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Sommario

Per simulare al calcolatore il comportamento di materiali magnetici l’approccio
solitamente considerato utilizza simulazioni con metodo Monte Carlo su mod-
ello di Ising con dinamica alla Glauber. Il tutto viene solitamente imple-
mentato grazie all’algoritmo Metropolis. Lo scopo di questa tesi è quello di
utilizzare un algoritmo alternativo (algoritmo di Lebowitz) con dinamica alla
Glauber per descrivere il sistema fuori dall’equilibrio. Questo metodo alter-
nativo permette, soprattutto in caso di sistemi a basse temperature, di ridurre
i tempi di esecuzione della simulazione. Inoltre, permette di seguire con mag-
giore accuratezza il percorso fuori equilibrio del sistema, tenendo conto della
differente velocità con cui il sistema approccia l’equilibrio quando si trova
in differenti condizioni fuori equilibrio. Tramite comparazione dei risultati
con quelli noti da studi teorici e altre simulazioni con algoritmo Metropolis,
è possibile concludere che il modello sviluppato riproduce correttamente il
comportamento dei sistemi magnetici sia all’equilibrio che non. Viene in-
oltre esplorata la possibilità di applicare il modello sviluppato alla sfera della
socio-fisica, in particolare al fine di descrivere la formazione di opinioni nelle
società, in sostituzione al modello Sznajd. I medesimi risultati di equilib-
rio vengono ottenuti, validando l’approccio considerato. In più, la presenza
di un’Hamiltoniana (invece assente nel modello di Sznajd) permette di con-
siderare a tutti gli effetti simulazioni Monte Carlo per analizzare anche il
transitorio all’equilibrio.

Parole Chiave: Modello di Ising, Metodo Monte Carlo, algoritmo di Lebowitz,
Dinamica alla Glauber, Transizione di Fase, Transizione di Fase Dinamica,
Reticoli con Difetti, Rumore di Barkhausen, Modello di Sznajd.
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Abstract

In order to investigate the magnetic materials behaviour, the common ap-
proach relies on Monte Carlo simulations on Ising system with Glauber dy-
namics. The implemented algorithm usually exploited for this investigation
is the Metropolis algorithm. The aim of this work is to present an alter-
native algorithm (Lebowitz algorithm) with Glauber dynamics, especially
designed to describe out of equilibrium magnetic systems. This alternative
approach allows to reduce the execution time for the simulation, especially
while simulating over low temperature systems. Moreover, the developed
system approximates better the real behaviour of magnetic materials in out-
of-equilibrium conditions. It takes into account how far from equilibrium
the system is and allows the system to proceed with different velocities to
equilibrium, something that is not explicitly considered in the Metropolis
algorithm. Through comparison with known theoretical results and simu-
lations with Metropolis algorithm, we are able to conclude that the devel-
oped approach reproduces well the behaviour in and out of equilibrium of
magnetic systems. Moreover, we explore also the possibility to apply the
developed approach into the sociophysic realm, in particular with the aim to
describe opinion formation in human society, in substitution to the Sznajd
model. The same equilibrium results are obtained, validating the considered
approach. Additionally, the presence of a Hamiltonian (not present in the
Sznajd model) allows to consider Monte Carlo simulations and to properly
analyse also the transition toward equilibrium.

Keywords: Ising Model, Monte Carlo Method, Lebowitz Algorithm, Glauber
Dynamics, Phase Transition, Dynamic Phase Transition, Lattice with De-
fects, Barkhausen noise, Sznajd Model.
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Chapter 1

Introduction

Magnetic materials can be encountered in the everyday life of each one of us:
from the materials constituting the memory of technological devices to the
core of Magnetic Resonance Imaging scanning devices. Due to a high range
of applicability, we can understand why studying and trying to predict the
behaviour of magnetic materials is of extreme interest. New technologies can
be devised considering new configurations or types of materials.
This work can be collocated in this framework. Gaining more insight and
discussing a possible model for the prediction of the behaviour of real systems
is its main focus. The more common approach found in literature regards
the study of the equilibrium properties of magnetic systems through Monte
Carlo simulations over the Ising model. This latter embeds all the basic
characteristics of magnetic systems and allows to replicate the behavior of
ferromagnets with good agreement. In this work, an alternative and efficient
computational algorithm is presented and developed in order to describe bi-
dimensional (or multi-dimensional) systems moving out of equilibrium while
subjected to time-varying parameters. In particular, this approach relies on
the Lebowitz algorithm [1] with Glauber dynamics [2]. The possibility to
describe out of equilibrium systems is of major importance since, in real ap-
plications, we are not always able to assure the equilibrium conditions. With
the developed approach, we are now able to say something on what to expect
from magnetic systems when the external parameters such as temperature
and magnetic field are modified.
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This thesis begins with a brief introduction in chapter 2 about the phe-
nomenological aspects regarding magnetic materials and proceeds with the
deepening of a specific subgroup: the ferromagnetic materials. In chapter
3, basic information about the Ising model and what it means to perform
simulations are illustrated. The algorithm used for the simulations is also
explained. In the subsequent chapters, 4 and 5, we reproduce the behaviour
of magnetic systems in equilibrium conditions and while a time-varying mag-
netic field is applied. In chapter 6, we break the assumption of ideal material,
with the introduction of defects in the structure which allow adapting our
simulations to describe a wider spectrum of magnetic materials and proper-
ties (such as spin-glasses). Finally, in chapter 7, we explore the possibility of
applying the same methodologies to interacting systems aimed at modelling
the human and/or sociological behaviour. More precisely, we apply the Ising
model to describe opinion formation in society, as a practical example of how
the Ising model and the simulation approach could be extended further.
The main conclusion deriving from this work is that the developed algorithm
is equivalent to the ones usually implemented when we want to study the
equilibrium properties of magnetic systems, but it allows also to replicate
the out of equilibrium dynamics. Moreover, the new approach for the sim-
ulation of defects in magnetic materials gives reliable results while tracking
the characteristics of real systems.
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Chapter 2

Magnetic systems

We start now by familiarising with magnetic materials, considering their
main properties and the different categories in which they can be divided.
This brief introduction has the scope to review important aspects that will
be resumed later on in this work.

2.1 First hints on magnetic materials

Considering a classical approach, we can look at each atom composing matter
as constituted by electrons orbiting around the nucleus. Since we are dealing
with charged particles, we can associate to their motion a current. In this
framework, by considering Ampere’s law, we can define a magnetic moment
“replacing”each atom:

~µ = ~AI (2.1)

where ~A is a vector which has modulus equal to the area of the loop made
by the electron and I is the current we have associated with the electron. To
each atom, therefore, we can associate a magnetic moment. In reality, things
are more complex. The structure of molecules and the material came into
play and modify this single-atom basic description. Moreover, the classical
approach is not proper for the description of magnetic phenomena in con-
densed matter. A more rigorous quantum approach would be required. But
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still, we can associate to every atom a proper magnetic moment.
When we switch on a magnetic field in presence of a magnetic moment, we
introduce an energy term of the form:

E = −~µ · ~B (2.2)

If the system is isolated and no other energy terms come into play, a preferred
direction for the magnetic moment will be set: the energy will be minimised
only if the magnetic moment and the external field share the same orienta-
tion.
Since we are mainly interested in magnetic materials, a large ensemble of
magnetic moments, we can rely on physical variables more adequate for the
description of magnetic properties of the whole material. We consider the
magnetization of the solid defined as the magnetic moment per unit volume:

~M =
d~µ

dV
(2.3)

If all the atoms are equivalent and we can associate to them the same mag-
netic moment, we will have:

~M = n~µ (2.4)

in which n is the atomic density of the material. As we have seen, the appli-
cation of an external field B will cause an effect on the magnetic moments
in the structure. Therefore, also the magnetization will be affected by the
application of B. Equation (2.2) refers to the case of a single magnetic mo-
ment. In reality, this is not the only energy term influencing the orientation
of magnetic moments. As an example, the periodic positioning of nucleus in
the structure of the magnetic material could perturb the magnetic moments,
causing an additional energy term. Moreover, the magnetization itself could
induce a field that superimposes to B. As to take into account all these
modifications, we will rely on a different quantity H describing the external
magnetic field.
Now, we can define the magnetic susceptibility which represents the propor-
tionality coefficient between the field and the response generated inside the
material for vanishing magnetic field:

χM =
∂M

∂H

∣∣∣∣
H=0

(2.5)
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In the most simple case, where the magnetization orients in the same di-
rection of the magnetic field (linear materials), we can therefore write the
following relation between these two quantities:

~M = χM ~H (2.6)

We can then start to look into magnetic materials by considering their re-
sponse strength to an externally applied field. In particular, we can categorise
magnetic materials into subgroups:

• Diamagnetic materials show a weak magnetization, with opposite di-
rections to the external field. The magnetic susceptibility is therefore
negative. This repulsive characteristic can be found, to some degree,
in all the materials. If a material is not diamagnetic is only because a
stronger effect is superimposed [3].

• Paramagnetic materials show a weak magnetization in the same direc-
tion of the field so that χM is positive.

