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Abstract

Similarity retrieval is one of the significant problems in Computer Science with a wide
range of applications in industry. It aims to find similar instances to a query object from
a large database. With the advances in deep learning, the capability and performance of
retrieval systems have improved by a large margin. In this thesis, we aim to address the
problem of one-dimensional signal retrieval over OTDR events by adopting deep learn-
ing methods. The OTDR events represent failures along optical fiber links and in our
case, there are nine different types of events that were acquired by Cisco Photonics in
Italy. We attempt to adopt deep learning vision techniques and architectures in a way to
be suitable for one-dimensional signals. Our contribution is to design a retrieval system
where we can query similar events from a large collection of signals. We propose three
deep learning architectures based on Convolutional Autoencoder, Convolutional Neural
Network for classification and Triplet Semi-hard Network for different training scenarios
namely supervised and unsupervised. There are two principal challenges that we need to
take into consideration for designing our methods: (i) our solutions have to generalize on
unknown categories of events, that are not presented in the training set (ii) and methods
are required to handle varying size signals in inference time. Our solutions demonstrate
considerable performance and promising results in the retrieval of OTDR events.

Keywords: Retrieval, signal, deep learning, neural network, OTDR signals, autoen-
coder, CNN, triplet semi-hard





Abstract in lingua italiana

La ricerca di similarità mira a trovare i segnali che sono più simili a un oggetto in in-
gresso in un database di grandi dimensioni. È un problema significativo in Informatica con
un’ampia gamma di applicazioni industriali. Sebbene sia comunemente usato per recuper-
are immagini, lo scopo di questo lavoro di tesi è affrontare il problema del recupero degli
eventi OTDR, che rappresentano guasti sulle fibre ottiche. Cisco Photonics (Vimercate,
Italia) è attualmente in grado di distinguere tra nove diversi tipi di eventi e ci ha fornito il
set di dati OTDR utilizzato in questo studio. Il nostro contributo è progettare un sistema
di recupero che ci permetta di cercare eventi simili in un grande set di dati. Proponiamo
tre soluzioni basate su diverse architetture tipiche dell’Apprendimento Profondo: (i) Au-
toencoder, (ii) CNN per la classificazione e (iii) Triplet semi-hard networks, per affrontare
gli scenari di addestramento sia supervisionato che non supervisionato. Ci sono due sfide
principali che dobbiamo affrontare durante la progettazione delle nostre soluzioni: (i) i
nostri metodi devono essere in grado di generalizzare su categorie sconosciute di eventi
che non sono incluse nel set di allenamento e (ii) sono necessari metodi per gestire segnali
di dimensione variabile che possono presentarsi in fase di inferenza. Le nostre soluzioni
dimostrano prestazioni considerevoli e risultati promettenti nel recupero di eventi OTDR.

Parole chiave: Segnali, Apprendimento Profondo, Reti Neurali, OTDR Events, Au-
toencoder, Reti Neurali Convoluzionali, Triplet semi-hard
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Introduction

