited in number and very easily recognized by
using a simple debugger.

Finally, notice that some vulnerabilities may cause the program to perform more than
a single uninitialized read. This happens, for instance, in cp from Coreutils-6.9.90. In
this binary, the vulnerability consists in the usage of an uninitialized struct object. These
structures are usually not accessed as a whole, but the program accesses their fields when
it is required. So, every time the program accesses a different field of the uninitialized
structure, it is performing an uninitialized read, which is detected and reported by Mem-
Trace.

Binary Uninitialized Reads FP

cbor2json 1 0

md2html 0 0

cp 8 1

tail 2 1

contacts 1 0

full_protection 1 0

stopwatch 2 0

accel 3 0

textsearch 1 0

hackman 2 0

tfttp 1 0

sso 1 0

Table 4.4: Uninitialized reads detection tests results

We tried to compare the results obtained by MemTrace with the similar existing tools we
described in Section 1.1. Unfortunately, Sleak is not publicly available, and the same is
true for most of the binaries listed in its validation dataset, which makes the comparison
impossible. So, we could only compare MemTrace with Memcheck, as we did with the
timing tests. To enable the comparison, we performed the same set of tests (i.e., same
binaries and same inputs) using Memcheck as an analysis tool. Table 4.5 shows the
number of reported items for both MemTrace and Memcheck.

In most of the cases, MemTrace reports a lower number of items than Memcheck. This is
because MemTrace only focuses on usages of uninitialized bytes, while Memcheck reports
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binary MemTrace Memcheck

cbor2json 1 3

md2html 0 4

cp 8 4

tail 2 3

contacts 1 4

full_protection 1 5

stopwatch 2 137

accel 3 12

textsearch 1 11

hackman 2 6

tfttp 1 2

sso 1 8

Table 4.5: Comparison MemTrace vs Memcheck

any possible memory error it detects. The higher number of reported errors makes it more
difficult for the user to identify which of them may allow getting a leak. Moreover, when
it detects a usage of uninitialized bytes, Memcheck reports only where the uninitialized
bytes are used (i.e., the IP of the instruction), but it does not give any information
about where those uninitialized bytes come from. So, the user must perform additional
analysis to track down the origin of the uninitialized bytes and therefore understand
whether they are interesting or not. The only case where MemTrace reported more items
than Memcheck is with cp from Coreutils-6.9.90. This happens because Memcheck does
not actually report which fields of the uninitialized parameter are accessed during the
execution of system calls, and simply reports the following message:

Syscall param ⟨syscall_name⟩(⟨syscall_param⟩) points to uninitialized byte(s)

Since MemTrace keeps track of the accesses performed by system calls and in this case
some system calls access multiple uninitialized memory locations, MemTrace reports all of
them individually, thus reporting more uninitialized reads than Memcheck. Furthermore,
notice that Memcheck does not actually report the instructions performing the unini-
tialized reads, but it reports the instructions that use the uninitialized bytes. In some
cases, a program may perform so many copies or transfers of uninitialized bytes that it
is very difficult to trace backward to the instruction that first loaded the uninitialized
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bytes. This is another reason why Memcheck reports contain so many items: the bytes
read by an uninitialized read may be used in multiple locations. Indeed, while MemTrace
only reports the uninitialized read itself (as soon as one of its uninitialized bytes is used),
Memcheck will report an error every time one of its uninitialized bytes is used, thus pos-
sibly generating a high number of errors due to a single uninitialized read. However, it’s
worth noting that, as explained in [36], Memcheck makes use of a bit-precision shadow
memory and that it considers as a usage of uninitialized values only some specific types
of instructions. These solutions allow Memcheck to avoid some of the false positives that
might be generated by MemTrace.

As pointed out by [10], Memcheck actually has a command-line option to keep track of
the origins of uninitialized bytes. However, the concept of “origin” for Memcheck is dif-
ferent from the one used for MemTrace. Indeed, for Memcheck the origin of uninitialized
bytes is represented by the instruction that allocated the memory from where the pro-
gram is reading (e.g., stack allocation, call to malloc); while for MemTrace, the origin
of uninitialized bytes is the instruction that wrote those bytes. Consider, for example,
Listing 6.

1 int main(){
2 char* buf = (char*) malloc(sizeof(char) * 64);
3 int x, y;
4

5 x = 18;
6 y = 23;
7 *(int*)(buf + 16) = x;
8 *(int*)(buf + 20) = y;
9

10 free(buf);
11

12 unsigned long* arr = (unsigned long*) malloc(sizeof(unsigned long) *
8);

13 unsigned long ret = arr [2]; // Loads the previously written values
of x and y

14 printf("%p\n", ret);
15

16 return 0;
17 }
18

Listing 6: Multiple overlapping writes

In this small program, the values of variables x and y are written inside buffer buf allocated
on the heap. This buffer is then freed, and an array of unsigned long integers is allocated
so that the array has a total size equal to the size of buffer buf. This way, the allocator
will return, for arr, the same address it returned for buf, which still contains the values of
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x and y we wrote there before. Then, without initializing the elements of the array, the
element at index 2 is loaded into variable ret, which is then printed to stdout. Element
arr[2] exactly overlaps the memory locations where the values of x and y were written,
as shown by Figure 4.1.

