
POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

ENHANCING HUMAN-ROBOT COLLABORATION

FOR FLEXIBLE MANUFACTURING

IN INDUSTRY 4.0

Doctoral Dissertation of:
Riccardo Maderna

Supervisor:
Prof. Paolo Rocco
Tutor:
Prof. Luca Bascetta
The Chair of the Doctoral Program:
Prof. Barbara Pernici

Year 2020 – Cycle XXXIII





"Uno no es por lo que escribe, sino por lo que ha leído"
Jorge Luis Borges





Abstract

THE current global economy is increasingly characterised by quickly
changing markets, small batch production, and mass customization.
For this reason, companies are required to meet a high level of flex-

ibility to stay competitive. Flexible manufacturing is an approach that al-
lows satisfying the needs of customers while maintaining high quality stan-
dards. In this context, advances in industrial robotics and human-robot col-
laboration are playing a key role to provide companies with an adaptable
and powerful tool capable of enhancing efficiency and flexibility of man-
ufacturing processes. Humans leverage their superior cognitive and ma-
nipulative skills to perform operations that are difficult to automate or that
require high-level decision-making. On the other hand, robots can relieve
operators from repetitive and laborious tasks and assist humans in many
ways.

This thesis aims to propose a solution to the problem of controlling the
production of a flexible manufacturing cell. In particular, the focus has
been placed on multi-product assembly lines, consisting of several humans
and robots working together in a shared workspace. Versatile scheduling
algorithms are needed to organise the complex work-flow and fully exploit
the available flexibility, ensuring the optimal use of resources and the smart
management of unexpected events. Also, good productivity must be kept
regardless of changes in production plans and the intrinsic variability of
human behaviour. Thus, the work develops around two main objectives:

1. Monitoring and predicting the evolution of the ongoing human activity
in real-time. This is beneficial for task scheduling, as knowing the

I



progress of the current task allows for better coordination among the
agents. Two different strategies have been developed, which account
for the fact that humans can perform the same operation in many ways
and with different speeds, occasional errors, and short pauses.

2. Dynamically scheduling the tasks of the collaborating agents so as to
optimise productivity. In the proposed approach, a Digital Twin based
on Timed Petri Nets tracks the state of the collaborative workspace
in real-time based on data coming from the robot controllers and the
human monitoring unit. The Digital Twin is then used to simulate the
future evolution of the system and determine the optimal instructions
for humans and robots with a receding horizon approach. This allows
dynamically adapting the schedule to the system variability and the
occurrence of robot faults.

Additionally, the convenience of introducing collaborative robots in the
kitting process has been investigated. Kitting is a key logistic task in flexi-
ble manufacturing, which consists in grouping separate items together to be
supplied as one unit to the assembly line. At present, it is usually performed
manually by human operators, but robots may help to reduce the operator’s
effort and increase productivity. Thus, an online scheduling algorithm to
guide the picking operations of the human and the robot is also presented
in this thesis.

A consideration that underlies the entire work is that flexible manufac-
turing is characterised by frequent production changes, which reflect in
changes in the workspace layout and in the operations to be performed.
Therefore, requirements on the framework developed in this thesis were
ease of set up and update, and strong learning capabilities. This is espe-
cially true when human behaviour is considered, which is difficult to fully
define a priori and also changes over time, e.g. due to training and fatigue.

II



Sommario

L’ATTUALE economia globale è sempre più caratterizzata da mercati
in rapida evoluzione, produzione a piccoli lotti e personalizzazio-
ne di massa. Per questo motivo, le aziende devono raggiungere

un elevato livello di flessibilità per rimanere competitive. La produzione
flessibile è un approccio che consente di soddisfare le esigenze dei clien-
ti mantenendo elevati standard di qualità. In questo contesto, i progressi
nella robotica industriale e la collaborazione uomo-robot stanno giocando
un ruolo chiave per fornire alle aziende uno strumento versatile e potente
in grado di migliorare l’efficienza e la flessibilità dei processi produttivi.
Le persone sfruttano le loro migliori capacità cognitive e manipolative per
eseguire operazioni difficili da automatizzare o che richiedono processi de-
cisionali di alto livello. D’altra parte, i robot possono alleviare gli operatori
da compiti ripetitivi e faticosi e aiutare le persone in molti modi.

Questa tesi ha l’obiettivo di proporre una soluzione al problema del con-
trollo della produzione di una cella di produzione flessibile. In particolare,
l’attenzione è stata posta su linee di assemblaggio multi-prodotto, costitui-
te da diversi umani e robot che lavorano insieme in uno spazio di lavoro
condiviso. Sono necessari algoritmi di pianificazione versatili per organiz-
zare il complesso flusso di lavoro e sfruttare appieno la flessibilità dispo-
nibile, garantendo l’uso ottimale delle risorse e la gestione intelligente di
eventi imprevisti. Inoltre, deve essere mantenuta una buona produttività in-
dipendentemente dai cambiamenti nei piani di produzione e dall’intrinseca
variabilità che caratterizza il comportamento umano. Pertanto, il lavoro si
sviluppa attorno a due obiettivi principali:

III



1. Monitorare e prevedere in tempo reale l’evoluzione dell’attività uma-
na in corso. Ciò è utile per la pianificazione delle attività, poiché
conoscere lo stato di avanzamento dell’attività corrente consente un
migliore coordinamento tra gli agenti. Sono state sviluppate due stra-
tegie distinte, che considerano il fatto che le persone possono eseguire
la stessa operazione in molti modi e a velocità diverse, facendo errori
occasionali e brevi pause.

2. Pianificare dinamicamente le operazioni degli agenti collaborativi per
ottimizzare la produttività. Nell’approccio proposto, un Digital Twin
basato su Reti di Petri Temporizzate tiene traccia in tempo reale dello
stato dell’area di lavoro condivisa sulla base dei dati provenienti dai
controllori dei robot e dall’unità di monitoraggio degli operatori. Il
Digital Twin viene quindi utilizzato per simulare l’evoluzione futura
del sistema e determinare le istruzioni ottimali per uomini e robot se-
guendo un approccio receding horizon. Questo consente di adattare
dinamicamente il piano alla variabilità del sistema e al verificarsi di
guasti del robot.

In aggiunta, è stata studiata la convenienza di introdurre robot collabora-
tivi nel processo di kitting. Il kitting è un’operazione chiave nella logistica
per la produzione flessibile e consiste nel raggruppare insieme articoli sepa-
rati da fornire come un’unica unità alla catena di montaggio. Oggigiorno,
viene solitamente eseguita manualmente da operatori umani, ma i robot
possono aiutare a ridurre lo sforzo sostenuto dall’operatore e aumentare la
produttività. Perciò, in questa tesi viene presentato anche un algoritmo di
pianificazione online per guidare le operazioni di picking dell’uomo e del
robot.

Una considerazione che sta alla base dell’intero lavoro è che la produ-
zione flessibile è caratterizzata da frequenti cambiamenti di produzione,
che si riflettono in cambiamenti nel layout dell’area di lavoro e nelle ope-
razioni da eseguire. Quindi, requisiti per il framework sviluppato in questa
tesi sono stati la facilità di allestimento e modifica, e le elevate capacità
di apprendimento. Questo è particolarmente vero quando si considera il
comportamento umano, che è difficile da definire completamente a priori e
cambia anche nel tempo, per esempio a causa di una maggiore esperienza
o affaticamento.

IV



Contents

1 Introduction 1
1.1 Background works . . . . . . . . . . . . . . . . . . . . . . 2
1.2 Thesis contributions . . . . . . . . . . . . . . . . . . . . . 5

I Real-time monitoring of human activity 11

2 Modelling and parsing of human activity 13
2.1 Solution concept . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Tracking of human motion . . . . . . . . . . . . . . 16
2.2 Learn the model of human task . . . . . . . . . . . . . . . . 17

2.2.1 Automatic segmentation of human activity . . . . . . 18
2.2.2 Generation of the task model . . . . . . . . . . . . . 20

2.3 Dynamic Time Warping-based classifier of human actions . 21
2.3.1 Dynamic Time Warping algorithm . . . . . . . . . . 21
2.3.2 Classification of human actions . . . . . . . . . . . . 24

2.4 Real-time parsing of human activity . . . . . . . . . . . . . 26
2.4.1 Exploitation . . . . . . . . . . . . . . . . . . . . . . 27

2.5 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.5.1 Training phase . . . . . . . . . . . . . . . . . . . . . 30
2.5.2 Experimental results . . . . . . . . . . . . . . . . . . 30

3 Progress–based human monitoring 37
3.1 Progress–based estimation of task duration . . . . . . . . . 39
3.2 Dynamic Time Warping-based algorithm . . . . . . . . . . 40

V



Contents

3.2.1 Occlusions handling . . . . . . . . . . . . . . . . . . 41
3.2.2 Management of low-information template sections . . 42
3.2.3 Warping paths merging . . . . . . . . . . . . . . . . 45
3.2.4 Activity duration estimate . . . . . . . . . . . . . . . 46
3.2.5 Selection of the reference . . . . . . . . . . . . . . . 48
3.2.6 Experiments . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Robust monitoring with task variants and errors . . . . . . . 53
3.3.1 Reference template structure . . . . . . . . . . . . . 55
3.3.2 Early recognition of task variants . . . . . . . . . . . 58
3.3.3 Estimate of task advancement and expected duration . 60
3.3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . 62

II Dynamic scheduling of flexible collaborative cells 71

4 Control system architecture 73
4.1 Proposed control system architecture . . . . . . . . . . . . . 75
4.2 Digital twin for flexible collaborative cells . . . . . . . . . . 78

4.2.1 High-level job definition . . . . . . . . . . . . . . . . 79
4.2.2 Digital twin model . . . . . . . . . . . . . . . . . . . 84

4.3 Management of robot faults and human errors . . . . . . . . 87
4.3.1 Robot faults . . . . . . . . . . . . . . . . . . . . . . 89
4.3.2 Human errors . . . . . . . . . . . . . . . . . . . . . 91
4.3.3 Other failure cases . . . . . . . . . . . . . . . . . . . 92

5 Dynamic scheduling algorithm 95
5.1 Receding horizon scheduling . . . . . . . . . . . . . . . . . 96

5.1.1 Digital Twin for simulation purpose . . . . . . . . . . 97
5.1.2 Evaluation of feasible future evolutions . . . . . . . . 98
5.1.3 Pruning strategies . . . . . . . . . . . . . . . . . . . 103
5.1.4 Dispatching and replanning . . . . . . . . . . . . . . 106

5.2 Haptic interfaces . . . . . . . . . . . . . . . . . . . . . . . 107
5.2.1 Human input to the scheduler . . . . . . . . . . . . . 109
5.2.2 Instructions from the scheduler to the human . . . . . 110

5.3 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.3.1 Heuristic pruning performance . . . . . . . . . . . . 111
5.3.2 Sensitivity analysis . . . . . . . . . . . . . . . . . . 112
5.3.3 Target mix tracking . . . . . . . . . . . . . . . . . . 115
5.3.4 Comparison with other schedulers . . . . . . . . . . 115

5.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 117
5.4.1 Experimental setup and protocol . . . . . . . . . . . 118

VI



Contents

5.4.2 Results and discussion . . . . . . . . . . . . . . . . . 122
5.4.3 Error management . . . . . . . . . . . . . . . . . . . 126

6 Dynamic scheduling of collaborative kitting operations 133
6.1 Ergonomic measurement . . . . . . . . . . . . . . . . . . . 135
6.2 Dynamic scheduling algorithm . . . . . . . . . . . . . . . . 137

6.2.1 MILP definition . . . . . . . . . . . . . . . . . . . . 139
6.2.2 Receding horizon scheduling . . . . . . . . . . . . . 142

6.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.3.1 Makespan versus strain trade-off . . . . . . . . . . . 145
6.3.2 Experimental results . . . . . . . . . . . . . . . . . . 146

7 Conclusions 151
7.0.1 Future developments . . . . . . . . . . . . . . . . . . 153

A Virtual simulation of a flexible assembly cell 155
A.1 Simulation of the assembly process . . . . . . . . . . . . . 157
A.2 Simulation of the system variability . . . . . . . . . . . . . 159
A.3 Communication with the external scheduler . . . . . . . . . 160

A.3.1 Validation tests . . . . . . . . . . . . . . . . . . . . . 161

Bibliography 173

VII





CHAPTER1
Introduction

SINCE decades, industrial robotics has been one of the key technolo-
gies that fostered productivity and cost reduction in manufacturing,
largely contributing to the rise of mass production. Starting from the

automotive industry, robots have been progressively adopted for various ap-
plications, such as welding, painting, packaging, palletizing, assembly, and
machine tending. In general, robots have been designed to replace human
operators in performing repetitive, dangerous, or laborious activities. How-
ever, due to safety concerns, their adoption has been subjected to a strict
separation between humans and robots, with the latter placed in isolated
cells protected by fences [42, 65].

The present-day global economy is rapidly transitioning from mass pro-
duction to mass customization, which is characterised by high-mix low-
volume production and frequent changes of products and processes. For
this reason, companies are required to meet a high level of flexibility to stay
competitive. In recent years, the novel paradigm of Industry 4.0 is gaining
momentum to respond to the current economic situation [46]. Industry 4.0
fosters the transformation toward the so-called smart factory, where in-
terconnected cyber-physical systems cooperate to optimise performance in

1



Chapter 1. Introduction

real-time [47]. The rigidity of the long-established paradigm for industrial
automation and robotics does not fit this new scenario [11]. Instead, ad-
vances in human-robot collaboration are playing a key role in providing
companies with an adaptable and powerful tool capable of enhancing effi-
ciency and flexibility of manufacturing processes [24, 53, 76, 159].

Collaborative robotics removes the physical separation and allows robots
and humans to share the same environment and work closely with each
other [5]. On the one hand, the reduction in cost and space consumption
favours the spread of robots within Small and Medium-sized Enterprises
(SMEs). In fact, despite the constant growth in the number of robot instal-
lations [66], most SMEs do not have the budget and the expertise to buy, in-
stall, and program fully robotised manufacturing lines. On the other hand,
collaborative robotics is particularly interesting for those companies and
manufacturing processes where manual work is still prevalent. Whereas
robots can relieve workers from fatiguing and alienating tasks, humans can
leverage their superior cognitive and manipulative skills to perform op-
erations that are difficult to automate or that require high-level decision-
making. Moreover, the presence of the human reduces the need for a struc-
tured environment and allows for greater flexibility in the face of changes in
the production. For this reason, several works in the literature concentrate
on defining systematic and quantitative methods to identify the operations
of a manufacturing process that could benefit the most from the introduc-
tion of human-robot collaboration [50, 156, 171]. Moreover, thanks to the
reduction in cost and the greater adaptability and ease of use that human-
robot collaboration entails, non-industrial applications are also developing,
such as medical and household robotics.

1.1 Background works

Several challenges arise when dealing with human-robot interaction, that
must be solved to achieve effective collaboration. Primarily, the safe coex-
istence of humans and robots in the shared workspace must be ensured. As
such, safety issues have been the main research focus in the past years and
have been addressed from different perspectives [135]. Standard industrial
robots are designed to work in protected environments and cannot work
alongside human workers without the risk of causing severe injuries due to
high speed and forces [52]. Therefore, as already mentioned, a new gener-
ation of robots called collaborative robots (or cobots) has been designed to
be inherently safe. From the point of view of the appearance, this means
lighter structures, the elimination of dangerous edges, and the adoption of

2



1.1. Background works

soft covers to limit damages in case of collisions. For the same reason,
the maximum speed and force that the robot can exhibit are limited by de-
sign [43]. Novel engineering solutions have been specifically developed for
the design of cobots. For instance, a new actuation concept that reduces the
impact loads is developed in [172], while [101] proposes a framework for
safer robot design based on injury analysis by merging injury biomechanics
data and robot collision behaviour.

In addition to hardware solutions, safety-oriented functionalities are em-
bedded in the form of advanced control algorithms that comprise colli-
sion avoidance, collision detection, and human motion tracking. Collision
avoidance strategies try to prevent impacts between humans and robots alto-
gether. Current safety standards [42,43] define the so-called speed and sep-
aration monitoring principle, i.e. safety is ensured by keeping a minimum
distance between the manipulator and the worker’s body, which depends on
the robot velocity and payload [168]. If the operator moves too close to the
cobot, the latter slows down until a complete stop. Safety-oriented control
architectures are presented in [72], which introduces the artificial potential
field method, in [12, 82, 126], based on the definition of a Danger Field,
and in [52], which leverages injury knowledge based on medical observa-
tion. As for real-time collision detection, examples can be found in [51],
which compares different collision detection and reaction strategies to min-
imise the negative effects following an impact with the human, [53], which
exploits a vision sensor, and [45, 141], which instead address the problem
without requiring dedicated sensors.

More advanced strategies can be conceived using a sensing system that
can detect the presence of human beings and track their movements in the
space near the robot. [33, 125, 136] propose approaches based on vision
sensors, while [108] detects the worker with the help of high-visibility
clothing. Depth data are also exploited in [41, 109, 127] to better quan-
tify distances and occupancy volumes. Instead, [110] proposes the adop-
tion of pressure-sensitive sensors embedded in the floor to track human
motion. With this information, the robot can operate in the nominal condi-
tion when there is no danger for the workers and take appropriate actions
otherwise, such as reducing velocity [80, 168] or modifying the trajectory
online with a reactive [41,107,127] or proactive [17,83] approach. One can
notice that the application of the aforementioned strategies results in non-
deterministic durations of robot trajectories. In [118], the authors provide
an estimate considering a probabilistic description of the space occupied by
the humans.

At present, the maturity of the state of the art on safe human-robot inter-

3



Chapter 1. Introduction

action makes it possible for the agents to coexist in a shared workspace
without the risk of serious danger. Also, collaborative robots have be-
come faster, more accurate, and reliable. As a matter of fact, many robot
manufacturers have designed cobots that are being sold to companies all
around the world. As such, attention has turned from allowing mere co-
existence to enhancing real collaboration among the agents working in the
shared workspace. The strategic importance of this field of research is con-
firmed by the funding of numerous European projects on the topic, most
of which are still in progress. For instance, the CoLLaboratE project [1]
aims to develop a comprehensive framework for human-robot collabora-
tion for assembly operations. Robots are equipped with adaptable skills
and can learn collaborative tasks from human demonstrations. In the Col-
Robot project [2], the robot acts as a third hand by delivering parts and
tools to the human worker. The operator, for his/her part, communicates
with the cobots using gestures and tactile commands. Instead, the SHARE-
WORK project [3] intends to provide companies with a modular system
capable of perceiving the environment and understanding human actions
through smart sensors, augmented reality, and gesture and speech recogni-
tion in order to ensure more effective cooperation. Finally, the THOMAS
project [4] wants to develop a mobile dual-arm cobot endowed with high
cognitive capabilities for reconfigurable manufacturing systems.

A prerequisite that enables fluent and effective human-robot collabora-
tion is the understanding of human behaviour. To do so, exteroceptive sen-
sors, artificial intelligence, and machine learning are becoming pervasive in
robotics. Several probabilistic models have been exploited to predict human
intentions: Gaussian processes [91, 164], conditional random fields [74],
hidden Markov models [87], and others [6, 95, 132]. Given knowledge on
the current human intention, the robot can better assist the human in ac-
complishing the collaborative task. For instance, [79, 143] deal with the
comfortable and reliable handover of parts, while [67, 119, 139] address
human-robot co-manipulation of bulky objects. Specifically, [139] focuses
on learning collaborative strategies from demonstrations whereas [67, 119]
concentrate more on ergonomics aspects. The pros and cons of anticipa-
tory robot response, which can benefit performance but also be perceived
negatively by the operator, have been investigated in [7, 64].

Nowadays, assembly operations are one of the most typical applications
for human-robot collaboration. Monitoring the human allows for better co-
ordination of the agents, which in turn fosters correct task allocation and
scheduling. Usually, a one-to-one scenario where a single human cooper-
ates with a single robot is considered. In [58, 81] the robot predicts when

4



1.2. Thesis contributions

and which specific assistive actions, e.g. providing parts and tools, are re-
quired based on the sequence of operations performed by the human. To in-
fer the worker’s behaviour, the authors exploit hidden Markov models and
dynamic Bayesian networks, respectively. Several planning strategies to
determine the best sequence of actions for humans and robots can be found
in the literature. For instance, centralised methods are presented in [21],
based on genetic algorithms, [68], which leverages A* search on AND/OR
graphs, and [49], which formalises the problem as a Mixed Integer Linear
Programming optimization. Instead, [29, 93] propose decentralised control
schemes.

Although most works aim to maximise productivity, some of them ad-
dress the problem from perspectives that are peculiar to human-robot in-
teraction. In [55, 128], the authors investigate the effects of the human’s
trust in the robot both in terms of efficiency and the worker’s well-being.
Instead, [106] studied how the operator’s role during collaboration (that
can be either leader or follower) influences his/her psychophysiological re-
sponse and production rate. In [165], the authors propose to switch among
predetermined assembly sequences based on human preferences. [20] ex-
ploits multimodal robot communication through speech, gaze, gestures, and
manipulation to increase the fluency of collaboration. Also, [13] compares
the effects of different multimodal feedback on user performance. As a
matter of fact, providing the human with information to better understand
the robot actions can be as important as the robot’s understanding of hu-
man behaviour [32, 120]. Methods to improve human situation awareness
in HRC through visual, auditory, and tactile feedback have been proposed
in the literature [18,159]. Moreover, recent technologies such as augmented
reality have been exploited for this purpose [97].

A more in-depth discussion of the state of the art for relevant topics
is presented in the introductions of the chapters of the thesis, whereas the
main contributions and the outline of the thesis is reported in the following
Section.

1.2 Thesis contributions

The present thesis provides methods and tools to control the production of
a flexible manufacturing cell, where multiple humans and robots cooperate
to assemble different products. Flexible manufacturing is characterised by
time-varying mix and frequent production changes, which reflect on modi-
fications in the workspace layout and the operations to be performed. In this
scenario, it is crucial to reduce set-up times as much as possible, favouring

5



Chapter 1. Introduction

plug-and-play and easily reconfigurable approaches. Also, learning capa-
bilities are key assets to adapt to the variability of the process. This is
especially true when human behaviour is considered, which is difficult to
fully define a priori and also changes over time, e.g. due to training and
fatigue. On the other hand, an estimate of the expected duration of the
ongoing activities is beneficial for task scheduling, as it allows for better
coordination among the agents. Versatile scheduling algorithms are needed
to organise the complex work-flow and fully exploit the available flexibil-
ity, ensuring the optimal use of resources and the smart management of
unexpected events. Also, good productivity must be maintained regard-
less of changes in production plans and the intrinsic variability of human
behaviour.

In this view, this thesis provides the following contributions:

1. It presents two distinct strategies to model, monitor, and predict the
advancement of the ongoing human activity in real time. Both meth-
ods consider the fact that humans can perform the same operation
in many ways and with different speeds, occasional errors, and short
pauses.

2. It introduces a formalism to automatically define and update a Digital
Twin of a multi-product collaborative assembly process, which also
models robot faults and human errors. The Digital Twin is the basis for
the complete control architecture that is responsible for task allocation
and scheduling.

3. It proposes a dynamic scheduling algorithm to plan the operations of
the collaborating agents so to optimise productivity while adapting the
schedule to the human variability and the occurrence of robot faults.

4. It describes a novel visuo-haptic user interface to give instructions to
human operators.

5. It investigates the convenience of introducing human-robot collabo-
ration to the kitting process to improve ergonomics and productivity.
In particular, a way to associate an ergonomic score to each picking
action and an online scheduling algorithm to guide the operations of
the human and the robot are provided.

All the developed algorithms have been tested on realistic industrial scenar-
ios to assess their performance and limitations.

The dissertation is organised as follows:

6



1.2. Thesis contributions

Part I discusses the problem of modelling and monitoring the current hu-
man activity. Attention focuses on assembly operations, although the
proposed frameworks can generalise to a wider scope of application.
Human tasks are seen as complex activities that can be accomplished
following several sequences of low-level actions, which compose dif-
ferent variants of the same task. Also, the possibility of execution
errors and small pauses is considered.

Chapter 2 describes a strategy to model and monitor the human activity
learning from demonstrations. The structure of the task, with all its
variants, is discovered in the training phase relying on the automatic
segmentation of human motion trajectories. Then, motion segments
are used to train a classifier to identify and parse the variant being per-
formed by the operator at run-time. This information has been used to
predict the most likely future evolution of the human activity in order
to better plan the assistive operations of a robot during collaborative
assembly.

Chapter 3 focuses on the real-time monitoring of human activity with the
primary objective of estimating its expected duration. The proposed
method is based on a modified version of the Dynamic Time Warping
algorithm and does not require any training phase. Instead, it learns
online from previous repetitions of the same activity and automatically
recognises previously unseen variants, which are added to the activ-
ity model. The prediction performance of the algorithm is discussed
with reference to an industrial assembly case and considers also the
presence of peculiar variants of the task, such as those associated with
errors.

Part II starts by defining the scheduling problem for flexible collaborative
cells and presenting the overall control architecture. Then, each of the
main system components is detailed. The proposed framework con-
siders multiple humans and robots working together for the assembly
of several products according to a time-varying mix. Particular atten-
tion is given to provide the system with strong adaptation and learning
capabilities, as required by the frequent changes that characterise flex-
ible manufacturing.

Chapter 4 describes the proposed control architecture. A Digital Twin of
the collaborative cell tracks the state of the assembly process in real-
time based on data coming from the robot controllers and the human
monitoring unit. Then, the current state of the Digital Twin is taken

7



Chapter 1. Introduction

as the initial condition by the scheduling algorithm, which exploits a
receding horizon approach to adapt the schedule to the system vari-
ability and the occurrence of robot faults. The Chapter continues by
detailing how to build the Digital Twin of the flexible manufacturing
cell, which models both the physical structure of the workspace and
the assembly tasks, including situations that originate from human and
robot failures. The Digital Twin is based on Petri Nets and is automati-
cally generated from the definition of the assembly products via Aug-
mented AND/OR Graphs. A procedure to easily update the Digital
Twin in the face of changes is also provided. Moreover, a way to inte-
grate the proposed architecture inside a commercial Product Lifecycle
Management software is presented in Appendix A, which provides a
virtual simulation environment for automatic manufacturing process
verification and commissioning.

Chapter 5 presents the scheduling algorithm used to determine the optimal
instructions for the humans and the robots working in the cell. Feasi-
ble future evolutions of the production are simulated starting from the
current state of the process, as given by the Digital Twin. To do so
a temporal description is added to the Petri Net model and its reach-
ability tree is explored. The best task plan is selected according to a
cost function that favours productivity and tracking of the target mix.
Furthermore, the chapter discusses a novel visuo-haptic interface to
give instructions to human operators and proves that it is a viable and
effective solution for complex human-robot collaboration scenarios.

Chapter 6 applies the human-robot collaboration concept to the kitting
process, which is a key logistic task in flexible manufacturing. Pure
manual kitting, i.e. the current industrial standard, may induce the
development of work-related musculoskeletal disorders. Therefore, a
receding horizon dynamic scheduler is proposed with the aim of en-
hancing both ergonomics and productivity. For this purpose, a method
to associate an ergonomic measure to each picking action is also pre-
sented. The scheduler is formalised as a Mixed-Integer Linear Pro-
gramming optimization and ensures the coordination of the agents to
prevent collisions.

Chapter 7 briefly reviews the contributions and the limitations of the the-
sis, while also suggesting directions for further developments.

The findings and results contained in this thesis are based on the follow-
ing publications:

8



1.2. Thesis contributions

• R. Maderna, P. Lanfredini, A. M. Zanchettin and P. Rocco, "Real-time
monitoring of human task advancement," 2019 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems (IROS), Macau,
China, 2019, pp. 433-440.

• R. Maderna, M. Poggiali, A.M. Zanchettin and P. Rocco, “An online
scheduling algorithm for human-robot collaborative kitting,” 2020
IEEE International Conference on Robotics and Automation (ICRA),
Paris, France, 2020.

• R. Maderna, M. Ciliberto, A.M. Zanchettin and P. Rocco, “Robust
real-time monitoring of human task advancement for collaborative
robotics applications,” 2020 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), Las Vegas, NV, 2020.

and on the following submitted material:

• R. Maderna, M. Pozzi, A. M. Zanchettin, P. Rocco and D. Prattichizzo,
"Flexible Scheduling and Tactile Communication for Human-Robot
Collaboration," submitted to journal, July 2020.

Finally, the following publications contain relevant results in the field of
industrial robotics, which are not covered in the present document:

• R. Maderna, A. Casalino, A. M. Zanchettin and P. Rocco, "Robotic
Handling of Liquids with Spilling Avoidance: A Constraint-Based
Control Approach," 2018 IEEE International Conference on Robotics
and Automation (ICRA), Brisbane, QLD, 2018, pp. 7414-7420.

• R. Maderna, A. Gatti, D. Nicolis, A. M. Zanchettin and P. Rocco,
"Telerobotic handling of liquids in open containers: an optimization-
based bilateral controller for spilling avoidance," submitted to journal,
July 2020.

9





Part I

Real-time monitoring of human
activity

11





CHAPTER2
Modelling and parsing of human activity

based on demonstrations

In collaborative robotics applications, human behaviour is a major source
of uncertainty. Therefore, monitoring and predicting the evolution of the
current human activity is beneficial to the effectiveness of task planning,
as it enables a higher level of coordination between robots and humans. In
particular, robots must adapt to the operator, who can perform each task in
many ways and with different speeds, occasional errors, and short pauses.
Moreover, training, distraction, and fatigue influence the workers’ actions.

The problem can be addressed at different levels, such as the classifi-
cation of the current human task, the prediction of the future sequence of
operation performed by the operator, and the monitoring of the ongoing
activity. In [57], the author proposes a complete framework for human ac-
tivity recognition to provide a human-machine interface for the integration
of human workers in intelligent manufacturing systems. Instead, Hidden
Markov Models were trained in [28, 71] to infer the current human activ-
ity. In [123] and [170], task classification is achieved by early prediction of
the target of reaching motions. [123] relies on an offline training phase to
construct motion libraries that are then used for Bayesian classification in

13



Chapter 2. Modelling and parsing of human activity

real-time. Differently, Zanchettin and Rocco [170] exploited a model-based
approach to generate trajectories associated with each available target loca-
tion. Each new measurement is compared to the model-based prediction
to update the probability associated with each goal. Notably, the method
does not require a training data set and allows the human to change target
during motion. Differently, Malaise et al. [98] exploit a full-body suit and
gloves equipped with inertial and force sensors to recognise pick and place
tasks in industrial settings. The use of wearable sensors allows continuous
monitoring in complex environments where the human may not be visible
to a camera at all times. Finally, [15] and [153] deal with the recognition of
human body postures. The former detects the 2D poses of multiple people
from video streams using Convolutional Neural Networks. The latter uses
RGB-D data to identify body postures through joint angles. The problem
of predicting the most likely future task of the human is addressed, for in-
stance, in [167], where the human activity pattern is modelled with higher-
order Markov Chains. Previously, Li et al. [89] proposed a framework for
activity prediction based on causality relations and semantics. In [144], the
authors used gaze information to monitor the worker’s activity and interpret
his/her future intention. This allows a robot to perform the best cooperative
action to help the human.

Monitoring the evolution of the current human activity allows correctly
allocating tasks and reacting to unexpected changes [19,134,165]. Most of
the aforementioned research works deal with the recognition of whole-body
postures or reaching motions. However, they are not sufficient to monitor
the activity of human workers during manufacturing operations, and as-
sembly in particular. This is a tough challenge, since the human is neither
fully controllable nor repeatable: even when the operator is instructed on
the task to perform, it is impossible to control its execution. At each rep-
etition, he/she will complete the same activity with different speeds and
movements. Moreover, the ideal strategy should be non-intrusive and low
cost to favour the workers’ acceptance and favour its use by companies.
In this Chapter, we propose a framework for modelling and parsing human
activity based on demonstrations. The structure of the task, with all its vari-
ants, is learnt in the training phase relying on the automatic segmentation
of human motion trajectories, recorded by an RGB-D camera. In real-time,
a classifier trained on task segments identifies and parses the variant per-
formed by the operator. Early identification of low-level actions enhances
human-robot collaboration in two ways. First, the worker is notified in case
of errors, so that he/she can immediately implement corrective actions. Sec-
ond, prompter prediction of the future evolution of the task leads to better

14



2.1. Solution concept

planning of the robotic actions.
In the following, Section 2.1 outlines the proposed approach. Section 2.2

describes how to learn the model of the human operation, while the pro-
posed classifier of human actions is detailed in Section 2.3. Then, the
classification outcome is exploited at run time as described in Section 2.4.
Finally, Section 2.5 presents experimental results obtained with a realistic
assembly task.

2.1 Solution concept

In general, assembly operations consist in joining parts to form a single fi-
nal product, possibly with the help of tools. In that situation, reaching mo-
tions to pick parts from feeders alternate with the actual assembly actions
performed in a convenient position in front of the operator. The former are
usually characterised by broad motions of one arm, whereas the latter see
the two hands strongly interacting with each other and with the product.
In the perspective of monitoring human activity, two main factors must be
considered. First, the operator can execute the same operation following a
different sequence of low-level actions. Second, the same component can
be used multiple times at different points of the assembly. Therefore, the
simple knowledge of the operator reaching a buffer and picking a specific
part does not provide sufficient information to discriminate among the dif-
ferent variants of the operation. In other words, describing and monitoring
the human activity only in terms of reaching motions, as in [123, 170], is
limiting. Instead, a richer model must be introduced that also considers the
actions performed between two consecutive reaching motions. In this view,
a variant of the task is defined as an ordered sequence of human actions,
which comprise both reaching motions and assembly actions.

Figure 2.1 depicts the pipeline of the proposed approach, which devel-
ops in an initial training phase and an online phase for real-time monitoring.
During the offline training, an expert user builds a database of motion tra-
jectories by demonstrating several times all the feasible variants of the oper-
ation. Then, each trajectory is automatically segmented to identify reaching
and assembly actions. This is done with a hybrid method that combines ve-
locity and position data of the operator’s hand movements. From the result
of trajectory segmentation, one can build a complete model of human ac-
tivity that comprises all known task variants, which constitutes the basis to
parse and predict the evolution of operations at run-time. On the other hand,
the segmented dataset is used to define a classifier able to recognise online
the action performed by the operator. The proposed classifier is based on

15



Chapter 2. Modelling and parsing of human activity

Figure 2.1: Pipeline of the proposed monitoring algorithm.

Dynamic Time Warping (DTW), which is an algorithm that measures the
similarity between two time series and is better detailed in Section 2.3.

At run-time, an RGB-D camera provides real-time data on the opera-
tor’s hands motion. The human trajectories are segmented online into the
low-level actions identified during the training phase and undergo a prepro-
cessing step to ease classification. The result of both the segmentation and
classification stages provides information to parse the model of the opera-
tion in order to identify the variant being performed and predict the future
evolution of the task. Finally, the output of the algorithm is exploited to
notify errors to the worker and plan assistive operations from the robot.

2.1.1 Tracking of human motion

Real-time information from the workspace is required to monitor the evolu-
tion of the ongoing activity: this can be done by tracking the human opera-
tor’s movements. The tracked features must be selected to obtain measure-
ments that are informative and robust within the range of possible activities.
Considering the case of industrial assembly tasks, it is meaningful to focus
on the motion of the operator’s hands, as the rest of the body remains largely
stationary. Several methods for human hand tracking have been proposed
in the literature. However, most of them underperform when the two hands
are interacting [102, 124, 163], as it happens during assembly activities, or
require an excessive amount of computing time [114], thus not being suit-
able for real-time tracking.

From preliminary experimental tests on diverse human actions, it has
been decided to track the Cartesian positions of wrists and index fingers of
each operator’s arm. Fingers provide more informative movements but are

16



2.2. Learn the model of human task

Figure 2.2: Operator’s tracked features: wrists (blue) and index fingers (red).

prone to occlusions, whereas wrists give more robust data. The evolution
of the human task is thus described by a 12-dimension time series built
from the Cartesian coordinates of the four features. In the implementation,
an RGB-D camera (Microsoft Kinect) was used. Wrist data are directly
provided by the Kinect tracking software, while the position of the fingers
is extracted from images with the help of coloured markers placed on the
worker’s gloves. Figure 2.2 depicts an example of the tracked features.

The algorithm used to extract finger data is outlined in Figure 2.3. Start-
ing from the RGB image provided by the vision sensor, the same pipeline is
followed for each one of the two hands in parallel. First, the known position
of the wrist in the depth space is mapped on the colour image in order to
identify a region of interest that contains the hand. In this way, we limit the
size of the image to speed up further processing. Then, the cropped image
is transformed from the RGB to the HSV colour space. A colour thresh-
old filter is applied to the obtained image in order to identify the marker
placed on the index finger. The HSV space description is preferred, as it is
more robust against glares and changes in lighting conditions than the RGB
model. Finally, the centre of the marker is taken as the finger position in
the colour image, which is then mapped back to the depth space to obtain
the 3D Cartesian coordinates.

2.2 Learn the model of human task

This Section details the first steps of the proposed algorithm that compose
the first row of Figure 2.1. The starting point is the creation of the dataset
of demonstrated trajectories. According to Section 2.1.1, each trajectory is
a multivariate time series that describes the motion of the operator’s hands

17



Chapter 2. Modelling and parsing of human activity

Figure 2.3: Pipeline of the finger coordinate extraction algorithm.

throughout the execution of the task. An expert user performs multiple
times the operation to be monitored, showing all possible variants, i.e. all
the suitable sequences of reaching motions and assembly actions that allow
the worker to correctly complete the activity. Once that the dataset is avail-
able, it is possible to automatically segment the complete executions into
reaching motions and assembly actions, and use the obtained information
to build a model of the operation with all its variants.

2.2.1 Automatic segmentation of human activity

To identify the different variants of the task, one must be able to recognise
the sequence of human actions that composes the complete executions of
the operation contained in the dataset of demonstrated trajectories. This
is possible with the help of an automatic segmentation algorithm that au-
tomatically detects the start and end point of each human action without
manual intervention. The proposed approach relies only on the data ac-
quired by the vision sensor, without any prior knowledge of the task or the
workspace layout. Specifically, a hybrid velocity/position-based method
is conceived, where velocity data are exploited to find segmenting points
without requiring information on the location of parts in the environment.

While performing the task, the operator alternates reaching motions, i.e.
he/she moves the hands towards part feeders to pick up items, and assem-
bly actions, i.e. he/she uses the picked items to proceed in completing the
product. The characteristics of the two classes of human actions are very

18



2.2. Learn the model of human task

Figure 2.4: Example of segmentation based on hybrid velocity/position data. The plot
reports the velocity of the right (blue) and left (red) hand, and the velocity threshold
(dashed black). Segments are identified as reaching motions (grey background) or
assembly actions (white background).

different and the automatic segmentation algorithm must be able to deal
with both. First of all, skeletal points provided by the Kinect sensor locate
the human in the environment and allow us to define the assembly station as
a rectangular area on the worktable in front of the operator. When the op-
erator performs a reaching motion, one hand starts moving toward the goal
with increasing velocity, then it slows down and stops while grasping the
object. As a consequence, one can identify the start of reaching motions as
the point when one of the hands exits the assembly station and the end point
as the one where the velocity goes below a predefined small threshold. An
important note is that the operator can use either of the two hands to per-
form reaching motions. Therefore, the motion of both hands is considered
to identify all segmenting points. The return motion from the part feeder
back to the assembly area is considered as being part of the assembly action,
which is defined as the sections of the operation between two subsequent
reaching motions. Assembly actions can involve complex operations, such
as insertion or screwing, so that the hands exhibit different motion patterns
than those characterising reaching motions. In particular, velocities might
exceed and returns below the threshold multiple times while positions re-
main contained in the assembly station. An example is shown in the second
segment of Figure 2.4.

