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Abstract

The evolution of the space sector towards smaller and cheaper spacecrafts, com-
bined with the increase in usage of Commercial of the Shelf components, has given
rise to new typologies of failures in the spacecraft’s Attitude Control System.
There is a need to develop fault-tolerant attitude control techniques to counteract
the increase in failure probability that comes with the reduction of the compo-
nent’s costs. Nowadays, a series of innovative techniques are being proposed with
the potential of outperforming the classical techniques used to deal with these fail-
ures. The purpose of the thesis is to investigate one or two innovative techniques
and select the most promising methods from sources in the literature. After that,
the objective is to test them onto two baselines to determine their applicability
and potential to be used in real-world applications. In the thesis, a literature
review is presented on the Adaptive control and Model identification techniques.
Four adaptive methods are selected among the sources, of which three are success-
fully implemented. They are tested onto the LUMIO CubeSat baseline and the
AGILE mission baseline, which are both cases of spacecrafts controlled with four
reaction wheels. Three scenarios are implemented: slew manoeuvre, detumbling,
and long-term pointing. The adaptive methods show better behaviour than the
original controller (when available for comparison) and they are fault-tolerant,
displaying some mission-saving characteristics.
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Sommario

L’evoluzione del settore spaziale verso satelliti più piccole e più economiche, in-
sieme all’aumento dell’utilizzo di componenti commerciali e da scaffale, ha provo-
cato la crescita di nuove tipologie di rotture nel sistema di controllo d’assetto
delle navicelle. Esiste la necessità di sviluppare tecniche di controllo d’assetto
resistenti al guasto per contrastare l’aumento della probabilità di rottura che so-
praggiunge con la riduzione dei costi dei componenti. Al giorno d’oggi, vengono
proposte una serie di tecniche innovative con il potenziale di superare le classiche
tecniche impiegate per gestire queste rotture. Lo scopo della tesi è di investi-
gare una o due tecnologie innovative e di selezionare i metodi più promettenti da
fonti della letteratura. Successivamente, l’obiettivo è di testarli su due baselines
per determinare la loro applicabilità e potenziale per poterli usare in applicazioni
del mondo reale. Nella tesi, è presentata una revisione della letteratura sul Con-
trollo Adattivo e sulle tecniche di Identificazione del Modello. Quattro metodi
adattivi sono selezionati tra le fonti, dei quali tre sono implementati con suc-
cesso. Essi sono testati sulla baseline del CubeSat LUMIO e la baseline della
missione AGILE, che sono entrambi casi di satelliti controllate con quattro ruote
di reazione. Sono implementati tre scenari: manovra di slew, detumbling e pun-
tamento a lungo termine. I metodi adattivi mostrano un comportamento migliore
del controllore originario (quando disponibile per un confronto) e sono resistenti
al guasto, mostrando alcune caratteristiche che salvano la missione.
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Introduction

The control of a spacecraft’s attitude is a complex but crucial problem for the
success of many if not all space missions. It is typically achieved through a dedi-
cated subsystem inside the spacecraft, the Attitude Control System (ACS), which
comprises of attitude sensors, actuators able to apply torques, and a control logic
that determines the actuation from the available data. Due to the characteristics
of space missions, the ACS has to be autonomous for certain periods of time, usu-
ally long, and must require minimum human intervention, none if possible. That
is why the control logic in the ACS is algorithmic in nature, instead of controlled
by humans.

Many techniques have been proposed and refined for the attitude control prob-
lem, but until recently most of them assumed no failures in the ACS. The approach
followed to guarantee the success of a mission was to ensure that the components
had an extremely small possibility of failure. This created highly reliable ad hoc
components for each mission, but at the expense of great costs.

However, in the last two decades there has been a strong push for the ”democ-
ratization” of space, that meaning granting access at significantly reduced costs
to stakeholders previously excluded from the sector due to the high investments
required. The CubeSat [2] platform is the most prominent example of this trend
of smaller, cheaper spacecraft. The new participants such as small companies,
student associations, and academic institutions such as Politecnico di Milano,
cannot afford or are not willing to cover the expensive traditional ad hoc design
process of ACS components to ensure the previously achieved low probability
of failure, particularly in the actuators field. This brought the need to develop
control techniques that took into account and could compensate for failures, and
several branches have been developed particularly in the last two decades.

Another factor is that, to further reduce the cost, a move towards Commercial
of the Shelf (COTS) components has occurred. They are components not de-
signed for an specific mission, but for generic applications. Then the designers of
each mission buy and adapt them to their spacecraft. These COTS components
are vulnerable to particular types of failures, such as transient events and even
complete failures. These are typically treated differently in traditional ACS due
to their higher reliability.
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Crucially, the countermeasures that the traditional spacecraft deploy against
the harsher failures, like having redundancy against a complete sensor/actuator
failure, depend heavily on the presence of Fault Detection and Isolation (FDI)
systems. FDI would provide information to the spacecraft on the specific failure
that is occurring, yet their presence cannot be guaranteed for COTS components
on these smaller spacecrafts.

The state of the art to deal with these particular failures are a series of “clas-
sical techniques” that are already in use, which consist on: filtering of measure-
ments, rejection of measurements, default commands (such as “safe” modes), and
accelerated restart procedures. Beyond them, there is a series of innovative tech-
niques, in development or experimentation phases, which show promising poten-
tial to outperform the “classical techniques”. A list of the innovative techniques
considered will be provided in section 1.1. Among them it is highlighted the pres-
ence of Adaptive control and of Model identification, because they are the ones
that were explored deeply in this Thesis. While Adaptive control is a modern
technique and its application to the spacecraft attitude has almost completely
been developed in the last fifteen years, Model Identification has a longer history,
although its proposed application to failure tolerance is recent.

There is extensive literature published for most of these methods. However,
the many variables that change from one publication to another, and the lack of
publications replicating the findings of previous ones, makes it hard to select good
technique for any single mission. A given research can focus on a specific case of
application, type of actuator, of failure, availability or not of certain sensor types,
etc. Moreover, it is no secret that many publications lack the necessary detail
to ensure the replicability of their results, or even the implementation of their
techniques. It is necessary to develop a criteria to evaluate sources which can lead
to selecting techniques suitable to a given application.

Thus, the objectives of this thesis are stated as follows:

1) Identify the particular failures that affect the ACS when COTS components
are used in their architecture.

2) Identify the innovative techniques that are currently proposed to deal with
the specific kind of failures discovered on 1).

3) Select a small number (one, two or three) of techniques from the ones iden-
tified in 2) and conduct a literature review on them.

4) Develop a criteria to evaluate the sources found and shortlist a few (between
three and five) of the most promising sources.

5) Implement the methods of the sources and try to replicate their results
through simulation.
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6) Apply the successfully implemented methods of 5) into a first baseline to
check their capability to adapt to multiple missions.

7) Apply the methods that result successful from 6) into a second baseline to
confirm their flexibility.

The entire project will be developed by a single author under the supervision
of the Thesis mentor.

The Thesis is divided into four chapters. In the first, the problem is stated,
and an investigation onto the COTS failure types and innovative techniques is
performed. Two techniques are selected, Adaptive control and Model identifi-
cation, and a literature review is conducted onto them. The sources found are
analyzed and four methods of the Adaptive control category are shortlisted for
implementation. This corresponds to objective 1) though 4).

The second chapter explains the mathematical layout of the common parts of
the four shortlisted methods, then the unique parts of each method specifically,
and shows the results of the attempted replication of the originals, corresponding
to objective 5).

The third chapter applies the three successful methods (one was unsuccessful)
onto the LUMIO CubeSat baseline [1] and compares the results among them as
well as with the original controller proposed for the mission, tackling objective 6).

Finally, the fourth chapter implements the three methods onto the AGILE mis-
sion spacecraft [3], and discusses the results in comparison with that was obtained
in Chapter 3, dealing with objective 7).

The Thesis finishes by discussing the obtained results in the Conclusions sum-
mary.
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Chapter 1

Problem statement, research and
scope

This chapter begins by explaining the motivation for this research, laying out the
groups of COTS components and the challenges that each of the COTS group
represents. After narrowing down the group of COTS to focus on and the failures
to be expected of them, it lists several algorithmic innovative techniques that could
be used to mitigate them, selecting two of them to investigate, Adaptive control
and Model identification. In the subsequent two sections, after a quick broad
explanation of each technique and some organizational clarifications, it presents
each source found, first of Adaptive control and later of Model identification. The
chapter ends with the conclusions and the selection of the techniques candidates
for implementation in the next chapter.

1.1 Applications of innovative techniques on mod-

ern ACS

New applications developed in the space environment in the last two decades have
favoured a move towards smaller, standardized and cheaper spacecrafts. The rise
of the CubeSat platform [2] is the quintessential example of this spacecraft trend,
with over 1500 launched so far [4]. Today, many academic and non-academic
organizations, including Politecnico di Milano, are in the process of designing
CubeSats due to its affordability and versatility in function.

This drive in the reduction of cost for new spacecrafts is enabled also by the
surge of COTS hardware. The philosophy behind this concept is that the func-
tionalities of some spacecraft subsystems are similar enough across a wide range
of satellites to support development of common components. These components
would thus be chosen by the designers according to the mission needs, instead of
designed ad hoc, and then integrated into the design, reducing the cost of said
component. The ACS subsystem is one example that benefits from this premise.



6 Problem statement, research and scope

This approach has enabled amateur and academic designs to come to fruition
that otherwise would not have had the funds to develop the parts, significantly
advancing the space sector. However, it has also come with problems.

The use of COTS supposes a departure from typical spacecraft design and
creates new challenges. A joint inquiry of AIRBUS and the European Space
Agency (ESA) on the topic [5] discovered that COTS on the ACS field could be
classified in two broad families:

• Firstly, there are those designed for high-end applications such as commer-
cial constellations, whose cost is not reduced in such a dramatic fashion
compared to the second group, but that offer similar reliability compared
to traditionally developed hardware. The main problem with this group are
Single Event Upsets (SEU) that could significantly alter transient behaviour
of the component.

• Secondly, the most low-cost COTS components suffer from significantly
lower reliability, being susceptible to permanent failure. However, they offer
the greatest cost-saving opportunity so in this research they are deemed the
most indicated to amateur and student-developed applications.

For reasons of their applicability and capability of the author to analyse the
related potential failures, in this research it was decided to focus on the second
group. This same inquiry [5] also reached two conclusions relevant to the later
conduct of this research. The first of them is that the best way to mitigate the
risks posed by using COTS components is at system level. The second, that the
Reaction Wheels (RW) component is the one that poses the most “threats” but,
tied with another component, offers the most “opportunities” with its usage.

One of the examples of mitigation at “system level” is that of algorithmic
software techniques. These have several advantages, one of them being that they
can be added to currently operating satellites as software-only updates. They can
also be adequately explored using simulations, before subsequent implementation
and testing. Classical techniques used for this end such as filtering and data
rejection have been shown to have limitations, thus a set of innovative techniques
was proposed in [5] to deal with the effects of COTS:

• Machine Learning

• Hardware anomaly identification techniques (other than ML based)

• FDIR based on structural analysis

• Multiple-model control design
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• LPV modelling, identification and control

• Adaptive control

• Adaptable estimation techniques

• Model identification

• Non-holonomic feedback control techniques of under-actuated spacecraft

• Hybrid control

It was decided to explore two methods in the initial research stage, those
being Adaptive control and Model identification, to later focus on the one that
showed the most promising outcomes. It is worth mentioning that the above-listed
methods are not necessarily mutually exclusive. Many proposals have been made
of techniques that use a combination of methods to maximize their respective
strengths. Indeed, some articles found during the literature review phase make
use of one of the selected methods in combination with another, and there are
even examples of using Adaptive control and Model identification together.

The approach followed to find publications for the literature review was double
fold. Searches by keywords such as “fault”, “‘tolerance”, “spacecraft”, “attitude”,
“adaptive”, “control”, etc., was carried out in the main scientific publishers’ online
libraries. The searches have spanned the sites [6], [7], [8], and [9]. Also, the
sources mentioned in [5] have been investigated. To expand further the search,
the references cited by all publications found have also been explored. To select
the sources to explore in depth, the title and the abstract have been the deciding
factors, and preference was given to the sources the closer they were to fault
tolerant application, using the selected methods, and dealing with spacecraft’s
attitude dynamics.

1.2 Literature review on adaptive control

The family of techniques referred to as Adaptive control have in common the
presence of a controller structure with parameters that are time-varying. These
parameters “adapt” to the conditions of the system by the implementation of dif-
ferential equations called “adaptation laws”, which can use any number of avail-
able signals. Among the measurements to drive the adaptation process could of
course be the presence of failures in the sensors or the actuators of the ACS. The
adaptation can be assisted by the use of a reference model, possibly obtained
by Model identification, and in that case it is called Model Reference Adaptive
Control (MRAC).

On the process of making the literature review, preference has been given
to the information sources that directly deal with the attitude control problem.
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Adaptive control has multiple applications, even within the space sector, and pa-
pers can be found in many areas. For instance in orbit control, the series of papers
[10], [11] and [12] uses an adaptive update law with the objective of controlling
the spacecraft orbit using aerodynamic drag. These applications are very worth
looking into, but if any cross-adaptation of the method to the attitude problem
could be made at all, it would require significant effort and expertise.

Before starting to introduce the findings of this phase, it is necessary to ex-
plicitly state that any criticism intentionally or unintentionally directed to the
sources found is made from a humble point of view, and can be the result of mis-
understanding or lack of expertise on the side of the author of this Thesis. It is
at no point the intention of this Thesis to undermine or attack the work of expert
researchers, specially given the inexperience of this author on the fields treated.
This also applies to the rest of the chapter and by extension to the entirety of the
document.

A significant praise has to be devoted to the archival efforts of [13] for making
a comprehensive review of the most recent developments in fault-tolerant control
using several methods. On the way of structuring the results of this review, it has
been difficult to select a criterion to group the sources in a consistent way, as they
can vary in so many independent dimensions (application, method used, faults
dealt with, simulation limitations applied or not, results, etc.). In the end it has
been decided to lay out the sources one by one keeping a consistent narrative by
maintaining the ones that use similar methodology close together.

1.2.1 Sources on Adaptive control methods

The first and oldest paper that has been found of interest is [14]. It uses an
adaptive law with the inertia matrix components as adaptive parameters to tackle
the problem of attitude tracking with unknown inertia. This has the added benefit
of identifying the spacecraft inertia, which can then be available for other uses.
Results show that stable tracking is achieved, but with severe oscillations during
transient behaviour. The control law would be relatively easy to implement.
The main criticisms are that it does not include disturbances, it does not model
actuators, nor features fault-tolerance. It also needs the commanded attitude to
be “rich enough” (see the definition in the paper) for the inertia estimate to obtain
the correct values. Actually, the contributions it does achieve, global convergence
and inertia identification, can be done separately, as it is going to be seen during
the rest of the chapter. Finally, the formulation is done in Euler parameters, and
the demonstrations carried out by Lyapunov stability analysis.

In fact, it is going to be said now that the majority of the studies discussed
here use Lyapunov methods [15] to prove their convergence, sometimes recurring
to highly complicated Lyapunov candidates. The approach has the advantage
that it can prove local or even global stability, however it does not offer any a pri-
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ori guarantees on the transient behaviour, speed of convergence, or the behaviour
inside the stable defined region, so these analyses should always be backed up by
simulations or experiments.

A more modern application is found in [16]. It undertakes the attitude tracking
of a microsatellite with changing targets. The adaptive control law is of a struc-
tured form that resembles a Proportional Derivative (PD) controller, but with the
coefficients as time-varying adaptive parameters. The objective is to substitute
the original switching “PD-speed bias” controller of a PICARD satellite with an
adaptive one that transitions smoothly between the two. The method managed
to replicate both original controllers in their realm of applicability, removing the
“jump” between the two. Actuators this time are modelled, one magnetometer
and three RWs, and it is taken into account the wheels saturation and possible
positioning measurements outage.

The method was tested on an End of Life (EOL) PICARD satellite with bet-
ter results than the original switching controller. The main criticisms are that
it treats the three axes independently, relying on swapping to a “safe mode law”
if errors grow too large, and that it is again not an application demonstrating
fault-tolerance. The controller would also be moderately difficult to implement.
Although some controller parameters can be computed by optimization problems,
many others have to be chosen by trial and error. Even the authors say finding a
good combination is challenging, which would not be helped by the fact they do
not seem to report the controller parameters used in the tests.

The first application of this review that treats fault-tolerance is that of [17].
With quaternion formulation, it addresses the attitude tracking with changing
target of a rigid body spacecraft. The adaptation law features an extra dedicated
parameter to control the transient response. The simulations are carried out
with actuator loss of effectiveness and saturation. It is worth noting that in
this context, “loss of effectiveness” can be the result of complete failure of an
actuator in a redundant configuration. For instance, if a redundant two thruster
configuration in one axis suffers an outage, the equivalent “loss of effectiveness”
would be of 0.5. It does not necessarily mean any actuator is working at half the
commanded value.

It also claims that it can deal with an unknown inertia, and its control indeed
does not use the inertia matrix, although control under different inertias is not
demonstrated. Results show improved response in any case compared to a PD
controller. Also, the improvement of transient response is best for moderate values
of the transient control parameter. The drawbacks are that it does not model the
actuators, and it needs upper and lower bound of actuator effectiveness. However,
these limits can be selected very aggressively in case FDI is not present, but it
nonetheless would improve performance. Implementation at first glance would be
easy, with only one first-order differential equation for an adaptation parameter
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called k.

A similar method with some extended capabilities is found in [18]. Again,
the method is applied to an attitude tracking rigid body spacecraft with quater-
nion formulation. The (unmodelled) actuators suffer from loss of effectiveness
and bias. The main novelty of this paper is that it introduces a command filter
for velocity tracking based on the hyperbolic tangent. This allows to explicitly
impose a maximum limit in the angular velocity of any manoeuvre done under
this control. Results of simulations also showed a decrease in steady state errors
for fault-free and specially for faulty case, and the constraint on angular velocity
was respected. Together with the unmodelled actuators, a criticism could be that
it does not show the behaviour under varying inertia, although the inertia is not
used in the control scheme so it presumably could withstand it. The method is
expected to be easy to implement, with two additional first order equations and
only five scalar parameters to tune.