00 00 00 17 00 00 00 12

buf + 16buf + 20

arr[2]

0x12 = 18 == x0x17 = 23 == y

ret

Figure 4.1: Memory layout for example in Listing 6

As the report in Listing 7 shows, MemTrace is able to keep track of all the writes that
overlap the memory location read by the uninitialized read, reporting not only the address
of the write accesses, but also the portion of the read memory location that they overlap as
an interval of indices. Memcheck ’s report, instead, shown in Listing 8, simply states that
the uninitialized value was created by a heap allocation (i.e., a call to malloc), and reports
the address of the instruction. While this is certainly useful for the developer which is
debugging the application and is focusing on fixing the reported errors, this is not very
useful if the user needs to understand what he can read leveraging the uninitialized read.
Also, notice that Memcheck reported the uninitialized read as a conditional jump which
depends on uninitialized bytes, instead of a usage of uninitialized bytes. While this is not
a problem if the objective is to detect and fix errors in the code, this might be confusing
if the goal is, instead, to find potential leaks.

For all the reasons listed above, we can state that despite the similarities between Mem-
Trace and Memcheck, the tools give completely different results and act as a support for
different goals. So, MemTrace can be considered a valuable support tool to specifically
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LOAD ADDRESSES:
/root/test base address: 0x55de3e892000
Heap base address: 0x55de3f0a0000
/lib/x86_64 -linux -gnu/libc.so.6 base address: 0x7fa015736000
Heap 1 base address: 0x7fa015a15000
/lib64/ld -linux -x86 -64.so.2 base address: 0x7fa029e8c000
[vdso] base address: 0x7ffe03693000
Stack base address: 0x7ffe03649650

===============================================
0x55de3f0a02b0 - 8
===============================================
=> 0x11bc (0 x55de3e8931bc): W 4 B [0 ~ 3]
=> 0x11c9 (0 x55de3e8931c9): W 4 B [4 ~ 7]

*0x11e9 (0 x55de3e8931e9): R 8 B [0 ~ 7]
===============================================
===============================================

Listing 7: MemTrace’s report with multiple overlapping writes

==13839== Conditional jump or move depends on uninitialised value(s)
==13839== at 0x48C9C02: __vfprintf_internal (vfprintf -internal.c

:1687)
==13839== by 0x48B3EBE: printf (printf.c:33)
==13839== by 0x109208: main (in /root/test)
==13839== Uninitialised value was created by a heap allocation
==13839== at 0x483B7F3: malloc (in /usr/lib/x86_64 -linux -gnu/valgrind

/vgpreload_memcheck -amd64 -linux.so)
==13839== by 0x1091E0: main (in /root/test)
==13839==
(nil)
==13839==
==13839== HEAP SUMMARY:
==13839== in use at exit: 64 bytes in 1 blocks
==13839== total heap usage: 3 allocs , 2 frees , 4,224 bytes allocated
==13839==
==13839== LEAK SUMMARY:
==13839== definitely lost: 64 bytes in 1 blocks
==13839== indirectly lost: 0 bytes in 0 blocks
==13839== possibly lost: 0 bytes in 0 blocks
==13839== still reachable: 0 bytes in 0 blocks
==13839== suppressed: 0 bytes in 0 blocks
==13839== Rerun with --leak -check=full to see details of leaked memory
==13839==
==13839== For lists of detected and suppressed errors , rerun with: -s
==13839== ERROR SUMMARY: 1 errors from 1 contexts (suppressed: 0 from 0)

Listing 8: Memcheck ’s report with origin tracking enabled
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Binary Vulnerability
detected

Argv fuzzing
enabled

Notes

cbor2json ✔ ✔

md2html ✘ ✔

tail ✔ ✔

Contacts ✔ ✘

full_protection ✘ ✔

stopwatch ✔ ✔

Accel ✘ ✘ Requires a custom
malloc handler

Textsearch ✔ ✘ Requires a custom
malloc handler

Hackman ✔ ✘ Requires a custom
malloc handler

TFTTP ✔ ✘ Requires a custom
malloc handler

SSO ✘ ✘ Requires a custom
malloc handler

Table 4.6: Results for fuzzed execution with non-triggering inputs

help users find uninitialized reads in an executable and determine if those uninitialized
reads can be exploited (e.g., to obtain a leak, execute arbitrary code.. ).

4.3.2. Fuzzing efficacy

The combined execution of MemTrace and AFL++ successfully identified the known
vulnerability for 7 out of 11 of the tested binaries. Table 4.6 reports a summary of the
results. Notice that we did not perform this type of test with cp from Coreutils-6.9.90.
This is because the program messes up with the files used by the fuzzer and by MemTrace,
thus generating errors that interrupt the analysis early. Also, when argv fuzzing was not
enabled, it was actually not possible to enable it, either due to the usage of a custom
version of the libc library or because of an unusual way of starting the program, which
did not use libc’s function __libc_start_main.

During the tests described in Section 4.3.1, we tested the capabilities of MemTrace to
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Binary Vulnerability
detected

Argv fuzzing
enabled

Notes

md2html ✘ ✔

full_protection ✘ ✔

Accel ✔ ✘ Requires a custom
malloc handler

Table 4.7: Results for fuzzed execution with triggering inputs

detect uninitialized reads by executing it as a standalone tool with a crafted input that
triggered the vulnerability and we showed that MemTrace was able to detect it. So, the
reason why the vulnerability was sometimes not detected in this configuration is probably
due to the way the CFG of the program is explored. Indeed, being a dynamic analysis
tool, MemTrace cannot report an uninitialized read if that is not executed by the program
in analysis. For this reason, if the fuzzer could not generate at least 1 input that triggered
the vulnerability, it could not be detected. Besides, it is worth mentioning that usually
fuzzers are executed for much more time than 8 hours as they might require time to
explore some paths of the CFG of the program. Therefore, it is possible that, by changing
the configuration of the fuzzer (i.e., fuzzing time and/or number of parallel instances),
MemTrace will be able to detect the vulnerability also for some of those binaries where
it failed with the current configuration.

