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Abstract

One of the most challenging topic in the field of computational fluid dynamics (CFD), is
the solution to the Navier-Stokes equations for turbulent flows. Over the years, mainly
three approaches have been developed: Direct Numerical Simulations (DNS), Large Eddy
Simulations (LES) and Reynolds Averaged Navier-Stokes (RANS).
In this study, we analyse the Variational Multiscale-Large Eddy Simulations (VMS-LES)
method, which was introduced as an improvement of standard LES methods. The idea
behind the VMS-LES is to split the solution into the direct sum of a coarse scale and a
fine scale term, instead of using a filtering procedure, as in traditional LES methods. This
approach allows to stabilize advection dominated regimes, to satisfy the inf-sup condition
and to model the turbulent regime of the blood flow according to the LES paradigm.
While the coarse scale solution is approximated by standard spatial discretization meth-
ods (we use the finite element method), many different definitions are available in the
literature for the fine scales.
In this work, we analyse two of them, performing the software verification and the model
validation of the VMS-LES with either quasi-static or dynamic approximation of fine
scales. Differently from the quasi-static, the dynamic VMS-LES method encompasses an
additional ODE that models the time evolution of the fine scale velocity. By doing so, the
dynamic VMS-LES method solves in a natural way the issue of the pressure stabilization
parameter degeneration, characterizing the quasi-static version of the method.
To perform verification and validation we consider the Beltrami-flow and the Taylor-
Green-Vortex flow respectively. The first one is a simple test case used to check if the
implementation of the method is correct. While the second one is a turbulence bench-
mark, used to check if the method is able to actually reproduce the physical flow motion.
Moreover, in the last chapter of this thesis, we test the two methods an a real application:
a patience-specific stenotic carotid.
We assess the performances of the two methods by testing several configurations of the
flow conditions and of the numerical setup, to present a systematic comparison between
the two on benchmark flows and on a real case. This allows us to investigate to which
extent the dynamic is an improvement of the quasi-static VMS-LES method, as often
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suggested in the literature.
In this regard, we highlight that the dynamic method overcomes the inconsistency related
to the pressure stabilization parameter degeneration. Moreover, both the quasi-static and
the dynamic VMS-LES methods with an implicit treatment of the non-convective term,
perform well in verification and therefore, they should be free from implementation errors.
However, in the model validation only the first one has accurately captured the turbulence
indicators.

Keywords: Computational fluid dynamics, verification, validation, numerical methods,
turbulent flows, Large Eddy Simulation, VMS-LES



iii

Abstract in lingua italiana

Una delle sfide più impegnative nel campo della fluidodinamica computazionale (CFD) è
la risoluzione delle equazioni di Navier-Stokes in regime turbolento. Per risolvere questo
problema, nel corso degli anni, sono stati sviluppati diversi metodi, tra i quali i tre prin-
cipali sono: le Direct Numerical Simulations (DNS), le Large Eddy Simulations (LES) e
le Reynolds Averaged Navier-Stokes (RANS).
In questo studio analizzeremo il metodo Variational Multiscale-Large Eddy Simulation
(VMS-LES), un metodo LES nato per migliorare alcuni aspetti critici dei tradizionali
metodi LES.
Il punto di partenza dei VMS-LES è quello di definire la soluzione come la somma diretta
di un termine rappresentativo della scala grande ed uno rappresentativo della scala fine,
in contrapposizione ai LES tradizionali che si basano su un approccio di filtraggio. In
tal modo, è possibile stabilizzare il regime avvettivo, soddisfare la condizione di inf-sup e
modellare la turbolenza dei flussi sanguigni in analogia ai metodi LES. Nel metodo VMS-
LES la scala grande viene approssimata in spazio utilizzando i metodi tradizionali quali,
per esempio, il metodo agli elementi finiti, mentre per la scala fine è possibile adottare
diverse formulazioni. In questa tesi ne analizzeremo due, affrontando la verificazione e la
validazione del metodo VMS-LES con approssimazione della scala fine sia quasi-statica sia
dinamica. A differenza del quasi-statico, nel metodo VMS-LES dinamico, la soluzione fine
della velocità è ricavata risolvendo una equazione differenziale ordinaria. Così facendo, si
dovrebbe risolvere l’inconsistenza del parametro di stabilizzazione della pressione, che nel
metodo quasi-statico tende ad infinito quando si raffina la discretizzazione temporale.
Per la verificazione e la validazione dei metodi abbiamo utilizzato il flusso di Beltrami ed
il Taylor-Green-Vortex, rispettivamente, due casi test con proprietà differenti. Il primo è
un caso semplice per cui è nota la soluzione analitica, utilizzato per valutare se il metodo è
stato implementato correttamente. Il secondo è un benchmark di turbolenza che permette
di verificare se il metodo è in grado di catturare i meccanismi principali di quest’ultima.
Poichè non ci sono ancora molti studi che confrontano i risultati dei due metodi, in questa
tesi proponiamo un’ analisi sistematica sui due casi test appena citati, con l’obbiettivo di
confrontare quantitativamente il metodo dinamico rispetto al VMS-LES quasi-statico, al



variare delle condizioni del flusso e del setup numerico. Infine, per fornire un riscontro
pratico, applicheremo i due metodi ad un caso reale.
Per concludere, possiamo affermare che il metodo dinamico sta effettivamente risolvendo
l’inconsistenza legata al parametro di stabilizzazione della pressione. Inoltre, dalla ver-
ificazione si evince che i metodi VMS-LES quasi-statico e dinamico, combinati con uno
schema implicito per l’approssimazione del termine non lineare, non contengono errori di
implementazione. Tuttavia, dalla validazione del modello, riscontriamo che solamente il
primo è in grado di simulare accuratamente la fisica del problema.

Parole chiave: Fluidodinamica computazionale, verificazione, validazione, metodi nu-
merici, turbolenza, Large-Eddy-Simulations, VMS-LES
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1| Introduction

The most challenging topic to explain to people unfamiliar with numerical methods, is
which is magic trick connecting physics, equations and models. In this introduction, we
try to clarify this link, so that the reader, regardless his/her background, will be able to
grasp the sense of our study.

Everybody is aware of the bubbling wakes behind boats or planes, but how do we trans-
late them in mathematics and calculations?
The answer is in the Navier-Stokes equations, the mathematical model which represents
the motion of a fluid in terms of velocity and pressure, for a given set of boundary and ini-
tial conditions, and for any viscosity and density characterizing the specific fluid at hand.
Navier-Stokes (NS) equations are derived by applying mass conservation and momentum
balance to an incompressible fluid1, thanks to a limit process acting on infinitesimal con-
trol volumes. The solutions are functions in space and time, which represent the evolution
of pressure and velocity in every point of the domain.
However, unless for very simple situations, an analytical solution which solves the equa-
tions exactly, cannot be found [20]. Therefore, we have only two options: solving exactly
strongly simplified cases, or approximating more challenging (and realistic) problems.
Accordingly, since our goal is to make prediction and computations of real applications, we
need to approximate the original problem. This means that, instead of solving equations
in a continuous domain (i.e. in every point of the domain) we compute the solution only
on some points, and we assume that for an arbitrary small portion of the space around
these points the same solution applies. The smaller is that portion, the more accurate
is the solution. In this regard, instead of computing solutions on an infinite number of
points we compute them on a finite subset of them, switching from a continuos to a dis-
crete approach. To link the continuos and the discrete approach we need the so-called
"numerical methods".
A numerical method is the mathematical procedure that legitimates and describes the

1In this work we consider only incompressible fluids, with constant density. However, Navier-Stokes
equations are defined also for compressible fluids
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discrete approach, and the set of operations to compute the approximated solution. No-
tice that, the more we approximate a problem, the less computations we need to solve,
however the quality of the numerical solution becomes very poor. Indeed, one of the
main challenge of numerical mathematics is finding the best compromise between a good
approximation and the time of resolution, i.e. between accuracy and computational cost.
In the next paragraphs, we will go through this problem, in regard of computational fluid
dynamic methods for turbulent flows.

The regime of fluids in motion is described by the Reynolds number (Re), a dimen-
sionless quantity which depends on the physical properties of the flow. Every fluid has a
critical Re, which identifies the transition from a laminar to a turbulent flow, depending
on geometrical and physical quantities. Turbulent conditions are the most challenging
to solve, due to their chaotic nature. Among the difficulties, we mention that the flow
becomes unsteady and the non-linear term in NS equations cannot be neglected.
Many different approaches have been proposed, to model turbulent flows. The most popu-
lar are: Direct Numerical Simulations (DNS), Reynolds-Averaged Navier-Stokes equations
(RANS) and Large Eddy Simulation (LES) [22, 33].
In the first case, Navier-Stokes equations are solved without any additional modelling,
therefore all ranges of spatial and temporal scales are fully resolved. This is the approach
with the highest accuracy, but the highest computational costs.
In the second case, we solve only the main flow and we average the effects of turbulence
through extra-terms computed with statistical models (Figure 1.1). Therefore, the com-
putational effort of this method is the lowest, as well as accuracy, unfortunately.
The third case is an intermediate between the first two: small scales are modelled, while
large scales are solved directly. This has shown to be the approach with the greatest
potential, especially in the scope of turbulent flows. Indeed, if compared with Direct
Numerical Simulation (DNS) LES methods have much lower computational costs, since
part of the problem is only modelled, but they are more accurate than RANS.
The methods presented in this work belong to the family of LES.

Figure 1.1: DNS, RANS, LES approximations of Navier-Stokes equations.
Figure from [22].
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So far, we have presented different numerical methods, focusing on accuracy and compu-
tational costs as main features. However, besides these, there are other properties that a
numerical method needs to satisfy.
As we know from the Lax-Richtmyer Equivalence Theorem (1.1), often called "Fundamen-
tal Theorem of Numerical Analysis", a numerical method has to respect the constrains of
consistency and stability in order to be convergent [32].

consistency + stability ⇐⇒ convergence (1.1)

Therefore, when a new method or an improvement to an existing one is implemented, its
validity has to be proved.
Among the procedures to test a numerical method we have verification and validation
(V&V). To give an heuristic overview of these two techniques, verification aims to answer
the question "are we building the product correctly?”, while validation aims to answer
the question “are we building the right product?”. The detailed description of V&V is
reported in ASME V&V-20 [15] , which is a document that defines all requirements and
guidelines for computational fluid dynamics analysis and provides a valuable reference for
a state of the art verification and validation. We summarize here the keypoints:

(i.) The verification (or software verification) aims to check if the computational model
accurately represents the underlying mathematical method and its solution. In
particular, with this test we check either if our computational model and its im-
plementation are correct, or we evaluate the accuracy of the solutions. For these
purposes, we have to assess consistency and convergence and to compare the numeri-
cal solution with the analytic one, to compute errors and perform a grid convergence
analysis. The test-cases used for verification are not necessary representative of real
applications, however, they must have an analytical solution [1, 15].

(ii.) The aim of a model validation is to check if the method is able to represent the real
world with the expected degree of precision. The numerical solutions are compared
either with an experimental solution or with the results of a DNS (as in our case).
The quantities used for the comparison are physical quantities, like kinetic energy or
enstrophy and the fluid dynamic benchmarks have to represent all the main feature
of real applications, which in our case is turbulence.