Departing from the methodology of the first four sources discussed, the method
in [19] proposes an adaptive neural network to estimate a nonlinear term, inside
a smooth function used to simulate saturation. It also uses the same hyperbolic
tangent angular velocity command filter as before to control the maximum an-
gular velocity reached during manoeuvres. Simulation results show that control
saturation implemented resembles real behaviour, and the angular velocity limit is
respected. The scheme is applied to attitude pointing, instead of tracking, which
is a criticism. Also drawbacks are the fact it does not feature fault-tolerance and
does not model actuators. The source claims that the controller would be able to
deal with model uncertainties and disturbances. However, it does not implement
them in the simulations, so that claim would have to be checked. The difficulty
of implementation, given the knowledge of the author on the neural network field,
could be stated as “unclear”, but would probably be hard due to the concise ex-
planation of the source, without an step-by-step guide to replicate it. In terms
of computational power, once it is designed, it seems to require one differential
equation per network node for parameter weight adaptation. For another inter-
esting source also proposing adaptive neural networks, which is not going to be
discussed here because it was deemed far too complex for an implementation, see
[20].

Two of the authors of [20] also proposed another approach in [21] using adap-
tive fuzzy logic for the fault-tolerant attitude tracking controller of a rigid body
spacecraft. It uses fuzzy rules to estimate nonlinear terms in the error dynamics.
It also uses a virtual controller for that same error dynamics. Because it bases
the adaptation on the norm of the weight matrix, it only has adaptation laws of
two parameters, with other three additional differential equations for the error
vector used in the method. In simulations, it confronts control saturation, distur-
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bances, uncertain inertia, actuator loss of effectiveness, outage, and even control
sign reversal, which is very interesting, although for this last case the settling
time is sensibly longer. The criticisms would be that actuators are not modelled
and the transient response is very bad, with no control on the slew trajectory, so
it is not useful for systems with forbidden directions. Implementation would be
moderately difficult, with six constants and one 3 × 3 matrix to select, and the
fuzzy logic functions to design.

Another line of research for adaptive methods has been that of sliding mode
techniques, of which [22] is an example. The problem of attitude pointing of a
rigid spacecraft with four thrusters is addressed, with an additional integral term
added to the traditional sliding surface combination of error quaternion and its
derivative. The result is an adaptive control law with four tuning parameters.
Implemented on the simulations shown are thruster outage, limitation, unknown
inertia, and the case when the thruster gets stuck, at 50% and 100% of actuation.
The response is improved on nominal condition when compared to a Proportional
Integral Derivative (PID) controller, and to the method in [23], that is going to be
discussed later. Response is heavily improved on outage and 50% stuck condition,
and at 100% stuck condition this method stabilizes the system while the others
cannot. As drawbacks, it can be said that it does not explicitly impose limitations
on the actuators inside the control scheme (it does apply limitations in the sim-
ulations), and performs attitude pointing, instead of tracking. Implementation
difficulty would be medium, with four first order differential equations and also
four scalar and four matrix parameters to tune.

From one of the same author as [22] is [24]. Being an earlier paper, it uses
a normal sliding surface, only error quaternion and its derivative, on the atti-
tude tracking of a flexible body spacecraft with four RWs. Flexibility effects,
disturbances, actuator loss of effectiveness and complete failure are taken into
account. The method uses adaptation to estimate the unknown inertia matrix
norm. Results show attenuation of flexible oscillations and stabilization when one
RW fails. However, the method is not well explained on the source, with the re-
sults showed being very few, and after intense reading, major doubts still remain,
like the dimensions of some control variables. Implementation would be also be
made harder by severe restrictions on controller parameters and not reporting the
controller numbers used on the simulations.

One of the methods that [22] compared its results to was the one in [23]. This
source, also one using a standard sliding surface variable, uses adaptation to es-
timate for unknown nonlinear terms that appear during its theoretical layout. It
comes up with three stages of development of what could be argued is the same
controller, one for unmodelled three-axis control, another one accounting for the
matrix of actuator distribution, and a last one explicitly implementing limitations
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on the actuators. The method is applied to the problem of attitude tracking of
a rigid spacecraft with six thrusters. Simulations are carried out under thruster
loss of effectiveness and up to three outages, also considering thruster limits and
unknown inertia. Even in the worst failure cases, tracking is successfully achieved.
However, it does not compare its results with any other alternative scheme. The
implementation would be easy, with one added differential equation and four tun-
ing parameters.

One final block of adaptive spacecraft’s attitude control papers would be those
using MRAC, the first of the three discussed here being [25]. For the attitude
tracking of a rigid spacecraft, it uses MRAC to generate a virtual control torque,
and then performs control allocation based on a 1-dimensional minimisation prob-
lem for the unconstrained case. This method needs Fault Identification and Mag-
nitude Estimation to function, so that is not ideal given what is expressed in
Section 1.1. The problem is that for the saturated case the minimization turns
into a convex Second-Order Cone problem, relying on a software called CVX for
solving. Although results show an improvement of convergence speed and track-
ing steady-state errors, the PD it is compared against already performs well. It is
not tested on more challenging cases, and the procedure behind implementing the
unconstrained (no saturation) case is already quite complex, so implementation
would be hard.

The second source using MRAC is [26], on both the problem of translational
positioning and that of attitude pointing of the SPHERES satellites. These are re-
configurable satellites with the possibility of attaching add-ons with different tool
sets. This causes variation in mass and inertia, so they remain unknown. The
MRAC was design with a sliding surface variable in both position and attitude
control. An advantage is that the scheme was experimentally tested on board
the International Space Station (ISS) using the real SPHERES hardware. Results
show a significant performance increase compared to the PD baseline controller,
especially when more add-ons are plugged in, which vary the inertia and mass
properties significantly. As drawbacks of the scheme, it does not feature fault-
tolerance, and it assumes perfect knowledge of the position, attitude, velocity,
and angular velocity, although later in the real-world test the method seems to be
able to handle those uncertainties. Implementation difficulty would be moderate.
Two three-by-three matrices and four scalar parameters have to be determined.
The authors recognise finding the correct parameters for the application was a
challenge, and mainly done by trial and error using simulations. The controller
parameters used in the tests are reported.

The last source explored is [27], from one of the same authors as [26], and it
deals with the problems of translational position tracking and mass determination.
For this source, mass is uncertain, and it combines an Extended Kalman Filter
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(KF) with a MRAC together into a composite adaptation technique. Simulation
mainly show that the mass parameter is correctly identified through continuous
estimation. That means the extended filter design prevents the estimation from
closing into wrong values. As drawbacks, obviously that it deals with translational
dynamics instead of attitude, and that the source provides very little explanation
on the method itself. Implementation would be very hard due to the authors not
providing numbers nor parameters used for the results and the explanation being
so high level.

1.3 Literature review on Model identification

A Model identification technique is that one which uses data collected during the
real life experience of a system to determine the value of parameters of a model
that is already predetermined beforehand. Many techniques have been proposed
over the years to do that, depending on data quality, application, known informa-
tion on the dynamics to propose a less or more accurate model, etc., giving place
to the many families inside the identification world. Of key importance for Model
identification techniques is that the predetermined model is able to sufficiently
closely replicate the behaviour of the real world system. If that condition is not
met, more often than not the identification process will be completely worthless.

A remarkable characteristic to differentiate techniques is if they are performed
offline, once all data has been collected, or they allow for online implementation,
which is much more suitable for on-board application. Of course the online meth-
ods must involve no more than a manageable amount of computational power in
order to be applied to satellites. Other distinction is that between grey-box tech-
niques when the structure of the model is already known, normally derived from
physical principles, and black-box techniques, when the structure is unknown.
The main approach for black-box identification is through trial of generic-system
dynamics of multiple levels, or analysing the data beforehand to try determining
the level of the system, so at first glance that makes them harder for online use.

For Model identification is has been much harder to find applications pertain-
ing fault-tolerance than for Adaptive control. Rather, when searching for sources
using identification in spacecraft and fault related topics, the majority found re-
ferred to FDI, diagnosis of sensors, actuator alignment estimation, and above all
mass and inertia estimation. If the reader remembers, some applications discussed
in Section 1.2 already dealt with this last topic. The consequences of this lack of
sources in pure fault-tolerance will be discussed in the chapter conclusions, Sec-
tion 1.4. As of the presentation of the sources, the same methodology followed for
Adaptive control is used here, keeping the similar sources following one another
to add continuity, despite the many-dimensional differences between them.
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1.3.1 Sources on Model identification methods

The first method dates from the early two thousands and is developed in [28],
which lays out the mathematical procedures for estimation of an spacecraft direct
and inverse inertia matrices, Center of Mass (CoM) position, thruster magnitude
bias, and total mass. It does it by simplifying the system equations of motion
through neglecting terms until they are set in linear form. The method is offline,
although a modification to turn it to online via Recursive Least Squares (RLS) is
proposed, and implementation is deemed easy.

The section of [28] on inverse inertia identification and CoM position is applied
in [29] for both offline identification, using Batch Least Squares (BLS), and online
identification, using RLS. The source implements a KF to reduce angular velocity
measurements noise, and resets the filter after each time the firing configuration
of the thrusters changes. One challenge is that the source wanted to do all with
the version that only uses angular velocity measurements, with no position mea-
surements. Results show that offline and online methods converged on the same
values, but for some tests the converged values are incorrect, which is blamed
on other unknown effects. Also, just after each filter reset, the angular velocity
variance is very high. Implementation would be easy because the method is well
explained at length, but it does not feature fault-tolerance.

The source [30] addresses the problem of a spacecraft’s thrusters FDI on-
line. The procedure is to select a preset limited combination of failure modes
(in this case forty), and then compute the nominal acceleration disturbance that
would correspond to them if they were to happen. After that, it uses Maximum
Likelihood estimation to determine which among the failure conditions, or the
no-failure condition, is more likely. In simulations it implements thrusters pulse-
to-pulse strength variability, constant thruster bias, inertia matrix bias and mass
bias, CoM location offset, and again only uses angular velocity measurements,
supposing attitude measurements are not available. The results show the typical
failure detection time is 0.5 seconds after firing. Most failures are detected before
1 second. Failures with similar effects take up to 5s to distinguish. Also, 99.98%
of the times the failures are correctly identified. The main drawback is that fail-
ure modes have to be predetermined beforehand, with failure modes not in the
set impossible to be identified, even with the possibility for them to be confused
with erroneous predetermined ones. It also does not feature fault-tolerance, only
diagnosis. Implementation is deemed moderately difficult, mainly due to the need
of identifying the failure modes.

The same application of spacecraft thrusters’ FDI is targeted in [31]. Consid-
ering uncertain inertia, thruster misalignment, partial or total failure, and only
attitude measurements available, the authors propose two methods applied on
the linearized dynamics. The first is a FDI algorithm that computes the expected
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total moment of inertia and compares it to the measured one to isolate failures.
The second is an Unknown Input Observer that results in a structure sensitive to
certain failures and not to others. It also features efficiency estimation, actuator
torque matrix, and mean thrust calibration. In simulations, most of the time
both methods detect and isolate the correct failure, but in both cases there is a
non-negligible number of wrong identifications, thus they are unreliable. It is a
work in progress, and was tested on real telemetry data with moderately good
results. Implementation though would be hard, due to a high level explanation of
the method, with no concrete numbers to put it into practice.

Another master’s thesis like [29] is that of [32]. In this case the offline estima-
tion of direct inertia matrix and actuator misalignment is confronted. It considers
noisy and biased measurements, as well as possible non-availability of angular
velocity measurements. The author proposes an Instrumental Variable method
to tackle types of noises that deviate from normal Gaussian white noise, a State-
Variable low pass filter to obtain angular acceleration when angular velocity mea-
surements are available, and a Second-order Butterworth Filter combined with
central differentiation for when only position measurements are available. Simu-
lations show improved estimation with respect to Least Squares (LS) and other
methods, and the technique was experimentally tested. Implementation would be
complex, with necessity to design the instrument “Z” to apply the method. It
is also not very applicable to the target problem, being offline and not used for
fault-tolerance.

The method in [33] handles the case of the capture of an asteroid using a
spacecraft, with the severe uncertainties on inertia and CoM that this scenario
carries. Also takes into account the inability to produce net torques on the com-
bined spacecraft-asteroid system. The process is offline, by reformulating the
problem as a convex optimization problem and using MATLAB’s CVX solver.
It adds convex constraints on the CoM positioning and inertia characteristics to
the convex solver to ease the solution finding. Results showed the ability of the
technique to estimate the target parameters, while the standard LS method failed
to do it. The time to estimation was reduced with each added convex constraint.
Of course, a criticism is that it uses a software solver, so the technique is not
actually explained. It also assumes perfect knowledge of all measurements and no
disturbance. Implementation would be moderately difficult.

The second to last method, proposed in [34], utilizes a two-stage KF in the fail-
ure estimation of a three-RWs rigid spacecraft. Also considering gyro sensor bias
and failure, it includes some of the system states inside the state evolution matrix
“A” of the filter. The actuator effectiveness factor is then included in the filter for
estimation. The source also proposes two control laws with fault-tolerance char-
acteristics, first a reconfiguration controller, and second a direct accommodation
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controller. Results show that they comfortably deal well with RWs failures and
with gyro bias separately, but no combined failures are attempted. As criticisms,
it assumes a principal inertia matrix for the mathematical development, and it is
unclear how to extend the controllers to other actuators other than one reaction
wheel per axis. Implementation is assessed as moderate to hard, with some steps
being unclear and no justification given to the parameter values used, although
at least they are provided.

Finally, the method in [35] proposes an augmented linearized KF, of enormous
proportions, including as states all the target parameters for estimation. To work
around the observability problem of both spacecraft inertia and RWs inertia, it
sets the value of the term (1,1) of the inertia to the nominal one. This supposedly
does not affect attitude estimation nor the control. The scheme adds a torque in
the null space of the RWs distribution matrix to be able to estimate the direction
of the RWs misalignment. In the source it is stated that it necessitates angular
momentum bias to estimate the inertias. Another procedure followed is amplifying
process and measurement noise at the beginning of the simulations to avoid the
KF getting closed around wrong values. Starts at 100 times amplification, then
drops to 10 times, and later to nominal. The Scheme is applied in a four RWs
spacecraft with residual magnetic pole, attitude measurements temporary outage
and no gyro sensors present. The main problem is that it needs numerical tricks
to avoid the filter from closing and estimating the wrong values, it needs custom
calibration manoeuvres, and does not deal with fault-tolerance. Although the KF
can be reduced if estimation of some states is not needed, the number of states is
still high, so implementation difficulty is considered medium.

1.4 Chapter conclusions

For the large number of sources introduced in this chapter, now it is necessary to
filter them down and come to useful conclusions to advance on the project. As
is was stated in Section 1.1, the objective is to find a shortlist of a hand-full of
papers that show promising potential to handle complete actuator failures of the
kind that could experiment COTS components of group two.

The efforts of the last part of the literature review phase have been focused
on organizing and classifying the sources to come up with a list of between three
and five methods to implement. This is thought this way so as if there are one or
more techniques that fail at implementation, work can still be done with enough
material to move forward with the rest of them. The results are presented in the
table inside Appendix A.

The table presents in the first column the problem that the sources deal with.
The second column names the year, author and reference of the source. A single
source may appear many times in different problem categories if it tackles more
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than one problem. The third column tries to present in few words, as a reminder,
the method used by the source to deal with that problem. Finally the number-
ing columns summarizes the analyses made to the sources in three dimensions.
The evaluation has been performed with respect to the criteria of: Completeness,
Easiness, and Results Quality. The Completeness category analyses how well the
method is explained in the source. For instance, step by step explanations achieve
higher score than high level ones. Easiness represents the complexity of the tech-
nique, and Results Quality assesses how good the results presented are using the
technique, also weighting in the applicability to this Thesis. Valuations of each
method may vary depending on the specific problem category. Finally the last
column presents the Overall score achieved.

Thus, after all this analysis, it was time to make a decision. As is expressed
at the beginning of this chapter, two broad innovative techniques were going
to be researched, to then select the one that was the most convincing. Well,
given the results of the sources review in Appendix A, the lower applicability, as
was mentioned before, of Model identification to fault-tolerance, and taking into
account the personal preference of the project’s author, after consultation with
the Thesis mentor it was decided to proceed with Adaptive control. Moreover, due
to the sources evaluation results outlined in Appendix A, the methods selected
for tentative implementation have been [18], [17], [23], and [22]. For clarity, this
methods will be referred to as 2018 Qiang Shen et al.[18], 2014 Danyal Bustan et
al.[17], 2008 Wenchuan Cai et al.[23], and 2011 Qinglei Hu et al.[22] occasionally
throughout the rest of this Thesis. In the next chapter, each method will be
explored and explained in-depth, and the original results reported will try to be
replicated.
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Chapter 2

Selected methods

This chapter introduces first the mathematical layout that is common for all four
selected methods, followed by a high level explanation of the simulation software
models used for implementing the techniques. After that it is presented, one
method at a time in different sections, the mathematical equations that allow
for the implementation of each technique, and the results obtained by simulation
compared to the original results reported by the sources. The chapter ends with
the conclusions where all discoveries are summarized.

2.1 Common framework for all methods

To begin this chapter with, it is going to be discussed the generalities that apply
to all selected methods. The first explanation will be of the attitude dynamics of
a rigid body spacecraft. Arising from the Principle of Conservation of Angular
Momentum, the equations of motion that describe the rotation of a rigid body,
known as Euler Equations, are:

dh

dx
= M (2.1)

Iẇ + ẇ × h = M = u + d (2.2)

where h is the 3×1 vector of spacecraft’s total angular momentum, M is the 3×1
vector of total external moments (torques) applied on the spacecraft, I is the 3×3
inertia matrix, w is the 3×1 vector of angular velocity, u the 3×1 control torque
vector, and d the 3× 1 disturbance vector. Note that h = Iw, and that equation
(2.2) only applies when the magnitudes are measured with respect to body axes.

