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1. Introduction
This thesis work deals with the attitude control
problem, with specific focus on nonlinear atti-
tude control and its application to multirotor
UAV. In this work, a hierarchical architecture
based on an inner-outer loop paradigm is con-
sidered to simplify the control design, by split-
ting the problem in kinematic and dynamic atti-
tude control. Nonlinear PID-like controllers are
used at the inner loop level to control the an-
gular velocity. Two alternative nonlinear solu-
tions borrowed from the literature are instead
exploited in the outer loop for kinematic con-
trol. Specifically, the first solution is based on a
widely adopted nonlinear stabilizer for full atti-
tude control, which draws inspiration from [2];
this architecture is implemented within a non-
linear geometric filter, as described in [6], to ad-
dress the computation of the time derivative of
the desired attitude to implement feedforward
terms without cumbersome analytic derivations.
The second solution is based on the geodesic
feedback stabilizer proposed in [4], which prior-
itizes reduced attitude control; this control law
has then been modified with respect to [4] incor-
porate error-dependent variable gains that are
found to be beneficial to mitigate saturation ef-
fects in multirotor UAVs. Another contribution

of this work is to derive a systematic tuning ap-
proach of the gains of the proposed control laws,
similar to the H∞ synthesis proposed in [3].

2. Mathematical modeling
This section quickly reviews the attitude dy-
namic modeling using a coordinate-free formu-
lation based on rotation matrices and with a
specialization to the attitude dynamics of small-
scale UAVs.

2.1. Rigid body motion
The configuration of the rigid body is described
by the rotation matrix R(t) ∈ SO(3), which is
an orthogonal matrix that satisfies:

RTR = I3 (1)

where I3 is the (3×3) identity matrix and bi are
the body axes resolved in the inertial frame. The
attitude motion of the rigid body is described by
Equation (2) :{

Ṙ = RS(ω)

Jω̇ = −S(ω)Jω + τc + τe

(2a)
(2b)

where J = JT ∈ R3×3
≥0 is the inertia matrix ex-

pressed in the body frame, ω ∈ R3 is the body
angular velocity, τc ∈ R3 is the control torque
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exerted by the actuators and τe ∈ R3 accounts
for unknown exogenous effects. The map S is the
map between R3 and so(3), where it is defined
as equation (3):

so(3) := {Ω ∈ R3×3 : Ω = −ΩT }. (3)

2.2. Quadrotor UAVs
The attitude dynamics of a quadrotor UAV is
defined as follows:{

Ṙ = RS(ω)

G(s)ω = τc + τe

(4a)
(4b)

where G(s) is matrix of transfer function, de-
fined as follows:

G(s) =

Groll(s) 0 0
0 Gpitch(s) 0
0 0 Gyaw(s)

 (5)

where each element on the diagonal is a model
(in the laplace domain) that links the control in-
put (τc) with the angular velocity (ω). Such a
model can be obtained with physic-based model-
ing or with black-box identification techniques,
e.g., the PBSID algorithm. The linear model-
ing is justified by the small contribution of gy-
roscopic terms for small-scale UAVs. Using iden-
tification techniques allow capturing additional
effects (such as sensor and actuator dynamics)
thereby improving the accuracy of the model.

3. Hierarchical approach to at-
titude control

In this section, the proposed attitude control ar-
chitecture is presented, both for the rigid body
and the UAV dynamics.

3.1. Rigid Body and UAV Attitude
Control

By referring to the model in Equation (2), the
objective of the attitude control design is to
guarantee attitude tracking in the presence of
disturbances. Let the attitude and the angular
velocity error coordinates be defined as:{

Re = RT
dR

ωe = ωv − ω

(6a)
(6b)

Then, consider the following modular hierarchi-
cal control law:{

τc = S(ω)Jω + Jω̇v + γω

ẋc = γc(xc, ωe, ωv)

(7a)
(7b)


ωv = γR(Re) +RT

e ωd(t)

ω̇v = γ̇R(Re)

− S(γR(Re)− ωe)R
T
e ωd +RT

e ω̇d(t)

(8a)

(8b)