The objective of this work is to present the software verification and the model validation
of the quasi − static and dynamic VMS-LES methods to solve Navier-Stokes equations
for incompressible fluids, at different Reynolds numbers.
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As suggested by the name, VMS-LES methods are LES methods to which a variational
multi-scale approach is applied.
The theoretical idea behind LES methods is to split the solutions in two terms: a coarse
scale term and a fine scale term. However, while traditional LES are based on a filtering
procedure and, therefore, small and fine scale solutions are linked with closure equations,
the VMS-LES are projectional (i.e. variational) methods. Accordingly, solutions are split
into the direct sum of a small scale and a large scale term, hence the original problem is
decomposed into two sub-problems of coupled non-linear variational equations.
Among the advantages of this approach, with respect to traditional LES, we mention
that: [5, 25]

1. In a projectional formulation the fine scales solution is defined as function of the
coarse scale solution. Therefore, we don’t need closure equations to connect fine
and coarse scales, as in the filtering procedure.

2. It is possible to avoid the use of extra terms such as eddy viscosity (an additional vis-
cosity to model turbulence effects) to represent fine-scale dissipations. These terms
introduce a consistency error, that makes the coarse scale equations of traditional
LES inconsistent [8, 43].

3. In a variational formulation, equations of large scales are strongly consistent, i.e.
replacing the approximated solutions with the exact ones, fluctuations and residuals
will be equal to zero. Therefore, a method which gives a good approximation of the
large scale solution has small residual and small fluctuations, which means that the
fine scale solution is small.

4. In the traditional LES methods the fine scale has to be modelled and it is defined
a − priori as the filtering scale. In a variational formulation we model only the
terms of the subscale, that cannot be caught by the numerical solver;

5. In the VMS-LES methods we define an analytical expression for the fine scale solu-
tion which depends on the coarse scale solution, and we substitute it in the original
equations. Hence, the error will only be determined by the approximation error due
to space and time discretization of the problem.

Further details concerning this theory can be found in papers [5, 25].

In this thesis, we analyse the quasi-static and the dynamic VMS-LES methods, which
differ in the approximation of the fine scale solutions. In the first case, the functions
which approximate the fine scale solutions are constant in time, i.e. their time derivative
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is equal to zero [5, 21]. In the second case, we consider a time dependent solution for
the velocity fine scale, computed by solving an additional ordinary differential equation
(ODE) [13, 14]. The reason that prompted researchers to develop the dynamic method is
that the quasi-static approach leads to an inconsistency of the pressure stabilization term,
since the pressure stabilization parameter τC goes to infinite when reducing the time-step
(see Section 2.3). On the contrary, the dynamic method is correcting in a natural way
the behaviour of τC [14].

Objectives

In this thesis we go through the software verification and the model validation of the
quasi-static and dynamic VMS-LES methods for turbulent flows. First, we perform the
software verification on the Beltrami-flow test case, than the model validation on the
Taylor-Green-Vortex (TGV) flow. The first one is a simple test case, not fully represen-
tative of turbulence even at high Re, for which the analytical solution is known. The
second one is a fluid dynamic benchmark, for which a DNS solution is known. The TGV
is commonly used for validation, since it represents the main feature of turbulence, such
as the grinding down of eddies into smaller eddies, or the kinetic energy decay due to
viscous forces [46].
The aims of V&V are either to check if the implementation of the software is free of
mistakes (verification), or to check whether the mathematical model appropriately repre-
sent the physics of the problem (validation). Besides these, since there are still not many
studies of this kind comparing the quasi-static and dynamic VMS-LES methods, we per-
form a systematic analysis of the performance of the two methods, changing a variety of
assumptions.
To sum up the aims of our thesis, we distinguish two levels of objectives: ex − post and
ex− ante.
By ex − ante objectives, we refer to the aims of verification and validation, which are
established before starting the work. On the other side, the ex − post achievements are
those resulting from the analysis of the simulations and hence, what we find out evaluating
the performances of the two methods.

Main achievements

Downstream our analysis, the dynamic VMS-LES method has demonstrated to solve the
inconsistency arising in the quasi-static, but it still has some issues to be solved or further
investigated. In this regard, we highlight that its semi-implicit formulation may have some
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implementation errors, while the implicit formulation is introducing an extra dissipation
of kinetic energy, which is not representative of the physics of the problem. Nevertheless,
we believe that fixing these issues, the dynamic VMS-LES methods may improve the
results of the quasi-static VMS-LES method.

Organization of the thesis

This thesis is organized as follows: in Chapter 2, we start from Navier-Stokes equations
and we introduce step-by-step the formulation of the quasi-static and dynamic VMS-LES
methods; in Chapter 3, we perform the Software verification; in Chapter 4, we validate the
model; in Chapter 5, we test the two methods on a real application. Finally, in Chapter
6, we draw conclusions.
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modelling

Navier-Stokes equations are a set of partial differential equations describing the motion of
a viscous fluid. The physics laws behind Navier-Stokes equations are mass conservation
and momentum balance applied to a continuos fluid. Due to their complexity, it is not
yet possible to find an analytical solution, unless several simplifying assumptions apply.
Indeed, real applications are tackeled by solving NS equations with numerical methods.
We formulate the VMS-LES method starting from the strong formulation of the fluid
dymamic problem, according to the following procedure: in Section 2.1, we define the
weak formulation; in Section 2.2, we introduce the space discretization of the macro scale;
in Section 2.3, we present two ways to approximate the fine scale terms. Finally, in Section
2.4, we present the time-discretization of the problem [21, 39].

2.1. The incompressible Navier-Stokes equations and

the weak formulation of the problem

Let us consider a domain Ω ⊂ Rd where d = 3, with a sufficiently regular boundary
∂Ω ≡ Γ such that ∂Ω = ΓN ∪ ΓD and ΓN ∩ ΓD = ∅. We define ΓN the portion of the
boundary where Neumann boundary conditions are applied and ΓD the portion related
to Dirichlet boundary data.
The Navier-Stokes equations for incompressible fluids read as follow:

ρ
∂u
∂t

+ ρ(u · ∇)u −∇ · σ(u, p) = f in Ω × (0, T ),

∇ · u = 0 in Ω × (0, T ),

u = g on ΓN × (0, T ),

σ(u, p)n̂ = h on ΓN × (0, T ),

u = u0 in Ω × {0}

(2.1)

(2.2)

(2.3)

(2.4)

(2.5)
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We denote by u and p velocity and pressure, respectively, which are the unknowns of the
problem, and by ρ the fluid density.
The term σ(u,p) is the total fluid stress tensor, which is defined for Newtonian, incom-
pressible and viscous fluids, as:

σ(u, p) = −pI + 2µϵ(u) (2.6)

In equation (2.6) µ is the dynamic viscosity and ϵ(u) the strain-rate tensor:

ϵ(u) =
1

2
(∇u + (∇u)T ) (2.7)

hence:
∇ · σ(u, p) = −∇p+ µ∆u (2.8)

The functions f, g and h are forcing term, Dirichlet and Neumann data, respectively and
u0 is the initial datum.
The spaces of solutions Vg, Q, Vg and test functions V0, Q, V0, used to develop the
weak formulation, are infinite-dimensional functional spaces, since no approximation has
already been introduced. They are defined as:

Vg := {v ∈ [H1(Ω)]d v = g on ΓD} (2.9)

V0 := {v ∈ [H1(Ω)]d v = 0 on ΓD} (2.10)

Q := L2(Ω) (2.11)

Vg := Vg ×Q (2.12)

V0 := V0 ×Q (2.13)

(2.14)

The weak formulation of the problem is obtained by first multiplying all members of equa-
tion (2.1) by a test function v ∈ V0 and all members of (2.2) by the test function q ∈ Q
and than integrating every term over Ω.

Therefore, the weak formulation of (2.1) reads as:∫
Ω

ρ
∂u
∂t

· v dΩ +

∫
Ω

ρ(u · ∇)u · v dΩ−
∫
Ω

(∇ · σ(u, p)) · v dΩ =

∫
Ω

f · v dΩ (2.15)

with
∫
Ω

∇ · σv dΩ = −
∫
Ω

σ · ∇v dΩ +

∫
∂Ω

σv · n̂ dΓ
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and the weak formulation of (2.2) reads as:∫
Ω

q ∇ · u dΩ = 0 (2.16)

Plugging (2.6), (2.7) and boundary conditions in (2.15) and (2.16), we define:
a(u,v) =

∫
Ω

ρ(u · ∇)u · v dΩ +

∫
Ω

µ∇u · ∇v dΩ

b(u, q) = −
∫
Ω

q∇ · u dΩ

F (v) =
∫
ΓN

h · v dγ +

∫
Ω

f · v dΩ.

(2.17)

Let us now introduce the form:

A(u,v) =
∫
Ω

ρ
∂u
∂t

· vdΩ + a(u,v) + b(v, p), (2.18)

By means of definition (2.18), we rearrange the weak formulation of the problem as follows:

given u0 ∈ Vg , for any t ∈ (0, T ) find U = U(x, t) = {u, p} ∈ Vg such that:A(u,v) = F (v) in Ω

b(u, q) = 0 in Ω,
(2.19)

for all {v, q} ∈ V0

2.2. Spatial discretization: Finite element method

and VMS-LES modelling

The discretization of the weak problem decribed in (2.19) is obtained essentially in three
steps: first, the solution is split in two contributes related to fine and coarse scales, ac-
cording to the VMS approach [5, 25]; second, the coarse scale solution is approximated
with piecewise polynomial functions, according to the Finite Elements Method (FEM);
third, the fine scale is approximated with either the quasi-static or the dynamic method.
The first two steps are presented in this section, while the last one in the next section.
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Let us consider Th a triangulation of the domain Ω made of hexaedra, the space of
the finite elements approximating functions is:

Xr
h = {vh ∈ C0(Ω) : vkh|K ∈ Pr,∀K ∈ Th} (2.20)

where r ≥ 1 is the polynomial degree of the approximating function over the element K

and h is the size of K ∈ Th.
According to the VMS theory [21, 26], we split the spaces defined in (2.10), (2.11) and
(2.12) into the direct sum of two subspaces, such that:

Vg = Vh
g ⊕ V ′

g, (2.21)

V0 = Vh
0 ⊕ V ′

0. (2.22)

The spaces Vh
g = Vh

g ×Qh and Vh
0 = Vh

0 ×Qh are the finite-dimensional spaces related to
the coarse scales, which are approximated with the FEM, such that:

Vh
g = Vg ∩ [Xr

h]
d, (2.23)

Qh = Q∩Xr
h, (2.24)

while the spaces of the fine scale are the following infinite-dimensional spaces:

V ′
g = V ′

g ×Q′, (2.25)

V0 = V ′
0 ×Q′. (2.26)

Analogously to the spaces decomposition, we split the solution and the test function into
the direct sum of a coarse scale and a fine scale solution:

U = Uh + U′, (2.27)

V = Vh + V′. (2.28)

Where subscripts h and ′ indicate the projection of the solution on the coarse and the fine
scale respectively, such that: Uh ∈ Vh

g ,U
′ ∈ V ′

g,V
h ∈ Vh

0 ,V
′ ∈ V ′

0.
By plugging the spatial decomposition into the weak problem and thanks to the bilinear-
ity of (2.18), we have:

A(Uh + U′,Vh) = F (Vh), (2.29)
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A(Uh + U′,V′) = F (V′), (2.30)

and therefore:

A(Uh,Vh) + A(U′,Vh) = F (Vh), (2.31)

A(Uh,Vh) + A(U′,Vh) = F (V′), (2.32)

The bilinear form A(U,V) can be written as the sum of a bilinear and a trilinear form,
such that: A(U,V) = A1(U,V) + A2(U,U,V),
where:

A1(u,v) =
∫
Ω

ρ
∂u
∂t

· vdΩ +

∫
Ω

µ∇u · ∇v dΩ−
∫
Ω

q∇ · u dΩ (2.33)

A2(u,u,v) =
∫
Ω

ρ(u · ∇)u · v dΩ (2.34)

Plugging these definitions in (2.29):

A1(Uh,Vh) + A1(U′,Vh) +

A2(Uh,Uh,Vh) + A2(U′,Uh,Vh) + A2(Uh,U′,Vh) + A2(U′,U′,Vh)

= F (Vh) (2.35)

The two terms: A2(Uh,U′,Vh) and A2(U′,Uh,Vh) are the cross-stress terms, which rep-
resent the energy dissipation between coarse and fine scale, while A2(U′,U′,Vh) is the
Reynolds-stress term, related to viscous forces.