• Ferromagnet materials show a non-linear reaction to a magnetic field.
χM has a non-constant value and generally takes a positive value much
stronger than the paramagnetic case.

• There are other types of materials, such as antiferromagnets and spin
glass that show more complex behaviour and require a further deep-
ening of the magnetic properties of matter. The latter ones will be
resumed later in this work, at the beginning of chapter 6.

Interestingly, the materials can belong to different subgroups, depending on
the value of the external parameters such as temperature and magnetic field.
Indeed, the ones presented above are just different phases in which a magnetic
material can be found. The transition from one phase to the other will be
investigated later on. Table 2.1 shows some materials for the phases (at
ambient temperature and in absence of an external field), with their magnetic
susceptibility experimentally determined.
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Material State χM/10−6

water diamagnetic -90
benzene diamagnetic -7.2

NaCl diamagnetic -13.9
CuSO4 · 5H2O paramagnetic 176

Al paramagnetic 22
Na paramagnetic 7.3

Table 2.1: Magnetic susceptibilities for the different magnetic materials.
Source [3].

For diamagnetic and paramagnetic materials, a semi-classical approach can
be applied, as to derive their described behaviour. Instead, for ferromagnets
things are more complex. The classical interaction between magnetic mo-
ments alone is not enough to explain the nature of such response. A different
approach is needed, which will require us to consider a quantum mechanics
approach.

2.2 Ferromagnetic materials

We can now dive a little more into the realm of ferromagnetic materials. This
fascinating category includes all the materials that show a strong interaction
with an external magnetic field. But ferromagnets are commonly known
for other important characteristics. On top of them, they present a critical
temperature Tc below which a spontaneous magnetization manifests (i.e. in
absence of an external magnetic field the system remains magnetized). If
we increase the temperature above this limit instead, the system behaves
as a paramagnet, and the magnetization is proportional to the magnetic
field. This behaviour is represented in fig. 2.1, which shows the residual
magnetization function of temperature after the magnetic field is switched
off. We can observe that the absolute value of the residual magnetization
depends on the temperature. Its sign, instead, depends on the direction of
the previously applied field, since it induces the magnetization to share the
same direction with itself.
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Figure 2.1: Residual magnetization of a ferromagnet M function of temper-
ature. Source [4].

Another important characteristic of the system is the presence of hysteresis.
If we track the response of our system to an applied magnetic field B, we can
derive the plot shown in fig. 2.2. By starting from a disordered ferromagnetic
material, with a null average magnetization, we can draw the first magneti-
zation curve by increasing B. Here, M is not linear with B, and it reaches a
maximum value which cannot be modified by further increasing the field. If
we proceed with the inversion of the applied field, the magnetization starts to
decrease not following backward the first magnetization line: after a specific
value of B, it drifts away from it. This causes the residual magnetization
phenomenon: when B returns to be null, the system presents a spontaneous
magnetization M0. To obtain null magnetization, B must be of a specific
intensity Bc. This value is called coercive field. A complete cycle of B back
and forth produces a symmetric S-shaped curve, called hysteresis loop. We
can notice that M(B) is a double-valued function: in order to derive the
magnetization value, we have to know the history of the sample in addition
to the value of the magnetic field.

This complex behaviour was found by Weiss [5] to be due to the presence
of clusters made of magnetic moments with same orientation, composing the
ferromagnet. These clusters are known as “Weiss domains”and are able to
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Figure 2.2: Hysteresis loop. Magnetization of a ferromagnet M function of
the external magnetic field B. Source [4].

shrinks, enlarge and rotate over the effect of the external field.
By looking more closely to the magnetization along the cycle it is possible
to observe that M(B) is not “smooth”. Indeed, if we look closely enough,
we can found that the cycle is made of little jumps in the magnetization as
represented in fig. 2.3. This behaviour is known as Barkhausen noise, from
the name of its discoverer [6], and it is essentially due to presence of defects
in the ferromagnetic structure that causes the pinning of the growing regions.
The unpinning can derive only if the magnetic field is increased enough, when
the electrostatic energy overcomes the pinning energy.

All these phenomenological aspects will be resumed later in this work, when
we will try to reproduce them with our model.

2.3 Exchange interaction

By coming back to the quantistic approach for ferromagnetism, we can de-
rive all the macroscopic properties above mentioned through the introduc-
tion of the “exchange interaction ”. This type of interaction has no classical
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Figure 2.3: Magnetization jumps shown along the hysteresis loop, known
as Barkhausen noise. On the x axis, the magnetic field, on the y axis, the
magnetization. Source [7].

analogous, since it derives from the symmetry properties of the particles in
quantum mechanics.
To derive the exchange interaction, we can rely on a simplified model: con-
sider two electrons, from two distinct atoms in position r1 and r2 and with
spin respectiely s1 and s2, independently represented by the wavefunctions
Ψα(r1, s1) and Ψβ(r2, s2). Once we allow the interaction between the two
electrons, we have to write the joint wavefunction. A first attempt could be
considering:

Ψ(r1, r2, s1, s2) = Ψα(r1, s1)Ψβ(r2, s2) (2.7)

But, this definition does not satisfy the exchange symmetry of quantum me-
chanics. Indeed, since we are dealing with fermions, the global wavefunction
must by antisymmetric upon the exchange of the involved electrons. Since:

Ψα(r1, s1)Ψβ(r2, s2) 6= −Ψα(r2, s2)Ψβ(r1, s1) (2.8)

this cannot be considered the joint wavefunction.
A step further can be made if we consider the structure of the single electron
wavefunction Ψα(r1, s1). Since the spin value s1 does not influence the energy
of the system, unlike the position r1, we can factorise the global wavefunction
in two parts, one which refers to the spatial coordinate φα(r1) and the other
which refers to the spin coordinate χα(s1):

Ψα(r1, s1) = φα(r1)χα(s1) (2.9)
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The same consideration applies to the other single electron wavefunction
Ψβ(r2, s2) and to the global wavefunction of the two electrons:

Ψ(r1, r2, s1, s2) = φ(r1, r2)χ(s1, s2) (2.10)

Moreover, since the spin and the spatial coordinate cannot mix, φ(r1, r2)
and χ(s1, s2) will be linear combinations of respectively the single electron
spatial and spin parts. Since we have to obey the antisymmetric property of
the global wavefunction, one between the spatial part φ(r1, r2) and the spin
part χ(s1, s2) has to satisfy the antisymmetric property. The other one must
be symmetric.
We can derive two possible solutions:

• Singlet state: φ(r1, r2) is symmetric and χ(s1, s2) is antisymmetric. The
spin part is written as χS(s1, s2):

ΨS(r1, r2, s1, s2) =
1√
2

[φα(r1)φβ(r2) + φα(r2)φβ(r1)]χS(s1, s2) (2.11)

The total spin associated to this state is S = 0.

• Triplet state: φ(r1, r2) is antisymmetric and χ(s1, s2) is symmetric. The
spin part is written as χT (s1, s2):

ΨT (r1, r2, s1, s2) =
1√
2

[φα(r1)φβ(r2)− φα(r2)φβ(r1)]χT (s1, s2) (2.12)

The total spin associated to this state is S = 1.

To each state is associated an energy ES and ET . Through classical consid-
erations we can derive quite easily that these energy states will be different.
Consider the triplet state. The spatial part is such that φ(r1, r2) = 0 when
r1 = r2. The two electrons will generally stay one far from the other. In
the single state, instead, the electrons will enjoy stay closer. By considering
the Coulombic interaction, we can understand that charged particles with
the same sign will require more energy to stay closer. Therefore we expect
ES > ET .

From a more rigorous approach, we can derive the Heisenberg interaction,
describing the energy levels associated to a system made of two interacting
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electrons with spins S1 and S2 .

Hex = −JS1 · S1 (2.13)

Here, J is called exchange interaction and represent the difference in the en-
ergy between the singlet and the triplet state J = ES −ET . This expression
satisfy the previous considerations. If two electrons are in the triplet state,
then S1 and S2 will have the same eigenvalues and their scalar product will
be positive. Therefore, the energy is negative. Conversely, if the electrons
are in the singlet state, the energy will be positive and therefore higher.
In reality, things are more complex. Indeed, the nice picture we have here
considered, by assuming two electrons to be non interacting with the envi-
ronment, is not always representative. Anyway, the Heisenberg Hamiltonian
is still able to reproduce well all the properties seen for a ferromagnet. In
particular, we can conclude that the (short range) interaction between neigh-
bouring magnetic moments is able to induce order in the system. This will
be our starting point. As we will see, this simple model embeds all the
characteristics that we need to simulate the real behaviour of ferromagnetic
systems.
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Chapter 3

Out of Equilibrium Simulations
for the Ising Model

In this chapter, the methods adopted in this work are presented and dis-
cussed. In particular, a brief overview of the Ising model, statistical me-
chanics and Monte Carlo simulations are first presented, continuing with an
explanation of the core algorithm used for all the simulations in the following
chapters.