In order to build the operation model and the dataset to train the clas-
sifier, all segments must be labelled. As far as reaching motions are con-

19



Chapter 2. Modelling and parsing of human activity

cerned, labelling is automatic and follows directly from the segmentation
algorithm. In fact, end points are associated with the goal positions of
reaching motions, such as part feeders or tool storage. Therefore, reaching
motions toward the same goal are grouped by means of simple K-means
clustering with respect to the position of the segmenting points expressed
in the Cartesian space. Furthermore, the centroid of the segmenting end-
points associated with motions of the same class defines the goal location.

On the other hand, assembly actions are manually labelled by an ex-
pert user (possibly the one who demonstrated the operations). This step is
needed to account for the fact that different assembly actions might follow
a specific reaching motion. This happens, for instance, when the same com-
ponent is used in several points of the assembly sequence, as it is considered
in the experimental use-case presented in Section 2.5. Discriminating how
the component is being assembled allows the monitoring algorithm to iden-
tify the correct variant of the task that the operator is following. Figure 2.4
reports an example of segmentation into actions for a section of an opera-
tion, where segments are labelled as being reaching motions or assembly
actions.

2.2.2 Generation of the task model

After the segmentation step, each demonstrated trajectory is defined as an
ordered sequence of labelled segments, i.e. of reaching motions and assem-
bly actions. The set V of known task variants contains all the unique se-
quences of labels. Variants differ from each other after a possible common
initial part, defined by the same sequence of labels. Consequently, a single
model of the human activity that describes the possible ways to perform the
operation can be represented as a tree T = (N,A), where N is the set of
nodes and A the set of arcs. Nodes are associated with labels, i.e. actions,
and branches mark the presence of variants at that point of the execution.
Algorithm 1 outlines the recursive procedure used to define the tree struc-
ture. In particular, the set of variants is partitioned to obtain subsets com-
posed of variants having the first label in common. Then, a branch for each
partition is created, whose structure depends on the further partition of the
associated subsets, from which the initial common label has been removed.
For instance, the set V = {{l1, l2, l3}, {l1, l3, l2}, {l2, l1, l3}} is partitioned
at the first step as V1 = {{l1, l2, l3}, {l1, l3, l2}} and V2 = {{l2, l1, l3}}.
Thus, two branches depart from the root node, one related to l1 and the
other to l2. Then, children of the l1 node stem from the partition of Ṽ1 =
{{l2, l3}, {l3, l2}}, where label l1 has been removed. Therefore, one branch

20



2.3. Dynamic Time Warping-based classifier of human actions

Algorithm 1 Recursive algorithm to generate the task model.

procedure GENERATEMODEL(V )
if V 6= ∅ then

T ← ADDBRANCH(root, V ) . Start tree construction
end if

end procedure

function ADDBRANCH(l, V ) . Add branch to the tree
Tree.N ← l . Add root node
Tree.A← ∅
P ← PARTITION(V ) . Partition the set of variants
for all Vi ∈ P do

l← vi[0], vi ∈ Vi . Get first common label
for all vi ∈ Vi do

vi = vi[1 : end] . Remove common label
end for
B ← ADDBRANCH(l, Vi) . Recursive step
Tree.N ← Tree.N ∪B.N . Add new nodes
Tree.A← Tree.A ∪B.A ∪ (Tree.root, B.root) . Add new arcs

end for
return Tree

end function

refers to V11 = {l2, l3}, the second to V12 = {l3, l2}. The final model of the
human operation is depicted in Figure 2.5.

2.3 Dynamic Time Warping-based classifier of human actions

Providing the robot with a tool to monitor and understand the operator’s
behaviour is beneficial for enhancing human-robot collaboration. To this
purpose, the real-time recognition of the action being performed by the
human is crucial, as early classification enables prompter robot assistance.
The necessity of a fast response poses a constraint on the best classification
strategy. The DTW algorithm provides a method to compare an incomplete
input, associated with the ongoing human action, to a complete reference
execution. In the following, Section 2.3.1 presents the basis of the DTW
algorithm. Then, Section 2.3.2 explains the use of DTW as a classifier for
the application under study.

2.3.1 Dynamic Time Warping algorithm

DTW is a widely used algorithm that measures the similarity between two
temporal sequences. Examples of applications include gesture recogni-

21



Chapter 2. Modelling and parsing of human activity

Figure 2.5: Example of human task model with three variants.

tion [57], data mining [129], image analysis [166], and fault diagnosis [75].
In its basic form, DTW calculates the optimal alignment between the points
of two sequences and it is robust to nonlinear variations in the time dimen-
sion. This allows comparing two series regardless of the changes in their
speeds. Modifications, called Open-ended DTW [157], already exist that
allow for the comparison of incomplete input time series with complete ref-
erences. The underlying idea of the DTW algorithm is to locally deform the
time axis of the input sequence in order to associate each of its points with
one point of the reference sequence in a way that minimises the cumulative
distance between the aligned points. Let X = (x1, . . . x|X|) be the input
sequence that describes the partial execution of the ongoing activity and
Y = (y1, . . . y|Y |) the reference template sequence. The algorithm builds
a |X|-by-|Y | matrix where each element stores the cumulative distance
D(i, j) of the optimal warping for the subsequences X(i) = (x1, . . . xi)
and Y (j) = (y1, . . . yj):

D(i, j) = δ + ‖xi − yj‖
δ = min {D(i− 1, j), D(i, j − 1), D(i− 1, j − 1)}

(2.1)

where the following constraints are considered to handle limit cases:
D(0, 0) = 0

D(i, 0) =∞ ∀i
D(0, j) =∞ ∀j

The warping path φ(i) is a non-decreasing function that associates each
point of X with the index of optimal truncation j∗i for the reference se-
quence Y , so that Y (j∗i ) best matches the subsequence X(i). That is, for

22



2.3. Dynamic Time Warping-based classifier of human actions

Figure 2.6: DTW matrix for an incomplete input sequence X with the optimal open-ended
warping path highlighted (blue). Warping paths obtained using global DTW when 5
and 9 input samples are available are indicated in red for comparison. Global DTW
always considers the complete reference, leading to meaningless associations.

i = 1, . . . |X|:

φ(i) = max {j∗i , φ(i− 1)} j∗i = arg min
j=1,...|Y |

D(i, j)

Finally, the similarity measure between the input and reference sequences
is given by D(|X|, j∗|X|). Figure 2.6 shows an example of DTW matrix
and compares the optimal warping paths obtained in case of incomplete
input using global DTW, which align the partial input with the complete
template, and the open-ended version exploited in this work. The latter
is always able to find the best available partial match, while global DTW
forces meaningless matches considering the complete reference.

Since the proposed algorithm aims to monitor the progress of the human
activity, the inputs to the DTW are the time series describing the motion of
the operator’s tracked features, as described in Section 2.1.1. However,
movements of the operator’s hands are not bound to be synchronous. Thus,
the relative temporal alignment among signals is not maintained for each
repetition of the same activity. For instance, if the operator has to reach for
two different objects, he/she can either grasp both objects simultaneously,
in one sequence, or the reverse. This makes it difficult to describe the task

23



Chapter 2. Modelling and parsing of human activity

with a single time series, built with data coming from opposite sides of the
body, and compare different executions with each other. The solution is
to run two separate instances of the DTW algorithm, one that receives as
input the motion of the right wrist and finger, the other that receives the
trajectories associated with the features of the left hand. Then, the overall
similarity value is the mean of the output of the two instances of DTW.

2.3.2 Classification of human actions

To classify human actions using DTW, the input to the algorithm is the
time series composed of the samples belonging to the ongoing human ac-
tion returned by the monitoring unit. Instead, the output of the automatic
segmentation provides the training dataset for the classifier of human ac-
tions, which is defined as:

Y = {(Y1, l1), (Y2, l2), . . . , (YN , lN)}

where Yi are the time series that describes the trajectory segments and
li ∈ L the label associated with each human action. The simplest way
to classify the current input is to compute its similarity with each and ev-
ery available reference segment and compare the outputs returned by the
DTWs. Then, the ongoing segment is classified as belonging to the same
class of the reference with minimum DTW cost. However, this means run-
ning two instances per each trajectory in the dataset. Moreover, the DTW
algorithm is computationally expensive and its complexity grows with the
number of samples in the sequences as O(|X||Y |). As a consequence, in
the case of complex operations composed of a high number of segments,
the computational time might increase up to a point that does not allow a
real-time application. Also, the number of segments in the dataset depends
on the number of demonstrated trajectories and contains several specimens
belonging to the same class. A strategy to simplify the dataset of reference
actions is introduced to lower the computational load by reducing:

1. The number of samples that compose the reference trajectories;

2. The number of reference sequences to a single trajectory per class.

In this way, the number of concurrent DTWs is limited to 2|L|, i.e. twice
the number of classes, and each DTW instance compares shorter sequences.

As for the first point, the goal is to represent each trajectory Yi =
(yi,1, yi,2, . . . , yi,|Yi|) of the dataset as time series with a lower number of
points Ỹi = (ỹi,1, ỹi,2, . . . , ỹi,K),K � |Yi|, which maintains the same shape
of the original trajectory. Besides, simplification removes the high amount

24



2.3. Dynamic Time Warping-based classifier of human actions

(a) (b)

Figure 2.7: (a) Graphical representation of the quantities used for the geometrical weight
computation and (b) example of original trajectory (dashed) and simplified one (solid).

of noise coming from the tracking system and the presence of spurious mo-
tion, especially at stop points, e.g. while grasping parts after a reaching
motion. The proposed approach is based on the concept of the geometric
weight presented in [88]. The weight wj represents the influence of point
yi,j on the overall shape of the trajectory and is defined as:

wj = d(j) · d(j − 1) · α3
j (2.2)

where d(j) = ‖yi,j+1 − yi,j‖ stands for the Euclidean distance between
subsequent points and αj is the local turning angle (see Figure 2.7a). That
is, a point is given more importance if it is distant from other samples or
describes a significant change in the local shape. Then, the simplified tra-
jectory is obtained by iteratively removing the sample having the lowest
weight until the K highest weighted samples are retained. Extreme points
have infinite weight and cannot be removed. Algorithm 2 outlines the of-
fline simplification routine, while Figure 2.7b shows an example of appli-
cation. Note that the general shape of the original trajectory is preserved
and the final noisy part is smoothed.

Algorithm 2 Offline simplification.

procedure SIMPLIFYOFFLINE(Y )
for all yj ∈ Y do

Compute wj with (2.2)
end for
while |Y | > K do

j∗ = arg minj wj

Y = Y \ {yj∗}
Update wj∗−1, wj∗ with (2.2)

end while
end procedure

Algorithm 3 Online simplification.

procedure SIMPLIFYONLINE
while true do

Ỹ ← GETNEWSAMPLE( )
Compute w|Ỹ |−1 with (2.2)
if w|Ỹ |−1 ≥ threshold then

Ỹ ← REMOVE(y|Ỹ |−1)
end if

end while
end procedure

25



Chapter 2. Modelling and parsing of human activity

To address the second point, one can note that trajectories belonging to
the same class have similar shapes. In order to obtain a single prototypi-
cal execution for each class of human action, it is sufficient to compute the
average time series among all the simplified trajectories belonging to such
class. The obtained trajectories are used as the reference sequences for the
DTW algorithm. However, also the input sequence must undergo a simpli-
fication procedure to allow the comparison with the simplified reference.
Since classification must be performed in real-time, an online version of
Algorithm 2 is needed, which is reported in Algorithm 3. The main differ-
ence lies in the fact that it is not possible to know beforehand the length
of the complete trajectory, nor the geometric weights associated with fu-
ture samples. Therefore, every time a new point is available, the weight of
the second to last sample can be computed. If the weight is below a given
threshold, the second to last point is removed from the trajectory. The ac-
ceptance limit must be determined empirically so as to obtain similar com-
pression as the offline simplification algorithm, which in the experiment
was about 20%, meaning that only 20% of the original samples were re-
tained. Although having input and reference sequences of different lengths
is not a problem for DTW, input simplification help to reduce computational
load and limit the influence of noise on the similarity measure.

2.4 Real-time parsing of human activity

This Section describes how the output of the offline training phase, that
is the tree-like model of the human operation and the dataset of reference
trajectories to be used by the DTW-based classifier, is used to monitor the
activity of the human worker at run-time. The main steps of the online
phase of the proposed algorithm are depicted in the third row of Figure 2.1.

The stream of monitoring data coming from the tracking algorithm of
Section 2.1.1 is segmented online exploiting the positions of the assembly
station and the goals of reaching motions identified during the offline seg-
mentation phase (see Section 2.2.1). Specifically, a reaching motion starts
when one of the hands of the operator exits the assembly station, as per the
offline algorithm. Instead, the start of the subsequent assembly action is
determined as the moment when the hand exits a region of space defined
around the goal of the reaching motion. The position-based method is more
robust for online use than the velocity-based one used in the training phase.
Moreover, it allows checking the goal of the reaching motion, verifying the
correct early classification obtained from the DTW, and rectifying possible
errors made in the recognition of the completed human action.

26



2.5. Experiments

The samples collected from the last segmentation point up to the current
time instant compose the trajectory that describes the motion of the operator
during the ongoing human action. This is taken as the input for the online
simplification algorithm, whose output defines the input for the DTW. As
already explained in Section 2.3.2, two instances of DTW per class are used
to compare the ongoing trajectory with the reference segment execution.
Then, early classification is attained searching for the class that returns the
best similarity measure.

When the operator starts a new repetition of the operation, the monitor-
ing of the ongoing activity starts from the root node of the task model. As
soon as the first action is classified, the current node becomes the child of
the root that is associated with the identified class. After that the segment
has been completed, a new real-time classification is performed for the next
one. This iterative procedure allows parsing the complete human activity
from start to finish, identifying the correct variant being performed.

2.4.1 Exploitation

The state of the monitoring procedure can be exploited in several ways to
improve human-robot collaboration and the individual performance of the
worker. First, at each classification step, the current trajectory is always
compared to all the available classes even if the current node of the task
model has only one or few children. This allows the system to detect errors
in the sequences of actions performed by the operator. In this case, we can
notify the error to the human, who can immediately correct him or herself.
Second, in the presence of a branch in the tree, i.e. of task variants, early
recognition allows the robot to predict which will be the future actions per-
formed by the human. Consequently, it can better decide which operation
to execute and how. For instance, the robot can understand in which se-
quence it is better to provide different parts or equipment to the co-worker
depending on the variant being performed. Or it can modify its motion to
avoid and let free regions of the shared workspace that are going to be soon
occupied by the operator. In other words, the more and prompter informa-
tion the robot can extrapolate, the better the overall coordination between
the agents becomes.

2.5 Experiments

The experimental campaign aimed to verify the performance of the pro-
posed classification method and highlight the benefits that derive by em-
ploying the monitoring strategy to a human-robot collaborative task. The

27



Chapter 2. Modelling and parsing of human activity

Figure 2.8: Final product.

algorithm was implemented in C++ and run on an off-the-shelf laptop (Intel
Core i7-8550U CPU 1.80GHz, 8 GB RAM). Human motion was recorder
by a Kinect V2 RGB-D camera, whereas TCP/IP protocol was used to com-
municate with a UR5 robot. The test use-case consists in the partial assem-
bly of the wheeled base shown in Figure 2.8, during which only two out of
four caster wheels were mounted. The product is composed of several parts
which are stored in appropriate feeders on the worktable. Namely, they are
the swivel forks, the screws to fix the fork to the base, the screws and nuts
to fix the wheel to the fork, and the wheels. Wheels for the left and right
casters are supposed to be different and stored in separate buffers.

The considered task allows for several assembly sequences, however,
we only focused on two of them that can highlight the added value of our
approach over strategies based on reaching motions only, such as those
presented in [123, 170]. In particular, the operator can first mount the left
caster followed by the right one, or vice-versa. Instead, the sequence of
actions to mount each wheel is the same: the operator picks up and mounts
the fork on the base, takes the appropriate wheel, then fixes the wheel with
screw and nut. During the execution of the operation, the boxes that contain
the wheels are not directly accessible by the human. Instead, the robot must
provide the right part depending on whether the operator mounted the right
or left swivel fork. In this scenario, it is apparent that the monitoring of
human activity and the early recognition of assembly actions are crucial to
enable the correct and timely assistance from the robot.

In the following, Section 2.5.1 details the experimental training phase,
while Section 2.5.2 discusses the obtained results.

28



2.5. Experiments

Table 2.1: Classes of human actions (RM = reaching motion, AA = assembly action).

Label Description Type

l1 Pick up big screw to fasten fork

RM

l2 Pick up swivel fork
l3 Pick up left wheel
l4 Pick up right wheel
l5 Pick up small screw to fasten wheel
l6 Pick up small nut to fasten wheel

l7 Bring the big screw in the assembly station

AA

l8 Mount the swivel fork onto the left hole using the big screw
l9 Mount the swivel fork onto the right hole using the big screw
l10 Position the left wheel between the mounted swivel fork
l11 Position the right wheel between the mounted swivel fork
l12 Insert the small screw into the wheel and the fork
l13 Use the small nut to fasten the wheel on the fork

(a) (b)

(c) (d)

Figure 2.9: Examples of classes of segment trajectories. Motion of the right hand (red),
motion of the left hand (blue), and average class trajectory (black).

29



Chapter 2. Modelling and parsing of human activity

2.5.1 Training phase

Initially, we demonstrated 10 complete executions of the assembly task, al-
ternating between the two variants (right wheel first and left wheel first).
The trajectories of the human hands have been recorded with the tracking
algorithm presented in Section 2.1.1 and form the initial dataset. Following
the proposed pipeline (Figure 2.1), the demonstrated trajectories are seg-
mented to identify the human actions that compose the task and the goal
locations of reaching motions. Overall, 6 classes of reaching motions have
been identified to pick up as many parts, whereas 7 additional classes refer
to assembly actions. Table 2.1 lists the human actions and associated la-
bels. The obtained segments compose the training dataset and undergo the
simplification process described in Section 2.3.2. Figure 2.9 reports some
examples of raw segment trajectories together with the average class tra-
jectory. Moreover, the model of the complete human task is built, which
comprises the two demonstrated variants:

V1 = (l1, l7, l2, l8, l3, l10, l5, l12, l6, l13, l1, l7, l2, l9, l4, l11, l5, l12, l6, l13)

V2 = (l1, l7, l2, l9, l4, l11, l5, l12, l6, l13, l1, l7, l2, l8, l3, l10, l5, l12, l6, l13)

The first one corresponds to the case when the operator assembles first the
left wheel and then the right one. Following V2 he/she assembles the right
caster, then the left one. Figure 2.10a illustrates the initial part of the ob-
tained tree, which shows the presence of the branch and the alternation
between reaching motions and assembly actions. For comparison, Fig-
ure 2.10b reports the equivalent model in case only reaching motions are
monitored. On the one hand, considering fewer classes eases the classifica-
tion task. However, it delays the recognition of the variant being performed,
as demonstrated by the experimental results discussed in Section 2.5.2. In
fact, the two variants start differentiating after that the operator picks up the
first swivel fork, when he/she decides whether to mount it onto the left or
the right hole (action l8 or l9). Instead, looking at reaching motions, one
can tell the two variants apart only when the operator reaches either for the
left or the right wheel (action l3 or l4).

2.5.2 Experimental results

To assess the performance of the algorithm, we monitored 6 repetitions of
the assembly task in real-time, 3 per each variant of the operation, for a total
of 120 actions. The trajectories recorded by the tracking system have been
correctly segmented online by means of the position-based method outlined
in Section 2.4. Performance of the classification stage have been analysed

30



2.5. Experiments

(a)

(b)

Figure 2.10: Human task model for the proposed approach (a) and when only reaching
motions are considered (b). Reaching motions are indicated with grey background,
labels refer to Table 2.1. Including assembly actions anticipates the position of the
branch and the recognition of the variant.

in three different conditions, which differ in the amount of preprocessing
undergone by the input and reference sequences that are given as input to
the DTW-based classifier:

1. The first case compares the raw ongoing trajectory to the raw dataset
of demonstrated segments. This means that no simplification step is
performed to reduce the number of samples that compose the time
series. Also, the number of concurrent DTW instances is equal to
400, i.e. twice the number of actions that form the training dataset.

2. The second case compares the simplified ongoing trajectory to the
simplified dataset of demonstrated segments. The number of concur-
rent DTW instances is equal to 400, but each trajectory is composed
of a fewer number of samples, with a compression ratio of 21.4%.

3. The third case compares the simplified ongoing trajectory to the av-
erage class trajectories. Therefore, only 26 instances of DTW run
concurrently, two per each class.

The three conditions have been compared in terms of recognition rate,
i.e. the percentage of human actions correctly classified, and in terms of
computational time, which is crucial for online implementation. The latter
cannot be considered as an absolute result since, in general, it depends on

31



Chapter 2. Modelling and parsing of human activity

Table 2.2: Performance indexes in the three conditions.

Dataset Recognition Computational DTW Compression
rate time/step instances ratio

Raw 98.75% 69 ms 400 100%
Simplified 98.75% 15 ms 400 21.4%
Mean 97.50% 1 ms 26 21.4%

the hardware capability. Still, it shows the relative performance among the
different cases. Table 2.2 reports the obtained results. Recognition rates
are high in all conditions, with the classifier based on mean trajectories
performing slightly worse at 97.5% of human actions correctly classified.
Moreover, the computational load is consistent with expectations. The time
required to process each new input sample is proportional to the concurrent
DTW instances and the average length of the reference sequences. Thus, it
is larger when the classifier works on the complete dataset of raw trajecto-
ries (69 ms per sample). When the simplified trajectories are considered,
the computational time drops according to the attained compression ratio
to 15 ms. Instead, about 1 ms is needed to update the classification output
when the algorithm compares the input with only one average trajectory
per class. Ensuring small processing time is crucial for real-time applica-
tions, especially when computational power is also needed to make deci-
sions about how to exploit the information obtained from the monitoring
system. Therefore, one can say that the third condition provides the best
trade-off between performance and load.

Figure 2.11 shows two examples of real-time parsing of the human ac-
tivity, one for each task variant. The red lines refer to the ground-truth
segmentation of human actions, while the blue lines describe the output of
the classifier based on simplified average trajectories. Form the plots, one
can appreciate that the monitoring algorithm is able to correctly parse the
activity with few local errors. Nevertheless, in the very few cases when the
classifier is not able to correctly classify the ongoing reaching motion by
itself, the response is rectified when the action is completed by assessing
which goal station has been reached by the hand of the operator. This step
is embedded in the online segmentation procedure.

A fundamental aspect of real-time performance is the delay with which
the algorithm is able to correctly classify the ongoing human action. In-
deed, early recognition is the key factor that can improve agents’ coordina-
tion. From the experimental results, we found out that the recognition delay
is independent of the duration of the human action. Instead, the algorithm

32



2.5. Experiments

0 10 20 30 40 50 60 70 80 90 100 110

Time [s]

l
1

l
2

l
3

l
4

l
5

l
6

l
7

l
8

l
9

l
10

l
11

l
12

l
13

(a)

0 10 20 30 40 50 60 70 80 90 100

Time [s]

l
1

l
2

l
3

l
4

l
5

l
6

l
7

l
8

l
9

l
10

l
11

l
12

l
13

(b)

Figure 2.11: Example of monitoring performance for the two variants of the task: left
wheel first (a) and right wheel first (b). The blue line shows the real-time classification,
the red one the ground truth. Segment labels refer to Table 2.1.

33



Chapter 2. Modelling and parsing of human activity

0

0.1

0.2

0.3

0.4

0.5

0.6

D
if
fe

re
n

c
e

 [
s
]

0

20

40

60

80

100

P
e

rc
e

n
ta

g
e

 [
%

]

Figure 2.12: Recognition delay in terms of elapsed time from the start of the action (left)
and in terms of percentage with respect to the total action duration (right). Boxplots in-
dicate median (red bars), quartiles (blue boxes), minimum/maximum values (whiskers),
and outliers (red crosses).

consistently provides the correct classification after about 0.13 s from the
start of the segment. Exceptions to this are the sporadic cases when the
classification is more difficult, for instance due to peculiar motion of the
operator during the execution of the specific action, and the algorithm has
to correct itself after an initial wrong response. The left boxplot in Fig-
ure 2.12 shows the recognition delay for the 120 performed classifications,
where one can note the tight interquartile range. A constant recognition
delay means that the correct classification happens at a different point of
the action execution, which depends on the total segment duration. The
right boxplot in Figure 2.12 reports the recognition delay as a percentage
of the duration of the action. One can notice that most classifications are
completed before 20% of progress of the ongoing action, thus supporting
the claim on the early recognition capabilities of the proposed strategy.

The importance of early classification has been proved with a simple
collaborative task, during which the operator performs the product assem-
bly, while the robot must provide the boxes that contain the left or right
wheels, which are not directly accessible by the human. The correct pars-
ing of the activity and the early recognition of the variant being performed
by the operator allows the robot to determine the best time and the correct
part to supply to the operator. In this view, the proposed approach has been
compared to the one from [170], which is based on reaching motions only.
The expected results have been already outlined discussing the contents of

34



2.5. Experiments

Figure 2.10, which shows the task models employed by the two strategies.
Specifically, our approach anticipates the discrimination between the two
variants by exploiting the difference in the assembly actions following the
grasping of the swivel fork (l8 and l9). Instead, the baseline method recog-
nises the variants based on the subsequent reaching motions (l3 and l4).
Since the robot can start its assistive action only after determining which is
the correct variant to provide the correct part, not considering the assembly
actions in the monitoring of the human activity entails the presence of oper-
ator’s idle time, who must wait for the robot after concluding the assembly
of the swivel fork. Instead, using the proposed approach, the robot can start
his task early and the human finds the required part ready to be picked.

We gathered experimental data from 4 executions of the assembly task
for each of the two employed monitoring algorithms. Figure 2.13 shows the
side-to-side comparison between screenshots taken from videos of the op-
erator performing V2 in the two cases. Initially, the two executions evolve in
parallel, until the operator reaches for the swivel fork the first time (action
l2, Figure 2.13a and 2.13b). Then, the human starts assembling the fork
onto the right hole. With the proposed approach, the robot promptly recog-
nises the performed action and starts the assistive operation (Figure 2.13c).
After the completion of l9, the operator finds the correct box already in
place and can start to assemble the wheel (Figure 2.13e). Instead, the robot
remains still in the other case (Figure 2.13d) until the human finishes the
assembly of the fork and tries to reach the wheel box (Figure 2.13f). There-
fore, the operator has to wait for the completion of the robot operation
(Figure 2.13g). Meanwhile, with the proposed monitoring the worker has
almost finished to assemble the right caster (Figure 2.13h). On average,
the operator’s idle time was equal to 6.75 s when the strategy in [170] was
applied. The value is consistent with the time required by the robot to pick
and place the correct box in front of the operator.

35



Chapter 2. Modelling and parsing of human activity

(a) Pick up swivel fork. (b) Pick up swivel fork.

(c) Assemble swivel fork. (d) Assemble swivel fork.

(e) Start right wheel assembly. (f) Wait for robot assistance.

(g) Complete wheel assembly. (h) Pick up wheel.

Figure 2.13: Screenshots taken from a video of the experiments. Comparison between the
proposed approach (left column) and [170] (right column).

36



CHAPTER3
Progress–based human monitoring

IN the previous Chapter, we introduced a first strategy to monitor human
activity based on demonstrations. Although powerful and suitable for
a wide variety of collaborative assembly tasks, the proposed method

lacks flexibility and strong learning capabilities, as it heavily relies on the
initial offline training phase. First, training is a time-consuming process
that occupies resources that could be dedicated to the production, thus low-
ering the plant throughput and increasing costs. Moreover, additional train-
ing is required whenever changes in human activity occur. For this reason,
the applicability to dynamic environments characterised by frequent mod-
ifications is problematic. This is the case, for instance, of flexible man-
ufacturing plants where products are regularly introduced, modified, and
dismissed. Second, all variants of the task must be known a priori and
demonstrated by an expert user to collect data to learn the complete struc-
ture of the task. However, it is difficult to predefine all possible ways to
perform an operation, as each worker might behave in different ways that
are difficult to conceive by others. Also, the model obtained at the end of
the training might describe many variants that will never be executed by the
human during operation. Still, the presence of such variants is considered

37



Chapter 3. Progress–based human monitoring

during monitoring, leading to increased computational load and possibly
lower performance.

For these reasons, in this Chapter we present a new strategy for the real-
time monitoring of human activity that does not require any offline training
and has the primary objective of estimating the expected duration of the
ongoing operation. Indeed, the remaining time to completion of the cur-
rent activity is the information that helps to improve agent coordination
the most, especially in the presence of long and complex activities that are
characterised by high variability in their execution. The proposed method
is based on a modified version of the Dynamic Time Warping (DTW) al-
gorithm and learns online from previous repetitions of the same activity.
Previously unseen variants are automatically recognised and added to the
activity model. By doing so, it considers the fact that humans can perform
the same operation in many ways and with different speeds, occasional er-
rors, and short pauses.

As far as previous works are concerned, [62] presents a strategy to eval-
uate the advancement of repetitive activities, which requires the observation
of task-specific features to learn motion primitives and their effect on the
overall progress. [84] proposes a method that combines optimization, su-
pervised learning, and unsupervised learning to build a Bayesian model for
partial temporal sequences alignment. Pauses in task execution are explic-
itly taken into account. In [70] the worker is supported during assembly
tasks with information on the progress and the correctness of operations,
which are retrieved through gesture recognition and detection of assembly
parts. Instead, [27] detects errors in human activity by monitoring object
manipulations. Abnormal behaviours are defined beforehand by domain
experts using first-order logic. The method developed in [96] for early
classification is robust against occlusions. It leverages a probabilistic rep-
resentation of motion primitives learned from demonstration to align obser-
vations to the best fitting model. The problem of parsing complex tasks is
tackled in [160], where trained Bayesian networks can also handle opera-
tion variants. The one being executed is retrieved in real-time by detecting
specific primitive actions. Differently from our approach, all the aforemen-
tioned works either rely on offline training or prior expert knowledge of the
task. Moreover, like [96], the proposed method handles possible lack of
information in human monitoring that may occur during activity execution
due to occlusions or tracking errors. Though unrelated to human monitor-
ing, [25] presents a local alignment of vehicle trajectories that works offline
based on Dynamic Time Warping. Vehicles can change roads following a
path that is unknown a priori. Thus, trajectories do not align entirely with

38



3.1. Progress–based estimation of task duration

any of the known references.
In the remainder of the Chapter, Section 3.1 presents the basic concept

of progress-based estimation of activity duration. Then, Section 3.2 details
the DTW-based algorithm used to solve the problem. Then, Section 3.3 ex-
tends the approach to manage task variants and human errors. The proposed
strategy has been tested within a realistic assembly task. Results show its
ability to give accurate predictions also in case of peculiar variants, such as
those associated with errors.

3.1 Progress–based estimation of task duration

In most scenarios, especially in an industrial setting, the human is expected
to repeat a given activity multiple times, i.e. a finite set of primitive ac-
tions needed to fulfil a task. In case of low variability, one could predict
the duration of the ongoing human activity using data collected from past
repetitions of the same task. Let T be the set of past durations and Te the
elapsed time from the start of the current task, then an estimate T̂ of its du-
ration is the conditional expectation of past durations that are longer than
Te:

T̂ (Te) = ET [τ | τ > Te] (3.1)

However, the elapsed time is representative of the actual activity ad-
vancement only under the assumption of low pace variability. Instead, hu-
man task execution speed may vary considerably, also due to distraction
or fatigue. Thus, data from past executions are insufficient for accurate
predictions, but additional information on the present activity is needed.
Given a real-time estimate of the advancement adv(Te) of the task, one can
extrapolate a better prediction from the average rate of progress as:

T̂ (Te) =
Te

adv(Te)
(3.2)

To do so, a prototypical action, as well as a way to compare it with the
current execution, are needed, which are described in the following. Fig-
ure 3.1 exemplifies the behaviour of the two approaches in case of high
variability in the operation duration. Based on the previous available data,
equation (3.1) predicts the current activity to last the same (1 s). Instead, it
is clear that the task is being executed at a reduced pace (adv(Te) ≈ 0.25),
which leads to a more likely duration of 2 s using equation (3.2).

39



Chapter 3. Progress–based human monitoring

0 0.5 1
Time [s]

-1

-0.5

0

0.5

1
A

m
pl

itu
de

 [m
]

Previous activity

0 0.5 1
Time [s]

-1

-0.5

0

0.5

1
Current activity

Figure 3.1: Effects of high pace variability: based on the previous execution (left) the
duration of the current activity (right) is predicted to be 1 s using equation (3.1) and 2
s using equation (3.2).

3.2 Dynamic Time Warping-based algorithm

This Section provides details on the modified version of the DTW algorithm
used to compute a real-time estimate of the activity advancement. In partic-
ular, Open-ended DTW can be used to compare an incomplete sequence to
a complete reference regardless of the changes in their speeds and obtain-
ing as output the fraction of the reference that is matched by the input up
to the current time instant. The proposed approach builds on the existing
algorithms to obtain a method suitable for the problem of monitoring the
human activity. Particularly, the developed algorithm must cope with the
presence of occlusions and with asynchronous and uninformative human
movements during task execution in order to obtain a more robust estimate
of activity progress. Moreover, a method to update online the reference
activity template is suggested.

Similar to Chapter 2, data on the movements of the operator’s hands
are required to monitor the evolution of the ongoing activity. Such infor-
mation is obtained by means of the same tracking algorithm outlined in
Section 2.1.1, which provides the 3D Cartesian coordinates of the human
wrists and middle fingers. To compare different repetitions of the same
activity, it would be beneficial to have normalised signals. However, the
proposed algorithm runs in real-time, so that information on the signals as
a whole are not available. One could express the motion of the features in
terms of velocity, in order to remove the position bias. However, different
execution speeds would result in different amplitudes. Moreover, a waver-
ing behaviour of the operator would easily introduce undesired spikes in
the velocity profile that would compromise time series comparison. On the

40



3.2. Dynamic Time Warping-based algorithm

other hand, in industrial settings the workspace is usually well structured,
so that the human motion is constrained by the position of product parts and
assembly areas. For this reason, a description of task evolution in terms of
feature positions attains better performance.

As already explained in Section 2.3.1, it is advisable to run two sepa-
rate instances of DTW to account for the asynchronous motion of the two
hands of the human. One receives as input the time series that describes
the movements of the right hand, the other the time series related to the left
hand. For each instance of he DTW algorithm, we recall that, given the in-
put sequence X = (x1, . . . x|X|) that describes the partial execution of the
ongoing activity and the reference template sequence Y = (y1, . . . y|Y |), the
elements of the DTW matrix are computed as:

D(i, j) = δ + ‖xi − yj‖
δ = min {D(i− 1, j), D(i, j − 1), D(i− 1, j − 1)}

(3.3)

from which the expression of the indexes of optimal truncation j∗i and the
warping path φ(i) for i = 1, . . . |X| are:

j∗i = arg min
j=1,...|Y |

D(i, j) φ(i) = max {j∗i , φ(i− 1)}

3.2.1 Occlusions handling

In order to achieve good performance, DTW algorithms require a consis-
tent stream of measurements at run-time. However, the loss of data during
the monitoring of human activity may occur due to tracking errors or occlu-
sions of features. Two cases are possible: either only some of the signals are
missing or all features are unavailable at the same time. Usually, tracking
errors translate to isolated lost samples of all signals while occlusions are
related to a subset of features but last for an indefinite time interval. If a par-
tial sample is available, the algorithm can continue to work in the standard
way, provided that the Euclidean distance in equation (3.3) is computed
using only the non-occluded features. Conversely, the presence of full oc-
clusions is critical for the DTW algorithm, as shown in Figure 3.2a. Stan-
dard DTW updates the cumulative distance D(i, j) using equation (3.3) by
searching for the minimum distance d among the neighbours of the point
(i, j). When an occlusion occurs, input samples are discarded so that the
first points before and after the occlusion are considered to be consecu-
tive, which leads to a wrong warping of the signals. An occlusion handling
mechanism has been designed that takes into account the occlusion length
and is able to retrieve the correct alignment as depicted in Figure 3.2b. The

41



Chapter 3. Progress–based human monitoring

0 5 10 15 20

Time [s]

(a)

0 5 10 15 20

Time [s]

(b)

Figure 3.2: Behaviour of DTW in presence of occlusions without (a) and with (b) occlu-
sion handling mechanism. The reference signal is shown in red and the input in blue;
green lines show point-to-point associations. The modified algorithm accounts for the
occlusion length and is able to retrieve the correct alignment, where some of the refer-
ence samples are not associated with any input sample.

idea is to allow for many feasible matches during the occlusion and retrieve
the correct one when new measurements are available. In fact, it is possible
to extend the exploration space according to the occlusion length Locc to
take into account the possibility for the points of the reference to be asso-
ciated with occluded input points. The modified rule that substitutes (3.3)
reads as follows:

δ = min {D(i− 1, j), D(i, j − 1), D(i− k, j − 1)}
k = 1, . . . , Locc

(3.4)

In this way, all feasible alignments are taken into account as equally prob-
able during the occlusion. The principle is illustrated in Figure 3.3, which
shows an example of DTW matrix and optimal warping path in the presence
of an occlusion. Exploiting the extended exploration space the algorithm is
able to detect a missing peak in the input sequence and points 4 and 5 of
the reference are associated with the occlusion.

3.2.2 Management of low-information template sections

During the execution of the task, there may exist parts during which one
or both the operator’s hands only perform small movements that are hardly
captured by the feature tracking algorithm. An example is when one hand
is used to hold the product, while the other reaches for a new part. In this
case, both the reference template and the input sequence that describe the
trajectory of the stationary hand will contain a section where the samples
are essentially equal with each other. This results in a portion of the DTW
matrix where all the elements tend to assume values close to each others.

42



3.2. Dynamic Time Warping-based algorithm

Figure 3.3: DTW matrix with occlusion: to compute the first row after an occlusion, the
standard exploration space in equation (3.3) (green circles) is extended according to
(3.4) (red circles), accounting for the occlusion length.

In fact, the Euclidean distance between any pairing of input points with ref-
erence points belonging to the low-information section will be similar. In
this situation, the search of the optimal truncation index tends to underesti-
mate the real advancement of the task and is easily prone to the presence of
local minima. This is a problem for the correct alignment of the sequences,
as exemplified in Figure 3.4a. To retrieve the desired behaviour shown in
Figure 3.4b, which better describes the actual progress of the task, an addi-
tional contribution to the DTW cost is included, which is described in the
following.

First of all, low-information sections of the template are detected as
those during which the average speed of motion of the human hand is be-
low a given threshold v̄. Specifically, the i-th template sample belongs to a
low-information section if:

‖yi − yi−1‖ < v̄

Then, a mode filter is exploited to remove very short sections and merge
those that are close to each other.

Second, an additional term ψ(i, j), named anti-pause contribution, is
added to the computation of the elements of the DTW matrix to favour the

43



Chapter 3. Progress–based human monitoring

0 2 4 6 8 10

Time [s]

(a)

0 2 4 6 8 10

Time [s]

(b)

Figure 3.4: Behaviour of DTW in presence of low-information template sections (a) and
desired behaviour (b). The reference signal is shown in red and the input in blue; green
lines show point-to-point associations. In case of flat template, the modified algorithm
computes an alignment that is more consistent with the actual advancement of the task.

advancement of the warping path during low-information sections of the
template. Specifically, the new rule that updates (3.3) reads as follows:

D(i, j) = δ + ‖xi − yj‖+ ψ(i, j)

δ = min {D(i− 1, j), D(i, j − 1), D(i− k, j − 1)}
k = 1, . . . , Locc

(3.5)

The additional term should be different from zero only when aligning the
input to the low-information section of the template. In fact, we do not
want to force the advancement in other conditions, such as when the oper-
ator slows down or makes small pauses during execution, which must be
considered to obtain the correct task progress.