In (7) xc ∈ Rnc represents the controller state
and γR(·) : SO(3) → R3, while γω(·, ·, ·) : Rnc ×
R3×R3 → R3, γc(·, ·, ·) : Rnc×R3×R3 → R3 are
continuous stabilizers to be defined. Consider-
ing Equations (2) and (7a), using the definitions
given by (6), the closed-loop dynamic errors are
the following:


Ṙe = ReS(γR(Re)− ωe)

Jω̇e = −γω(xc, ωe, ωv(Re, t))− τe

ẋc = γc(xc, ωe, ωv(Re, t))

(9a)
(9b)
(9c)

The outer loop stabilizer function is defined
as γR(Re) = −S−1(skew(KrRe)) where Kr ∈
R3×3 is a symmetric matrix with distinct eigen-
values satisfying tr(Kr)I3 − Kr ∈ R3×3

>0 . The
proposed inner loop stabilizer function is:

γc = Acxc +Bcωe

γω = Ccxc + (Dc +Kω)ωe

+ S(ωe)J(ωv − ωe)

(10a)

(10b)

The inner loop (Equations (7a) and (7b)) is in
charge of assigning a suitable control torque τc
to track the angular velocity reference ωv pro-
vided by the outer loop (Equations (8a) and
(8b)). Equation (7b) is used to resume a be-
haviour similar to a PID controller.
Regarding the UAV controller, the outer loop
control law is the same defined in Equation 8a
while the inner loop control law is a 2-DOF PID
controller, defined as follows:

Tc(s) =

(
Kp +

Ki

s

)
(Ωv(s)− Ω(s))

+
Kds

Tfs+ 1
(−Ω(s))

(11)

where Tc(s), Ωv(s) and Ω(s) are respectively the
Laplace transform related to the τc, ωv and ω;
Kp,Ki and Kd are tuning diagonal 3-by-3 ma-
trixes, while Tf is the time bandwidth of the
filter for the derivative action.
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3.2. Command filtering
For a UAV quadrotor, the computation of the
desired angular velocity, required in the control
law (9a), is important to improve the tracking
performance, as will be shown in the experimen-
tal results. Such a computation can be done
analytically starting from the desired rotation
matrix Rd, but this approach can be convoluted
if the position controller’s expression is compli-
cated. A possible solution can be a command
filter (see [6]). Let Rf

d and ωf
d be, respectively,

the filtered desired attitude and angular veloc-
ity, then it is possible to define the following
second-order command filter:

{
Ṙf

d = Rf
dS(ω

f
d )

ω̇f
d = −ω2

nS
−1(skew(Re))− 2ξωnω

f
d

(12a)

(12b)

where:

Rf
e = RT

dR
f
d (13)

ωn is the natural frequency of the filter, while
the ξ is the damping ratio.

4. Systematic tuning of nonlin-
ear attitude controllers

This section presents a systematic approach to
tune the controller’s gain. After showing the lin-
earized version equations presented in Section 3,
a general formulation can be state for the tuning
of the gains, leveraging the H∞ control for the
model of a rigid body (2) and finally, a synthesis
approach for UAV is derived to find the optimal
gains used for simulation/experiments.

4.1. Linearized equations
Assume that the point of equilibrium for a
generic rigid body is R = I3 and ω = 0, then
the rotation matrix around the equilibrium can
be approximated, thanks to the Rodrigues’ for-
mula, as:

Ru(θ) = I3 + S(θ̂). (14)

where θ̂ ∈ R3 is the vector of small rotation an-
gles about R = I3. The linearized attitude and
angular velocity errors are defined as:{

θ̂e = −(θ̂d − θ̂) = −θ̄e,
ωe = ωv − ω

(15)
(16)

The linearized attitude motion is written as:{
˙̂
θ = ω,

Jω̇ = τc + τe

(17a)
(17b)

with Jω̇ is substituted by G(s)ω in equation
(17b), when UAV quadrotor attitude dynamics
is considered.
Thanks to the above derivations, it is possible
now to linearize the control law in the function
of the variables defined in (15) and (16). The
outer loop stabilizer becomes:{

ωv = K̄R θ̄e + ωd

ω̇v = K̄R ω̄e + ω̇d

(18a)
(18b)

where, ω̄e = ωd−ω and K̄R = 1
2(tr(KR)I3−KR).