We consider the following assumptions [5]:

• u′ = 0 on Γ;

• (∇vh, µ∇u′) = 0 in Ω.

where the syntax (P,Q) indicate: (P,Q) =

∫
Ω

P ·Q dΩ, and we integrate by part equation

(2.35). Therefore, the weak problem (2.19) will read as:
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given u0, for any t ∈ (0, T ), find Uh = Uh(x, t) = {uh, ph} ∈ Vh
g such that:(

vh, ρ
∂uh

∂t

)
+ (vh, ρ(uh · ∇)uh) + (∇vh, µ∇uh)− (∇ · vh, ph) + (qh,∇ · uh)

−(ρuh · ∇vh +∇qh,u′)− (∇ · vh, p′)︸ ︷︷ ︸
I

− (ρuh · (∇wh)T ,u′)︸ ︷︷ ︸
II

−(ρ∇vh,u′ ⊗ u′)︸ ︷︷ ︸
III

= (vh, f) + (vh,h)ΓN
(2.36)

for all Vh = {vh, qh} ∈ Vh
0.

In the first and the last rows of equation (2.36) we have the terms related to the Navier-
Stokes equations, while the in the second and in the third rows we have additional terms
related to stabilization: (I) is the Streamline Upwind Petrov Galerkin - Pressure Stabiliz-
ing Petrov Galerkin (SUPG-PSPG) term, (II) is an additional stabilization term arising
from the VMS modelling and (III) is the LES term which models the Reynolds stress [21]
Applying the same procedure to equation (2.30) we have:

A1(U′,V′) + A1(Uh,V′) +

A2(Uh,Uh,V′) + A2(Uh,U′,V′) + A2(U′,Uh,V′) + A2(U′,U′,V′)

= F (V′) (2.37)

and by moving some terms to the right-hand-side:

A1(U′,V′) + A2(Uh,U′,V′) + A2(U′,Uh,V′) + A2(U′,U′,V′, )

= F (V′)− A1(Uh,V′)− A2(Uh,Uh,V′, )︸ ︷︷ ︸
RHS

(2.38)

Notice that, in equation (2.38) RHS is the residual of the coarse scale equation (2.29)
projected on the fine scale space V ′

0. By defining it as R(Uh,V′) we rewrite equation
(2.38) as:

A1(V′,U′) + A2(V′,Uh,U′) + A2(V′,U′,Uh) + A2(V′,U′,U′)

= R(Uh,V′) (2.39)

Accordingly, the solution of (2.39) is the fine scale solution, which we define by means
of the functional F ′ as function of the coarse scale solution and the coarse scale residual.
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Therefore, changing the expressions of F ′ leads to different VMS-LES methods.

U′ = F ′(Uh,R(Uh,V′)) (2.40)

Thanks to this definition, it is possible to write the weak problem for the coarse scale in
a closed form. Indeed, by plugging (2.40) in (2.29) we obtain the following formulation,
which depends only on coarse scale:

Find Uh ∈ Vh
g such that:

A(Uh + F ′(Uh,R(Uh,V′),Vh) = F (Vh) (2.41)

for all Vh ∈ Vh
0

In order to solve problem (2.41) we have to introduce a numerical approximation of
F ′, such that F̃ ′ ≈ F ′. This affects the fine scale solution and hence, also coarse scale
solutions, which parametrically depends on the first one. Therefore, from now on, we
should consider the numerical approximations of the solutions: Ũ′ ≈ U′ and Ũh ≈ Uh.
However, to not overburden the notation, all symbols will be written without tilde, but
implicitly referring to it.

2.3. Definition of fine scale: Quasi-Static and Dy-

namic methods

To approximate the fine scale solution it is possible to adopt different approaches, which
differ in the definition of F̃ ′. In this section we introduce the quasi-static and the dynamic
methods. While the first one has already been widely analysed [5, 21], the second one is
still under investigation, see [13, 14].

2.3.1. Quasi-static

The quasi-static approximation of the fine scale is defined for both pressure and velocity
as [5]:

U′ ≈ −L(Uh)R(Uh) (2.42)
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The idea behind this expression is to let the fine scales solution depend on the coarse
scale solution, by computing the fine scale velocity and pressure as the product between
the element-wise stabilization operator τ and the residual of the coarse scale equation:

R(Uh) =

{
rM(uh, ph)

rC(uh)

}
(2.43)

L(Uh) =

[
τM(uh)I3×3 03×3

0T
3×3 τC(uh)

]
(2.44)

therefore, according to the definition of U′ we obtain:

u′ ≈ −τM(uh)rM(uh, ph) (2.45)

p′ ≈ −τC(uh)rC(u
h) (2.46)

Equations (2.45) and (2.46) depend on rM(uh, ph) and rC(uh) which represent the two
strong residuals of coarse scale momentum and continuity equations, respectively:

rM(uh, ph) = ρ

(
∂uh

∂t
+ uh · ∇uh

)
+∇ph − µ∆uh − f (2.47)

rC(uh) = ∇ · uh (2.48)

while τM(uh) and τC(uh) are the stabilization parameters defined as:

τM(uh) =

(
σ2
t ρ

2

∆t2
+ ρ2uh · Guh + Crµ

2G : G
)− 1

2

(2.49)

τC(uh) = (τM(uh)g · g)−1 (2.50)

In equation (2.49) σt represent the order of the time discretization and ∆t is the time
discretization parameter (see section 2.4). The constant Cr = 15 · 2r is derived from
an element wise inverse estimator, related to the inverse inequality, and it depends on r

which is the polynomial degree of the finite elements (FE) approximating functions [21].
The terms G and g are metric tensor and metric vector, respectively, to map the physical
element K in the parametric space (K̃).
By plugging (2.45) and (2.46) in (2.36), we obtain the VMS-LES, semi-discrete formula-
tion of the Navier-Stokes equations with a quasi-static approximation of fine scales:
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given u0, for any t ∈ (0, T ), find Uh = Uh(t) = {uh, ph}(t) ∈ Vh
g such that:(

vh, ρ
∂uh

∂t

)
+ (vh, ρ(uh · ∇)uh) + (∇vh, µ∇uh)− (∇ · vh, ph) + (qh,∇ · uh)

+(ρuh · ∇vh +∇qh, τM(uh)rM(uh, ph))− (∇ · vh, τC(uh)rM(uh))

−(ρuh · (∇vh)T , τM(uh)rM(uh, ph))

+(ρ∇vh, τM(uh)rM(uh, ph)⊗ τM(uh)rM(uh, ph))

= (vh, f) + (vh,h)ΓN
(2.51)

for all Vh = {vh, qh} ∈ Vh
0

A major issue in this approach is the behaviour of the stabilization parameter τC when

∆t → 0. If ∆t = O
(

h

|uh|

)
there will not be any critical degeneration. However, re-

ducing ∆t with a fixed ratio
h

|uh|
, the first term in equation (2.49) will predominate over

the others, leading to have τM → 0 and τC → ∞. This makes the quasi-static method
inconsistent for lower values of the time discretization parameter. [5]
Therefore, the dynamic method was developed to avoid the degeneration of the stabiliza-
tion parameter [13].

2.3.2. Dynamic

In the previous section we have introduced the quasi-static method and its limitations, in
this section we introduce the dynamic VMS-LES method. The main difference between
the two approaches, is that in the quasi-static u′ is time-dependent since it depends on
uh, while in the dynamic we introduce an additional ODE to track its evolution in time.

To derive this ODE from the Navier-Stokes equations, we plug (2.8) in (2.1) and we
substitute in equation (2.1) and (2.2) {u, p} = {u′ + uh, p′ + ph} [13, 14]. Moving the
coarse scale terms on right-hand-side, we obtain:

ρ
∂u′

∂t
+ ρ(uh + u′) · ∇u′ − µ∆u′ +∇p′ = −rM(uh, ph) (2.52)

∇ · u′ = −rC(uh) (2.53)
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Where rC and rM are the residuals of the finite element solutions uh and ph, projected
on the spaces of the subscale [14]:

rM(uh, ph) =

(
ρ
∂uh

∂t
+ ρ(uh + u′) · ∇uh − µ∆uh +∇ph − f

)
(2.54)

rC(uh) = ∇ · uh (2.55)

From equations (2.52) and (2.53) we extrapolate the matrix formulation:

M∂tU′ + L̃(U′) = R(Uh) (2.56)

where M = diag(Id, 0), R(Uh) is the residuals vector as in (2.43) and L̃ is defined in an
analogous fashion as L in the quasi-static, such that:

L̃(Uh) =

[
τ̃M(uh)I3×3 03×3

0T
3×3 τ̃C(uh)

]
(2.57)

Hence, performing calculations:

∂u′

∂t
+ (τ̃M(uh))−1u′ ≈ −rM(uh, ph), (2.58)

(τ̃C(uh))−1p′ ≈ −rC(uh). (2.59)

According to the Fourier analysis proposed by R. Codina et al. [13], we define the two
stabilization parameters denoted with a ˜ as:

τ̃M(uh) = (ρ2uh · Guh + Crµ2G : G)−
1
2 (2.60)

τ̃C(uh) = (τ̃M(uh)g · g)−1 (2.61)

We will show in section 2.4 that the VMS-LES fully-discrete dynamic problem can be
derived from the quasi-static, by simple substituting τC and τM with τ̃C and τ̃M .

2.4. Time discretization

The time-discretization of the problem is formulated according to the Backward Differen-
tiation Formulas (BDF) of order σt, which are a family of implicit single-stage methods.
Implicit methods are more expensive if compared to explicit ones. However, thanks to
the fact that BDF is a single-stage method, it is capable to increase computational efforts
only marginally, when increasing accuracy [35].
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Let us consider a partition of the time domain (0, T ) into Nt subintervals of equal size

∆t =
T

Nt

. The subscript n denote the time-step, such that n = 0, ..., Nt and ∆t = tn+1−tn.

We write the approximation of the time-derivative as:

∂uh

∂t
≈

αBDFu
h
n+1 − uh

n,BDF

∆t
(2.62)

such that, the temporal derivative is replaced with a difference quotient: at the numerator
we have the increment of uh, where uh

n is the quantity uh evaluated at the time tn; at the
denominator we have the timestep.