For each binary where MemTrace failed to detect the known vulnerability (except SSO)
we also launched a new test. The setup is very similar to the previous one. However,
this time we added, among the initial testcases provided to the fuzzer, a manually crafted
input that was able to trigger the vulnerability and we considered the vulnerability as
detected only if the fuzzer was able to generate other inputs that triggered it. Table 4.7
shows a summary of the obtained results. SSO has been excluded from this additional test
simply because it is not possible to craft an input that triggers the vulnerability. Indeed,
this binary generates a random auth_code for resources, and to trigger the vulnerability
it requires performing a successful authentication. So, it requires executing a script that
allows to leak the auth_code and use it to perform the authentication.

For md2html, it was expected that MemTrace would have not detected the vulnerability,
because, as pointed out in Section 4.3.1, the uninitialized read it performs loads bytes
that are used only by a cmp instruction.

The vulnerability in full_protection is a format string error. This kind of vulnerability
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allows to leverage calls to printf and other similar variadic functions to either read or write
arbitrary memory addresses. On the used platform, this is true as long as the memory
address is higher than the stack pointer. The stack grows toward lower addresses and, in
this program, there aren’t local variables left uninitialized, so it is quite unlikely to read
a stack location which is not initialized leveraging the format string error. During the
analysis of the program performed to manually craft the input to trigger an uninitialized
read, we managed to find only 1 readable stack location which was left uninitialized. The
fact that the vulnerability requires a precise format string to be triggered and the low
number of readable uninitialized stack locations represent a very strict condition required
to detect the vulnerability, that the fuzzer was not able to satisfy. Notice, however, that
format string error is not really the class of vulnerabilities that MemTrace is designed to
detect. Indeed, format string errors are often used to get leaks by reading initialized
values stored in well-known locations (e.g., GOT entries). So, also in this case the failure
was quite expected.

With accel, instead, adding a triggering input as an initial testcase was enough to allow
the fuzzer to generate other inputs triggering the vulnerability. So, the failure during the
first test was simply due to the strictness of conditions required to be satisfied to reach the
vulnerability during program’s execution. Indeed, even after we added the triggering input
among the initial testcases, the fuzzer only generated a few new inputs that triggered the
vulnerability, and all of them generated the very same overlaps in memory. This means
that there’s only 1 path in the program that traverses the vulnerability, and that it is
executed only when a quite strict condition is satisfied.

So, the new experimental setup detected the vulnerability only in 1 out of 3 cases. While
it is not much, it is an important result, as it allows to state that MemTrace can also be
useful in case the user already knows where the uninitialized read vulnerability lies, but
wants to know if and how it can be controlled to get arbitrary information.

During this set of tests MemTrace generated a total of only 4 false positives. Con-
sidering that in 8 hours the fuzzer generated hundreds, if not thousands, of inputs for
each binary, this is quite a good result, which points out that the heuristics applied by
MemTrace are good enough to discard most of the uninitialized reads that are not due to
a vulnerability. Each generated false positive has been manually analyzed to understand
what it was due to. 3 of them were caused by a peculiar instance of the stack clash mitiga-
tion explained in Section 2.4. During the execution of libc’s function __stack_chk_fail,
which is executed when the stack canary check during a function’s epilogue is failed (i.e.,
the canary has been overwritten), the program performs a large stack allocation. Since
stack clash mitigation was enabled during compilation, the allocation follows the schema
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reported by Figure 2.12. However, in this case, a probe is inserted also after the small
tail allocation. Since the heuristic expects a probe to follow only allocations whose size
is equal to a memory page size, MemTrace fails to recognize it as a false positive, and
therefore reports it. The last reported false positive was due to a call to malloc that reads
the value of the top_chunk, which is considered uninitialized due to some allocations and
deallocations happening before the entry point is executed. Unfortunately, there is no
way to quantify the number of false negatives.

Given the length of the merged reports after 8 hours of fuzzing, it is not feasible, nor mean-
ingful, to report all the tables they contained. Most of them are identical or very similar to
the overlaps detected during the Uninitialized reads detection tests, which simply means
that the combined execution with AFL++ was able to detect the known vulnerability
for those binaries. However, there are some interesting and more relevant overlaps which
have been detected by MemTrace that are, therefore, reported below.
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tail

Overlap 1

===============================================
0x798a(0 x7efd45e52aaa): /lib/x86_64 -linux -gnu/libc.so.6 loaded at @

0x7efd45e24000
===============================================
Generated by 613 inputs:
Slave_3/id:000056 , src :000000+000005 , time :65382 ,op:splice ,rep:16
Reads 8 bytes from <stack_base > - 1144
***********************************************

*0x798a (0 x7efd45e52aaa): R 8 B @ (sp + 200); (bp - 5104); [0~7]
***********************************************
Generated by 2053 inputs:
Slave_3/id:000056 , src :000000+000005 , time :65382 ,op:splice ,rep:16
Reads 8 bytes from <stack_base > - 1144
***********************************************

0x20c9 (0 x7efd45ea8b73): W 8 B @ (sp - 8); (bp - 139289784);
[0~7]

=> 0x70b3 (0 x7efd45e5cab3): W 4 B @ (sp + 136); (bp - 120); [0~3]
*0x798a (0 x7efd45e52aaa): R 8 B @ (sp + 200); (bp - 5124); [0~7]

***********************************************

[...]