The linearized equations (9a) are:
˙̄θe = −K̄Rθ̄e + ωe

Jω̇e = −Ccxc − (Dc +Kω)ωe − τe

ẋc = Acxc +Bcωe

(19a)
(19b)
(19c)

4.2. H∞ synthesis approach
The mixed-sensitivity H∞ approach is used to
tune the gains of the linearized equations, in or-
der to track properly the setpoint, together with
performances and control effort requirements.
Along each axis, the linearized dynamics of a
rigid body can be written in Laplace form as
follows:

G(s) =
Q(s)

τC(s)
=

1

Js
(20)

Assuming that the angular velocity and acceler-
ation are null and a disturbance d(t) is added af-
ter the kinematic Equation (17a), the perturbed
angle and angular velocity errors are defined as:

θ̄e,pt = θ̄e − d

ωe,pt = ωe − K̄Rd

(21a)
(21b)

By letting Ac = Dc = 0, Bc = I3 and Cc = KI ;
it is possible to write the equations in the classic
formulation, such as follows:


ωv = K̄R (θ̄ − d)

Jω̇ = −J(K̄R ω) +KIxc +Kω ωe,pt

θ̇ = ω

ẋc = ωe,pt

(22a)
(22b)

(22c)
(22d)
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For a generic axis, define WS and WR

respectively (using the MATLAB function
"makeweight") as the weighting function for per-
formance (to tune the transfer function from d
to ωe,pt) and control effort (to tune the transfer
function from d to τc) and consider the following
vector of tunable parameters:

ρ = [K̄R,KI ,Kω]
T (23)

Let S(s, ρ) and R(s, ρ) be respectively the sen-
sitivity and control sensitivity transfer function
for the classic formulation defined in equation
(22). Let the cost related to performance and
control requirements be defined as:{

JS(ρ) = ∥W−1
S (s)S(s, ρ)∥∞

JR(ρ) = ∥W−1
R (s)R(s, ρ)∥∞

(24a)

(24b)

Then, it is possible to state the synthesis prob-
lem as an optimization problem:

ρ∗ = argmin
ρ
JS(ρ) (25)

subject to

JR(ρ) ≤ 1 (26)

where ρ∗ is the optimal value of the controller
gain vector. An equivalent tuning solution can
be found by analyzing the equations for error
formulation defined as,


˙̄θe = −K̄Rθ̄e + ωe

Jω̇e = −KIxc −Kω(ωe − K̄Rd)

ẋc = ωe − K̄Rd

(27a)
(27b)
(27c)

Indeed, it can be proved that the classic formu-
lation (22) and the error formulation defined by
(27) are equivalent and they lead to the same
optimal gains.

4.3. UAV formulation
The tuning tecnique can be used for UAV con-
trol by first solving the synthesis approach for
an inner loop problem where the transfer func-
tion G(s) and PID-2 defined in equation (11).
Let us consider a weighting function WS,inner

for the sensitivity function, but this time, relat-
ing ωv → ωe and consider the following vector
of gain parameters:

ρinner = [Kp,Ki,Kd, Tf ]
T . (28)

It is possible to define the inner loop perfor-
mance cost JS,inner:

JS,inner(s, ρinner) =

∥WS,inner(s)Sinner(ρinner, s)∥∞
(29)

where Sinner is the sensitivity transfer function
with input ωv and ωe as output. Under these
definitions, it is possible to state the optimiza-
tion problem for the inner loop control as fol-
lows:

Find ρ∗inner such that JS,inner ≤ 1 (30)

The outer-loop system is defined by equations
(17a),(18a) and the inner-loop; the latter is con-
sidered to be much more faster than the outer-
loop, so when the outer-loop starts its tran-
sient, the inner-loop is already at the steady-
state value. Thanks to this, the outer loop can
be considered without exploiting the inner-loop
structure; this results in a simpler tuning of K̄R,
which can be managed by hand. K̄R is the lin-
earized outer loop gain, in order to pass to the
non linear gain KR, it is necessary to make the
following computation:KR1

KR2

KR3

 =

−1 1 1
1 −1 1
1 1 −1

K̄R1

K̄R2

K̄R3


5. Hierarchical attitude control

with geodesic feedback
This section presents the attitude control prob-
lem solved using the geodesic feedback law, in-
spired by [4]. The considered design is appealing
for UAV attitude control as it allows prioritiz-
ing thrust-axis control over yaw direction con-
trol, thereby avoiding the risk of propellers sat-
uration due to the poor yaw-torque generation
mechanism in quadrotor UAV.