To give a formal expression of ψ(i, j), it is useful to define the following:

• A function p(i) that returns true if the i-th template sample belongs to
a low-information section and false otherwise;

• A variable that identifies the nearest start point of a low-information
section:

jP = max
k
{k ≤ φ(i)|p(k) ∧ ¬p(k − 1)}

• A variable iP : jP = φ(iP ), which identifies the input sample that
optimally aligns with jP ;

• A variable that identifies the nearest end point of a low-information
section:

j¬P = min
k
{k ≥ φ(i)|p(k) ∧ ¬p(k + 1)}

• A parameter ψ0 that weights the anti-pause contribution.

44



3.2. Dynamic Time Warping-based algorithm

Figure 3.5: DTW matrix with low-information section in the template sequence: optimal
warping path obtained with (blue) and without (red) the anti-pause contribution in
equation (3.5). Red squares highlight the region of the DTW matrix where the anti-
pause contribution is active. The anti-pause contribution allows for a better alignment
that avoids pauses and jumps.

Then, one has:

ψ(i, j) =

{
ψ0 |(j − jP )− (i− iP )| p(φ(i− 1)) ∧ (j > jP ) ∧ (j > j¬P )

0 otherwie

That is, a linear alignment is assumed during the low-information section
and alignments that deviate from this assumptions are penalized propor-
tionally to the magnitude of the deviation. Figure 3.5 depicts the effects of
the anti-pause contribution, which allows for a better alignment that avoids
pauses and jumps in the warping path.

3.2.3 Warping paths merging

As already said, two instances of DTW run concurrently to monitor the two
operator’s hands separately. Therefore, two warping paths are obtained,
which we can call φdx(i) and φsx(i). In order to compute a single value for
the progress of the activity, the warping paths are merged together accord-

45



Chapter 3. Progress–based human monitoring

ing to the following weighted average:φ̄(k) = φdx(k)+ε(k)φsx(k)
1+ε(k)

φdx(k) ≥ φsx(k)

φ̄(k) = φsx(k)+ε(k)φdx(k)
1+ε(k)

φdx(k) < φsx(k)
(3.6)

where φ̄(k) is the average path and ε a varying weighting coefficient, which
is chosen so to have:

ε(k) = 1 if |φdx(k)− φsx(k)| = 0

ε(k)→ 0 if |φdx(k)− φsx(k)| → ∞

For instance, one can choose:

ε(k) = e−ξ|φ
dx(k)−φsx(k)|

with ξ a design parameter used to determine the decreasing speed. The idea
of equation (3.6) is to assign more weight to the path that estimates the high-
est advancement. This proves to be of fundamental importance when one
of the two instances of the algorithm temporarily attains low performance
due to uninformative human movements or the presence of occlusions. The
effect is a reduced advancement rate of such instance. Therefore, giving
more weight to the highest advancement, the overall estimate progresses
without interruptions and is less affected by the local error.

3.2.4 Activity duration estimate

Given the optimal warping path, one can compute the progress of the activ-
ity at time Te, with k the number of available input samples at Te, as:

adv(Te) =
φ(k)

|Y |
(3.7)

Then, equation (3.2) can be exploited to obtain an estimate of the expected
duration. However, it is not convenient to directly use the output of the
DTW-based algorithm in the equation, as it suffers from a couple of prob-
lems. Firstly, at the beginning of the activity, only a few data are available
and the progress estimate is poor. Moreover, a small difference in the ad-
vancement leads to significant variations in the predicted duration, as it is
computed by extrapolating the average rate of progress. Overall, the effect
is that the raw DTW estimate shows a bad initial transient that is exempli-
fied by the yellow line in Figure 3.7a. Secondly, during a low-information
section of the activity, e.g. when the operator is mostly stationary, DTW

46



3.2. Dynamic Time Warping-based algorithm

results typically exhibit a temporary stop in the advancement followed by
a sudden jump when motion is again informative. The problem has been
already discussed and mitigated with the introduction of the anti-pause con-
tribution to the DTW cost, but its effects might still be significant (an exam-
ple is shown in Figure 3.7b at t ≈ 10s). The consequence is an increase in
the duration estimate, followed by a sharp correction. These two behaviours
of the prediction of the expected duration do not reflect the true task exe-
cution, but are due to bad estimates retrieved by the DTW. To get rid of the
initial transient produced by the DTW-based estimate, it is possible to use
the elapsed time-based prediction returned by equation (3.1) until a certain
level of activity progress is reached. In fact, when only little information is
available on the present task, an estimate based on past durations is more
accurate. Instead, a modification to the optimal warping path is introduced
to handle low-information sections with the aim of smoothening flat parts
and jumps and obtain a more stable duration prediction, which is described
in the following.

Pauses and jumps in the advancement can be characterised with respect
to the warping path. Specifically, pauses occur when φ̄(k) = φ̄(k − 1). As
long as the warping path is increasing, the modified path φ̆ is taken equal
to the DTW output φ̄. When a pause is detected, a linear growth is imposed
with speed equal to the average rate of advancement of the current activity.
When DTW output resumes to grow or there is a jump, linear growth is
stopped and φ̆ is saturated until the DTW estimate becomes greater than
the saturation value. This ensures that the non-decreasing constraint on the
warping path is satisfied. The computation of the modified warping path
can be modelled using the finite state automaton in Figure 3.6, with three
states that describe the possible situations: N for Normal behaviour, L for
Linear growth and S for Saturated. In particular, we compute φ̆(k) as:

N : φ̆(k) = max{φ̄(k), φ̆(k − 1)}

L : φ̆(k) =
φ̆(k − 1)

k − 1
k

S : φ̆(k) = φ̆(k − 1)

(3.8)

where φ̆(k − 1)/(k − 1) represents the activity average rate of progress up
to sample k − 1. Transitions between states are triggered by:

N → L : φ̄(k) = φ̄(k − 1)

L→ S : φ̄(k) > φ̄(k − 1) ∨ φ̆(k − 1)− φ̄(k) > δM

S → N : φ̄(k) ≥ φ̆(k − 1)

47



Chapter 3. Progress–based human monitoring

Figure 3.6: Finite state automaton that describes the warping path modification algo-
rithm. In each state the modified path φ̆ is computed according to equations (3.8).

The additional second condition on the L → S transition is used to put
a limit to the linear growth in order to take into account cases when the
pause in the activity advancement is not due to a DTW algorithm error,
but reflects a real stop in the execution performed by the human operator.
Complete stops are rare events that usually occur in the presence of human
mistakes and are not followed by a corrective jump in the DTW output. A
linear growth would lead to move away from the actual activity evolution
and would deteriorate the algorithm performance. Therefore, the modified
path saturates if its distance from the estimated one becomes greater than a
limit threshold δM .

Overall, the expected duration is estimated as:

T̂ (Te) =

{
ET [τ | τ > Te] adv(Te) ≤ α

Te
adv(Te)

adv(Te) > α
(3.9)

where the advancement is computed using the modified warping path φ̆
in equation (3.7) and equation (3.1) is used to neglect the initial transient,
when little information on the ongoing execution is available, until the ad-
vancement exceeds the threshold α.

3.2.5 Selection of the reference

The DTW-based algorithm works by comparing the current execution with
a reference template. However, the proposed method does not require prior
knowledge of tasks or learning phase to increase ease of use and flexi-
bility. Instead, the algorithm selects the best template among the tempo-
ral sequences it has collected from past executions of the monitored task.
Clearly, the first instance of a given activity cannot be monitored and is
taken as the first reference. However, it is expected that training of the op-

48



3.2. Dynamic Time Warping-based algorithm

erator increases by repeating the same tasks, whereas isolated uncertainties
and errors may still occur. The correct rule for activity template update
should address both issues. Several possibilities were tested on different
assembly operations and compared with each other. Changing the template
whenever a new one is available benefits from better operator’s training, but
is prone to execution errors. Computing an average template from all the
available ones is difficult, since series alignment must be considered, and
worsens the performance, since it distorts the shape of the time series. The
best results have been obtained changing the reference only when the last
execution is shorter than the current template. The underlying idea is that a
short activity is more likely to be free from pauses and errors. Furthermore,
improved operator training generally leads to faster executions.

3.2.6 Experiments

Warping path modifications

The effectiveness of the proposed algorithm has been tested on realistic as-
sembly operations. First of all, the advantages of path modification in terms
of better activity duration estimate have been investigated. Figure 3.7 re-
ports the results of 3 different assembly operations repeated 40 times each.
A Microsoft Kinect is used to monitor the human operator’s activity, as
described in Section 2.1.1. Box-plots in Figure 3.7c show the average pre-
diction error obtained with or without modifying the DTW output, which
is computed with respect to the actual operation duration T ∗ as:

em =

∫ T ∗

0

|T̂ (τ)− T ∗|
T ∗

dτ (3.10)

Filtering the output of the DTW-based algorithm and excluding the initial
transient significantly reduces both mean and error variance, achieving an
average error of less than 1s on activities lasting 15-45s. Figures 3.7a and
3.7b give an example of the improved performance. Figure 3.7b compares
a profile of advancement obtained from the DTW with the corresponding
modified one: at 10s a pause-jump event occurs and the modified path stays
closer to the ideal activity advancement. Moreover, it is apparent from
Figure 3.7a that most of the error using the DTW algorithm concentrates
during the initial transient (yellow and red lines), whereas the elapsed time-
based estimation provides a stable prediction of the duration (the initial flat
part of the blue line).

49



Chapter 3. Progress–based human monitoring

0 5 10 15 20

Time [s]

0

20

40

60

80
D

u
ra

ti
o

n
 e

s
ti
m

a
te

 [
s
]

(a)

0 5 10 15 20

Time [s]

0

25

50

75

100

A
d

v
a

n
c
e

m
e

n
t 

[%
]

(b)

0

1

2

3

4

5

M
ea

n 
er

ro
r 

[s
]

(c)

Figure 3.7: Effects of DTW path modification: example of duration estimate evolution
(a), activity advancement (b) and mean estimation error with quartiles (c). In all
plots yellow lines refers to the unmodified DTW output, red to the filtered one, blue
also neglects initial transient, green indicates the actual task duration and the ideal
advancement.

Figure 3.8: Diagram of the assembly operation of a caster wheel. The operator picks the
main body and positions the rubber wheel. Then, the wheel is fixed using a screw with
the help of an electric tool. Another screw is inserted and fastened to allow for wheel
mounting.

50



3.2. Dynamic Time Warping-based algorithm

Figure 3.9: Snapshot of the operator performing the assembly task. Activity advancement
profile (bottom-right) and duration estimation (top-right) as given by the algorithms
based on the elapsed time (blue) and DTW (red).

Algorithm performance

To test the overall performance of the proposed algorithm, multiple assem-
blies of a caster wheel have been performed, which comprises a wide vari-
ety of actions – such as reaching motions, peg insertions, manual and auto-
matic screwing. The scheme of the assembly steps is shown in Figure 3.8.
First, the operator picks the main body and positions the rubber wheel.
Then, the wheel is fixed using a screw with the help of an electric tool. Fi-
nally, a second screw is inserted and fastened to allow for wheel mounting.
Data were collected from a total of 68 assembly operations grouped in 8
runs, each one composed of 8 or 9 repetitions of the task. The human activ-
ity has been monitored using the proposed DTW algorithm. The estimate
based on past durations and the elapsed-time, given by equation (3.1), has
been also computed for comparison, and referred to as the ET prediction.
In order to test the ability of the proposed algorithm to learn the reference
template of the activity, it has been reset to start with a blank template at the
beginning of each new run. The mean duration of the assembly operation
was of 40.8s, with a minimum of 31.0s and a maximum of 59.6s, thus ex-
hibiting high variability that is mainly due to the presence of insertion and
screwing tasks. Figure 3.9 presents a snapshot of the operator performing
the assembly task. The associated activity advancement curve and duration
estimates obtained using the ET and DTW algorithms up to the current time

51



Chapter 3. Progress–based human monitoring

0

1

2

3

4

5

6

7

8
T

im
e
 [
s
]

(a)
0

2

4

6

8

10

12

T
im

e
 [
s
]

(b)

Figure 3.10: Final duration error ef (a) and mean duration estimate error em (b) for
ET prediction (blue) and DTW-based algorithm (red). Boxes indicate the 25-75 per-
centiles, whiskers the extreme points. DTW shows a strong reduction in both mean end
variance of the errors.

instant are also included.
Two performance indexes have been used to evaluate the average esti-

mation errors of activity duration and discuss the overall performance of
the proposed algorithm. Results are reported in Figure 3.10. Specifically,
Figure 3.10a refers to the error at the time instant in which the activity ends,
that is:

ef = |T̂ (T ∗)− T ∗|

This indicates whether the algorithm converges to the correct estimate. In-
stead, Figure 3.10b gives the average prediction error em during task exe-
cution according to equation (3.10), which is linked to the ability to give
early correct estimates. In both cases, the proposed algorithm attains supe-
rior performance: the average final error drops from 3.5s to about 1s while
em reduces from 4.7s to 2s. Also the error variance is significantly reduced
with respect to the ET prediction.

To highlight the learning capabilities of the algorithm, it is possible to
break down the average prediction error em according to the position of
each activity inside its run. The error value exhibits a decreasing trend, as
shown in Figure 3.11: as the algorithm is able to choose the best template
among past executions, the prediction becomes more accurate. When 8
past repetitions are available DTW attains an error reduction of about 25%
with respect to the case when only one past execution is available as the
reference template. This also confirms the intuition that a shorter template
generally describes a better execution of the task.

52



3.3. Robust monitoring with task variants and errors

1 2 3 4 5 6 7 8
Number of past repetitions

0

0.5

1

1.5

2

2.5

M
ea

n 
er

ro
r 

[s
]

Figure 3.11: Template learning leads to a decreasing trend in the value of the average
prediction error em as the number of repeated executions of the activity increases.

Finally, Figure 3.12 gives insight on the better performance of the pro-
posed algorithm showing results for notable critical cases. Firstly, whereas
the ET prediction benefits of a large past activity duration database, the
DTW algorithm is capable of good monitoring performance starting from
the first repetition after learning an activity reference. Figure 3.12a presents
a comparison of the typical behaviour at the second iteration of the activity:
the ET prediction is constant and equal to the only past duration available,
while the DTW algorithm is already able to follow the advancement of the
ongoing task. Figures 3.12b and 3.12c show what happens in case of par-
ticularly long or short duration of the activity, respectively. In both cases,
the ET prediction gives a wrong early estimate and it does not have enough
information to converge to the correct final duration. Instead, both situ-
ations are not critical for the DTW-based algorithm, which is designed to
inherently take into account high variability in the speed of execution of the
operation. The case in Figure 3.12b is of special importance, as uncertain-
ties and difficulties in the execution of the activity by the human operator
mostly translate in a reduction of the rate of advancement. On the other
hand, faster executions appear as the operator training increases.

3.3 Robust monitoring with task variants and errors

In general, the human can perform the same task in multiple ways and the
movements and execution times among the different variants can change
considerably. In this case, the algorithm presented in Section 3.2 offers
poor performance, as it is not possible to determine a unique template that
is consistent with the operator’s movements for all variants. Instead of han-
dling each variant separately, i.e. having one reference for each variant

53



Chapter 3. Progress–based human monitoring

0 5 10 15 20 25 30 35
Time [s]

25

30

35

40

45

D
u
ra

ti
o
n
 e

s
ti
m

a
te

 [
s
]

(a)

0 10 20 30 40 50 60
Time [s]

40

50

60

70

D
u
ra

ti
o
n
 e

s
ti
m

a
te

 [
s
]

(b)

0 5 10 15 20 25 30 35 40
Time [s]

25

30

35

40

45

D
u
ra

ti
o
n
 e

s
ti
m

a
te

 [
s
]

(c)

Figure 3.12: Examples of critical results for activity monitoring: second execution (a),
long execution (b) and short execution (c). Comparison among DTW algorithm (red),
ET prediction (blue) and actual activity duration (green).

54



3.3. Robust monitoring with task variants and errors

and running multiple instances of the DTW-based algorithm concurrently,
a richer template must be considered, able to efficiently describe the struc-
ture of the task with all its known variants. Besides significantly reducing
the computational load to preserve real-time performance, this allows im-
proving the estimate of task progress, recognition of variants, and template
learning. However, a method to identify in real-time the task variant be-
ing performed and to compare each execution with the correct reference is
needed.

With this aim, the task is segmented online relying on the automatic
detection of a set of features F = {f1, . . . f|F |}. A variant Vi ∈ V of the
task is then defined as the ordered sequence of features that occur from its
start to its end. Features identify specific events during human activity (i.e.
the picking of a specific part or tool during assembly operations) and are
defined a priori based on general knowledge of the task. The definition of
the features is guided by two main considerations:

• They should allow capturing all possible behaviours of the operator;

• They should allow applying the algorithm presented in Section 3.2 at
the segment level, i.e. the prototypical execution of each segment can
be described by a single temporal sequence.

Even so, there is no need to explicitly know and define all variants before-
hand, as the template is built at run-time, adding previously unseen variants
and learning better references for the known ones.

In the following, Section 3.3.1 describes how to build and update the ac-
tivity template, Section 3.3.2 addresses the online recognition of variants,
and Section 3.3.3 deals with the estimate of the advancement and the du-
ration of the task. Finally, Section 3.3.4 discusses the experimental results
and performance of the complete algorithm.

3.3.1 Reference template structure

From the definition of variant, each execution of the task is described by a
sequence of segments, which are delimited by the detection of two features.
Each segment is a time series that describes the human motion by means of
notable features as in Section 2.1.1. The set T collects all known reference
sequences tij composed of |tij| samples that describe the human’s motion
along the segment that goes from fi to fj . Conventionally, the start of the
activity is associated with a fictitious feature f0 common to all variants.
Then, variants differ from each other after a possible common initial part,

55



Chapter 3. Progress–based human monitoring

defined by the same sequence of features, during which the operator per-
forms the actions in the same way. As a result, the structure of the task can
be represented as a tree, with nodes associated with segments and branches
marking the presence of variants at that point of the execution.

More formally, let Θ = (N,A) be the template tree of the task, with
N the set of nodes and A the set of arcs. A node ni ∈ N is defined as a
5-tuple ni = (oi, di, pi, Ci, ri) where oi and di are the origin and destination
features of the segment, respectively (for the root node o0 = d0 = f0).
Each node is associated with the reference template toi,di that describes
the execution of the segment from oi to di. For complex tasks, more than
one node with the same origin and destination may exist, i.e. ∃i 6= j :
oi = oj ∧ di = dj , which refers to the same common template. pi is the
parent node, which has the destination equal to the child’s origin. Ci is the
set of children that collects all nodes whose parent is ni. Arcs in A link
parents to children, i.e. aij ∈ A ⇔ ni = pj . Finally, ri is the number of
times the segment has been already executed during past repetitions of the
activity. Given the tree, a variant Vx = (f0, . . . fN) is equivalently defined
as the ordered set of N-1 nodes connecting the root to a leaf that refer to the
segments that compose the task.

As already stated, when the monitored task is performed for the first
time, the template tree is empty. In fact, the proposed method does not rely
on offline training but learns online from past repetitions of the same activ-
ity following the concept initiated in Section 3.2. This increases applica-
bility in dynamic environments, such as present-day manufacturing, which
is characterised by fast changes in production and, consequently, in human
activities. As a result, the first execution of the task cannot be monitored
but is taken as the first reference. Each time the occurrence of a feature is
detected, i.e. a segment of the task is completed, a new node is added to
the tree and the temporal sequence that describe the human’s movements is
taken as the reference template for such segment in the set T .

To better understand the behaviour of the algorithm for subsequent rep-
etitions of the same task one can refer to Figure 3.13, which shows an ex-
ample of template tree for a task with three variants V1 = (f0, f1, f2, f3),
V2 = (f0, f2, f1, f3) and V3 = (f0, f2, f3) after eight repetitions of the ac-
tivity. The set of reference sequences is T = {t01, t02, t12, t13, t21, t23},
noting that nodes n3 and n7 refer to the same segment. Initially, the al-
gorithm starts to monitor the first segment. To do so, it runs one instance
of the DTW-based algorithm for each child of the root node (n1 and n4 in
the Figure). In this way, the ongoing human operation is compared to all
the known variants that depart from the root node. The algorithm under-

56



3.3. Robust monitoring with task variants and errors

Figure 3.13: Example of template tree of a task with three variants. Label for the i-th node
is (oi, di, ri). After n0, two DTWs run concurrently, one for each branch. The width of
the blue arrows is proportional to their current probability.

stands which is the most probable variant being performed and evaluates
the advancement and the expected duration of the task accordingly. When
the next feature is detected (suppose f1), marking the end of the current
segment, the algorithm proceeds to monitor the next segment.

The current node becomes the appropriate child of the root node (which
is n1 in case of the detection of f1) and new instances of DTW are run for
each child ni of the current node to monitor the next part of the task. The
input is the sequence of the human hand positions collected from the start
of the segment (i.e. the last feature detection) to the current time, which is
compared to the reference sequence toi,di ∈ T . Any time a segment is com-
pleted, if the temporal sequence that describes its last execution is shorter
than the current template in T , the former is taken as the new reference for
such segment, in the same way as described in Section 3.2.5. Conversely,
if none of the known children corresponds to the performed segment, i.e.
the human is following a new, previously unseen, variant of the task, a new
branch is added to the template tree. From this point, the progress of the
activity cannot be estimated, as the future evolution of the ongoing variant
is unknown. However, human motion is still monitored to segment the re-
maining part of the activity and update the template accordingly in order to
include the new variant in the task structure.

Noting that multiple nodes in the tree can refer to the same task seg-
ment, such as n3 and n7 in Figure 3.13, one might wonder whether a
graph-like structure of the activity could improve representation efficiency

57



Chapter 3. Progress–based human monitoring

Figure 3.14: Example of graph-like activity structure that does not allow to properly
recognise variants.

by eliminating unnecessary nodes. However, a graph model would make
it impossible to correctly distinguish the variants that compose the activ-
ity due to the presence of joint-fork pairs and/or loops. For instance, two
variants V1 = (f0, f1, f2, f3, f4) and V2 = (f0, f2, f3, f1, f4) would pro-
duce the graph shown in Figure 3.14, where a joint-fork connection is
present. However, looking at the graph, one could say that also variants
(f0, f1, f2, f3, f1, f4) and (f0, f2, f3, f4) are possible. This would make it
impossible to correctly recognise the variant being performed and estimate
the advancement of the activity as described in the following. In the case of
loops, the problem would be even worse, as the graph would contain paths
of infinite length that could be considered as feasible variants. On the other
hand, although the same segment can appear in the tree multiple times as
different nodes, only one reference template is kept in memory in the set T .

3.3.2 Early recognition of task variants

During the monitoring of a task, the exact segment being executed is un-
known. While the origin feature is known, the destination is determined
only after the completion of such a segment. However, early information on
which variant is the one being performed is crucial to estimate the progress
of the task. This is true both when there is a fork in the tree (and multiple
DTWs are running) as well as when the current node has a single child,
since the human might always follow a new variant.

The proposed method for the early recognition of task variants computes
a probability value for each of the branches departing from the current node
n̄, related to the last completed segment. To do so, it exploits a similarity
measure that derives from the cumulative distances provided by the DTW

58



3.3. Robust monitoring with task variants and errors

applied at the segment level. For each ni ∈ C, two DTW matrices are
present to monitor the movements of the right and the left hand, respec-
tively. A unique cost Di is taken as:

Di(k) = min{Dsx
i (k), Ddx

i (k)}
Dsx
i (k) = min

j
Dsx
i (k, j) Ddx

i (k) = min
j

Ddx
i (k, j)

where k is the number of samples in the input sequence, and Dsx
i (k, j)

and Ddx
i (k, j), ∀j, are the last rows of the two DTW matrices computed

according to equation (3.5). Then, the similarity measure D̃i(k) is given
by the convex combination of two different contributions with respect to a
design parameter γ ∈ [0, 1]:

D̃i(k) = γD′i(k) + (1− γ)D′′i (k)

D′i(k) =
Di(k)

k
D′′i (k) = Di(k)−Di(k − 1)

In particular,D′i is the cumulative distance normalised over the input length,
which is a global measurement of the similarity between the input and ref-
erence sequences and evolves smoothly during the evolution of the task.
Instead, D′′i considers the local rate of growth of the DTW cost and is more
reactive in detecting changes in the operator’s movements with respect to
the reference template.

Given the similarity measure, the current probability Pi of each branch is
computed using a recursive Bayesian classifier (similar to the one presented
in [170]). The prior probability of each child ni of n̄ is based on historical
data and given by:

Pi(0) =
ri
r̄

with r̄ the past executions of n̄. The value is updated with each new input
sample according to the following recursive rule:

P̃i(k) = Pi(k − 1) · f(D̃i(k)) (3.11)

where f is the probability density function of a Gaussian distribution with
zero mean and standard deviation σ = 0.27, whose value has been de-
termined as the one minimizing the classification error during preliminary
tests. As the cost D̃i(k) increases, i.e. the sequences are more dissimilar,
the probability tends to decrease.

59



Chapter 3. Progress–based human monitoring

The sum of all probabilities returned by equation (3.11) might be greater
than 1. Thus, a normalization is introduced as:

Pi(k) =
P̃i(k)

max{1,
∑

i P̃i(k)}

Notice that values are normalised only when their sum is greater than 1.
Otherwise, if the probability of all known variants is low, the algorithm
assumes the existence of a new variant. Specifically, 1−

∑
i Pi(k) is taken

as the probability that the operator is performing an unknown variant of the
task.

3.3.3 Estimate of task advancement and expected duration

Since the DTW-based algorithm is applied at the segment level, the equa-
tion (3.7) used in Section 3.2 to monitor the operation with a single template
would return the advancement of the current segment instead of the one of
the whole task. As variants might differ in length, the advancement of the
task depends on which variant is considered as the one being executed.
Still, we aim to find a single value that best describes the overall progress
of the activity and leads to the most accurate prediction of its duration. To
do so, all the variants that are feasible at the current time instant must be
considered, as we cannot know the future human behaviour.

Let n̄ be the current node, ni ∈ C one of its children, and Vi = {Vx ∈
V |ni ∈ Vx} the set of all variants that contain ni. Vi identifies the i-th
branch that departs from the current node of the template. Moreover, let
consider a partition Vx = (V pre, V post

x ) : V pre = (n0, . . . n̄), V post
i =

(ni, . . . ) and note that V pre is common among all Vx ∈ Vi. Then, the
advancement of the task assuming the i-th branch that departs from n̄ to be
the correct one is computed as:

advi(Te) =
Lpre + φ̆i(k)

Lpre + Lposti

(3.12)

with k the number of available input samples at time Te. Moreover, Lpre

is the length of the fraction of the task template that has been already exe-
cuted, equal to:

Lpre =
∑

ni∈V pre

|toi,di |

Instead, Lposti is an estimate of the length of the remaining part of the task
template to be performed, which is computed considering all variants be-

60



3.3. Robust monitoring with task variants and errors

longing to the i-th branch Vi. Let lVx be the length of the part of the refer-
ence template of Vx that remains to be performed and πVx the probability to
be the variant performed by the human based on past data, that is:

lVx =
∑

nj∈V post
x

|toj ,dj | πVx =
∏

nj∈V post
x

rj
rpj

Then, Lposti is computed as the value that minimises the average error with
respect to the length L∗ of the ground-truth variant:

Lposti = arg min
L∗

∑
Vx∈Vi

πVx(L∗ − lVx)2 =
∑
Vx∈Vi

πVxlVx

Which is to say that the estimated length of the remaining part of the tem-
plate is the convex combination of the remainder of the template of all
variants that belong to the branch, weighted with respect to their historical
probability.

Referring again to Figure 3.13, when a new repetition of the activity
starts, the current node is set to n̄ = n0. Since two branches are present
(V1 = {V1} and V4 = {V2, V3}), two instances of the DTW-based algorithm
monitor the ongoing task with templates t01 and t02 associated with V1 and
V4, respectively. Since no segment has been already completed Lpre = 0.
Besides, Lpost1 = lV1 and Lpost4 = 0.67lV2 + 0.33lV3 , being for instance
lV1 = |t01||t12||t23|.

Assuming that the i-th branch is the one being executed, one can predict
the duration T̂i of the activity with the progess-based estimate in (3.9) using
the task advancement computed with equation (3.12). Then, the final pre-
diction T̂ (Te) of the duration of the task is obtained by weighting the values
obtained for each branch according to their current probability to be the one
being performed, as given by the method explained in Section 3.3.2:

T̂ (Te) =
∑
ni∈C

Pi(k)T̂i(Te) +

(
1−

∑
ni∈C

Pi(k)

)
T (Te)

The last term accounts for the possibility that the operator is following an
unknown variant and T (Te) is the average duration of the task computed
with the elapsed time-based prediction (3.1). As the algorithm becomes
more certain about the variant being performed, the influence of unlikely
branches vanishes and the prediction converges to the value associated with
the correct variant. In case a new node is added to the template at the end
of a segment, i.e. the human is following a new variant, the remaining part

61



Chapter 3. Progress–based human monitoring

Figure 3.15: Picture of the workspace and of the final product.

of the activity cannot be monitored. Instead, the next segments are added
to the tree and T (Te) is returned as the best prediction for the duration of
the ongoing task.

3.3.4 Experiments

The experimental campaign aimed to verify the variant recognition mech-
anism, the construction of the template tree, and to assess the performance
of the proposed algorithm in terms of prediction errors of the activity du-
ration. Similar to the experiments in Section 3.2.6, the movements of the
human have been tracked in terms of wrists and index fingers trajectories
following the approach outlined in Section 2.1.1. The task consisted in
the partial assembly of a wheeled base, during which only two out of four
wheels were mounted (see box in Figure 3.15). The product parts were
stored in boxes on the worktable as shown in Figure 3.15: wheels for the
left (1) and right (2) casters, screws to fix the casters to the base (3), swivel
forks (4), and screws and nuts to fix the wheel to the fork (5). Besides,
zones are present to store defective parts (6), the bases, and the completed
products (not shown in the picture). For the purpose of task segmentation,
features have been defined as the operator reaching specific locations in the
workspace, described as spheres, with one index finger. In addition to f0
that marks the start of the activity, f1 is associated with location 1 shown in
Figure 3.15, f2 with location 2, f3 with location 3, f4 with location 6, and
f5 with the output zone, which marks the end of the task.

62



3.3. Robust monitoring with task variants and errors

Out of all variants that can be described with the defined features, we
have considered six, which lead to the template tree in Figure 3.16, namely:

• V1 = (f0, f3, f1, f3, f2, f5);

• V2 = (f0, f3, f3, f2, f4, f1, f5);

• V3 = (f0, f1, f3, f2, f3, f5);

• V4 = (f0, f3, f3, f2, f5);

• V5 = (f0, f1, f3, f2, f4, f3, f5);

• V6 = (f0, f3, f3, f2, f1, f5).

The variants differ in the assembly sequence used to complete the product.
In V1 the human mounts the left fork on the base, completes the caster fixing
the wheel to the fork, mounts the right fork, and finally the right wheel. In
V3 operations are inverted: the human first assembles the left caster (fork
plus wheel), fixes it to the base, then moves to the right caster which is
mounted in the same way. During V6 the operator fixes both forks, then
assembles the wheels. Variants that describe error cases are also present.
During V2 and V5, the operator finds a defective screw while fixing the right
wheel. Thus, he/she has to stop and throw the screw in the waste zone
before continuing. In V4 the human forgets to mount the left wheel and
delivers an incomplete product.

Variant recognition and template construction

The process of building the template from scratch has been repeated three
times, assembling each time 15 products following a random sequence of
variants. The first execution is saved as the initial template. Subsequent
repetitions of the task are either monitored (if the variant is known) or added
to the template (if unknown). Overall, the algorithm always recognises the
correct variant as soon as the actions of the human differ from the known
templates.

To exemplify its behaviour, we can focus on the three-way branch that
stems from node n7 in Figure 3.16, composed of variants V2, V4, and V6, as
it represents the most critical point for variant recognition. Let us consider
the case when V6 and V4 are already known, i.e. are included in the template
tree, and V2 is performed for the first time by the operator. The template
tree in such a situation is shown in Figure 3.17. The first segments (f0, f3),
(f3, f3), (f3, f2) are common among the three variants. Thus, the algorithm
is not aware of the new variant and the task is monitored as if it was V4 or

63



Chapter 3. Progress–based human monitoring

(oi, di) ni

(f0, f1) n11
(f0, f3) n1
(f1, f3) n3, n12
(f1, f5) n21
(f2, f1) n20
(f2, f3) n14
(f2, f4) n8, n17
(f2, f5) n5, n16
(f3, f1) n2
(f3, f2) n4, n7, n13
(f3, f3) n6
(f3, f5) n15, n19
(f4, f1) n9
(f4, f3) n18

Figure 3.16: Template tree of the assembly task performed during experiments. Note that
many nodes link to the same segment.

V6. After node n7, a fork is already present: one instance of the DTW-based
algorithm runs for each of the two branches and their probabilities are up-
dated with each new sample according to the recursive Bayesian classifier
of Section 3.3.2. At first, the algorithm cannot decide which is the correct
variant, since the initial part of segments (f2, f1), (f2, f5) and (f2, f4) is
common, as the operator mounts the first wheel. Then, either he/she fixes
the second (V6), or delivers an incomplete product (V4), or finds a defec-
tive screw (V2). As soon as the human movements differ from both known
templates (≈ 8.5 s after the start of the current segment, see the top graph
of Figure 3.17), the algorithm recognises the presence of a new variant: the
costs returned by both DTWs increase and probabilities drop to zero. It can
be also noticed that the advancement computed for the two wrong variants
remains below 0.5 at the end of the segment, highlighting the fact that the
new trajectories do not align well with the known ones.

Figure 3.18 shows a full example of one execution of V4 when all vari-
ants are already known. V4 represents an error variant that is rarely per-
formed and lasts less than average. Initially, the expected duration is over-
estimated, as the prediction favours more usual variants, such as V6. As

64



3.3. Robust monitoring with task variants and errors

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1
P

ro
b
a
b
ili

ty
 -

 C
o
s
t

0 2 4 6 8 10

Time [s]

0

0.5

1

A
d

v
a

n
c
e

m
e

n
t

Figure 3.17: Recognition of variant V2, known V4 and V6. Both children of n7 are deemed
as wrong (≈ 8.5 s) and node n8 is added to the tree. Graphs show Pi (top, solid), D̃i

(top, dashed) and advi (bottom) for segments (f2, f1) (red) and (f2, f5) (blue).

information becomes available, the prediction converges to the actual task
duration. Notice that the correct branch is recognised even if it starts with
the lowest prior probability.

Performance evaluation

To evaluate performance, the proposed Multi-variant (MV) algorithm is
compared to other two methods. The first one is the Single-Variant (SV)
algorithm presented in Section 3.2, which describes the prototypical ex-
ecution of the task with a single template sequence. The second is an
ideal method, referred to as the Prophet algorithm (PA), which has perfect
knowledge of the variant being performed. It behaves as an SV algorithm
trained only on past executions of the variant to monitor.

Results come from 33 repetitions of the assembly task. Respectively,
the six variants have been repeated 12, 3, 6, 2, 3, and 7 times, reflecting
the fact that error ones are infrequent in a real case. To neglect the learning
transient, data from previous experiments have been used as a training set
to build the template. The average duration of the task has been 105.0 s,
from a minimum of 72.9 s to a maximum of 131.0 s, thus showing high
variability. The performance index is the average error in the prediction of

65



Chapter 3. Progress–based human monitoring

0 10 20 30 40 50 60 70 80
Time [s]

0

50

100

D
u

ra
ti
o

n
 [

s
]

(a) Expected (blue) and actual (green) duration.

0 10 20 30 40 50 60 70 80

Time [s]

0

0.5

1

A
d

v
a

n
c
e

m
e

n
t

(b) adv of correct (blue) and wrong (red) segments.

0 10 20 30 40 50 60 70 80

Time [s]

0

0.5

1

P
ro

b
a

b
ili

ty

(c) Pi of correct (blue) and wrong (red) segments.

Figure 3.18: Results for one execution of V4: as the correct variant is recognised, the
duration estimate converges to the real one.

66



3.3. Robust monitoring with task variants and errors

em [%] Total Last 20 s
q25 q50 q75 q25 q50 q75

SV 5.22 17.99 30.57 3.13 11.35 22.35
MV 1.95 4.28 8.79 0.63 1.62 3.52
PA 1.93 3.98 7.84 0.97 2.46 5.49

MV–PA -2.65 0.30 2.93 -3.66 -0.52 0.55

Table 3.1: 25, 50, and 75 percentiles of the average prediction errors computed along the
entire duration of the activity (1st column) and the last 20s only (2nd column).

the duration, normalised over the actual duration of the task T ∗:

em =
1

T ∗

∫ T ∗

0

|T̂ (τ)− T ∗|
T ∗

dτ

Figure 3.19 shows examples of the results obtained by the three methods
following different task variants. MV consistently gives more accurate pre-
dictions than SV, while PA attains the best results. SV fails, as the only tem-
plate sequence it considers is compared to the input regardless of the variant
being performed. Since the algorithm takes the shortest past execution of
the activity as the reference, this is likely to be an instance of V4, i.e. when
an incomplete product is delivered. Table 3.1 reports the errors obtained
for the different methods. While SV attains a median error (q50) of 17.99%
of the task duration, MV gives accurate predictions, with a median error
of 4.28%, which means less than 5 s for the average activity. Furthermore,
the prediction becomes more precise as the task progresses, and the error
reduces to 1.62% if we consider only the last 20 s of each execution. The
error dispersion is also significantly reduced, with the interquartile range
that halves from 6.84% to 2.89%. The improvement mainly comes from
the fact that the availability of more data reduces the uncertainty of un-
known quantities, such as the rate of advancement of the task (from which
the expected duration is extrapolated) or the estimate of Lposti used in equa-
tion (3.12). Also, Lpre, whose value is certain, grows with the number of
completed segments, while Lposti lowers and becomes less important. This
kind of uncertainty may produce peaks or valleys in the duration estimate
in the first part of the task, similar to the one shown in Figure 3.19a, even if
the advancement is correctly tracked (see Figure 3.19b).

When an infrequent variant that lasts more (less) than average is per-
formed by the operator, the algorithm overestimates (underestimates) the
length of the activity until the correct variant is detected. Figure 3.19c re-
ports the results of one execution of V2, which is an infrequent variant and

67



Chapter 3. Progress–based human monitoring

lasts longer than average. The presence of the more probable variant V6 in
the same part of the template tree leads to an underestimation of the dura-
tion of the ongoing task. When the operator performs segment (f2, f5), the
probability of the correct variant raises and the prediction converges to the
actual operation duration. This is apparent from the negative jump in the
advancement associated with the correct variant shown in Figure 3.19d.

From the last row of Table 3.1, we can also notice that the performance
of MV and PA are not significantly different, with the median of the error
difference in the range of ±0.5%. This is a major result, which means that
the presence of several variants of the task does not worsen the estimate
of its duration. An example is shown in Figure 3.19e for one instance of
V6. Despite the monitoring of the task requires the evaluation of three forks
in the template, one of which composed of three branches, the predictions
of MV and PA can be mostly superimposed. Note that the slightly better
performance attained by MV in the last 20 s may be due to the more data it
had available for template learning.

Concluding remarks

Overall, the proposed approach can monitor a wide variety of tasks and
task variants while achieving good performance. Its main limitation lies in
the requirement of a priori knowledge of the set of segmentation features,
which limits the number of task segment types that can be handled by the
algorithm. Future works should investigate how to improve task segmenta-
tion through the automatic definition of features from the operator’s motion
data. This would also allow optimizing segmentation to minimize the sim-
ilarity among different segments, possibly facilitating variant recognition.