Similarity retrieval is a challenging and crucial problem in the field of Computer Science.
In order to find similarities between data, we need to compare data points (e.g. vectors).
Depending on the problem at hand, we may opt for different methods that can be used
to measure similarity distance between data points such as cosine, dot product, etc. . For
instance, in the case of dealing with images, the classical approaches consisted of hard-
coded hand-crafted features from images to create representations in lower dimension then
compare resulting feature vectors with each other using statistical distance measurement
techniques.
Furthermore, in the past scientists used to employ hard-coded programs or dimensional-
ity reduction algorithms to get features of data. As data is ever-changing, those systems
needed constant updates to output desired results. One of the famous algorithms for
dimensionality reduction is Principal Component Analysis (PCA), a statistical analysis
technique with a broad range of use from visualization of high-dimensional data to infor-
mation compression. For instance, in the past people used to perform PCA on images to
reduce dimensionality and use those features for similarity search which is not a wise way
to do. Because fundamentally PCA is a linear transformation, since images are unstruc-
tured data, we would like to have a learning algorithm that is able to capture complex
patterns and at the same time be good at dimensionality reduction.
With the emergence of machine learning and in particular deep learning, the task of
similarity search and retrieval has been given a new life. These techniques attempt to
learn the defined problem from the data itself with or without supervision, in contrast to
previously used statistical approaches. In this thesis, we investigate the problem of sim-
ilarity retrieval of the Optical Time Domain Reflectometer (OTDR) events by utilizing
deep learning methods. Our solutions are taken inspiration from deep learning techniques
being practiced in computer vision applications. We essay to adopt vision solutions in a
way to be applicable on one-dimensional signal data. Our experiments are carried out
over OTDR events which is a collection of traces that are reflected lights captured in fiber
links. The dataset consists of nine different events No event, Pass-through, Fiber-cut,
Fiber-end, Face-Plate, Bulk-Attenuator, Fiber-bended, Fiber-knotted and Amplifier and
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it is obtained by Cisco Photonics in Italy.
To design a similarity retrieval solution, we try to address the problem into two com-
ponents: (i) feature extractor and (ii) similarity retrieval search. The first component
is responsible to extract meaningful features of data. In other words, it has to preserve
worthwhile features that contribute to the discrimination of particular data and discard
irrelevant features(noises). Concerning similarity retrieval search, the algorithm takes as
input a query embedding and calculates distance measure between a database of embed-
dings and query instance to retrieve alike examples. In the following paragraphs, we touch
upon our solutions.
We propose three solutions with applications in different scenarios. In case of unsuper-
vised scheme where data is unlabeled, we make use of the Autoencoder model to train and
obtain embeddings. On the other hand, when data is labeled we propose two architec-
tures to extract features, CNN and Triplet semi-hard networks. Note that, all three deep
learning solutions are being applied to computer vision problems and are among the most
successful methods. These techniques do not need engineers to define hard-coded rules
for feature extraction part, instead, they rely on end-to-end algorithms to learn patterns
from the data itself.
This thesis is organized into five chapters, starting with problem formulation and related
works, then detailed elaboration of solutions followed by experiments and culminating in
conclusion and future developments.
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1| Problem Formulation

In this chapter, we present a formal formulation for the problem of one-dimensional signal
retrieval on events contained in the OTDR dataset. We are given a dataset D that includes
signals of events belonging to nine different classes. We define X as a signal such that
X ∈ Rn where n is length of the signal and note that signals can be from varying lengths.
All signals of D are labeled with a corresponding class y where y ∈ {0, . . . , 8}. We split D
into two sets, known and unknown signals denoted by DK and DU respectively. DK ⊆ D

where all signals belonging to the first 5 classes yK ∈ {0, 1, 2, 3, 4} and DU contains signals
from all classes such that DK ∩DU = ∅ but DK ∪DU = D holds.

We aim to design a retrieval system that relies on a trained neural network model fθ to
learn embedding (feature vectors) of signals and later use these embeddings to retrieve
similar instances. In depth, the system takes as an input query signal Eq where Eq ∈ D

and retrieves the K most similar signals from a database of embeddings, such that, the
K retrieved signals are similar to Eq and all belong to the same class of Eq. We intend
to maximize average overall precision and precision for each class over retrieved signals,
we will discuss more this topic in evaluation metric Section 4.3.

There are some challenges to be noted. Firstly, the query signal Eq might be from varying
lengths. In other words, as a neural network model trained on fixed-size of signals, in the
retrieval phase we may have Eq which has a different size with respect to signals in the
training set of the model. Secondly, the model has to be able to generalize on classes that
it has not been trained on, meaning not all the query signals belong to DK rather they
would come from a different distribution. And most importantly, the training dataset is
relatively small, and it suffers from imbalanced classes.
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2| Background and Related Work

As outlined before, we consider three solutions on how to approach similarity retrieval
problem with deep learning. In this chapter, we present related work and literature
regarding feature learning and retrieval of data. In particular, we provide a review of
related research on three areas of convolutional neural networks, autoencoders and lastly
triplet semi-hard scheme.

2.1. Convolutional Neural Network(CNN)

In deep learning literature, a convolutional neural network is a class of architectures that
are mostly applied for computer vision problems and related tasks. In dense neural net-
works applied to images, we treat pixels as independent units, however, adjacent pixels are
highly correlated with each other and carry relevant information, so here is where CNNs
come to play. CNNs learn to extract patterns from images in a hieratical manner through
convolution and pooling operations, outperforming dense neural networks. These models
are applied in computer vision tasks such as classification, segmentation, object detec-
tion, etc. where input data are 2D or 3D such as images and videos. Although CNNs
demonstrated promising results in the aforementioned areas, in recent years they have
been gaining in popularity to be exerted on one-dimensional data specifically timeseries
like signals. In the following paragraphs, we review famous de-facto CNN architectures
ResNet and VGG, followed by several research papers about the application of 1D convo-
lutions for timeseries. Our solutions throughout this thesis have drawn inspiration from
architectural designs and methods proposed in these works.