===============================================

Listing 9 shows the portion of source code that causes the uninitialized read.
The uninitialized read is executed by function __mbrtowc from glibc. This
function declares a 64 bit integer variable called dummy without initializing it.
The pointer of this integer value is then passed as a parameter to function
__gconv_transform_utf8_internal, which uses it as a counter. So, as soon as this
function loads its value to increase it, it performs an uninitialized read, which is
detected and reported by MemTrace. Since dummy is never used again, it cannot
be classified as an actual vulnerability. However, this table allows to reiterate that
MemTrace is able to detect interesting uninitialized reads, even when they happen
inside a library function, and shows that dummy is used, uninitialized, to fit the sig-
nature of an existing function. Being a library function, this uninitialized read will
be found with every binary that calls __mbrtowc, including the current version of
the binary (i.e., tail from Coreutils-8.32 ).
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1 /*
2 ##############
3 From glibc/wcsmbs/mbrtowc.c
4 ##############
5 */
6

7 size_t
8 __mbrtowc (wchar_t *pwc , const char *s, size_t n, mbstate_t *ps)
9 {

10 wchar_t buf [1];
11 struct __gconv_step_data data;
12 int status;
13 size_t result;
14 size_t dummy; // Declared , not initialized
15 const unsigned char *inbuf , *endbuf;
16 unsigned char *outbuf = (unsigned char *) (pwc ?: buf);
17 const struct gconv_fcts *fcts;
18

19 [...]
20

21 // dummy is uninitialized up to now
22 status = DL_CALL_FCT (fct , (fcts ->towc , &data , &inbuf , endbuf ,
23 NULL , &dummy , 0, 1)); // => Calls

__gconv_transform_utf8_internal , which uses dummy as a counter
24

25 // dummy is never used again
26

27 [...]
28

29 }
30

Listing 9: glibc uninitialized dummy variable
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Contacts

This program implements a simple phonebook, where it is possible to store and delete
contacts and set their names and an optional bio. When a contact is deleted, its content
is freed, but the pointers are not overwritten with a safe value (e.g., NULL). Listing 10
shows a portion of the source code containing the vulnerability.



82 4| Validation

Overlap 1 and 2

===============================================
0x1b3d(0 x400b3d): /home/kris/Scrivania/CTFs/picoCTF/contacts/

contacts_cpy loaded at @ 0x3ff000
===============================================
Generated by 6 inputs:
Slave_0/id:000003 , sig:11,src :000099 , time :207901 ,op:havoc ,rep:16
Reads 8 bytes from <heap_base > + 4200
***********************************************

0x1baf (0 x400baf): W 8 B [0 ~ 7]
*0x1b3d (0 x400b3d): R 8 B [0 ~ 7]

***********************************************

[...]

===============================================
===============================================

===============================================
0x1ab4(0 x400ab4): /home/kris/Scrivania/CTFs/picoCTF/contacts/

contacts_cpy loaded at @ 0x3ff000
===============================================
Generated by 1 inputs:
Slave_0/id:000018 , sig:11,src :000044+000132 , time :1043325 ,op:splice ,

rep:4
Reads 8 bytes from <heap_base > + 4776
***********************************************

0x1baf (0 x400baf): W 8 B [0 ~ 7]
*0x1ab4 (0 x400ab4): R 8 B [0 ~ 7]

***********************************************

[...]

===============================================
===============================================

The 2 reported tables are quite similar, as the only thing that changes is the operation
that the program is performing. In the first case, the uninitialized read is executed when
the program deletes a contact, creates a new one and sets the new contact’s bio. In the
second case, the uninitialized read is instead executed when the program deletes a contact,
creates a new one and deletes this last one as well. In both the cases, the sequence of
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operations leads to a double free, where the same heap chunk is requested to be freed
twice. The double free error may allow the user to use a fake chunk to get a leak and/or
to write an arbitrary address, thus allowing arbitrary code execution.

1 void delete_contact(struct contact *contact){
2 free(contact ->name); // contact ->name not overwritten
3 /* if the bio is set , free its chunk */
4 if (contact ->bio != NULL){
5 free(contact ->bio); // contact ->bio not overwritten
6 }
7 free(contact);
8 /* replace the corresponding index with the last contact and

decrement num_contacts */
9 for (int i = 0; i < num_contacts; i++){

10 if (contacts[i] == contact){
11 contacts[i] = contacts[num_contacts - 1];
12 num_contacts --;
13 break;
14 }
15 }
16 }
17

Listing 10: contacts source code
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Textsearch

This binary from the CGC implements a sort of text search engine. Associated to each
binary of the CGC, there’s a README file where all the vulnerabilities of the program
are listed and explained. The following overlap is caused by a vulnerability which is not
listed in the README file and is, therefore, an unintended vulnerability.



4| Validation 85

Overlap 1

===============================================
0x357c(0 x564fb25e557c): /software/KPRCA_00036 loaded at @ 0

x564fb25e2000
===============================================
Generated by 1 inputs:
Slave_2/id:000684 , src :000355+000658 , time :25417114 , op:splice ,rep:4
Reads 1 bytes from <Heap 2_base > + 8340
***********************************************

0x30ca (0 x564fb25e50ca): W 1 B [0 ~ 0]
*0x357c (0 x564fb25e557c): R 1 B [0 ~ 0]

***********************************************
Generated by 1 inputs:
Slave_2/id:000684 , src :000355+000658 , time :25417114 , op:splice ,rep:4
Reads 1 bytes from <Heap 2_base > + 8341
***********************************************

0x30ca (0 x564fb25e50ca): W 1 B [0 ~ 0]
*0x357c (0 x564fb25e557c): R 1 B [0 ~ 0]

***********************************************

[...]