It has not been a purposely selected coincidence that all four chosen sources use
the formulation in quaternions as their choice of attitude parameters. To be fair,
most of the sources investigated used them because they are universally accepted
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as a versatile, singularity-free attitude representation. The attitude kinematics in
this representation are governed by the equations (2.3) and (2.4).

q̇0 = −1

2
qTw (2.3)

q̇ =
1

2
(q× + q0I3×3)w (2.4)

where q0 refers to the scalar part of the quaternion, q to the 3 × 1 vectorial
part of the quaternion, I3×3 denotes the 3 × 3 identity matrix, ∗ is the normal
multiplication operator, and the operator w× is the skew symmetric matrix that
is equivalent to the vectorial product if it is applied to the first vector, that is:

w× =

 0 −w3 w2

w3 0 −w1

−w2 w1 0

 (2.5)

To address the difference between the current attitude and the commanded desired
attitude, and thus be able to achieve pointing on different directions and tracking,
the sources also use the concept of quaternion error (q0e ; qe), that is defined as
the relative orientation between the body frame B and the desired frame D. The
quaternion error kinematics can be computed through equations (2.6) and (2.7).

qe = q0dq− q0qd + q×qd (2.6)

q0e = q0dq0 + qTd q (2.7)

where (q0d ,qd) indicates the quaternion representation of the desired attitude. In
short, Qe = Q−1d

⊗
Q, where the operator

⊗
represents the quaternion multipli-

cation and Q represents the full quaternion with scalar and vectorial part (q0,q).
Note that 2018 Q. Shen et al. [18] has a slight error when defining the error
quaternion, and its math actually corresponds to the quaternion multiplication in
the opposite order than is reported there. That is why its equations are different
from [17] and [23]. However, the source is consistent throughout the document,
and this discrepancy does not affect the method. In the implementation, a sign
switch on the desired attitude has been added for this technique so it uses the
same formulation as the rest.

The angular velocity error is defined in equation (2.8):

we = w −Cwd (2.8)

where wd is the 3 × 1 vector of angular velocity of the desired frame, and C is
the 3 × 3 rotation matrix corresponding to Qe, defined as C = (q20e − qTe qe)I +
2qeq

T
e − 2q0eq

×
e .
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In the following sections, the methods are going to be explained only to the
point that allows for its successful implementation. That is, content like the
stability demonstrations and the regions to which the techniques are guaranteed
convergence are going to be left to the sources if the reader wants to have more
information about the mathematical formalities of the techniques.

2.1.1 The simulation environment

The aim of this subsection is to provide a quick explanation on the simulation
resources developed in MATLAB and Simulink used to test the methods and im-
plement the baselines. An example of the Simulink environment that carries out
the simulations is presented in Figure 2.1. In blue, the subsystem “Euler Dynam-

Figure 2.1: Example of Simulink blocks.

ics” implements the Euler Equations (2.2), inputting the external moments, and
additional momentum sources (that do not correspond to the free body rotation
of the spacecraft) and their derivatives, and outputting the spacecraft’s angular
velocity w. The “Quaternion Kinematics” subsystem, also in blue, inputs the
angular velocity and outputs the attitude quaternion Q of the spacecraft, as well
as its equivalent 3× 3 rotation cosines matrix AB

I .

In red, the subsystem block “Controller” is where the different control laws are
implemented. It inputs the spacecraft’s angular velocity and attitude quaternion,
and outputs the commanded control torque uc, which feeds into the “Actuators”
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subsystem block. Note that, for this block, 2008 Wenchuan Cai et al. is an excep-
tion, as the method computes directly each actuator’s required torque, instead of
the 3× 1 vector of three-axis virtual control torque.

The “Actuators” block determines the behaviour of the actuators from the
commanded control torque and angular velocity. The output can be in the form
of angular momentum (and its derivative) in case of, for instance, control by RWs,
or in pure moment applied to the spacecraft in case of, for instance, control by
thrusters. Note that this block can be missing entirely when the actuators are not
modelled, like in the original versions of the sources, and then the commanded
control torque inputs directly onto the “Euler Dynamics”.

In yellow, the subsystem block “Sensors” represents the attitude position sen-
sors, and the function “gyros” represents the angular velocity sensors. Their
purpose is to introduce the error measurements of the attitude sensors and angu-
lar velocity sensors, respectively. They have been a late addition to analyze the
scenarios “Long Term”, and thus they only appear in these cases.

Finally, the function “disturbance model” explains by its very name its func-
tionality, creating the external disturbance affecting the spacecraft. For the second
baseline, in Chapter 4, the simple model has been discarded in favour of a more
refined physics-base model. This modification is explained in detail in Chapter 4.

In terms of organization, for each study that has been carried out, a different
folder has been created that allowed for the modifications required by each method
and scenario. This approach has resulted in a large number of folders with very
similar, if not almost identical, Simulink models. This is not ideal, and is it
recognized by the author that there may have been better ways to organize the
simulations. Maybe, implement in the same file several models with a “switch” to
select which one to use. Also, it is noted that Simulink cannot open two project
files with the same name, which is definitely a nuisance. It is encouraged to anyone
expanding onto this Thesis work to not repeat the same mistakes in organization
as where committed here.

The data to set up each simulation is generated a MATLAB “.m” file in the
same folder as each Simulink model. The file also launches the simulation itself,
except for the “Long Term” scenarios. This is done this way because the extended
simulations take more time and in the Simulink User Interface (UI) the progress
can be tracked, whereas in the standard MATLAB windows this cannot be done.
Detail instructions on how to use them are provided at the beginning of each “.m”
file, as exemplified in Figure 2.2.

2.2 2018 Qiang Shen et al.

The presentation of this method will begin by explaining the filter for the com-
manded angular velocity based on the hyperbolic tangent. It uses the value of
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Figure 2.2: Example of instructions provided at the beginning of each “.m” file.

the maximum angular velocity wmax (coming from the spacecraft’s requirements),
and the maximum angular velocity of the desired frame wd,max (which is known
because it comes from the imposed attitude to track), to define the maximum
magnitude allowed to the angular velocity error as of equation (2.9).

we,max = wmax − wd,max (2.9)

The filter is of the form in equation (2.10)

T0ẇv + wv = αw0
v (2.10)

where T0 is the filter’s time constant, α is a safety scale value (0 < α ≤ 1), and
w0
v is the input of the filter, which is given by equation (2.11)

w0
v = −we,maxtanh(cqe) (2.11)

with c being a constant parameter selected by the designer. It is noted that the
filter’s input w0

v converges to zero when the attitude error is zero, and it saturates
approaching −we,max for large positive values of qe, and we,max for large negative
values of qe. This filter guarantees that ‖wv‖ ≤ αwe,max.

For the construction of the controller, the filter’s output is used to define the
virtual tracking error wa in equation (2.12).

wa = we −wv (2.12)

The operator ψ(·) is defined in equation (2.13).

ψ(·) = ‖w‖2 + ‖w‖+ 1 (2.13)

The adaptive scalar parameter b̂ update law is proposed as equation (2.14)

˙̂
b = −σ%b̂+

σψ2(·) ‖wa‖2

ψ(·) ‖wa‖+ ι
(2.14)
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where b̂ is the estimator of an unknown constant b used in the source’s mathe-
matical analysis, σ and % are positive design parameters chosen by the designer,
ι > 0 is a small constant to avoid singularity, and the initial value b̂(0) > 0.

Finally, the controller is proposed as equation (2.15)

uc = −

(
k +

b̂ψ2(·)
ψ(·) ‖wa‖+ ι

)
wa (2.15)

where k is a positive constant design parameter, and uc is the 3× 1 commanded
control torque vector, which will later be transformed to the real control torque u
transmitted to the spacecraft via the actuators. The authors provide a summary
of the effects of modifying the parameters in the overall high level behaviour of
the controller, and also detail the parameter values used to obtain their results,
which is going to be very valuable to replicate them in subsection 2.2.1.

2.2.1 Replication of results for 2018 Qiang Shen et al.

In the source [18], the technique is tested onto a spacecraft with inertia matrix

I =

20 1.2 0.9
1.2 17 1.4
0.9 1.4 15


a perturbation model

d = 0.001× [sin0.8t cos0.5t sin0.2t]T

and a desired attitude to track

qd(t) = [
1√
30
sin−0.1t,

1√
60
sin−0.2t, 0.1cos−0.1t]T

that corresponds to a value of wd,max = 0.055 rad/s. The limitation on angular
velocity is wmax = 0.155 rad/s, so due to equation (2.9), we,max = 0.1 rad/s.

The controller parameters used are reported as k = 100, α = 0.92, T0 = 0.005
, c = 80, % = 10, σ = 0.1, and ι = 0.005. It is applied a hard limit of 4N in the
control torque in each axis.

Initial attitude is given by the quaternion Q(0) = [0.7071, 0.5,−0.3,−0.4]T

(despite the source stating the first vectorial component with a negative sign,
that is a mistake, and later in simulations this is the correct initial value), initial
angular velocity is zero w(0) = [0, 0, 0]T and initial adaptive parameter value is
b̂(0) = 0.1.
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Absence of actuator faults. Results for the error quaternion when actuators
do not have faults are shown in Figure 2.3, where the stile of the original source in
the Figures has been imitated to ease comparison. That is why, although it is not
recommended, the four quaternion components are shown in the same image. In
this case notation is slightly different from the one introduced in section 2.1, note
the change in quaternion numeration qe4 = q0e . In Subfigure 2.3a it is represented
the results of the simulation created in this Thesis work, which can be compared
to the equivalent results provided by the source, shown in 2.3b. As can be seen,
results are almost identical, with the same magnitude and behaviour of the steady
state error.

In 2.3c are shown the components of the angular velocity for the implemented
simulation, and in 2.3d it is shown the same graph presented by the source. Again,
results are absolutely similar.
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Figure 2.3: Error quaternions (2.3a)(2.3b) and angular velocities (2.3c)(2.3d)
without actuator failures.
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Presence of actuator failures. The source tests the case of actuator failures
with the following three-axis loss of effectiveness fault:

e1(t) =

{
1, if t < 5

0.5 + 0.09sin0.05t+ 0.005rand(·) if t ≥ 5

e2(t) =

{
1, if t < 5

0.6 + 0.10cos0.08t+ 0.008rand(·) if t ≥ 5

e3(t) =

{
1, if t < 5

0.4 + 0.08sin0.06t+ 0.005rand(·) if t ≥ 5

where rand(·) represents a random value generated from the standard normal
distribution with mean 0 and standard deviation 1. As the update rate of this
rand(·) function is not indicated in [18], for the simulation it has been selected as
0.05 seconds. Also, the three-axis additive bias fault is added:

fa1(t) =

{
0, if t < 10

0.75 + 0.25sin0.04t if t ≥ 10

fa2(t) =

{
0, if t < 10

0.95 + 0.05sin0.08t if t ≥ 10

fa3(t) =

{
0, if t < 10

0.85 + 0.15sin0.06t if t ≥ 10

where all magnitudes are in Newton [N ].

The same results as before are presented in Figure 2.4. Comparison of 2.4a
and 2.4b demonstrate the same behaviour between the custom implementation
and the original source, with only small differences in the steady state, probably
due to a different update rate of the rand(·) function chosen.

Angular velocity plots 2.4c and 2.4d also show complete equivalence between
results obtained and the source.

2.3 2014 Danyal Bustan et al.

The method [17] makes use of two auxiliary variables defined in equations (2.16)
and (2.17).

s1 = we + (k2 + 1)qe (2.16)

s2 = (k2 + 1)ρq0eq̇e (2.17)
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presence of actuator failures.



28 Selected methods

where ρ is the positive constant that is claimed to control the transient response of
the system, and k(t) is the time-varying adaptive parameter used in the technique.
Its adaptive update law is defined in equation (2.18)

k̇ =

{
−γχ

k(wT
e Iwe+2γ(1−q0e ))

if we 6= 0

0 if we = 0
(2.18)

where γ is a positive constant chosen by the designer, and χ is given by equation
(2.19)

χ =
3∑
i=1

(
k2γminumax

2γ

|wie|(k2 + 1)(δ + 1)

|wie|+ (k2 + 1)(δ + 1)

)

+
3∑
i=1

(
k2γmaxumax

2γ

|wie||qie|(k2 + 1)

|s1i |+ (k2 + 1)δ

)
+
k2

2
qTe s1

(2.19)

where the subindex i denotes the corresponding vector i-th component, δ is a
positive control constant, γmax and γmin represent respectively the maximum and
minimum effectiveness of the combined actuators in any of the three body axis,
and umax is the lowest of the control torque limits provided by the actuators on
the three body axis. γmax and γmin must be known, but they can be selected
very aggressively (for instance as 0.1 and 1 respectively) if information on failure
severity is not available.

Finally, the controller is proposed as equation (2.20)

ui = −umax
2
×
(

s1i
|s1i |+ (k2 + 1)δ)

+
s2i

||s2||+ (k2 + 1)δ)

)
(2.20)

where || · || denotes the euclidean norm of a vector or matrix.

Looking more carefully at equation (2.18), it can be seen that this is a first
order differential equation with no forcing term. In fact, it is acknowledged by
the source that if γ and δ are selected so that γminumax(k

2 + 1) > γ(|s̄1i|+ (k2 +
1)δ, where |s̄1i | is the bound value of s1, then k has an exponentially decreasing
solution, tending to zero. This is puzzling for a method that claims to regulate a
changing target tracking. That is, because if the controller is asked to perform a
manoeuvre at one time, and later is asked the same manoeuvre at a later time,
the response would not be the same because the value of k would have decreased
in the mean time. Thus, doubts are seeded on up to what point this technique
is an adaptive controller, which does not truly “adapt” to the dynamic attitude
situation.

It was also observed during simulations that k tended quickly to zero up to
machine precision. That is a problem because looking again at equation (2.18),
it has a singularity at k = 0. However, in equation (2.18), χ is located at the
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numerator, and looking at equation (2.19) all terms of Ξ are multiplied by k2.
One of these can be cancelled with the k in the denominator of (2.18). Empiric
evidence shows that this change does not affect the technique’s implementation.

2.3.1 Replication of results for 2014 Danyal Bustan et al.

In the source [17], the technique is tested onto a spacecraft with inertia matrix

I =

20 0 0.9
0 17 0

0.9 0 15

 kg m2

a perturbation model

d = (|w|2 + 0.05)[sin0.8t, cos0.5t, cos0.3t]T N ·m

and a desired attitude to track

Qd =
1

2


[0, cos0.15t,−

√
3, sin0.15t]T t < 50

[sin0.15t, 0, cos0.15t,−
√

3]T 50 ≤ t < 100

[−
√

3, sin0.15t, 0, cos0.15t]T 100 ≤ t < 150

[cos0.15t,−
√

3, sin0.15t, 0]T 150 ≤ t < 200

The controller parameters used are reported as umax = 5, γ = 0.002, δ = 0.02,
γmin = 0.1, and γmax = 0.1. Strangely, [17] reports a value for parameter used
during the mathematical derivation of the method as JM = 20.1571, although this
parameter is later never used in the actual implementation of the technique.

When failures are applied, they are set to a loss of effectiveness for the actuators
given by:

ei =


1 if fi > 1

0.1 if fi < 1

fi otherwise

where
fi = 0.3 + 0.1(sin0.5t+ iπ/3 + rand(·), i = 1, 2, 3

Initial attitude is given by the quaternion Q(0) = [0.96,−0.1, 0.15,−0.2]T , ini-
tial angular velocity is zero w(0) = [0, 0, 0]T , and the initial adaptive parameter
value is k(0) = 2.5.

Results in [17] are reported for three values of the transient parameter, ρ = 15,
ρ = 1, and ρ = 0, and this is what is going to be imitated here, imitating the stile
of the figures in the source as much as possible.

Figure 2.5a shows the components of the attitude error quaternion obtained in
[17]. They can be compared with the ones obtained by the implemented simulation
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shown in Figure 2.6. Results are identical for the case with ρ = 0, and substantial
overshooting can be observed on the manoeuvres.

However, a difference starts to be observed for the case of ρ = 1, where the
response in the simulation is more affected by the increase in ρ than what is
reported in the source. Figure 2.5a still has small overshoot, in contrast to Figure
2.6b where overshoot is all but entirely eliminated, and response is slower to
converge.

This phenomenon continues and amplifies in Figure 2.6d compared to the
bottom plot of Figure 2.5a. Note that in Figure 2.6d, qe0 does not reach unity.
The behaviour is like for some reason the implemented simulation was the same
than the source but with the parameter ρ multiplied by a factor. Implementation
has been reviewed and no failure has been spotted that could cause this effect.

(a) Attitude errors Qe, for ρ = 0 (top),
ρ = 1 (middle), and ρ = 15 (bottom)

(b) Angular velocity errors we in rad/s, for
ρ = 0 (top), ρ = 1 (middle), and ρ = 15
(bottom)

Figure 2.5: Source results from 2014 Danyal Bustan et al.

Plottings of the angular velocity errors we in Figures 2.5b and 2.7 reinforce
this analysis, with results for ρ = 0 being equal. The shattering effect on the
controller that [17] mentions occurring for high values of ρ, starts happening in
the implemented simulation for ρ = 15, as can be seen in Figure 2.7d.
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(c) ρ = 5
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(d) ρ = 15

Figure 2.6: Attitude errors Qe from implemented simulation
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Figure 2.7: Angular velocity errors we from replicated simulation
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2.4 2008 Wenchuan Cai et al.

To begin with, [23] defines a sliding mode-type variable s that in the source is
called a “filtered error variable”

s = we + βqe (2.21)

where β is a positive free design scalar parameter. It is also defined the same
operator Φ than what was called ψ in section 2.2.