Simonyan et al.(2014)[12] introduced VGG, a deep architecture where they attempted to
increase the depth of the network. They used 3x3 convolution filters (smaller receptive
field) and ReLU activation function. This work showed deeper models generalize and learn
better features of data which consequently contributes to better performance. Figure 2.1
shows the underlying architecture of VGG19 with approximately 144 million parameters.
As it can be seen from the architecture, when an input image goes through the network its
spatial size is reduced by convolutional and pooling layers while the number of channels
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increases. The CNN backbone is followed by three fully-connected layers that account for
most of the parameters of the network.

Figure 2.1: VGG19 architecture

Later in this field, a deep residual network was introduced by He et al.(2015)[6] with the
aim of providing a reliable framework for training very deep neural networks which are
easier to optimize and are capable of learning deep representations. This model mitigates
the problem of vanishing/exploding gradients and degradation. The former is solved
through extensive use of normalization both in initialization and throughout intermediate
layers, and the latter happens when accuracy gets saturated, thus the authors resolved this
issue by proposing residual blocks and shortcut connections. As a result of this research,
it was made possible to train deep models up to 152 layers without loss of accuracy. The
core piece of ResNet design is the use of residual blocks as represented in Figure 2.2, these
blocks explicitly try to approximate residual function rather than original function F (X)

with the motivation that the training error of a deeper model can not be larger than its
shallower counterpart, so the degradation problem can be mitigated.

Figure 2.2: Residual block

As it is stated already, 1D convolutions have shown impressive results when applying on
time series like signals. Since, we would like to adopt these techniques for OTDR events
we review two related papers with regard to application of 1D convolutions. Chen et
al.(2020)[2] proposed 1D convolutional autoencoder based architecture for feature learn-
ing with the purpose of fault diagnosis in multivariate processes. Because autoencoders
enable the learning of discriminant features in an unsupervised way, they trained end-to-
end autoencoder on unsupervised historical data. Once trained, a classifier is added at
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the head of the network in order to fine-tune the network on fewer labeled examples.
Furthermore, in the field of material science, Schuetzke et al. (2020)[11] used a convolu-
tional Siamese network for the classification of 1D signals generated by X-ray diffraction
over different materials. They showed that the network could even generalize for ma-
terials that were not presented in the dataset, achieving high accuracy. The proposed
architecture was taken by VGG16 paper, however, it was designed in a way to suit one
dimensional signals.

2.2. Autoencoder Architecture

Autoencoders had been introduced during the 1980s, however, the researchers could not
simply train models to perform properly. The first successful attempt to train deep au-
toencoders to get better representation was carried out by Hinton et al. (2006)[7] in which
their model outperformed the PCA method (back then PCA was popular algorithm with
considerable performance). In detail, Autoencoder is a type of neural network architecture
that is used to reconstruct input data on the output. It consists of two stacks of layers
called encoder and decoder. The encoder shrinks down the input by downsampling and
the decoder expands the learned representation to reconstruct the input. In other words,
the encoder squeezes the input by preserving relevant information that is important for
the reconstruction of output and discards irrelevant features(noises).

Figure 2.3: Autoencoder architecture consists of encoder and decoder stacks denoted by
fθ and gθ respectively. The latent vector Z is a representation of input X in a lower
dimension.

Nowadays, with the advances in research and availability of computing power, autoen-
coders are trained in an end-to-end fashion. They are able to capture complex features
and patterns of input and try to recover them in the output. The network aims to min-
imize the reconstruction error L(X, X̂), which is the discrepancy between the input and
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its reconstruction on output.

Autoencoders are useful for learning representation, they can be used for various types of
data such as images, audio, text and so on. For instance, We pass an image through a
network, and it bottlenecks the image into a latent vector by reducing its dimensionality
and then expanding it to the original dimensionality. In this scenario, the input image
acts as its label meaning that for a given input image we expect the network to reproduce
it in the output. We can interpret that, a successive layer of encoder compresses the input
into a latent vector which is a thorough representation of input data in a lower dimension.