3.1 The Ising model

Every model tries to emulate how a specific real system behaves and to make
predictions on its future evolution. Moreover, a model can reveal the essential
characteristics regulating a specific phenomenon: starting from few rules, if
it is able to replicate with a good agreement the real behaviour, it means
that we have grasped the key components of the phenomenon.

As an example, we may consider a ferromagnetic system. As already said,
it has a rather complex behaviour, showing overall magnetization in partic-
ular temperature conditions. This system has been described by the Ising
model, developed in 1925 by Ernst Ising in his doctoral thesis [8]. It has
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a very simple structure which, however, entails all the basics characteristics
that allow reproducing the order-disorder phase transition. The Ising model
accounts for a lattice of N points. The lattice geometry can be chosen freely,
considering different shapes (square; hexagonal) and various dimensionalities
(2D and 3D usually). In it, to each lattice point is associated a spin, schema-
tised as a scalar, which can only take two values: ±1. A spin with value
+1 (−1) represents a magnetic moment with up (down) orientation. Each
spin interacts with its neighbours through exchange interaction J and feel
the effect of an external field H. Overall, to the whole system is associated
a Hamiltonian of the type:

H = −J
∑
〈i,j〉

sisj − µ0H
∑
i

si (3.1)

in which 〈i, j〉 indicates that site i and j that appear in the sum are nearest
neighbours. There is also the possibility to extend the sum over the second
neighbours. In this case, the derived model will be called second-neighbours
Ising model. In all our simulations we will apply periodic boundary condi-
tions: the lattice can be imagined as folded to avoid presence of borders.
Considering for example a 1D chain with periodic boundary conditions, the
last spin in the structure will interact with the first one. In this way we
are able to minimise the finite-size effects, accounting for spins that do not
interact with the same number of neighbours as all the others.
In this work, we consider a 2D Ising model with only the first nearest-
neighbour interaction, if not differently specified, with periodic boundary
conditions. This is a convenient choice since it is possible to derive exactly
the equilibrium configuration, as it derived by Onsager in 1944 [9]. There-
fore, we are able to compare some of our results with the theoretical known
values.
Now, a few definitions. To describe the Ising model properties, we can rely
on some physical quantities such as the magnetization of the system:

M =
N∑
i=1

si; (3.2)

and the magnetic susceptibility:

χM =
∂M

∂H
(3.3)

13



We can consider an easier way to derive the magnetic susceptibility without
the necessity to consider numerical derivatives. We will use the following
relation (its derivation can be found in [10]):

χM = β(〈M2〉 − 〈M〉2) (3.4)

moreover, since the magnetization of the sample depends on the number of
lattice points and we want to be able to compare the results coming from
systems with different N , we will rely on the magnetization per site, defined
as:

m =
1

N

N∑
i=1

si; (3.5)

These quantities (and others defined later on) depend on external parameters,
such as temperature and the magnetic field. Understanding their dependence
allows us to enrich our knowledge of magnetic systems and, possibly, to
predict their behaviour.

We can now make few more observations. In general, the Hamiltonian (3.1)
allows to retrieve the energy of the system (E) associated with a given dis-
position of the spins inside the lattice. As known from statistical mechanics,
the equilibrium properties depend on the temperature of the system. Indeed,
the thermodynamic potential that governs the behaviour of the system is the
Helmholtz free energy, defined as:

F = E − TS (3.6)

in which S represents the entropy of the system and T its temperature.
Under prescribed temperature and volume the equilibrium configuration can
be determined by minimising F .

Formula (3.6) shows the presence of two competing phenomena: on one side
the spins would like to share the same direction, decreasing as much as pos-
sible the energy term related to the exchange interaction; on the other, tem-
perature brings disorder, favouring configurations that have as much state
as possible and hence a high entropy value. Therefore, by playing with the
temperature, we are able to induce the exchange interaction to overcome the
temperature effect and vice-versa. This allows us to reproduce the thermo-
dynamical phase transition and to study its characteristics.
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3.2 Probability distribution in the canonical

ensemble

Statistical mechanics deals in general with a probabilistic approach describ-
ing the properties of systems with a large number of degrees of freedom..
This approach was developed to allow investigation over particularly large
systems, in which an exact solution of the dynamics of each component is not
only difficult (or impossible) to derive, but it is also useless, as the macro-
scopic properties we are interested in depend only on the average properties
of the system, rather than on the detailed description of the state of each
element. These systems are more common than one may expect. A common
example regards an ideal gas inside a chamber. The number of particles
fluctuating in it is of the order of the Avogadro constant (1023). Considering
all the particles and their possible behaviour with respect to each one of the
others requires an incredible effort. Statistical mechanics avoids solving all
the complex dynamic equations that can be derived and, instead, considers
a probabilistic approach.

The basic idea behind statistical mechanics relies on the presence of a Hamil-
tonian H which describes the studied system and defines a set of “states”in
which we can find it. With every state i of the system is associated an en-
ergy level Ei. The transition from one state to the others is allowed by the
presence of a thermal reservoir, which can add or extract energy to/from the
system. The transition is characterised by a certain rate R(µ −→ ν), which
describe the probability per unit time that the system in state µ and energy
Eµ will make a transition into state ν with associated energy Eν . Here, we
assume transition rates to be time-independent. If we define with wµ(t) the
probability that the system is found in state µ at time t we can derive the fol-
lowing equation, defined as master equation, representing the time evolution
of wµ:

dwµ(t)

dt
=
∑
ν

[wνR(ν −→ µ)− wµR(µ −→ ν)] (3.7)

The first term in the sum represents the rate with which a system coming
from state ν falls in µ; the second term takes into account the inverse pro-
cess, considering the probability that a system exits from µ. If one solves
the system of differential equations (for all possible µ) and provides the nor-
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malisation condition of the probabilities w, one can find how wν varies in
time. The importance of such dependency is embedded in the probabilistic
approach. Once we know the probabilities that the system can be found in
all the different states at a given time, we can compute the expected values
of the physical quantities attached to the system as follows:

〈Q〉 =
∑
µ

wµQµ (3.8)

where Qµ represents the value of the physical quantity Q when the system
is in state µ.
But what it means to substitute Q with 〈Q〉? The latter one can be inter-
preted as the average value of the physical quantity Q measured over multiple
systems all prepared with the same initial conditions and then left free to
evolve freely. Another interpretation, although a little more delicate, can
be considered by making multiple measurements over the same system but
at different times. Obviously, in this case, we must be sure not to change
the conditions in which we are running the experiment. The equivalence
of both experiments (averaging over many samples vs averaging one system
over many times) is ensured when the system is ergodic. It can be proven
that a Hamiltonian system kept at constant (finite) volume and (non-zero)
temperature is ergodic.
This clarifies in which sense we are considering a probabilistic approach when
we rely on statistical mechanics.

An equilibrium state is defined as the state in which all the dwµ/dt become
null. In this case, the probabilities wµ will not change in time, as all the
physical quantities related to the system. Therefore, if the transition rates
assume values in which the right hand side of equation (3.7) is always null,
we can say that the system is in equilibrium. This could happen in the long
run. Therefore, In this case, we can write:

pµ = lim
t→∞

wµ (3.9)

Moreover, we know that in a system in equilibrium with a thermal reservoir,
the occupation probability pµ related to a state with energy Eµ satisfies the
following condition:

pµ = lim
t→∞

wµ =
1

Z
e−βEµ (3.10)
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where β = 1/kBT (kB ≈ 1.38 · 10−23JK−1, the Boltzmann constant), and Z
is a normalisation constant, called partition function.
The partition function is more than just a normalisation constant. Indeed,
it allows deriving all sorts of properties of the system. As an example, if we
know the expression of Z for a particular system, we can derive directly the
average energy of the system 〈E〉 as:

〈E〉 = − 1

Z

∂Z

∂β
(3.11)

What presented thus far gives an idea of how powerful Statistical Mechanics
is. The main issue with all of this is that most of the time, in real cases, to
derive the partition function is quite a nightmare, if not impossible. In this
case, we have to rely on a different approach. This is the case of numerical
simulations, as the Monte Carlo that we now present.