Φ = ‖w‖2 + ‖w‖+ 1 (2.22)

As mentioned in Chapter 1, the method in [23] is developed in three steps of
increasing complexity. The first step is for unmodelled actuators, its output is
the three-axis control torque τ , and the proposed controller is the one in equation
(2.23)

τ = −[k0 + κ(t)]s, κ(t) =
b̂Φ

||s||+ ε

˙̂
b = −σ1b̂+ σ2

||s||2Φ
||s||+ ε

, ε =
µ

1 + Φ

(2.23)

where k0 > 0, µ > 0, σ1 > 0 and σ2 > 0 are freely chosen design parameters.
The second iteration of the controller accounts for the modelling of actuators

with a column-wise distribution matrix D of dimensions 3 × n, where n is the
number of actuators. F is the nx1 vector that denotes each individual actuator’s
required torque. In this case, the control force u would be equal to the multipli-
cation of D and F, u = DF, and the only change to the controller would be that
instead of τ , the output would be F as in equation (2.24).

F = −[k0 + κ(t)]DT s (2.24)

The final version of the controller, which is the one implemented in this Thesis,
takes explicitly into account the limitation on maximum actuator control torque.
This is made defining Fmax = min{F 1

max, F
2
max, ..., F

n
max}, where F i

max is the scalar
maximum torque generated by the i-th actuator. The controller is then modified
as in equation (2.25)

F = −Fmax
DT

||D||
sat([k0 + κ(t)]s) (2.25)

with

sat([k0 + κ(t)]s) =

{
s
||s|| if ||s|| ≥ Fmax/(k0 + κ)
[k0+κ(t)]s
Fmax

if ||s|| ≤ Fmax/(k0 + κ)
(2.26)

and it is remembered that || · || denotes the euclidean norm of the matrix.
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2.4.1 Replication of results for 2008 Wenchuan Cai et al.

The technique is tested in [23] on a spacecraft with six actuators with correspond-
ing distribution matrix

D =

0.8 −0.8 0 0 0 0
0 0 0.7 −0.7 0 0
0 0 0 0 0.7 0.7


and an inertia matrix taken up by two parts I = I0 + Iu(t), where I0 is a nominal
constant part given by

I0 =

20 0 0.9
0 17 0

0.9 0 15


and Iu is an unknown time-varying part that is reported in the source by Figure
2.8. Because this time-varying part is not quantitatively reported, only with

Figure 2.8: Unknown time-varying part of inertia matrix, Iu, in 2008 Wenchuan
Cai et al.

Figure 2.8, it cannot be replicated in the implemented simulation, so an equivalent
inertia matrix

I =

26 0 0.9
0 22 0

0.9 0 19


has been used instead.

The desired attitude to track is given by

qd(t) =

[√
3

3
sin−0.1t,

√
6

6
sin−0.1t,

1

2
sin−0.1t

]T
and the disturbance torque is given by

d = (||w||2 + 0.5)[sin0.8t, cos0.5t, cos0.3t]T
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Actuator parameters used in [23] are reported as k0 = 20, σ2 = 100, σ1 = 0.01, β =
2, µ = 0.1, and Fmax = 5. Initial attitude is given by q(0) = [−0.1, 0.15,−0.2]T ,
and the initial value of the adaptive parameter b̂(0) = 0. The actuator failures
applied are a loss of effectiveness of the form

δi = 0.7 + 0.15rand(·) + 0.1sin0.5t+ iπ/3. (i = 1, ..., 6)

with the function rand(·) updating time being 2.4 seconds. Additionally, exactly
as it happens in the source, at t = 8 the thruster 3 effectiveness is set permanently
to 0.2, and thrusters 4 and 5 are shut down completely at times t = 10 and t = 12
respectively.

The results obtained in [23] are presented in Figure 2.9, while the results from
the replication of the technique are presented, trying to imitate as much as possible
the original style, in Figure 2.10. It can be seen from the comparisons of Figure
2.9a with Figures 2.10a and 2.10b that the results are absolutely analogous.

However, the behaviour of the adaptive parameter β̂ is not, as reflected by
Figures 2.9b and 2.10c. In the source it reaches values of 130 and then decreases
very slowly, while in the replication it does not quite reach 80 and then decreases
much faster. Looking at the adaptive update law in equation (2.23), it can be
deduced why. The forcing term is directly proportional to the variable s, which is
a filtered combination of the errors. When the spacecraft approaches the target
and the errors become close to zero, s also becomes close to zero, and the forcing
term disappears. This leaves only the exponentially decreasing term to affect β̂.
It is observed for this technique that after a longer simulation time the value of β̂
reaches an equilibrium where it oscillates (around 15 for this simulation set up),
and the steady state errors remain bounded by qei < 0.01 for i = 1, 2, 3.

(a) Angular velocity error and attitude
tracking error

(b) Adaptive parameter β̂

Figure 2.9: Source results from 2008 Wenchuan Cai et al.
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(a) Attitude tracking error
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(b) Angular velocity error
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(c) Adaptive parameter β̂

Figure 2.10: Simulation results from the implemented technique
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2.5 2011 Qinglei Hu et al.

The main instrument of the technique develop in [22] is the addition of an integral
term to the classical sliding surface variable, shown in (2.27). Note that in this
case the sliding surface is created using the unaltered attitude quaternion and its
derivative, instead of the error equivalents, because the source only addresses the
pointing problem to align with the inertial frame.

S = q̇ + KPq + KI

∫ t

0

qdτ (2.27)

A new variable q̇r is introduced as

q̇r = q̇− S = −KPq−KI

∫ t

0

qdτ (2.28)

Then, the following definitions are made; P ≡ Ξ−1 with Ξ ≡ q× + q0I3×3. The
constants a0 and a1 are introduced as unknowns that define the upper bounds of
the inertia matrix and the cosines rotation matrix respectively. See the source
[22] for more detail. Similarly, a2 and a3 are unknown constants that bound the
disturbance torque. Finally, D in this formulation is the 3×n actuator distribution
matrix, with n being the number of actuators present, and Ff being the nx1 vector
denoting the values of actuation at which the actuators get stuck when a fault of
this type occurs. For instance, in the case of outage-only in the ith actuator, Ffi
would be equal to zero.

With this concepts, another four additional variables are introduced as

Y1 = [ ||q̈r − λS|| , ||q̇r||||q̇|| ]T

Θ1 = [ a0 , a1]
T

}
(2.29)

Y2 = ||P||
2

[ 1 + ||D|| , ||q̇||2 ]T

Θ1 = [ a2 + ||Ff || , a3]
T

}
(2.30)

where λ > 0 is a constant chosen to specify the speed of convergence of the system.
The controller proposed is in equation (2.31)

u = −2DTΞ(KS + α̂1||Y1||sgn(S) + α̂2||Y2||sgn(S)) (2.31)

with adaptation laws in equations (2.32) and (2.33)

˙̂α1 = −β2
1 α̂1 + γ1||Y1||||S||

β̇1 = −Kβ1β1

}
(2.32)

˙̂α2 = −β2
2 α̂2 + γ2||Y2|||S||

β̇2 = −Kβ2β2

}
(2.33)
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where K is a positive definite matrix chosen by the designer, γi and Kβi (i = 1, 2)
are arbitrary positive constants, and α̂i is the parameter estimation of a value αi
which satisfies αi ≥ ||Θi|| for i = 1, 2. The sign function satisfies

sgn(υ) =


1 if υ > ε

υ if |υ| ≤ ε

−1 if υ < ε

(2.34)

where ε is a small constant chosen to avoid the chattering effect arising from the
imperfect implementation of a typical sign function.

Immediately, looking at the adaptation laws in equations (2.32) and (2.33), it
is shocking that the βi parameters have no forcing term inside their equations. It
is similar to what happened for equation (2.18), however in this case the effect
is different, and at first glance it could be argued that greater. The parameters
βi will, no matter their starting value, fade to zero, and when that happens, the
parameters αi lose their decreasing term that counteracts the forcing one!

It seems that the source trusts that an initial transient would make a perfect
estimation of the values αi using α̂i. But careful examination would suggest that
this is not possible. The presence of the absolute value operators guarantees the
second term on the adaptation equations for ˙̂αi will always be positive. Thus,
α̂i will forever increase, making the whole scheme unstable. On top of that, the
source [22] makes a crucial mistake for the repeatability of their results that has
not been noticed until now. It does not report the initial values of these adaptation
parameters. The consequences of this lack of reporting will be seen soon.

2.5.1 Replication of results for 2011 Qinglei Hu et al.

To show the capabilities of the technique, in [22] it has been applied to a spacecraft
with inertia matrix

I0 =

1543.9 −2.3 −2.86
−2.3 471.6 −35
−2.86 −35 1713.3


disturbance of the form

d = [3cos0.01t+ 1, 5sin0.02t+ 3cos0.025t+ 2, 3sin0.01t+ 3]× 10−3 N ·m

maximum actuator force of 1 Newton, and distribution matrix

D =


−d −c c
−d c c
−d c −c
−d −c −c

×

−cosϑ ρsinϑ ρsinϑ
−cosϑ −ρsinϑ ρsinϑ
−cosϑ −ρsinϑ −ρsinϑ
−cosϑ ρsinϑ −ρsinϑ
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where ρ = 1/
√

2, ϑ = 5◦, d = 0.5, c = 0.2, and the operator × denotes the
vectorial product of the ith row of the first column with the same ith row of the
second column. This is a very complex distribution matrix, where it has been
deduced that the result of the vectorial product of the ith rows shall be placed
on the ith column of matrix D (remember that D is of dimensions 3 × n, so in
this case 3× 4). However, as this was not completely clear, other arrangements of
constructing matrix D with the sources data have been tried, like placing the ith
result in rows instead of columns, and also a substitution with the simple identity
matrix I3×3.

Controller parameters are reported are K = 1000I3×3, KP = [10]3×3, KI =
[10]3×3, γ1 = γ2 = 10, Kβ1 = Kβ2 = 50, ε = 0.001.

Initial attitude is taken as Q(0) = [0.173648,−0.263201, 0.786030,−0.526402]
and initial angular velocity is zero. Crucially, the initial adaptive parameter val-
ues are not reported, nor is λ, and although in Fig.3 of the source [22] it can be
observed that α̂1(0) = α̂2(0) = 0, the values for β1(0), β2(0) and λ are completely
unknowable. Thus, a wide range of combinations have been tried for them, vary-
ing β1(0) and β2(0) independently from 0.01 to 104, and λ from 0.001 to 100.

Despite all of these different combinations, no case has been found that results
in a satisfactory solution for this technique. Firstly, it was tried all the combi-
nations of β1(0), β2(0) and λ that have been mentioned before. Later, it was
changed the matrix D to the simple 3 × 3 identity and to the other matrices D
mentioned, fearing that an error in the implementation was the cause of the bad
results. After that, a thorough review of the implementation was attempted, try-
ing to identify any possible mistakes. Lastly, when that did not have any result,
extensive changes on the technique were attempted, trying to spot any mistake
the source may have done when reporting the technique.

None of these steps gave positive results. The simulations of this method
always show the same behaviour. As predicted in section 2.5, the parameters
α̂i increase indefinitely with nothing opposing their growth, as it can be seen in
Figure 2.11a. The system becomes unstable and starts to oscillate uncontrollably
in a short period of time, as shown in 2.11b. This happens in every case, despite
the numerous attempts to find a successful solution.

It is a sad state of affairs that no satisfactory implementation of this technique
was possible, because the method claimed to have very interesting results for the
actuator stuck case, controlling even at full stuck actuation. In fact, this was the
main reason why this technique was selected for implementation.



2.6 Chapter conclusions 39

0 50 100 150 200

Time [s]

0

1

2

3

4
109

(a) α̂1

0 20 40 60 80 100 120 140 160 180 200

Time [s]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Q
e

q
e

0

q
e

1

q
e

2

q
e

3

(b) Attitude quaternion Q

Figure 2.11: Results of simulations with 2011 Qinglei Hu et al.

2.6 Chapter conclusions

The results of replicating the techniques in the sources selected have been pre-
sented, and the main conclusions that can be drawn from them are:

• Three out of the four techniques have been implemented with satisfactory
outcome, those been 2018 Qiang Shen et al. [18], 2014 Danyal Bustan et al.
[17] and 2008 Wenchuan Cai et al. [23].

• The replication of 2018 Qiang Shen et al. [18] has produced the exact same
results as the ones presented by the source in every case for all variables.

• For 2014 Danyal Bustan et al., the case of ρ = 0 produces the exact same
results as reported. For cases of ρ > 0 the overall behaviour is the same
but the effect of ρ are bigger in the replication than reported in the source,
so effects appearing with large values on the source appeared with smaller
values in the implementation. The technique worked despite lack of forcing
term in the adaptation law.

• In the case of 2008 Wenchuan Cai et al. [23], the reports of attitude and
angular velocity on the source are exactly the same as the ones obtained with
its replication. However, the adaptive parameter β̂ behaves differently, not
reaching such high values and decreasing faster, although this discrepancy
seems to not have any effect on the rest of the results. An explanation for
this behaviour is proposed in section 2.4.

• Sadly for 2011 Qinglei Hu et al. [22] no successful implementation has been
achieved. Multiple reviews, combinations of set up parameters, and modifi-
cations where made with no positive results. In all simulations the dynamics
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become unstable and an uncontrolled oscillation develops in a short period of
time. A hypothesis on why this happens, based on the technique’s equations
structure, is presented in section 2.5. It is related to the lack of counter-
balance term in the adaptation laws that makes unavoidable an indefinite
growth of the adaptive parameters.

In the next chapter, the three techniques that produced positive results are
going to be tested onto the first baseline of the project, the LUMIO CubeSat.



Chapter 3

First baseline: the LUMIO
CubeSat

This chapter is dedicated to testing the three adaptive methods selected and suc-
cessfully implemented in Chapter 2 into the LUMIO CubeSat mission baseline.
Three scenarios of the spacecraft’s life-cycle have been carried out: slew manoeu-
vre, detumbling and long-term pointing. The chapter begins by explaining the
baseline, and then has one section per scenario where each method, together with
the original controller from the source, are tested. Finally, the discoveries obtained
are summarized in the conclusions section.

3.1 Outline of the baseline

The LUMIO (Lunar Meteoroid Impact Observer) mission is a 12U CubeSat put
forward by a consortium that includes the Politecnico di Milano, and is one of
the winners of the ESA’s General Studies Program SysNova contest to design
CubeSat missions to the Moon. Its aim is to orbit the Moon and observe the
meteoroid impacts landing on its dark side.

Provided by the Thesis mentor, the document Phase A System Design Report
[1] details the design of the ACS subsystem and its requirements. For purpose
of confidentiality, only the details required for the implementation of the baseline
are going to be reported here, not mentioning for instance the sensor and actuator
brands chosen, or any other data that is not strictly necessary.

To begin with, the spacecraft’s inertia matrix is reported for the packed con-
figuration in the detumbling phase as

Ipack =

0.1701 0 0
0 0.2200 0
0 0 0.2310

 kg m2 (3.1)
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and for the deployed configuration in the rest of the mission phases as

Idepl =

0.4029 0 0
0 0.2204 0
0 0 0.4516

 kg m2 (3.2)

The spacecraft uses as actuators four RWs and a Reaction Control System
(RCS), comprised of thrusters, to desaturate the RWs. The only relevant data of
the actuators that is needed to be known are the maximum actuation torque of
the RWs, ḣrmax

ḣrmax = 2× 10−3 [N m] (3.3)

the RWs maximum angular momentum storage hrmax

hrmax = 30× 10−3 [N m s] (3.4)

and the RWs distribution matrix R

R =

−1/
√

3 1/
√

3 1/
√

3 −1/
√

3

−1/
√

3 −1/
√

3 1/
√

3 1/
√

3

1/
√

3 1/
√

3 1/
√

3 1/
√

3

 (3.5)

As of sensors, the spacecraft counts with six fine Sun sensors, one Inertial
Measurement Unit (IMU), and two star trackers. Because the start trackers are
the most precise sensors and no information is given on how the data measurement
fusion is carried out, it is going to be assumed that the measurements are obtained
only by them. In any case, this would be an upper bound to the errors, because
other sensors are being discarded that could improve precision.

The individual sensor accuracy ϑacc is reported as 9 arcseconds for the yaw
axis, that corresponds to the Y axis, and 51arcseconds for the roll and pitch axis,
that correspond to the X and Z axis respectively. Taking into account that there
are two of them, the overall measurement accuracy is given by

ϑacc = [51, 9, 51]/
√

2 arcseconds (3.6)

The data on angular velocity is surely obtained by a fusion of the IMU measure-
ments and a derivation of the position measurements, but no reference to this
is mentioned in [1]. As no information is provided, it is assumed that angular
velocity measurements are only provided by the IMU, which offers an accuracy
of 13 arcseconds/s on all three axis. The form of implementing these sensors has
been simple. At each time step, with an update rate of 0.05 seconds, a random
value is selected inside the uncertainty region using a random number generator
with equal probability for the entire number range.

The relevant requirements imposed on the ACS for the simulations imple-
mented are:
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1) Detumbling maximum starting angular velocity value wi,max(0) = 10 deg/s.

2) Detumbling maximum final angular velocity value wi,max(tend) = 0.5 deg/s.

3) Steady state maximum absolute attitude tracking error of θi,max = 0.18 deg
half cone for the science phase.

4) Steady state maximum angular velocity error of wi,max = 64.9 arcsec/s for
the science phase.

5) Maximum angular velocity during slew manoeuvres of wi,max = 0.5 deg/s.

The failures that the system is going to be tested against have been selected
to be, all of them, complete failures of one or more RWs, from the beginning of
the simulation.

Three scenarios have been selected to test the techniques on during the life-
cycle of the spacecraft: a slew manoeuvre, the detumbling phase, and the long-
term pointing during the scientific phase. Besides the selected techniques, the ACS
design in [1] proposes the following control laws for each of the three mentioned
scenarios.

For the detumbling phase, the ideal control torque is computed as in equation
(3.7)

uid = −0.01 Ipackw (3.7)

and the mapping from the desired control torque to the real RWs angular mo-
mentum derivative ḣr is done as shown in equation (3.9)

ḣr = −R⊥(uid + w ×Rhr) (3.8)

where the × operator denotes the vectorial product and R⊥ is the distribution
matrix pseudoinverse.

R⊥ = RT (RRT )−1 (3.9)

It is worth mentioning now, that for all the methods implemented that produce
a virtual three-axis control torque, namely [18] and [17], the mapping onto the
actuators has been done in the way of equations (3.8) and (3.9).