We define uh
n,BDF as follow:

uh
n,BDF =


uh
n if n ≥ 1, for σt = 1 (BDF1)

2uh
n −

1

2
uh
n−1 if n ≥ 2, for σt = 2 (BDF2)

3uh
n −

3

2
uh
n−1 +

1

3
uh
n−2 if n ≥ 3, for σt = 3 (BDF3)

(2.63)

and αBDF:

αBDF =


1 for σt = 1 (BDF1)
3

2
for σt = 2 (BDF2)

11

6
for σt = 3 (BDF3)

(2.64)

Therefore, BDF1 corresponds to the the Backward Euler scheme.
To discretize in time the non-linear term of the Navier-Stokes equations with the BDF ap-
proximation, we can choose between three different schemes: fully-implicit, semi-implicit
and explicit [39]. In this work, we analyse the fully-implicit and the semi-implicit meth-
ods.
In the first approach we let the non-linear term and all other terms deriving from it,
depending on un+1

h and pn+1
h , such that:

(vh, ρ(uh
n+1 · ∇)uh

n+1) (2.65)

To compute the solution with the implicit method we need to solve a non-linear system and
to perform many iterations, which require high computational costs [42]. Moreover, we
cannot prove the uniqueness of the solution [7]. However, this approach is unconditionally
stable, which implies that we do not have any restriction on the choice of the timestep to
preserve stability.
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In the semi-implicit method, we linearize the convective term and all related terms with
the following scheme:

(vh, ρ(uh
n · ∇)uh

n+1) (2.66)

This method improves the aforementioned criticalities of the implicit, however, it is only
conditionally stable [39]. As a matter of fact, in this work, we do not mention the stability
condition, since no stability issues arise.
We discuss all details of implicit and semi-implicit formulations in the next two para-
graphs.

2.4.1. Fully-implicit, BDF formulation

To get the fully-discrete fully-implicit BDF VMS-LES formulation of the Navier-Stokes
equations, we plug (2.62) in the semi-discrete problem. We combine with this scheme
either the quasi-static or the dynamic discretization of fine scale. In the following list we
resume the two formulations.

• Quasi− static, fully-implicit scheme:
By plugging (2.62) in (2.51) we obtain a VMS-LES fully-discrete, fully-implicit BDF
formulation of the Navier-Stokes equations with a quasi-static approximation of fine
scales:

given uh
n, ...,u

h
n+1−σt

, for any n = 0, ..., Nt − 1, find (uh
n+1, p

h
n+1) ∈ Vh

g × Qh such
that:

(vh, ρ
αBDFuh

n+1 − uh
n,BDF

∆t
) + (vh, ρ(uh

n+1 · ∇)uh
n+1) + (∇vh, µ∇uh

n+1)

−(∇ · vh, phn+1) + (qh,∇ · uh
n+1)

+(ρuh
n+1 · ∇vh +∇qh, τM(uh

n+1)rM(uh
n+1, p

h
n+1))

+(∇ · vh, τC(uh
n+1)rC(u

h
n+1))

+(ρuh
n+1 · (∇vh)T , τM(uh

n+1)rM(uh
n+1, p

h
n+1))

−(ρ∇vh, τM(uh
n+1)rM(uh

n+1, p
h
n+1)⊗ τM(uh

n+1)rM(uh
n+1, p

h
n+1))

= (vh, fn+1) + (vh,hn+1)ΓN
(2.67)

for all (vh, qh) ∈ Vh
0 ×Qh , for all n ≥ σt − 1

Notice that the expression of stabilization parameters and residuals follow definitions



2| Navier-Stokes VMS-LES modelling 19

(2.50)-(2.49) and (2.48)-(2.47) respectively, and the two terms on the right hand side
of the equation are fn+1 = f(tn+1) and hn+1 = h(tn+1)

• Dynamic, fully-implicit scheme:
As introduced in section section 2.3.2, the dynamic approach is characterised by an
additional ODE to define the fine scale velocity. To solve it in time, we apply the
same scheme of equation (2.62) to u′:

∂u′

∂t
≈

αBDFu′
n+1 − u′

n,BDF

∆t
(2.68)

and we plug it in (2.58):

ρ
αBDFu′

n+1 − u′
n,BDF

∆t
+ (τ̃M(uh

n+1))
−1u′

n+1 = −rM(uh
n+1, p

h
n+1) (2.69)

explicating u′
n+1 we have:

u′
n+1 = −

(
ρ
αBDF

∆t
+

1

τ̃M(uh
n+1)

)−1 (
rM(uh

n+1, p
h
n+1)−

ρ

∆t
u′
n,BDF

)
(2.70)

To obtain the same structure of the quasi-static scheme the two factors of the
previous equation are defined as:

˘τM(uh
n+1) =

(
ρ
αBDF

∆t
+

1

τ̃M(uh
n+1)

)−1

(2.71)

r̆M(uh
n+1, p

h
n+1,u

′
n,BDF ) = rM(uh

n+1, p
h
n+1)−

ρ

∆t
u′
n,BDF (2.72)

Plugging this two definitions in equation (2.70) u′
n+1 and p′n+1 become:

u′
n+1(u

h
n+1, p

h
n+1,u

′
n,BDF ) = − ˘τM(uh

n+1)r̆M(uh
n+1, p

h
n+1,u

′
n,BDF ) (2.73)

p′n+1(u
h
n+1) = −τ̃C(uh

n+1)rC(u
h
n+1) (2.74)

The final formulation is obtained in the same way as (2.67) by simple substituting
the definition of u′

n+1 with equation (2.70):
given uh

n, ...,u
h
n+1−σt

and u′
n, ...,u

′
n+1−σt

, for any n = 0, ..., Nt−1, find (uh
n+1, p

h
n+1) ∈
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V h
g ×Qh such that:(

vh, ρ
αBDFuh

n+1 − uh
n,BDF

∆t

)
+ (vh, ρ(uh

n+1 · ∇)uh
n+1) + (∇vh, µ∇uh

n+1)

−(∇ · vh, phn+1) + (qh,∇ · uh
n+1)

+(ρuh
n+1 · ∇vh +∇qh, ˘τM(uh

n+1)rM(uh
n+1, p

h
n+1))

+(∇ · vh, τ̃C(uh
n+1)rC(u

h
n+1))

+(ρuh
n+1 · (∇vh)T , ˘τM(uh

n+1)r̆M(uh
n+1, p

h
n+1))

−(ρ∇vh, ˘τM(uh
n+1)r̆M(uh

n+1, p
h
n+1)⊗ ˘τM(uh

n+1)r̆M(uh
n+1, p

h
n+1))

= (vh, fn+1) + (vh,hn+1)ΓN
(2.75)

for all (vh, qh) ∈ V h
o ×Qh , for all n ≥ σt − 1

2.4.2. Semi-implicit, BDF formulation

To define the semi-implicit, BDF formulation we start from the fully-implicit scheme
by treating the non-linear terms according to the Newton-Gregory approach. Without
entering in details, for which we address to [12], the non-linear term is linearized through
the so called "extrapolated variables" denoted as ’n + 1,EXT. These comes from the
Newton-Gregory backwards polynomials with a degree equal to the time-discretisation
order, such that:

uh
n+1,EXT =


uh
n if n ≥ 0, for σt = 1 (BDF1)

2uh
n − uh

n−1 if n ≥ 2, for σt = 2 (BDF2)
3uh

n − 3uh
n−1 + uh

n−2 if n ≥ 3, for σt = 3 (BDF3)
(2.76)

phn+1,EXT =


phn if n ≥ 0, for σt = 1 (BDF1)
2phn − phn−1 if n ≥ 2, for σt = 2 (BDF2)
3phn − 3phn−1 + phn−2 if n ≥ 3, for σt = 3 (BDF3)

(2.77)

As for the implicit scheme, we resume in the following list the two methods analysed in
next chapters.

• Quasi− static, semi-implicit scheme:

given uh
n, ...,u

h
n+1−σt

, for any n = 0, ..., Nt − 1, find (uh
n+1, p

h
n+1) ∈ Vh

g × Qh such
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that: (
vh, ρ

αBDFuh
n+1 − uh

n,BDF

∆t

)
+ (vh, ρ(uh

n+1,EXT · ∇)uh
n+1) + (∇vh, µ∇uh

n+1)

−(∇ · vh, phn+1) + (qh,∇ · uh
n+1)

+(ρuh
n+1,EXT · ∇vh +∇qh, τM(uh

n+1,EXT )rM,EXT (u
h
n+1, p

h
n+1))

+(∇ · vh, τC(uh
n+1,EXT )rC(u

h
n+1))

+(ρuh
n+1,EXT · (∇vh)T , τM(uh

n+1,EXT )rM,EXT (u
h
n+1, p

h
n+1))

−(ρ∇vh, τM(uh
n+1,EXT )r

LHS
M,EXT (u

h
n+1, p

h
n+1)...

...⊗ τM(uh
n+1,EXT )rM,EXT (u

h
n+1,EXT , p

h
n+1,EXT ))

+(ρ∇vh, τM(uh
n+1,EXT )r

RHS
M ⊗ τM(uh

n+1,EXT )rM,EXT (u
h
n+1, p

h
n+1))

= (vh, fn+1) + (vh,hn+1)ΓN
(2.78)

for all (vh, qh) ∈ Vh
0 ×Qh , for all n ≥ σt − 1

where we define the extrapolated residual as:

rM,EXT (u
h
n+1, p

h
n+1) = ρ

(
αBDFuh

n+1 − uh
n,BDF

∆t
+ uh

n+1,EXT · ∇uh
n+1

)
+

∇phn+1 − µ∆uh
n+1 − fn+1 (2.79)

rM,EXT (u
h
n+1, p

h
n+1) = rLHS

M,EXT (u
h
n+1, p

h
n+1)− rRHS

M (2.80)

rLHS
M,EXT (u

h
n+1, p

h
n+1) = ρ

(
αBDFuh

n+1

∆t
+ uh

n+1,EXT · ∇uh
n+1

)
+

∇phn+1 − µ∆uh
n+1 (2.81)

rRHS
M,EXT = ρ

uh
h,BDF

∆t
+ fn+1 (2.82)

while the stabilization parameters for this formulation are:

τM(uh
n+1,EXT ) =

(
σ2
t ρ

2

∆t2
+ ρ2uh

n+1,EXT · Guh
n+1,EXT + Crµ2G : G

)− 1
2

(2.83)

τC(uh
n+1,EXT ) = (τM(uh

n+1,EXT )g · g)−1 (2.84)
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• Dynamic, semi-implicit scheme

given uh
n, ...,u

h
n+1−σt

, for any n = 0, ..., Nt − 1, find (uh
n+1, p

h
n+1) ∈ Vh

g × Qh such
that: (

vh, ρ
αBDFuh

n+1 − uh
n,BDF

∆t

)
+ (vh, ρ(uh

n+1,EXT · ∇)uh
n+1) + (∇vh, µ∇uh

n+1)

−(∇ · vh, phn+1) + (qh,∇ · uh
n+1)

+(ρuh
n+1,EXT · ∇vh +∇qh, τ̆M(uh

n+1,EXT )r̆M,EXT (u
h
n+1, p

h
n+1;u

′
n,BDF ))

+(∇ · vh, τ̃C(uh
n+1,EXT )rC(u

h
n+1))

+(ρuh
n+1,EXT · (∇vh)T , τ̆M(uh

n+1,EXT )r̆M,EXT (u
h
n+1, p

h
n+1;u

′
n,BDF ))

−(ρ∇vh, τ̆M(uh
n+1,EXT )r̆

LHS
M,EXT (u

h
n+1, p

h
n+1)...