3.3 Monte Carlo simulations

Monte Carlo simulations are a computational method developed to derive
estimations of quantitative characteristics related to Statistical Physics prob-
lems. If one considers some practical examples, one can understand why the
exact values cannot be easily derived. We have, therefore, to rely on esti-
mations. Consider, for example, a L × L bi-dimensional Ising system. Its
characteristics can be completely derived from the partition function:

Z =
∑
{si}

e−βH (3.12)

where {si} indicates the sum over all the possible orientation of the spins
inside the lattice. If we chose N = 10, we end up doing a sum over 210 terms,
each of which requires the calculation of the system Hamiltonian (almost 26

operations) and of an exponential. Its derivation requires high computational
power. Furthermore, if N increases, the required calculations increase expo-
nentially. This cannot be considered as a feasible way of deriving information
over the system. A different way must be pursued.
In our help comes all the numerical methods and, specifically in this work,
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the Monte Carlo simulation. Indeed, in just a few words, the Monte Carlo
simulation creates a fictitious replica of a real system and a chain of states
through which the replica evolves as to emulate the behaviour of a real sys-
tem. By numerous samplings of the physical quantities of such fictitious
system, an estimate of the real ones can be derived.
Let us now look a little more closely at the problem of deriving estimations
of the system’s properties. Ideally, we would like to consider the following
estimator related to the physical quantity Q:

〈Q〉 =

∑
µQµie

−βEµi∑
µ e
−βEµi

(3.13)

where we consider a sum over all the states µ. In reality, in large sys-
tems, due to the enormous number of available states, we can only sam-
ple a “small”number of them. We will choose them following a particular
probability distribution pµi which depends on the states µi. Therefore:

QM =

∑M
i=1Qµip

−1
µi
e−βEµi∑M

i=1 p
−1
µi
e−βEµi

(3.14)

Now, it is important to select the appropriate values for pµ. As an example,
if we chose pµ = 1, we end up with a truncated version of the estimator
Q. Because M must be finite, we will have to avoid some states and it may
happen that we left out some important ones (in terms of weights in the
sum). In this case, the estimation would be worse. The real problem, then,
concerns deriving the appropriate pµ as to pick more frequently the most
important state (to still have a good estimation of Q) but as to reduce as
much as possible the number of states required to sample. This technique
takes the name of importance sampling and requires a brief discussion.

3.3.1 Importance sampling

A possible choice for pµi can be to consider the Boltzmann probabilities:
pµi = 1/Ze−βEi . In this case, we will simply obtain:

QM =
1

M

M∑
i=1

Qµi (3.15)
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which corresponds to the mean of all the measured M values. To understand
why this choice of pµi , we can consider the case in which the system is in a low
temperature and occupies one of the lowest-lying energy levels. The states
where the system can be found and, therefore, that will characterise the value
of Q are the same ones that we will sample more often. Our estimation will
be a reliable estimate of the real measured quantity.
But, how do we pick the states proportional to the Boltzmann statistic? The
Monte Carlo simulation solves this problem by building an appropriate chain
of states defined as “Markov chain”which will give a density of states that
follows the Boltzmann probability.

3.3.2 Markov chain

A Markov chain is the result of a Markov process. This process starts from
a state µ and derives a new one (ν) following specific criteria. In particular,
it links the two states by a certain probability, P (µ −→ ν), that is such to
verify the following properties:

• Time independence.

• It depends only on the properties of state µ and state ν.

• Normalisation condition:
∑

ν P (µ −→ ν) = 1.

Nothing is said about P (µ −→ µ) (probability to remain in the same state)
which can be taken also different from 0. As we will see, in the Metropolis
algorithm, this feature will be used consistently. The system will be allowed
to remain in the same state for as long as needed. The Markov chain is
designed to give, in the long run, states that appear with probability equal
to the Boltzmann statistics. In this way, considering all the states after a
certain point in the chain and evaluating them, we will obtain the desired
pµi and therefore a good estimation of Q.
The Markov chain must also satisfy two additional conditions that now we
present.
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Ergodicity

Ergodicity requires that every possible state could be, sooner or later, con-
sidered in the Markov chain and therefore not excluded a-priori. This is
a crucial requirement. Imagine not to satisfy the ergodicity condition and
therefore to have two different groups of states that are not linked. Now,
if we start the Markov chain in one of the two groups of states, we would
miss the chance of obtaining one of the states from the other group. This
would mean that, depending on the starting condition, we will probably miss
sampling important states with consistent pµ.

Detailed balance

Detailed balance, instead, is a more subtle condition. Practically, it requires
that the probabilities of moving into or out from the state µ must be equal:

pµP (µ −→ ν) = pνP (ν −→ µ) (3.16)

This condition provides that the Markov process will generate states with
probability following the Boltzmann distribution, at equilibrium. Moreover,
it also eliminates the possibility that the Markov chain ends up locked inside
a loop of states but instead reaches a dynamic equilibrium. Both of these
consequences are not trivial and are further explained in [10].

Thus far, we have always spoken about equilibrium conditions, even though
we may also be interested in the out-of-equilibrium properties of the system.
In particular, all the Markov process has been found to give a reliable succes-
sion of states provided that we are in equilibrium, but nothing is said before
the equilibrium is reached. Or not?
The condition of detailed balance is more general. If we want the Boltzmann
statistics at equilibrium then we simply impose:

P (µ −→ ν)

P (ν −→ µ)
=
pν
pµ

= e−β(Eν−Eµ) (3.17)

But if we chose a different statistic for pµ then the chain will satisfy a different
statistic. This may become helpful in case we want to say something in the
out-of-equilibrium dynamics, as we will see.
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Nevertheless, detailed balance does not completely settle the problem. In-
deed, only the ratio between the transition probabilities has been fixed, noth-
ing is constrained regarding their single value. This gap becomes quite useful.
In particular, we can decompose each transition probability in two distinct
terms: acceptance ratio A(µ −→ ν) and selection probability g(µ −→ ν), as
follows:

P (µ −→ ν) = g(µ −→ ν)A(µ −→ ν) (3.18)

The selection probability represents the probability that from a state µ the
Markov process will generate the state ν; the acceptance ratio, instead, deals
with the probability that the generated state will be effectively chosen as to
be the next one in the chain. In a certain way, we have that g deals with
the a-priori probability to find a new state, A with the a-posteriori probabil-
ity, once the state has been generated/investigated and we have the correct
understanding as to refuse it or not (depending on if we are going towards
equilibrium, as to obtain the Boltzmann statistics or not).
We have many choices. As an example, we can consider the Metropolis ap-
proach: a certain number K of states ν are identified as “first neighbours”of
the present µ. These “first neighbours”could be all the states ν that differ
from µ only in the state of one of its elements. Then it is chosen:

g(µ −→ ν) =

{
1
K
, if ν is a “first neighbour”

0, otherwise
(3.19)

Every “first neighbour”state has the same probability to be selected as the
next one. But it is not guaranteed to be the next one in the Markov chain
since there is the possibility that it may be rejected. This type of approach
will be called “a-priori”. Instead, in “a-posteriori”approach, the acceptance
ratios are always equal to 1. The new state will be accepted no matter
what, reducing the number of attempts required before a new state is found.
In this case, the real problem comes from the selection ratios. They must
embed information on the state that will be generated and sets their values
consequently. This requires a-priori knowledge, which is something not easy
to derive.

In the following paragraphs, we will deal with all of these approaches. First,
we consider the most famous a-posteriori approach, the Metropolis algo-
rithm. Afterwards, we will present, instead, a-priori approach: the Lebowitz
algorithm.
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3.4 Metropolis algorithm

The Metropolis algorithm allows to perform simulations over the Ising sys-
tem, characterised by the Hamiltonian:

H = −J
∑
〈i,j〉

sisj − µ0H
∑
i

si (3.20)

First, we have to define how the new state ν is generated starting from µ.
The Metropolis algorithm is devised to consider a single spin-flip dynamics,
in which the new state is generated from the old one by inversion of a single
spin in the whole structure. This means that starting from µ we will have N
possible next states. Then, it considers for simplicity:

g(µ −→ ν) =
1

N
(3.21)

independently from the final state ν. All the possible states have the same
probability to be selected. From this, it is quite simple to demonstrate that
the ergodicity property is verified: any state can be reached from any other
state, in a finite number of steps. If we want to preserve the condition of
detailed balance, the acceptance ratios must satisfy the condition:

A(µ −→ ν)

A(ν −→ µ)
= e−β(Eν−Eµ) (3.22)

As to increase the efficiency of the algorithm, we want to have as high as
possible acceptance ratios. For this reason, the Metropolis algorithm consid-
ers:

A(µ −→ ν) =

{
e−β(Eν−Eν), if Eν − Eν > 0

1, otherwise
(3.23)

Every “move”that brings the system in a lower energy state is accepted. In
case the energy has to increase, the algorithm has a certain probability to
reject the “move”.
The core of the simulation requires the following steps:

1. With equal probability, a spin in the lattice is chosen to be reversed.

2. The ∆E deriving from the inversion of that spin is calculated.
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3. If ∆E ≤ 0, lowering the system total energy, the move is accepted. If
∆E < 0 then we have a probability equal to e−β(Eν−Eν) to proceed in
the flipping. A random number r is generated in the interval [0, 1).
If r < e−β(Eν−Eν) then the move is accepted; otherwise, the move is
rejected and the system remains in the same state.

4. If the spin is flipped, then energy and magnetization of the system are
updated.

Within this algorithm is embedded the choice: P (µ −→ µ) 6= 0.