The control law during the science phase, that from now on is going to be
called Science Control Mode (SCM), is given by equation (3.10)

uid = −10−2 Ipackwe − 10−5A∨e + w × Iw + I(Aewd −w×e Aewd) (3.10)

where ∨ is the operator that does the inverse mapping than × in equation (2.5),
and Ae is the attitude cosines matrix equivalent to the quaternion error, see C in
equation (2.8).
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The control law during the desaturation phases, from now on called Desatu-
ration Control Mode (DCM), is very similar, only changing the coefficients to the
ones shown in equation (3.11)

uid = −Ipackwe − 10−2A∧e + w × Iw + I(Aewd −w×e Aewd) (3.11)

As for disturbances, the original source [1] reports the external disturbance
torque affecting the spacecraft in Figure 3.1, which is completely a result of the
Solar Radiation Pressure (SRP), as no other disturbances are considered in the
deep-space orbit of the mission.

Figure 3.1: External disturbance torque acting on the CubeSat, from [1]

As it can be seen, variations on disturbance occur in the time frame of days.
It would have been interesting to model the actual SRP torque given the attitude
of the spacecraft, as the source [1] does provide the surfaces areas, positions and
normals, which is all that is needed by a SRP model. However, no information is
given on the orbit, so the Sun’s direction cannot be computed. Thus, what has
been done instead is implement the following disturbance model:

d = 10−8 ×

 0.8 + 0.7sin 2πt
3·86400

−1.9− 1.9cos 2πt
3·86400

−sin 2πt
20·86400

 N m (3.12)

The slew and detumbling manoeuvres take minutes at most, instead of days.
This means for those scenarios the disturbance will essentially be constant d =
[0.8, −0.38, 0] × 10−8 Nm, which can be considered a worst-case scenario value
from the one presented in Figure 3.1. Anyway, it has been observed that for
the transient behaviour, such a small disturbance of order 10−8 is completely
negligible, only really affecting the steady state of the system.
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3.2 First scenario: Slew manoeuvre

For all controllers, the slew manoeuvre has been selected to be from an initial
attitude represented by

q(0) = [0.4, −0.3, −0.5]T (3.13)

with the target attitude being q(0) = [0, 0, 0]T . The target attitude has been
selected as not time-varying because the manoeuvres take minutes, while a full
orbit of the spacecraft around the Moon takes seven days, so the orbit angular
rate is considered negligible.

3.2.1 Original controller

As it is unclear whether or not the slew manoeuvre would be performed using
SCM or DCM, both versions of the control law will be tested in this subsection.

All the numerical results of of the subsection have been summarized in table
3.1. There, it is reported the time it takes for the simulation to enter the attitude
error requirement in the fourth column, the total sum of control moment

∑
ḣri

used by all RWs in the fifth column, the sum of the RWs angular momentum at
the end of the simulation

∑
|hri | in the sixth column, and the maximum value

reached by the angular velocity |wi,max| during the manoeuvre in the last and
seventh column. The value of

∑
|hri | is important because it is the angular mo-

mentum to desaturate after the manoeuvre, and the wheels have to be desaturated
using limited thruster propellant. Thus, it is convenient to have control laws that
balance out the wheels automatically, without needing another layer of control
logic to do it.

When there are errors, the values depend on which RW presents error or errors,
so a range is given for the lower and higher values obtained from all combinations.

No failures. The results with SCM are shown in Figure 3.2. The response is
very slow, taking over 45 minutes to complete and with high overshoot. On top
of that, the disturbance makes the attitude stay just outside of the requirement
in the steady state. Angular velocity stays very far away from the limits.

The results with DCM are shown in Figure 3.3. Response is much more ag-
gressive, taking 133 seconds, but angular velocity limits are wildly exceeded.

1 RW failure. The effect of having one failure is that the controllers become
less precise. For SCM, shown in Figure 3.4a, the response is even slower than
before, taking over three hours, and now the attitude oscillates sensibly outside
the requirement region. For DCM, shown in Figure 3.5a, the response is degraded
and now shows considerable overshooting, when before it did not. The angular
velocity is almost unaffected and is still exceedingly large.
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(a) Attitude errors

0 500 1000 1500 2000 2500 3000 3500

Time [s]

-0.01

-0.008

-0.006

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

q
e

q
e

1

q
e

2

q
e

3

(b) Attitude errors (zoomed)
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(c) Angular velocity errors
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Figure 3.2: Results for slew manoeuvre with no failures: SCM original controller
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(a) Attitude errors
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(b) Attitude errors (zoomed)
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(c) Angular velocity errors
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(d) RWs angular momentum

Figure 3.3: Results for slew manoeuvre with no failures: DCM original controller
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2 RWs failures. None of the controllers achieve the objective, as was expected
because now the spacecraft is under-actuated. For SCM the attitude drifts un-
controllably, as seen in Figure 3.4b, while for DCM at least the attitude stabilizes,
as seen in Figure 3.5b.
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(a) Attitude errors (zoomed) with 1 RW
failure
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(b) Attitude errors with 2 RWs failures

Figure 3.4: Results for slew manoeuvre with failures: SCM original controller
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(a) Attitude errors (zoomed) with 1 RW
failure
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(b) Attitude errors with 2 RWs failures

Figure 3.5: Results for slew manoeuvre with failures: DCM original controller

3.2.2 2018 Qiang Shen et al.

The results of the subsection are summarized in table 3.2, where instead of the
mode like in table 3.1, now it is reported the value of the parameter k. This is
done this way because due to the LUMIO baseline having a much smaller inertia
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Mode
Fail-
ures

Success
Time to
target [s]

Total
control
used

[Nms]
×10−2

Final∑
|hri |

[Nms]
×10−3

|wi,max|
[rad/s]
×10−2

SCM
0 Almost 2850 0.6 0.22 0.28

1 Almost 10000+ 0.7 to 1.1
0.64 to

0.77
0.20 to

0.22

2
No,

unstable
N/A Increasing N/A N/A

DCM
0 Yes 133 7 1.1 4.2

1 Yes 120 to 132 6.7 to 10.9
0.01 to

0.02
3.5 to 4.3

2
No,

stable
N/A 0.3 to 6.3

0.01 to
0.03

0.2 to 4.2

Table 3.1: Results summary for slew manoeuvre with original controller

matrix than the used in the original, it was though that the controller had to be
modified to make it less aggressive. Later, it was shown the difference of changing
k inside a wide range is pitifully small. The rest of the parameters remain the
same except for we,max, which is changed to 0.5 deg/s to fit the requirements.

No failures. As seen in Figure 3.6, the response for k = 1 is as fast as with the
more aggressive DCM controller with two crucial differences: now no overshoot
happens whatsoever, and the angular velocity limitation in cleanly respected. The
same response is observed for k = 100. For k = 0 the response is too undamped
and it oscillates greatly.

1 RW failure. The effect of having a failure with k = 1 is that, at the beginning,
appears a peak in velocity that in some cases makes it go outside the limit for a
very small time. See in we2 in Figure 3.7. Also, extremely small overshoots appear,
see again 3.7. However, for k = 100 this disadvantages disappear completely.

2 RWs failures. The behaviour with two failures is the same for k = 1 and
k = 100. The controller tries to approach the desired attitude as much as it can
with the under-actuated spacecraft, as can be seen in Figure 3.8. The angular
velocity may get outside of the boundaries, but at least the response remains
stable and the angular velocity violation is not very bad.
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(a) Attitude errors
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(b) Attitude errors (zoomed)
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(c) Angular velocity errors
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(d) RWs angular momentum

Figure 3.6: Results for slew manoeuvre with no failures: 2018 Qiang Shen et al.
controller (k = 1)
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(a) Attitude errors (zoomed)
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(b) Angular velocity errors

Figure 3.7: Results for slew manoeuvre with 1 failure: 2018 Qiang Shen et al.
controller (k = 1)
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(a) Attitude errors
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(b) Angular velocity errors

Figure 3.8: Results for slew manoeuvre with 2 failures: 2018 Qiang Shen et al.
controller (k = 100)

Failures k Success
Time to
target [s]

Total
control
used

[Nms]
×10−2

Final∑
|hri |

[Nms]
×10−3

|wi,max|
[rad/s]
×10−2

0
0 Yes 380 3.9 3.1 0.94
1 Yes 130 2 3.1 0.80

100 Yes 132 2 3.1 0.80

1
1 Yes 130 to 131 2.14 to 3.1

0.01 to
0.02

0.86 to 0.9

100 Yes 132 to 133 2.1 to 3
0.01 to

0.02
0.80

2
1

No,
stable

N/A 0.6 to 1.81
0.01 to

0.07
0.80 to

1.08

100
No,

stable
N/A 0.6 to 1.8

0.01 to
0.067

0.8 to 1.08

Table 3.2: Results summary for slew manoeuvre with 2018 Qiang Shen et al.
controller
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3.2.3 2014 Danyal Bustan et al.

Now in the summary of table 3.3 it is reported the value of the parameter ρ. The
rest of the parameters remain the same except for the value of umax, which is
changed to 5× 10−3.

No failures. The parameter ρ plays a trade-off effect between respecting the
limitation on angular velocity and the time it takes to complete the manoeuvre.
As is shown in Figure 3.9, with ρ = 10 it is exactly respected the angular velocity
limit. Lower values of ρ make the response faster but with higher angular velocities
and higher control torque used, as summarized in table 3.3. With ρ = 1 the
response takes only 53 seconds but a slight overshooting starts to appear. With
ρ = 0 the improvement on time is reversed due to very bad oscillations in the
response.
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(a) Attitude errors (ρ = 10)
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(b) Angular velocity errors (ρ = 10)
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(c) Attitude errors (ρ = 1)
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(d) Angular velocity errors (ρ = 1)

Figure 3.9: Results for slew manoeuvre with no failures: 2014 Danyal Bustan et
al. controller
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1 RW failure. The response to one failure for ρ = 10 is almost unaffected, as it
is represented in Figure 3.10, only with a slight increase in the control used. For
ρ = 1 however the failure causes oscillations, which in turn causes a significant
increase in the convergence time.
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(a) Attitude errors (ρ = 10)
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(b) Angular velocity errors (ρ = 10)

Figure 3.10: Results for slew manoeuvre with 1 failure: 2014 Danyal Bustan et
al. controller

2 RWs failures. The response for two failures is very similar to that of the
method 2018 Qiang Shen et al.: the controller tries to minimize the error all that
it can with the under-actuated control, and the attitude stabilizes after a short
time.

3.2.4 2008 Wenchuan Cai et al.

For this method there has been discovered a coupling in the effects of the param-
eters β, Fmax, and the magnitude of the inertia matrix. These three aspects have
to be balanced very carefully because when the controller enters the “saturation”
mode, the response starts having extreme overshoot and oscillations. Check table
3.4 for more details on the effect that changing β and Fmax has on the response.
The remaining parameters are found to have no significant effect and remain un-
changed.

No failure. As a general rule, it is wanted Fmax to be as large as possible,
so values around 2.1 × 10−3 are the best, because if larger it would exceed the
actuation of the RWs. The inertia matrix I is imposed, so the only parameter left
to vary is β. When increasing it beyond β = 0.25, the controller enters saturation
and it oscillates wildly, as shown in Figure 3.11 with the case of β = 0.5. The
β = 0.25 value seems to be a good compromise to achieve low manoeuvre time,
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Failures ρ Success
Time to
target [s]

Total
control
used

[Nms]
×10−2

Final∑
|hri|

[Nms]
×10−3

|wi,max|
[rad/s]
×10−2

0

0 Yes 151 52.5 8.3 10.43
1 Yes 53 12.96 2.7 5.65
5 Yes 142 3.06 0.59 1.62
10 Yes 281 1.65 0.30 0.86

1
1 Yes 76 to 128

10.62 to
19.48

0.02 to
0.03

4.21 to
5.79

10 Yes 279 to 280
1.57 to

2.65
0.02 to

0.03
0.79 to

0.87

2
1

No,
stable

N/A
6.00 to
11.30

0.02 to
0.09

3.33 to
6.73

10
No,

stable
N/A

0.49 to
1.55

0.02 to
0.13

0.43 to
1.31

Table 3.3: Results summary for slew manoeuvre with 2014 Danyal Bustan et al.
controller

but it exceeds the angular velocity limit, as seen in Figure 3.11. Reducing β
further makes the angular velocity lower and the response take more time, as
shown in Figure 3.11 for the case of β = 0.1. Not shown in the figures is the value
of β = 0.018, that makes the angular velocity exactly respect the boundaries, but
for a exceedingly long time of 656 seconds.

1 RW failure. A failure affects more this method than the other two adaptive
ones. The result is still reaching the objective, but with an increase in time taken,
control torque used, and final RWs angular momentum left to desaturate. Now
even with Fmax = 2.1× 10−3 and β = 0.25, there is significant overshoot, as seen
in Figure 3.12.

2 RW failures. With two failures the result is an increase in oscillations and
time taken. Of course now it does not reach the objective, as expected, but it
remains stable, as seen in Figure 3.13.
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(a) Attitude errors (β = 0.1)
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(b) Angular velocity errors (β = 0.1)
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(c) Attitude errors (β = 0.25)
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(d) Angular velocity errors (β = 0.25)
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(e) Attitude errors (β = 0.5)
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(f) Angular velocity errors (β = 0.5)

Figure 3.11: Results for slew manoeuvre with no failures: 2008 Wenchuan Cai et
al. controller (all with Fmax = 2.1× 10−3)
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(a) Attitude errors (β = 0.25)
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(b) Angular velocity errors (β = 0.25)

Figure 3.12: Results for slew manoeuvre with 1 failure: 2008 Wenchuan Cai et al.
controller (Fmax = 2.1× 10−3)
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(a) Attitude errors (β = 0.25)
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(b) Angular velocity errors (β = 0.25)

Figure 3.13: Results for slew manoeuvre with 2 failures: 2008 Wenchuan Cai et
al. controller (Fmax = 2.1× 10−3)
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Failures
Fmax
×10−3

β Success

Time
to

target
[s]

Total
control
used

[Nms]
×10−2

Final∑
|hri |

[Nms]
×10−3

|wi,max|
[rad/s]
×10−2

0

2.1 0.25 Yes 46 10.9 0.01 6.2
2.1 0.5 Yes 76 23.6 0.01 7.8
2.1 0.1 Yes 123 6.7 0.06 4.1
2.1 0.018 Yes 656 1.44 0.06 0.89
5 0.25 Yes 54 13.2 6.10 7.2

0.5 0.25 Yes 159 11.8 0.01 3.8

1 2.1 0.25 Yes
50 to
137

10.4 to
22.1

0.01 to
0.15

4.0 to
6.4

2 2.1 0.25
No,

stable
N/A

11.8 to
17.7

0.02 to
0.07

3.0 to
6.5

Table 3.4: Results summary for slew manoeuvre with 2008 Wenchuan Cai et al.
controller

3.3 Second scenario: Detumbling

For this scenario the objective is to reduce the angular velocity in all axes to
less than the wi,max = 0.5 deg/s given by requirement 2). The primary strategy
for detumbling is to perform it using the RCS of the spacecraft. However it is
also explored the possibility to do it with the RWs, which is what is going to
be replicated in this section. For this scenario the source actually reports results
obtained with the controller. In Figure 3.14 it is shown the angular velocity and
RWs angular momentum that is reported in [1].

The initial angular velocity wi(0) is going to be kept at 10 deg/s in all axis as
it was done in the source reported results and as is indicated by the requirements.
Because there is not any attitude requirements and the objective is w = 03×1, in
the adaptive techniques what has been done is set the attitude error qe = 03×1,
and the angular velocity error is directly equal to the angular velocity, we = w.

3.3.1 Original controller

No failures. Immediately for this baseline, a serious discrepancy has been
found. The results on angular velocity have been replicated exactly, as is shown
in Figure 3.15, which can be seen is the same as in Figure 3.14. However, this
results are ONLY achieved when the total RWs angular momentum capacity is
not limited. Looking again at Figure 3.15, the values of hr,i go outside the limits
of ±0.03N m.

In fact, the result presented by the source is impossible, and this can be proven.
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(a) Angular velocity wi

(b) RWs angular momentum hr,i

Figure 3.14: Results for detumbling with no failures reported by the source [1]
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The disturbance can be neglected for its small magnitude over this short period of
time, so the system becomes isolated. That means the total angular momentum
vector must remain constant measured in an inertial frame, h|I = const. The
results are given in body frame, but what must remain constant in all frames is
the modulus |h| = const. The initial value of this magnitude is |h(0)| = |Iw(0)| =
6.33× 10−2 N m s.

Well, taking the values reported by [1] to be hr(end) = [2.3, −3, 1.3, −1.2]×
10−2, the final value would be |h(end)| = |Rhr(end)| = 1.7 × 10−2. Even mak-
ing all them positive and being generous with the values so the modulus can
grow as much as possible, with hr(end) = [2.5, 3, 1.5, 1.5] × 10−2 the value
reached is 5.12 × 10−2 as an absolute upper boundary. This does not comply
with the principle of conservation of angular momentum. By comparison, with
the values obtained by the replication and shown on Figure 3.15, the results is
|Rhr(end)| = 6.33× 10−2, which is exactly what is expected.

The results when hr,i is limited are very different, and are going to be reported
later. For now and for the sake of consistency, in this and later subsections it is
going to be presented the case when the value of hr,i is not limited. The cases
when hr,i is limited will be presented in subsection 3.3.5.

1 RW failure. In presence of a single failure, the effect is a sudden and complete
loss of control. As shown in Figure 3.16, the spacecraft starts to oscillate with
increasing magnitude.

Failures Success
Time to
target [s]

Total
∑
ḣri

used [Nms]
×10−2

Final
∑
hri

[Nms] ×10−2

0 Yes 340 21 10
1 No, unstable N/A N/A N/A

Table 3.5: Results summary for detumbling with original controller

3.3.2 2018 Qiang Shen et al.

No failures. As summarized in table 3.6, this time changing the controller
has no effect on the results. The response is very fast and satisfactory, with no
overshoot. See Figure 3.17.