68



3.3. Robust monitoring with task variants and errors

0 20 40 60 80 100
0

50

100

D
u

ra
ti
o

n
 [

s
]

(a) V1 duration

0 20 40 60 80 100

0

0.5

1

A
d

v
a

n
c
e

m
e

n
t

(b) V1 advancement

0 20 40 60 80 100
0

50

100

D
u
ra

ti
o
n
 [
s
]

(c) V2 duration

0 20 40 60 80 100

0

0.5

1

A
d
v
a
n
c
e
m

e
n
t

(d) V2 advancement

0 20 40 60 80 100

Time [s]

0

50

100

D
u
ra

ti
o
n
 [
s
]

(e) V6 duration

0 20 40 60 80 100

Time [s]

0

0.5

1

A
d
v
a
n
c
e
m

e
n
t

(f) V6 advancement

Figure 3.19: Examples of results in the monitoring of different variants of the task. In the
left column: prediction of T̂ (Te) obtained with MV (blue), PA (red) and SV (yellow)
algorithms. Actual duration in green. In the right column: advancement obtained with
MV algorithm (blue), with the advancement of wrong branches reported in red.

69





Part II

Dynamic scheduling of flexible
collaborative cells

71





CHAPTER4
Control system architecture

THE main objective of this thesis is to control the production of col-
laborative manufacturing cells, focusing on flexible assembly tasks
where multiple humans and robots cooperate to complete different

products according to a time-varying mix. In Part I, we addressed the mon-
itoring of the human activity in order to gather more information on the
current state of the process. In Part II, we deal with the task planning
problem, which means to assign operations to all the agents that work in
the cell in order to satisfy the product demand. Scheduling algorithms are
essential elements to manage the production of industrial plants since the
usage of the limited available resources must be carefully planned to max-
imise productivity and minimize costs. However, optimal task allocation
and scheduling are usually made difficult by the large size of the problem,
the presence of many constraints, and large uncertainty in the system. For
these reasons, a lot of research effort has been put on the topic for many
years both in manufacturing and other fields, such as electricity grids [22],
traffic management [48], and CPU scheduling [162].

In our application, the presence of the human adds flexibility to the
system thanks to his/her strong adaptability and high cognitive skills. On

73



Chapter 4. Control system architecture

the other hand, it also introduces large uncertainty, since the workers’ be-
haviour is only weakly controllable. As already discussed in Part I, the
human can, in general, exhibit an erratic behaviour that is difficult to model
and predict. Moreover, present-day flexible manufacturing is characterised
by frequent changes in production. As a consequence, the layout of the
workspace, the types of products, the agents available in the plant, and the
operations they must perform can all be subject to modifications. For in-
stance, robots and workers can be reallocated to different cells, new prod-
ucts introduced, and others discontinued. In this scenario, it is crucial to
implement control architectures that are capable of quick adaptation and
reconfiguration to minimise set-up times. Also, dynamic scheduling algo-
rithms must fully exploit the available flexibility and output plans that are
robust against the system variability. To do so, both task allocation and
scheduling must be solved online and concurrently.

One way to attain a certain degree of performance and robustness is to
apply dispatching rules [39], which are based on predetermined heuristics.
The main advantage is the minimal computational load at run-time that
favours their use for very large problems, such as job-shop scheduling with
many workstations. However, decisions are based only on local information
and cannot lead to optimality. Hence, the need for more complex dynamic
schedulers that must work in real-time. To reduce computational load, de-
centralised auction-based approaches are presented in [23, 113]. Also, [29]
proposes to decompose a global task into local subtasks that are assigned
to individual agents according to their capabilities. Instead, Lou et al. [93]
describe a two-stage algorithm where the initial schedule, computed of-
fline, is repaired at run-time using heuristics in case it becomes unfeasible.
Centralized strategies are also proposed. For instance, in [49] the authors
present a framework for task scheduling in multi-robot teams that com-
bines Mixed Integer Linear Programming (MILP) optimization and Earli-
est Deadline First policy. The proposed algorithm is not optimal, but only
search for a feasible solution. Similarly, [150] combines MILP optimiza-
tion with heuristic rules for job-shop order scheduling. In [112], the best
task allocation is found by evaluating possible alternatives offline. The plan
is then adjusted at run-time in case of abnormal events following predeter-
mined rules. Finally, [59] analyses two iterative heuristic algorithms for
cycle time optimization of deterministic marked graphs, which are able to
model cyclic scheduling problems in manufacturing plants.

Restricting the scope to human-robot collaboration, [21] presents a strat-
egy based on genetic algorithms that minimises production time and cost.
Johannsmeier et al. [68] propose a hierarchical framework that leverages

74



4.1. Proposed control system architecture

A* search on AND/OR graphs for optimal task planning in human-robot
assembly. Although task assignment and sequencing are solved offline,
the method includes a certain degree of real-time adaptation at the motion
planning level. In [19,73], Petri Net models are exploited to schedule robot
tasks. In particular, [19] solves the problem by predicting human inten-
tions, which are assumed to be uncontrollable. [137] considers the human
intention to be partially observable and proposes a framework for task allo-
cation based on Partially Observable Markov Decision Processes. In [165],
the robot schedule switches between precomputed alternatives to adapt to
the preferences of the human operator, while in [128] task allocation is
guided by a model of bilateral trust dynamics between the human and the
robot partner. Instead, systematic ways to optimally assign tasks based on
agents’ skills are presented in [11, 130].

In the following, the control system architecture proposed in this work
for the dynamic scheduling of collaborative tasks is detailed in Section 4.1.
Then, Section 4.2 presents a general method to build the Digital Twin of
flexible manufacturing cells, which constitutes the pivotal element of the
proposed framework. Finally, Section 4.3 focuses on how to include robot
faults and human errors in the model.

4.1 Proposed control system architecture

In recent years, cyber-physical systems are becoming key components of
the emerging smart factories of Industry 4.0 [85, 111]. A virtual copy of
the physical system, called Digital Twin (DT), collects data in real-time
and tracks the state of the process at a high level of detail [138]. On the
one hand, information is locally available to make decentralized decisions
and achieve a high degree of autonomy. On the other hand, connection
with the enterprise information system allows for better production man-
agement and tighter integration with other processes, such as logistics and
maintenance.

As far as task planning is considered, the presence of a DT provides a
tool to simulate feasible system evolutions, explore what-if scenarios, and
predict the performance of alternative production plans. Obviously, the
quality of the information provided by the DT depends on how well the vir-
tual copy models the real system. In particular, critical issues are given by
the inherent variability of manufacturing systems that stems, for instance,
from stochastic processing times, the occurrence of unpredictable faults,
and uncertainty in the future production demand. Modelling the manufac-
turing process becomes even more difficult when the human is also present,

75



Chapter 4. Control system architecture

Figure 4.1: Control system architecture.

as in human-robot collaborative tasks. As already highlighted, the human
is a major source of uncertainty. Even in case that they are provided with
instructions on the next operation to perform, they can make mistakes, ac-
complish the same task in several ways, or refuse to follow the instructions
altogether. For this reason, although the literature available on applications
of DTs to manufacturing is abundant and diverse [77], limited contributions
consider human–robot interaction [9, 99].

The control system architecture proposed in this work is depicted in Fig-
ure 4.1. The physical system consists of multiple robots and humans that
collaborate in a shared workspace to the assembly of different products.
The pivotal element is constituted by the Digital Twin of the collaborative
cell, which models both the physical structure of the workspace and the
evolution of the assembly process. For instance, it describes the produc-
tion demand, the state of agents and other resources, the material flow, the
occurrence of faults, and the associated recovery actions. A detailed de-
scription of the implementation of the DT, which is based on Petri Nets, is
provided in Section 4.2.

The current state of the process is tracked in real-time based on data col-
lected from the physical system and the enterprise information system. In
particular, information on the target production mix comes from the com-
pany’s ERP system, while robots provide data on their status through wired
or wireless communication between the controllers and the DT. More criti-
cally, a dedicated monitoring unit is needed to gather information regarding
the activity of human workers. The ideal monitoring unit should be able to
identify the operation that the operator is performing, provide an estimate
of the expected duration of the task, and notify the system of the occur-

76



4.1. Proposed control system architecture

rence of errors. For this purpose, the algorithms presented in Part I can
be exploited in combination with a task identification algorithm. Anyway,
simpler monitoring strategies can also be employed, at the price of reduced
performance. For instance, a simpler prediction of task duration would not
cause any problems in the functioning of the system, but would achieve
suboptimal agents’ coordination. Instead, in case of information unavail-
ability, such as the lack of error detection algorithms, the system would
still work as intended as long as the DT is able to correctly track the state
of the system with the available data. Instead, manual intervention would
be required to recover when the state of the DT and the one of the physical
system diverge, leading to increased downtime and reduced flexibility.

The current state of the process, as given by the DT, is taken as the ini-
tial condition by the scheduling algorithm to predict the future evolution of
the system and determine the optimal control action with a receding hori-
zon approach. This is done by exploring the Reachability Tree of the Petri
Net model, to which a temporal characterization has been applied. When
the plan of future operations that the agents must perform has been deter-
mined, only the first command is dispatched. Then, the plan is re-scheduled
starting from the updated status of the system. Both task allocation and se-
quencing are dynamically solved on-line for multiple concurrent products
to increase productivity and flexibility. Also, many sequences are possible
to complete the assembly, and the optimal one for each product is selected
in real-time by the scheduler, whose choice can change during operation.
This allows adapting the plan in real-time, responding on-line to the oc-
currence of robot faults, and taking into account how quickly the human
operator completes a task. The proposed dynamic scheduling algorithm is
thoroughly presented in Chapter 5.

Commands for the robots are sent directly to the robot controllers. In-
stead, human workers are informed of the next operation to perform through
intuitive user interfaces. Usually, graphical interfaces on grounded screens
are used to this aim, although other strategies have been already employed
in the literature [159]. Advanced human interfaces can improve perfor-
mance in complex scenarios. In this view, in Section 5.2 we propose to
combine graphical instructions with wearable vibrotactile interfaces.

As a final remark, we recall that the short product lifecycles and the large
number of product variants that characterise present-day flexible manufac-
turing require frequent re-designs of workstations. For this reason, vari-
ous benefits come from the possibility to analyse new production concepts
prior to implement them on the real plant. Appendix A discusses a way
to integrate the proposed framework into a commercial Product Lifecy-

77



Chapter 4. Control system architecture

cle Management software for automatic manufacturing process verification
and commissioning, which allow companies to reduce costs and improve
productivity. Notably, the variability introduced in the system by the pres-
ence of the human and the occurrence of faults is taken into account.

4.2 Digital twin for flexible collaborative cells

As stated in Section 4.1, the DT aims to track the state of the assembly
process in real-time and allow simulating future evolutions of the system.
To do so, it must describe both the physical structure of the workspace and
the assembly tasks. Specifically, the DT models the state of all the agents
that are present in the cell (humans and robots), the operations they can per-
form, and the tools and other resources that are needed for their execution.
Precedence constraints among operations and the material flow inside the
workspace stem from the structure of the assembly products. Moreover,
the presence and finite capacity of buffers that store intermediate Work In
Process (WIP) are also taken into account, as they influence scheduling.
Finally, the occurrence of robot faults and human errors, and the associated
recovery actions, are modelled to increase robustness.

In the literature, several methods have been employed to model assem-
bly sequences. In [145], the authors review existing formalisms and pro-
pose a novel approach derived from SFC diagrams. Instead, AND/OR trees
are used in [30], while [134] exploits precedence graphs. The aforemen-
tioned works focus on the representation of the assembly structure, while
neglecting other aspects of the assembly process. Casalino et al. [19] recog-
nise Petri Net as a powerful and general tool to describe human-robot as-
sembly thoroughly. However, human actions are not included in the model,
as well as faults and errors.

In this thesis, the Digital Twin of the cell is described in terms of Petri
Nets, as they are capable of modelling all the information required to ob-
tain a comprehensive DT. Moreover, they provide an efficient framework
for simulation and scheduling purposes. However, as the complexity of
the manufacturing process increases, the abundance of details embedded
in the DT obfuscates the high-level structure of the process and leads to
a rather complex and unintuitive model. Therefore, a simpler and more
user-friendly way to provide data to the DT is needed, which can be easily
understood by process experts. Here, we propose to automatically generate
the Petri Net-based DT from the definition of assembly products via Aug-
mented AND/OR Graphs (AAOG). Readability, modularity, and automatic
generation are even more crucial features when flexible manufacturing is

78



4.2. Digital twin for flexible collaborative cells

concerned. Indeed, frequent changes in the production reflect in equal mod-
ifications of the DT, which must therefore be fast and straightforward.

In the following, Section 4.2.1 presents the formal definition of the high-
level assembly jobs and the rules to reconfigure the assembly process in
the face of changes. Then, the Petri Net-based digital twin is described in
Section 4.2.2 together with the procedure for the automatic generation from
AAOGs.

4.2.1 High-level job definition

This Section aims to provide a user-friendly and easily modifiable way to
define the assembly jobs that compose the complete manufacturing process.
A user that is knowledgeable in the task, but is not a robotics/IT expert
should be able to specify even complex use-cases from a high-level per-
spective. Then, the software is in charge of the automatic generation of the
DT. For the scope of this thesis, a collaborative robotic cell consists of a set
of resources R used to repeatedly complete a set of jobs. Resources can be
working agents (i.e. humans and robots), shared workspace, tools, or other
equipment. A job is a finite set of tasks (or operations) Ω = {o1, . . . , ono}
that are required to assemble a product P = {p1, . . . , pnp} composed of
np parts. In general, a given product can be completed following different
sequences of tasks. To give a compact representation of all viable assembly
plans, one can use AND/OR trees [30]. Starting from AND/OR trees, we
propose AAOGs, which are expanded to include information on the feasible
assembly operations, resource requirements, and workspace layout.

An AAOG is a hypergraphH = (N,E), whereN is the set of nodes and
E the set of (hyper)edges. Each node in the graph represents a step in the
assembly process. It is uniquely associated with an intermediate assembly
(WIP part) and the physical buffer where it is stored between operations. A
node is thus described by n = (W, cB), whereW ⊆ P defines the WIP part
and cB the buffer capacity, i.e. the maximum number of products that can
contain simultaneously. Starting with all parts pi ∈ P disconnected from
each other, we join them to form the final assembled product P . Thus,
leaves of the tree are np nodes with Wi = pi for i = 1, ..., np, while the root
node has W|N | = P .

The graph has an edge for each task. A task is described by o =
(d,RO, RF ), where d contains information about its expected duration and
RX stands for a set (possibly empty) of resources. Namely, RO collects
resources that must be available at the beginning of the task and are needed
for its execution, whereas RF collects resources that are released at the end

79



Chapter 4. Control system architecture

of it. The two sets can be different, so to account for cases where a resource
is kept occupied along multiple tasks and is not released at the end of each
one. An assembly operation connects a single parent node f ∈ N to a set
of children nodes C ⊂ N . Each edge is thus defined by e = (o, C, f). For
the AAOG to be well-defined, each edge must be such that:

Wf =
⋃
c∈C

Wc ∧ Wi ∩Wj = ∅, ∀i 6= j ∈ C

That is, the set describing the WIP part associated with the parent node
is the union of disjoint sets of all WIP parts coming from children nodes.
Non-assembly tasks, such as painting or greasing, can be modelled by con-
necting a single child to a parent node, so that both WIP are made of the
same parts. Yet, this allows considering resource requirements, task dura-
tion, and the possible relocation of the WIP product inside the workspace.

A feasible assembly sequence for the job Ω is the set ΩS ⊆ Ω of tasks
related to the edges of a minimal sub-graph that includes the root node
and all the leaves of the complete AAOG, i.e. a graph describing a set
of operations sufficient to obtain the complete product from its base parts.
The job is considered to be completed after the execution of all and only
the tasks belonging to one of its feasible assembly sequences. Usually, the
optimal ΩS is determined offline based on nominal behaviour. In this work,
the scheduler dynamically makes this choice for each product to improve
flexibility and adaptation to the current status of the production.

Figure 4.2a shows an explanatory example of AAOG for a product com-
posed of three parts P = {p1, p2, p3}, which are specified in the leaves
with the relative buffer capacities. The root represents the complete prod-
uct W6 = {p1, p2, p3}, and the intermediate nodes contain the WIP parts
W4 = {p1, p2} and W5 = {p2, p3}. The resource set is R = {r1, r2, r3, r4}
and we can suppose r1 to be a human operator, r2 a robot, r3 a tool, and r4
a fixture device. Two assembly sequences are possible, namely (o1, o3) and
(o2, o4). The human can perform operations o1 and o4, while the robot o2
and o3. In addition, operation o3 can be completed by the robot only with
the help of the tool r3. A fixture r4 is required to hold the WIP product
throughout the entire assembly if the sequence (o2, o4) is followed. There-
fore, r4 is occupied at the beginning of o2 and released only after the com-
pletion of o4.

High-level model of the complete assembly process

When multiple product types are assembled in the same collaborative cell,
the expert user defines one AAOG per product. Then, all graphs must be

80



4.2. Digital twin for flexible collaborative cells

(a)

(b)

(c)

Figure 4.2: Examples of Augmented AND/OR Graphs for two different assembly jobs
(a)-(b) and Augmented AND/OR Graph of the complete assembly process obtained by
merging those related to the single products (c).

81



Chapter 4. Control system architecture

merged together to obtain the AAOG that describes the complete assembly
process. In doing so, one must pay attention to the fact that different jobs
may share part of their assembly sequences. This is the case, for instance,
when the manufacturing unit is devoted to the assembly of variants of the
same product. On the one hand, AAOGs of single jobs shows all possible
assembly sequences for the same product. On the other hand, merging the
individual AAOGs highlights the interrelations that exist among different
products. Both pieces of information are transferred to the final DT model
to allows for higher flexibility in the scheduling stage. In fact, the scheduler
dynamically chooses the assembly sequence for each product and dynami-
cally associates intermediate WIPs to the type of final product.

Suppose, without loss of generality, to have two AAOGs,H1 = (N1, E1)
and H2 = (N2, E2), and let H = (N,E) be the graph obtained by merging
H1 and H2. Then, H is obtained as the union of the two AAOGs, that is
N = N1∪N2 andE = E1∪E2, considering that the following rules applies
to determine when elements belonging to different AAOGs are equal:

• Two edges are equal if they describe the same operation:

ei = ej ⇐⇒ Ci = Cj ∧ oi = oj ∀ei ∈ E1, ej ∈ E2

• Two nodes are equal if they describe the same intermediate product:

ni = nj ⇔ Wi = Wj ∧ ∃ek ∈ E1, el ∈ E2 : ek = el ∧ ni = fk ∧ nj = fl

∀ni ∈ N1,∀nj ∈ N2

For leaf nodes, the rule reduces to check whether the nodes refer to the
same base part:

ni = nj ⇐⇒ Wi = Wj

An example of the procedure is given in Figure 4.2, where the graphs
in Figure 4.2a and 4.2b are merged to obtain the AAOG in Figure 4.2c. In
particular, the sub-assembly composed of parts p2 and p3 is common to both
products and it is not replicated in the final AAOG. This situation implies
that, during production, a WIP W5 = {p2, p3} can be either completed as a
product W6 = {p1, p2, p3} or as W8 = {p2, p3, p7}. The optimal choice is
made online by the scheduling algorithm according to the current process
state and product demand.

Reconfiguration of the assembly process

The high-level description based on AAOGs is used to automatically gener-
ate the DT of the assembly process, as described in Section 4.2.2. Further-
more, it allows for simple and fast adaptation in the face of changes, which

82



4.2. Digital twin for flexible collaborative cells

Figure 4.3: Example of intuitive graphical interface for the definition of Augmented
AND/OR Graphs.

is a crucial feature for flexible manufacturing applications. Typical modifi-
cations to the process can concern the production mix, the agents working
in the cell, or the workspace layout.

If the process to assemble an existing product type is modified, it is suffi-
cient to act on the AAOG related to the specific type of product accordingly.
To introduce a new type of product, one must simply define the associated
AAOG. Conversely, if a product is discontinued, the corresponding AAOG
is removed. Then, such modifications reflect into the AAOG that describes
the complete process. Instead, the addition or removal of an agent within
the cell can be managed directly from the complete AAOG. Specifically, if
a new agent is added, the user can define the new operations on the com-
plete AAOG, which in turn are added to the product AAOGs as appropri-
ate. Vice versa, if an agent is removed, all operations it performs are no
longer available and are removed from all AAOGs where they appear. Fi-
nally, alterations of the physical workspace can be, for instance, permanent
changes in the available equipment (tools, fixtures, etc.), which are handled

83



Chapter 4. Control system architecture

similarly to agents. Also, modifications to the buffer capacity imply new
values of the parameter cB of corresponding nodes. All the aforementioned
functionalities can be coded into a software application with an intuitive
graphical interface, like the one shown in Figure 4.3.

4.2.2 Digital twin model

The AAOG allows us to define the assembly process in a simple, yet rig-
orous, way that is suitable also for non-expert users. However, it consists
in a static representation that lacks the concepts of state and time. Thus, it
cannot be used to track the evolution of the robotic cell and the production.
To this purpose, it is possible to automatically build a partially controllable
Petri Net (PN) from the AAOG, which can be seen as the DT of the com-
plete collaborative cell. The PN describes both the physical structure of
the workspace and the evolution of the assembly process, considering the
state of all resources and concurrent WIP products, as well as situations
originating from human errors and robot failures.

A PN is a bipartite graph defined by a tupleM = (Π,Θ, I,m0), where
Π is the set of places, Θ the set of transitions, I the |Π| × |Θ| incidence
matrix and m0 the |Π|-dimensional initial marking vector. The marking
vector indicates the number of tokens that are present inside each place of
the PN and gives a compact representation of the state of the model. The
evolution of the state of the cell is tracked in real-time through subsequent
transition firings that represent the occurrence of events. Given the |Θ|-
dimensional transition vector θk having in the j-th position the number of
times transition j has fired, the updated marking vector is computed as:

mk+1 = mk + Iθk (4.1)

Transitions can fire only if enabled, i.e. their firing leads to a feasible state
of the system such thatmk+1 ≥ 0.

The set Θ is partitioned as Θ = ΘC∪ΘU , ΘC∩ΘU = ∅, with ΘC the set
of controllable transitions, whose firing is decided by the scheduler, and ΘU

that of uncontrollable transitions that are triggered by exogenous events. In
this work, controllable transitions determine the start of new tasks, whereas
uncontrollable ones relate to tasks completion and the occurrence of faults.
In the following, uncontrollable transitions are labelled with an overbar.

Automatic generation from Augmented AND/OR Graphs

AAOGs define four main elements that must be translated into their PN
equivalent, namely resources, buffers, operations, and the connections be-

84



4.2. Digital twin for flexible collaborative cells

(a) (b) (c)

Figure 4.4: Resources are modelled in the Petri Net as a single place. Free generic
resource (a), free agent (b), and busy/unavailable agent (c).

(a) (b) (c)

Figure 4.5: Buffers are modelled in the Petri Net with a pair of places. Example of free
buffer for base parts (a) and WIP (b), and partially full WIP buffer (c).

tween these components. In the PN, a resource is modelled by a place that
is marked only when the resource is available (see Figure 4.4). Differently
from those that describe generic resources, such as tools, places related
to humans and robots are highlighted with a coloured background in the
graphical representation. If marked, they contribute to the cost in determin-
ing the optimal schedule, as they indicate an idle agent. More details on the
scheduling algorithm and the cost function are given in Chapter 5.

Each node of the AAOG is transformed into a pair of places to track
free and occupied slots of the physical buffer that stores the corresponding
intermediate WIP. The sum of the markings is equal to the buffer capacity.
Figure 4.5a and Figure 4.5b show an example of free buffers that can con-
tain three products. Instead, in Figure 4.5c the buffer is partially full, with
two occupied spaces and one more available. Similarly to what happens for
agents, places that mark the presence of intermediate WIP, i.e. those asso-
ciated with nodes of the original AAOG that are neither leaves nor the root,
are coloured to highlight the fact that they influence the scheduling cost
when marked. Specifically, they indicate a WIP product which is stored
and not being processed.

The basic structure of operations is composed of a controllable transi-
tion that models the start of the task, a place that is marked as long as the
operation is in progress, and an uncontrollable transition that triggers upon
task completion (see Figure 4.6). However, operations require resources to
be performed and assemble parts together to obtain new WIP or final prod-
ucts. Therefore, elements of the PN are connected to obtain the complete

85



Chapter 4. Control system architecture

Figure 4.6: Operations are modelled in the Petri Net with a sequence of controllable
transition θi, place, and uncontrollable transition θ̄i.

(a) (b)

Figure 4.7: Equivalent model of an operation with parts and resource requirements using
AAOG (a) and Petri Net (b).

description of the task. Figure 4.7 shows one operation with parts and re-
source dependencies described as an AAOG and the equivalent PN model.
The task is performed by one agent and consists of the assembly of two
base parts into an intermediate WIP ready for further processing.

The complete PN is obtained by interconnecting operations according
to the structure of the assembly process defined by the AAOG. A simple
example is provided in Figure 4.8, which shows the equivalent PN obtained
from the AAOG in Figure 4.2b. The job comprises two operations (o2 and
o5) performed by two agents (r1 and r2, with red background). During the
first operation, performed by r2, two base parts W2 and W3 are joined to
obtain W5. Then, r1 complete the product adding part W7 to the interme-
diate WIP. Notice that an additional resource r4, which can be a fixture, is
needed along the complete assembly and is not freed at the end of operation
o2. For each buffer Wi, tokens in the upper place indicate available parts,
tokens in the lower place indicate the number of free slots, and their sum is
equal to the buffer capacity (e.g. W2 has cB2 = 2).

Based on the initial marking (Figure 4.8a), only the controllable transi-
tions θ2 is enabled: at least one part is available for each input buffer, and
the required resources are free (marked places). After that θ2 fires (Fig-

86



4.3. Management of robot faults and human errors

ure 4.8b), a marked place indicates that the operation o2 is ongoing. Also,
one slot of the input buffers is freed and resources r2 and r4 become busy.
The uncontrollable transition θ̄2 fires upon task completion (Figure 4.8c):
the operation place empties, the agent r2 returns available and the output
buffer contains the W3 part. At this point, transition θ5 is enabled and op-
eration o5 can start. Instead, θ2 cannot fire although both the base parts and
the agents are available, since r4 is still occupied.

As a final remark, PNs are a general and powerful tool that can describe
additional cases that are not explicitly considered in this work, but can be
inserted with low effort in the formalism. For instance, one can think of
including a transport delay for buffers (e.g. to model conveyor belts) or the
presence of mobile robots. Furthermore, Section 4.3 details how to model
a comprehensive variety of robot faults, human errors, and associated re-
covery actions in the DT.

4.3 Management of robot faults and human errors

A DT that only describes the nominal operating conditions limits the pro-
ductivity of the plant. Whenever an abnormal event occurs, the DT would
not be able to properly track the state of the system, production would stop,
and manual intervention would be required for recovery. The presence of
the human increases the potential sources of errors, but also enhances the
recovery capabilities of the system thanks to his/her cognitive skills. To
allow the scheduling algorithm to optimally handle unexpected events and
continue production uninterruptedly, the DT must be modified to take into
account the different types of failure cases and the appropriate recovery ac-
tions. Specifically, abnormal situations can arise from robot faults, human
errors, defective products, or problems with the equipment. On the one
hand, hardware faults are usually infrequent, but can grow with equipment
wear. On the other hand, human errors depend on several factors, such as
attention, fatigue, and cognitive load.

The complexity of the collaborative manufacturing process makes it im-
possible to predefine all possible causes and effects of failure conditions.
Nevertheless, there is no need to explicitly model every detail. First of all,
the control system architecture is designed to inherently adapt to variations
in the duration of operations. Therefore, we can avoid including in the DT
all the small accidents whose only effect is to delay task completion. In-
stead, the monitoring unit is in charge of estimating the expected duration
of the ongoing activity taking them into account. For instance, the algo-
rithm presented in Chapter 3 was able to correct the duration of the human

87



Chapter 4. Control system architecture

(a)

(b)

(c)

Figure 4.8: Petri Net equivalent of the Augmented AND/OR Graph in Figure 4.2b and
example of evolution. Initial state (a), state after θ2 fires (b) and state after θ̄2 fires (c).

88



4.3. Management of robot faults and human errors

activity in the case a defective part was present and had to be substituted.
On the other hand, a robot fault produces two effects: it makes the agent
unavailable and requires human intervention for recovery. The occurrence
of such fault has a significant impact on the state of the cell and future task
scheduling. Therefore, the PN state must be modified accordingly.

Overall, the guiding principle in the definition of abnormal behaviours
was to balance the search for completeness in the description of possible
failure cases and the need to limit the resulting increasing complexity. Thus,
similar faults and recovery actions are grouped together and we leave a
certain degree of freedom to the human to choose how to better respond
to the specific situation. When the operator takes the leading role, the DT
tracks the new state with the help of the monitoring unit.

The remainder of the Chapter provides detail on the leading causes of
abnormal behaviour and how they have been modelled in the PN-based DT.
The detection of some error types is demanded from the monitoring unit. In
the following, we suppose that the monitoring unit implements the real-time
strategy presented in Chapter 3. However, simpler algorithms can be used
as well. The minimum requirements to manage all failure cases that are
described in the following is the capability to estimate the expected duration
of the ongoing human task and the detection of notable positions reached
by the operator’s hands. If the aforementioned requirements are not met,
the control architecture could still be exploited with limited capabilities to
respond to unexpected events.

4.3.1 Robot faults

In this Section, we describe error cases due to robot failures, which have
been grouped into three main classes based on the effects on the agent’s
state and the product being processed:

1. The robot is still available, but the product is unavailable (e.g. the
robot makes a mistake during task execution that ruins the product or
asks the human intervention after a failed quality check);

2. The robot is unavailable, but the product is still available (e.g. the
gripper of the robot gets stuck and it is not able to perform the task);

3. Both the robot and the product are unavailable (e.g. the robot senses a
collision and stops while holding the product).

Errors are signalled directly by the robot controller or detected by sensing
the workspace. In all cases, human intervention is needed to recover the

89



Chapter 4. Control system architecture

Figure 4.9: Management of robot faults in the Petri Net model.

robot and/or the product. Specifically, for each robot operation two recov-
ery actions are added to the PN to model situations where the agent is faulty
or not, respectively.

Figure 4.9 shows the new structure of robot tasks. Transitions identi-
fied with the letter A refer to the first type of fault when the robot is still
available. Instead, the second and third error cases are difficult to distin-
guish automatically and they are modelled in the same way in the PN (B
label). When the fault occurs, either transition θ̄fA or θ̄fB fires depending
on the received signal. The token is removed from the place marking the
ongoing task and is placed upstream of the recovery action so that θA or
θB is enabled when the human operator is free. In this way, the scheduler
can insert the recovery action in the plan. Then, the human is in charge
of restoring the robot and the product as needed. In particular, he/she can
choose to complete the interrupted operation, discard a ruined product, or
partially disassemble it and place the obtained WIPs in the correct buffers.
At the end of the recovery action, i.e. when transitions θ̄A or θ̄B fire, the
monitoring system communicates which buffers had been filled and the PN
marking is updated accordingly. This also allows discriminating between
the two error types that share the same recovery action. If some of the
buffers are not reachable by the operator, WIPs can be stored outside the
workspace and reintroduced into the process at a later stage, e.g. during
shift changes.

90



4.3. Management of robot faults and human errors

4.3.2 Human errors

The present Section investigates error cases that stem from wrong human
behaviour. Namely, three significant cases have been identified, which are
detected by the human monitoring unit:

1. The operator performs a different operation from the required one (ei-
ther on purposes or not) that is possible to complete, i.e. all WIPs and
resources are available;

2. The operator performs a different operation from the required one (ei-
ther on purposes or not) that is impossible to complete, i.e. some WIPs
or resources are unavailable;

3. The operator makes a mistake during the execution of the correct op-
eration (e.g. he/she forgets a step of the assembly procedure).

In the first case, we conform to human behaviour and the state of the DT
is corrected according to the task that the operator is actually performing.
Then, a rescheduling is needed to update the future task plan. Conversely,
in the second case we cannot comply with the intention of the human. Thus,
the error is notified to the operator with the request to start the correct ac-
tion. The state of the PN evolves as planned, but the expected time for the
completion of the operation will increase to account for the wasted time.
The reason for distinguishing the two conditions is twofold. On the one
hand, we reduce interruptions to the operator’s workflow that can lead to
greater stress and frustration. On the other hand, the additional time re-
quired by the human to become aware of and correct the error often makes
the current optimal schedule outdated and justifies adhering to a nominally
sub-optimal plan.

The third error condition calls for a corrective action that depends on the
specific error and whether the ongoing operation is reversible. Reversible
operations are composed of actions that can be undone and repeated with-
out constraints, such as screwing parts together. In this case, the operation
can be corrected and completed by the human. Instead, irreversible opera-
tions cannot be simply corrected by repeating the same actions, but require
more processing. Examples are failed welding or painting operations, that
permanently modify the WIP product. In this case, the product must be
either discarded or partially disassembled.

The human is notified when the monitoring unit detects the error and
starts the corrective action. In the PN, the recovery operation is modelled
as exemplified in Figure 4.10. Error detection triggers transition θ̄f and a

91



Chapter 4. Control system architecture

Figure 4.10: Management of human errors and defective products in the Petri Net model.

token is moved from the place marking the ongoing operation to a place
that identifies the ongoing recovery. Similar to what has been described
for robot faults, the human has complete freedom to understand which is
the best corrective action for the specific situation. Therefore, his/her ac-
tions are monitored by the monitoring unit to correctly update the PN by
detecting which WIP products result from the recovery and are placed in
the corresponding buffers.

4.3.3 Other failure cases

Two further error conditions are discussed in the following, caused by de-
fective products and failed resources. The presence of defective products
cannot be avoided completely in the manufacturing processes, especially in
flexible systems with high mix and frequent production changes. Therefore,
the operator may find a defective WIP and cannot proceed with the assem-
bly. For instance, it may contain a flawed part that needs to be replaced, or it
may be assembled incorrectly during previous steps without the fault being
identified. Although conceptually different, this kind of error is equivalent
to human mistakes and is managed identically (see Figure 4.10). The only
difference is that the detection signal is not provided by the monitoring unit,
but it is the operator who communicates the problem to the control system
through an appropriate interface, such as a grounded or wearable button.
Then, during recovery he/she can repair the WIP, partially disassemble it to
a safe configuration, or discard the product.

The last case that has been considered is the failure of resources. For
instance, tools might wear or discharge (if powered) and become impos-
sible to use. The operator signal that a resource is currently unavailable

92



4.3. Management of robot faults and human errors

Figure 4.11: Management of non-necessary resource failure in the Petri Net model.

through the user interface. Also, workspace sensing can help in determin-
ing the state of equipment used by humans or robots. The effect on the
assembly process depends on whether the faulty resource is necessary to
perform the operation. An example of a non-necessary tool is an electrical
screwdriver, which helps the task but can be replaced with a manual one
without compromising its outcome. Instead, a welding gun is necessary for
task completion. In the case of unnecessary resources, the only effect on
the DT is a change in the expected duration of the operations that involve
faulty resources until they are repaired. Therefore, the ongoing operation
can continue uninterruptedly, but a token is placed upstream of a recovery
action that can be scheduled to restore the equipment (see Figure 4.11).
Differently, in the case of a necessary resource, the ongoing operation must
be interrupted and none of the tasks that require such resource can start un-
til it is repaired (see Figure 4.12). In both Figures 4.11 and 4.12, transition
θ̄f fires when the fault is detected, then θr marks the start of the recovery
action and θ̄r its conclusion.

Table 4.1 recaps the modelled error cases and associated recovery ac-
tions, whereas experimental results are reported in Chapter 5 after that the
scheduling algorithm has been introduced.

93



Chapter 4. Control system architecture

Figure 4.12: Management of necessary resource failure in the Petri Net model.

Table 4.1: List of modelled error cases.

Cause Error description Recovery action

Robot Robot available, product unavailable Schedule recovery
Robot Robot unavailable, product available Schedule recovery
Robot Robot unavailable, product unavailable Schedule recovery
Human Human starts a wrong but feasible operation Indulge human
Human Human starts a wrong and unfeasible operation Request correct task
Human Human performs the correct operation wrongly Immediate recovery
Product Defective intermediate product Immediate recovery
Resource Non-necessary resource unavailable Schedule recovery
Resource Necessary resource unavailable Schedule recovery

94



CHAPTER5
Dynamic scheduling algorithm

ONCE that the DT and the monitoring unit are in place, a dynamic
scheduling algorithm is needed to determine the optimal instruc-
tions for the humans and the robots working in the cell based on

information about the current state of the assembly process. As outlined in
Chapter 4, the scheduler introduced in this work leverages the DT to predict
the future evolution of the system and determine the optimal control action
with a receding horizon approach. In particular, the proposed method:

1. Dynamically solves on-line both task allocation and task sequencing
to adapt the plan to the process variability;

2. Accounts for the variability in the target production mix, the duration
of human tasks, the occurrence of robot faults, and other abnormal
system behaviours;

3. Allows for the concurrent assembly of multiple products to increase
productivity;

4. Considers many feasible sequences to complete the assembly. The
optimal one for each product is selected in real-time and can change

95



Chapter 5. Dynamic scheduling algorithm

during operation.

To the best of our knowledge, no other work in human-robot collabo-
ration embeds all these features to allow the highest degree of flexibility,
which results in the smart use of resources and the minimization of the
overall cell idle time. In the following, Section 5.1 details the proposed
strategy. Then, Section 5.2 presents a novel visuo-haptic interface to give
instructions to human operators. Finally, Sections 5.3 and 5.4 discuss the
performance and shows simulation and experimental results, respectively.

5.1 Receding horizon scheduling

During production, the agents in the cell work to repeatedly complete the
available jobs according to the target mix. The scheduling problem con-
sists in planning the sequence of operations to perform for each robot and
human. Therefore, the output of the algorithm is the optimal set S =
{(oi, ti), (oj, tj), . . . } of future tasks and associated start times. The solu-
tion to the scheduling problem is based on a Model Predictive Control-like
approach. The underlying idea is to predict the evolution of the process
over the planning horizon from the current state to determine the control
input sequence that minimises a cost function J . The cost function favours
productivity and tracking of the target mix. When the optimal plan of future
operations has been determined, only the first commands are dispatched to
the agents that are currently free, which starts their task. Then, the state
of the DT is updated and the schedule recomputed. The receding horizon
paradigm allows the schedule to adapt in real-time to the natural variability
of the process and unforeseen events, such as faults.

Constraints among tasks arise from the structure of the product, re-
source requirements, and the workspace layout. For the highest produc-
tivity and flexibility, multiple products are assembled concurrently, and it is
the scheduler that decides when and which product to start next. Also, the
scheduler dynamically chooses the assembly sequence for each product and
dynamically associates intermediate WIPs to the type of final product. On
the other hand, when a fault occurs, the leading role is handed over to the
human, who is in charge of determining the best recovery action according
to the specific situation, since it is impossible to model all possible error
cases in the DT (see Section 4.3). In this view, the PN-based DT represents
the best tool to allow such a high degree of flexibility while providing a
computationally efficient framework. The connections between places and
transitions inherently embed constraints among operations. A token in the
appropriate buffer identifies each concurrent WIP. Moreover, tokens are not

96



5.1. Receding horizon scheduling

rigidly associated with any product type or assembly sequence. To give an
example, we can refer to the assembly process defined by the AAOG in
Figure 4.2c. A WIP product W5 = {p2, p3} can be completed either as
W6 = {p1, p2, p3} or W8 = {p2, p3, p7} depending on which choice opti-
mise production, also considering the production demand.