5.1. Geodesic feedback formulation
Let e1 ∈ S2 be a vector expressed in the body-
fixed frame on a 3-dimensional rigid body. The
reduced attitude vector r ∈ S2 is defined as the
inertial frame coordinates of e1, which can be
written as follows:
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r = Re1. (31)

Similarly, the reduced attitude error is defined
as:

re = Ree1 (32)

The reduced error dynamics can be written as:

ṙe = Ure, (33)

where U ∈ so(3) is defined as RT
d S(ω − ωd)Rd.

The reduced attitude stabilization problem aims
to design a control input u to stabilize e1. In
case of a constant v ∈ S3, if u = v, then the
dynamics defined in (33) moves re in the steep-
est descent direction of the geodesic distance
θ(v, re) = arccos(vT re),

arg min
u∈S3

θ̇ = v (34)

When the system is controlled along a path of
minimum length in the state space (a great cir-
cle in this case), u said to be geodesic. When
moving to the full attitude stabilization, U is de-
signed such that I3 is an almost globally asymp-
totically stable equilibrium (see [1]) of the full
attitude Re, while the reduced attitude re moves
toward e1 along a great circle. The geodesic
feedback law, proposed in [4], is defined as fol-
lows,

U = PRT
e −ReP

+k
[
ReQ(RT

e −Re)QR
T
e

] (35)

The first skew-symmetric difference in equation
(35) is designed to steer ReP to P , while, when
∥ReP −P∥2 is small, the second difference kicks
in to steer ReQ to Q; in simple terms, there is a
stabilization on S2 followed by stabilization on
SO(3), the two terms are fused into one smooth
function. k presents a trade-off between the re-
duced and full attitude convergence rates.
To have more freedom in tuning this control law,
the following modified formulation is considered:

S(γR,geo) = k2(R
T
e P − PRe)

+k(Ψ)
[
Q(RT

e −Re)Q
]
,

(36)

where k2 ∈ (0,∞) is a gain that weighs the effect
of the reduced attitude control, while k(Ψ) is a
parameter variant gain to ensure that for large
angle θ (the angle between re and the e1 axis) the

gain is small so that the reduce attitude control
is prioritized. The gain function is specifically
defined as follows:

k(Ψ) = kmax(1−Ψ)n + kminΨ
n (37)

where kmin and kmax are defined, respectively,
as the minimum and the maximum value that
k(Ψ) can assume; and Ψ is defined as,

Ψ =
1− cos(θ)

2

cos(θ) = rTe e1

(38a)

(38b)

Note that to implement the control law within
the hierarchical design presented in Section 3 ,
the term γ̇v in equation 6b must also be evalu-
ated. To this end, the time derivative of γR,geo

can be computed as follows:

S(γ̇R,geo) = k2(Ṙ
T
e P − PṘe)+

k(Ψ)Q(RT
e −Re)Q

+ k̇(Ψ)Q(ṘT
e − Ṙe)Q

(39)

where,
k̇(Ψ) = −n(1−Ψ)n−1kmax Ψ̇

+ nΨn−1kmin Ψ̇

Ψ̇ =
sin(θ)

2
= ṙTe e1

(40a)

(40b)

6. Simulation and Experimen-
tal results

This section deals with simulation on the non-
linear UAV simulator and the experiments; in
the thesis work, a numerical example for the hi-
erarchical control of a rigid body model can be
found, that makes use of the hierarchical control
law developed so far.

6.1. Tuning of the gains
The tuning of the inner loop controller is made,
for all three axis, using only the sensitivity trans-
fer function Sinner (that links ωv and ωe), with-
out using a control effort weighting function, be-
cause by choosing carefully the parameters in-
troduced in table 1.
The result coming from the tuning of the gains
H∞ synthesis, using properly defined transfer
function for each axis, introduced in (30), are
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Kp Ki Kd Tf

roll 0.046 0.038 10−3 108.76

pitch 0.046 0.024 10−3 104.67

yaw 0.077 0.32 1.5*10−3 99.82

Table 1: Gain tuned for inner-loop PID

while, the outer loop control gains are chosen by
hand and they are defined as K̄R equal to 10, 10
and 3, respectively for the roll, pitch and yaw
axis.