Indah et al. (2019)[13] proposed a solution for content-based image retrieval by using
convolutional autoencoders. They trained a model on images of the Corel dataset. Once
trained, the decoder part is discarded, keeping only the encoder as a feature extractor. To
query similar images, the network takes an image extracts its features by running through
the encoder stack, and then compares the embedding to all the embeddings in a database
to retrieve similar cases. To measure the similarity distance between embeddings they
used Euclidean distance 2.1 where p and q are two points in Euclidean n-space.

d (p, q) =

√√√√ n∑
i=1

(qi − pi)
2 (2.1)

Furthermore, Wen et al. (2018)[14] utilized convolutional autoencoders as an unsupervised
feature extractor to classify EEG signals. They achieved an accuracy of more than 92%
which was more significant than previous methods such as principal component analysis
and sparse random projection in terms of feature effectiveness and dimensionality reduc-
tion. For classification purposes, extracted features were then fed to a classifier, in this
case, they used several classifiers including k-NN, SVM, etc.

2.3. Triplet Siamese Networks

Schroff et al. (2015)[10] from Google proposed a novel end-to-end learning system for
face verification called FaceNet, which uses a triplet loss function to adjust the weights
of the learning algorithm. Its backbone architecture for feature learning is Inception
architecture. During the training phase, the network requires three images: Positive,
Negative and Anchor. According to the loss function 2.2, pair of positive and anchor
images are instances of the same class and negative from a different class. As shown in
Figure 2.4, the goal of loss function is to make the square distance between the positive
and anchor smaller in Euclidean space, whilst the distance of the negative sample with
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anchor has to be larger.

Figure 2.4: Through the learning process, the triplet loss function minimizes the dis-
tance between anchor and positive samples which belong to the same class and maximizes
the distance between anchor and negative samples.

We want to be certain that positive and anchor images are closer together in latent space
and distant from a negative image. The loss is formulated below for a given triplet of
anchor, positive, negative denoted by xa, xp and xn respectively, and α is a margin that
we impose between positive and negative pairs.

N∑
i

[
∥f(xa

i )− f(xp
i )∥

2
2 − ∥f(xa

i )− f(xn
i )∥

2
2 + α

]
(2.2)

Figure 2.5 illustrates the structure of the model proposed in FaceNet[10] paper. The model
has a CNN backbone for feature learning followed by L2 normalization which culminates
in embeddings. Finally, triplet loss function is used for training the network.

Figure 2.5: Model structure proposed in FaceNet
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3| Proposed Method

This chapter elaborates in detail the proposed solutions for the problem of one-dimensional
signal retrieval specifically their corresponding architectural and configurational choices.
We consider two components: embedding network and similarity retrieval algorithm. The
first component acts as a feature extractor resulting in the embedding of the input. For
this purpose we propose an autoencoder network for an unsupervised scheme where data
is not labeled, followed by CNN and triplet semi-hard networks for supervised cases.
Moreover, the similarity retrieval algorithm is accountable for searching and retrieving
similar samples of a given query signal Eq from the database of embeddings.

Recall that, we need to take into consideration two important key challenges. First, our
solutions should be able to handle signals with varying sizes during the retrieval phase,
meaning the query signal Eq may have a different length with respect to the training set
of the model. This matter is required to be addressed in network architecture itself. On
top of that, models are envisaged to be able to generalize on never-before-seen classes. In
other words, we might use models to retrieve signals from different data distributions.

As a rule of thumb, henceforth when we refer to a convolutional neural network we intend
models built with 1D convolutions that are well-suited for timeseries like signals.

3.1. Learning Embedding Network

3.1.1. Autoencoder Architecture

As the first solution for learning representation of signals, we introduce a convolutional
autoencoder model for unsupervised scenarios where data is not labeled. Our model
consists of two stacks of layers; encoder and decoder. The architecture is inspired by
ResNet paper as discussed in Section 2.1. The reason behind this choice is that ResNet
architecture demonstrated to be effective in preserving relevant features through deep
networks due to residual blocks and skip connections. Also, based on our experiments
autoencoder built with residual blocks outperformed its counterpart VGG network.
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We denote encoder and decoder with fθ and gθ respectively. Hence, f(X) is the latent
representation of input X and g(f(X)) is the output of the network which is the recon-
struction of input. We train fθ and gθ to minimize mean square error (MSE) as shown
in 3.1 which is a reconstruction loss of X.