5.1.1 Digital Twin for simulation purpose

To simulate the future evolution of the robotic cell, and the firing of un-
controllable transitions in particular, a temporal characterization must be
included in the model. Therefore, a Timed Petri Net (TPN) [86] descrip-
tion is adopted for the prediction phase. In a TPN, each transition θi ∈ Θ
can only fire with a delay of at least di seconds after it has been enabled.
If the firing of a transition disables a previously enabled transition, the de-
lay of the latter is reset when it is enabled again. In our model, control-
lable transitions have zero delay, as their firing is directly controlled by
the scheduler. Instead, uncontrollable transitions linked to task completion
have delay equal to the expected duration of the operation, which is com-
puted with the help of a database that records past task durations and is
updated each time a new one is completed. Finally, uncontrollable transi-
tions that mark the detection of abnormal system behaviour have infinite
delay, i.e. are prevented to fire. This means that only nominal evolutions of
the process are simulated, while we manage the occurrence of failures with
a reactive approach, leveraging the receding horizon adaptation.

The initial state of the DT that is given as input to the scheduler is com-
posed of the current target production mix y0(t), the current markingm0 of
the TPN, and the remaining time to completion of ongoing operations. The
latter is provided by the monitoring unit and determines the initial delay of
the associated uncontrollable transitions. Instead, the target production mix
is computed starting from the orders that are present in the company’s ERP
system. Specifically, letQo,p be the quantity of products of type p requested
for the o-th order and ao the deadline within order Qo must be completed.
Then, the desired throughput for each product type at time t is given by:

ω0
p(t) =

no∑
i=0

Qi,p − qi,p(t)
ai − t

where no is the amount of pending orders and qo,p(t) is the number of
products of type p already produced for order o at time t. Orders are
fulfilled earliest deadline first. Therefore, when a new product is com-
pleted, the produced quantity associated to the corresponding type is in-

97



Chapter 5. Dynamic scheduling algorithm

creased for the order with highest priority that still requests such product
type, i.e. o∗ = arg mino{ao|Qo,p > qo,p(t)}. When an order is fulfilled, i.e.
Qo,p = qo,p(t) ∀p, or when it expires, i.e. ao < t, it is removed from the
pending queue. As a final step, the production mix setpoint is normalised
to describe a relative priority among product types:

y0p(t) =
ω0
p(t)∑np

i=0 ω
0
i (t)

(5.1)

5.1.2 Evaluation of feasible future evolutions

When simulating the evolution of the process, the decisions of the scheduler
are limited to the firing of controllable transitions. Instead, uncontrollable
transitions always fire with the minimum delay. In addition, since an unnec-
essary delay of controllable transitions increases the idle time of resources,
the only meaningful scheduling decision at each step is either to fire one
enabled controllable transition immediately or wait for the firing of an un-
controllable one. The latter choice means to wait for the end of an ongoing
operation, that can enable new alternatives. If several uncontrollable tran-
sitions are enabled at the same time, the scheduler can only choose to wait
for the one with minimum delay, which is the first to fire. Otherwise, the
uncontrollable transitions with smaller delay are no longer able to fire at
the correct time. Overall, the scheduling problem reduces to determining
the optimal firing sequence of transitions.

From the initial state, feasible system evolutions are found by exploring
the Reachability Tree (RT) of the TPN. The compact matrix representation
of the PN model and the simple update rule given by equation (4.1) allow
for efficient simulation of the system. The RT is a pair (V,A), where V is
a set of nodes connected by arcs in A. Each node vi represents a reachable
state for the TPN and is described by (mi, ti, Ji), that is the corresponding
marking vector, the arrival time to the state, and its cost. Instead, each
arc aij represents the transition whose firing brings the system from vi to
vj . A path between two nodes vi and vj , referred to as 〈vi, vj〉, can be
equivalently described by the set of connected nodes, i.e. states of the PN,
or the sequence connecting arcs, i.e. fired transitions.

The expansion of the RT starts from the root node v0 = (m0, 0, 0),
where m0 is the current marking of the DT. Then, one branch per each
feasible scheduling choice departs from the current node to explore all pos-
sible alternatives. For a node vb to be the child of node va, the transition
associated with aab must be enabled in va. In case of controllable transi-
tions, the arrival time to vb is td = ta. Conversely, to determine the arrival

98



5.1. Receding horizon scheduling

time when an uncontrollable transition triggers, it is important to know the
moment when it was enabled. The farthest enabling ancestor of the node vb,
is the node ve ∈ 〈v0, vb〉, such that 〈ve, vb〉 is the largest sub-path that con-
tains only nodes for which the transition leading to vb is enabled and never
fires. Then, the arrival time to the state vb is equal to tb = te + dab ≥ ta,
where te is the arrival time to the farthest enabling ancestor of vb and dab
is the delay associated with the transition described by arc aab. Note that
the case te + dab < ta describes an unfeasible system evolution where the
uncontrollable transition is not able to fire with the correct delay. A general
rule to compute the arrival time for any transition reads as:

tb = max{te + dab, ta}

The exploration of the RT stops in one of the following two cases: either
the node is a leaf where no transitions are enabled, or the planning horizon
limit hexp has been reached, which is expressed in terms of the number of
operations in the sequence. The value of the planning horizon is guided
by a trade-off between computational load and performance that is better
discussed in Section 5.3.2 based on experimental data.

The optimal path in the RT is 〈v0, v∗〉 from the root node to the leaf
v∗ with minimum cost J∗. Then, the final schedule S is obtained from
the optimal path, as the sequence of controllable transitions along the path
and their firing time. The cost function minimised in the evaluation of the
optimal schedule is:

J(vi) = J(〈v0, vi〉) = kSti + kI

|A|∑
j=1

cjt
I
j + kW

|B|∑
j=1

tWj (5.2)

where kS , kI , kW are weight coefficients and tIj , t
W
j are functions of the

TPN marking and arrival times of nodes in 〈v0, vi〉, which in turn depend
on the sequence of fired transitions, i.e. the control inputs. Furthermore,
A ⊆ R is the set of agents, that are described in the PN examples with a
place with red background, and B ⊆ N is the set of intermediate buffers,
whose place indicating the occupied slots is highlighted in blue in the fig-
ures (see Section 4.2.2). The first term reduces the time of completion of
the last operation in the plan. The second term penalises the agents’ idle
time, with cj the unit idle cost for agent j and tIj the amount of time that
agent j spends being idle in the interval (0, ti). Specifically, tIj is computed
as the total time during which the agent’s place (with red background) is
marked during the simulation. Finally, the last term facilitates the product
flow by minimizing the waiting time of parts in intermediate buffers. In

99



Chapter 5. Dynamic scheduling algorithm

Section 4.2.2, the number of WIP products stored in a buffer was repre-
sented as an equivalent amount of tokens inside the place marked with blue
background. Therefore, the total time tWj that parts wait in the j-th buffer
is equal to the sum of the intervals during which the blue place is marked,
weighted with respect to the number of tokens inside such place.

The definition of the cost function allows computing the cost of a child
node vc incrementally from the one of its parent node vp as:

J(vc) = J(vp)+

(
kS+kI

∑
pj∈A

cjmc(pj)+kW
∑
pj∈B

mc(pj)

)
(tc − tp) (5.3)

where mc(pj) stands for the number of tokens in place pj and J(n0) = 0.
The weighting coefficients are chosen to penalise more the production time,
i.e. the first term in the equation (5.2), so to increase productivity. A higher
WIP storage penalization distance allows better tracking of the reference
mix and favours product flow. Conversely, a lower value of kW tends to
accumulate unfinished products in the cell, increasing flexibility. Finally,
the remaining term of the cost is useful to discriminate among schedules
that attain similar costs. The cost function parameters can change in time
to reflect variations in production conditions.

Figure 5.1b shows an example of RT exploration starting from the PN
in Figure 5.1a. The process comprises two agents that assemble two types
of products performing either operation o1 or o2. Initially, r2 is perform-
ing o2 with remaining time to completion equal to d̄2 (it is supposed that
d̄2 < d1 < d2). Two transitions are enabled, θ1 and θ̄2, therefore two
branches depart from the root node. Overall, six different system evolu-
tions are feasible to complete the production. When a controllable transi-
tion triggers, the cost of the child node is equal to the parent’s one, as the
arrival time is the same. Conversely, the firing of uncontrollable transitions
increases the cost. Nodes with the same arrival time can have different costs
depending on the path leading to the state. For instance, the cost of node
v14 is higher than v12 due to higher idle time of resources in the former case.

Simulation of recovery actions

Transitions associated with the occurrence of faults are never triggered dur-
ing the exploration of the RT. However, the initial condition of the DT can
describe the process in a failure state. Although most of the information re-
quired for the correct management of error cases are already embedded in
the PN model, particular attention must be paid in simulating the recovery
from specific failure conditions described in Section 4.3, namely those re-

100



5.1. Receding horizon scheduling

(a)

(b)

Figure 5.1: Example of PN (a) and corresponding RT (b). Initially, agent r2 is performing
task o2 (d̄2 is the remaining time to completion), while r1 is idle. It is supposed that
d̄2 < d1 < d2. Labels on arcs indicate fired transitions. Costs are computed from
equation (5.2). The resulting schedule is depicted for each leaf of the RT.

101



Chapter 5. Dynamic scheduling algorithm

(a) (b)

Figure 5.2: Example of simulation of default recovery actions.

quiring the human to choose the best action to perform. In these cases, the
PN provides only a partial description of the effects of the recovery action,
which must be complemented with information coming from workspace
monitoring. In other words, to update the marking vector after the comple-
tion of a recovery action it is not sufficient to apply the rule in (4.1), but
ad-hoc modifications are needed to correctly track the process state. The
uncontrollable transitions we are referring to are those highlighted in red in
Figures 4.9 and 4.10.

Obviously, data from the monitoring unit are not available when simu-
lating future evolutions of the process. Therefore, a choice on the default
effects of recovery action must be made to explore reasonable system evo-
lutions, which depend on the specific operation and is decided by process
experts. The choice must reflect the most likely outcome of the recovery
action. For instance, an error during paining operations would result in the
product being discarded most of the time, while a defective part during as-
sembly could allow restoring the previous WIP. Sometimes, the simulated
recovery action might differ from the actual future execution of the oper-
ation. As a consequence, the scheduler will update the plan accordingly
at the next step. Figure 5.2 shows a case where the default recovery is to
correct the error and complete the ongoing operation. The red arrows indi-
cate the arcs that are added in the TPN to model the default effects of the
recovery action. Specifically, Figure 5.2a depicts the initial condition after
the error detection, while Figure 5.2b the TPN state after recovery.

102



5.1. Receding horizon scheduling

Figure 5.3: RT from the PN in Figure 5.1a following pruning rules (except the learning-
based one). Nodes are numbered in order of exploration, red arcs mark unexplored
branches. θ1 is enabled in v15 but would lead to the same state as v10.

5.1.3 Pruning strategies

Pruning strategies are implemented to speed up the exploration of the RT
without loosing optimality. The tree is explored depth-first to rapidly find
a feasible evolution of the system, then new nodes are generated only if
their cost is smaller than the current optimal one. When both controllable
and uncontrollable transitions are enabled at a node, we first explore con-
trollable branches, which do not increase the cost. Also, the exploration of
duplicate branches is avoided by noting that changing the order of two sub-
sequent controllable transitions generates equivalent evolutions. Figure 5.3
shows the same RT as Figure 5.1b when pruning rules are applied. The first
exploration leads to the leaf v5, whose cost is taken as the current best. The
exploration of the second branch stops at node v7 as its child would have a
cost higher than v5. Instead, v12 attains the same cost as v5, but the latter is
preferable as it anticipates the start time of operations. For this reason, the
best node is changed only if the cost of the new leaf is strictly smaller than
the previous minimum. All other branches in the example are pruned. In
particular, θ1 is enabled in v15 but would lead to the same state as v10.

A relevant hypothesis that limits the number of possible system evolu-
tions is the one concerning the values assigned to the firing delays. As
already stated, controllable transitions are only fired with zero delay or not
triggered altogether. In principle, any value is possible and should be con-
sidered for an exhaustive search. To do so, a parametric description of

103



Chapter 5. Dynamic scheduling algorithm

the arrival time and the cost of nodes would be necessary, which would in-
crease complexity considerably. However, delays different from zero surely
lead to sub-optimal solutions. On the other hand, we consider determinis-
tic delays for uncontrollable transitions, equal to the expected duration of
tasks. In reality, the duration of operations is a stochastic quantity, espe-
cially when human activity is considered. Thus, one operation might finish
before another even if it should be concluded after in nominal conditions. A
probabilistic description of task duration would be required, which in turn
would lead to a probabilistic value of arrival times and the introduction of
the concept of arrival probability to states. Then, the optimal scheduling
choice would be the one minimizing the expected value of the final cost,
similar to what is done in [19].

In other words, in this work we aim to minimise the cost in the expected
condition, while in [19] the authors minimise the expected cost. Although
the latter approach is more robust against the system variability, it is com-
putationally expensive. Therefore, only approximate solutions are suitable
for small collaborative processes with few agents and scheduling choices,
but the load becomes prohibitive when larger manufacturing cells are con-
sidered. Exploring only the nominal evolutions of the system is a reason-
able assumption that strongly reduces the size of the problem. On the one
hand, the receding horizon approach reduces the importance of the single
scheduling choice, since it can be corrected at the next iteration. In addi-
tion, the two strategies provide the same result in a neighbourhood of the
nominal condition, which describes the most probable system evolution. In
fact, from equations (5.2) and (5.3) one can see that the cost function is
linear in the arrival times of nodes in the path, that is:

J(〈v0, vi〉) =
∑

vj∈〈v0,vi〉

jjtj

where jj is function of the cost function parameters and the TPN markings.
If the duration of tasks is considered to be stochastic, also the arrival times
to the nodes is a stochastic variable. Thus, the cost in the nominal condition
is given by:

J(E [〈v0, vi〉]) =
∑

vj∈〈v0,vi〉

jjE [tj] = E
[ ∑
vj∈〈v0,vi〉

jjtj

]
= E [J(〈v0, vi〉)]

where the second equivalence holds as long as there are no changes in the
order of transition firings. A comparison of the performance of the two
approaches, as well as with other state-of-the-art schedulers, is given in
Section 5.3.4.

104



5.1. Receding horizon scheduling

Learning-based heuristic pruning

To further reduce the dimension of the RT in case of large assembly pro-
cesses, we developed a learning-based heuristic that learns constraints for
node acceptance. Constraints are defined with respect to the increment of
the arrival time ∆Ti = ti − tp ≥ 0 and cost ∆Ji = Ji − Jp ≥ 0 between a
new candidate node vi and its parent node vp. The region of acceptance is
limited by: 

∆Ti ≤ ∆T k

∆Ji ≤ ∆Jk

∆Ji ≤ mk∆Ti + qk

(5.4)

where pk =
[
∆T k,∆Jk,mk, qk

]T
defines the boundaries at step k, equal

to the number of previously completed schedules. During the (k+1)-th ex-
ploration of the RT, a node is accepted according to the policy:

πk(∆Ti,∆Ji) =

{
1 if inside(∆Ti,∆Ji,pk)

εk otherwie

where inside(∆Ti,∆Ji, pk) is satisfied if and only if the node is inside the
acceptance region (5.4), and εk ∈ [0, 1] is a vanishing probability value.
The policy accepts all nodes inside the acceptance region (exploitation),
while points outside the region are accepted with probability εk (explo-
ration).

When the first scheduling takes place, p0 =
[
∆T 0,∆J0,m0, q0

]T
must

define a sufficiently large region so to accept all nodes and gather the ini-
tial information on the distribution of nodes in the plane ∆T − ∆J . Sub-
sequently, the boundary values are iteratively approximated to reduce the
dimension of the acceptance region based on the data collected in the pre-
vious RT explorations. The acceptance region should contain all the nodes
belonging to the optimal paths of all explored RTs. Therefore, a vector
xk = [∆Tk,∆Jk,mk, qk]

T collects the worst-case observations among all
the optimal nodes. After each new exploration of a RT, xk is updated as:

∆Tk+1 = max {∆Tk,∆Ti}
∆Jk+1 = max {∆Jk,∆Ji}

mk+1 = max

{
mk,

∆Ji − qk
∆Ti

}
qk+1 = max {qk,∆Ji −mk∆Ti}

∀ni ∈ 〈v0, v∗〉

105



Chapter 5. Dynamic scheduling algorithm

Figure 5.4: Example of progressive reduction of the acceptance region. Green points
describe nodes of the RT belonging to optimal paths, red points are sub-optimal nodes.

Then, constraints are updated according to:

pk+1 =

{
(1− α)pk + αxk+1 if xk+1 ≤ pk
xk+1 + βp0 if xk+1 > pk ∨ @v∗

(5.5)

where α and β are positive parameters in the interval (0, 1). The update
rule (5.5) imposes a low-pass filter dynamics on the distance between the
current boundaries and worst-case observation as long as xk lies inside the
acceptance region. Conversely, the constraints are relaxed when a node be-
longing to an optimal path lies outside the current limits or no solutions to
the scheduling problem are found altogether, which means that good nodes
have been discarded. In this case, also the value of ε is reset to favour fur-
ther exploration. Adaptation must be slow enough to gather sufficient data
prior to the convergence of the acceptance region, so that the probability
of discarding good nodes is reduced as much as possible. Figure 5.4 ex-
emplifies the evolution of the heuristic pruning constraints from the initial
loose boundaries until an acceptance region that fits the historical optimal
points. The computational load and performance reduction resulting from
the application of the proposed strategy are discussed in Section 5.3.1.

5.1.4 Dispatching and replanning

Once that the optimal schedule has been determined, the first commands
are sent to the free agents, then the DT continues to monitor the cell and
the plan recomputed from the updated state. Specifically, replanning is trig-
gered any time an operation ends in order to adapt to the actual duration of
tasks, and when a fault occurs to readily plan the best management strategy.

At the beginning of Section 5.1, we said that the schedule is also in
charge of deciding when and which product to start next. As long as there

106



5.2. Haptic interfaces

are pending orders, it is always advisable to work at full capacity and fulfil
orders earlier, instead of just in time, since new production orders can arrive
at any time and saturate the plant. Therefore, we start the assembly of a new
product every time the last computed schedule is composed of a number of
operations smaller than a predefined threshold hnew. The value of hnew
must be strictly smaller than, but close to, the exploration horizon hexp
so that the pending operations are always enough to guarantee a rich and
informative exploration of the RT.

The choice of the product type to start is determined by the highest prod-
uct priority y0

p(t), which measures the current distance from the target mix.
The insertion of a new product is managed by governing the content of the
buffers that store the base parts. First, the logistic process that is in charge
of replenishing such buffers is not modelled, but it is assumed that they are
never empty. Conversely, they are initially marked as empty in the TPN.
Then, when a new product must be introduced in the process, it is suffi-
cient to add one token for each base part that composes the product in the
corresponding buffer. In this way, transitions that model the start of the
first assembly step becomes enabled and can fire in the exploration of the
RT. An important remark is that the order with which products are added
to the assembly cell does not necessarily equal the order with which their
production actually starts or is completed. In fact, the scheduler is in full
charge of determining the production sequence. For instance, in case the
operations needed to assemble a product with lower priority fit the current
state of the process better and lead to more efficient schedules, they might
start and finish before those related to the highest priority product, although
the latter has been introduced earlier in the cell.

5.2 Haptic interfaces

After a suitable scheduling algorithm has determined the optimal assembly
plan, a bilateral communication is needed to communicate with the agents
that are working in the cell. In particular, the scheduler outputs the com-
mands for the humans and the robots, associated with the operations to
start. Conversely, agents communicate their status to the control system,
notifying operation completion and the occurrence of other events, such as
robot faults. With this information, the DT can correctly track the state
of the process and the scheduler can plan the next operations as explained
in Section 4.1. Figure 5.5 shows the general principles behind the pro-
posed paradigm. On the one hand, robots are in direct communication with
the CPU where the scheduler runs by means of an electrical or wireless

107



Chapter 5. Dynamic scheduling algorithm

Figure 5.5: Communication paradigm: the scheduler communicates instructions to the
human(s), through haptic interfaces and/or a screen, and to the robot(s). Agents make
the scheduling algorithm aware of their status, communicating operation completion
and other information, like robot faults.

connection. On the other hand, intuitive user interfaces are needed to com-
municate with the human worker, informing him/her of the next operation
to perform. In this Section, we present a novel way of communicating in-
structions to the human operators through wearable vibrotactile interfaces,
which has been designed in collaboration with the SIRSLab of the Univer-
sity of Siena.

Works on human-robot interaction and scheduling algorithms usually
rely on screens to display instructions to users [68, 142]. Whenever human
sight is impaired or needs to be free, other sensory channels could be used
as well. Moreover, multimodal communication interfaces become essential
to allow for a rich exchange of information between the agents [5]. Meth-
ods to improve human situation awareness in HRC through visual, audi-
tory, and tactile feedback have been proposed in the literature [18,32,159].
To improve robot awareness of human operations, different strategies have
been used, from human intention prediction algorithms [170] to flexible
scheduling based on visual monitoring of human and robot actions [19].
Previous work showed that tactile feedback outperforms visual and auditory
signals for sensory substitution [105], while visuo-haptic feedback leads to
a reduction in reaction times and a better attention allocation than visual
feedback alone [13, 152]. It has been shown that human-robot interaction
can benefit from wearable haptics by exploiting tactile signals for spatial
guidance [146], pace suggestion [90], task awareness [18], and command

108



5.2. Haptic interfaces

Figure 5.6: Haptic devices: ring with a vibrating motor and three buttons and bracelet
containing the controller box and two vibrating motors.

acknowledgement [44]. The wearability of interfaces allows human body
parts to move freely and perform the assigned task without difficulty. Also,
the worker is not constrained to a predetermined position in the workspace,
where the grounded interface is at hand.

In this work, communication with the human is enabled by wearable de-
vices like those shown in Figure 5.6, which are composed of a ring and a
bracelet. The ring contains three push-buttons and a 3 mm vibration motor,
which are controlled through an Arduino Pro Mini1. The same Arduino
controls the two 25 mm vibration motors of the bracelet. The communica-
tion between the devices and the scheduler is wireless, thanks to two XBee®

RF modules2.

5.2.1 Human input to the scheduler

During operation, the human must communicate the completion of his/her
current task to the control system. This allows the Digital Twin to keep
track of the current process state, as described in Section 4.2. The signal
fires the uncontrollable transition that marks the end of the ongoing task so
to update the availability of WIP parts and resources for the next operation.
Also, the change in the cell status triggers the re-computation of the sched-
ule, which can adapt to the actual duration of the task just finished (see
Section 5.1). One way to obtain the required information is to monitor the
activity of the human in real-time, e.g. by exploiting one of the algorithms
described in Chapter 3. Otherwise, one can use simpler solutions that do
not require continuous monitoring of the operator, especially in cases when
the human behaviour variability is low, or when monitoring is difficult due

1store.arduino.cc/arduino-pro-mini
2www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf

109

store.arduino.cc/arduino-pro-mini
www.sparkfun.com/datasheets/Wireless/Zigbee/XBee-Datasheet.pdf


Chapter 5. Dynamic scheduling algorithm

to characteristics of the environment or the task.
Using the proposed wearable device, the human can explicitly commu-

nicate the completion of his/her current task by pressing a button on the
ring. Other buttons have been used to signal abnormal conditions, e.g. the
presence of defective products, to the system (see Section 5.4.3). As the
human presses the button, a vibration burst (duration = 150 ms, frequency
= 200 Hz, amplitude = 0.6g) from the motor of the ring acknowledges that
the pressure was correctly recognised. The importance of the acknowledge-
ment was recognised by the users during the experiments and the wearabil-
ity of the interface allowed for prompter user input than using a push-button
located on the workbench.

5.2.2 Instructions from the scheduler to the human

To transmit instructions to the human worker, we propose to combine vi-
sual and tactile feedback, introducing a new method to display instructions
through wearable vibrotactile interfaces. Visual instructions are static im-
ages on a fixed screen that display the name and a picture of the main stages
of the operation to be performed. Different background colours emphasise
waiting and fault-related commands to ease identification. Thanks to two
vibrotactile bracelets worn on the two arms, the operator can also receive
haptic signals indicating his/her next task. The approach we use to send
haptic signals depends on the type of task to perform and mixes typical fea-
tures of spatial guidance paradigms [146] with techniques to send complex
messages through tactons [69].

For failures, emergencies, or other high-priority operations that require
particular attention or immediate intervention, we use a fast sequence of
several vibrations (e.g., in the experiments we used 10 vibrations lasting
50 ms with an interval of 50 ms between them). This type of signal was
found to be suitable to communicate the importance of an event [56]. De-
pending on which bracelet is activated and for how long the train of vibra-
tions lasts, different messages can be conveyed.

For assembly operations, i.e. those that are part of the productive cycle
and are not responses to unexpected events, the approach sketched in Fig-
ure 5.7 is followed. When the left (right) bracelet vibrates, the human has
to work in the left (right) part of the workspace. The number of vibration
bursts indicates the sector associated with the starting point of the task to be
performed, where the user should move the hands. In practice, a sector may
indicate a buffer that contains a part or a tool required for the assembly op-
eration. In our experiments, vibration bursts lasted 100 ms, had a frequency

110



5.3. Simulations

Figure 5.7: Haptic communication principle: the operator is guided towards the sector
of the workspace associated with the next operation that he/she must perform. The
actuated bracelet indicates the direction from the human viewpoint (LB = left bracelet,
RB = right bracelet), the number of vibrations indicates the sector.

of 220 Hz, an amplitude of 0.7g, and were equally spaced of 100 ms.
To the best of the author’s knowledge, this is the first attempt to com-

bine visual and tactile cues to communicate instructions during a human-
robot collaborative task supervised by a dynamic scheduler. The proposed
paradigm is easy to learn and general, as it unequivocally associates each
operation to a specific tactile cue using a simple rule, and it can be ap-
plied to different set-ups, provided that each portion of the workspace cor-
responds to at most one operation. Although this might seem a strict con-
straint, it is well suited to most structured activities, such as industrial as-
sembly tasks, as the workspace layout can be designed accordingly.

5.3 Simulations

Before proceeding with the experimental campaign, simulations have been
exploited to give better insight into the behaviour of the control architecture
and assess the performance. To obtain realistic results, simulations have
been run with reference to the same use-case implemented for the experi-
ments, which is better detailed in Section 5.4. The duration of operations
has been modelled as Gaussian variables with mean and variance computed
from real data collected from the collaborative cell.

5.3.1 Heuristic pruning performance

First, the effects of the heuristic pruning strategy presented in Section 5.1.3
are analysed in terms of computational load and system productivity. The

111



Chapter 5. Dynamic scheduling algorithm

0 20 40 60 80

Iterations

0

0.05

0.1

0.15

T
im

e
 [
s
]

(a)

0 20 40 60 80 100

T [s]

0

20

40

60

80

100

J

(b)

Figure 5.8: Performance of the heuristic pruning strategy. (a) Evolution of the average
scheduling time with (black) and without (red) heuristic pruning. Solid lines report
median filtered values. (b) Example of evolution of the constraints boundaries from the
initial (red) to the final (blue) ones.

latter is quantified as the average cycle time, i.e. the time between the
completion of two subsequent products. The initial and final parts of each
simulation have been neglected to remove transient behaviour.

The algorithm parameters have been set to p0 = [100, 100, 10, 10]T and
α = β = 0.1. Ten simulations have been run, each one consisting of
the assembly of 30 products. Five with the heuristic pruning active and
five without. Results show that the optimality of the scheduling is pre-
served, as the cycle time obtained with heuristic pruning does not signif-
icantly differs from the one attain without. However, the time required
to solve the scheduling problem strongly reduces after the initial learning
transient. Figure 5.8a shows the evolution of the average scheduling time
as the simulation progresses. When pruning is disabled, the computational
load remains constant throughout the simulation (red line). When pruning
is active (black line), the scheduling time does not differ as long as the ac-
ceptance region is still large, but rapidly drops when the constraints start
discarding unpromising nodes. At steady state, the median scheduling time
without heuristic pruning is 0.0618 s against a value of 0.0218 s with prun-
ing (64.7% reduction). An example of the evolution of the boundaries of
the acceptance region is provided in Figure 5.8b.

5.3.2 Sensitivity analysis

A critical point in obtaining good results is the selection of the values of
parameters hexp and hnew. Therefore, a sensitivity analysis has been per-

112



5.3. Simulations

4 6 8 10 12 14 16 18 20 22 24

h_{exp}

24

22

20

18

16

14

12

10

8

6

4

2

h
_

{n
e

w
}

0.0063

0.0205

0.0066

0.0694

0.034

0.0084

0.2306

0.0974

0.03

0.0103

0.6494

0.409

0.183

0.0325

0.0101

1.379

0.6595

0.2078

0.0359

0.0091

0.9676

0.1793

0.0366

0.8069

0.2135

0.9011

0.0004

0.0002

0.0015

0.0005

0.0002

0.0024

0.0007

0.0002

0.0017

0.0007

0.0002

0.0018

0.0007

0.0002

0.0019

0.0007

0.002

1.97

4.026

2.527

1.918

6.441

4.951

11.82

3.061

21.5

20.76

2.716

X

X

(a)

4 6 8 10 12 14 16 18 20 22 24

h_{exp}

24

22

20

18

16

14

12

10

8

6

4

2

h
_

{n
e

w
}

35.37

41.31 41.59

35

44.48 42.31

36.94

34.94

35.35

36.62

45.23 36.94

30.02

50.93

30.57

30.78

31.54

34.42

30.21

30.07

31.71

30.61

30.43

31.41

32.32

33.88

31.68

30.24

31.02

30.86

31.79

33.35

31.97

31.67

30.28

29.66

30.11

31.41

32.81

32.27

31.94

30.81

29.82

34.25

33.85

32.24

30.32

32.13

33.39

31.99

31.71

31

X

X

X

X

(b)

Figure 5.9: Heatmaps reporting the average scheduling time (a) and production cycle
time (b) varying hexp and hnew.

Table 5.1: Production orders.

Arrival time Deadline P1 P2 P3

0 s 550 s 5 5 0
100 s 750 s 0 5 10
300 s 800 s 0 5 0

113



Chapter 5. Dynamic scheduling algorithm

Figure 5.10: Target mix tracking: variability of the actual production in 10 simulations
(shaded areas) and production orders to satisfy (dashed).

formed to assess how this choice influences the performance and the com-
putational load. Figure 5.9 reports the results obtained using an off-the-
shelf laptop (Intel Core i7-8550U CPU 1.80GHz, 8 GB RAM) by varying
hexp from 4 to 24 in steps of 2 and hnew ranging from 2 to hexp. For each
combination of the parameters, the results are the average among ten sim-
ulations. As expected, the computational load, expressed as the average
scheduling time, increases as the parameter values increases, as shown in
Figure 5.9a (missing values refers to times greater than 50 s). A higher
planning horizon hexp means that the RT is explored to a greater depth;
a higher hnew increases the number of concurrent products in the cell and,
consequently, the branching factor of the RT. On the other hand, Figure 5.9b
shows that performance is bad for smaller values of the parameters, since
the scheduler is not able to gather enough information to determine the
best control action. As the planning horizon increases, the cycle time re-
duces until it reaches the optimum. Then, it starts worsening again due to
the higher scheduling times that result in the agents waiting for the next in-
struction from the system. Moreover, planning past a certain depth provides
little added value, as predictions lose accuracy due to the high variability of
the system. Missing data in Figure 5.9b refer to cases where the cycle time
was greater than 100 s. In the remainder of the Chapter, we set hexp = 16
and hnew = 10, which attained the best cycle time with reasonable compu-
tational load.

114



5.3. Simulations

5.3.3 Target mix tracking

To test mix tracking capabilities of the scheduling approach, we extended
the use-case to comprise three different types of products. Two of them (P1

and P2) are variants of the same product that differentiate half-way in the
assembly sequence, while the third one (P3) is a separate product. We run
ten simulations to show the robustness of the plan against the system vari-
ability. The production orders are reported in Table 5.1, while Figure 5.10
shows the variability of the actual production. Overall, the scheduler was
able to meet the production requirement every time adapting the mix to the
pending orders. For instance, the production of P1 is put on hold after the
arrival of the second order, as P2 and P3 gain higher priority. Then, the re-
maining P1 products needed to complete the first order are assembled when
the deadline approaches.

5.3.4 Comparison with other schedulers

To conclude, we performed a simulation campaign to compare the perfor-
mance of the proposed algorithm with other schedulers that are available in
the literature, which were introduced in the introduction to Chapter 4. None
of the reviewed approaches present all the features that allow our control
system to achieve the maximum degree of flexibility, namely dynamic task
assignment and sequencing, online fault management, and robustness to the
system variability (especially in the duration of the operations).

Lou et al. [93] propose a decentralised algorithm that combines offline
proactive scheduling with online reactive repair according to predetermined
rules. Known and fixed Gaussian distributions for task durations are sup-
posed to compute the robust offline plan. Instead, Nikolakis et al. [112]
describe a similar centralised approach where multiple alternatives are eval-
uated offline to find the best nominal plan, which is then adapted online in
case of abnormal events. However, task duration is considered to be de-
terministic. The fixed duration of the operations is also assumed in [49].
Although the approach is suitable for online task scheduling and fault man-
agement, it does not aim to find an optimal solution, but only one that satis-
fies constraints. Instead, [59] and [150] propose heuristic strategies for job-
shop order scheduling and cycle time optimization in manufacturing plants,
respectively. However, both works are difficult to apply to the use-case con-
sidered in this thesis. In [21], genetic algorithms are employed to minimise
production time and cost. The authors consider exponential distributions
for task durations and do not account for errors and faults. Johannsmeier
et al. [68] propose a hierarchical framework for optimal task planning in

115



Chapter 5. Dynamic scheduling algorithm

Table 5.2: Comparison with other schedulers.

Scheduling Online Online Fault Uncertain
algorithm assignment sequencing management duration

Proposed approach 3 3 3 3
Casalino et al. [19] 7 3 7 3
Chen et al. [21] 3 7 7 3
Gombolay et al. [49] 3 3 3 7
He et al. [59] 7 7 7 7
Johannsmeier et al. [68] 7 7 7 7
Lou et al. [93] 7 3 3 3
Nikolakis et al. [112] 3 7 3 7
Shi et al. [150] 7 3 7 7
Wilcox et al. [165] 7 3 7 7

human-robot assembly. However, both task allocation and sequencing are
solved offline with respect to the nominal task durations. The work of
Wilcox et al. aims to adapt the robot plan to the operator’s preferences
without considering productivity. Finally, Casalino et al. [19] uses Timed
Petri Nets to schedule robot tasks in collaborative assembly by predicting
human intentions, which are assumed to be uncontrollable. Section 5.1.3
already provided some insight into the different approaches to optimization
and the exploration of the feasible system evolutions between [19] and the
strategy proposed in this thesis. Table 5.2 summarises the characteristics of
the schedulers available in the literature as compared to the main features
of the proposed approach.

To carry out the performance comparison, we selected one decentralised
and one centralised method, namely [93] and [112]. The two works have
been chosen as they are representative of two main classes of scheduling
algorithms, suit the use-case considered in this thesis, aim at optimising
productivity, and provide fault management capabilities. To apply the two
approaches, the distributions associated with the task durations are assumed
to be Gaussian and known a priori. Also, the mean duration is used in
[112], as it is deterministic. Conversely, the our method does not require
such information. Moreover, the work by Casalino et al. [19] has been
considered to compare the two optimisation approaches. To do so, humans
are not treated as uncontrollable agents as in the original work, but follows
the instructions provided by the scheduler.

For each scheduling algorithm, 20 simulations have been performed,
each one consisting of the assembly of 10 products. Figure 5.11 reports the
average cycle times obtained by the different methods. Results from [93]

116



5.4. Experiments

[93] [112] [19] Proposed
36

38

40

42

44

46

C
y
c
le

 t
im

e
 [

s
]

Figure 5.11: Average cycle time of different scheduling algorithms.

and [112] are worse, as they allow for less flexibility in the face of the vari-
ability of operation durations. On the other hand, the proposed approach
and the one from [19] attain comparable performance with similar schedul-
ing times. The latter result is important, as our approach implements a
simpler exploration rule that is more suitable for large problems. A further
note is that simulations have been run with stationary duration distributions
and fixed production mix. Therefore, the performance of [93] and [112] in
a real case is expected to be even worse. In particular, any time the produc-
tion demand changes, the offline optimal plan must be recomputed, which
takes a lot of time. Moreover, differently from the other works, the one
proposed in this thesis is capable to optimally manage a wide range of ab-
normal behaviours of the system, described in Section 4.3, that allows for
higher robustness and performance in real applications.

5.4 Experiments

The scheduler proposed in Section 5.1 and the communication paradigm
described in Section 5.2 have been tested on a complex assembly task in-
volving three agents with an experimental campaign involving 16 subjects.
Results have been compared to those obtained by employing the algorithm
in [93], taken as an example of state-of-the-art approach. In the follow-
ing, Section 5.4.1 presents the experimental setup and protocol, while Sec-
tion 5.4.2 discusses the results. Then, further experiments are included in
Section 5.4.3 with the aim of assessing the system behaviour in the man-

117



Chapter 5. Dynamic scheduling algorithm

Figure 5.12: Emergency button and its parts.

agement of the error cases described in Section 4.3.

5.4.1 Experimental setup and protocol

The collaborative job consists in the assembly of an emergency button (Fig-
ure 5.12) executed by a human operator with the help of two robots (ABB
dual-arm YUMI and IRB140). During the experiments, the human wears
haptic bracelets on both arms and a vibrotactile ring with push-buttons on
the non-dominant hand, as described in Section 5.2. The tactile interfaces
and the robot controllers are connected to a CPU (Intel Core i7-8550U
1.80GHz, 8 GB RAM), where the scheduling algorithm is implemented
as a C++ application. Figure 5.13 shows the complete experimental setup
and the tactile displays.

The assembly of the emergency button consists of 5 steps:

1. Screw the Internal Ferrule onto the Body;

2. Position the Top and fix the External Ferrule;

3. Fasten the Bottom with the Screws, then fix the Head;

4. Pack the completed product inside a Container Box;

5. When the Box is full, change it for an empty one.

Some steps can be performed by more than one agent independently to
allow for flexibility. Figure 5.14 shows the AAOG that defines all viable
assembly plans for the product and the tasks of which they are composed.

118



5.4. Experiments

Figure 5.13: Experimental setup.

Edge colours specify the agent that performs the task: YuMi (red), IRB
(blue) or human (green). For instance, step 2 is performed either by YuMi
or IRB alone, or with a combination of a human and an IRB task. When
more than one operation per agent is present in the same assembly step
(e.g., o8 and o12), they differ for the origin (destination) buffer, from (to)
which the WIP part is taken (placed). A constraint of mutual exclusion
holds among step 2 tasks to avoid the simultaneous access to the buffer that
stores the Top part, which is shared between the two robots. Moreover, a
fixture is occupied at the beginning of o11 and released after completion
of o10, which is also used during o9. The shared buffer and the fixture are
treated as additional resources in the system.

Error cases have been partially included in the model according to Sec-
tion 4.3. In particular, we considered robot failures in the execution of
steps 2 and 4. Accordingly, 5 recovery actions have been included among
the possible human tasks. All the other abnormal behaviours have been ne-
glected, as they are not easily supported by the comparison algorithm. For
the same reason, the effects of the recovery actions were always kept con-
sistent with the default recovery. During the experiments, faults have been
injected to consistently test the behaviour of the schedulers. Specifically, at
the sixth step 2 task performed by YuMi, the gripper got stuck and was not
able to grasp the product, the robot had to be reset by the operator, but the
product was still available for processing. Conversely, IRB executed the

119



Chapter 5. Dynamic scheduling algorithm

Figure 5.14: Augmented AND/OR Graph of the job considered in the experiments. Prod-
uct part names refer to Figure 5.12. Edge labels identify operations and the associated
fault recovery actions (in brackets, if present). Colours specify the agent that performs
the task: YuMi (red), IRB (blue) or human (green).

Table 5.3: List of robot operations.

ID# Robot Operation description Assembly step

15-16 YuMi Start new product 1
12-13 YuMi Assemble Top 2

9 IRB Clamp product & assemble Top 2
10 IRB Assemble Top 2
7 IRB Store finished product in box 5

120



5.4. Experiments

Table 5.4: List of human operations and haptic signals.