...⊗ τ̆M(uh
n+1,EXT )r̆M,EXT (u

h
n+1,EXT , p

h
n+1,EXT ;u

′
n,BDF ))

+(ρ∇vh, τ̆M(uh
n+1,EXT )r

RHS
M ⊗ τ̆M(uh

n+1,EXT )r̆M,EXT (u
h
n+1, p

h
n+1;u

′
n,BDF ))

= (vh, fn+1) + (vh,hn+1)ΓN
(2.85)

for all (vh, qh) ∈ Vh
0 ×Qh , for all n ≥ σt − 1

where we define the residuals denoted with ˘ as:

r̆M,EXT (u
h
n+1, p

h
n+1;u

′
n,BDF ) = rM,EXT (u

h
n+1, p

h
n+1)− ρ

u′
n,BDF

∆t
(2.86)

= rLHS
M,EXT (u

h
n+1, p

h
n+1)− r̆RHS

M,EXT (u
′
n,BDF )

r̆RHS
M,EXT (u

′
n,BDF ) = ρ

uh
n,BDF + u′

n,BDF

∆t
+ fn+1 (2.87)

Notice that the term rLHS
M,EXT (u

h
n+1, p

h
n+1) is equal to the residual of the quasi-static

approach, indeed, the contribute of the dynamic is only in the RHS part.
Finally, the stabilization parameters for this method are:

τ̃M(uh
n+1,EXT ) =

(
ρ2uh

n+1,EXT · Guh
n+1,EXT + Crµ2G : G

)− 1
2 (2.88)

τ̃C(uh
n+1,EXT ) = (τ̃M(uh

n+1,EXT )g · g)−1 (2.89)

˘τM(uh
n+1,EXT ) =

(
ρ
αBDF

∆t
+

1

τ̃M(uh
n+1,EXT )

)−1

(2.90)
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In this chapter, we have formally introduced all the methods under investigation, the next
step is to compare their performance on a test case.
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3| Verification of the

computational model

In this section, we present the verification of the quasi-static and dynamic VMS-LES
methods, which aim is to check their correct implementation and consistency. Verifica-
tion is a purely mathematical activity, not concerning about the accuracy of physical
laws. Therefore, a benchmark problem for software verification is a problem whose ex-
act solution is known, and it is not necessarily correlated with real applications. There
are two different families of analytical solutions, which can be used for verification: the
first ones come from the Method of Manufactured Solutions, where an exact solution is
created ad hoc to have the same level of complexity of real applications; the second ones
are those of simple test-cases described in literature, where the solution can be computed
analytically [41]. In this work we follow the second approach, employing the so called
"Beltrami-flow" test-case.
This chapter is organized as follows: in Section 3.1, we define the fluid dynamics bench-
mark, in Sections 3.2 and 3.3, we introduce the software and we present the numerical
setup of the simulations, in Section 3.4, we discuss convergence and in Section 3.5, we
analyse consistency.

3.1. Beltrami-flow test case

The "Beltrami-flow" benchmark was named after the Italian mathematician Eugenio Bel-
trami (1835-1900). He was the theoriser of the Beltrami vector field, a particular field
where a vector and its curl are parallel. This concept was introduced in fluid dynamic in
1881 by the Russian scientist Ippolit S. Gromeka to represent a flow with a Lamb vector1

equal to zero, since velocity and vorticity are parallel.
Ross Ethier and Steinman (1994) [18] solved the Beltrami-Flow test case analytically,
defining an analytical solution for a three-dimensional decaying vortex, with the same
derivation used for the two-dimensional Taylor decaying vortex.

1The cross product of vorticity vector and velocity vector of the flow field
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Let us introduce the problem.
We define Ω the domain of the Beltrami-Flow test-case, which is a cube centred in (0,0,0),
extending for one unit in every direction:

Ω = (−1, 1)3

We define the boundary of the domain as ∂Ω = ΓD ∪ ΓN where ΓD is the portion of
the boundary where Dirichlet boundary conditions (BCs) applies, while on ΓN we have
Neumann boundary data.
The Beltrami-Flow needs both conditions, indeed, on five of the six faces of the cube we
apply homogeneous Dirichlet BCs, while on the remaining face we set a non-homogeneous
Neumann boundary data. Since p ∈ L2(Ω), we have a non-zero pressure field on the
boundaries, there must be at least one Neumann condition, to ensure the uniqueness of p
[39]. Moreover, thanks to this configuration of BCs we avoid some wiggles arising in the
velocity solution next to the boundaries [18].
In our model we consider the following ΓD and ΓN :ΓD = (x, y,−1) ∪ (x, 1, z) ∪ (x,−1, z) ∪ (1, y, z) ∪ (−1, y, z)

ΓN = (x, y, 1)
(3.1)

Since it is not the aim of this work to describe the full derivation of the solution, for
which we address to [18, 38, 45], we report the exact solution without performing any
computation.
By denoting with u, v, w the three velocity components and p the pressure:

u = −a[eax sin(ay ± dz) + eaz cos(ax± dy)]e−d2t (3.2)

v = −a[eay sin(az ± dx) + eax cos(ay ± dz)]e−d2t (3.3)

w = −a[eaz sin(ax± dy) + eay cos(az ± dx)]e−d2t (3.4)

p = −a2

2
[e2ax + e2ay + e2az + 2 sin(ax± dy) cos(az ± dx)ea(y+z) +

+2 sin(ay ± dz) cos(ax± dy)ea(x+z) +

+2 sin(az ± dx) cos(ay ± dz)ea(y+x)]e−d2t (3.5)

where the coefficients are set as a = π/4 and b = π/2.
Notice that, both initial conditions and Dirichlet boundary data are set as equations
(3.2)-(3.5) evaluated at t = 0 on the respective face.
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Figure 3.1: Verification. Beltrami-Flow field

3.2. Introduction to the Software

Before entering into details of test case’s numerical setup, let us introduce the software.
Numerical simulations are performed in lifex, an open source library for high performance
finite element simulations of multiphysics, multiscale and multidomain problems, written
in C++ and based on deal.II [2, 4]. The Beltrami flow, as well as the VMS-LES methods,
are implemented in a specific branch of this library.

3.3. Numerical setup

In this section we introduce the numerical setup for the verification of the quasi-static and
dynamic VMS-LES methods. For this purpose, we remind that we perform two analysis:

• a test modifying the mesh refinement h, fixing the time-step ∆t (Section 3.4);

• a test varying the time-step size fixing the mesh refinement(Section 3.5).

The first one is a convergence test, while the second one aims to check consistency and
stability.
We define the numerical setup of the simulations, trough a trivial approach, by changing
one-by-one the parameters, which have an impact on the solution. We choose the config-
uration with the best compromise between computational cost and accuracy, i.e. when a
parameter does not significantly improve the solution, we take the value which reduces,
as much as possible, the simulation time; when a parameter significantly improves the
solution without increasing too much the time of resolution, we take the value with the
most accurate result.
In table 3.1 we report our choices.
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Final time (T ) 0.2s

Reynolds number (Re) 1 - 1000

FEM spaces Q1−Q1

BDF order 1

Stopping criterion based on residual relative, 10−8

Table 3.1: Verification. List of changing parameters

Re =
ρuL

µ
(3.6)

Remarks

(1) By changing the Reynolds number (3.6) we change the flow regime: according to lit-
erature, when Re = 1 the Beltrami-flow is in laminar condition, while for Re = 1000

it is turbulent [3]. To get an exhaustive overview of the method under investigation,
we may consider both cases. Therefore, for laminar conditions, we fix viscosity and
density as µ = 1 and ρ = 1, respectively and we change Re multiplying ρ by a factor
of 103, according to equation (3.6), where L = 1.

(2) For the space discretization of the coarse scales, we use polynomial FE functions of
degree one for both velocity and pressure (Q1 − Q1). The attentive reader should
noticed that, two linear spaces are not stable (i.e. LBB-stable2) for the Navier-
Stokes equations, since they do not satisfy the inf-sup condition [10]. However, the
VMS-LES method is able to control these instabilities [44, 50].

(3) For the time discretization, we test both implicit and semi-implicit schemes. The
first case is unconditionally stable, while the second one is only conditionally stable.
Therefore the time-step has to be chosen sufficiently low, such that no stability
issues arise [39]:

∆t ≤ C
h

maxΩ|un|
(3.7)

2Ladyzhenskaya–Babuška–Brezzi condition [10]
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3.4. Mesh convergence analysis

The first aim is to find out whether models are converging reducing the mesh-size and
with which rate. We chose three number of refinements (NRef ), which lead to different
size (h) and number (N el) of elements, as reported in Table 3.2. We fix the time-step as
∆t = 5 ·10−3, which has shown to be sufficiently low, such that neither instability arises.

NRef h N el

2 0.25 64

3 0.125 512

4 0.0625 4096

Table 3.2: Verification. Mesh overview

To evaluate the convergence of the methods, we analyse pressure and velocity errors.
In particular, let us consider f the generic reference (i.e. exact) solution for either pressure
or velocity and fh the finite element solution, we define the error e such that:

e = f − fh (3.8)

We remind that in the VMS-LES formulation the solution fh includes the effect of the
fine scale, which in turns depends on the coarse scale.
The L2 and H1 errors are than computed as:

∥e∥L2 =

√∫
Ω

e2 (3.9)

∥e∥H1 =
(
∥e∥2L2

+ ∥∇ · e∥2L2

) 1
2 (3.10)

As the coarse scale is approximated with bilinear polynomial functions and it is stabilized
with SUPG/PSPG method, we expect an optimal convergence for velocity errors, which
means a convergence of order two for the velocity L2 errors and order one for the velocity
H1, according to the a − priori error estimator of FEM [39]. For the sake of clarity, we
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report the error estimator for the SUPG formulation and we address to [24] for the proof.

µ||u − uh||2 +
Nel∑
k=1

αk(hk)2

4µ
||∇(p− ph)||2Ωk ≤ (3.11)

2µC1h
2r||u2||r+1 +

(
C2

2µ

)
h2(l+1)||p||2l+1

The constant α depends on the elements type (tetrahedra or hexahedra), C1 and C2

are non-dimensional parameters independent of the exact solution, while r and l are the
polynomial degrees of velocity and pressure approximating functions, respectively.
As it can be observed in (3.11), we cannot bound pressure errors, since the estimator
is only bounding the gradient of pressure. Therefore, if r = l we expect a sub-optimal
convergence rate for the L2 pressure errors [24].

3.4.1. Implicit BDF

The convergence tests for the VMS-LES implicit method, with dynamic and quasi-static
approximation of fine scale are reported in fig. 3.2.
Regarding velocity, the quasi-static is behaving as expected, indeed L2 and H1 errors are
converging with order two and one, respectively. About the dynamic, we notice that, we
obtain the same rate of convergence of the quasi-static, and negligible differences in the
magnitude (≤ 0.1%).
Pressure L2 errors are behaving differently. First we analyse the dynamic method, then
the quasi-static one.
The dynamic case has optimal convergence (i.e. O(h2)) for high Reynolds and sub-optimal
(i.e. O(h)) for Re = 1. A possible interpretation of this result is that, to conserve optimal
convergence, the stabilization parameters may require a different dependence on h for
advection- or convection-dominated regimes [23], something which in our formulation was
neglected.
Regarding the quasi-static formulation, we highlight that: at low Reynolds number, the
rate of convergence is not yet constant, hence further refinements would be necessary to
precisely evaluate the trend; for higher Reynolds, it seems to be super-convergent, but
relative errors are much greater than the dynamic case (around 4 to 25 times).
Before concluding this section, we want to introduce another analysis.
By using bilinear elements for ph and uh, the Laplacian of the approximate solution ∆uh

becomes zero. Therefore, the SUPG stabilization approach becomes equal to the GLS
(Galerkin Least Square). To be sure that this simplification is not affecting convergence,
we test the couple of elements Q2 −Q2, which results are reported in Figure 3.3. Fixing
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Re = 1 both the quasi-static and the dynamic methods are super-convergent, while for
Re = 1000 we obtain same performances as using bilinear elements, with optimal conver-
gence for velocity L2 and H1 and sub-optimal for pressure L2 errors. Therefore, we may
exclude that bilinear elements interact with stabilization. However, we emphasize that
further mesh refinement are needed.
Notice that, choosing the couple Q2 − Q2 accuracy significantly increases, since relative
errors are lowered by a factor of 1000.