LMSE(X, g(f(X))) = ∥X − g(f(X))∥22 (3.1)

Our proposed architecture has overall 19 convolutional layers of which 9 layers are for
the encoder and 10 for the decoder and all the layers used in the decoder are transposed
convolutions. We train the model in an end-to-end fashion intending to minimize recon-
struction loss. Once training is completed, we discard the decoder subnetwork and keep
only the encoder as a feature extractor. Note that one of the challenges we need to address
is that, the network should be able to handle varying sizes of signals during inference.
For this reason, as is evident from Figure 3.1 we fused a global average pooling layer that
outputs a latent vector.

Figure 3.1: Our proposed autoencoder network

GAP is originally designed to replace fully connected layers to overcome the limitation
of input size fed to the network. As it is illustrated in Figure 3.2, GAP calculates the
average of each feature map over input volume, thus, no matter what is the size of the
input signal, the encoder subnetwork always outputs embeddings with the same size.

Figure 3.2: Global Average Pooling operation

3.1.2. CNN Trained for Classification

The second model that we use for representation learning of signal data is a CNN network.
Our model is inspired by VGG19 2.1 architecture and it is trained with supervision,
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meaning that training data is labeled. In deep learning literature, it is widely practiced
to train a model for classification and after training get rid of the classification head and
use the backbone network for downstream tasks. Likewise, we want to train our model for
the classification of one-dimensional signals and later remove the network’s classification
head and use the backbone as a feature extractor for the retrieval system.

Figure 3.3 depicts our proposed CNN network, the architecture consists of consecutive
layers of convolution followed by max pooling layers. And as we go deeper through
the network number of convolution filters increases up to 512 filters. All convolutional
layers are ReLU activated and initialized with He normal initializer. We tailored VGG19
network in a way that suits our needs, so we replaced fully connected layers which impose
a limitation on input size of the network with convolutional layers that have filter size of
one. And we added a global average pooling as the penultimate layer followed by a dense
layer for classification.

Figure 3.3: Our proposed CNN network

Once the model is trained, we freeze layers from the beginning up to GAP and use them
to extract embeddings of signals. As mentioned earlier GAP enables us to use the varying
size of signals in inference time so we will not have limitations in this matter.

3.1.3. Triplet Semi-hard Network

The third approach we are going to introduce for representation learning of signals is
based on the triplet loss function and model structure proposed in Section 2.3. All in all,
the goal of triplet loss function is to ensure examples of the same class are closer to each
other in the latent space and far away from examples belonging to different classes. There
are three requirements for the triplet loss function:

1. an anchor;

2. a positive sample same class as the anchor;

3. and a negative sample from a different class.

According to (2.2), we try to minimize the distance between anchor and positive while
pushing pairs of anchor and negative to be distant from each other. The parameter α
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is a margin defined between positive and negative pairs. The foremost matter is how to
select triplets because if we want to generate all triplets, there will be many triplets which
would fulfill the constraint in (3.2):

∥f(xa
i )− f(xp

i )∥
2
2 + α < ∥f(xa

i )− f(xn
i )∥

2
2 (3.2)

Thus, triplet selection or so-called triplet mining is vital for achieving fast convergence
while respecting the above constraint. Considering loss function we can define three
categories for triplets:

• Easy triplets: triplets result in loss of 0, due to distance(xa, xp)+α < distance(xa, xn).

• Hard triplets: triplets in which xn is closer to xa than xp.

• Semi-hard triplets: triplets where the negative is not closer to the anchor than
the positive, however, at the same time their outcome is a positive loss.

Figure 3.4 depicts three categories mentioned before:

Figure 3.4: Triplet selection categories

Furthermore, there are two ways to mine samples: offline and online. In offline mining,
triplets are produced at the beginning of each epoch. In particular, we compute em-
beddings of the training set and then choose proper samples for creating triplets. This
method is not computationally efficient since it needs a full pass through the entire train-
ing set to produce triplets. The most sophisticated approach is online mining with the
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idea of creating triplets straight away on every batch of inputs. In detail, we compute
embeddings of a batch of inputs and pick out hard or semi-hard samples.

With respect to our solution, we follow the model structure as shown in Figure 2.5, where
as a backbone we use the same architecture introduced in Section 3.1.2, but we replace
the global average pooling with a global max pooling layer to get a better convergence.
We make use of semi-hard mining as it is proven to yield the best results, in addition to
the use of an online mining strategy that boosts the training procedure. Once the model
is trained on events of the OTDR dataset, it is ready to use as an embedding function.

3.2. Retrieval

The second component in a retrieval system is similarity search in which we try to find
similar data points to Eq from a database of embeddings. For this reason, we take
advantage of the Unsupervised Nearest Neighbor (NN) algorithm which can efficiently
retrieve similar instances to our query signal.