ID# Operation description Assembly step Haptic signal

17 Start new product 1 3 left
11 Clamp product for IRB task 2 2 left
12 Complete product from YuMi 3 1 left
8 Complete product from IRB 3 1 right
6 Change full box 5 3 right

4-5 Recover failed YuMi - fast left
1-2-3 Recover failed IRB - fast right

fourth step 4 operation in a wrong way: the robot was still working, but the
product needed human intervention to be completed. In total, 12 assem-
bly operations compose 6 possible assembly sequences. Table 5.3 lists the
robot tasks, while Table 5.4 details those available to the human and the as-
sociated haptic signals according to Section 5.2.2. The complete TPN that
models the assembly process results in 50 places and 34 transitions.

We tested three different conditions: scheduling with [93] and visual
feedback (S), proposed scheduling with visual feedback (V), and proposed
scheduling with visual and haptic feedback (H). In all three conditions, the
next operation for the human was displayed on a screen above the work-
bench (see Figure 5.13). In the H condition, participants also received
tactile feedback according to Table 5.4. The association between haptic
signals and operations was learnt by the user before testing the H condi-
tion. Participants were instructed to press the button on the wearable ring
upon completion of each operation to signal task completion.

Twelve volunteers (3 females and 9 males, age range 23-33) participated
in our study. Informed consent was obtained from all of them and the exper-
imental evaluation protocol followed the Declaration of Helsinki. Partici-
pants did not perceive any payment and were able to leave the experiment
at any moment. None of them had prior experience with the scheduling
algorithms, nor with the selected assembly task, nor with the proposed use
of haptic bracelets. During a preliminary training phase, volunteers were
taught how to complete the different human operations, tried each of them
twice, and performed a complete trial (10 products) to get comfortable with
all tasks. Then, in the test phase, we divided the participants into 3 groups
of 4. Each group tested a pair of conditions in different orders. For exam-
ple, four participants tested conditions S and V, two in the order SV and two
in the order VS. The same approach was applied to the groups that tested
S and H, and V and H. Thus, each participant performed two complete ex-

121



Chapter 5. Dynamic scheduling algorithm

0 50 100 150 200 250 300 350 400

Y
u

M
i 14 16 14 16 16 14 15 16 13 14 16 14 15 13 16 14

0 50 100 150 200 250 300 350 400

IR
B

10 7 7 7 10 7 7 7 10 7 7 7 7

0 50 100 150 200 250 300 350 400

Time [s]

H
u

m
a

n

171711 12 8 12 11 12 8 1 6 12 11 5 12 8 12 12 6

Figure 5.15: Example of complete experimental trial. Vertical dashed lines indicate the
interval considered for cycle time evaluation.

perimental trials. A single trial consisted of the assembly of 10 emergency
buttons and participants were asked to finish as quickly as possible. The
average duration of a trial was about 7 min. Figure 5.15 reports an example
of the complete execution of one trial.

5.4.2 Results and discussion

Comparison between scheduling approaches

Firstly, we analysed the experimental results based on the cycle time, mea-
sured from the end of the first product assembly to the end of the 9th product
assembly (see Figure 5.15). The initial and final parts of the experiments
have been neglected to remove transient behaviour. Figure 5.16a shows the
measured values for the cycle time for the three conditions, where it is ap-
parent that the proposed scheduling algorithm (V and H conditions) attains
better performance than the one employed in S. For instance, the average
cycle time in the V condition, which shares the same communication inter-
face with the S condition, decreases by 15.6% (p < 0.0002, Wilcoxon test),
from 40.6 s to 34.3 s.

The improvement is related to two main properties of the proposed
scheduler: it adapts to the actual duration of human tasks and it optimises
the management of the fault recovery actions, which can be delayed to
avoid a complete stop of the production, giving priority, e.g., to the prepa-

122



5.4. Experiments

S V H
30

35

40

45

C
y
c
le

 t
im

e
 [

s
]

(a)
V H

30

35

40

45

C
y
c
le

 t
im

e
 [

s
]

(b)

Figure 5.16: Cycle time obtained for the different conditions (S, V and H) with 12 (a) and
16 (b) participants. Boxplots show median and quartiles.

ration of a WIP part for another agent before restoring the failed one. An
example of the latter situation is shown in Figures 5.17a and 5.17b, which
compare two typical cases for the S and V conditions, respectively. With
the state-of-the-art scheduler, the human recovery action (o5) is planned as
soon as possible after the failure of task o14 (at t ≈ 200 s). However, this
leads to a complete stop in the production and long idle times of all three
agents. Conversely, the proposed scheduler inserts task 11 in the human
plan before the recovery action to allow IRB to continue the assembly of a
product, which is then ready for the human task o12. In this way, the sum
of the idle times of all resources is minimised.

On the other hand, the comparison between conditions V and H is less
trivial. The reason is twofold. First, cycle time data show high variability
in the H case. This can be due either to the use of haptic interfaces or to
the small amount of available data. Second, as the difference between V
and H conditions lies in a change of interface, it is critical to understand
how the two approaches influence not only the performance, but also the
attitude of the operator. To gather more data for the comparison between
the interfaces, the experimental campaign was extended to other 4 novice
volunteers (different form those that performed the first 12 tests), for a to-
tal of 16. Two participants tried the pair VH and the other two the pair
HV. Figure 5.16b shows the cycle times obtained with conditions V and
H considering all 16 participants. One can notice that the large dispersion
displayed in Figure 5.16a is no longer present in the results obtained for the
H condition and the performance in the two conditions is comparable.

Two other aspects were additionally taken into account, which are dis-
cussed in the following: the frequency with which the experimenter di-

123



Chapter 5. Dynamic scheduling algorithm

(a)

Y
u

M
i 16 13 14 16 14 15 13 16 14

IR
B

10 7 7 7 10 7 7

150 200 250 300 350

Time [s]

H
u

m
a

n 8 1 6 12 11 5 12 8 12

X

(b)

Figure 5.17: Portions of plans from experiments showing how the two schedulers, [93]
(a) and proposed (b), handle a failure of YuMi (red crosses). Arrows mark when the
robot is reset. The proposed scheduler minimises the overall idle time by delaying the
recovery action.

rected his/her gaze towards the screen, and the users’ subjective impres-
sions on the collaborative task. The former was measured from videos
acquired by a webcam mounted below the screen (see Figure 5.13). The
latter was assessed through questionnaires filled in by volunteers just after
their trials.

The role of tactile communication

Figure 5.18a reports the average number of looks the operators gave to the
screen per operation. When only the visual interface is present (V case),
the average number of looks remains constant, slightly above 1. This is
reasonable since the operator had to look at the screen at least once per
operation, to know which task to perform. The extra gazes mostly account
for occasional double checks. Conversely, when the tactile instructions are
introduced, experimenters consistently gave few looks to the screen, with
a median of 0.1 looks per operation that constitute a significant reduction
over the V case (p = 0.0010). Residual looks concentrate during idle time
periods, between the end of a task and the reception of the next haptic
command, or occasionally to check the received haptic command.

Figure 5.18b reports the ratio between the cycle time achieved in condi-
tion H and the one obtained in condition V by the same subject. Data show
a significant reduction in the H-to-V cycle time ratios between the sub-
jects that tested the H condition first and those that tested it as the last trial

124



5.4. Experiments

V H
0

0.5

1

L
o

o
k
s
 p

e
r 

o
p

e
ra

ti
o

n

(a)

H - 1st H - 2nd
0.8

0.9

1

1.1

1.2

C
y
c
le

 t
im

e
 r

a
ti
o
 H

/V

(b)

Figure 5.18: (a) Average number of looks per operation for V and H conditions and (b)
cycle time variation from V to H when the H condition was tested in the first (left) or
second (right) trial.

Table 5.5: Questionnaires on the two feedback modalities answered by the 12 subjects (7
levels linear scale).

Q1: It is easy to use.
Q2: Using it is effortless.
Q3: I don’t notice any inconsistencies as I use it.
Q4: I can recover from mistakes quickly and easily.
Q5: I can use it successfully every time.
Q6: I learned to use it quickly.
Q7: I easily remember how to use it.
Q8: I am satisfied with it.
Q9: The collaboration proceeded smoothly.
Q10: I complete the operation more quickly when using it.

(p = 0.0286). Instead, the median cycle time in the V condition does not
change significantly between the two groups (p = 0.4857). Therefore, the
level of expertise of the operator influences more the performance attained
using haptic interfaces than those obtained with visual feedback only. Also,
more expert users are able to improve results over the V case, with a median
reduction of the cycle time of 5.8% from V to H conditions.

To obtain information on the participants’ subjective opinions about the
two feedback modalities, we relied on a questionnaire with statements taken
in part from the USE Questionnaire [94]. The survey was formulated as a
linear scale going from 1 (only visual feedback) to 7 (visual plus tactile
feedback). Questions are reported in Table 5.5, whereas the distribution of

125



Chapter 5. Dynamic scheduling algorithm

Evaluation of the two feedback modalities per person

1
2
3
4
5
6
7
8
9

10
11
12

020406080100 20 40 60 80 100

Percentage

1 (V)

2

3

4

5

6

7 (H)

Figure 5.19: Answers of the 12 subjects that tested the H condition to the questions on
feedback modalities (Table 5.5) according to a linear scale going from 1 (only visual)
to 7 (visual+tactile).

the replies of each subject is shown in Figure 5.19. By adding the ratings
given to all questions, ranging from a minimum score of 10 to a maxi-
mum of 70, we distinguished between two attitudes: preference for the V
condition (score 10–40) and preference for the H condition (score 41–70).
Although some people preferred the V condition (subjects #6, 8, 11), there
was an overall preference for the H condition, as 75% of the subjects ap-
preciated the use of haptic feedback. The relation between the order of
execution and the performance has already been discussed, and we noticed
that it might have also influenced the acceptance of condition H, as the two
most negative evaluations came from subjects that tested the haptic inter-
face in the first trial (#6, 11). Overall, results show that the haptic interface
has been preferred and effectively used by most of the participants, despite
the complexity of the task and the variety of commands conveyed through
the vibrotactile paradigm. In particular, subjects that tested the H case as
the second trial were able to exploit the haptic interfaces to increase perfor-
mance, showing the crucial role of operators’ confidence with the task.

5.4.3 Error management

Further experiments have been carried out focusing on the management
of the error cases described in Section 4.3. To do so, we referred to a
simplified version of the use-case described in Section 5.4.1, whose AAOG
is reported in Figure 5.20. Specifically, only the human operator and the

126



5.4. Experiments

Figure 5.20: Augmented AND/OR Graph of the job considered to test error cases. Product
part names refer to Figure 5.12. Arc labels identify operations that are performed by
either YuMi (red) or human (green). Dashed arrows mark recoveries from error cases.

YuMi robot work in the cell to perform steps 2-3-4 of the emergency button
assembly. Both agents can execute step 2, while the human is in charge of
completing step 3 with the help of a tool (an electric screwdriver, modelled
as a non-necessary resource r3). The robot performs step 4. The monitoring
unit that tracks the human activity is in charge of determining when new
products are placed or removed from the intermediate buffers (W1, W2,
W3), and when the tool r3 is picked up and released. This is done using an
RGB-D camera to track the positions of the operator’s hands in real-time in
relation to virtual spheres that mark the zones of interest in the workspace.

In the experiments, we tested 4 error cases, for which we compared
the proposed approach with a relevant baseline. To gather experimental
data, we performed 24 trials, each one consisting of the assembly of 10
products. Two failures per trial have been injected in the system so that they
do not influence one another, i.e. the transient after the first failure expires
well before the occurrence of the second fault. Overall, each management
strategy for each abnormal behaviour of the system was tested 6 times. The
chosen error cases and the associated recovery actions are depicted in the
AAOG in Figure 5.20 and better detailed in the following.

127



Chapter 5. Dynamic scheduling algorithm

As far as human errors are concerned, the scheduler plays a little role
in their management. Instead, the monitoring unit has the crucial role of
detecting and identifying which operation the operator is performing and
whether he/she makes some error during the activity. Then, to resume nor-
mal system behaviour a simple correction in the PN marking or the notifi-
cation of the error to the human is needed. In Part I, monitoring algorithms
that can provide the required information to the control system have been
already proposed and tested. Therefore, human errors were not included in
the present experimental campaign.

Robot faults

Referring again to Section 4.3, three types of robot faults have been in-
cluded in the list of abnormal system behaviours. Nevertheless, they are
managed fundamentally in the same way by scheduling an appropriate re-
covery action. Moreover, the case when the robot fails and becomes un-
available has been already presented in Figure 5.17, which showed how the
proposed scheduler was capable to optimally schedule the recovery action.
For this reason, we decided to select only one case to be tested in the present
experiments, namely the one where the robot can continue working, but the
product has to be recovered.

Specifically, operation o4 consists of the quality control and packaging
of the completed product. If the automatic quality control fails, the robot
signals the error to the system, which calls for the final decision of the
operator, i.e. the recovery action (indicated as oA in the AAOG). Two cases
have been tested:

1. The fault was a false positive and the product is compliant with quality
standards. In this case, the human places the part in the final box (W3)
and concludes the recovery action. This alternative is taken as the
default recovery action for the scheduling algorithm.

2. The product is truly non-compliant with quality standards. In this
case, the human partially disassembles the product into a compliant
WIP W1, places it in the buffer, and concludes the recovery action.

The baseline strategy plans the recovery action as soon as possible and the
human can only either accept or discard the product. This situation models
the standard industrial practice that does not rely on real-time monitoring of
the workspace and the operator’s movements. As for the first case, the dif-
ference between the proposed and the baseline strategy lies in the freedom
of the former in determining the optimal moment to schedule the recovery

128



5.4. Experiments

action. Figure 5.21a shows how the recovery oA is delayed and not per-
formed right after the failed operation, differently from what happens in
Figure 5.21b. Similar to what is reported in Figure 5.17 for other types of
robot faults, the smart management of failures reduces the total agents’ idle
time. In the experiments, we observed an average idle time of 15.8 s with
the baseline approach, which drops to 10.1 s with the proposed one, reduc-
ing by 36.1%. As for the second case, workspace monitoring widens the
alternatives available to the operator, who can not only accept or discard
the product, but also re-inject a partially disassembled product in the pro-
duction flow. As a result, the production of the non compliant item does not
start from the beginning, but resumes from step 3 (Figure 5.21c). The ac-
tual outcome of the recovery action differs from the default one used while
predicting the future evolution of the system. Nevertheless, the monitoring
unit can correctly track the process state and the scheduler adapts to the
new condition. On the other hand, after the baseline recovery the product
is discarded and a new one starts (Figure 5.21d). Thus, an additional step
2 operation (o1 or o2) must find a place in the schedule with respect to our
approach, which decreases productivity. In the reported example, the robot
idle time present in Figure 5.21c is replaced by an additional o1. However,
the duration of the robot operation is higher than the idle interval. Besides,
the excess delay eventually leads to robot idle time around 175 s. In gen-
eral, the performance gap between the two strategies is more pronounced
the further down the defect occurs in the assembly sequence, as it would be
necessary to repeat more operations.

Other failure cases

The possibility to find a defective product that must be corrected before
continuing has been considered as the third error case. When this happens,
the human signals the start of the immediate recovery action (indicated as
oR in the AAOG) through one of the buttons on the haptic interface de-
scribed in Section 5.2. Then, he/she substitutes the defective part, proceeds
with o3, and places the obtained WIP in the buffer W2. In the baseline case,
the operator follows the same steps but cannot notify the system, which is
thus unaware of the delay in the completion of o3. Figures 5.21e and 5.21f
show an example of recovery according to the proposed and baseline meth-
ods, respectively. Although the duration of the human activity is the same
in both cases, it is apparent that informing the scheduler of the expected
delay needed for recovery leads to better performance. In particular, the
robot can start o1 in parallel to the operator, instead of waiting for the end
of the human task to perform o4. Overall, the proposed strategy eliminated

129



Chapter 5. Dynamic scheduling algorithm

(a) Robot fault, compliant product. (b) Robot fault, compliant product.

Y
u

M
i 1 -4 1 4 4 1 4 1 4 4 1

50 100 150 200

Time [s]

H
u

m
a

n

3 o
A 3 3 2 3 3 3

(c) Robot fault, non compliant product.

Y
u

M
i 1 -4 1 4 1 4 1 4 4 4 1

50 100 150 200

Time [s]

H
u

m
a

n

3 o
A 3 2 3 3 3 2

(d) Robot fault, non compliant product.

(e) Defective product. (f) Defective product.

(g) Tool failure. (h) Tool failure.

Figure 5.21: Examples of management of different error cases with the proposed approach
(left column) and the baseline strategy (right column).

130



5.4. Experiments

the average idle time of the robot from 26.5 s to 5.0 s over the baseline case.
The last notable case included in the trials is the unavailability of non-

necessary resources, such as the electrical tool identified as r3 in Figure 5.20.
Conversely, the recovery from failures of necessary resources is equivalent
to the management of robot faults. In particular, we simulate the fact that
the electric screwdriver is out of batteries, which must be substituted. Still,
the operator can perform o3 with a manual screwdriver. In the proposed
strategy, the operator signals the tool fault and the scheduling algorithm
plans the recovery action (indicated as oT in the AAOG). Instead, following
the baseline strategy the operator changes the batteries as he/she becomes
aware of the problem without notifying the system. Similar to the case of
a defective product, prompt information on the occurrence of the failure
allows the correct replanning of robot operations to minimise idle time, as
it is shown in Figure 5.21g. During the experiments, we observed a strong
reduction from 13.4 s to 1.4 s over the baseline recovery strategy, which
is exemplified by Figure 5.21h. Moreover, with the proposed approach the
scheduler is free to delay the recovery of the non-necessary tool to the op-
timal time, which is not possible with the baseline method. Similar to what
is shown in Figure 5.17 in response to robot faults, delaying the recovery
action can prevent the total stop of production.

Concluding remarks

Overall, experimental results show that intelligent fault detection and re-
covery action management increase the performance of task scheduling in
response to a wide range of abnormal system behaviours. Benefit mainly
comes in the form of reduced idle time of the agents and the opportunity
to avoid complete stops of the production line to allow for offline manual
recovery. The results obtained are only possible through the tight integra-
tion of dynamic scheduling and real-time monitoring of human activity.
Together, they can correctly track the state of the process and adapt the pro-
duction plans to react to unforeseen events. In particular, real-time mon-
itoring allows the operator to exploit his/her superior cognitive skills and
choose the best recovery action for the specific situation, which means that
the system can recover in multiple ways from the same type of failure con-
dition. This allows coping with the high complexity of the manufacturing
process, which makes the a priori definition of all failure cases impossible.

131





CHAPTER6
Dynamic scheduling of collaborative kitting

operations

AS already widely discussed, present-day manufacturing is charac-
terised by an increasing level of product variability and small size
lots. In this scenario, the management of the logistic processes

becomes as important as production control. In particular, Just-In-Time
material supply is needed to achieve the required levels of productivity and
flexibility, with the additional advantage of limiting floor space utilization
and storage costs. One of the most common approaches for part feeding in
assembly lines is kitting, which consists in grouping separate items together
to be supplied as one unit to the work stations.

Currently, kitting is a time-consuming task, which is mostly done man-
ually by human operators. In past years, most research efforts focused on
the design of an efficient and cost-effective part feeding process [40,63,92].
Also, strategies to improve kit quality and ease kit preparation have been
studied and commercialised [37, 121]. However, the physical strain of
workers must also be considered. Picking objects from the warehouse
implies a great repetitiveness in arm motion and postures characterised

133



Chapter 6. Dynamic scheduling of collaborative kitting operations

by arms that are adducted and elevated [26]. Moreover, the weight of
items may increase the physical strain and favour the development of work-
related musculoskeletal disorders, which include all medical conditions that
are caused or aggravated by work and the circumstances of its performance.
These remain common issues that have been limiting improvements in re-
cent years [34]. Therefore, taking into account the workers’ health and
welfare costs, it is mandatory to apply policies aimed at minimizing the
risk of the insurgence of such musculoskeletal disorders.

Recently, there has been a growing interest in transitioning to automated
kitting systems using robot manipulators. Design factors to implement an
effective robotic system were discussed in [155], whereas [147] analysed
the performance of different system configurations, and [16] studied the
economic benefit of automated kitting over the manual one. Fully robotic
kitting has been proposed, where mobile robots pick parts from the shelves
and bring the kit to the assembly line [78, 149, 161]. However, research ef-
forts mostly concentrate on overcoming technical limitations that still hold.
For instance, the robust recognition and grasping of a large variety of ob-
jects, as well as the precise positioning of parts into kitting boxes, are com-
plex tasks for a robot.

To mitigate these problems, hybrid kitting systems have been intro-
duced, where both a human and a robot contribute to the task. [116] pre-
sented a mobile manipulator for kitting tasks, which can share the same
space as the human. Similarly to [78], the main focus is on part recogni-
tion and placement into the box. Instead, [36] developed a system where
the human operator retrieves the correct items from the shelves, while an
assistant collaborative robot sorts items inside the kit. In [10], the authors
investigated the optimal assignment of parts to either the robot or the op-
erator, each working in their own kitting supermarket, so as to optimise
the kit preparation time. More in general, research on task allocation for
human-robot kitting has mainly focused on performance and safety, in line
with works related the other applications of human-robot collaboration.

On the other hand, the ergonomic benefits of integrating robots into hu-
man tasks have been extensively studied for various industrial use cases,
where the robot can be used to optimally position or manipulate the prod-
uct on which the worker must perform his/her task [38, 119, 148, 169]. Er-
gonomics as a criterion to guide task planning has been considered, for
instance, in [158], where multiple criteria are used to define an offline
schedule for a hybrid human-robot assembly cell. Also, [35] described an
approach to consider ergonomics and human movement capability in the
optimal assembly sequence, while in [14] both the task allocation and the

134



6.1. Ergonomic measurement

REBA score Risk level Action required

1 Negligible No action required
2-3 Low Change may be needed
4-7 Medium Further investigation, change soon

8-10 High Investigate and implement change
11-12 Very high Implement change immediately

Table 6.1: REBA action level list. The highest the REBA score, the higher the ergonomic
risk and the more urgent the corrective actions.

motion planning problems are solved to optimise ergonomics in handover
operations. Finally, [117] explores the trade-off between ergonomics and
productivity by exploiting a hierarchical task model to quantify physical
strain in assembly operations.

In this Chapter, we investigate the convenience of introducing a collab-
orative robot in the kitting process to share the workload with the human
operator. Specifically, the work is distributed in a way that reduces his/her
physical strain so to alleviate the risk of musculoskeletal disorders result-
ing from excessive fatigue. Besides, sharing work between two agents in-
creases the throughput. To do so, an online scheduling algorithm is pro-
posed to guide the picking operations of the human and the robot. The
system architecture follows the same principles explained in Chapter 4.1
and relies on the online solution of an optimization problem with a reced-
ing horizon approach. Data on the execution of human actions are used
to cope with the variability of human task duration and to ensure the co-
ordination of the agents to prevent collisions. To the best of the author’s
knowledge, this is the first attempt to implement a fully collaborative kit-
ting task, where human and robot dynamically coordinate to complete the
same kit in a shared workspace.

The remainder of the Chapter is organised as follows. Section 6.1 de-
scribes a way to quantify the operator’s physical strain through ergonomic
evaluation and to associate an ergonomic measure to each picking action.
Section 6.2 details the scheduling algorithm, formalised as a Mixed-Integer
Linear Programming optimization, whose performance is experimentally
tested and discussed in Section 6.3.

6.1 Ergonomic measurement

The manual kitting process is characterised by the lifting of material and
repeated arm movements, which comprise adduction and elevation. Conse-

135



Chapter 6. Dynamic scheduling of collaborative kitting operations

quently, the risks of work-related musculoskeletal disorders must be taken
into account and minimised. This section proposes a method to associate
an ergonomic measure to each picking action that composes the kitting pro-
cess. The ergonomic score is then used by the scheduling algorithm to
minimise the operator’s strain, as detailed in Section 6.2.

Ergonomic factors are increasingly considered when designing kitting
stations [26, 154]. However, the focus is usually to seek a reduction in the
physical exertion via a proper design of the workspace. Conversely, no ac-
tion is taken while the operator is performing the task. To enable an online
optimization of ergonomics, the real-time evaluation of the operator’s strain
is needed. Direct methods for effort measurement require the collection of
data from sensors attached to the worker’s body, such as electromyographs,
which are typically intrusive and expensive. On the other hand, an esti-
mate of physical strain can be obtained with observational methods, which
are easy to use and widely applied in industry [8]. In common industrial
practice, posture data are collected through the subjective observation of
the workers and the estimation of body-joint angles from videos. How-
ever, the recent spread of low-cost RGB-D cameras, such as the Microsoft
Kinect, allows collecting postural data in real-time and enables online as-
sessment [31, 54, 100, 122]. Also, deep learning techniques allow for au-
tomatic postural assessment from simple video streams [115]. Among the
observational methods suitable for automatic assessment, the most com-
mon are RULA (Rapid Upper Limb Assessment [104]) and REBA (Rapid
Entire Body Assessment [61]), which return a score based on the angles of
body joints and object weights. Since the kitting process may involve the
motion of the whole body, the latter is more relevant to the application.

The REBA method consists in the evaluation of an assessment grid com-
posed of two sections. Section A considers the position of the trunk, legs,
and neck, plus a correction that accounts for the force load acting on the
limbs; section B considers the posture of the two arms by looking at the
positions of the lower arm, upper arm, and wrist. A score is computed
for each section and then combined to obtain the final REBA value, which
ranges between 1 and 12. An action level list, shown in Table 6.1, indicates
the severity of the ergonomic risk and whether intervention is required to
reduce the risk of injury associated with the task.

The REBA score function C can be defined as follows:

C(θ,φ, w) = C(A′(θ) + A′′(w), B(φ)) (6.1)

where A and B are the values obtained from the two sections. The score A
can be seen as the sum of two functions A′ and A′′: one depending on the

136



6.2. Dynamic scheduling algorithm

joint angles θ of trunk, legs and neck, the other depending on the weight
w of the object being picked. Instead, the score B is a function of the joint
angles φ of the arm that performs the picking operation. Overall, 23 joint
angles are required to evaluate the REBA score. For this reason, automatic
measurements obtained with vision sensors can easily degrade due to self-
occlusions of the operator’s body parts or occlusions with objects in the
scene. Thus, it is difficult to obtain a reliable ergonomic rating online. A
solution to this problem comes by noting that the kitting process consists
in taking objects from a rack and that the number of available operations
is limited by the number of different objects in the warehouse. Also, the
position of the items in the warehouse does not change in time. So, it is
possible to associate each picking action with a constant ergonomic score
to be used by the scheduler. For the same person, the body joints angles will
depend on the object position, whereas two different people in height will
take different postures to reach the same object. Therefore, the function
C can be rewritten in terms of the object and worker heights, ho and hw,
respectively. The REBA score can be thus expressed as:

C(hw, ho, w) = C(A′(hw, ho) + A′′(w), B(hw, ho))

In the expression, A′′(w) is the same as in equation (6.1), while A′(hw, ho)
andB(hw, ho) can be identified collecting data for different object positions
and workers’ heights.

To do so, a Microsoft Kinect has been used to track skeletal points of dif-
ferent people (both right-handed and left-handed) performing picking tasks
at different heights. Joint angles θ and φ have been evaluated at the mo-
ment of picking. Results show three main areas: a central comfort zone and
two high-effort zones to reach very high or very low locations. Boundaries
between zones served as a guideline to find a transformation to align data
from all people. To identify the ergonomic function Ĉ, the average REBA
score for each object height has been computed from the aligned data. Once
Ĉ is available, one can exploit the inverse transformation to adapt the sin-
gle model to any worker’s height and to any configuration of the items in
the shelves. Figure 6.1 shows two example comparisons between empirical
REBA scores recorded during the experiments and those obtained using Ĉ.

6.2 Dynamic scheduling algorithm

The allocation and scheduling of picking tasks between the human and the
robot are considered as a multi-agent coordination problem with tempo-
ral and spatial constraints, which is formulated as a Mixed-Integer Linear

137



Chapter 6. Dynamic scheduling of collaborative kitting operations

Data Model

224
217
210
203
196
189
182
175
168
161
154
147
140
133
126
119
112
105
98
91
84
77
70
63
56
49
42
35

O
b

je
c
t 
h

e
ig

h
t 
[c

m
]

9

9

8

8

6

6

9

9

9

9

8

8

6

6

6

6

9

11

10

10

10

5

5

4

5

4

4

4

4

5

10

10

11

10

10

11

11

10

10

5

5

4

4

4

4

5

10

10

10

10

11

11

4

5

6

7

8

9

10

11

NaN

Data Model

224

217

210

203

196

189

182

175

168

161

154

147

140

133

126

119

112

105

98

91

84

77

70

63

56

49

42

35

9

9

9

8

9

8

8

7

6

9

9

9

9

9

9

9

8

8

6

6

6

6

9

11

10

5

5

5

5

4

4

4

4

5

10

11

11

10

10

5

5

4

4

4

4

5

10

10

10

10

11
4

5

6

7

8

9

10

11

NaN

Figure 6.1: Comparison of experimental and identified REBA scores for different object
heights obtained with hw = 178 cm (left) and hw = 187 cm (right).

Programming (MILP) optimization. Although this approach does not scale
well into large problems due to its exponential computational complexity,
the minimal team composition and the limited kit size allow for real-time
solution. This feature is paramount, as online rescheduling allows the plan
to adjust to the variability of human behaviour. Conversely, static schedul-
ing would lead to high idle times of the agents, as the robot would wait
for the operator in case human activity was late and vice-versa when the
worker finished his task faster than expected.

The goal of the MILP scheduler is to allocate the objects that compose
the kit to individual agents such that the kit preparation time and the human
physical strain are minimised. The ergonomic evaluation described in Sec-
tion 6.1 is exploited to quantify the latter. In addition, the scheduler guar-
antees the satisfaction of job assignment rules and temporal constraints, as
well as ensuring the spatial coordination between the agents to avoid col-
lisions. The MILP input consists of information on the kit to be made and
the current state of the agents. The output is the set of items assigned to the
human and to the robot and the sequence with which they must be picked.

138



6.2. Dynamic scheduling algorithm

Figure 6.2: Prototypical workspace layout of the kitting process.

6.2.1 MILP definition

In this section, we formalise the MILP optimization problem referring to
the prototypical layout shown in Figure 6.2. The kitting process is per-
formed by a human operator and an industrial robot that pick items from a
rack. Without loss of generality, the human is supposed to stand on the left
side of the shelves, while the robot is positioned on the right. The origin
of the coordinate frame used to express the positions of the objects and the
agents is placed on the bottom-left corner of the rack.

The optimization problem receives as input the set of objects that com-
pose the next kit K = {i} to be prepared and information on the picking
tasks and the current process state. More formally, each object is charac-
terised by the following parameters:

• Its position in the rack, defined by the horizontal coordinate xi and the
vertical coordinate hi;

• The expected duration dHi and dRi of the action of picking the object
by the human and the robot, respectively;

• The value of the human strain associated with the picking task si =
Ĉ(hw, hi, wi), with wi the weight of the object;

• A binary parameter bi ∈ {0, 1}, which is equal to one if the robot can
pick the object, zero otherwise.

The last parameter accounts for the reachability or manipulability limita-
tions of the robot, while it is supposed that the human is able to pick all
items. If this is not the case for a specific application, it is possible to
model the operator’s capabilities analogously.

139



Chapter 6. Dynamic scheduling of collaborative kitting operations

The current state of the process is described by:

• A binary parameter F ∈ {0, 1}, equal to one if a new kit is starting,
zero in case of the rescheduling of a kit in progress;

• The current horizontal positions with respect to the rack of the human
xH and the robot end-effector xR;

• The estimated remaining time to completion of the ongoing operation
of the human dHr and the robot dRr at the time when scheduling takes
place, which is equal to zero if the agents are idle.

Also, the following quantities are considered:

• The time dB needed to change the completed kit box with an empty
one before starting a new kit;

• The upper bound Tmax on the completion time for the current kit, com-
puted as the sum of the longest duration for each picking task and the
longest remaining time among the two agents:

Tmax =
∑
i∈K

max(dHi , d
R
i ) + max(dHr , d

R
r )

• The upper bound Smax on the worker’s physical strain for the current
kit, obtained in case all objects are assigned to the human:

Smax =
∑
i∈K

si

The scheduler attempts to solve for the following optimization variables:

• Hi ∈ {0, 1}, ∀i ∈ K, equal to one if the object i is assigned to the
human, zero if it is assigned to the robot;

• ti > 0, ∀i ∈ K, the time when the picking action of item i starts;

• TK > 0, the completion time of the kit K (makespan);

• SK > 0, the total physical strain for the human to perform the sched-
uled tasks.

The cost function f to be minimised is a trade-off between performance
and ergonomics:

min f = α · TK
Tmax

+ (1− α) · SK
Smax

(6.2)

140



6.2. Dynamic scheduling algorithm

where α ∈ [0, 1] is a design parameter that represents the importance of
minimizing makespan over strain.

Finally, the problem constraints are described in logic form in the fol-
lowing, from which a linear formulation can easily be obtained. The con-
straints ensure the coherence and feasibility of the schedule, the coordina-
tion of the agents to avoid collisions, and a limitation to the human idle
time.

• The kit is completed when all objects have been taken:

TK ≥ ti +Hid
H
i + (1−Hi)d

R
i ∀i ∈ K

• The total physical strain is equal to the sum of the effort score associ-
ated with the objects assigned to the human:

SK =
∑
i∈K

Hisi

• Objects that the robot cannot pick are assigned to the human:

bi = 0 =⇒ Hi = 1 ∀i ∈ K

• If two objects are assigned to the same agent, one must end before the
other starts:

Hi ∧Hj ⇒ (tj ≥ ti + dHi ) ∨ (ti ≥ tj + dHj ) ∀i, j ∈ K, i 6= j

¬Hi ∧ ¬Hj ⇒ (tj ≥ ti + dRi ) ∨ (ti ≥ tj + dRj ) ∀i, j ∈ K, i 6= j

• Both agents must start all picking actions after completing the ongoing
one;

Hi =⇒ ti ≥ dHr ∀i ∈ K
¬Hi =⇒ ti ≥ dRr ∀i ∈ K

• When a new kit starts, the first human task is to change the completed
box with an empty one, while the robot can start a new task provided
that it will end after dB:

F ∧Hi =⇒ ti ≥ dB ∀i ∈ K
F ∧ ¬Hi =⇒ ti + dRi ≥ dB ∀i ∈ K

The second constraint allows the robot to start the new kit early, reduc-
ing the idle time between two kits. At the same time, it also ensures
that the new box is ready to place the first item.

141



Chapter 6. Dynamic scheduling of collaborative kitting operations

To avoid the two agents crossing each other and to avoid collisions, the
scheduler enforces a moving separating line that dynamically changes po-
sition during the kitting process. The human is constrained to remain to the
left of the separating line, the robot end-effector to the right. Specifically:

• If two objects i and j are assigned to the robot and the human, respec-
tively, and i is to the left of j, one of the tasks must end before the
other starts:

¬Hi ∧Hj ∧ (xi ≤ xj) =⇒ (tj ≥ ti + dRi ) ∨ (ti ≥ tj + dHj )

∀i, j ∈ K, i 6= j

• All the tasks allocated to one agent and related to an object in the area
initially occupied by the other one must start after that the other agent
has completed its ongoing operation:

Hi ∧ (xi ≥ xR) =⇒ ti ≥ dRr ∀i ∈ K
¬Hi ∧ (xi ≤ xH) =⇒ ti ≥ dHr ∀i ∈ K

Note that for a workspace where the agents’ position with respect to the
rack is reversed, the correct constraints are obtained by simply inverting
the inequality signs between the horizontal coordinates.

Finally, a constraint to limit human idle time has been introduced. It im-
poses that all human operations must end before a given time upper bound,
which is equal to the minimum time required to execute all the tasks allo-
cated to the human multiplied by a coefficient β ≥ 1 that determines the
percentage of idle time allowed. That is:

Hi =⇒ ti + dHi ≤ β
[
I +

∑
j∈K

Hjd
H
j

]
∀i ∈ K

I = FdB + ¬F (NdHr + ¬NdRr ) N =
∨
i∈K

Hi ∧ (ti < dRr )

where I allows accounting for the correct completion time of the previous
schedule.

6.2.2 Receding horizon scheduling

In Section 6.2.1 the single optimization problem has been described. In the
following, the behaviour of the complete receding horizon scheduling rou-
tine, shown in Algorithm 4, is outlined for a set of kits, possibly unlimited
and not known a priori.

142



6.2. Dynamic scheduling algorithm

Algorithm 4 Receding horizon scheduling approach.

P ← ADDNEWORDERS( ) . Add incoming kits to pending list
while P 6= ∅ do

K ← SELECTNEXTKIT(P ) . Select the first pending kit
P ← P rK . Remove selected kit from pending
plan← SCHEDULE(K) . Schedule picking operations
while K 6= ∅ do

sent← DISPATCH(plan) . Send next commands to free agents
plan← planr sent . Remove started operations from plan
K ← K r sent . Remove started operations from kit
wait until next operation is completed
if human is free then

plan← SCHEDULE(K) . Update schedule
else if robot is free and next operation unfeasible then . Prevent crossing

plan← SCHEDULE(K)
end if

end while
P ← ADDNEWORDERS( )

end while

Initially, the available kitting orders are added to the pending queue P .
Then, the algorithm selects the next kit to be prepared among the pending
one according to a suitable logic, which usually depends on the specific
application. Common choices could be to follow a FIFO, Earliest Dead-
line First, or other priority-based approaches. The optimization problem is
solved to find a schedule for the first kit, in which all objects are assigned
either to the human or to the robot. Consequently, the first commands are
dispatched to the agents, which start their tasks. During the kit preparation,
several rescheduling may occur to adapt the plan to the actual duration of
concluded tasks. The schedule is updated each time one of the following
events occurs:

1. The human operator finishes his/her task;

2. The robot should start its next task, but this would cause a crossing
between the human and the robot.

In principle, the latter case is avoided by the MILP, which enforce a moving
separating line between the agents at all time, but it may happen during the
actual kit preparation if the human is late. At each rescheduling, the MILP
considers a kit K composed of the unpicked objects and F = 0. The
optimization problem is solved according to the current state of the process
and the old schedule is updated with the new one. When a kit is finished,

143



Chapter 6. Dynamic scheduling of collaborative kitting operations

Figure 6.3: View of the experimental set-up.

if new incoming orders are available, they are added to the queue. Then,
the next pending kit is started. The cycle repeats until all orders have been
fulfilled.

6.3 Experiments

The scheduling algorithm presented in this Chapter has been tested on the
simulated industrial kitting station shown in Figure 6.3. A gravity rack
stores different sized objects. Items whose weight influences the REBA
score are labelled, whereas red crosses identify those the robot cannot pick.
The former were placed randomly in the rack, the latter are the objects in
the two leftmost columns that are outside the robot’s reach. The robot is a
Comau Smart Six industrial manipulator endowed with a vacuum gripper.
The human interface is composed of a screen that shows the next instruction
to the worker and a button used to signal the end of each action. The robot
controller and the screen are connected via TCP/IP to an external computer
that runs the scheduler.

In the following, Section 6.3.1 analyses the trade-off between makespan
and ergonomics in the cost function and Section 6.3.2 presents the results
of the experimental campaign.

144



6.3. Experiments

Figure 6.4: Makespan-strain trade-off for kits composed of 6 (left) and 9 (right) random
items. Red dots refer to the case of pure manual kitting, blue dots to human-robot
collaboration for increasing values of α from 0 to 1.