1 failure. The response is degraded with overshoot, but the objective is still
reached, with slight increases in time and control used. See Figure 3.17.
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(a) Angular velocity wi
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(b) RWs angular momentum hr,i

Figure 3.15: Results for detumbling with no failures: original controller
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Figure 3.16: Angular velocity for detumbling with 1 failure: original controller
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2 failures. The response is degraded further, with more time and overshoot.
When selecting k = 100 there are cases in which the objective is not reached,
with the control torque increasing over time due to the wheels balancing back and
forth. See Figure 3.17 and table 3.6.
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(a) No failures
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(b) 1 failure
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(c) 2 failures

Figure 3.17: Angular velocity wi results for detumbling: 2018 Qiang Shen et al.
controller

3.3.3 2014 Danyal Bustan et al.

Now the parameter ρ does not have any effect because q̇e, which it is multiplying
to in equation (2.17), is set to zero.

With no failures, the response is very fast and smooth. With 1 RW failure
it is degraded in time taken and control used, and even with 2 RWs failures the
objective is achieved, although in much more time and with significant oscillations.
All of these behaviours can be seen in Figure 3.18 and table 3.7.
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Failures k Success
Time to
target [s]

Total
∑
ḣri

used [Nms]
×10−2

Final
∑
hri

[Nms] ×10−2

0
0.01 Yes 17 12.2 11.1

1 Yes 17 12.5 11.0
100 Yes 17 12.5 11.0

1
0.01 Yes 23 to 39 11.1 to 18.2 8.2 to 18.2

1 Yes 20 to 34 11.4 to 18.0 8.6 to 18.0
100 Yes 20 to 34 11.6 to 17.8 8.6 to 17.7

2
0.01 Yes 40 to 55 14.5 to 18.4 7.2 to 7.8

1 Yes 37 to 55 14.9 to 21 6.3 to 7.7

100
Almost
always

41 to ∞ 17.8 to ∞ 7.3 to 9.2

Table 3.6: Results summary for detumbling with 2018 Qiang Shen et al. controller
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Figure 3.18: Angular velocity wi results for detumbling: 2014 Danyal Bustan et
al. controller
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Failures Success
Time to
target [s]

Total
∑
ḣri

used [Nms]
×10−2

Final
∑
hri

[Nms] ×10−2

0 Yes 42 11.0 10.5
1 Yes 49 to 112 11.5 to 32.9 8.4 to 18.5
2 Yes 71 to 168 13.2 to 37.7 6.5 to 8.8

Table 3.7: Results summary for detumbling with 2014 Danyal Bustan et al. con-
troller

3.3.4 2008 Wenchuan Cai et al.

Similarly here, the parameter β does not have any effect because qe, which it is
multiplying to in equation (2.21), is set to zero. The value of Fmax is left to be
2.1× 10−3.

With no failures this method is fast, although it is not better than [18], and
uses the least control effort. However, it is relatively more affected by failures, in-
creasing considerably the time, control used, and oscillations with 1 RW failure,
and even more with 2 RWs failures. See Figure 3.19 and table 3.8 for details.

Failures Success
Time to
target [s]

Total
∑
ḣri

used [Nms]
×10−2

Final
∑
hri

[Nms] ×10−2

0 Yes 25 9.8 9.3
1 Yes 29 to 95 9.1 to 27.3 7.5 to 18.9
2 Yes 43 to 303 12.8 to 66.2 7.1 to 8.4

Table 3.8: Results summary for detumbling with 2008 Wenchuan Cai et al. con-
troller

3.3.5 Detumbling with limited RWs angular momentum
hr,i

This subsection reports what happens when it is applied a limit in the RWs
angular momentum hr,i, as it was intended from the selection of the component
in the ACS design of [1]. Results are summarized in table 3.9.

No failures. The original controller is not able to achieve the detumbling even
under no failures. As is seen in Figure 3.20, the spacecraft remains rotating indef-
initely. With the other three adaptive methods, detumbling is achieved without
any problems. The only change that had to be done in these controllers has been
to lower k to 0.1 in the 2018 Qiang Shen et al. method.
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Figure 3.19: Angular velocity wi results for detumbling: 2008 Wenchuan Cai et
al. controller
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(b) 2018 Qiang Shen et al. controller
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(c) 2014 Danyal Bustan et al. controller

0 20 40 60 80 100 120 140 160 180 200

Time [s]

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

w
 [

ra
d

/s
]

w
1

w
2

w
3

(d) 2008 Wenchuan Cai et al. controller

Figure 3.20: Angular velocity results for detumbling with limited hr,i and no
failures
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1 RW failure. What happens when there is one or more failures is that there
is not physically enough angular momentum available on the wheels to achieve
detumbling. The most that can be expected is for the methods to reduce the
angular velocity and make it hover around the value zero. As seen in Figure
3.21, the original controller is totally unstable. 2014 Danyal Bustan et al. is also
unstable but with slow changes on angular velocity. Finally, 2018 Qiang Shen et
al. and 2008 Wenchuan Cai et al. are able to confine the angular velocity to a
region close to the zero value.
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(b) 2018 Qiang Shen et al. controller
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(c) 2014 Danyal Bustan et al. controller
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Figure 3.21: Angular velocity results for detumbling with limited hr,i and no
failures
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Failures Method
Suc-
cess

Time to
target [s]

Total
∑
ḣri

used [Nms]
×10−2

Final∑
hri

[Nms]
×10−2

0

Original
No, un-
stable

N/A N/A N/A

2018 Qiang
Shen et al.

Yes 87 20.4 10.9

2014 Danyal
Bustan et al.

Yes 65 12.7 10.9

2008 Wenchuan
Cai et al.

Yes 60 16.7 10.8

Table 3.9: Results summary for detumbling with limited RWs angular momentum
hr,i

3.4 Third scenario: Long-term pointing

For the long term pointing, as it has been said at the beginning of this chapter, the
mission has a time-frame of days. In fact, the longest cycles of science according
to the source [1] are of 15 days. As much as it was wanted to make simulations
with such a long time, the computational power to perform them is not available
to the author of this Thesis, specially if multiple ones with different methods and
scenarios are to be done.

What has been done instead is a compromise in simulation time and the sce-
nario has been computed for a time of 10000 seconds. Now, in the summary tables,
it is reported the total control moment used during the 10000 seconds, and the
RWs angular momentum to desaturate at the end of that period. Also, this time
it is reported the maximum absolute value of the error quaternion reached |qei,max

|.

Because the disturbance torque is the only external influence over the system,
it is known that any control that follows the desired trajectory done only with
the RWs will make the angular velocity of said wheels to follow the integral of the
disturbance. In that sense, there would be no difference over the controllers, only
on the way the total momentum is distributed among the wheels.

The trajectory chosen, as no specific information is available about the orbit,
consists on a circular rotation around the Z axis. At least the orbit semi-axis is
reported as a = 35878 [km], which results in an orbit with an angular rate of
θ̇ = 2.13 [arcseconds/s].
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3.4.1 Original controller

The results show that with no failure the system stays just outside the boundaries
of the requirement. This probably indicates that the controller parameters were
purposefully selected this way, and that the worst-case disturbance imposed is
taking it to its limits.

With 1 RW failure the response is significantly degraded, although stable,
and the errors stay well outside the requirement range, as seen in Figure 3.22.
Sadly, as an effect of the measurement errors added for this scenario, now the
style of the lines in the figures is not distinguishable in most cases.

In the case with 2 RWs failures, which is not shown in the figures, the
response starts drifting slowly but uncontrollably due to the spacecraft’s under-
actuation.
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(b) 1 RW failure

Figure 3.22: Attitude error results qe for long-term pointing: original controller

Failures Success

Maximum
quaternion
error |qei,max

|
×10−3

Total
∑
ḣri

used [Nms]
×10−3

Final
∑
hri

[Nms] ×10−4

0 Almost 2 1.9 6.6
1 Almost 4 to 5.2 1.5 to 1.6 6.6 to 7.8

2
No,

unstable
N/A N/A N/A

Table 3.10: Results summary for long-term pointing with original controller
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3.4.2 2018 Qiang Shen et al.

To avoid using too much control torque in long periods of time, arising from the
measurement errors introduced, the controller in [18] had to be made much less
aggressive than for the slew and detumbling manoeuvres. The best results are
obtained reducing the parameter k to 10−4. Also, the variable controlling the
speed of convergence of the virtual velocity filter, T0 is increased to 0.5.

The results are very satisfactory. As seen in table 3.11 and in Figure 3.23, with
no failures the control torque is less than half that of the original controller, and
the errors stay well within the allowed region.

With 1 RW failure the control used and the attitude errors increase, but still
remain less than with the original controller and inside the acceptable range.

With 2 RWs failures the response is, as expected, the same as with the
original controller, an uncontrolled drift, although less so than with the original.
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(b) 1 RW failure

Figure 3.23: Attitude error results qe for long-term pointing: 2018 Qiang Shen et
al. controller

3.4.3 2014 Danyal Bustan et al.

This time it has been observed that the change of parameter ρ does not have any
effect on the controller. What has been done to tone down the controller aggres-
siveness is changing the maximum control effort to umax = 5×10−5. This value has
been chosen because it still offers a good margin compared to the magnitude of the
disturbance. Note that this value of umax could be reduced even more to reduce
the control effort used, but a compromise has to be achieved with the attitude er-
rors reached. See the results for umax = 5×10−5 and umax = 5×10−7 in table 3.12.
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Failures k Success

Maximum
quaternion
error |qei,max

|
×10−3

Total
∑
ḣri

used [Nms]
×10−3

Final
∑
hri

[Nms] ×10−4

0 10−4 Yes 0.41 0.67 6.6
1 10−4 Yes 0.49 to 0.52 0.74 to 0.91 6.6 to 7.8

2 10−4
No,

unstable
N/A N/A N/A

Table 3.11: Results summary for long-term pointing with 2018 Qiang Shen et al.
controller

With no failures, the controller takes more effort than 2018 Qiang Shen et
al., but still less than the original and with better results in accuracy. Looking at
Figure 3.24, the requirement is respected.

The effect of 1 RW failure, is just a small increase in control effort and
attitude error, still inside the limits. With two errors the response is again a slow
drift in quaternions.
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(b) 1 RW failure

Figure 3.24: Attitude error results qe for long-term pointing: 2014 Danyal Bustan
et al. controller

3.4.4 2008 Wenchuan Cai et al.

The process of adapting the parameters for this method is a bit more cumbersome
than for the others, but it can be done. After a thorough review of the equations
presented in section 2.4, and several trials, the controller has been able to be
made less aggressive by changing the parameters to k0 = 0.001, σ2 = 10, β = 1
and Fmax = 2.1 × 10−5. An even further modification of these parameters could
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Failures ρ
umax
×5

Success

Maximum
quaternion
error |qei,max

|
×10−3

Total
∑
ḣri

used [Nms]
×10−3

Final
∑
hri

[Nms] ×10−4

0
0 10−5 Yes 0.11 1.36 6.6
1 10−5 Yes 0.11 1.32 6.6
0 10−7 Almost 7.6 0.69 6.5

1 0 10−5 Yes 0.14 to 0.20 1.06 to 1.27 6.4 to 7.7

2 0 10−5
No,

unstable
N/A N/A N/A

Table 3.12: Results summary for long-term pointing with 2014 Danyal Bustan et
al. controller

be attempted to reduce the control used, as there is still margin inside the error
tolerance region.

As can be seen in Figure 3.25 and table 3.13, with no failure the controller
takes less effort than the original and has better results, although it is still inferior
to the other two adaptive methods explored.

The effect of 1 RW failure is only a slight increase in the attitude errors,
and the control used is even decreased. As expected, the system cannot handle 2
RWs failures and the quaternions drift uncontrollably.
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(b) 1 RW failure

Figure 3.25: Attitude error results qe for long-term pointing: 2008 Wenchuan Cai
et al. controller



72 First baseline: the LUMIO CubeSat

Failures Success

Maximum
quaternion
error |qei,max

|
×10−3

Total
∑
ḣri

used [Nms]
×10−3

Final
∑
hri

[Nms] ×10−4

0 Yes 0.11 1.7 6.6
1 Yes 0.15 to 0.18 1.4 to 1.7 6.6 to 7.7

2
No,

unstable
N/A N/A N/A

Table 3.13: Results summary for long-term pointing with 2008 Wenchuan Cai et
al. controller

3.5 Chapter conclusions

In this chapter the LUMIO CubeSat baseline described in [1] has been simulated
for three scenarios: slew manoeuvre, detumbling and long-term pointing. Each
scenario has been tested with the three selected adaptive methods and the original
controller proposed. The discoveries made can be summarized in these points:

• For the slew manoeuvre scenario, the original SCM has a very slow
response and stops meeting the pointing error requirements when there is a
failure, while the original DCM is faster and robust to failures, but exceeds
wildly the limitation on angular velocity for the manoeuvre. The adaptive
methods 2014 Danyal Bustan et al. and 2018 Qiang Shen et al. are found
to be robust, faster, take less control, and can be easily modified to comply
with the limit in angular velocity. Particularly, 2018 Qiang Shen et al. is
the one that produces the best results, with the ability of explicitly setting
the maximum value of |wmax| being very useful. On the other hand, 2008
Wenchuan Cai et al. is found to be more difficult to modify and has worst
results, but it is still robust and better than the original DCM.

• For the detumbling scenario, the source results reported in [1] were repli-
cated exactly, but these results are only achieved when not limiting the
angular momentum capacity of the RWs. Moreover, it has been demon-
strated theoretically that the results reported in [1] are impossible, based
on the principle of conservation of angular momentum.

• In the detumbling, when there is no RWs angular momentum capacity
limitation, all three adaptive methods are shown to be much faster, take less
control effort, and be more reliable than the original proposed. They have
fairly similar performance, but again 2018 Qiang Shen et al. is remarkably
consistent and stable, and 2008 Wenchuan Cai et al. has the worst results
of the three. While the original was not robust to any failure, the adaptive
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methods are shown to be robust to one and two failures, only suffering from
minor degradation in performance.

• When detumbling with the RWs angular momentum capacity limited, the
original controller does not manage to detumble, while the adaptive methods
all nicely achieve detumbling. When there is a failure, there is not enough
angular momentum left available in the wheels to achieve detumbling, but
2018 Qiang Shen et al. and 2008 Wenchuan Cai et al. manage to reduce the
angular velocity to small values were it oscillates periodically.

• For the long-term pointing, the original is right in the limit of error
tolerance when subjected to a worst-case disturbance scenario, and when
there is a failure the errors grow outside the tolerance region. The three
adaptive methods show much better levels of performance, with errors very
far from the non-compliance, while using even less control than the original
for this better results, and being almost not affected by failures.

As a summary, the adaptive methods have been proven better than the original
controller proposed for the mission in all scenarios, making some crucial mission-
saving differences in come cases when failures occur. Particularly, 2018 Qiang
Shen et al. has shown an excellent performance across the board, while 2008
Wenchuan Cai et al. has consistently the worst results of the three in almost all
circumstances. To confirm these findings, in the next chapter the methods will be
tested in the second baseline, the AGILE mission spacecraft.
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Chapter 4

Second baseline: the AGILE
mission spacecraft

This chapter will be used to test the three adaptive methods selected into a
second baseline, the AGILE mission [3], to confirm their applicability to missions
of varying size and characteristics. The chapter opens with an overview of the
relevant baseline data and the modifications made to the simulation environment.
Then the methods are applied to the same three scenarios as in Chapter 3: slew
manoeuvre, detumbling and long term-pointing, one in each subsection. Finally,
the discoveries are summarized in the conclusions section.

4.1 Outline of the baseline

The AGILE (Astrorilevatore Gamma a Immagini, Leggero) mission is a mission
of the Italian Space Agency (ASI) with the scientific objective of, among others,
observing the gamma rays proceeding from outside the Solar System. It was
based on the MITA (Italian Advanced Technology Minisatellite) platform, a low
cost platform for small Low Earth Orbit (LEO) missions. Initially planned for
launch in 2002, it finally was launched in 2007 with a cheaper design based on
degraded requirements. The spacecraft is still in operation as of June 2021 in a
LEO near-equatorial orbit.

As the mentor of this Thesis was involved in the design of the ACS for the
mission, it has been a privilege to have access to the Phase B design document [3]
of the ACS subsystem, concerning the initial non-degraded requirements for the
2002 launch date. Now the adaptive methods selected will be applied onto this
baseline, mainly to test their capacity to accommodate to different missions and
verify the good performance obtained in Chapter 3.

The spacecraft has an inertia matrix in the packed configuration, correspond-
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ing to the detumbling phase, of

Ipack =

27 0 0
0 17 0
0 0 25

 kg m2 (4.1)

and for the rest of the mission phases, the deployed configuration inertia is

Idepl =

29 0 0
0 23 0
0 0 31

 kg m2 (4.2)

The document [3] is lacking some data about the RWs which was additionally
provided by its author. The RWs maximum control torque is given as

ḣrmax = 0.02 [N m] (4.3)

the RWs inertia is
IRW = 0.011 [kg m2] (4.4)

and the maximum wheel velocity is

ϕ̇max = 400 [rad/s] (4.5)

which gives a RWs angular momentum capacity of

hrmax = 4.4 [N m s] (4.6)

The RWs distribution matrix is not reported, so it has been left the same as
in the LUMIO baseline:

R =

−1/
√

3 1/
√

3 1/
√

3 −1/
√

3

−1/
√

3 −1/
√

3 1/
√

3 1/
√

3

1/
√

3 1/
√

3 1/
√

3 1/
√

3

 (4.7)

It is mention that besides the four RWs, the mission has another three redundant
magnetic coils for total angular momentum management and RWs desaturation.
These are not going to be included in the simulations and will not be used.

As of sensors, in [3] it is mentioned that one of the requirements of the ACS
is ensuring a attitude determination precision of 0.02◦. Because sensor precision
is not reported, it has been then assumed that this is the measurement precision
of the attitude in all three axes. The angular velocity measurements’ precision is
not referenced either, so it has been left with the same value of 13 arcseconds/s
than with the LUMIO baseline on all three axes. The method of implementation
of this measurement errors is the same than in Chapter 3.