In order to carry out the retrieval phase, we obtain embeddings (feature vectors) of all
signals fθ(D) where fθ is a learned feature extractor and it can be one of the previously
proposed deep learning solutions. Once we have the embeddings, we store them so later
it would be more convenient to compute nearest neighbors. We want to retrieve K most
similar signals, for a given query Eq such that K retrieved signals are the closest to fθ(Eq)

in the latent space. To wrap up, the one-dimensional signal retrieval procedure can be
represented as follows in Algorithm 3.1.

Algorithm 3.1 One-dimensional Signal Retrieval
Require: Compute embedding of signals fθ(D), query signal Eq, number of retrieved

samples K where K ∈ N
Ensure: Results ⊆ D and K retrieved signals belong to the same class as Eq

1: Compute embedding of a query signal fθ(Eq)

2: Opt for K nearest neighbors of fθ(Eq) from fθ(D)

3: Store K similar signals as Results

Figure 3.5 illustrates the high-level architecture of a similarity retrieval system. In this
case, K = 3 refers to the three most similar events with respect to Eq that are retrieved
from dataset D. If we notice only two out of three events belong to the same class of Eq.
To elaborate this procedure, first, we take dataset D which consists of known (DK) and
unknown (DU) events, we run fθ over D to obtain embeddings of signals. Then, we select
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a query event Eq and feed it to fθ to get the embedding. Once we have the embedding,
we search for the three closest neighbors to Eq from the database of embeddings obtain
from D.

Figure 3.5: High-level architecture of a retrieval system
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4| Experiments

In this section we provide comprehensive information about our experiments. We start
with the OTDR dataset and then we introduce two settings in which we evaluated our
models’ performance. Next, we present evaluation metric for retrieval being used in
experiments followed by a report on final results and technical frameworks.

4.1. OTDR Dataset

We conduct our experiments and verify our solutions on a dataset of OTDR events which
is collected by the Cisco team through experimenting with physical devices and fiber links.

Figure 4.1: Nine types of events in OTDR dataset

OTDR is an optoelectronic apparatus that is used to measure reflection of light along op-
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tical fiber links. This instrument generates optical pulses into the fiber link and measures
the light that is reflected or scattered back to the source. Through this process the device
produces OTDR traces that are characterized by multiple different events. At the time
of writing, our dataset includes nearly 6300 events and it consists of 9 types of events
as shown in Figure 4.1. The distribution of events is demonstrated in Figure 4.2, as can
be seen, the dataset suffers from imbalance classes, especially on the following events:
FIBER-CUT, BULK-ATTENUATOR, FIBER-BENDED and FIBER-KNOTTED.

Figure 4.2: Distribution of events in OTDR dataset

As deep learning methods are data-hungry, we require more data in order to obtain better
results and somehow alleviate the problem of imbalanced classes. Additionally, we cannot
take advantage of generative models to increase the size of the dataset, since this might
introduce artifacts that are not of our interest and must be avoided. In this regard, the
process of data acquisition is being undertaken by the Cisco team, since producing OTDR
events needs special physical devices and requires subtleties. To prepare the dataset for
training and testing, we use the same methods for preprocessing as proposed in the recent
paper by Rizzo et al. (2022)[9].

4.2. Experiment Settings

We conduct two experiments for each solution to demonstrate their effectiveness in dif-
ferent settings. Models are tested in the following settings:

• Baseline: This is the simplest setting in which we split dataset D into two separate
sets Training T and Retrieval R. Training a network is done by T , and retrieval
performance evaluation is performed over R. During retrieval, we calculate f(Eq)

where Eq ∈ R and then we search for K closest samples from f(R).
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• Unknown Classes: As previously stated, it is crucial for our system to be able to
generalize on data that it has not been trained on and still be effective in retrieving
similar instances. To measure the performance of the model in this setting, we
split D into DK and DU such that yK ∈ {0, 1, 2, 3, 4} and yU ∈ {0, ..., 8}, most
importantly DK ∩DU = ∅. In the course of retrieval, we use a large portion (nearly
80%) of DU to compute the embedding database and use the 20% remainder as Eqs
query signals.

Note that, to have a better understanding of results and to make sure we are testing
methods in the same settings, we use an identical seed for splitting the dataset. More-
over, the retrieval set is identical for both baseline and unknown generalization settings.
However in the matter of training set, as it has been mentioned before classes from 5 to
8 are removed for unknown generalization setting.