1 0.8 0.6 0.4 0.2

-20

0

20

40

60

1 0.8 0.6 0.4 0.2

-20

0

20

40

60

Figure 6.5: Percentage reduction in makespan (red) and strain (blue) for kits composed
of 6 (left) and 9 (right) random objects with respect to pure manual kitting.

6.3.1 Makespan versus strain trade-off

Before evaluating the scheduler performance in the real set-up, a set of
simulations has been performed to investigate how parameter α in the cost
function (6.2) affects the output schedule in terms of makespan TK and
strain SK . Specifically, the algorithm has been fed with random kits of
different sizes, and we computed the optimal schedule varying α from 0 to
1 with step size of 0.1.

First of all, we noticed that the obtained results are independent of the
kit size. Figures 6.4 and 6.5 report those related to kits composed of 6
and 9 objects as examples. Namely, Figure 6.4 depicts the average values
of makespan and strain for varying values of α and compare them with

145



Chapter 6. Dynamic scheduling of collaborative kitting operations

the values obtained in the case of pure manual kitting, where all tasks are
performed by the human. To better compare the results associated with
different sized kits, Figure 6.5 shows the average percentage reduction in
makespan and ergonomics over pure manual kitting. The two quantities are
roughly inversely proportional: as makespan increases, strain decreases.
Pure manual kitting is the worst case for ergonomics, therefore, strain is
reduced for any value of α. Instead, the time to complete a kit may worsen
for low α. This happens because, in our experiments, the robot is in general
slower than the human in performing the picking operations.

Since the behaviour of the trade-off is the same for all kit sizes, it is
possible to choose a constant value of α that is valid throughout the entire
kitting process, irrespective of the characteristic of the kit being prepared.
From Figure 6.5 we can see that for values of α greater than 0.7 makespan
and ergonomics attain similar and constant reduction. As α goes from 0.7 to
0.4 improvement in terms of completion time decreases, while ergonomics
enhances. Then, for α < 0.4 the makespan starts to get worse than the
baseline case and there is a flattening of the two curves when no more
objects can be assigned to the robot to further improve ergonomics. In
the experimental campaign in Section 6.3.2, the value of α was kept fixed
to 0.8, so that the scheduler tends to attain similar improvements for both
makespan and ergonomics over the manual kitting case.

6.3.2 Experimental results

To asses the performance of the proposed scheduling algorithm, a first se-
ries of experiments were conducted with the dynamic scheduler presented
in Section 6.2. Then, other tests have been performed using an offline
scheduler, meaning that the plan was only computed once when the kit
started and never updated during the kit preparation. This allows compar-
ing results and assessing whether rescheduling performs better by absorb-
ing disturbances due to the variability of human tasks. For both scheduling
approaches, three cycles have been performed, each consisting of several
consecutive kit preparations, so that for each cycle at least 100 objects were
picked. Specifically, kits were randomly generated with a size between 6
and 9 objects.

To give better insight into the execution of the experiments, Figure 6.6
shows frames taken from a video during which the human and the robot
assemble one kit. In Figure 6.6a the operator is instructed to change the
completed kit before starting the new one. Meanwhile, the robot starts its
first picking action for the new kit (Figure 6.6b). When the human has posi-

146



6.3. Experiments

(a) (b)

(c) (d)

(e) (f)

Figure 6.6: Screenshots taken from a video of the experiments.

147



Chapter 6. Dynamic scheduling of collaborative kitting operations

tioned the empty box and pressed the button to communicate the end of the
task, he/she receives information on the next object to pick (Figure 6.6c).
Then, the two agents start to work in parallel coordinating their movements
to avoid collisions, until the kit is completed (Figure 6.6d-6.6e). Finally,
the operator changes the completed box with an empty one so that a new
kit can start (Figure 6.6f). Figure 6.7 shows an example of how the schedule
evolves during the assembly of a kit using the online algorithm. The initial
plan in Figure 6.7a is recomputed multiple times during the kit preparation.
Figures 6.7b to 6.7d show the updated plans when changes with respect to
the previous one occur. At each rescheduling, only the operations not yet
started can be re-planned.

The results obtained during the experimental campaign have been anal-
ysed according to the performance indices described below. Let P = {Ki}
be the finite set of the kits assembled during the experiments, TKi

the time
required to complete the i-th kit and SKi

the total strain upon the human
accumulated during the preparation of such kit. Then we can define:

• The cost of the i-th kit Ki:

fi = α · TKi

T Imax
+ (1− α) · SKi

SImax

where T Imax and SImax are the upper bound on time and physical strain
computed with reference to the entire kit.

• The productivity during the preparation of the i-th kit Ki:

λi =
|Ki|
TKi

with |Ki| the number of the objects contained in Ki. That is, the
average number of picked items per second.

• The average strain per item of the i-th kit Ki:

σi =
SKi∑

j∈Ki

Hj

where the denominator is equal to the number of objects collected by
the human.

Figure 6.8 reports the results of the experiments in terms of average cost,
productivity and strain for the set P of all completed kits. To normalise with

148



6.3. Experiments

respect to the kit size, each kit contributes to the aggregated performance
according to its duration TKi

. Data are reported as box plots showing the
weighted median and quartiles. Values for the two scheduling approaches
(offline and online) as well as for the manual kitting case are shown for
comparison. The latter has been estimated through simulations. In partic-
ular, Figure 6.8a shows the box plot of the average kit cost. The proposed
dynamic scheduler achieves significantly better performance over the of-
fline one, with a decrease in both median and dispersion of about 17%.
This result must reflect in an increase in productivity and/or in ergonomics.
Specifically, as one can see from Figures 6.8b and 6.8c, the lower values
of the cost is mainly due to an increase of the productivity, which grows of
about 19% compared to the case without rescheduling. Instead, the strain
does not improve significantly over the offline scheduler, although it de-
creases with respect to the baseline case. The fact that an improvement
in productivity seems preferable over one in strain can be explained by
analysing results in more detail. When rescheduling takes place, data show
that the case in which a task originally assigned to the robot is reallocated
to the human is more frequent than the inverse case. Thus, with the online
scheduler, the human tends to perform more tasks, with a subsequent rise
in the strain. This effect is also strengthened by the fact that the algorithm
prefers to assign the objects with worse ergonomic score to the robot.

Overall, the proposed online scheduling algorithm enables effective col-
laboration between human and robot during kitting operations, with good
performance if compared to both the traditional human kitting process and
an offline scheduler.

149



Chapter 6. Dynamic scheduling of collaborative kitting operations

(a) (b)

(c)

Box

change

52

X=2

42

X=2

71

X=1

44

X=4

41

X=1

46

X=6

74

X=4

76

X=6

0 10 20 30 40 50

Time [seconds]

H

R

(d)

Figure 6.7: Example of online rescheduling: the first schedule (a) is adapted multiple
times to cope with human variability (b)-(d). Only plans that differ from the previous
one are shown. Vertical red lines indicate the time at which rescheduling takes place.
The object number is reported over each task, while its horizontal position along the
rack is shown inside the bar.

Offline Online
0.35

0.4

0.45

0.5

0.55

C
o

s
t

(a)

Manual Offline Online
0.12

0.14

0.16

0.18

0.2

0.22

P
ro

d
u

c
ti
v
it
y
 [

1
/s

]

(b)

Manual Offline Online
5.5

6

6.5

7

7.5

8

8.5

S
tr

a
in

(c)

Figure 6.8: Weighted boxplots of (a) average cost, (b) productivity, and (c) strain. Graphs
show the weighted median and quartiles, and compare manual kitting, offline, and
online scheduler.

150



CHAPTER7
Conclusions

The purpose of this thesis is to provide a contribution to the field of in-
dustrial human-robot collaboration, with a particular focus on controlling
the production of multi-product assembly cells. Present-day manufacturing
demands for flexible and efficient strategies in order to maintain good pro-
ductivity regardless of the frequent changes in the production plans and the
occurrence of unexpected events. Also, the presence of the human opera-
tors injects high variability in the system, which must be taken into account
to achieve seamless coordination among workers and robots. This work
addresses many aspects of the problem, providing contributions to the real-
time monitoring of human activity, the dynamic scheduling of operations
in the assembly cell, and the control of the collaborative kitting process.

In Part I the problem of modelling and monitoring the current human
activity has been discussed considering that the operator can perform their
operations in many ways. Chapter 2 presented a way to learn a model of the
human task from demonstrations and train a classifier to parse the human
activity in real-time. The early identification of low-level actions enhances
the performance of collaboration in two ways. First, the human worker is
notified in case of errors, so that he/she can immediately implement correc-
tive actions. Second, early classification allows for a prompter prediction

151



Chapter 7. Conclusions

of the future evolution of the task and, consequently, better planning of
the robot actions. A different strategy has been presented in Chapter 3 to
enhance flexibility and learning capabilities, which does not require any
training phase. The algorithm, based on a modified version of the Dynamic
Time Warping, learns online from previous repetitions of the same opera-
tion and automatically adds newly discovered variants to the activity model.
The main aim of the proposed approach is to estimate the expected dura-
tion of the current human task, which is beneficial for agents’ coordination.
Experimental results showed that the algorithm provides accurate predic-
tion also for long and complex operations and that the presence of many
variants of the task does not degrade performance.

Part II dealt with the scheduling of the operations of humans and robots
working in a multi-product assembly cell and a collaborative kitting pro-
cess. First, Chapter 4 introduced the control system architecture composed
of a Digital Twin of the assembly cell, a dynamic scheduler, and a human
monitoring unit, which can exploit the algorithms presented in Part I. The
proposed strategy endows the system with strong adaptation and learning
capabilities, that are crucial to quickly react to changes in the workspace
layout and the production. A Digital Twin based on Petri Nets describes
both the physical structure of the workspace, the assembly tasks, the pos-
sible errors and faults, and the related recovery actions. The model tracks
the status of the process in real-time based on information coming from
the human monitoring unit and the robot controllers. The model is very
general and able to describe a wide variety of cell configurations. Also, it
has been shown that it can be generated automatically from a user-friendly
definition of the assembly tasks and can be easily updated to keep up with
changes in the production and the layout. Then, Chapter 5 presented the
dynamic scheduling algorithm. A temporal description is added to the Petri
Net model to simulate feasible system evolutions starting from the current
state of the Digital Twin. Results showed that the scheduler is able to opti-
mally plan the task of the agents also in case of a time-varying production
mix and the occurrence of faults. The algorithm maximises productivity
with respect to other scheduling algorithms that are available in the liter-
ature. Also, a novel visuo-haptic interface to give instructions to human
operators has been introduced, which can be used in complex human-robot
collaboration scenarios and allows expert users to improve performance.
Finally, Chapter 6 applied the human-robot collaboration concept to the
kitting process in order to enhance ergonomics and productivity. The pro-
posed receding horizon dynamic scheduler, based on Mixed-Integer Linear
Programming optimization, was able to obtain promising results that make

152



further research on the subject particularly interesting.

7.0.1 Future developments

In this work, we proposed strategies to address different aspects of the prob-
lem of controlling human-robot collaboration in a flexible manufacturing
cell. Besides improving the proposed algorithms to increase performance
and applicability, future works should concentrate on closer integration of
all the components of the system architecture. The ultimate goal should
be the synthesis of a unified framework capable of managing all aspects of
collaborative flexible manufacturing: from production control to logistics,
from robot control to human monitoring. To do so, the focus should also
shift more and more from the single robotic cell to the whole plant. In-
deed, in the factory of the future all functions will be tightly integrated to
optimise the response time, and thus productivity and costs, in the face of
changes.

For human-robot collaboration to be effective in this scenario, the em-
ployed framework must be able to deal with a continuously evolving and
non-structured environment. Although the work presented in this thesis
already goes in the direction of fast reconfiguration and online learning,
further steps can be done to provide methods for interpreting and manag-
ing the evolution of the manufacturing workspace. For this purpose, recent
advances in machine learning and artificial intelligence could be leveraged.

Finally, in this work, the human has been considered as a (weakly) con-
trollable agent that receives instruction from the control system to optimise
productivity. Although a certain freedom in the execution of the human
tasks and the possibility of making errors has been considered, little con-
sideration was given to the worker’s acceptance of the scheduler commands
and his/her comfort and stress during operation. As for the latter, both phys-
iological and psychological measures could be included to guide optimal
task allocation and planning, similar to what has been made for the collab-
orative kitting process in Chapter 6. To do so, additional sensors can help
to quantify the strain and stress of the operators and allow the production to
adapt not only to the current production demand, but also to each individual
worker’s preferences and capabilities. Regarding acceptance, human oper-
ators might be frustrated or stressed by being constantly monitored while
working and having to always follow the received instructions with limited
decision autonomy. Moreover, in the case of unmodelled situations or mis-
interpretations by the monitoring algorithms, expert users should be able
to override the received instructions and perform the correct action. These

153



Chapter 7. Conclusions

considerations call for strategies to manage the trade-off between produc-
tivity and the workers’ initiative and well-being.

154



APPENDIXA
Virtual simulation of a flexible assembly

cell

In this Appendix, we discuss how to integrate the control strategy proposed
in the present thesis, and in Chapter 4 in particular, into a commercial
Product Lifecycle Management (PLM) software. PLM combines tools to
manage the flow of information through the various stages of the product
lifecycle in order to cope with the increasing complexity of manufacturing
processes [103, 140]. The short product lifecycles and the large number
of product variants that characterise present-day flexible manufacturing re-
quire frequent re-designs of workstations. In this view, PLM software is
a powerful technology that supports the design and commissioning of new
manufacturing processes with the aim of faster launch of new products and
higher production quality. To this purpose, consolidated approaches for
information management in job-shop or fully automated plants are already
employed by enterprises, whereas suitable methods to address human-robot
collaboration scenarios are still under study [60, 133].

The most advanced software, such as Siemens Process Simulate [151],
provides 3D virtual simulation environments and automatic verification
tools. The possibility to analyse new production concepts prior to imple-

155



Appendix A. Virtual simulation of a flexible assembly cell

Figure A.1: Control system architecture with virtual simulation of the assembly cell.

ment them on the real plant brings various benefits, such as the reduction of
costs by limiting the need of physical prototypes and tests, the mitigation
of risk by performing what-if scenarios, the upfront optimization of cycle
times, and the early validation of PLC logic and robotic operations. When
the human is present, virtual simulation can be also used to evaluate er-
gonomics and safety of the workstation. Obviously, the results of the anal-
ysis performed on the virtual environment transfer to the real plant only to
the extent that the former is an exact copy of the latter. To better mimic the
reality, software like Process Simulate allows connecting PLCs and robot
controllers to simulate the process on the actual hardware. Moreover, a lot
of effort has been put recently on developing realistic digital models of the
human. In this regard, one of the most advanced technologies is the Jack
suite [131] that is integrated with Process Simulate.

One of the main limitations of virtual environments is the fact that sim-
ulation is always deterministic. Instead, real processes are characterized by
high variability, especially when close human-robot collaboration is consid-
ered. Moreover, to govern such uncertainty, advanced control architectures
like the one proposed in Section 4.1 are employed. For this reason, the
objectives of this Section are:

• Building a 3D simulation of the assembly process that includes the
uncertainty of human behaviour and the possibility of robot faults;

• Establishing a connection between the simulation and the proposed
dynamic scheduler that keeps the same interface of the real system.

Commercial PLM applications are not specifically designed for these pur-
poses, therefore they do not provide straightforward methods to fulfil the

156



A.1. Simulation of the assembly process

Figure A.2: Graphical user interface of Siemens Process Simulate.

aforementioned goals. However, if both objectives are achieved, it becomes
possible to integrate a realistic 3D simulation of the manufacturing process
with complex dynamic scheduling algorithms. The benefit is twofold. On
the one hand, the behaviour of the system can be simulated in response to
the dynamic scheduler that is implemented on the real cell and considering
not only standard operating conditions, but also exploring fault situations.
On the other hand, the simulation environment provides a realistic test-bed
to analyse the performance of different scheduling algorithms. In the fol-
lowing, we outline the procedure to obtain the desired system architecture
depicted in Figure A.1 using Siemens Process Simulate (to be compared to
the one shown in Figure 4.1). The choice of the software is motivated by its
widespread use in companies and the fact that it provides a state-ot-the-art
human model.

A.1 Simulation of the assembly process

The first step is to build the simulation of the complete manufacturing cell.
Figure A.2 shows the graphical user interface of Process Simulate that dis-
plays the main functionalities available on the software. Process Simulate
provides an event-based simulation mode that allows simulating continu-
ous production according to user-defined logic. Transition conditions are
encoded based on the value of virtual signals that are associated with the
occurrence of specific events. For example, signals can represent the end of

157



Appendix A. Virtual simulation of a flexible assembly cell

Figure A.3: Example of human operations, with the non-sim operation (named Op) that
allows for dynamic choice of the next task to perform.

operations, commands sent to the agents, data collected by sensors, or the
status of resources and devices (e.g. whether an automatic fixture is open
or closed). By defining the required signals and the appropriate logic con-
ditions, it is possible to simulate complex behaviours of the system. If the
functions available on Process Simulate are insufficient, one can implement
external user-defined functions exploiting the C# Tecnomatix API.

First of all, the 3D model of the environment is prepared by importing
CAD models of all the elements that compose the manufacturing cell, e.g.
robots, devices, worktables, and fences. Each object is defined with the ap-
propriate type in Process Simulate. Human workers are included through
the Jack model and can be personalised specifying gender and anthropo-
metric data. The more complete the virtual model, the more relevant the
results obtained in the simulation can be for the real system.

Second, each operation available to robots and humans must be imple-
mented. Process Simulate gives the possibility to fine-tune task execution
to the tiniest detail for both robots and humans. In our application agents
should execute their tasks based on of the commands received by the exter-
nal scheduler. Therefore, we must define operations in a way that allows
the desired level of flexibility. A robot program can be used to gather all
the tasks performed by a specific robot. Then, the next operation to start
is selected by means of the programNumber signal, which is automatically
created by Process Simulate. Robot programs cannot be used with the Jack
model. Still, we need a similar mechanism to govern human operations,
which is obtained by linking them to a root non-sim operation (see Fig-
ure A.3). The transition from the non-sim operation, which means that the
human is idle, to the actual operations is controlled by user-defined signals,
named key signals, associated to each task. Instead, signals that notify the
end of the operations are generated by default for both humans and robots.

Finally, to complete the definition of the assembly process, operations
must be associated with parts and products to model the material flow inside
the robotic cell, as depicted in Figure A.4.

158



A.2. Simulation of the system variability

Figure A.4: Example of material flow definition. Each box refers to an operation: the
name is specified in the top part, the bottom one lists the parts involved in the operation.
Arrows define the material flow.

A.2 Simulation of the system variability

We are interested in endowing the simulation with two sources of uncer-
tainty, namely the variability in the operation duration and the occurrence
of errors and faults. Usually, variability in the duration of robot tasks arises
from safety measures in the presence of the human. For instance, when
an operator gets close to the robot, the robot might slow down and, if
needed, stop completely. Process Simulate directly provides functionali-
ties to model such cases. Instead, expedients must be conceived to encode
human variability and faults. As for the former, the only solution we were
able to implement inside the constraints of Process Simulate was to insert
a random wait at the beginning of every new human operation. This model
the fact that the worker can execute a task at different speeds.

To simulate faults and errors one can define additional operations that
model interesting failure cases. Multiple failure conditions can be designed
for each operation. Then, a logic block inside Process Simulate is used
to manage the random occurrence of faults with a probability that can be
changed by the user. For instance, when the command to start a task with
one failure case is received, the standard operation is executed with proba-
bility p and the fault execution is executed with probability 1− p. Also, the
possibility to directly command the faulty operation is included to allow
the user to test specific what-if scenarios. To model a subset of robot faults,
another possibility is given by manipulating the programPause signal dur-
ing the execution of the robot program: when a fault occurs it is set to true
and the operation stops, when the error is recovered the value is set back to
false and the operation resumes.

159



Appendix A. Virtual simulation of a flexible assembly cell

Figure A.5: Client-server communication between Process Simulate and the external
scheduler, mediated by the user-defined function.

A.3 Communication with the external scheduler

Communication between Process Simulate and the external control archi-
tecture takes place with a client-server architecture. The virtual simulation
acts as the client, the external scheduler as the server. The scheme of the
communication routine is sketched in Figure A.5. Specifically, communica-
tion is mediated by a user-defined function, which is implemented in a logic
block inside Process Simulate. At each simulation step, Process Simulate
calls the user-defined function, which reads the current value of notable
virtual signals and elaborates them to obtain data that are compliant with
the interface of the external scheduler. To track the status of the agents in
the cell, the user-defined function implements finite state machines whose
transitions are triggered by signals related to the start and completion of
operations. Then, the response coming from the scheduler is decoded into
new values for the Process Simulate signals that update the status of the
simulation before the next step is elaborated. In this way, the commands
on the next operations to perform are dispatched to the virtual agents. The
bridging role of the user-defined function allows a direct connection with
the simulation environment without requiring any modification to the con-
trol architecture, which is ready to be applied to the real system.

Particular attention should be put on the human monitoring unit. In prin-
ciple, it is possible to add virtual vision sensors in Process Simulate and
provide the monitoring algorithm with the images required to analyse the
behaviour of the simulated human model. However, images taken from the
simulation cannot be realistic. Therefore, monitoring algorithms designed

160



A.3. Communication with the external scheduler

for usage on a real system will probably have difficulties in analysing pic-
tures coming from the digital simulation. For this reason, in most cases
it is more meaningful to remove the monitoring unit from the control ar-
chitecture, implement it directly in the Process Simulate environment, and
provide the external scheduler with all the required data.

A.3.1 Validation tests

We tested the proper functioning of the overall architecture with a cell com-
posed of two robots and a human operator. The assembly process com-
prises a single product type composed of two parts that can be completed
following six different sequences of operations. Namely, each robot can
perform the assembly on its own, with the help of the other robot, or the
human. Each robot can perform four operations, plus their faulty alterna-
tives (one for each task). The human can perform one operation, plus the
recovery actions to reactivate the failed robots. The setup has been used to
test the communication with the external scheduler and simulate different
scenarios with various levels of complexity and variability. The system al-
ways worked as intended and proved effective to be used as test-bed for the
scheduling algorithm.

161





List of Figures

2.1 Pipeline of the proposed monitoring algorithm. . . . . . . . 16
2.2 Operator’s tracked features: wrists (blue) and index fingers

(red). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Pipeline of the finger coordinate extraction algorithm. . . . . 18
2.4 Example of segmentation based on hybrid velocity/position

data. The plot reports the velocity of the right (blue) and left
(red) hand, and the velocity threshold (dashed black). Seg-
ments are identified as reaching motions (grey background)
or assembly actions (white background). . . . . . . . . . . . 19

2.5 Example of human task model with three variants. . . . . . 22
2.6 DTW matrix for an incomplete input sequence X with the

optimal open-ended warping path highlighted (blue). Warp-
ing paths obtained using global DTW when 5 and 9 input
samples are available are indicated in red for comparison.
Global DTW always considers the complete reference, lead-
ing to meaningless associations. . . . . . . . . . . . . . . . 23

2.7 (a) Graphical representation of the quantities used for the
geometrical weight computation and (b) example of original
trajectory (dashed) and simplified one (solid). . . . . . . . . 25

2.8 Final product. . . . . . . . . . . . . . . . . . . . . . . . . . 28
2.9 Examples of classes of segment trajectories. Motion of the

right hand (red), motion of the left hand (blue), and average
class trajectory (black). . . . . . . . . . . . . . . . . . . . . 29

163



List of Figures

2.10 Human task model for the proposed approach (a) and when
only reaching motions are considered (b). Reaching motions
are indicated with grey background, labels refer to Table 2.1.
Including assembly actions anticipates the position of the
branch and the recognition of the variant. . . . . . . . . . . 31

2.11 Example of monitoring performance for the two variants of
the task: left wheel first (a) and right wheel first (b). The
blue line shows the real-time classification, the red one the
ground truth. Segment labels refer to Table 2.1. . . . . . . . 33

2.12 Recognition delay in terms of elapsed time from the start of
the action (left) and in terms of percentage with respect to
the total action duration (right). Boxplots indicate median
(red bars), quartiles (blue boxes), minimum/maximum val-
ues (whiskers), and outliers (red crosses). . . . . . . . . . . 34

2.13 Screenshots taken from a video of the experiments. Compar-
ison between the proposed approach (left column) and [170]
(right column). . . . . . . . . . . . . . . . . . . . . . . . . 36

3.1 Effects of high pace variability: based on the previous ex-
ecution (left) the duration of the current activity (right) is
predicted to be 1 s using equation (3.1) and 2 s using equa-
tion (3.2). . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Behaviour of DTW in presence of occlusions without (a)
and with (b) occlusion handling mechanism. The reference
signal is shown in red and the input in blue; green lines
show point-to-point associations. The modified algorithm
accounts for the occlusion length and is able to retrieve the
correct alignment, where some of the reference samples are
not associated with any input sample. . . . . . . . . . . . . 42

3.3 DTW matrix with occlusion: to compute the first row af-
ter an occlusion, the standard exploration space in equa-
tion (3.3) (green circles) is extended according to (3.4) (red
circles), accounting for the occlusion length. . . . . . . . . . 43

3.4 Behaviour of DTW in presence of low-information template
sections (a) and desired behaviour (b). The reference signal
is shown in red and the input in blue; green lines show point-
to-point associations. In case of flat template, the modi-
fied algorithm computes an alignment that is more consistent
with the actual advancement of the task. . . . . . . . . . . . 44

164



List of Figures

3.5 DTW matrix with low-information section in the template
sequence: optimal warping path obtained with (blue) and
without (red) the anti-pause contribution in equation (3.5).
Red squares highlight the region of the DTW matrix where
the anti-pause contribution is active. The anti-pause contri-
bution allows for a better alignment that avoids pauses and
jumps. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.6 Finite state automaton that describes the warping path modi-
fication algorithm. In each state the modified path φ̆ is com-
puted according to equations (3.8). . . . . . . . . . . . . . . 48

3.7 Effects of DTW path modification: example of duration es-
timate evolution (a), activity advancement (b) and mean es-
timation error with quartiles (c). In all plots yellow lines
refers to the unmodified DTW output, red to the filtered one,
blue also neglects initial transient, green indicates the actual
task duration and the ideal advancement. . . . . . . . . . . . 50

3.8 Diagram of the assembly operation of a caster wheel. The
operator picks the main body and positions the rubber wheel.
Then, the wheel is fixed using a screw with the help of an
electric tool. Another screw is inserted and fastened to allow
for wheel mounting. . . . . . . . . . . . . . . . . . . . . . 50

3.9 Snapshot of the operator performing the assembly task. Ac-
tivity advancement profile (bottom-right) and duration esti-
mation (top-right) as given by the algorithms based on the
elapsed time (blue) and DTW (red). . . . . . . . . . . . . . 51

3.10 Final duration error ef (a) and mean duration estimate error
em (b) for ET prediction (blue) and DTW-based algorithm
(red). Boxes indicate the 25-75 percentiles, whiskers the ex-
treme points. DTW shows a strong reduction in both mean
end variance of the errors. . . . . . . . . . . . . . . . . . . 52

3.11 Template learning leads to a decreasing trend in the value of
the average prediction error em as the number of repeated
executions of the activity increases. . . . . . . . . . . . . . 53

3.12 Examples of critical results for activity monitoring: sec-
ond execution (a), long execution (b) and short execution
(c). Comparison among DTW algorithm (red), ET predic-
tion (blue) and actual activity duration (green). . . . . . . . 54

165



List of Figures

3.13 Example of template tree of a task with three variants. Label
for the i-th node is (oi, di, ri). After n0, two DTWs run con-
currently, one for each branch. The width of the blue arrows
is proportional to their current probability. . . . . . . . . . . 57

3.14 Example of graph-like activity structure that does not allow
to properly recognise variants. . . . . . . . . . . . . . . . . 58

3.15 Picture of the workspace and of the final product. . . . . . . 62
3.16 Template tree of the assembly task performed during exper-

iments. Note that many nodes link to the same segment. . . 64
3.17 Recognition of variant V2, known V4 and V6. Both children

of n7 are deemed as wrong (≈8.5 s) and node n8 is added to
the tree. Graphs show Pi (top, solid), D̃i (top, dashed) and
advi (bottom) for segments (f2, f1) (red) and (f2, f5) (blue). 65

3.18 Results for one execution of V4: as the correct variant is
recognised, the duration estimate converges to the real one. . 66

3.19 Examples of results in the monitoring of different variants
of the task. In the left column: prediction of T̂ (Te) obtained
with MV (blue), PA (red) and SV (yellow) algorithms. Ac-
tual duration in green. In the right column: advancement
obtained with MV algorithm (blue), with the advancement
of wrong branches reported in red. . . . . . . . . . . . . . . 69

4.1 Control system architecture. . . . . . . . . . . . . . . . . . 76
4.2 Examples of Augmented AND/OR Graphs for two different

assembly jobs (a)-(b) and Augmented AND/OR Graph of
the complete assembly process obtained by merging those
related to the single products (c). . . . . . . . . . . . . . . . 81

4.3 Example of intuitive graphical interface for the definition of
Augmented AND/OR Graphs. . . . . . . . . . . . . . . . . 83

4.4 Resources are modelled in the Petri Net as a single place.
Free generic resource (a), free agent (b), and busy/unavail-
able agent (c). . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Buffers are modelled in the Petri Net with a pair of places.
Example of free buffer for base parts (a) and WIP (b), and
partially full WIP buffer (c). . . . . . . . . . . . . . . . . . 85

4.6 Operations are modelled in the Petri Net with a sequence of
controllable transition θi, place, and uncontrollable transi-
tion θ̄i. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.7 Equivalent model of an operation with parts and resource
requirements using AAOG (a) and Petri Net (b). . . . . . . . 86

166



List of Figures

4.8 Petri Net equivalent of the Augmented AND/OR Graph in
Figure 4.2b and example of evolution. Initial state (a), state
after θ2 fires (b) and state after θ̄2 fires (c). . . . . . . . . . . 88

4.9 Management of robot faults in the Petri Net model. . . . . . 90
4.10 Management of human errors and defective products in the

Petri Net model. . . . . . . . . . . . . . . . . . . . . . . . . 92
4.11 Management of non-necessary resource failure in the Petri

Net model. . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.12 Management of necessary resource failure in the Petri Net

model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.1 Example of PN (a) and corresponding RT (b). Initially, agent
r2 is performing task o2 (d̄2 is the remaining time to comple-
tion), while r1 is idle. It is supposed that d̄2 < d1 < d2.
Labels on arcs indicate fired transitions. Costs are computed
from equation (5.2). The resulting schedule is depicted for
each leaf of the RT. . . . . . . . . . . . . . . . . . . . . . . 101

5.2 Example of simulation of default recovery actions. . . . . . 102
5.3 RT from the PN in Figure 5.1a following pruning rules (ex-

cept the learning-based one). Nodes are numbered in order
of exploration, red arcs mark unexplored branches. θ1 is en-
abled in v15 but would lead to the same state as v10. . . . . . 103

5.4 Example of progressive reduction of the acceptance region.
Green points describe nodes of the RT belonging to optimal
paths, red points are sub-optimal nodes. . . . . . . . . . . . 106

5.5 Communication paradigm: the scheduler communicates in-
structions to the human(s), through haptic interfaces and/or
a screen, and to the robot(s). Agents make the scheduling
algorithm aware of their status, communicating operation
completion and other information, like robot faults. . . . . . 108

5.6 Haptic devices: ring with a vibrating motor and three buttons
and bracelet containing the controller box and two vibrating
motors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.7 Haptic communication principle: the operator is guided to-
wards the sector of the workspace associated with the next
operation that he/she must perform. The actuated bracelet
indicates the direction from the human viewpoint (LB = left
bracelet, RB = right bracelet), the number of vibrations in-
dicates the sector. . . . . . . . . . . . . . . . . . . . . . . . 111

167



List of Figures

5.8 Performance of the heuristic pruning strategy. (a) Evolu-
tion of the average scheduling time with (black) and without
(red) heuristic pruning. Solid lines report median filtered
values. (b) Example of evolution of the constraints bound-
aries from the initial (red) to the final (blue) ones. . . . . . . 112

5.9 Heatmaps reporting the average scheduling time (a) and pro-
duction cycle time (b) varying hexp and hnew. . . . . . . . . 113

5.10 Target mix tracking: variability of the actual production in
10 simulations (shaded areas) and production orders to sat-
isfy (dashed). . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.11 Average cycle time of different scheduling algorithms. . . . 117

5.12 Emergency button and its parts. . . . . . . . . . . . . . . . 118

5.13 Experimental setup. . . . . . . . . . . . . . . . . . . . . . . 119

5.14 Augmented AND/OR Graph of the job considered in the ex-
periments. Product part names refer to Figure 5.12. Edge
labels identify operations and the associated fault recovery
actions (in brackets, if present). Colours specify the agent
that performs the task: YuMi (red), IRB (blue) or human
(green). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.15 Example of complete experimental trial. Vertical dashed
lines indicate the interval considered for cycle time evalu-
ation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.16 Cycle time obtained for the different conditions (S, V and H)
with 12 (a) and 16 (b) participants. Boxplots show median
and quartiles. . . . . . . . . . . . . . . . . . . . . . . . . . 123

5.17 Portions of plans from experiments showing how the two
schedulers, [93] (a) and proposed (b), handle a failure of
YuMi (red crosses). Arrows mark when the robot is reset.
The proposed scheduler minimises the overall idle time by
delaying the recovery action. . . . . . . . . . . . . . . . . . 124

5.18 (a) Average number of looks per operation for V and H con-
ditions and (b) cycle time variation from V to H when the H
condition was tested in the first (left) or second (right) trial. . 125

5.19 Answers of the 12 subjects that tested the H condition to the
questions on feedback modalities (Table 5.5) according to a
linear scale going from 1 (only visual) to 7 (visual+tactile). . 126

168



List of Figures

5.20 Augmented AND/OR Graph of the job considered to test er-
ror cases. Product part names refer to Figure 5.12. Arc labels
identify operations that are performed by either YuMi (red)
or human (green). Dashed arrows mark recoveries from er-
ror cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.21 Examples of management of different error cases with the
proposed approach (left column) and the baseline strategy
(right column). . . . . . . . . . . . . . . . . . . . . . . . . 130

6.1 Comparison of experimental and identified REBA scores for
different object heights obtained with hw = 178 cm (left)
and hw = 187 cm (right). . . . . . . . . . . . . . . . . . . . 138

6.2 Prototypical workspace layout of the kitting process. . . . . 139
6.3 View of the experimental set-up. . . . . . . . . . . . . . . . 144
6.4 Makespan-strain trade-off for kits composed of 6 (left) and

9 (right) random items. Red dots refer to the case of pure
manual kitting, blue dots to human-robot collaboration for
increasing values of α from 0 to 1. . . . . . . . . . . . . . . 145

6.5 Percentage reduction in makespan (red) and strain (blue) for
kits composed of 6 (left) and 9 (right) random objects with
respect to pure manual kitting. . . . . . . . . . . . . . . . . 145

6.6 Screenshots taken from a video of the experiments. . . . . . 147
6.7 Example of online rescheduling: the first schedule (a) is

adapted multiple times to cope with human variability (b)-
(d). Only plans that differ from the previous one are shown.
Vertical red lines indicate the time at which rescheduling
takes place. The object number is reported over each task,
while its horizontal position along the rack is shown inside
the bar. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

6.8 Weighted boxplots of (a) average cost, (b) productivity, and
(c) strain. Graphs show the weighted median and quartiles,
and compare manual kitting, offline, and online scheduler. . 150

A.1 Control system architecture with virtual simulation of the
assembly cell. . . . . . . . . . . . . . . . . . . . . . . . . . 156

A.2 Graphical user interface of Siemens Process Simulate. . . . 157
A.3 Example of human operations, with the non-sim operation

(named Op) that allows for dynamic choice of the next task
to perform. . . . . . . . . . . . . . . . . . . . . . . . . . . 158

169



List of Figures

A.4 Example of material flow definition. Each box refers to an
operation: the name is specified in the top part, the bottom
one lists the parts involved in the operation. Arrows define
the material flow. . . . . . . . . . . . . . . . . . . . . . . . 159

A.5 Client-server communication between Process Simulate and
the external scheduler, mediated by the user-defined function. 160

170



List of Tables

2.1 Classes of human actions (RM = reaching motion, AA =
assembly action). . . . . . . . . . . . . . . . . . . . . . . . 29

2.2 Performance indexes in the three conditions. . . . . . . . . . 32

3.1 25, 50, and 75 percentiles of the average prediction errors
computed along the entire duration of the activity (1st col-
umn) and the last 20s only (2nd column). . . . . . . . . . . . 67

4.1 List of modelled error cases. . . . . . . . . . . . . . . . . . 94

5.1 Production orders. . . . . . . . . . . . . . . . . . . . . . . 113
5.2 Comparison with other schedulers. . . . . . . . . . . . . . . 116
5.3 List of robot operations. . . . . . . . . . . . . . . . . . . . 120
5.4 List of human operations and haptic signals. . . . . . . . . . 121
5.5 Questionnaires on the two feedback modalities answered by

the 12 subjects (7 levels linear scale). . . . . . . . . . . . . 125

6.1 REBA action level list. The highest the REBA score, the
higher the ergonomic risk and the more urgent the corrective
actions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

171





Bibliography

[1] CoLLaboratE: Co-production CeLL performing Human-Robot Collaborative AssEmbly. ht
tps://collaborate-project.eu/.

[2] ColRobot: Collaborative Robotics for Assembly and Kitting in Smart Manufacturing. http
s://colrobot.eu/.

[3] SHAREWORK: Safe and effective HumAn-Robot coopEration toWards a better cOmpetive-
ness on cuRrent automation lacK manufacturing processes. https://sharework-proj
ect.eu/.

[4] THOMAS: Mobile dual arm robotic workers with embedded cognition for hybrid and dynam-
ically reconfigurable manufacturing systems. http://www.thomas-project.eu/.

[5] A. Ajoudani, A. M. Zanchettin, S. Ivaldi, A. Albu-Schäffer, K. Kosuge, and O. Khatib.
Progress and prospects of the human–robot collaboration. Autonomous Robots, 42(5):957–
975, 2018.

[6] M. Awais and D. Henrich. Human-robot collaboration by intention recognition using prob-
abilistic state machines. In 19th International Workshop on Robotics in Alpe-Adria-Danube
Region (RAAD 2010), pages 75–80, 2010.

[7] J. Baraglia, M. Cakmak, Y. Nagai, R. P. N. Rao, and M. Asada. Efficient human-robot collab-
oration: When should a robot take initiative? The International Journal of Robotics Research,
36(5-7):563–579, 2017.

[8] C. Berlin and C. Adams. Production Ergonomics. Ubiquity Press, London, Jun 2017.

[9] A. Bilberg and A. A. Malik. Digital twin driven human–robot collaborative assembly. CIRP
Annals, 68(1):499 – 502, 2019.

[10] M. E. A. Boudella, E. Sahin, and Y. Dallery. Kitting optimisation in just-in-time mixed-
model assembly lines: assigning parts to pickers in a hybrid robot–operator kitting system.
International Journal of Production Research, 56(16):5475–5494, 2018.

[11] G. Bruno and D. Antonelli. Dynamic task classification and assignment for the management
of human-robot collaborative teams in workcells. The International Journal of Advanced
Manufacturing Technology, 98(9):2415–2427, October 2018.

173

https://collaborate-project.eu/
https://collaborate-project.eu/
https://colrobot.eu/
https://colrobot.eu/
https://sharework-project.eu/
https://sharework-project.eu/
http://www.thomas-project.eu/


Bibliography

[12] G. Buizza Avanzini, N. M. Ceriani, A. M. Zanchettin, P. Rocco, and L. Bascetta. Safety
control of industrial robots based on a distributed distance sensor. IEEE Transactions on
Control Systems Technology, 22(6):2127–2140, 2014.