===============================================

The uninitialized read is executed during a call to printf. This means that the program
is printing uninitialized bytes to stdout. It’s worth noting that in order to be able
and compile CGC binaries for Linux, some library functions had to be implemented
manually. In this case, the implementation of printf, uses strlen to retrieve the actual
length of the string and prints one character at a time using a for loop. For this
reason, all the reported reads have a size of 1 byte. This uninitialized read happens
when the user asks for a text search. Under certain conditions, the program performs
a double increase of a string pointer, thus skipping the string terminator and printing
bytes stored in unused parts of the chunk up to the next string terminator. This
vulnerability may allow a user to align heap chunks so that the call to printf prints
interesting data such as an address, thus obtaining a leak.
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HackMan

This binary from the CGC implements a small game where the player should guess a
secret word to win. At the end of a match, the player can either quit the game or run
another match. Even if the reported uninitialized reads are actually caused by the known
vulnerability, in this case MemTrace allowed to point out a very interesting situation.
The 2 tables reported by MemTrace are very similar, so only one of them is shown. The
only difference between them was the address of the read uninitialized memory location.
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Overlap 1

===============================================
0x23ea(0 x55781273e3ea): /software/KPRCA_00017 loaded at @ 0

x55781273c000
===============================================
Generated by 7 inputs:
Slave_2/id:000020 , sig:11,src :000097+000322 , time :16225355 ,op:splice ,

rep :16
Reads 8 bytes from <stack_base > - 256
***********************************************
=> 0x1608 (0 x7ff236b36140): W 1 B @ (sp + 2120); (bp + 2048); [0~0]
=> 0x1608 (0 x7ff236b36140): W 1 B @ (sp + 2121); (bp + 2049); [1~1]
=> 0x1608 (0 x7ff236b36140): W 1 B @ (sp + 2122); (bp + 2050); [2~2]
=> 0x1608 (0 x7ff236b36140): W 1 B @ (sp + 2123); (bp + 2051); [3~3]
=> 0x1608 (0 x7ff236b36140): W 1 B @ (sp + 2124); (bp + 2052); [4~4]
=> 0x1608 (0 x7ff236b36140): W 1 B @ (sp + 2125); (bp + 2053); [5~5]
=> 0x1608 (0 x7ff236b36140): W 1 B @ (sp + 2126); (bp + 2054); [6~6]
=> 0x1608 (0 x7ff236b36140): W 1 B @ (sp + 2127); (bp + 2055); [7~7]

*0x23ea (0 x55781273e3ea): R 8 B @ (sp + 128); (bp - 96); [0~7]
***********************************************

Generated by 45 inputs:
Slave_2/id:000000 , time:0,orig:untriggered_input
Reads 8 bytes from <stack_base > - 256
***********************************************

0x236c (0 x55f7f227e36c): W 8 B @ (sp + 128); (bp - 96); [0~7]
*0x23ea (0 x55f7f227e3ea): R 8 B @ (sp + 128); (bp - 96); [0~7]

***********************************************

[...]

===============================================
===============================================

In the first overlap, the write accesses in the access set are performed during the
execution of a read system call, which allows the user to insert bytes from stdin. The
uninitialized read is caused by a call to an uninitialized function pointer. This
means that it is possible to write inside a function pointer arbitrary bytes from
stdin, thus allowing to execute arbitrary code very easily. In this case, the function
pointer was called when the player decided to quit the game. There is another almost
identical table (and therefore not reported), where the accessed function pointer was
called when the player requested a new match. Also in that case, it was possible to
fill the function pointer with arbitrary bytes from a read system call.
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5| Additional Tests

After the tests described in Chapter 4, we tested MemTrace with some other real-world
binaries taken from the list in the manifest file of Ubuntu server. Unlike binaries used
during tool validation, these binaries have not been compiled, but they have been installed
from the standard package manager installed in Ubuntu (i.e., apt). By installing them
from the package manager, the binaries were deprived of debugging symbols and they
were highly optimized. Tests have been run using the combined execution with AFL++,
using 2 parallel instances and letting the fuzzer run for 24 hours on the same remote
machine used for validation tests.

We tested 130 binaries from the Ubuntu server manifest. While no vulnerabilities have
been found, these additional tests allowed to state the feasibility of the analysis with
complex, real-world binaries (e.g., compilers and linkers); to verify the goodness of the
heuristics applied by MemTrace and, finally, to classify the most frequent sources of
false positives generated by MemTrace. With most of the tested binaries, very few false
positives were generated (1 - 5), and the one that generated more false positives has been
x86-64-linux-gnu-gold, a linker from package binutils. After 24 hours of fuzzing, the merged
report contained only 31 tables. While this number is much higher than the number of
tables reported in Chapter 4, it’s worth noting that the fuzzer ran for much more time
and that this binary is much more complex, as it contains many branches and possible
paths. Indeed, the fuzzer generated, for this binary, more than 2,000 inputs for each fuzzer
instance, thus generating more than 4,000 inputs in total. Given the number of inputs
analyzed by MemTrace, the number of generated false positives is more than reasonably
low. Moreover, many of the false positives reported for a binary are usually very similar
as they present the same pattern, thus making them easily and quickly recognizable.

By analyzing the reports generated by MemTrace, we noticed that the main sources of false
positives are string function optimizations, stack clash mitigation applications, alignments
of fields in structs, usages of realloc and bit-fields. We already discussed string functions
optimizations and stack clash mitigation in their respective paragraphs in Section 2.4.
Therefore, the first source of false positives we’re going to discuss about are alignments
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of fields in structs. The fields of a struct are allocated sequentially in the same order they
are declared in, adjacent one to the other. So, a struct size is usually equal to the sum of
the sizes of the data types it is composed of. However, sometimes the compiler allocates
more space than that. This is done simply for alignment purposes. Indeed, unaligned
memory accesses are usually slower than aligned accesses, as the processor might require
to load from memory more than 1 word (i.e., the unit of data managed by the processor).
For this reason, the compiler may add some gaps between adjacent struct fields in order
to align all of them according to their types and therefore optimize memory accesses.
While this is usually not a problem, as it is quite unlikely that the program uses bytes
from the gaps inside structs, sometimes some optimizations may cause accesses to those
bytes. For instance, if a string function is called passing as a parameter a string which is
adjacent to a structure, the applied optimizations may load bytes belonging to the struct,
which may include bytes used for padding, which are, of course, in an uninitialized state.
Moreover, sometimes also structs are copied from a memory location to another one. The
compiler usually optimizes these copies by using memset, instead of copying each field one
by one. By doing this, however, also the padding bytes are copied, thus propagating their
uninitialized state into other memory locations, and therefore increasing the chances of
generating a false positive.