3.4.2. Semi-Implicit BDF

As it can be seen in fig. 3.4, the semi-implicit approach combined with the quasi-static
approximation of fine scales is consistent with the results obtained with the implicit
scheme. On the contrary, the dynamic semi-implicit method is converging only at low
Reynolds, while for Re = 1000 both pressure and velocity errors are divergent with respect
to the mesh refinement. At the moment we are not yet able to provide a exhaustive
explanation of this non-convergence, which may be caused by an inconsistency in the
formulation.
The subject is currently under investigation and we hope to give some updates in further
publications.
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Figure 3.2: Convergence tests for pressure and velocity for implicit, fully discrete quasi-
static and dynamic methods, with Q1−Q1 elements. On the left side Re = 1 on the right
side Re = 1000.
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Figure 3.3: Convergence tests for pressure and velocity for implicit, fully discrete quasi-
static and dynamic methods, with with Q2 −Q2 elements. On the left side Re = 1 on the
right side Re = 1000.
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Figure 3.4: Convergence tests for pressure and velocity for semi-implicit, fully discrete
quasi-static and dynamic methods, with with Q1 −Q1 elements. On the left side Re = 1

on the right side Re = 1000.
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3.4.3. Discussion of mesh-refinement analysis

In this section we summarize the results of the mesh-convergence analysis and we give
some hints for further developments.
First, we observe that the implicit scheme is always convergent, while the semi-implicit
dynamic VMS-LES method is divergent for high Reynolds. This behaviour may suggest
that there could be some inconsistencies in the implementation of the semi-implicit dy-
namic method, which becomes significant when convection is dominating on advection.
Second, the dynamic scheme (when not diverging) gives always lower percentage of errors
with respect to the quasi-static, which means that it improves accuracy.
Third, to deepen this study it is important to go ahead with the mesh refinement, reduc-
ing the size of h.
Fourth, we notice that the effect of stabilization on pressure is different than that on
velocity. Indeed, in our study, pressure errors have shown to be sensitive to the change
of flow regime or sub-scales discretization approach (dynamic to quasi-static). We think
that, an interesting topic for further analysis may be to study the pressure convergence
for the VMS-LES method by changing the definition of the stabilization parameters.
Following on from this point, we highlight three remarks:

• A possible improvement to fix the behaviour of pressure, could be a definition of τ
which modifies the dependence on h between asymptotic and pre-asymptotic regime
as in [23];

• The convergence rate may change between the dynamic and the quasi-static ap-
proaches due to the different definition of τC (see appendix A);

• By increasing the degree of the approximating functions, it is possible to increase ac-
curacy. However, we did not observe any improvement in convergence for turbulent
regimes, which is the focus of this work.

3.5. Consistency analysis

As already introduced, the VMS-LES method with a dynamic approximation of fine scales
aims to solve the inconsistency arising in the quasi-static by lowering ∆t [5].
To accomplish this goal, in our formulation, we use the procedure described below:

1. In the quasi-static scheme, we define a τM depending one the time-step, while in
the dynamic τ̃M is independent from ∆t [13];

2. We set τC and τ̃C as function of τM (and τ̃M) according to equations (2.50) and
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(2.61), respectively;

3. Before plugging τ̃M in the fully-discrete weak formulation of the problem, we restore
its time-dependence, by defining a ˘τM which depends on ∆t, according to equation
(2.90).

Indeed, in equation (2.50) when ∆t −→ 0, τC −→ ∞, while in equation (2.61) τ̃C is
constant with respect to ∆t.
The aim of this section is to prove numerically that the implementation of the dynamic
VMS-LES method gives results in agreement with theory.
For this purpose, we fix the space refinement as NRef = 3, the Reynolds number as
Re = 1000, since the worst case to solve is the turbulent regime, the final time as T = 0.2 s

and the time-step vector as:

∆t = [10−2 10−3 10−4 10−5] s (3.12)

Notice that, in this work τC and τM are averaged parameters: the code print at every
time-step an average in space of local values, then we average these values in time.

As it can be seen in Figure 3.5, with the quasi-static method τC and τM have both a
linear trend, however, τC is diverging, while τM goes to zero.
Conversely, the graph on the left represents the stabilization parameters obtained with the
dynamic method. We see that τC remains constant for every time-step and ˘τM behaves
as the τM of the quasi-static.

We conclude this chapter highlighting that consistency results are in agreement with
theory. Indeed, we see that τC behaves in agreement with equation (2.61) and therefore,
the dynamic VMS-LES methods solves the inconsistency of the quasi-static.
The attentive reader should observe that, τC is not going to zero as τM . However, the
constrain of consistency requires that all the stabilization terms go to zero and not nec-
essarily the stabilization parameters. In fact, if in (2.51) τC is constant, instead of being
divergent, the term −(∇ · vh, τC(uh)rM(uh)) tend to zero when reducing the timestep,
since rM(uh) → 0.
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Figure 3.5: Relative τ with quasi-static (left) and dynamic approximation of fine scale
(right).
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In this chapter, we present the model validation of the dynamic and quasi-static VMS-
LES methods.
The aim of a validation study is to evaluate if a mathematical model or a numerical
method is able to represent the physics of a fluid dynamic problem. Therefore, we need
a test case which features the crucial points of turbulence through simple constructs.
For this purpose, we test the aforementioned methods on the Taylor-Green Vortex (TGV)
benchmark problem, which details are described in the next sections.
Before going into details of validation, let us resume how this chapter is organized. In
Section 4.1 we introduce the TGV problem, in Section 4.2 we introduce the quantities
which are used to compare our solution with the reference one. In Section 4.3 we present
the numerical setup of the simulations. Finally, Sections 4.4 and 4.5 are devoted to results
and discussion, respectively.

4.1. Taylor-Green Vortex test case

The TGV problem was firstly introduced in 1937 by G.I. Taylor and A. E. Green in [46].
In this paper, the authors introduce a flow which aims to mathematically represent the
evolution of 3D vortexes arising in turbulent regimes.

The domain of the TGV problem is a cube centered in the origin of the axis, which
extends of πL in every directions. However, in our computation, we apply a shifting, such
that the domain is defined as:

Ω = [0, 2πL]3 (4.1)

We set periodic boundary conditions, which impose that the velocity field on a face is
equal to that on the opposite face. Therefore, according to the boundary definition showed
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in Figure 4.1, we have:
u(2πL, y, z; t)|Γright

= u(0, y, z; t)|Γleft

u(x, 2πL, z; t)|Γtop = u(x, 0, z; t)|Γbottom

u(x, y, 2πL; t)|Γfront
= u(x, y, 0; t)|Γback

(4.2)

The initial condition of the problem are set as:
u(x, y, z) = A cos(ax) sin(by) sin(cz)

v(x, y, z) = B sin(ax) cos(by) sin(cz)

w(x, y, z) = C sin(ax) sin(by) cos(cz)

(4.3)

For these conditions it must hold the following consistency constrain:

Aa+Bb+ Cc = 0 (4.4)

We consider a simplified case in which a = b = c, which implies that A = −B and C = 0,

according to (4.4). We set A = U0 and a =
1

L
, where U0 is the free-stream velocity and L

the characteristic length of the domain. Hence, the velocity profile at the time-step t = 0

becomes:

u(x, 0) = u0(x) =


U0 sin(

x

L
) cos(

y

L
) cos(

z

L
)

−U0 cos(
x

L
) sin(

y

L
) cos(

z

L
)

0

 in Ω× {0} (4.5)

Since the aim of this chapter is to investigate the ability of the methods to represent the
physics of turbulence, we set a Reynolds Number Re = 1600. This implies that the flow
regime is initially laminar (i.e. it has low vorticity), but it evolves in a turbulent flow,
where, due to the process of vortex-stretching, large eddies decay in smaller structures
with higher vorticity [6].
Notice that, fixing the velocity U0 and the characteristic length L equal to one, the
Reynolds number of the problem is proportional to the cinematic viscosity:

Re =
1

ν
(4.6)

In Figure 4.2 we show the velocity field described by the initial conditions. To go into
details of the formulation of the TGV problem, we address the reader to [6, 16, 46]
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Figure 4.1: TGV. Boundary faces of the domain. Figure from [44]

Figure 4.2: TGV. Velocity (left) and pressure (right) field at the time-step t = 0.

4.2. Benchmark quantities

In this study, the reference data that we use for validation are provided by a DNS [9, 34].
The retrieved solutions are in terms of kinetic energy, dissipation rate and enstrophy of
the flow. Specifically, we compare the temporal evolution of these three integral quantities
computed by the DNS, with those computed with the dynamic and quasi-static VMS-LES
methods. For the sake of clarity, we report the definitions of these quantities.
The kinetic energy of the flow reads as:

Ek(t) =

∫
Ω

1

2
ρu(x, t) · u(x, t)dΩ (4.7)

while the enstrophy is defined as:

Eω(t) =

∫
Ω

1

2
ρωωω(x, t) ·ωωω(x, t)dΩ (4.8)
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where ωωω = ∇× u is the vorticity of the fluid, defined as the curl of velocity.
However, the DNS solution retrieves dimensionless quantities, obtained by normalizing
kinetic energy and enstrophy over domain’s volume and density, such that:

ek =
Ek(t)

ρ|Ω|
eω =

Eω(t)

ρ|Ω|
(4.9)

Finally, the dissipation rate of kinetic energy is defined as:

ϵ(t) = −dek(t)

dt
(4.10)

Under the assumption of incompressible flow, we can rearrange the (4.10) as function of
the enstrophy, such that:

ϵ(t) = 2
µ

ρ
eω(t) (4.11)

Before moving on, let us introduce the role of kinetic energy in the study of turbulence.
According to literature [17, 27–29], there are two regimes which can be distinguished in
turbulent flows. On one side, we have the diffusive regime, which is characterized by a
non-dissipative decay of eddies with bigger structure into smaller swirls. At this level,
it is possible to consider that the vorticity conservation holds. On the other side, when
the vortexes’ scale is small enough, viscosity becomes predominant over diffusion and
therefore, we witness the dissipation of kinetic energy by viscous stresses. In this second
regime we cannot consider the conservation of vorticity.
We can observe this process in Figure 4.3, where we report the evolution in time of kinetic
energy for the TGV problem: that kinetic energy drops after ten seconds and hence, the
dissipation rate blows up. This represents the time when the flow from diffusive becomes
viscous.