[13] J. L. Burke, M. S. Prewett, A. A. Gray, L. Yang, F. R. B. Stilson, M. D. Coovert, L. R.
Elliot, and E. Redden. Comparing the effects of visual-auditory and visual-tactile feedback
on user performance: A meta-analysis. In Proceedings of the 8th International Conference
on Multimodal Interfaces, page 108–117, 2006.

[14] B. Busch, M. Toussaint, and M. Lopes. Planning ergonomic sequences of actions in human-
robot interaction. In 2018 IEEE International Conference on Robotics and Automation
(ICRA), pages 1916–1923, May 2018.

[15] Z. Cao, T. Simon, S. Wei, and Y. Sheikh. Realtime multi-person 2d pose estimation using
part affinity fields. In 2017 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 1302–1310, 2017.

[16] A. C. Caputo, P. M. Pelagagge, and P. Salini. A model for planning and economic comparison
of manual and automated kitting systems. International Journal of Production Research,
0(0):1–24, 2020.

[17] A. Casalino, D. Bazzi, A. M. Zanchettin, and P. Rocco. Optimal proactive path planning for
collaborative robots in industrial contexts. In 2019 International Conference on Robotics and
Automation (ICRA), pages 6540–6546, 2019.

[18] A. Casalino, C. Messeri, M. Pozzi, A. M. Zanchettin, P. Rocco, and D. Prattichizzo. Oper-
ator awareness in human–robot collaboration through wearable vibrotactile feedback. IEEE
Robotics and Automation Letters, 3(4):4289–4296, 2018.

[19] A. Casalino, A. M. Zanchettin, L. Piroddi, and P. Rocco. Optimal scheduling of human-robot
collaborative assembly operations with time petri nets. IEEE Transaction on Automation
Science and Engineering, pages 1–15, 2019.

[20] C. Chao and A. Thomaz. Timed petri nets for fluent turn-taking over multimodal interaction
resources in human-robot collaboration. The International Journal of Robotics Research,
35(11):1330–1353, 2016.

[21] F. Chen, K. Sekiyama, F. Cannella, and T. Fukuda. Optimal subtask allocation for human
and robot collaboration within hybrid assembly system. IEEE Transactions on Automation
Science and Engineering, 11(4):1065–1075, 2014.

[22] S. Chen, N. B. Shroff, and P. Sinha. Heterogeneous delay tolerant task scheduling and energy
management in the smart grid with renewable energy. IEEE Journal on Selected Areas in
Communications, 31(7):1258–1267, 2013.

[23] Y. Chen, X. Mao, F. Hou, Q. Wang, and S. Yang. Combining re-allocating and re-scheduling
for dynamic multi-robot task allocation. In 2016 IEEE International Conference on Systems,
Man, and Cybernetics (SMC), pages 395–400, 2016.

[24] A. Cherubini, R. Passama, A. Crosnier, A. Lasnier, and P. Fraisse. Collaborative manufactur-
ing with physical human–robot interaction. Robotics and Computer-Integrated Manufactur-
ing, 40:1 – 13, 2016.

[25] C. D. Chitraranjan, A. S. Perera, and A. M. Denton. Tracking vehicle trajectories by local
dynamic time warping of mobile phone signal strengths and its potential in travel-time esti-
mation. 2015 IEEE International Conference on Pervasive Computing and Communication
Workshops (PerCom Workshops), pages 445–450, March 2015.

[26] M. Christmansson, L. Medbo, G.-Å. Hansson, K. Ohlsson, J. Unge Byström, T. Möller, and
M. Forsman. A case study of a principally new way of materials kitting—an evaluation of
time consumption and physical workload. International Journal of Industrial Ergonomics,
30(1):49 – 65, 2002.

174



Bibliography

[27] G. Civitarese and C. Bettini. Monitoring objects manipulations to detect abnormal behav-
iors. In 2017 IEEE International Conference on Pervasive Computing and Communications
Workshops (PerCom Workshops), pages 388–393, March 2017.

[28] E. Coupeté, F. Moutarde, S. Manitsaris, and O. Hugues. Recognition of Technical Gestures
for Human-Robot Collaboration in Factories. In The Ninth International Conference on Ad-
vances in Computer-Human Interactions, Venise, Italy, April 2016.

[29] J. Dai, A. Benini, H. Lin, P. J. Antsaklis, M. J. Rutherford, and K. P. Valavanis. Learning-
based formal synthesis of cooperative multi-agent systems with an application to robotic coor-
dination. In 2016 24th Mediterranean Conference on Control and Automation (MED), pages
1008–1013, 2016.

[30] L. S. H. de Mello and A. C. Sanderson. And/or graph representation of assembly plans. IEEE
Transactions on Robotics and Automation, 6(2):188–199, 1990.

[31] J. A. Diego-Mas and J. Alcaide-Marzal. Using kinect™ sensor in observational methods for
assessing postures at work. Applied Ergonomics, 45(4):976 – 985, 2014.

[32] J. L. Drury, J. Scholtz, and H. A. Yanco. Awareness in human-robot interactions. In 2003.
IEEE International Conference on Systems, Man and Cybernetics, volume 1, pages 912–918.
IEEE, 2003.

[33] M. Elshafie and G. M. Bone. Markerless human tracking for industrial environments. In
2008 Canadian Conference on Electrical and Computer Engineering, pages 001139–001144,
2008.

[34] European Foundation for the Improvement of Living and Working Conditions. Sixth european
working conditions survey: 2015. Available online at: https://www.eurofound.eu
ropa.eu/surveys/european-working-conditions-surveys/sixth-eu
ropean-working-conditions-survey-2015.

[35] M. Faber, S. Kuz, A. Mertens, and C. M. Schlick. Model-based evaluation of cooperative
assembly processes in human-robot collaboration. In Christopher Schlick and Stefan Trz-
cieliński, editors, Advances in Ergonomics of Manufacturing: Managing the Enterprise of
the Future, pages 101–112, Cham, 2016. Springer International Publishing.

[36] P. Fager, M. Calzavara, and F. Sgarbossa. Kit preparation with cobot-supported sorting in
mixed model assembly. IFAC-PapersOnLine, 52(13):1878 – 1883, 2019. 9th IFAC Confer-
ence on Manufacturing Modelling, Management and Control MIM 2019.

[37] P. Fager, R. Hanson, L. Medbo, and M. I. Johansson. Links between kit quality and kit
preparation design. International Journal of Production Research, 0(0):1–15, 2020.

[38] F. Ferraguti, R. Villa, C. Talignani Landi, A. M. Zanchettin, P. Rocco, and C. Secchi.
A unified architecture for physical and ergonomic human–robot collaboration. Robotica,
38(4):669–683, 2020.

[39] C. Ferreira, G. Figueira, and P. Amorim. Optimizing dispatching rules for stochastic job shop
scheduling. In International Conference on Hybrid Intelligent Systems, pages 321–330, 2018.

[40] C. Finnsgård and C. Wänström. Factors impacting manual picking on assembly lines:
an experiment in the automotive industry. International Journal of Production Research,
51(6):1789–1798, 2013.

[41] F. Flacco, T. Kröger, A. De Luca, and O. Khatib. A depth space approach to human-robot
collision avoidance. In 2012 IEEE International Conference on Robotics and Automation,
pages 338–345, 2012.

[42] International Organization for Standardization. ISO 10218:2011 Robots and robotic devices
— Safety requirements for industrial robots. July 2011.

175

https://www.eurofound.europa.eu/surveys/european-working-conditions-surveys/sixth-european-working-conditions-survey-2015
https://www.eurofound.europa.eu/surveys/european-working-conditions-surveys/sixth-european-working-conditions-survey-2015
https://www.eurofound.europa.eu/surveys/european-working-conditions-surveys/sixth-european-working-conditions-survey-2015


Bibliography

[43] International Organization for Standardization. ISO/TS 15066:2016 Robots and robotic de-
vices — Collaborative robots. February 2016.

[44] L. Franco, G. Salvietti, and D. Prattichizzo. Command acknowledge through tactile feedback
improves the usability of an emg-based interface for the frontalis muscle. In IEEE 2019 World
Haptics Conference, 2019.

[45] M. Geravand, F. Flacco, and A. De Luca. Human-robot physical interaction and collabora-
tion using an industrial robot with a closed control architecture. In 2013 IEEE International
Conference on Robotics and Automation, pages 4000–4007, 2013.

[46] A. Gilchrist. Introducing industry 4.0. In Industry 4.0, pages 195–215. Springer, 2016.

[47] A. Gilchrist. Smart factories. In Industry 4.0, pages 217–230. Springer, 2016.

[48] A. Giridhar and P. R. Kumar. Scheduling automated traffic on a network of roads. IEEE
Transactions on Vehicular Technology, 55(5):1467–1474, 2006.

[49] M. C. Gombolay, R. J. Wilcox, and J. A. Shah. Fast scheduling of robot teams performing
tasks with temporospatial constraints. IEEE Transactions on Robotics, 34(1):220–239, 2018.

[50] L. Gualtieri, E. Rauch, R. Vidoni, and D. T. Matt. An evaluation methodology for the con-
version of manual assembly systems into human-robot collaborative workcells. Procedia
Manufacturing, 38:358 – 366, 2019. 29th International Conference on Flexible Automation
and Intelligent Manufacturing ( FAIM 2019), June 24-28, 2019, Limerick, Ireland, Beyond
Industry 4.0: Industrial Advances, Engineering Education and Intelligent Manufacturing.

[51] S. Haddadin, A. Albu-Schaffer, A. De Luca, and G. Hirzinger. Collision detection and re-
action: A contribution to safe physical human-robot interaction. In 2008 IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, pages 3356–3363, 2008.

[52] S. Haddadin, S. Haddadin, A. Khoury, T. Rokahr, S. Parusel, R. Burgkart, A. Bicchi, and
A. Albu-Schäffer. On making robots understand safety: Embedding injury knowledge into
control. The International Journal of Robotics Research, 31(13):1578–1602, 2012.

[53] S. Haddadin, M. Suppa, S. Fuchs, T. Bodenmüller, A. Albu-Schäffer, and G. Hirzinger. To-
wards the robotic co-worker. Robotics Research, 70:261–282, 2011.

[54] H. Haggag, M. Hossny, S. Nahavandi, and D. Creighton. Real time ergonomic assessment
for assembly operations using kinect. In 2013 UKSim 15th International Conference on
Computer Modelling and Simulation, pages 495–500, April 2013.

[55] A. Hamacher, N. Bianchi-Berthouze, A. G. Pipe, and K. Eder. Believing in bert: Using ex-
pressive communication to enhance trust and counteract operational error in physical human-
robot interaction. In 2016 25th IEEE International Symposium on Robot and Human Inter-
active Communication (RO-MAN), pages 493–500, 2016.

[56] S. Hameed, T. Ferris, S. Jayaraman, and N. Sarter. Supporting interruption management
through informative tactile and peripheral visual cues. Proceedings of the Human Factors
and Ergonomics Society Annual Meeting, 50(3):376–380, 2006.

[57] B. Hartmann. Human worker activity recognition in industrial environments. KIT Scientific
Publishing, 2011.

[58] K. P. Hawkins, Nam Vo, S. Bansal, and A. F. Bobick. Probabilistic human action prediction
and wait-sensitive planning for responsive human-robot collaboration. In 2013 13th IEEE-
RAS International Conference on Humanoid Robots (Humanoids), pages 499–506, 2013.

[59] Z. He, Z. Li, and A. Giua. Cycle time optimization of deterministic timed weighted marked
graphs by transformation. IEEE Transactions on Control Systems Technology, 25(4):1318–
1330, 2017.

176



Bibliography

[60] W. Herfs, S. Storms, and O. Petrovic. An approach on simplifying the commissioning of col-
laborative assembly workstations based on product-lifecycle-management and intuitive robot
programming. In International Conference on Intelligent Human Systems Integration (IHSI
2019), pages 43 – 49, 2019.

[61] S. Hignett and L. McAtamney. Rapid entire body assessment (reba). Applied Ergonomics,
31(2):201 – 205, 2000.

[62] E. Hourdakis and P. Trahanias. A robust method to predict temporal aspects of actions by
observation. In 2018 IEEE International Conference on Robotics and Automation (ICRA),
pages 1931–1938, May 2018.

[63] S. Y. Hua and D. J. Johnson. Research issues on factors influencing the choice of kitting
versus line stocking. International Journal of Production Research, 48(3):779–800, 2010.

[64] C. Huang and B. Mutlu. Anticipatory robot control for efficient human-robot collaboration.
In 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), pages
83–90, 2016.

[65] American National Standards Institute. ANSI/RIA R15.06-2012 - Industrial Robots and Robot
Systems - Safety Requirements. 2012.

[66] International Federation of Robotics. World Robotics Report 2019 - Industrial Robots. 2019.
https://ifr.org/worldrobotics/.

[67] S. Jlassi, S. Tliba, and Y. Chitour. An online trajectory generator-based impedance control
for co-manipulation tasks. In 2014 IEEE Haptics Symposium (HAPTICS), pages 391–396,
2014.

[68] L. Johannsmeier and S. Haddadin. A hierarchical human-robot inter-action-planning frame-
work for task allocation in collaborative industrial assembly processes. IEEE Robtics and
Automation Letters, 2(1):41–48, 2017.

[69] L. A. Jones and N. Sarter. Tactile displays: Guidance for their design and application. Human
Factors, 50(1):90–111, 2008.

[70] S. Kaczmarek, S. Hogreve, and K. Tracht. Progress monitoring and gesture control in manual
assembly systems using 3d-image sensors. Procedia CIRP, 37:1 – 6, 2015. CIRPe 2015 -
Understanding the life cycle implications of manufacturing.

[71] R. Kelley, A. Tavakkoli, C. King, M. Nicolescu, M. Nicolescu, and G. Bebis. Understanding
human intentions via hidden markov models in autonomous mobile robots. In Proceedings of
the 3rd ACM/IEEE Int. Conference on Human Robot Interaction, pages 367–374, 2008.

[72] O. Khatib. Real-time obstacle avoidance for manipulators and mobile robots. In Proceedings.
1985 IEEE International Conference on Robotics and Automation, volume 2, pages 500–505,
1985.

[73] H. Kim, J. Lee, and T. Lee. A petri net-based modeling and scheduling with a branch and
bound algorithm. In 2012 IEEE International Conference on Systems, Man, and Cybernetics,
pages 1779–1784, 2012.

[74] H. S. Koppula and A. Saxena. Anticipating human activities using object affordances for
reactive robotic response. IEEE Transactions on Pattern Analysis and Machine Intelligence,
38(1):14–29, 2016.

[75] Y. A. Korablev and M. Y. Shestopalov. Faults diagnostics on the basis of dtw-classification.
In 2016 XIX IEEE International Conference on Soft Computing and Measurements (SCM),
pages 94–97, May 2016.

[76] J. Krüger, T.K. Lien, and A. Verl. Cooperation of human and machines in assembly lines.
CIRP Annals, 58(2):628 – 646, 2009.

177

https://ifr.org/worldrobotics/


Bibliography

[77] W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn. Digital twin in manufacturing:
A categorical literature review and classification. IFAC-PapersOnLine, 51(11):1016 – 1022,
2018. 16th IFAC Symposium on Information Control Problems in Manufacturing INCOM
2018.

[78] V. Krueger, F. Rovida, B. Grossmann, R. Petrick, M. Crosby, A. Charzoule, G. M. Garcia,
S. Behnke, C. Toscano, and G. Veiga. Testing the vertical and cyber-physical integration of
cognitive robots in manufacturing. Robotics and Computer-Integrated Manufacturing, 57:213
– 229, 2019.

[79] A. Kshirsagar, H. Kress-Gazit, and G. Hoffman. Specifying and synthesizing human-robot
handovers. In 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), pages 5930–5936, 2019.

[80] D. Kulić and E. Croft. Pre-collision safety strategies for human-robot interaction. Au-
tonomous Robots, 22:149–164, October 2007.

[81] W. Y. Kwon and I. H. Suh. A temporal bayesian network with application to design of a proac-
tive robotic assistant. In 2012 IEEE International Conference on Robotics and Automation,
pages 3685–3690, 2012.

[82] B. Lacevic, P. Rocco, and A. M. Zanchettin. Safety assessment and control of robotic manip-
ulators using danger field. IEEE Transactions on Robotics, 29(5):1257–1270, 2013.

[83] P. A. Lasota and J. A. Shah. Analyzing the effects of human-aware motion planning on
close-proximity human–robot collaboration. Human Factors, 57(1):21–33, 2015. PMID:
25790568.

[84] P. A. Lasota and J. A. Shah. Bayesian estimator for partial trajectory alignment. In 2019,
Robotics: Science and System (RSS), June 2019.

[85] J. Lee, B. Bagheri, and H. Kao. A cyber-physical systems architecture for industry 4.0-based
manufacturing systems. Manufacturing Letters, 3:18 – 23, 2015.

[86] D. Lefebvre and F. Basile. Design of control sequences for timed petri nets based on tree
encoding. IFAC-PapersOnLine, 51(7):218 – 223, 2018. 14th IFAC Workshop on Discrete
Event Systems.

[87] C. Lenz, A. Sotzek, T. Röder, H. Radrich, A. Knoll, M. Huber, and S. Glasauer. Human
workflow analysis using 3d occupancy grid hand tracking in a human-robot collaboration
scenario. In 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pages 3375–3380, 2011.

[88] H. Li, L. Kulik, and K. Ramamohanarao. Spatio-temporal trajectory simplification for infer-
ring travel paths. In Proceedings of the 22nd ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, page 63–72, 2014.

[89] K. Li and Y. Fu. Prediction of human activity by discovering temporal sequence patterns.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 36(8):1644–1657, Aug
2014.

[90] T. Lisini Baldi, G. Paolocci, and D. Prattichizzo. Human guidance: Suggesting walking pace
under manual and cognitive load. In Eurohaptics, Pisa, Italy, June 2018.

[91] X. Liu and J. Zhang. Active learning for human action recognition with gaussian processes.
In 2011 18th IEEE International Conference on Image Processing, pages 3253–3256, 2011.

[92] F. Lolli, R. Gamberini, C. Giberti, B. Rimini, and F. Bondi. A simulative approach for eval-
uating alternative feeding scenarios in a kanban system. International Journal of Production
Research, 54(14):4228–4239, 2016.

178



Bibliography

[93] P. Lou, Q. Liu, Z. Zhou, H. Wang, and S. X. Sun. Multi-agent-based proactive–reactive
scheduling for a job shop. Int. Journal of Advanced Manufacturing Technology, 59(1):311–
324, 2012.

[94] A. Lund. Measuring usability with the use questionnaire. Usability interface, 8, 2001.

[95] R. Luo, R. Hayne, and D. Berenson. Unsupervised early prediction of human reaching for
human–robot collaboration in shared workspaces. Autonomous Robots, 42:631–648, 2018.

[96] G. Maeda, M. Ewerton, G. Neumann, R. Lioutikov, and J. Peters. Phase estimation for fast
action recognition and trajectory generation in human–robot collaboration. The International
Journal of Robotics Research, 36(13-14):1579–1594, 2017.

[97] S. Makris, P. Karagiannis, S. Koukas, and A. S. Matthaiakis. Augmented reality system
for operator support in human–robot collaborative assembly. CIRP Annals-Manufacturing
Technology, 65(1):61–64, 2016.

[98] A. Malaisé, P. Maurice, F. Colas, F. Charpillet, and S. Ivaldi. Activity Recognition With
Multiple Wearable Sensors for Industrial Applications. In ACHI 2018 - Eleventh International
Conference on Advances in Computer-Human Interactions, Rome, Italy, March 2018.

[99] A. A. Malik and A. Bilberg. Digital twins of human robot collaboration in a production
setting. Procedia Manufacturing, 17:278 – 285, 2018. 28th International Conference on
Flexible Automation and Intelligent Manufacturing (FAIM2018), June 11-14, 2018, Colum-
bus, OH, USAGlobal Integration of Intelligent Manufacturing and Smart Industry for Good
of Humanity.

[100] V. M. Manghisi, A. E. Uva, M. Fiorentino, V. Bevilacqua, G. F. Trotta, and G. Monno. Real
time rula assessment using kinect v2 sensor. Applied Ergonomics, 65:481 – 491, 2017.

[101] N. Mansfeld, M. Hamad, M. Becker, A. G. Marin, and S. Haddadin. Safety map: A uni-
fied representation for biomechanics impact data and robot instantaneous dynamic properties.
IEEE Robotics and Automation Letters, 3(3):1880–1887, July 2018.

[102] G. Marin, F. Dominio, and P. Zanuttigh. Hand gesture recognition with jointly calibrated leap
motion and depth sensor. Multimedia Tools and Applications, 75(22):14991–15015, Nov
2016.

[103] F. Mas, R. Arista, M. Oliva, B. Hiebert, I. Gilkerson, and J. Rios. A review of plm impact
on us and eu aerospace industry. Procedia Engineering, 132:1053 – 1060, 2015. MESIC
Manufacturing Engineering Society International Conference 2015.

[104] L. McAtamney and E. N. Corlett. Rula: a survey method for the investigation of work-related
upper limb disorders. Applied Ergonomics, 24(2):91 – 99, 1993.

[105] L. Meli, C. Pacchierotti, and D. Prattichizzo. Sensory subtraction in robot-assisted surgery:
fingertip skin deformation feedback to ensure safety and improve transparency in bimanual
haptic interaction. IEEE Transactions on Biomedical Engineering, 61(4):1318–1327, 2014.

[106] C. Messeri, A. M. Zanchettin, P. Rocco, E. Gianotti, A. Chirico, S. Magoni, and A. Gaggi-
oli. On the effects of leader-follower roles in dyadic human-robot synchronisation. IEEE
Transactions on Cognitive and Developmental Systems, pages 1–1, 2020.

[107] A. Mohammed, B. Schmidt, and L. Wang. Active collision avoidance for human–robot col-
laboration driven by vision sensors. International Journal of Computer Integrated Manufac-
turing, 30(9):970–980, 2017.

[108] R. Mosberger, H. Andreasson, and A. J. Lilienthal. Multi-human tracking using high-
visibility clothing for industrial safety. In 2013 IEEE/RSJ International Conference on In-
telligent Robots and Systems, pages 638–644, 2013.

179



Bibliography

[109] M. Munaro, C. Lewis, D. Chambers, P. Hvass, and E. Menegatti. RGB-D human detection and
tracking for industrial environments. Intelligent Autonomous Systems, 302(13):1655–1668,
2016.

[110] N. Najmaei, M. R. Kermani, and M. A. Al-Lawati. A new sensory system for modeling and
tracking humans within industrial work cells. IEEE Transactions on Instrumentation and
Measurement, 60(4):1227–1236, 2011.

[111] E. Negri, L. Fumagalli, and M. Macchi. A review of the roles of digital twin in cps-based
production systems. Procedia Manufacturing, 11:939 – 948, 2017. 27th International Con-
ference on Flexible Automation and Intelligent Manufacturing, FAIM2017, 27-30 June 2017,
Modena, Italy.

[112] N. Nikolakis, N. Kousi, G. Michalos, and S. Makris. Dynamic scheduling of shared human-
robot manufacturing operations. Procedia CIRP, 72:9 – 14, 2018. 51st CIRP Conference on
Manufacturing Systems.

[113] E. Nunes, M. McIntire, and M. Gini. Decentralized allocation of tasks with temporal and
precedence constraints to a team of robots. In 2016 IEEE International Conference on Sim-
ulation, Modeling, and Programming for Autonomous Robots (SIMPAR), pages 197–202,
2016.

[114] I. Oikonomidis, N. Kyriazis, and A. A. Argyros. Tracking the articulated motion of two
strongly interacting hands. In 2012 IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 1862–1869, June 2012.

[115] B. Parsa, A. Narayanan, and B. Dariush. Spatio-temporal pyramid graph convolutions for
human action recognition and postural assessment. In 2020 IEEE Winter Conference on
Applications of Computer Vision (WACV), pages 1069–1079, March 2020.

[116] D. Pavlichenko, G. García Martín, S. Koo, and S. Behnke. Kittingbot: A mobile manipulation
robot for collaborative kitting in automotive logistics. In Intelligent Autonomous Systems 15,
pages 849–864. Springer International Publishing, 2019.

[117] M. Pearce, B. Mutlu, J. Shah, and R. Radwin. Optimizing makespan and ergonomics in inte-
grating collaborative robots into manufacturing processes. IEEE Transactions on Automation
Science and Engineering, 15(4):1772–1784, Oct 2018.

[118] S. Pellegrinelli, F. L. Moro, N. Pedrocchi, L. Molinari Tosatti, and T. Tolio. A probabilistic
approach to workspace sharing for human–robot cooperation in assembly tasks. CIRP Annals,
65(1):57 – 60, 2016.

[119] L. Peternel, W. Kim, J. Babič, and A. Ajoudani. Towards ergonomic control of human-
robot co-manipulation and handover. In 2017 IEEE-RAS 17th International Conference on
Humanoid Robotics (Humanoids), pages 55–60, 2017.

[120] E. K. Phillips and F. G. Jentsch. Supporting situation awareness through robot-to-human in-
formation exchanges under conditions of visuospatial perspective taking. Journal of Human-
Robot Interaction, 6(3):92–117, 2017.

[121] Pick To Light Systems, S. L. Kit to light. Website: https://www.picktolightsys
tems.com/en/picking-products/kitting.

[122] P. Plantard, H. P. H. Shum, A. Le Pierres, and F. Multon. Validation of an ergonomic assess-
ment method using kinect data in real workplace conditions. Applied Ergonomics, 65:562 –
569, 2017.

[123] C. Pérez-D’Arpino and J. A. Shah. Fast target prediction of human reaching motion for
cooperative human-robot manipulation tasks using time series classification. In 2015 IEEE
International Conference on Robotics and Automation (ICRA), pages 6175–6182, May 2015.

180

https://www.picktolightsystems.com/en/picking-products/kitting
https://www.picktolightsystems.com/en/picking-products/kitting


Bibliography

[124] C. Qian, X. Sun, Y. Wei, X. Tang, and J. Sun. Realtime and robust hand tracking from depth.
In 2014 IEEE Conference on Computer Vision and Pattern Recognition, pages 1106–1113,
June 2014.

[125] M. Ragaglia, L. Bascetta, and P. Rocco. Multiple camera human detection and tracking inside
a robotic cell - an approach based on image warping, computer vision, k-d trees and particle
filtering. In Proceedings of the 11th International Conference on Informatics in Control,
Automation and Robotics - Volume 1: ICINCO,, pages 374–381. INSTICC, SciTePress, 2014.

[126] M. Ragaglia, L. Bascetta, P. Rocco, and A. M. Zanchettin. Integration of perception, control
and injury knowledge for safe human-robot interaction. In 2014 IEEE International Confer-
ence on Robotics and Automation (ICRA), pages 1196–1202, 2014.

[127] M. Ragaglia, A. M. Zanchettin, and P. Rocco. Safety-aware trajectory scaling for human-
robot collaboration with prediction of human occupancy. In 2015 International Conference
on Advanced Robotics (ICAR), pages 85–90, 2015.

[128] S. M. M. Rahman, B. Sadrfaridpour, and Y. Wang. Trust-based optimal subtask allocation
and model predictive control for human-robot collaborative assembly in manufacturing. In
Dynamic Systems and Control Conference, volume 57250, page V002T32A004. American
Society of Mechanical Engineers, 2015.

[129] T. Rakthanmanon, B. Campana, A. Mueen, G. Batista, B. Westover, Q. Zhu, J. Zakaria, and
E. Keogh. Searching and mining trillions of time series subsequences under dynamic time
warping. In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’12, pages 262–270, New York, NY, USA, 2012. ACM.

[130] F. Ranz, V. Hummel, and W. Sihn. Capability-based task allocation in human-robot collabo-
ration. Procedia Manufacturing, 9:182 – 189, 2017. 7th Conference on Learning Factories,
CLF 2017.

[131] U. Raschke and C. Cort. Siemens jack. In Sofia Scataglini and Gunther Paul, editors, DHM
and Posturography, pages 35 – 48. Academic Press, 2019.

[132] H. C. Ravichandar and A. P. Dani. Human intention inference using expectation-
maximization algorithm with online model learning. IEEE Transactions on Automation Sci-
ence and Engineering, 14(2):855–868, 2017.

[133] P. Rückert, K. Tracht, W. Herfs, S. Roggendorf, V. Schubert, and M. Schneider. Consolidation
of product lifecycle information within human-robot collaboration for assembly of multi-
variant products. Procedia Manufacturing, 49:217 – 221, 2020. Proceedings of the 8th
International Conference on Through-Life Engineering Services – TESConf 2019.

[134] D. Riedelbauch and D. Henrich. Exploiting a human-aware world model for dynamic task
allocation in flexible human-robot teams. In 2019 International Conference on Robotics and
Automation (ICRA), pages 6511–6517, 2019.

[135] S. Robla-Gómez, V. M. Becerra, J. R. Llata, E. González-Sarabia, C. Torre-Ferrero, and
J. Pérez-Oria. Working together: A review on safe human-robot collaboration in industrial
environments. IEEE Access, 5:26754–26773, 2017.

[136] G. Rogez, C. Orrite, J.J. Guerrero, and P. H. S. Torr. Exploiting projective geometry for view-
invariant monocular human motion analysis in man-made environments. Computer Vision
and Image Understanding, 120:126 – 140, 2014.

[137] A. Roncone, O. Mangin, and B. Scassellati. Transparent role assignment and task alloca-
tion in human robot collaboration. In 2017 IEEE International Conference on Robotics and
Automation (ICRA), pages 1014–1021, May 2017.

181



Bibliography

[138] R. Rosen, G. von Wichert, G. Lo, and K. D. Bettenhausen. About the importance of autonomy
and digital twins for the future of manufacturing. IFAC-PapersOnLine, 48(3):567 – 572, 2015.
15th IFAC Symposium onInformation Control Problems inManufacturing.

[139] L. Rozo, S. Calinon, D. G. Caldwell, P. Jiménez, and C. Torras. Learning physical collabora-
tive robot behaviors from human demonstrations. IEEE Transactions on Robotics, 32(3):513–
527, 2016.

[140] D. Dutta M. Garetti S. Terzi, A. Bouras and D. Kiritsis. Product lifecycle management
– from its history to its new role. International Journal Product Lifecycle Management,
4(4):360–389, 2010.

[141] H. Sadeghian, L. Villani, M. Keshmiri, and B. Siciliano. Task-space control of robot manip-
ulators with null-space compliance. IEEE Transactions on Robotics, 30(2):493–506, 2014.

[142] B. Sadrfaridpour and Y. Wang. Collaborative assembly in hybrid manufacturing cells: An
integrated framework for human-robot interaction. IEEE Transactions on Automation Science
and Engineering, 2017.

[143] W. Sakata, F. Kobayashi, and H. Nakamoto. Robot-human handover based on motion pre-
diction of human. In 2017 6th International Conference on Informatics, Electronics and
Vision 2017 7th International Symposium in Computational Medical and Health Technology
(ICIEV-ISCMHT), pages 1–4, 2017.

[144] K. Sakita, K. Ogawara, S. Murakami, K. Kawamura, and K. Ikeuchi. Flexible cooperation
between human and robot by interpreting human intention from gaze information. In 2004
IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 1, pages 846–
851, 2004.

[145] A. Salmi, P. David, J.D. Summers, and E. Blanco. A modelling language for assembly se-
quences representation, scheduling and analyses. International Journal of Production Re-
search, 52(13):3986–4006, 2014.

[146] S. Scheggi, M. Aggravi, and D. Prattichizzo. Cooperative navigation for mixed human-robot
teams using haptic feedback. IEEE Transactions on Human-Machine Systems, 47(4):462–
473, 2017.

[147] C.J. Sellers and S.Y. Nof. Performance analysis of robotic kitting systems. Robotics and
Computer-Integrated Manufacturing, 6(1):15 – 24, 1989.

[148] A. Shafti, A. Ataka, B. U. Lazpita, A. Shiva, H. A. Wurdemann, and K. Althoefer. Real-time
robot-assisted ergonomics*. In 2019 International Conference on Robotics and Automation
(ICRA), pages 1975–1981, 2019.

[149] J. Shi and G. S. Koonjul. Real-time grasping planning for robotic bin-picking and kitting
applications. IEEE Transactions on Automation Science and Engineering, 14(2):809–819,
April 2017.

[150] Z. Shi, L. Wang, P. Liu, and L. Shi. Minimizing completion time for order scheduling: Formu-
lation and heuristic algorithm. IEEE Transactions on Automation Science and Engineering,
14(4):1558–1569, 2017.

[151] Siemens Digital Industries Software. Process simulate documentation. Available online at:
https://docs.plm.automation.siemens.com/tdoc/tecnomatix/15.0
.2/PS_TC.

[152] A. Sklar and N. Sarter. Good vibrations: Tactile feedback in support of attention allocation
and human-automation coordination in event-driven domains. Human Factors, 41(4):543–
552, 1999.

182

https://docs.plm.automation.siemens.com/tdoc/tecnomatix/15.0.2/PS_TC
https://docs.plm.automation.siemens.com/tdoc/tecnomatix/15.0.2/PS_TC


Bibliography

[153] L. Sui, L. Miao, and Z. Li. Human body action recognition based on bone information by
kinect. In 2017 International Conference on Computer Technology, Electronics and Commu-
nication (ICCTEC), pages 1076–1081, 2017.

[154] A. Sundin and L. Medbo. Computer visualization and participatory ergonomics as methods in
workplace design. Human Factors and Ergonomics in Manufacturing & Service Industries,
13(1):1–17, 2003.

[155] K. Tamaki and S. Y. Nof. Design method of robot kitting system for flexible assemble.
Robotics and Autonomous Systems, 8:255–273, 12 1991.

[156] J. Teiwes, T. Bänziger, A. Kunz, and K. Wegener. Identifying the potential of human-robot
collaboration in automotive assembly lines using a standardised work description. In 2016
22nd International Conference on Automation and Computing (ICAC), pages 78–83, Sep.
2016.

[157] P. Tormene, T. Giorgino, S. Quaglini, and M. Stefanelli. Matching incomplete time series
with dynamic time warping: an algorithm and an application to post-stroke rehabilitation.
Artificial Intelligence in Medicine, 45(1):11 – 34, 2009.

[158] P. Tsarouchi, S. Makris, and G. Chryssolouris. On a human and dual-arm robot task plan-
ning method. Procedia CIRP, 57:551 – 555, 2016. Factories of the Future in the digital
environment - Proceedings of the 49th CIRP Conference on Manufacturing Systems.

[159] V. Villani, F. Pini, F. Leali, and C. Secchi. Survey on human–robot collaboration in industrial
settings: Safety, intuitive interfaces and applications. Mechatronics, 2018.

[160] N. N. Vo and A. F. Bobick. From stochastic grammar to bayes network: Probabilistic parsing
of complex activity. In IEEE Conference on Computer Vision and Pattern Recognition, pages
2641–2648, 2014.

[161] F. von Drigalski, C. Nakashima, Y. Shibata, Y. Konishi, J. C. Triyonoputro, K. Nie, D. Petit,
T. Ueshiba, R. Takase, Y. Domae, T. Yoshioka, Y. Ijiri, I. G. Ramirez-Alpizar, W. Wan, and
K. Harada. Team o2as at the world robot summit 2018: an approach to robotic kitting and
assembly tasks using general purpose grippers and tools. Advanced Robotics, 34(7-8):514–
530, 2020.

[162] L. Wang, Y. Huang, X. Chen, and C. Zhang. Task scheduling of parallel processing in cpu-
gpu collaborative environment. In 2008 International Conference on Computer Science and
Information Technology, pages 228–232, 2008.

[163] X. Wang, R. Wang, and F. Zhou. Fingertips detection and hand tracking based on curve
fitting. In 2014 7th International Congress on Image and Signal Processing, pages 99–103,
Oct 2014.

[164] Z. Wang, J. Kinugawa, H. Wang, and K. Kazahiro. A human motion estimation method based
on gp-ukf. In 2014 IEEE International Conference on Information and Automation (ICIA),
pages 1228–1232, 2014.

[165] R. Wilcox, S. Nikolaidis, and J. Shah. Optimization of temporal dynamics for adaptive
human-robot interaction in assembly manufacturing. Robotics, 8:441, 2013.

[166] W. K. H. Wu, A. C. S. Chung, and H. H. N. Lam. Multi-resolution lc-ms images alignment
using dynamic time warping and kullback-leibler distance. In 2012 19th IEEE International
Conference on Image Processing, pages 1681–1684, Sept 2012.

[167] A. M. Zanchettin, A. Casalino, L. Piroddi, and P. Rocco. Prediction of human activity patterns
for human-robot collaborative assembly tasks. IEEE Transactions on Industrial Informatics,
pages 1–1, 2018.

183



Bibliography

[168] A. M. Zanchettin, N. M. Ceriani, P. Rocco, H. Ding, and B. Matthias. Safety in human-
robot collaborative manufacturing environments: Metrics and control. IEEE Transactions on
Automation Science and Engineering, 13(2):882–893, April 2016.

[169] A. M. Zanchettin, E. Lotano, and P. Rocco. Collaborative robot assistant for the ergonomic
manipulation of cumbersome objects. In 2019 IEEE/RSJ International Conference on Intel-
ligent Robots and Systems (IROS), pages 6729–6734, 2019.

[170] A. M. Zanchettin and P. Rocco. Probabilistic inference of human arm reaching target for ef-
fective human-robot collaboration. In 2017 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). IEEE, 2017.

[171] A. Zanella, A. Cisi, M. Costantino, M. Di Pardo, G. Pasquettaz, and G. Vivo. Criteria def-
inition for the identification of hrc use cases in automotive manufacturing. Procedia Man-
ufacturing, 11:372 – 379, 2017. 27th International Conference on Flexible Automation and
Intelligent Manufacturing, FAIM2017, 27-30 June 2017, Modena, Italy.

[172] M. Zinn, O. Khatib, B. Roth, and J. K. Salisbury. Playing it safe [human-friendly robots].
IEEE Robotics Automation Magazine, 11(2):12–21, June 2004.

184


	Introduction
	Background works
	Thesis contributions

	I Real-time monitoring of human activity
	Modelling and parsing of human activity
	Solution concept
	Tracking of human motion

	Learn the model of human task
	Automatic segmentation of human activity
	Generation of the task model

	Dynamic Time Warping-based classifier of human actions
	Dynamic Time Warping algorithm
	Classification of human actions

	Real-time parsing of human activity
	Exploitation

	Experiments
	Training phase
	Experimental results


	Progress–based human monitoring
	Progress–based estimation of task duration
	Dynamic Time Warping-based algorithm
	Occlusions handling
	Management of low-information template sections
	Warping paths merging
	Activity duration estimate
	Selection of the reference
	Experiments

	Robust monitoring with task variants and errors
	Reference template structure
	Early recognition of task variants
	Estimate of task advancement and expected duration
	Experiments



	II Dynamic scheduling of flexible collaborative cells
	Control system architecture
	Proposed control system architecture
	Digital twin for flexible collaborative cells
	High-level job definition
	Digital twin model

	Management of robot faults and human errors
	Robot faults
	Human errors
	Other failure cases


	Dynamic scheduling algorithm
	Receding horizon scheduling
	Digital Twin for simulation purpose
	Evaluation of feasible future evolutions
	Pruning strategies
	Dispatching and replanning

	Haptic interfaces
	Human input to the scheduler
	Instructions from the scheduler to the human

	Simulations
	Heuristic pruning performance
	Sensitivity analysis
	Target mix tracking
	Comparison with other schedulers

	Experiments
	Experimental setup and protocol
	Results and discussion
	Error management


	Dynamic scheduling of collaborative kitting operations
	Ergonomic measurement
	Dynamic scheduling algorithm
	MILP definition
	Receding horizon scheduling

	Experiments
	Makespan versus strain trade-off
	Experimental results



	Conclusions
	Future developments

	Virtual simulation of a flexible assembly cell
	Simulation of the assembly process
	Simulation of the system variability
	Communication with the external scheduler
	Validation tests


	Bibliography