Another main source of false positives is the usage of function realloc and similar. This
type of function takes as parameters the address of an allocated heap chunk and a size,
and it will return a new heap chunk whose size is at least equal to the given one. To
do this, the allocator checks if it can simply allocate more space to the passed chunk,
in which case the same address is returned; while if it is not possible to increase its
size (i.e., there are other adjacent allocated chunks) a new chunk is allocated, and the
content of the old chunk is copied in the new one, including, if any, the bytes that were
in an uninitialized state. By copying these uninitialized bytes, the realloc function is
performing an uninitialized read, and the uninitialized state is therefore propagated in
the new memory location. As it happens with struct fields alignment, MemTrace’s taint
analysis discards most of these uninitialized reads, as most of the uninitialized bytes will
never be used by any instruction. However, it is possible that some optimizations actually
access those bytes, thus causing MemTrace to report the uninitialized read performed by
realloc, and therefore generating a false positive. During tests, this usually happened
when the realloc function was used to implement a dynamic array of characters to allow
the program to accept a string of unknown length from stdin or from a file. Being a
string, it is usually managed using string functions and, as soon as their optimizations
use some of the uninitialized bytes copied by realloc, MemTrace reports the uninitialized
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read it performed while copying the content of the old array.

The last frequent sources of false positives are bit-fields. According to [15]:

(A bit-field) declares a class data member with explicit size, in bits. Adja-
cent bit-field members may (or may not) be packed to share and straddle the
individual bytes.

So, bit-fields are used when it is necessary to declare inside a struct some fields which have
a size lower than 1 byte (e.g., a bunch of boolean flags). However, memory is accessed with
a byte granularity. This means that whenever the CPU performs a load from memory,
it must load at least 1 byte. The usage of bit-fields in the source code is automatically
managed by the compiler, which converts assignments and loads of bit-fields values in a
sequence of bitwise operations. Let us consider, as an example, the structure defined in
Listing 11.

1 struct st{
2 int n;
3 char c;
4 unsigned b1 : 1; // Bit -fields grouped together in
5 unsigned b2 : 1; // the same byte
6 unsigned b3 : 1; //
7 }

Listing 11: Bit-fields example

Fields b1, b2 and b3 are bit-fields of size 1 bit. The compiler will therefore group them
together in the same byte and they will be stored starting from the least significant bit.
Let us assume the program assigns a value 1 to field b1. In order to change the value of
the corresponding bit, also keeping every other bit untouched, the compiler converts this
assignment in the following sequence of pseudo-instructions (or something equivalent):

1 LOAD al, st.b1;
2 OR al, 1
3 STORE st.b1, al

Since the 5 most significant bits of the byte containing b1 are unused, the LOAD instruc-
tion will perform an uninitialized read, and the execution of the bitwise OR will use those
uninitialized bytes. So, MemTrace will report the LOAD instruction as an uninitialized
read, thus generating a false positive.
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6.1. Prototype limitations

Currently, MemTrace has been implemented and tested on a 64 bits x86 architecture only.
In order to be used on 32 bits x86 architecture, the tool requires some modifications. How-
ever, since generality and extensibility have been the main concerns during the whole
design and implementation phases, it is enough to change or add the implementation of
the platform-specific components of MemTrace, thus reducing to a minimum the amount
of changes required in the existing source code. The same holds also for the underly-
ing operating system. Indeed, MemTrace has been implemented and tested on machines
running Ubuntu with glibc-2.31 installed. So, the tool should work without requiring
any change on each Linux distribution using the same version of glibc. It may work also
if another version of glibc is used, as long as the layout of heap chunks is the same as
glibc-2.31. Once again, if needed, it is sufficient to change or add the implementation of
the platform-specific components to port MemTrace to other OSs. Of course, the target
platform must be supported by Intel PIN in order to allow porting MemTrace (e.g., 32
or 64 bits x86 are the only architectures supported by Intel PIN ).

Also, MemTrace currently supports only single-process, single-threaded applications. It
is certainly possible to extend it to support multi-threading, but this will require some
heavy changes, as it requires at least to synchronize accesses to some global variables
during the analysis of program’s threads.

6.2. Inherent and inherited limitations

MemTrace is implemented as a dynamic analysis tool, which means it must execute the
program to be able to analyze it. This leads to an inherent limitation. Indeed, MemTrace
can only analyze those instructions, and therefore those memory accesses, that actually
happen during program’s execution. So, if a certain path in the program CFG is never
executed and contains an uninitialized read, MemTrace will not be able to detect and
report it, thus generating a false negative, which is difficult to be tracked. As discussed
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in Chapter 3, we tried to mitigate this limitation by combining MemTrace with a fuzzer.
We use AFL++, which is designed to generate inputs that explore new paths of the
program. This way, we can greatly increase the path coverage, but it can still not be
enough. Indeed, even fuzzers themselves have inherent limitations. For instance, they
might fail to generate an input able to traverse a certain path. This may happen when a
path is executed only if a very strict condition is verified. Fuzzers, in fact, generate new
inputs by getting some random bytes and/or combining bytes from other inputs. So, if a
condition is satisfied only with very few values of some variables, the inputs generated by
the fuzzer might not be able to satisfy it. In those cases, of course, MemTrace will not be
able to analyze that path. Moreover, fuzzers require a great amount of time to explore
large parts of the CFG, and the more complex a program is, the more time it might need.