4.3. Numerical setup

As already introduced in Section 3.2, all calculations have been performed in the lifex

library. However, solving the TGV requires much greater computational efforts than the
Beltrami flow. Therefore, we have run all simulations employing the hardware resources
available in Politecnico di Milano’s Laboratory for Modelling and Scientific Computing
(MOX). In particular, we have used Xeon Gold 6238R @2.20GHz with 56 processors run-
ning in parallel.
The reference data comes from a Direct Numerical Simulation (DNS) based on a dealiased
pseudo-spectral code (developed at Université catholique de Louvain, UCL)[34]. The num-
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Figure 4.3: DNS solution of kinetic energy (left), and dissipation rate of kinetic energy
(right). Data from [34]

ber of refinements of this solution is 7, which consists in a grid with 512 elements per
edge, i.e. 5123 elements in the domain. Moreover, since the Reynolds number is equal to
1600, we set viscosity ν = 6.25 · 10−4 m2/s, according to (4.6).
The numerical setup of our methods follows from the optimization performed by T. Tassi.
in [44]. Hence, we apply the following settings to the four VMS-LES methods resumed
in Sections 2.4.1 and 2.4.2: we fix the degree of BDF equal to three, we set biquadratic
(Q2−Q2) elements for both pressure and velocity coarse scale solutions and we consider
a mesh made of hexahedra, with five refinements (Nel = 512) per edge. According to the
conclusions of T.Tassi’s work, this setup represents a good compromise between accuracy
and computational cost.
However, since the computational cost of the dynamic VMS-LES method is very high, we
truncate the simulation at the time Tf = 5s for the semi-implicit methods and Tf = 2.3s

for the implicit ones, which require much larger resources. With this choice we are able
to capture the beginning of the energy dissipation due to turbulence, with a reasonable
time of simulation.

In Table 4.1 we resume the numerical setup of our simulations.

4.4. Numerical results

In this section we present the results of validation. We analyse the kinetic energy, its dis-
sipation rate and enstrophy, separately. Than, in Section 4.5 we discuss our achievement,
comparing them with the theoretical results and the results of verification.
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Final time (T ) 5 - 2.3 s

Reynolds number (Re) 1600

FEM spaces Q2−Q2

BDF order 3

Mesh refinement NRef = 6

Table 4.1: Validation. Numerical setup.

Kinetic energy

In Figure 4.4 we compare the dynamic and quasi-static, implicit and semi-implicit VMS-
LES methods with respect to the kinetic energy results, we can see that:

• The quasi-static implicit and semi-implicit methods are those which better represent
the DNS solution. Indeed, we do not detect any additional sources of energy, which
may distort the results.

• The dynamic, implicit VMS-LES method shows an higher dissipation of kinetic
energy with respect to the reference solution. Therefore, may have an additional
dissipation which arise due to the mathematical formulation of the method, which
do not represent the physic of the problem.

• The dynamic, semi-implicit VMS-LES method diverges after few timesteps. This
may be caused by a non-physical dissipation which arises due to an error in the
implementation of the method. Indeed, we remind that this was the case which
was diverging also in the code verification. Therefore, we consider this result as an
additional proof of the conclusions of Chapter 3.

Dissipation rate of kinetic energy

Let us analyse the dissipation rate of kinetic energy. For this purpose, we compare the
results obtained with both definitions (4.10) and (4.11).
According to Figure 4.5, we highlight that:

• The quasi-static VMS-LES method, with either implicit or semi-implicit treatment
of non-linearities is following the DNS solution without any remarkable detachment
for both definitions of ϵk.
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Figure 4.4: Comparison of kinetic energy ek(t) for the dynamic and quasi-static VMS-LES
methods with implicit and semi-implicit treatment of non linearities

• The dynamic semi-implicit VMS-LES method is strongly divergent, in agreement
with all previous results.

• The dynamic, implicit VMS-LES method leads to different solutions for ϵk when
we compute it as the derivative of kinetic energy or through enstrophy. Indeed, by
focusing on the graph on the left of Figure 4.5, we can see that the macroscopic trend
of the dissipation rate is higher than the one of the reference solution. However, this
is coherent with Figure 4.4 since an higher dissipation means that we have a faster
decrease of energy, and this is exactly what we see in Figure 4.4. Notice that we
have mentioned a "macroscopic trend" since in Figure 4.5 ϵk shows an oscillating
pattern around a main trend. Besides this, we see from the graph on the right
of Figure 4.5 that no issues arise, when computing the dissipation rate of kinetic
energy as function of enstrophy, and all methods are almost overlapping the DNS
solution.

Enstrophy

Lastly, we analyse enstrophy. As it can be seen in Figure 4.6, we can state that:

• For the quasi-static implicit and semi-implicit, and for the dynamic semi-implicit
VMS-LES methods, we see the same behaviours as for the kinetic energy and its
dissipation rate.

• On the other side, the dynamic, implicit VMS-LES method shows a better rep-
resentation of the reference solution of enstrophy, with respect to the other two
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Figure 4.5: Dissipation rate of kinetic energy, computed with equation (4.10) on the left
and with (4.11) on the right.

quantities. This may suggest a possible issue in the computation of velocity, which
may be corrected or neglected when computing its rotor (i.e. vorticity).

Figure 4.6: Comparison of enstrophy eω(t) for the dynamic and quasi-static VMS-LES
methods with implicit and semi-implicit treatment of non linearities

4.5. Discussion of TGV results

The results of validation show that the quasi-static VMS-LES methods give a satisfying
approximation of the problem, while in some cases the dynamic semi-implicit and implicit
VMS-LES methods are less accurate. Let us go into details.
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By focusing on kinetic energy, we identify two issues. On the one side, the dynamic
semi-implicit method introduce a huge kinetic energy production, such that the solution
already explodes to infinite in few timesteps and therefore the solver is not able to com-
plete the simulations. On the other side, the dynamic implicit method shows an extra
dissipation of kinetic energy, which results in a worsening of the solution with respect to
the quasi-static method, when compared to the DNS reference data.
We believe that the nature of this two issues is profoundly different, since the first one
occurs also in the verification, while the second one arises only in the model validation.
Indeed, the dynamic implicit VMS-LES method may be consistent limited to the imple-
mentation, but not fully representative of the physic, while the dynamic semi-implicit
method may have some implementation issues. For this purpose, from now on in this
discussion we will not include the results of the dynamic semi-implicit VMS-LES method.

Let us focus on kinetic energy dissipation rate. First, we notice that regardless the
method we choose, we have different results when using equation (4.10) or (4.11). How-
ever, this is due to the fact that when we compute the time derivative of kinetic energy,
we introduce a numerical error related to the finite difference formula, which is avoided
employing equation (4.11) [30, 44]. Second, we see that the dissipation rate computed by
the dynamic implicit method trough equation (4.10) is much larger than the one computed
by the other two methods and the DNS. However, this may be related to the combination
of the two aforementioned issues: the extra dissipation of kinetic energy introduced by
this method and the numerical error of the finite differences formula.

Finally, focusing on the enstrophy results, the dynamic implicit method does not show
any worsening of the solutions with respect to the quasi-static methods, when compared
to the DNS reference data. If we consider that kinetic energy depends on the square of
velocity, while enstrophy depends on the square of vorticity, as defined in equations (4.4)
and (4.8), respectively, we may conclude that there is a dissipation acting only on velocity
and not on vorticity, which is its rotor.
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5| Flow past a carotid bifurcation

In Chapters 3 and 4 we have presented verification and validation for the quasi-static and
dynamic VMS-LES methods, respectively. Therefore, we have tested the two methods
only on idealised cases. In this Chapter, we want to extend our work to a real applica-
tion, hence we test the two methods on a patience-specific carotid.

5.1. The clinical problem of a stenotic carotid

As reported by the World Health Organization (WHO), in the last decade the leading
cause of death were cardiovascular diseases. In particular, a huge percentage of peo-
ple have died for ischaemic heart diseases and stroke. The common thread of this two
pathologies is atherosclerosis, the condition which arise when fat deposits, inflammatory
cells, and scar tissue settle in the artery causing a reduction of its cross section, called
stenosis [19, 31, 36]. In the stenotic region the blood flow may turn to turbulent, due to
the pressure gradient induced by the constriction of the vessel (Figure 5.1). The onset
of turbulence brings some drawbacks, such as: extra shear stresses on vessels’ walls; re-
circulation regions and a possible interaction between eddies and blood elements due to
the energy transfer which may arise if the two have a comparable scale. Therefore, to
understand the phenomenon and prevent pathological situation, a branch of research in
mathematical model is working to develop numerical methods able to represent turbulent
flows in biological applications.

Since the carotids are an ideal place for the formations of stenosis, due to their biological
conformation, in this chapter we test the quasi-static and dynamic VMS-LES methods
on a stenotic carotids.

The carotids are the two main arteries which bring oxygenated blood from the hearth
to the head. We have two carotids, one the left and one of the right (Figure 5.2). The
first part of a carotid, is called common carotid artery (CCA). It starts from the aorta
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and it goes through the neck until next to the larynx we have its bifurcation in external
carotid (ECA) and internal carotid (ICA). The ECA provides blood to: pharynx, esopha-
gus, larynx, mandible, scalp and face, while the ICA is the larger bifurcation which serves
most part of the ipsilateral cerebral hemisphere, the eye and its appendices, the forehead
and somewhat the nose and the ear [31, 37].

Figure 5.1: Atherosclerotic pathologies. A stenotic carotid (left) and the onset of turbu-
lence due to the vessel’s constriction (right). Figure taken from [49] and [48], respectively.

Figure 5.2: Scheme of the human carotids, the green spots highlight the bifurcation region
of each CCA into ICA and ECA. Figure taken from [47]
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5.2. Numerical setup

The case under consideration is the stenotic carotid presented in [31, 37, 40]. The blood
flow was derived thanks to an Echo-Colour-Doppler analysis, while the geometry was de-
rived by medical imagines of computed tomography (Angio Tac).

The stenosis has a diameter of 0.024 m and it is located in the ICA, immediately after
the bifurcation of the CCA. At the inlet section of CCA we assume a parabolic velocity
profile [11], which models the effect of heart pumping:

u(x, t) = −2Q(t)

πR2

(
1− r2(x)

R2

)
n̂in (5.1)

where R is radius of the inlet surface, r(x) is the radial position, n̂in is the outward-
pointing normal of the surface and Q(t) is the blood flow rate, shown in Figure 5.3.
We define the boundary faces as reported in Figure 5.4. We impose Dirichlet boundary
conditions on the inlet section ΓCCA, on the outlet face ΓECA and on the walls Γwalls, such
that: on the first one we fix the blood flow rate; on the second one we impose that the
flow is 30% of the input flow of ΓCCA and on the third one we impose a zero flow-rate to
represents impermeable walls. Finally, on ΓICA we impose a Neumann boundary condi-
tion, with homogenous pressure.
To model the blood we set the density equal to ρ = 1060 kg/m3 and the dynamic viscosity
µ = 0.0033 Pa · s.

Figure 5.3: Temporal profile of the inlet flow rate Q(t) imposed on ΓCCA. Figure taken
from [37]

The domain discretization provides a mesh of tetrahedra made of about 1,5 million active



52 5| Flow past a carotid bifurcation

Figure 5.4: Stenotic carotid: geometry (a), boundary faces definition (b). Figure taken
from [37]

cells with adaptive size, such that next to the bifurcation we have more refinements. In
Table 5.1 and 5.2 we report all mesh specifications.
We set linear FE spaces (P1 − P1) for both pressure and velocity space approximation,
and we perform the time discretization by means of the BDF3 scheme. Moreover, we fix
the timestep as ∆t = 2 · 10−3 s and we set a final time of Tf = 2.2 s. Notice that, in
our study we consider an hearth period of 1.09 s, which means an heart frequency of 65
BPM. Therefore, we are simulating two hearth cycles.

hmax 6.3174 · 10−4 m

haverage 2.4224 · 10−4 m

hmin 4.9289 · 10−5 m

Table 5.1: List of cell diameters for the adaptive mesh of the carotid.