Now we have to deal with an important aspect, which regards all the simu-
lations. What do we choose as the initial configuration for the lattice? The-
oretically, every possible state for the system, i.e. arrangement of the spins
inside the structure, would not make any difference at all. But we can still
choose an initial configuration to allow the system to proceed more quickly
towards equilibrium. Indeed, as already said, a real ferromagnetic system will
tend for T → 0 to a completely magnetized configuration. Indeed, for T = 0,
the equilibrium configurations are the ones in which the system has all spins
equally oriented and |m| = 1. If we increase the temperature, some spins will
gain energy due to thermal fluctuation and the equilibrium will start to drift
from the one completely magnetized. At finite T , but still lower than Tc,
the system will exhibit |m| > 0. For T →∞ thermal fluctuation completely
overcomes the interaction energy and each spin orients independently from
its neighbours. At equilibrium, in this conditions, the magnetization oscil-
lates around 0 and the lattice has randomly oriented spins. Therefore we can
define two main equilibrium conditions: completely magnetized and com-
pletely random configurations, respectively for T → 0 and T → ∞. They
will be considered as a starting point for our simulation. Generally, if we
simulate T > Tc we will start with a system with random orientation of the
spins. Otherwise, we will start from a configuration completely magnetized
(m = +1 or m = −1).
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Figure 3.1: Average magnetization (over 200 runs) followed by different al-
gorithm (Metropolis in solid line, heat-bath in dotted line) for T = 2.1 < Tc.
Source [10].

3.5 Out-of-equilibrium dynamics

The Metropolis algorithm can reproduce the main characteristics of a mag-
netic system, showing a phase transition between order and disorder for a
finite value of the temperature. But, one of the drawbacks is related to the
fact that this model can reproduce only the equilibrium properties of the
system. The simulation does not give reliable information concerning how
a system goes to equilibrium. Indeed, if one considers a different algorithm
for the Monte Carlo simulation of the same magnetic system, the system
properties follow different dynamical behaviours as shown in fig. 3.1.

Which one is the more reliable? The answer is no one of them. All the equi-
librium algorithms are thought to derive the correct equilibrium behaviour,
rather than the transient regimes. The same problem applies when, in a
system in equilibrium, we decide to change the parameters in time as the
magnetic field or the temperature. In this case, the system may fail to repro-
duce the correct behaviour of the physical parameters such as magnetization
or magnetic susceptibility. For this reason, a different approach must be con-
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sidered. This is the aim of the following paragraph, where a now dynamical
approach is considered.

3.6 Glauber dynamics

A time-dependent approach was developed by Glauber [2] as to follow the
time-dependent properties of the system. The model allows to determine a
new expression for the transition probabilities P (µ −→ ν), different from
what is assumed in the Metropolis algorithm. As we saw, we have a certain
degree of freedom in the selection of P (µ −→ ν) and the detailed balance
condition does not give any constrain over the single value, just over the ratio
between it and the inverse transition.

The procedure for the transition probability determination now follows, as
presented in [11]. We indicate with wj(s1, . . . , sj, . . . , sN) the transition prob-
ability per unit time for the j-th spin, i.e the probability that spin sj will be
inverted, for a give configuration of the lattice {s1, . . . , sN}. For simplicity,
we will shorten the notation as wj(s1, . . . , sj, . . . , sN) = wj(sj) We also iden-
tify with p(s1, . . . , sj, . . . , sN , t) the probability that, at time t, the system
is in state {s1, . . . , sN}. We can write the following master equation (more
precisely a set of 2N differential equations, on for all the possible states)
representing the variation of the probability with time.

d

dt
p(s1, . . . , sj, . . . , sN , t) = −

N∑
j=1

wj(sj)p(s1, . . . , sj, . . . , sN , t)

+
N∑
j=1

wj(−sj)p(s1, . . . ,−sj, . . . , sN , t) (3.24)

in which the first term in the right hand side represents the transition rate
out from the considered state to any possible one (in the single spin-flip
dynamics) and the second term the transition rate into it. In the equilibrium
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condition d
dt
p(s1, . . . , sj, . . . , sN , t) = 0 and therefore:

N∑
j=1

wj(sj)p(s1, . . . , sj, . . . , sN , t) =
N∑
j=1

wj(−sj)p(s1, . . . ,−sj, . . . , sN , t)

(3.25)
in reality, detailed balance sets an even stronger condition. Indeed, we will
have

wj(sj)p0(s1, . . . , sj, . . . , sN , t) = wj(−sj)p0(s1, . . . ,−sj, . . . , sN , t) (3.26)

in which p0 denotes that we are considering the probabilities of finding the
system in the considered state at time t in equilibrium condition. Finally,
since the equilibrium probabilities are proportional to the Boltzmann factors
e−βH we derive:

wj(sj)

wj(−sj)
=

1− sj tanh(βEj)

1 + sj tanh(βEj)
(3.27)

where, given Jk,j equal to the interaction energy between spin j and spin k,

Ej = µH +
N∑
k=1

Jk,jsk (3.28)

where µ indicates the magnetic permeability, such that: µH = B. We chose
as single transition probability the ones of the form:

wj(sj) =
1

2α
(1− sj tanh(βEj)) (3.29)

Here, α is expressed in seconds, since wj(sj) is expressed by the inverse
of a time. We can think of it as a measurement of the time frame of the
system. Since we are not considering simulations reproducing behaviours of
real systems and we can take arbitrary the unit time, we consider α = 1s.
In future works, a better choice for the constant α could be considered to
match the behaviour observed in real materials. We expect a lower-valued
time constant since a transition rate of one inversion per second would require
a consistent amount of seconds (of the order of the atoms in the materials)
to allow the system to reach equilibrium.
With these new transition probabilities, we are able to describe the time-
varying conditions of our system. In particular, the magnetic field time
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dependence is considered implicitly in the expression of the state energy
Ej. in our case, we extend this assumption to the case in which also the
temperature change in time, by considering β as the time-varying parameter.

In this work, considering the Glauber dynamics is our first choice. The
second one is related to the implemented algorithm. As said in the previous
paragraph, the Metropolis algorithm, especially near equilibrium, has many
steps that are rejected. This causes the algorithm to run slowly, especially
at low temperatures. We present now an a-priori type of algorithm which, in
exchange for little complexity in the algorithm is able to always accept the
inversion of the spin.

3.7 Lebowitz algorithm

In this work, instead of relying on the standard Metropolis algorithm, we have
decided to consider a different approach for the Monte Carlo simulation. As
seen, the Metropolis algorithm has a quite simple structure that relies on the
probability of spin-flip depending on the energy that the reversal would bring
into the system. Being a posteriori approach, the spin-flip event is questioned
afterwards the spin has been chosen. But, what does it happen if we instead
chose the spin with a criterion? In particular, with an energy criterion? We
should immediately address the problem of whether to flip it or not. Even
better, if we chose the spin depending on its energy (not anymore at random
between all the N spins in the structure), we can stop interrogating if it must
flip or not since it will be flipped no matter what. This is what we aim to
do and what is allowed considering the Lebowitz algorithm [1].

As mentioned before, the a priori approach allows saving a great quantity
of computational time. Indeed, think at an Ising system in the condition
T < Tc and near-equilibrium (almost completely ordered). The Metropolis
algorithm picks a spin at random and, since most of the spins are equally
oriented, it is more likely that the chosen spin will have the same orientation
as the neighbours and no energy gain will be associated with its reversal.
This means that we have a small probability to flip it and its reversal will
be rejected. The rejection goes on and on until suddenly or a spin that has
the opposite direction of its neighbours is chosen, or the random generation
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number will give a positive result. In the case of the Lebowitz algorithm,
instead, no matter how near we are to equilibrium, a spin is inverted at each
step. Therefore, we have a faster algorithm (10 times faster when T ≈ 0.5·Tc).
What the Lebowitz algorithm does, is just a reorganisation of the Metropolis
algorithm.

What we have to keep in mind is that the simulation steps will not be com-
parable. This is a problem for the Lebowitz algorithm since it is quite clear
that if a system is in an equilibrium condition, spin-flip events must happen
at a lower rate. The Metropolis algorithm has simulation steps that allow
following the time evolution. The Lebowitz algorithm, instead, has to rely
on a different time concept which will be explained later in paragraph 3.8.

3.7.1 Structure of the Lebowitz algorithm:
Ten-Fold Way

As said before, the most important difference with respect to the Metropolis
algorithm is that now we want to chose with a certain probability the next
state to invert (g(ν −→ µ) 6= const), as to retain always the acceptance
ratio equal to one. This can be achieved only by considering a priori the
energy variation that a spin-flip event could induce in the system. Is this
meaning that we have to track all the N possible energy variation that all
N possible spin-flip events can bring? Fortunately not. We can divide all
the spins in the structure in different classes, depending on the value of the
energy variation that their flipping would bring into the system. Now, how
many classes do we need? The answer can be obtained by considering the
Ising Hamiltonian, equation (3.20) and focusing the attention over a single
spin sj: its flipping can change the energy in the system due to change
in the reciprocal orientation with neighbouring spins and with the external
field. We consider now a bi-dimensional system in which every spin has four
neighbours, even though the extension to higher order can be easily achieved.
In case of a null magnetic field, since all the exchange interactions are equals
and independent from the magnetic moment position Ji,j = J ∀i, j, a spin-flip
event can change the system energy by−4J ;−2J ; 0; 2J ; 4J . Therefore, in this
case, only 5 classes would be required, depending on the reciprocal orientation
with the neighbouring spins. What if, instead, we were to consider also a
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Classes of a 10-Fold Way

Class spin orientation
Number of nearest

∆E
neighbours spin up

1 +1 4 +4
2 +1 3 +2
3 +1 2 0
4 +1 1 -2
5 +1 0 -4
6 −1 4 -4
7 −1 3 -2
8 −1 2 0
9 −1 1 +2
10 −1 0 +4

Table 3.1: Table with the main characteristics of the classes related to the
10 Fold Way algorithm for a square lattice.

magnetic field? In this case, also the reciprocal orientation with the magnetic
field would matter. The number of classes would double, considering also spin
oriented “up”or “down”. Table 3.1 contains the information about all the
classes and their characteristics.