4.3. Evaluation Metric

In our experiments we quantifiably measure performance of our solutions for the problem
of OTDR events retrieval. We remark Average Precision which in the context of retrieval
is the portion of correctly retrieved instances. Formally, for a given query Eq as we
retrieve K samples we compute average precision with the formula 4.1 where 1 denotes
the characteristic function.

AvgP (K,Eq) =

∑K
k=1(P (k,Eq) . 1 {yk = y of Eq})

K
(4.1)

Depict a scenario in which K = 5, for a give Eq we retrieve 5 samples, from these 5
samples those who belong to the same class of Eq are considered as True Positives and
remainder are treated as False Positives. Indeed, sum of TP and FP are equal to K for
a given query signal, so the denominator is always K. Thus, intuitively we can use the
above formula and loop through all query signals to calculate the average precision.

Concerning confusion matrix, we use confusion matrix functionality provided by scikit-
learn[8]. According to the official API we need to specify two arguments y_true and
y_pred that are ground truth labels and prediction labels respectively. In our experiments
we determine K = 5 and for a given Eq we retrieve 5 similar samples. The y_true is
the label of Eq and y_pred consists of 5 labels which belong to retrieved samples of the
query Eq. So, through computing confusion matrix for all query signals we can obtain
the percentage of correctly retrieved samples for each class.
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4.4. Retrieval Performance in Baseline Setting

We begin evaluating our solutions against the baseline setting in which we train models
using all events presented in the dataset D. The models are evaluated in completely iden-
tical environments to make the comparison fair, so we ensure that training and retrieval
sets are the same for them. The average precision for each method is outlined in Table
4.1. It is evident that CNN and triplet semi-hard networks show significant performance
in retrieval of similar signals compared to autoencoder model. This is no surprise since
these two models are trained with supervision using labeled data. Nevertheless, the result
of the autoencoder model is still promising by achieving 74% average precision.

Learning Scenario Avg. Precision

Autoencoder Unsupervised 0.74

CNN Supervised 0.86

Triplet semi-hard Supervised 0.8

Table 4.1: Reported average precision for each model in baseline setting where K = 5.
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(a) Confusion matrix of Autoencoder model where K = 5

(b) Confusion matrix of CNN model where K = 5

(c) Confusion matrix of Triplet semi-hard model where K = 5

Figure 4.3: Reported average precision of each event(class) for baseline setting.
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Figure 4.3 represents confusion matrixes providing the average precision corresponding
to each event for three models: autoencoder, CNN and triplet semi-hard. Additionally,
we can observe what percentage of samples were incorrectly retrieved for query signal
selected from different classes. The precisions of the last four events are lower than rest
of the events, this is due to the fact that we are dealing with imbalanced classes in the
dataset.

To get a better understanding of retrieval performance, we consider the CNN model and
we retrieve 5 most similar samples from the embedding database. Figures 4.4 and 4.5
demonstrate retrieval results for two distinct events. The query signal Eq is plotted with
the color blue and retrieved samples are plotted with magenta. From Figure 4.4 we can
see all samples are retrieved correctly and they all belong to the same class of query Eq.

Figure 4.4: Samples retrieved for query signal belonging to event FIBER-END.

On the other hand, when we take a closer look at Figure 4.5 we can observe that only
two samples belong to the same class of query signal. As highlighted previously some
classes suffer from imbalanced data and class 6 (Fiber-bended) is one of them. Another
potential problem with the dataset is that a few samples belonging to different classes
overlap with each other and are quite similar. For instance, the sample belonging to class
7 (Fiber-knotted) is very similar to class 6. This issue has to be addressed in a future
update of the dataset.
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Figure 4.5: Samples retrieved for query signal belonging to event FIBER-BENDED.

4.5. Retrieval Performance for Unknown Classes

In this section, we report the results of experiments regarding unknown classes setting.
We only train models on the first 5 events and during retrieval we use signals from all the
classes with the aim of evaluating models’ generalization on never-before-seen events. We
re-emphasize that identical sets of data for training and retrieval are used. In Table 4.2
we provide figures corresponding to the average precision for each model. It is apparent
that we see slight degradation in the overall performance of models since we have less
training data due to the removal of signals belonging to the last 4 classes.