Another existing limitation, that affects the tracing of memory accesses performed on
the heap, is due to the usage of Intel PIN as the underlying DBI framework. Being
implemented as a dynamic analysis tool, MemTrace can be used even if the executable
has been stripped, i.e., it has been deprived of all the symbols information about functions
and variables. However, in order to be able to detect the usage of malloc, free and similar
dynamic memory management functions, it is required to have the information about the
symbols of these functions available. Indeed, in order to instrument a specific function,
Intel PIN requires to build a corresponding RTN object, which is the way Intel PIN
internally models routines (i.e., functions). To do this, it allows to lookup for a specific
function by name inside the loaded images (e.g., executable or shared libraries), but this
lookup is actually successful only if the image containing the searched function has their
symbols information available. Usually, these functions are implemented in a system-
wide installed shared library and its symbols information is usually available to allow
easy debugging of applications, or it is anyway possible to easily retrieve them. But if
this is not the case, it might prevent MemTrace from correctly keeping track of memory
allocations and usages on the heap.

6.3. Implementation limitations

Some of the design and implementation choices come with some drawbacks. Consider the
system call manager we discussed in Section 2.4. It certainly helps tracing the memory
accesses performed during the execution of a system call, but it requires implementing the
specific handler for that system call. We implemented the handlers for many system calls
for 64 bits x86 architecture, but we did not implement a handler for all of them. Indeed,
some system calls do not perform any memory access, so it would be useless to implement
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a handler for them. For what concerns system calls performing memory accesses, we
implemented the handlers for most of them, for a total of 116 implemented handlers.
However, there might be some more rarely used system calls not having a corresponding
handler, thus possibly generating false negatives, if the program uses them. Moreover,
system call handlers are sometimes just an approximation of the actual behavior of a
system call. This is usually the case when a system call has a very complex behavior
where a data structure is only partially accessed according to the system call parameters.
In these cases, the handler does not usually consider each possible parameter, but simply
considers the data structure as completely accessed. By not modeling that behavior in
an exact manner, we make the handler much simpler and faster, thus avoiding slowing
down the analysis too much. Notice, however, that these approximations do not happen
frequently and that they always allow to detect the uninitialized reads performed during
the execution of the corresponding system call, although they possibly generate a few false
positives. Anyway, these false positives can be easily discarded by analyzing the textual
report and verifying the system call behavior with a debugger.

A quite similar problem is caused by the instruction manager described in Section 2.4. As
mentioned, we implemented some default handlers valid for most of the instructions, but
some of them required a specific handler to be implemented. Of course, it is not feasible
to implement a handler for each instruction available in the ISA, so we had to choose
which instruction handlers were worth implementing. We implemented the handler for
some of the most commonly used instructions, so that we could cover as many cases as
possible, but all the others don’t have a specific handler. While this is easily fixable by
implementing the missing handlers, it must be considered as a limitation of MemTrace,
as it might prevent it from working well, if not carefully addressed.

Finally, despite it was not the main concern of our approach, another limitation is repre-
sented by the command-line arguments fuzzing. As explained in Chapter 3, it is performed
by using some of the bytes generated by the fuzzer as arguments for the binary. While
it works well enough to allow MemTrace to explore more paths of the program being
analyzed, it is certainly not optimal, as it might not be able to generate each argument
accepted by the program or generate combinations of arguments that trigger some partic-
ular behavior, thus preventing MemTrace from exploring the paths they allow to traverse.
For instance, during testing, we noticed that the used approach for command-line argu-
ments fuzzing is able to generate only those arguments whose length is quite limited (i.e.,
up to 3-4 characters). However, often programs accept a set of long arguments whose
size is much longer than 4 characters, and that are often composed of more words con-
catenated by a hyphen. Given the limited capability of the used approach to generate
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long valid command-line arguments, it is possible that many of the existing paths of an
executable are never executed by MemTrace.
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The results depicted in Chapter 4 show MemTrace’s effectiveness in detecting uninitialized
read accesses in a program. However, there’s certainly room for improvements. As a first
thing, it might be possible to further improve the heuristics used to detect the false
positives due to optimized string functions or to stack clash mitigation. Indeed, they are
among the main sources of false positives, as they are still unable to detect and ignore all
of them and might even cause false negatives. By further focusing on those heuristics and
the cases they must handle, it may be possible to improve them, thus further reducing the
number of reported false positives and/or of false negatives. It may also be possible to
apply the string function optimizations heuristic even in the case of indirect uninitialized
reads. This way, the number of false positives generated due to the copies performed by
realloc should drop, but it may even cause a great increase in the overall analysis time.
So, this requires more testing and analysis to verify whether the results obtained by this
approach are worth the increase in the execution time.

For what concerns the false positives generated due to struct padding and bit-fields,
instead, it would be required to discover the layout and boundaries of memory objects.
This is not an easy task, and, indeed, it is still an open research topic ([8, 13, 38]) and
therefore out of the scope of MemTrace. However, it might be worth trying to apply some
of the existing approaches or to use some of the existing tools to try and reduce the number
of false positives, but it of course requires many further tests and an accurate analysis
to check that the execution time does not increase too much, thus possibly making the
analysis infeasible with real-world binaries. Alternatively, it might be possible to try and
deal with these types of false positives by switching to a bit-precision shadow memory and
by handling more precisely bitwise operation instructions, so that not all of them will be
considered as a usage of uninitialized bytes, in a manner similar to what it is done in [31].