From a practical point of view, to guide us in the selection of the spin to
invert at each step of the simulation, we will have a variable that keeps track
of the class of each spin in the structure. This variable is called CLASS. In
particular, it is a matrix with ten rows and a certain number of columns. In
the k-th row are contained all the spins in the lattice in the k-th class. Saved
in each cell there are the coordinates of the spin inside the lattice.
Now, upon a flip inversion, the class of the chosen spin will change by ±5,
since the orientation of the neighbours will remain the same. But it is not the
only one to change class. Also, all its neighbours experience a modification:
indeed, their number of neighbours with spin up will change by −1 if the
selected spin is flipped in the state up; will change by +1 if the selected spin
is flipped in the state down.
We have therefore the need to quickly retrieve the neighbours of the selected
spin inside the matrix CLASS to modify their position in it. For this task,
we use an additional (L× L) matrix that we call “LOCATION”.
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To sum up, we will use in the algorithm 3 auxiliary matrices (or arrays, if
one prefers):

• LATTICE: is the matrix with the spins schematised as +1 (−1) if have
an up (down) orientation.

• CLASS: contains a number of row equal to the number of total classes.
In each row are listed the position in LATTICE (row and column) of
the spins in that particular class indicated by the row.

• LOCATION: required to find the address of each spin inside the matrix
CLASS and therefore retrieve its class. This matrix allows one-to-one
correspondence among the matrices LOCATION and CLASS.

Other auxiliary vectors, allowing a faster or more readable code are:

• N-ARRAY: array of 10 cells. The i-th cell contains the number of spins
in the i-th class.

• M-ARRAY: array of 10 cells. The i-th cell contains the number of spins
in the previous classes:

M-ARRAY(i) =
10∑
i=1

N-ARRAY(i) (3.30)

• Q-ARRAY: is defined as follows:

Q-ARRAY(i) =
10∑
i=1

N-ARRAY(i) · P (i) (3.31)

where P (i) is the transition probability for a spin flip in the i-th class.
This array is used for the determination of the spin to invert every step.

Fig. 3.2 shows the structure of the Matrices after some steps of simulation,
starting from a completely random orientation of spins inside the lattice.

Now it follows the procedure adopted in the Lebowitz algorithm. It can be
divided into 4 sub-parts: initialisation of the variables; spin selection; update
of the variables; measurement of physical variables. Let us start with the first
one, initialisation:
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Figure 3.2: Graphical representation of the matrices. In the first figure, the
lattice, with spin up white and spin down black. In the second figure, the
matrix LOCATION that maps every spin in matrix CLASS; here the colours
indicate the class, the position in the row is not represented here. In the third,
the matrix CLASS; each colour indicates a different couple of coordinates.
In the last, the vector N-ARRAY, which simply counts the number of spins
inside every class.

1. At the beginning, the lattice is scanned: for each spin, the number of
neighbouring spin up is counted and its class is determined.

2. The spin position is added in the matrix CLASS, in the specific row,
in the empty cell with lower possible index.

3. After all the spins have been scanned, matrix CLASS is considered.
Reading from each occupied cell of CLASS, the coordinates inside LO-
CATION are found and we access to it. The cell in LOCATION that
we have found stores now the coordinate of the cell CLASS. This allow
a one-to-one correspondence between the matrices.
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4. N-ARRAY is updated at the end of the process, taking in k cell the
number of elements in the k row of CLASS.

5. M-ARRAY is simply taken as:

M-ARRAY(k) =
k∑
i=0

N-ARRAY(i) (3.32)

After the initialisation, we can start with the proper simulation. At each
step, a spin is selected with a proper procedure that now follows:

1. Allowing the possibility of time-dependency, external physical variables
(magnetic field or temperature) are updated. After their modification,
also the transition probabilities from Glauber dynamics are accordingly
modified, following equations (3.29).

2. The vector Q-ARRAY is updated following definition (3.31).

3. A random number R is chosen wit uniform probability inside the inter-
val [0,Q-ARRAY(10)).

4. The class of the spin to invert (k) is selected such that:

Q-ARRAY(k − 1) ≤ R < Q-ARRAY(k) (3.33)

5. The spin is chosen with uniform probability inside the class k. It is
generated an integer random number R∗ in the interval [0,N-ARRAY]
and the spin that will be flipped can be found in CLASS(k,R∗).

Notice that is not possible to pick an empty class, since in that case the
related Q-ARRAY value will be equal to the precedent class.
We now consider the algorithm for the variable update part:

1. The spin that must be inverted now changes position in CLASS. Its
class change by +5 if it was in spin up or −5 if it was spin down
before the reversal. Matrix LOCATION is consequently updated, as
N-ARRAY and M-ARRAY for both the classes that have lost/gained
a spin.
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2. The neighbouring spins are now considered. For each one of them,
the position in CLASS (accessed considering the matrix LOCATION)
is changed by +1 row if the inverted spin was down, −1 row if the
inverted spin was up before the inversion. As before, the spin position
is added inside CLASS as to occupy the empty cell with lower possible
index. LOCATION is then updated, followed by both N-ARRAY and
M-ARRAY.

Finally, the physical variables are measured. It is done by considering the
value at the precedent step and then considering the update coming from the
reversal. The magnetization changes of ∆m = +2 (−2) if k ≤ 5 (> 5). The
energy changes of an amount indicated by the class of the spin that has been
flipped: Et+ti = Et + ∆E(k). For our simulations, most of the time, not all
the series of values for all the physical properties were considered instead,
only one every fixed number of simulations steps (usually measured in Monte
Carlo single steps, MCSS, which corresponds to N number of simulation
steps) or, even better, every ∆t. Indeed, we have to recall that the MCSS
for the Lebowitz algorithm is not reliable in describing the evolution of the
simulation since, at every step, a spin is inverted. Instead, we would rely
on a different physical variable that could take into account the fact that a
MCSS weights differently if we are near or far from equilibrium.

3.7.2 Time evolution

To every step of the simulation, we can assign a time variable representing
how fast the system leaves a state. This is achieved by considering the
following formula for time increment:

∆t =
τ

Q-ARRAY(10)
lnR (3.34)

where τ represents a time constant for the system (in our case, fixed to 1)
and R is a random number uniformly chosen in the interval (0, 1).
The expectation value for ∆t is proportional to Q-ARRAY(10)−1. Since Q-
ARRAY(10) is equivalent to the number of spins multiplied by the average
probability that an attempt will produce a spin-flip event, ∆t is proportional
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to the number of attempts per site. Moreover, this definition of the physical-
time embeds the choice of the Glauber dynamic. Indeed, while deriving
Q-ARRAY(10) we use the transition probabilities defined by relation (3.29)
obtained following the Glauber dynamics. For this reason, the physical-time
allows following the time evolution of out of equilibrium systems.

3.8 The concept of time

Now, we have to look a little closer to the problem of time. As previously an-
ticipated while dealing with Glauber dynamics, we will consider time-varying
parameters. Therefore, we have to specify which time we use as a reference.
Thus far, two times have been considered (other than the computational
time, which does not have any proper meaning for the simulation):

• The MCSS in the Lebowitz algorithm.

• The physical-time calculated at each step of the simulation.

The MCSS in the Lebowitz algorithm follows the succession of the states in
the Markov chain, even if it does not consider the possibility that between
two states the time for the transition could vary. Indeed, because the accep-
tance ratio is always equal to 1, between a state and the following there will
be always one simulation step. This does not sound physical. Consider the
case in which the system is magnetized, with T → 0: the inversion of a spin
in the opposite direction to the overall magnetization will require a certain
amount of time, being a thermal fluctuation. The inverse process, instead,
will happen statistically speaking more quickly since also the exchange in-
teraction cooperates to have all the spins magnetized. For this reason, we
consider the physical-time to change the external parameters. Since MCSS
and physical-time are not linearly correlated, it could be interesting to derive
their relative dependency. This will be investigated in the following chapters,
in different conditions.
In the Metropolis algorithm, instead, the MCSS resembles more the physical-
time condition, since P (µ −→ µ) 6= 0: at each simulation step does not cor-
respond the creation of a new state and for “moves”that brings the system
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far from equilibrium, more simulation steps are required, since more steps
will be discarded.
An important difference between the Glauber physical-time and the Metropo-
lis MCSS is now considered. In the latter case, all the moves toward states
with lower energy have the same transition probabilities associated, since
the acceptance ratio is always equal to one if ∆E ≤ 0. In the former case,
instead, spin-flip events with ∆E = −4J and ∆E = −2 have different tran-
sition probabilities. This is a better representation of a real system. As an
example, consider a ramp with a fixed length and a disc. The time required
before the disc reaches the end of the ramp depends on the angle θ between
the ramp and the ground: when θ increases, the disc velocity increases, and
less time is required before equilibrium is reached. This is what we simulate
with Glauber dynamics applied in the Lebowitz algorithm by considering
different transition probabilities.