This time the relevant requirements on the ACS derived from [3] are:
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1) Steady state maximum angular velocity error of wi,max = 0.1 arcsec/s.

2) Steady state maximum absolute attitude pointing error of θi,max = 0.5 deg.

3) Slew manoeuvre total time of less than 1 day.

As no requirements have been imposed regarding the detumbling nor the maxi-
mum angular velocity during slew manoeuvres, the following requirements have
been additionally taken, some of them the same as for the LUMIO baseline:

4) Detumbling maximum starting angular velocity value wi,max(0) = 10 deg/s.

5) Detumbling maximum final angular velocity value wi,max(tend) = 0.1 deg/s.

6) Maximum angular velocity during slew manoeuvres of wi,max = 0.5 deg/s.

The scenarios to test the methods on are selected the same as in Chapter 3 for
maximum comparative power. This time there is no data available on an original
controller that allows for an implementation to compare it with the adaptive
techniques. [3] explains in detail the structure of the originally proposed controller:
the RWs are mediated by a intermediary Proportional Integral (PI) controller,
and then the whole dynamics are under a PD controller, which is selected using
optimal Linear Quadratic (LQ) control theory applied to the linearised dynamics
of the spacecraft. But as the parameters are not reported, implementation is not
possible.

About disturbance, the data provided allows for the implementation of models.
The orbit data is given in [3], with altitude h = 550km, nominal inclination i = 0,
and eccentricity e = 0. The spacecraft dimensions are reported as 917 × 988 ×
871mm, and an illustration of the spacecraft is provided. With this, the following
values have been defined that are necessary for the models.

The ten spacecraft surfaces normals, indicated column-wise by three-dimensional
vectors, are

normals =

1 0 0 −1 0 0 1 1 −1 −1
0 1 0 0 −1 0 0 0 0 0
0 0 1 0 0 −1 0 0 0 0

 (4.8)

The surfaces centre distances to the CoM are

normals =

91/2 0 0 −91/2 0 0
0 98/2 0 0 −98/2 0
0 0 87/2 0 0 −87/2

130.5 −130.5 130.5 −130.5
0 0 0 0
0 0 0 0

 cm
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And the surfaces areas are

Areas = [852, 792, 892, 853, 792, 892, 1583, 1583, 1583, 1583] cm2 (4.9)

Finally, the surfaces diffusivity (ρd) and absorptivity (ρd) factors have been
chosen as

ρs = [0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.8, 0.8, 0.8, 0.8] (4.10)

ρd = [0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1] (4.11)

The modifications done to the Simulink models are shown in Figure 4.1, where
the blocks showed substitute the earlier disturbance block implemented. In yellow,
the “Spacecraft Orbit” block outputs the inertial position vector rI along the orbit
and its norm R. Also in yellow, the “Sun Attitude” block outputs the direction
if the Sun SI .

Figure 4.1: Simulink models modification for implementing disturbance models

The green blocks implement the disturbance models selected. They have been
extracted from [36], are as the following.

The gravity gradient torque MGG is

MGG =
3GMt

R3


(Iz − Iy)c2c3
(Ix − Iz)c1c3
(Iy − Ix)c1c2

 (4.12)

with c1, c2 and c3 being the components of the unitary position vector from the
center of the Earth, in body frame: rB/R.
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The aerodynamic torque is

Maero = −1

2
ρCD

n∑
i=1

rBi × vB
rel(N

B
i · vB

rel)Ai (4.13)

if NB
i · vB

rel is positive, and zero otherwise. NB
i are the normals to the panels, rBi

their distance to the CoM, and Ai the panels areas. CD has been selected as 2.2,
the equivalent to a flat plate. A model of the atmosphere has been implemented
to compute the density ρ.

Finally, the Sun radiation torque is modelled as

MSRP =
n∑
i=1

ri × (−PAi(SB ·NB
i )

[
(1− ρS)SB + (2ρS(SB ·NB

i ) +
2

3
ρd)N

B
i

]
)

(4.14)
if SB ·NB

i is positive, and zero otherwise. SB is the Sun direction, P the SRP on
Earth equal to 4.53× 10−6N/m2, and the effect from Earth’s albedo is neglected.
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4.2 First scenario: Slew manoeuvre

For the sake of consistency, the slew manoeuvre has been selected to be from the
same initial attitude than in Chapter 3, given by the quaternion

q(0) = [0.4, −0.3, −0.5]T (4.15)

with the target attitude being q(0) = [0, 0, 0]T .

4.2.1 2018 Qiang Shen et al.

No failure. The situation for k = 100 and no failure is essentially the same
than for the LUMIO baseline. Besides the obvious discrepancy on control used,
the angular velocity reached and time of the manoeuvre are left unchanged, and
the response is adequate as seen in Figure 4.2. However, for k = 1 and k = 0.1 the
spacecraft experiences heavy oscillations, as seen in Figure 4.3 and table 4.1. This
probably has to do with a different balance between the control torque available
and the magnitude of the spacecraft’s inertia, modifying the acceptable range for
the parameter k.

1 RW failure. The effect of a single failure is slightly more noticeable than
for LUMIO, with a larger performance degradation, but still the response reaches
the objective and the angular velocity is most of the times within compliance, as
shown in Figure 4.4, although not always.

2 RWs failures. Although the manoeuvre cannot be completed due to the
under-actuation, the response is stable.

Failures k Success
Time to
target [s]

Total
control
used

[Nms]

Final∑
|hri|

[Nms]
×10−2

|wi,max|
[rad/s]
×10−2

0
1 Yes 286 2.769 3 0.83

100 Yes 133 1.65 32 0.80

1 100 Yes 132 to 160
1.74 to

3.29
0.2 to 0.3 8.3 to 8.6

2 100
No,

stable
N/A

0.64 to
1.49

0.0 to 0.8
0.80 to

0.92

Table 4.1: Results summary for slew manoeuvre with 2018 Qiang Shen et al.
controller
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(c) RWs angular momentum

Figure 4.2: Results for slew manoeuvre with no failures: 2018 Qiang Shen et al.
controller (k = 100)
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Figure 4.3: Results for slew manoeuvre with no failures: 2018 Qiang Shen et al.
controller (k = 0.1)
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Figure 4.4: Results for slew manoeuvre with 1 RW failure: 2018 Qiang Shen et
al. controller (k = 100)

4.2.2 2014 Danyal Bustan et al.

No failure. Now, according to the baseline, the parameter umax has been changed
to 0.02. The behaviour with ρ = 10 is satisfactory as showed on Figure 4.5, al-
though slower than for 2018 Qiang Shen et al.. However, when trying to increase
the speed of the response reducing ρ to 5 or 1, the small overshooting present in
Figure 4.5 increase dramatically, as shown in Figure 4.6. Finally for ρ = 0.1, an
instability is developed. On the other hand, when increasing the value of ρ to 50,
no shattering effect is observed unlike in the LUMIO baseline. See table 4.2.
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Figure 4.5: Results for slew manoeuvre with no failures: 2014 Danyal Bustan et
al. controller (ρ = 10)
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Figure 4.6: Results for slew manoeuvre with no failures: 2014 Danyal Bustan et
al. controller (ρ = 1)

1 RW failure. When there is a failure the response is degraded as shown in
Figure 4.7, but the objective is still satisfactorily achieved.
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Figure 4.7: Results for slew manoeuvre with 1 RW failure: 2014 Danyal Bustan
et al. controller (ρ = 10)

2 RWs failures. The response is as expected, not able to reach the objective,
but is stable.

4.2.3 2008 Wenchuan Cai et al.

As was explored in Chapter 3, the only parameters that have a sensible effect are
found to be Fmax and β. According to the subsystem actuation capacity, Fmax
has been changed to 0.02.
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Failures ρ Success
Time to
target [s]

Total
control
used

[Nms]

Final∑
|hri|

[Nms]
×10−2

|wi,max|
[rad/s]
×10−2

0

0
No,

unstable
N/A N/A N/A 2.8

1 Yes 618 8.6 1.1 2.8
5 Yes 231 2.3 1.1 1.2
10 Yes 267 1.1 1.2 0.7
50 Yes 1281 0.29 1.6 0.2

1
10 Yes 333 to 389 1.1 to 1.6 1.7 to 3.2 0.6 to 0.7

20 Yes 525 to 531
0.54 to

0.85
0.7 to 0.9 0.34 to 0.4

2 10
No,

stable
N/A

0.71 to
0.92

0.3 to 1.2 0.4 to 0.8

Table 4.2: Results summary for slew manoeuvre with 2014 Danyal Bustan et al.
controller

No failure. The parameter β regulates the aggressiveness of the response, but
now the range of values has changed. With β = 0.019 the response is just compli-
ant with the angular velocity limitation as seen in Figure 4.8, but this takes over
500 seconds to converge. Increasing the value of β to increase the speed makes
it go outside the allowed angular velocity, and it is effective until β = 0.091, see
table 4.3. At this point, increasing β further degrades the response due to the
appearance of oscillations, as seen in Figure 4.9.

1 RW failure. The performance with one failure is slightly degraded on time
and effort used with respect to no failure, but still achieves the objective and
respects the angular velocity limit, as shown in Figure 4.10.

2 RWs failures. The response does not reach the objective due to the under-
actuation but remains stable.
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Figure 4.8: Results for slew manoeuvre with no failures: 2008 Wenchuan Cai et
al. controller (β = 0.019)
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Figure 4.9: Results for slew manoeuvre with no failures: 2008 Wenchuan Cai et
al. controller (β = 0.2)
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Figure 4.10: Results for slew manoeuvre with 1 RW failure: 2008 Wenchuan Cai
et al. controller (β = 0.019)

Failures β Success
Time to
target [s]

Total
control
used

[Nms]

Final∑
|hri|

[Nms]
×10−2

|wi,max|
[rad/s]
×10−2

0

0.019 Yes 517 1.06 1.5 0.89
0.05 Yes 214 2.24 1.4 1.9
0.091 Yes 97 2.95 1.4 2.4
0.2 Yes 213 6.8 1.3 2.8

1 0.019 Yes 517 to 532
0.98 to

1.86
1.5 to 1.9

0.77 to
0.90

2 0.019
No,

stable
N/A 0.45 to 0.9 0.6 to 1.5

0.46 to
0.81

Table 4.3: Results summary for slew manoeuvre with 2008 Wenchuan Cai et al.
controller
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4.3 Second scenario: Detumbling

4.3.1 2018 Qiang Shen et al.

No failures. It is seen that for a value of k = 10 the control saturates and no
improvements occur increasing k further to, for instance, 100. Reducing k below
10 degrades the time and control effort used. These results are shown on Figure
4.11 and table 4.4.
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(c) k = 100

Figure 4.11: Angular velocity wi results for detumbling manoeuvre with no fail-
ures: 2018 Qiang Shen et al. controller

1 RW failure. The result with one failure keep being satisfactory, and, as
shown in Figure 4.12, the value of k = 10 is still the optimum. Thus, this settles
the question that was left from the LUMIO baseline: when there are failures in
detumbling the 2018 Qiang Shen et al. method achieves it even with limited RWs
angular momentum capacity, as long as the total momentum available is enough
to actually detumble the spacecraft.
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Figure 4.12: Angular velocity wi results for detumbling manoeuvre with 1 RW
failure: 2018 Qiang Shen et al. controller

2 RWs failures. When there are two failures most of the time the detumbling
is achieved in a degraded response. However, there is a particularly harsh failure
combination for which, for some reason, the method does not achieve detumbling,
shown in Figure 4.13. Confusingly, the combination that causes the no detumbling
changes with the value of k, and no single value was found that worked for all
failure combinations.
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(a) Failures on the 1st and 3rd RWs
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(b) Failures on the 2nd and 4th RWs

Figure 4.13: Angular velocity wi results for detumbling manoeuvre with 2 RWs
failures: 2018 Qiang Shen et al. controller (k = 10)

4.3.2 2014 Danyal Bustan et al.

No failures. The only parameter that makes a difference in the controller is
umax. Contrary to what could be thought, a value of umax = 0.02 as the system
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Failures k Success
Time to
target [s]

Total
∑
ḣri

used [Nms]
Final

∑
hri

[Nms]

0
1 Yes 270 15.7 12.1
10 Yes 185 14.5 12.0
100 Yes 181 14.5 12.1

1
10 Yes 221 to 237 13.1 to 13.9 9.6 to 10.5
100 Yes 214 to 221 12.9 to 14.3 9.3 to 10.7

2
10 Not always 408 to ∞ 14.2 to ∞ 8.7 to 8.8
100 Not always 380 to ∞ 15.1 to ∞ 8.7 to 8.8

Table 4.4: Results summary for detumbling with 2018 Qiang Shen et al. controller

architecture could suggest does not achieve detumbling, as seen in Figure 4.14.
Instead, it has been investigated that a value of umax = 2 that allows for the
saturation of the control effort obtains the best results. A further increase of umax
beyond the value 2 only starts to degrade the performance, as shown in table 4.5.
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(a) umax = 0.02
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Figure 4.14: Angular velocity wi results for detumbling manoeuvre with no fail-
ures: 2014 Danyal Bustan et al. controller

1 RW failure. When there is a failure the controller with umax = 2 achieves
detumbling with only slight degradation of performance. This settles the question
left in Chapter 3: the 2014 Danyal Bustan et al. method is able to achieve
detumbling with both failures and limitation of RWs angular momentum capacity
simultaneously. Increasing the value of umax to 20 does not alter much the response
with the exception that in one case the angular velocity does not reach the required
minimum value, shown in Figure 4.15.



90 Second baseline: the AGILE mission spacecraft

0 50 100 150 200 250 300

Time [s]

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

w
 [

ra
d

/s
]

w
1

w
2

w
3

(a) umax = 2

190 200 210 220 230 240 250 260 270 280 290 300

Time [s]

-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025

w
 [

ra
d

/s
]

w
1

w
2

w
3
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Figure 4.15: Angular velocity wi results for detumbling manoeuvre with 1 RW
failure: 2014 Danyal Bustan et al. controller

2 RWs failures. The controller with umax = 2 has an even more degraded
performance but still achieves detumbling, as shown in table 4.5.

Failures umax Success
Time to
target [s]

Total
∑
ḣri

used [Nms]
Final

∑
hri

[Nms]

0
0.02

No,
unstable

N/A N/A N/A

2 Yes 195 15.5 12.7
20 Yes 203 16.2 12.2

1
2 Yes 214 to 289 12.8 to 21.1 9.7 to 10.6
20 Not always 208 to ∞ 12.6 to 15.5 9.6 to 10.6

2 2 Yes 389 to 694 14.5 to 22.7 8.7

Table 4.5: Results summary for detumbling with 2014 Danyal Bustan et al. con-
troller

4.3.3 2008 Wenchuan Cai et al.

As seen in subsection 3.3.4, the parameter β cannot have an effect for detumbling
as it is multiplied by zero. Modifications on parameters k0, σ1 and σ2 have been
found to have almost no effect. The only parameter that affects the response is
Fmax.

No failure. Contrary to what could be though from the subsystem specifica-
tions, the value Fmax = 0.02 results in no detumbling achieved, shown in Figure
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4.16. Just like in subsection 4.3.2, higher values obtain better responses, although
no improvement is made after Fmax = 0.2. See table 4.6.
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(a) Fmax = 0.02
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(b) Fmax = 0.2

Figure 4.16: Angular velocity wi results for detumbling manoeuvre with no fail-
ures: 2008 Wenchuan Cai et al. controller

1 RW failure. When there is a failure, both for Fmax = 0.2 and Fmax = 2 the
detumbling is achieved in a degraded response as seen in Figure 4.17, although
for the case of Fmax = 2 there are some instances in which it takes a long time to
settle inside the requirement region.

0 50 100 150 200 250 300

Time [s]

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

w
 [

ra
d

/s
]

w
1

w
2

w
3

Figure 4.17: Angular velocity wi results for detumbling manoeuvre with 1 RW
failure: 2008 Wenchuan Cai et al. controller (Fmax = 2)

2 RWs failures. When there are two failures it has been found no value of Fmax
that achieve the detumbling for all cases. Looking at table 4.6, the values 0.2, 2
and 20 all manage the detumbling in the majority of cases. However for specific
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combinations of failures detumbling is not managed, like in Figure 4.18, and the
combination of failures affected change for each value of Fmax. This is the same
behaviour than for 2018 Qiang Shen et al..
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(a) Failures in the 1st and 2nd RWs
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(b) Failures in the 2nd and 4th RWs

Figure 4.18: Angular velocity wi results for detumbling manoeuvre with 2 RWs
failures: 2008 Wenchuan Cai et al. controller (Fmax = 2)

Failures Fmax Success
Time to
target [s]

Total
∑
ḣri

used [Nms]
Final

∑
hri

[Nms]

0
0.02

No,
unstable

N/A N/A N/A

0.2 Yes 184 14.1 12.0
2 Yes 181 14.5 12.0

1
0.2 Yes 238 to 365 13.9 to 18.5 10.2 to 10.6
2 Yes 214 to 649 12.9 to 24.9 10.0 to 11.5

2
0.2 Not always 492 to ∞ 17.8 to ∞ 8.7
2 Not always 508 to ∞ 11.4 to ∞ 8.7 to 8.8
20 Not always 686 to ∞ 20.8 to ∞ 8.7

Table 4.6: Results summary for detumbling with 2008 Wenchuan Cai et al. con-
troller
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4.4 Third scenario: Long-term pointing

The same procedure for reporting results will be followed as in Chapter 3, per-
forming the simulations for a time of 10000 seconds. Because the mission now is
to observe cosmic gamma rays, an inertial pointing has been chosen as the desired
attitude to track.

4.4.1 2018 Qiang Shen et al.

No failures. There is a balance between the value of parameter k and the
magnitude of error quaternion reached. Decreasing the value of k below 0.01 does
not have any effect on reducing the control effort used, only increases the errors.
Higher values of k like 0.1 decrease the errors reached but increase the control
used as shown in Figure 4.19 and in table 4.7.
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(b) k = 0.1

Figure 4.19: Attitude error results qe for long-term pointing with no failures: 2018
Qiang Shen et al. controller

1 RW failure. The response gets degraded but stays well inside the tolerance
region, as shown in Figure 4.20.

2 RWs failures. Because the spacecraft is under-actuated, a drift in attitude
slowly but inevitably develops, although long-term the controller manages to not
be totally unstable, keeping the attitude close to the desired one.