Then, we will deal with MemTrace’s current limitations, trying to solve or at least mitigate
them. For what concerns system call and instruction handlers, we will perform a more
in-depth analysis of the most frequently used system calls and instructions, so that we can
implement the handlers that are currently missing, and might therefore prevent MemTrace
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from working properly. Afterwards, MemTrace will of course be extended to support 32
bits x86 architecture and multi-threaded applications in order to broaden its applicability.

After that, the most challenging limitation to deal with is coverage. First of all, we will try
to improve the command-line arguments fuzzing. Indeed, this improvement would allow
generating more arguments accepted by the program, thus possibly allowing MemTrace
to explore new paths. Usually, in order to check if a certain argument has been passed
by the user, programs compare the values from argv with some literal strings containing
the argument itself. Furthermore, they usually declare a string literal containing the
usage manual of the program itself, which in turns lists and describes every accepted
argument. String literals are hardcoded into the binary, usually in a read-only section.
So, a possibility to improve the arguments fuzzing could be using an external tool (e.g.,
strings from binutils) to extract those hardcoded string literals and combine them with the
bytes generated by the fuzzer to generate the arguments for the program under analysis.

While fuzzing certainly allows increasing coverage, it requires a lot of time to explore the
CFG of a program, also according to its size and complexity. It would be better if the
exploration of the CFG could be faster and more controllable, instead of being completely
dependent on the random and genetic algorithms usually applied by the fuzzer. A pos-
sibility could be using a symbolic execution engine to combine fuzzing with a concolic
execution, similarly to what is done by Driller [2, 40]. This way, while the fuzzer quickly
generates inputs to explore paths with loose conditions, the symbolic execution engine
may use a real execution context as initial state, and start a symbolic execution from
there, building constraints to execute those paths with more strict conditions and solving
them to find some feasible values. Of course, to make this approach efficient, it is neces-
sary to keep track of which paths have been explored, so that symbolic execution can be
interrupted as soon as it starts to execute an already explored path in order to avoid path
explosion. For this reason, this approach may also need to perform a preliminary static
analysis to retrieve the CFG of the program. Notice, however, that the CFG will not be
used to perform the analysis, but will be used only to detect branches and keep track of
which of them have already been explored. So, the quality of the retrieved CFG will not
affect the analysis itself, but only path exploration, that, in the worst case, would be the
same as the currently achieved level. Furthermore, the fuzzer should be able to leverage
the inputs generated by the symbolic execution engine in order to generate, in turn, new
inputs. This is certainly not a straightforward solution, but it might help explore more
paths in a smaller time span.
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The main goal of our work was to design an analysis tool to detect uninitialized reads in
a binary executable that might allow leaking information. For this purpose, we developed
MemTrace, which makes use of Dynamic Binary Instrumentation to keep track of the
memory accesses performed by a program and generates a report containing all the mem-
ory overlaps, that is all the uninitialized reads grouped with all the write accesses that
overlap the same memory location. In order to let the tool explore paths in a program
and discover potential vulnerabilities, we also paired MemTrace with AFL++.

We tested our tool setting up different types of tests. First, we tested the execution
time overhead introduced by MemTrace and compared it with the overhead introduced
by Memcheck, which is implemented in a similar way, showing that MemTrace’s over-
head is reasonably higher, given the additional amount of operations performed for each
memory access. Then we verified the capability of MemTrace to detect uninitialized read
vulnerabilities. To do so, we launched MemTrace’s analysis on several binaries with a
known uninitialized read vulnerability and verified that the reports generated by Mem-
Trace pointed out that vulnerability, also verifying the presence and the causes of false
positives. Finally, we verified the efficacy of the combined execution with AFL++. We
used the same binaries used for the previous tests, and let the fuzzer run for 8 hours using
random inputs and inputs not triggering the vulnerability as initial testcases. When the
analysis was completed, we checked if it detected the known vulnerability, finding out
that the vulnerability was found for most of the binaries. Each report has been analyzed
manually, also verifying the number and the causes of false positives. Besides detecting
the known vulnerabilities, MemTrace helped to detect a usage of a dummy uninitialized
variable in a function from glibc and an unintended vulnerability in a CGC binary which
may allow to leak information. Moreover, MemTrace helped detect some interesting sit-
uations that might occur due to some of the known vulnerabilities, as it pointed out the
existence of a double free vulnerability in a binary from a CTF and the possibility to fill
function pointers from stdin in another CGC binary.

After tests done for validation, we also performed some additional tests that allowed us
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to classify the most frequent sources of false positives and to explain why they generate
an uninitialized read.

Finally, we also analyzed the limitations that affect MemTrace, dividing those due to the
used approach from the ones due to the current implementation or inherited by the used
frameworks and external tools. Among them, the main and most challenging limitation
of MemTrace is coverage. Indeed, the usage of a fuzzer is not enough to always explore
all the branches of a program’s CFG, and, besides, it may require a large amount of time
to do the exploration.

The results obtained during testing prove that MemTrace is a valuable tool to support
the user detecting potential leaks in a binary and they also show that MemTrace is able
to help detect even other types of vulnerabilities related to uninitialized reads.

Despite being an immature tool which might be improved in future, MemTrace can be
considered as another step toward automatic exploitation. Indeed, it performs an auto-
matic analysis of binary executables looking for potentially exploitable uninitialized read
vulnerabilities. Out there, other tools exist that are able to perform an automatic analysis
of executables looking for other types of vulnerabilities, and even automatically generate
an exploit for them ([6, 12]). However, they usually do not deal with enabled mitigations
such as ASLR and stack canaries. By combining MemTrace with these tools, it might
be possible to analyze a binary and leverage the information reported by MemTrace to
generate an exploit to execute arbitrary code also bypassing the enabled mitigations.
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