In the following part of the work, whenever we will speak of MCSS we im-
plicitly refer to the ones of the Lebowitz algorithm, if not otherwise specified.
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Chapter 4

Defect-Free Bi-dimensional
System

The main focus of this chapter is to discuss the validity of the results obtained
considering the Lebowitz algorithm with Glauber dynamics applied to a bi-
dimensional square lattice through critical temperature measurements and
their comparison to the theoretical value. A first investigation of what means
consider the physical-time is presented, followed by a discussion concerning
the most widely used methodology for the critical temperature determination
and a new technique, based on the peculiarity of the algorithm employed.

4.1 Physical-time

As already mentioned, the introduction of a physical-time, implicitly consid-
ering the easiness with which a state towards equilibrium happens, allows to
detach the variation of time-dependent parameters from the simulation steps,
which in the Lebowitz algorithm has poor physical meaning. This detach-
ment becomes relevant only if the MCSS of the simulation and the physical-
time are not linearly correlated, otherwise the only difference between the
results with the two different methods would be merely a proportionality
factor.

36



Figure 4.1: The first panel shows the relation between physical-time and
MCSS. The second panel shows the related magnetization of the lattice func-
tion of the MCSS.

In order to investigate this aspect, the following simulation is devised: a
square lattice (L = 40) is prepared with random orientation of the spins
and then it is left free to evolve. The temperature (always expressed in
unit of J/k, J exchange constant and K Boltzmann constant) is fixed below
the critical one, as to induce the system to show an overall magnetization (in
particular, the temperature is fixed: T = 1.5). Therefore, we are able to track
down the relation physical-time versus MCSS in both the conditions “far
from equilibrium”(at beginning of the simulation) and “near equilibrium”(at
the end of simulation). Fig. 4.1 shows the results of the simulation.

It is possible to notice two different regions:

• Far equilibrium: the magnetization fluctuates while proceeding towards
the equilibrium state. The relation physical-time versus MCSS is linear
with a shallow angle.

• Near equilibrium: the magnetization fluctuates around the equilibrium
value (in this case ≈ −1). The relation physical-time versus MCSS is
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linear with a steep angle.

Actually, this behaviour is rather intuitive. In the “near”equilibrium condi-
tion the algorithm has the lowest energetic classes almost completely filled.
Therefore, Q-ARRAY(10), defined in the previous chapter, has the lowest
possible value and remains constant through time.
By considering the formula linking Q-ARRAY(10) and ∆t:

∆t = − 1

Q-ARRAY(10)
ln(R) (4.1)

we can notice that also the expected value for ∆t remains constant and has
the highest possible value. For this reason, in the near equilibrium condition,
the dependence physical-time vs MCSS is linear with steeper angle.
The measurements show that the variation in the proportionality coefficient
linking MCSS with physical-time tends to change by almost a factor of 10
depending on how far from equilibrium we are. This feature would not be
considered if we were relating time-varying variables to the MCSS : nothing
would change if the system was “far”or “near”equilibrium.

As to derive the relation with the initialisation parameters, simulations for
different system sizes and temperatures are considered and the coefficients
representing the proportionality constant between MCSS and physical-time
t are derived:

t = Knear/far ×MCSS (4.2)

The results are shown in fig. 4.2 and 4.3.

Considering fig. 4.2, it can be noted that the “near equilibrium”coefficient
does not depend on the particular choice of the lattice size L. Instead, the
“far equilibrium”coefficient is influenced by L. The difference between the
two coefficients, for a fixed choice of L and T , is in accordance with what can
be observed in fig. 4.1, giving an higher value for the “near equilibrium”one.

By looking at fig. 4.3, it can be observed that both near and far from
equilibrium coefficients are influenced by the temperature. An important
observation now follows. While decreasing the temperature, the “near equi-
librium”coefficient increases substantially. One MCSS correspond to almost
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Figure 4.2: T fixed. In the left panel “far equilibrium”coefficient; in the right
panel “near equilibrium”coefficient for different values of the lattice lateral
size.

Figure 4.3: L fixed. In the left panel “far equilibrium”coefficient; in the right
panel “near equilibrium”coefficient for different values of the Temperature.

103 physical-time units. Therefore, while considering a time-varying param-
eter (which could be the magnetic field or the temperature), one should con-
sider choosing a time dependence that allows the system a sufficient amount
of steps (fraction of the MCSS ) to adapt to the external variation. This
problem is not crucial in the case the system moves far from equilibrium. In
case it moves near equilibrium, the temperature limit must be checked. As
a rule of thumb, simulations with T < 1 are not considered.
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4.2 Critical temperature investigation

The classical bi-dimensional Ising Model has been demonstrated by Onsager
[9] to possess a critical temperature separating the ordered (ferromagnetic)
phase from the disordered (paramagnetic) phase. The exact value was shown
to be (in units of J/K):

Tc =
2

ln
(
1 +
√

2
) ≈ 2.26918531421 . . . (4.3)

If the system is left free to behave with T > Tc then it will reach an equi-
librium where every spin has, on average, a random orientation with respect
to the neighbours. On the contrary, if the temperature is fixed T < Tc the
system will reach an equilibrium where a preferential direction for the ori-
entation of the spins is present. This dependence on the temperature of the
system is represented in fig. 4.4, where the magnetization (m) is used in
order to describe order (m = 1) and disordered phase (m = 0).

Now, we are interested in deriving an estimate for the value of the critical
temperature from our simulations. In the bi-dimensional model, the exact
value of the critical temperature is known. This is a particular condition since
for other systems (3D Ising model, Ising model with “defects”as defined in
chapter 6, . . . ) no exact value is available. Right now we aim to verify the
ability of our system to match the known value, since sooner or later we may
be interested in calculating the critical temperature for different systems.
From fig. 4.4 a first estimation of the critical temperature can be derived,
even though more reliable procedures are usually used for its determination.
In the following paragraphs, different methods are presented.

4.2.1 Magnetic susceptibility

The traditional and more accurate way of experimentally determining the
value of Tc relies on the magnetic susceptibility of the system, defined by the
relation (3.4) which we report here for convenience:

χM = βN(〈m2〉 − 〈m〉2) (4.4)
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Figure 4.4: Magnetization function of the temperature applied. Simulation
done for a system with lateral size L = 128.

where N represents the total number of spins in the structure. The procedure
adopted for the derivation of χM is the following:

1. Temperature is fixed and the square lattice is prepared with random
orientation of the spins.

2. After waiting for a specific amount of time, in which the system reaches
equilibrium, the magnetization is sampled every ∆t fixed. As to decide
if equilibrium condition was reached, we have considered the magne-
tization autocorrelation function: it shows a plateau when the system
reaches equilibrium.

3. The value of χM is computed.

4. Steps 1-2-3 are repeated several times for different values of the tem-
perature.

A plot representing the dependence χM(T ) can be derived from this sim-
ulation. Where the magnetic susceptibility shows a maximum, the system
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Figure 4.5: On the left panel, the magnetic susceptibility; on the right panel,
the derived critical temperature for different dimensions of the lateral size
L = 64; 128; 256.

exhibits a phase transition and the related temperature value can be consid-
ered to be the critical temperature. Results of the simulation are shown in
fig. 4.5, for different lateral size L of the square lattice. Table 4.1 reports
the derived critical temperatures.

Critical temperature

L = 64 L = 128 L = 256
2.22± 0.01 2.25± 0.01 2.27± 0.01

Table 4.1: Table for equilibrium critical temperature.

The estimated values are in good agreement with the theoretical one and,
while the lateral size increases, the estimate becomes more precise, as repre-
sented in fig. 4.5.

4.2.2 Temperature driven experiments

The conventional way for the determination of the critical temperature is
the analysis of the Magnetic Susceptibility, as previously seen. Nevertheless,
different methodologies can be devised in order to derive it. As an example,
a first estimation of Tc can be obtained just from the plot of the magneti-
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zation function of the temperature, by considering the point in which the
magnetization crosses the 0.5 line.

In the following, a new technique is presented, which relies on the pecu-
liarity of the algorithm considered: the out-of-equilibrium behaviour. The
procedure is the following:

1. The starting temperature (Ti) is fixed and the system is prepared in
the adequate equilibrium condition (if Ti > Tc the system is prepared
with random orientation of the spins; if Ti < Tc the system is prepared
completely magnetized).

2. In a fixed amount of physical-time (∆t), the temperature is changed
from Ti to Tf and the magnetization is tracked.

3. The critical temperature is derived by considering the crossing of the
0.5 line.

4. The measurement is repeated several time, before changing ∆t.

5. The critical temperature in the limit of infinite ∆t→∞ (i.e. the case
we move through equilibrium states), can be interpolated.