4.4.2 2014 Danyal Bustan et al.

No failures. The parameter ρ has been found to have no effect, which is un-
derstandable as it is supposed to mediate the transient behaviour, and now there
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Figure 4.20: Attitude error results qe for long-term pointing with 1 RW failure:
2018 Qiang Shen et al. controller (k = 0.01)

Failures k Success

Maximum
quaternion
error |qei,max

|
×10−3

Total
∑
ḣri

used [Nms]
×10−2

Final
∑
hri

[Nms] ×10−2

0
0.001 Yes 3.5 12.3 1.7
0.01 Yes 1.9 12.7 1.8
0.1 Yes 0.36 14.7 1.7

1 0.01 Yes 2.6 to 2.8 16.4 1.9 to 2.0

2 0.01
No,

unstable
N/A N/A N/A

Table 4.7: Results summary for long-term pointing with 2018 Qiang Shen et al.
controller
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is no transient. The only parameter affecting the simulation is umax, which for
higher values decreases the attitude errors but increases the control used. See
Figure 4.21 and table 4.8.
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(a) umax = 2× 10−4
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(b) umax = 2× 10−3

Figure 4.21: Attitude error results qe for long-term pointing with no failures: 2014
Danyal Bustan et al. controller

1 RW failure. When there is a failure the controller with umax = 2 × 10−3 is
degraded but still remains well within compliance, while for umax = 2× 10−4 the
attitude errors go outside the tolerance region.
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(a) umax = 2× 10−4
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(b) umax = 2× 10−3

Figure 4.22: Attitude error results qe for long-term pointing with 1 RW failure:
2014 Danyal Bustan et al. controller

2 RWs failures. The same behaviour than for 2018 Qiang Shen et al. is devel-
oped, a drift in attitude but that keeps it close to the desired pointing.
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Failures ρ
umax
×2

Success

Maximum
quaternion
error |qei,max

|
×10−3

Total
∑
ḣri

used [Nms]
×10−2

Final
∑
hri

[Nms] ×10−2

0

0 10−3 Yes 0.34 16.4 1.7
1 10−3 Yes 0.34 16.4 1.7
10 10−3 Yes 0.34 16.4 1.7
0 10−4 Yes 3.3 12.9 1.8

1
0 10−3 Yes 0.67 to 0.68 14.5 to 18.2 1.7
0 10−4 No, stable 10.5 to 11.0 18.2 to 19.2 1.7 to 1.9

2 0 10−3
No,

unstable
N/A N/A N/A

Table 4.8: Results summary for long-term pointing with 2014 Danyal Bustan et
al. controller

4.4.3 2008 Wenchuan Cai et al.

No failures. This methods has been the hardest to adapt to the baseline. As
seen in table 4.9, at the value of Fmax = 2× 10−3 the values of the attitude error
reached a minimum or the same magnitude as the measurement errors, but for
that set up the control used is enormous. Reducing Fmax to 2× 10−5 is the limit
for the less control used by this method. When reducing Fmax further to 2×10−6,
the attitude errors get outside of the tolerance region.
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Figure 4.23: Attitude error results qe for long-term pointing with no failures: 2008
Wenchuan Cai et al. controller

1 RW failure. The effect of having a failure is that the limit for which the
attitude errors get outside of the accepted region increases to Fmax = 10−5.
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2 RWs failures. The response compared to the other controllers is the same,
a drift that keeps it close but out of the compliance attitude error region.

Failures β
Fmax
×2

Success

Maximum
quaternion
error |qei,max

|
×10−3

Total
∑
ḣri

used [Nms]
Final

∑
hri

[Nms] ×10−2

0

2 10−2 Yes 0.12 111 1.5
2 10−3 Yes 0.07 33 1.7
2 10−4 Yes 0.2 3.4 1.7
2 10−5 Yes 0.34 0.34 1.7

2 10−6
No,

unstable
N/A N/A N/A

1
2 10−4 Yes 0.23 to 0.25 1.82 to 2.78 1.7 to 1.8

2 10−5
No,

unstable
N/A N/A N/A

2 2 10−5
No,

unstable
N/A N/A N/A

Table 4.9: Results summary for long-term pointing with 2008 Wenchuan Cai et
al. controller

4.5 Chapter conclusions

In this chapter the AGILE mission baseline described in [3] has been simulated
in the same three scenarios than in Chapter 3: slew manoeuvre, detumbling and
long-term pointing. The discoveries are summarized in the following points:

• For the slew manoeuvre, the three methods can easily manage the manoeu-
vre with no failures and are robust to one failure. 2018 Qiang Shen et al.
has the best response of the three, while 2008 Wenchuan Cai et al. offers
the worst, more time-consuming response.

• With 2 failures, the slew manoeuvre is under-actuated and no method can
reach the target, but in all cases their response is stable and settles after a
short time.

• For detumbling, all three methods have been successful for the no-failure
case and are robust to one failure. Among them, 2018 Qiang Shen et al.
and 2008 Wenchuan Cai et al. show the best response, being very similar.

• When detumbling with 2 failures, the margin between angular momentum
available and the required for the manoeuvre is very slim. 2014 Danyal



98 Second baseline: the AGILE mission spacecraft

Bustan et al. has shown to consistently achieve detumbling in this case,
while the other two methods fail with some combinations of RWs failures.

• The long term pointing with no failure has the best results for 2018 Qiang
Shen et al., followed closely by 2014 Danyal Bustan et al.. All three are
robust to one failure, but 2008 Wenchuan Cai et al. uses a lot more control
effort than the other two.

• The response for long term pointing with two failures is always the same, a
slow drift in attitude due to the under-actuation of the spacecraft, although
the three methods keep the pointing near the desired target.

This chapter has confirmed that the methods can be adapted to multiple
missions with spacecrafts of different sizes, and their strengths of performance
and robustness to failures have been reinforced with more evidence.

Among the methods, 2018 Qiang Shen et al. has strong performance across
the board and 2008 Wenchuan Cai et al. is the most difficult to adapt and has the
worst results in the slew manoeuvre and, specially, in the long-term pointing.



Conclusions

The present Thesis has been dedicated to the field of robust control over space-
craft’s attitude. Particularly, it has been investigated the typology of failures
that the ACS is more likely to suffer when using COTS components. Two general
groups were identified based on the work in [5]: a high-end COTS group that
suffers mainly from transient SEU failures, and a low-end COTS group that is
at increased risk of complete component failure. It was decided to focus on the
second, low-end group.

To tackle this type of failures, a list of innovative techniques that show po-
tential to outperform the current “classical techniques” used has been identified.
Based on their complexity, implementability, and personal interest of the author,
the Adaptive control and Model identification have been selected as the techniques
to move forward with further study.

A literature review has been conducted on both selected techniques, discussing
a moderately large number of sources more in depth in Chapter 1 of this The-
sis. A criteria to evaluate these sources has been created based on completeness
of source explanation, easiness of implementation and original results obtained.
The outcome of the analysis was summarized in appendix A. This has allowed
to shortlist four Adaptive control methods for implementation and testing, that
were referred to as 2018 Qiang Shen et al.[18], 2014 Danyal Bustan et al.[17],
2008 Wenchuan Cai et al.[23], and 2011 Qinglei Hu et al.[22] throughout the rest
of the document. The Model identification technique was not continued because
no candidate resulted among the most promising.

Chapter 2 presented exhaustively the mathematical layout of the shortlisted
methods, and proceeded to implement them on a Simulink model environment to
replicate the original results. Three of the methods obtained successful results,
those being 2018 Qiang Shen et al., for whom the replication was perfect, and
2014 Danyal Bustan et al. and 2008 Wenchuan Cai et al., that had small differ-
ences between what was obtained and the originally reported, although this did
not compromise their successful results. The method of 2011 Qinglei Hu et al. did
not achieve a stable result, and a explanation was proposed based on analysing
its mathematical equations.
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In Chapter 3, the three successfully implemented methods have been tested
onto the LUMIO CubeSat baseline [1] for three scenarios: slew manoeuvre, de-
tumbling and long-term pointing.

• For the slew manoeuvre, the adaptive methods are shown to be better than
the original controller. They are faster and can be tuned to respect the
limitation on angular velocity. On top of that, they are robust to one failure,
only facing small degradation on performance, while the original becomes
unstable. Particularly, 2018 Qiang Shen et al. is the best, followed by 2014
Danyal Bustan et al.

• For detumbling, it has been shown in simulations and mathematically proven
that the original results shown in [1] are only possible when the angular mo-
mentum capacity of the RWs is not limited. For this case, the adaptive
controllers are faster, take less control effort, and are robust to one and two
failures. The original is not robust to one failure and becomes unstable.
When limiting the RWs angular momentum capacity, the original cannot
achieve detumbling, while the three adaptive methods can perform it with-
out problems.

• For long-term pointing, the original gets just to the attitude error limit,
and with a failure goes out of the tolerance. The adaptive methods are
well inside the attitude tolerance region and are minimally affected by one
failure. 2008 Wenchuan Cai et al. is proven the hardest one to adapt.

In Chapter 4 the adaptive methods are applied to the AGILE mission baseline
[3] for the same three scenarios.

• For the slew manoeuvre, the three can achieve it with one or no failures,
with again 2018 Qiang Shen et al. being the best, followed by 2014 Danyal
Bustan et al.

• For detumbling, all methods can manage it with zero and one failure, but
only 2014 Danyal Bustan et al. can do it consistently with two failures.

• For long-term pointing, all three methods are able to deal with zero and
one failures, with 2018 Qiang Shen et al. having the best results and 2008
Wenchuan Cai et al. being the hardest to adapt and worst-performing one.

As a summary, 2018 Qiang Shen et al. performs the best across the board,
being very easy to adapt. 2014 Danyal Bustan et al. is the second easiest to adapt
and has the unique advantage of detumbling with two failures. 2008 Wenchuan
Cai et al. was the most difficult to adapt and showed consistently the worst results.
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A future expansion of this work could be horizontally, doing the same process
that has been done in this Thesis but for other innovative techniques from the list
in section 1.1. However, the most interesting would be to continue on with the
methods investigated and propose the adaptive techniques discussed to be applied
to a real mission. The LUMIO CubeSat would be a potential candidate.

To successfully do that, two steps would have to be taken. First, a much finer
optimisation of the methods’ parameters for each of the spacecraft’s life-cycle
scenarios. This would require much more computational power and automation
than what has been employed for this Thesis.

Secondly, the methods would have to be tested in a state-of-the-art simulator in
the context of a real mission to validate their performance. The GAFE Simulator
mentioned in [5] is a good example of what is being referred to here. Given the
results obtained in the Thesis, it would be suggested to give priority to 2018
Qiang Shen et al., followed by 2014 Danyal Bustan et al., and lastly testing 2008
Wenchuan Cai et al..
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Appendix A

Sources classification table

Problem
Year,

Authors
and Source

Method used
Com-
plete-
ness

Eas-
iness

Re-
sults
Qual-
ity

Over-
all

Generic
actuator loss of
effectiveness

2018 Q. Shen
et. al. [18]

Adaptive parameter update
law

5 5 3 13

2010 A. Zou
et. al. [21]

Adaptation law with
virtual error dynamics and

fuzzy logic rules to
estimate nonlinear term

4 3 3 10

2014 D.
Bustan et. al.

[17]

Adaptive law with extra
parameter for transient

control
4 5 4 13

Generic actuator
bias

2018 Q. Shen
et. al. [18]

Adaptive parameter update
law

5 5 3 13

Generic
actuator
saturation

2016 M. Li
et. al. [19]

Neural network to estimate
nonlinear saturation term

3 2 2 7

2014 D.
Bustan et. al.

[17]

Explicitly includes “Umax”
in the control law

4 5 4 13

Generic actuator
sign reversal

2010 A. Zou
et. al. [21]

Adaptation law with
virtual error dynamic and

fuzzy logic rules to
estimate nonlinear term

4 3 3 10
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Problem
Year,

Authors
and Source

Method used
Com-
plete-
ness

Eas-
iness

Re-
sults
Qual-
ity

Over-
all

Limitation on
allowable
angular velocity

2018 Q. Shen
et. al. [18]

Command filter on angular
velocity based on

hyperbolic tangent
5 5 5 15

2016 M. Li
et. al. [19]

Command filter on angular
velocity based on

hyperbolic tangent
5 5 5 15

Thruster outage

2011 Q. Hu
et. al. [22]

Adaptive law with sliding
surface integral term

5 4 4 13

2005 E.
Wilson et. al.

[30]

Maximum likelihood
estimation for FDI of
predetermined failure

modes

3 3 4 10

2016 C.
Pittet et. al.

[31]

Two methods for fault
identification. FDI based

on total moment of inertia,
and Unknown Input

Observer

2 3 2 8

2008 W. Cai
et. al. [23]

Adaptive law with
combined filtered error

variable “s”
5 5 5 15

Thruster stuck
2011 Q. Hu
et. al. [22]

Adaptive law with sliding
surface integral term

5 4 4 13

Thruster loss of
effectiveness

2008 W. Cai
et. al. [23]

Adaptive law with
combined filtered error

variable “s”
5 5 5 15

2005 E.
Wilson et. al.

[30]

Maximum likelihood
estimation for FDI of
predetermined failure

modes

3 3 4 10

Thruster bias
2004 E.

Wilson et. al.
[28]

Online/offline Multiple
concurrent recursive LS for
direct and inverse matrices

4 5 3 12

Thruster mis-
alignment

2020 C.
Nainer [32]

Instrumental Variable
method for non-normal

Gaussian noise for offline
estimation

5 2 3 10

Thruster limita-
tion

2008 W. Cai
et. al. [23]

Adaptive law with
combined filtered error

variable “s”
5 4 5 14
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Problem
Year,

Authors
and Source

Method used
Com-
plete-
ness

Eas-
iness

Re-
sults
Qual-
ity

Over-
all

Reaction wheels
loss of
effectiveness

2009 Q. Hu
et. al. [24]

Sliding surface design and
adaptation law

2 3 2 7

2008 Q. Hou
et. al. [34]

Two-stage KF, actuator
effectiveness factor included
in the filter for estimation

3 2 2 7

Reaction wheels
bias

2009 Q. Hu
et. al. [24]

Sliding surface design and
adaptation law

2 3 2 7

Reaction wheels
failure

2009 Q. Hu
et. al. [24]

Sliding surface design and
adaptation law

2 3 2 7

Reaction wheels
misalignment

2017 H. Yoon
et. al. [35]

Augmented KF 4 4 3 12

Reaction wheels
saturation

2015 C.
Pittet et. al.

[16]

Structured adaptive
parameters resembling
original PD controller

4 2 4 10

Uncertain
inertia

2011 Q. Hu
et. al. [22]

Control law independent
from Inertia terms

5 4 4 13

2017 H. Yoon
et. al. [35]

Augmented KF 4 4 3 12

2020 C.
Nainer [32]

Instrumental Variable
method for non-normal

Gaussian noise for offline
estimation

5 2 3 10

2014 U. Lee
et. al. [33]

Add constrains to the
problem and formulate it
as a convex optimization,

use MATLAB CVX or
other to solve it

3 2 2 7

2004 E.
Wilson et. al.

[28]

Online/offline Multiple
concurrent recursive LS for
direct and inverse matrices

4 5 3 12

2008 D. S.
Berkovitz [29]

Online recursive LS
estimation or offline batch

LS of inverse inertia matrix
4 5 4 13

1998 J.
Ahmed et.

al. [14]

Adaptive law with inertia
components as estimation

parameters
5 5 2 12
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Problem
Year,

Authors
and Source

Method used
Com-
plete-
ness

Eas-
iness

Re-
sults
Qual-
ity

Over-
all

Uncertain
inertia

2017 A. T.
Espinoza and
W. Sanchez

[26]

MRAC to estimate the
inertia matrix components

5 3 2 10

2009 Q. Hu
et. al. [24]

Adaptation parameter to
estimate is the norm of the

inertia matrix
2 3 2 7

2014 D.
Bustan et. al.

[17]

Explicitly includes ”Umax”
in the adaptive control law

4 5 1 10

2008 W. Cai
et. al. [23]

Control law independent
from Inertia terms

5 5 5 15

Uncertain
Centre of Mass

2008 D. S.
Berkovitz [29]

Online recursive LS
estimation or offline batch

LS
4 5 4 13

2014 U. Lee
et. al. [33]

Add constrains to the
problem and formulate it
as a convex optimization,

use MATLAB CVX or
other to solve it

3 2 2 7

2004 E.
Wilson et. al.

[28]

Online/offline Multiple
concurrent recursive LS for
direct and inverse matrices

4 5 3 12

Uncertain total
mass

2004 E.
Wilson et. al.

[28]

Online/offline Multiple
concurrent recursive LS for
direct and inverse matrices

4 5 1 10

2017 A. T.
Espinoza and

D. Roascio
[27]

Combines Extended KF
with MRAC into a

composite adaptation
technique

2 2 2 6

Gyro sensor bias
2008 Q. Hou
et. al. [34]

Two-stage KF, actuator
effectiveness factor included
in the filter for estimation

3 2 2 7

2020 C.
Nainer [32]

State-Variable low pass
filter to reduce effect of
noise and bias for offline

estimation

5 2 3 10
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Problem
Year,

Authors
and Source

Method used
Com-
plete-
ness

Eas-
iness

Re-
sults
Qual-
ity

Over-
all

Gyro sensor
outage or absent

2016 C.
Pittet et. al.

[31]

Two methods for fault
identification. FDI based

on total moment of inertia,
and Unknown Input

Observer

2 3 2 8

2017 H. Yoon
et. al. [35]

Augmented KF 4 4 3 12

2020 C.
Nainer [32]

Second-order Butterworth
filter and central

differentiation from
position measurements for

offline estimation

3 2 3 8

Residual mag-
netic dipole

2017 H. Yoon
et. al. [35]

Augmented KF 4 4 3 12
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