Learning Scenario Avg. Precision

Autoencoder Unsupervised 0.72

CNN Supervised 0.81

Triplet semi-hard Supervised 0.79

Table 4.2: Reported average precision for each model in unknown classes setting where
K = 5.
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(a) Confusion matrix of Autoencoder model where K = 5

(b) Confusion matrix of CNN model where K = 5

(c) Confusion matrix of Triplet semi-hard model where K = 5

Figure 4.6: Reported average precision of each event(class) for unknown generalization
setting.
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The Figure 4.6 provides confusion matrixes of models evaluated in unknown classes set-
ting. The generalization of models on unknown events Bulk-attenuator and Amplifier are
more acceptable than classes Fiber-bended and Fiber-knotted, unfortunately, if we look
at class distribution in image 4.2 we can see these two events severely suffer from imbal-
anced data. Now let’s consider the autoencoder model to examine retrieval performance
by using query signal from class 5(Bulk-attenuator). Even if the model is not trained
with signals from class 5 it was able to retrieve 4 out of 5 samples correctly.

Figure 4.7: Samples retrieved for query signal belonging to event BULK-ATTENUATOR.
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Figure 4.8: Samples retrieved for query signal belonging to event FIBER-KNOTTED.

In this current setting triplet semi-hard model has a better average precision on class
Fiber-knotted than its counterparts. Let’s consider this model and retrieve similar samples
to Eq belonging to class Fiber-knotted. In image 4.8 we can see only two samples were
retrieved with the correct class, this is expected as the average precision is 20%.

4.6. Frameworks

Deep learning architectures proposed in this thesis are implemented using Tensorflow[1]
and Keras[5] frameworks. From training to testing and inference they use underlying
standard APIs provided in these libraries. Concerning the retrieval part we use scikit-
learn’s[8] Unsupervised Nearest Neighbor API which supports three nearest neighbor al-
gorithms namely BallTree, KDTree and Brute-Force. We pass algorithm argument as
auto, so it will automatically determine which algorithm is suited based on the training
set.
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5| Conclusions and Future

Developments

In this thesis, we intended to address one-dimensional signal retrieval over the OTDR
dataset. Our three solutions indicate promising results in different training scenarios
depending on whether annotations for data are available or not. We used a convolutional
autoencoder model for learning representation of unsupervised data. Next, we introduced
CNN and triplet semi-hard networks for annotated data which consequently resulted in
higher performance with respect to autoencoder model. The methods are evaluated on
OTDR events and can be effectively used in industrial applications.

For future development, we want to improve existing solutions and explore their perfor-
mance on different data distributions. It is also worthwhile to explore new deep learning
architectures and learning techniques. In particular, we would like to investigate self-
supervised methods and their possibilities for representation learning of data. In Ap-
pendix A, we provide a summary of self-supervised learning approach and briefly cover
two important papers in this field.
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A| Appendix A

A.1. Self-supervised learning

Self-supervised learning also known as predictive learning is a family of algorithms that
learn representation from data itself meaning we do not provide labels to models as a
form of supervision. Rather the idea is to design tasks according to the data modalities
we are dealing with. For instance, given sequences of a video to a model, we expect the
model to predict the next sequence. In the following we briefly explain two well-known
research in the field of self-supervised learning SimCLR and SimSiam:

1. SimCLR was proposed by Chen et al. (2020)[3], a simple framework for learning visual
representation relying on contrastive learning. They presented a scheme in which there are
not any requirements for using specialized architecture or memory banks like in previous
works. SimCLR outperformed state-of-the-art in Self-supervised field and even achieved
matching performance of a supervised ResNet-50 on ImageNet. The representation is
learned through maximizing similarity(agreement) between two different augmentations
of an image via contrastive loss. Two augmented samples of an image are created which
we consider as a positive pair. Then representations are extracted through a neural
encoder. The projection head g(.) maps the output of the encoder to space where we can
apply contrastive loss, this head consists of MLP and ReLU non-linearity. As regard to
negative pairs, they considered all the other augmented samples in a drawn mini batch
2(N − 1). They carried out training with large batch sizes and bigger models, as for data
augmentation they used a composition of random cropping and random color distortion.

2. Later, Chen et al. (2020)[4] used a simple Siamese network to learn representations in
a self-supervised framework, and they called the new architecture SimSiam. This work
improved the training procedure in several ways, it does not need negative pairs, large
batch sizes or momentum encoder. In detail, this architecture takes two augmented images
from random views. These images go through encoder f and then only one view is fed to
a MLP head denoted by h. Next, they minimized the negative cosine similarity between
h(f(x1)) and f(x2).
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