6.2. UAV software simulations
Simulations are carried out first using the hier-
archical classic control law, confronting in dif-
ferent scenarios, in particular a circular trajec-
tory with angular frequency Ω = 1.5 rad/s and
Ω = 2.5 rad/s; for each scenario, the results with
and without the feedforward term, using as nat-
ural frequency ωn = 20 rad/s and ξ = 1 in the
command filter.
The results coming from this experiment are re-
ported in table 2, where µnorm,error (which is
the mean value of the norm of the angle error)
computed, for each experiments, in Table 2:

Ω = 1.5 rad/s Ω = 2.5 rad/s

feedforward 0.83 3.61

not feedforward 1.70 9.1

Table 2: Mean of the angle norm error [cm]

Regarding the Geodesic control law, the feedfor-
ward term will act only for the first two angu-
lar velocity term components, while the third is
considered to be zero; this is because the third
axis must acts only as the geodesic controller,
without any other input (in this case, the feed-
forward term).
The second trajectory, inspired by [5], is defined
as: 

yd(t) = 4 step(t− 1)m

zd(t) = −2 step(t− 1)m

ψd(t) = ψ̂ step(t− 1) deg

(41)

ψ̂ first be set to 30 deg, and it is tested both
using hierarchical and geodesic; then, the same
test will be done, but using a larger angle, to
better emphasize saturation effects and how the

two systems reacts differently, in front of windup
effects, setting ψ̂ equal to 120 deg.
The gains used for this experiment are: kmax =
3, kmin = 0.01 and k2 = 5; the natural frequency
ωn is now set to 30 rad/s. The overshoot per-
centage of the yaw error is computed for all four
cases:

ψ̂ = 30 deg ψ̂ = 120 deg

Hierarchical 22.92 32.64

Geodesic 4.64 5.57

Table 3: Overshoot percentage of yaw step re-
sponse

showing a significant improvement of the perfor-
mance when considering the geodesic approach.

6.3. Experiments
The same experiment done in the Simulation is
presented here for a real case scenario, but it is
tested first at Ω = 2 rad/s, the plot of the norm
of the position error for this experiment is the
following:

Figure 1: First Experiment Hierarchical (posi-
tion error)

while, for a circular trajectory at Ω = 2.5 rad/s,

Figure 2: Second Experiment Hierarchical (At-
titude angle response)

6



Executive summary Michele Labori

Regarding the geodesic control law, the more rel-
evant result has been detected by looking at the
yaw response for 135 deg.

Figure 3: Geodesic vs. Hierarchical (attitude
angle response)

Figure 4: Geodesic vs. Hierarchical (thrust pro-
pellers percentage)

7. Conclusions
The focus of the thesis is the application of hier-
archical attitude control laws to UAVs. Specif-
ically, the hierarchical architecture is imple-
mented within the position control architecture
for trajectory tracking in vectored-thrust UAVs
by including a nonlinear geometric filter, that
allows to easily include feedforward terms to im-
prove tracking performance.
To tune the gains of the control law, the thesis
employs the H∞ synthesis approach proposed in
[3]. The nonlinear equations defining the closed-
loop system of the tracking error dynamics are
first linearized. This leads to a formulation that
is different from the classic one used in H∞ syn-
thesis. The method is initially introduced for
the ideal rigid body problem and then adapted
to address the UAV case.
In the final part of the thesis, a geodesic con-
trol law inspired by [4], is implemented within
the proposed hierarchical architecture. The con-
trol law proposed in [4] has then been modified

to incorporate an error-dependent variable gain,
which allows us to effectively prioritize reduced
attitude stabilization when the reduced attitude
error is large. Simulation and experimental re-
sults confirm the benefit of the geodesic stabi-
lizer against a popular nonlinear stabilizer in
reducing directionality windup issues associated
with propellers saturation.
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