5.3. Numerical results

In this section we compare the results obtained by the quasi-static and dynamic, implicit
VMS-LES methods. We first analyse the total kinetic energy and its dissipation rate.
Than we evaluate the behaviour of velocity and pressure.
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velocity DOFs 746184

pressure DOFs 248728

total DOFs 994912

total cells number 1500078

Table 5.2: Carotid. DOF specification

As it can be seen in Figure 5.5 the kinetic energy has a periodic trend with a peak
around t = 0.6s and a period of t = 1.09s, in agreement with an hearth frequency of 65
BPM. Moreover, the kinetic energy computed by the dynamic VMS-LES method follows
the same trend of that one computed by the quasi-static method, but it presents some
wiggles which periodically increase, for a small amount, its values. Hence, it becomes
meaningless to evaluate the dissipation rate of kinetic energy computed with equation
(4.10), since the computation of derivatives amplifies the wiggles (Figure 5.6, left). In-
deed, it is better to evaluate the dissipation rate of kinetic energy computed as (4.11),
which has a behaviour similar to the kinetic energy, (Figure 5.6, right).

For the solution visualization we focus on the ICA, since it is the vessel where we have the
stenosis. We analyse four timestep, which are t = 0.3s, t = 0.6s, t = 0.9s and t = 1.09s to
visualize a complete hearth cycle. In Figure 5.7 and 5.8 we report the velocity solutions.
We see that the dynamic VMS-LES method presents a region of high velocity downstream
of the stenosis, which does not appear in the solutions computed by the the quasi-static
method. However, the nature of this region is ambiguous since it shows a pulsating be-
haviour. In this regard, by focusing on three consequential instant ( t = 0.89s, t = 0.9s

and t = 0.91s) we observe that exactly in that region the velocity is changing magnitude
and direction instant by instant (Figure 5.9), which may be related to the wiggles of ki-
netic energy observed in Figure 5.5. However, we think that this evolution of the velocity
solution may be a purely numerical issue of the dynamic, implicit VMS-LES method, not
representing any physical behaviour of the blood flow.
Nevertheless, in this work we do not go into details of this problem, which may be caused
by the same issue that provokes the oscillations arising in model validation, and we leave
it as hint for further researches.

For the sake of completeness we report in Figure 5.10 the pressure solutions, for which no
issues arose.
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Figure 5.5: Space averaged total kinetic energy Ek(t) (4.4).

Figure 5.6: Dissipation rate of kinetic energy, computed with equation (4.10) (left) and
(4.11) (right) .
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(a) (b)

(c) (d)

Figure 5.7: Quasi-static, implicit VMS-LES. Velocity profile inside the ICA, across the
stenotic region. From (a) to (d) t = 0.3s, t = 0.6s, t = 0.9s, t = 1.09s
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(a) (b)

(c) (d)

Figure 5.8: Dynamic, implicit VMS-LES. Velocity profile inside the ICA, across the
stenotic region. From (a) to (d) t = 0.3s, t = 0.6s, t = 0.9s, t = 1.09s
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(a) (b) (c)

Figure 5.9: Dynamic, implicit VMS-LES method. Velocity field in the ICA for three
consecutive timesteps: t = 0.89s (a), t = 0.9s (b) and t = 0.91s (c).
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(a) (b)

(c) (d)

Figure 5.10: Quasi-static, implicit VMS-LES method. Pressure distribution of the carotid.
From (a) to (d) t = 0.3s, t = 0.6s, t = 0.9s, t = 1.09s
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6| Conclusions

This thesis concerns the software verification and the model validation of quasi-static
and dynamic VMS-LES methods for turbulent flows. We present a systematic analysis
of the two methods, to evaluate whether the dynamic improves the results of the quasi-
static method. However, despite some promising achievements, further analysis would be
necessary to completely assess our findings.

Software Verification

We perform the software verification on the Beltrami-flow benchmark, with the aim to
evaluate if there are any implementation error and if the methods are consistent. For
this purpose, we test both the quasi-static and the dynamic VMS-LES methods, coupled
with either implicit or semi-implicit treatment of non-linearities. Our numerical tests
highlighted three important conclusions.
First, the errors computed with both quasi-static and dynamic implicit VMS-LES methods
are convergent with respect to the mesh refinement. Moreover, compared to the quasi-
static, the dynamic method is improving the results in turbulent conditions, since it leads
to slightly lower errors.
Second, the dynamic approximation of fine scales is effectively solving the inconsistency
against which it has been formulated. Indeed, while in the quasi-static scheme the pressure
stabilization parameter τC blows up when reducing the time-step (∆t), possibly affecting
accuracy and stability of the numerical solution, in the dynamic method τ̃C is constant
for every ∆t.
Third, by using the semi-implicit formulation instead of the implicit one, pressure and
velocity errors computed by the dynamic VMS-LES method blow up when increasing the
mesh-refinement. Therefore, this method, with respect to the software verification, is not
converging.
Our hint for future research, is to further analyse the implementation of the dynamic,
semi-implicit VMS-LES method. We underline that this approach may represent an
important improvement over the implicit scheme, since it allows to significantly reduce
the simulation time.
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Moreover, we have detected a behaviour of pressure errors which is not in agreement with
the theoretical estimates, as are velocity errors, since it is sensible to the choice of the
Reynolds number and of the method. Therefore, an interesting topic will be to deepen
the effect of stabilization on pressure.

Model Validation

The model validation of the quasi-static and dynamic VMS-LES methods, with semi-
implicit and implicit treatment of non-linearities, has retrieved that the quasi-static meth-
ods better represent the benchmark quantities than the dynamic.
On the one hand, in the dynamic semi-implicit VMS-LES method, both energy and en-
strophy blow up to infinite after few timesteps and therefore, the solver is not able to end
the simulations. This may be consistent with the hypothesis of an implementation error,
retrieved by the software verification.
On the other hand, the benchmark quantities computed by the dynamic implicit VMS-
LES method does not explode to infinite, but they do not represent the reference data with
the same accuracy as the quasi-static implicit and semi-implicit methods. In particular,
compared to the DNS data, the dynamic implicit method introduces an extra dissipation
of kinetic energy, which leads to either a lowering of Ek(t) in time, or an increase of the
dissipation rate. Moreover, the dissipation rate (of kinetic energy) shows an oscillating
behaviour around a macroscopic trend.
Since these two issues appear only in validation, we believe that they are related to the
physics of the problem and in particular, to the ability of the method to represent turbu-
lence.
As hint for further researches, we suggest to perform the model validation changing a
variety of physical quantities, to find out whether the extra dissipation and the oscillating
behaviour of the results are somehow related to the physical properties.

Real application

In the last chapter of this thesis, we have applied the quasi-static and dynamic implicit
VMS-LES methods, to a patience-specific stenotic carotid. We have obtained similar
results to those retrieved by the model validation, meaning that our benchmark is repre-
sentative of real applications.
Indeed, by comparing the physical quantities, we see that both the kinetic energy and
the dissipation rate computed by the dynamic method, present an oscillating behaviour
around a macroscopic trend, where the macroscopic trend overlaps the solution yielded
by the quasi-static method. In this regard, we think that these oscillations may not be
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representative of the physics of the problem, but related to a numerical issue.
Therefore, an interesting topic for future researches is to further investigate the nature of
these wiggles, which affect the accuracy of the dynamic VMS-LES method, with respect
to the quasi-static.

Final consideration and further developments

To conclude this work we want to highlight two remarks, which may be influence further
works:

• According to literature, the dynamic VMS-LES method has been introduced after
the quasi-static, to correct its inconsistency. Its formulation is obtained from the
one of the quasi-static method by simple changing the definition of the stabilization
parameters. However, from a theoretical point of view, we may think the contrary
and hence, that the quasi-static is a simplification of the dynamic. Indeed, the
equations to define the velocity fine-scale solutions are the same for both methods,

but in the quasi-static we assume
∂u′

∂t
= 0. Accordingly, in the final formulation of

the quasi-static method we simplify the term
(
vh, ρ

∂u′

∂t

)
, but we should include it

in the final formulation of the dynamic VMS-LES method.
However, the actual definition of the dynamic VMS-LES method is neglecting this
term.

• Overall the dynamic VMS-LES method has proved to solve the inconsistency against
which it was introduced. However, in this work, it has shown to be less accurate and
reliable (when changing the non-linearities treatment) than the quasi-static method.
In this regard, we believe that it represents an improvement to the quasi-static, but
it still need to be "fine-tuned".
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In this appendix we want to discuss the relationship between the convergence of ph with
respect to the mesh size and the definition of the stabilization parameters.
We know that:

p′ ≈ −τC(uh)rc(u
h) (A.1)

for the quasi-static approach we have:

τC(uh) =

(
σ2
t ρ

2

∆t2
+ ρ2uh · Guh + Crµ

2G : G
) 1

2

(g · g)−1 (A.2)

for the dynamic we have:

τ̃C(uh) =
(
ρ2uh · Guh + Crµ

2G : G
) 1

2 (g · g)−1 (A.3)

with:
rC(uh) = ∇ · uh (A.4)

being ∆t ≪ 1
σ2
t ρ

2

∆t2
≫ Crµ2 (A.5)

moreover, the inequality is stronger if Re = 1000 since ρ ≫ µ.
Therefore, we can neglect the term Crµ

2G : G both in the quasi - static and in the
dynamic methods, such that for the quasi-static we have:

p′ ∼
(
σ2
t ρ

2

∆t2
+ ρ2uh · Guh

) 1
2

∇uh (g · g)−1 (A.6)

and for the dynamic:

p′ ∼ ρ
(
uh · Guh

) 1
2 ∇ · uh (A.7)

Let us derive the polynomial degree of p′ from equations (A.6) and (A.7). Assuming
elements of degree n for uh we approximate uh ∼ O(hn). We neglect the operators G
and g since they are purely geometrical transformations which do not affect the order of
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p′ and we define the constant K2 =
σ2
t ρ

2

∆t2
.

Accordingly, from equations (A.6) we have:

p′ ∼
(
K2 + ρ2O(hn) · O(hn)

) 1
2 O(hn−1)

∼
(
K2 + ρ2O(h2n)

) 1
2 O(hn−1) (A.8)

and from equation (A.7):

p′ ∼
(
ρ2 O(hn) · O(hn)

) 1
2 O(hn−1)

∼ ρ O(hn)O(hn−1)

∼ ρ O(h2n−1) (A.9)

If we consider a mesh-refinement analysis, h tent to zero. Therefore, we can neglect the
second term of the square root in equation (A.8) obtaining the following expression:

p′ ∼ K O(hn−1) (A.10)

According to the VMS-LES theory:

pREF = ph + p′ (A.11)

where p′ represent the degree of uncertainty and pREF is the reference, i.e. the analytical,
solution. By reducing the number of refinement, the finite element solution (i.e. coarse
scale solution) should be more precise, such that for h → 0, ph → pREF . However, accord-
ing to equation (A.11), the rate of convergence of ph may be affected by the asymptotic
behaviour p′, which in equations (A.10) and (A.9) changes by changing the number of
Reynolds and moving from a quasi-static to a dynamic approach.
In this regard, the definition of the stabilization parameters and the fine scale approxi-
mation, may interact with the convergence of the method, and the weight of this effect is
influenced by the Reynolds number.
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