For the standard Metropolis algorithm, this procedure would be off-limits.
We cannot rely on the system dynamics in out-of-equilibrium conditions. For
the Lebowitz algorithm, instead, the dynamics has a physical meaning and
the interpolation gives a reliable result.

Two separated experiments can be investigated: starting with Ti < Tc and
then “heating”the system (heating experiment), starting with Ti > Tc and
then “cooling”the system (cooling experiment). Typical simulations are the
ones represented in fig. 4.6.

To provide a statistical analysis, many repetitions of the same experiment
are considered. The critical temperature for a particular choice of ∆t can be
derived in different ways:

• Tc1 as the mean value of the Tc coming from each repetition.
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Figure 4.6: In the left panel, heating experiment, starting from a completely
ordered condition (time elapses from left to right). In the right panel, cooling
experiment, starting from a completely disordered condition (time elapses
from right to left).

• Tc2 as the Tc derived from the mean magnetization curve. The mean
magnetization curve can be obtained by simply considering the mean
of all the magnetization curve coming from the repetitions of the same
heating/cooling experiment.

• Tc3 as the Tc taken from the minimum magnetization curve. The min-
imum magnetization curve is obtained by superimposing all the curves
coming from the repetitions of the same heating/cooling experiment
and then interpolating the minimum magnetization for all the temper-
atures.

• Tc4 as the Tc taken from the maximum magnetization curve. The max-
imum curve is obtained by superimposing all the curves coming from
the repetitions of the same heating/cooling experiment and then inter-
polating the maximum magnetization for all the temperatures.

Generally, we expect Tc1 and Tc2 to be quite similar. Instead, due to presence
of outliers, Tc3 and Tc4 could be less precise estimates. Fig. 4.7 shows the
different curves introduced for the determination of Tc, for a particular choice
of ∆t. The graphics are obtained from the processing of 50 repetitions of the
same experiments, considering only the curves able to reach the equilibrium
condition (|m| > 0.95 for cooling experiment and |m| < 0.05 for heating
experiment) at the end of the temperature sweep.
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Figure 4.7: In the left panel, heating experiment, with minimum, mean and
maximum curve. In the right panel, same for the cooling experiment. Ex-
periments executed with the same value of ∆t.

By looking at the two plots, it can be seen that, in the case of the cool-
ing experiment, the minimum curve shows a slower transition if compared
to all the other curves. This can be understood by considering that the
complete magnetization of the sample requires the coordination of all the
lattice sites, unlike the demagnetization in which the spins start to behave
independently. Since the ordering process requires all the spins to cooperate
and requires a certain amount of time between the nucleation of just few
spins and the spreading to all the lattice, we expect the cooling experiment
to have a slowest transition towards equilibrium if compared to the heating
experiment. This tendency will be highlighted in the minimum curve, since
it interpolates the slowest possible transition towards equilibrium. Another
important difference between cooling and heating experiment comes from the
presence of metastable states along the trajectory. Striped configurations of
the lattice (as the one represented in fig. 4.8) can emerge while decreasing
the temperature and do not allow the system to reach equilibrium. These
metastable states appear only during the cooling experiment and leave the
system with a total magnetization far from 1. In order to avoid considering
the simulations that remain trapped in these striped configurations, a cut-off
threshold for the magnetization has been set (mthr = 0.95). This expedient
does not filter out systems that remain trapped for a short amount of time in
metastable states (and are able to reach equilibrium anyway before the end
of the simulation) to be considered in the calculations. But, only few systems
showed this behaviour in the simulations. The simulations not reaching the
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Figure 4.8: Example of striped configuration for a lattice white L = 100. The
with colour refers to spin oriented up; the black colour to spin oriented down.
This configuration is metastable: the system takes a considerable amount of
time before escaping from it and reaching equilibrium.

threshold level have been counted as failed simulations. We have noticed
that the failing rate tends to decrease while ∆t increases. This is reasonable:
if enough time is provided, the system is able to escape from a metastable
state with higher probability and it will reach more likely the equilibrium
condition.

Fig. 4.9 shows the results from heating and cooling experiments for different
values of ∆t. From the figure, it is possible to notice a tendency to converge
for ∆t → ∞ to a value near 2.3, for all the different lateral size of the bi-
dimensional system. Instead, while decreasing ∆t, all the derived values for
Tc tend to increase. In order to model this behaviour, we can consider the
presence of an intrinsic response-time (tres) showed by the system when an
external stimulus is applied, which delays the crossing of the m = 0.5 line
for a certain amount of time. It is possible to assume that this response-time
depends on the value of ∆t and on the specific experiment considered. Indeed,
the system response-time is expected to be lower in case the stimulus applied
varies rapidly. Moreover, in order to consider the presence of metastable
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Figure 4.9: In the first figure, heating experiments; in the second figure,
cooling experiments. The four critical temperatures are represented in the
case of different choices of the system lateral size: L = 64; 80; 96; 128. The
x-axis is chosen to be the inverse of ∆t, to visualise better the limit for
∆t→∞.
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states along the cooling experiment, we must have:

tres(cooling) > tres(heating) (4.5)

This time delay affects the measurement of the critical temperature. We can
consider the following relation between the equilibrium value of Tc and the
one measured Tc,Meas at a specific ∆t:

Tc,Meas = Tc,Eq + ∆T (4.6)

where

∆T = ∆T (tres) =
tres
∆t

(Tf − Ti) (4.7)

This justifies the different trend of Tc,Meas experienced while decreasing ∆t
for the two experiments. In case of cooling experiment, Tc,Meas decreases,
for the heating experiment Tc,Meas increases, as clearly showed in fig. 4.9.
Moreover, we retrieve the condition in which, when ∆t → ∞, the critical
temperature measured matches the equilibrium one.

The following paragraphs aim to estimate the equilibrium value of the critical
temperature, in order to compare it to the one known (equation (4.3)).

Mean curve

If we neglect assumption (4.5), in order to simplify the calculations, we can
assume:

tres(cooling) = tres(heating) = tres (4.8)

Thus
∆T (heating) = −∆T (cooling) (4.9)

And

Tc,Eq =
1

2
[Tc,heating + Tc,cooling] (4.10)

independently from the ∆t considered.
Fig. 4.10 shows the trend of the critical temperature, derived considering
the values of Tc1 and Tc2 separately. If the assumption (4.8) is reliable,
Tc,Eq should be constant over ∆t. This is generally the condition, even if a
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Figure 4.10: The top figure considers Tc1; the bottom figure considers Tc2.
The critical temperature trend is represented, function of ∆t, for different
choices of the lateral size (L = 64; 80; 96; 128). The x-axis is chosen to be the
inverse of ∆t, as to derive more easily the limit for ∆t→∞.
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Figure 4.11: Equilibrium critical temperatures derived from the measured
values Tc1 and Tc2, for different lateral size of the system. For convenience,
also the theoretical value is represented.

Critical temperature
L = 48 L = 64 L = 80 L = 96

Tc1,Eq 2.334 2.295 2.287 2.276
Tc2,Eq 2.300 2.288 2.283 2.278

Table 4.2: Table for equilibrium critical temperature

residual dependence emerges, mostly in the case of small lateral size of the
bi-dimensional system. This could derive from the presence of a residual
dependence of tres from the type of experiment considered, as suggested by
(4.5). Therefore, as final value for the equilibrium critical temperature, a
linear regression over one decade of data is considered and Tc,Eq is taken as
the intercept with the y-axis. The equilibrium critical temperatures derived
considering both Tc1 or Tc2 are reported in the table 4.2 and shown in fig.
4.11, for different lateral sizes of the system.

Good agreement with the theoretical value is shown. Moreover, while increas-
ing the lateral size, the value of the critical temperature decreases, following
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the relation suggested by Ferrenberg et al. [12]. The difference between the
two values derived shrinks while increasing the lateral size.

Minimum and maximum curves

In the previous paragraph, we have considered the system response-time
to be independent from the type of experiment, even if the considerations
about the striped configurations clearly induce us to think at the opposite.
In order to avoid the necessity of express such dependence we can try to
minimise the system response time, and, if possible, delete it from the equa-
tion. The response time of the system is the consequence of the presence
of metastable states, in which the system wonders for a certain amount of
time before proceeding towards equilibrium. Therefore, to eliminate tres from
the equation, we can build a fictitious simulation in which metastable states
are avoided. But, how do we devise such fictitious simulations? Instead of
preparing a particular simulation, we can think about the possible outcome.
If no metastable states are encountered, the system evolves in the fastest way
possible. Therefore, the outcome from such simulations can be considered
the minimum curve in the case of the heating experiment and the maximum
curve for the cooling experiment, already introduced previously and showed
in fig. 4.7. One of the possible strengths of this approach is the reliability of
the measurements. By looking at fig. 4.9, we can see that the measurements
coming from the maximum curve in the case of the cooling experiment is
subjected to a lower variability. Finally, as to eliminate also the residual
dependence from tres, we can apply the same procedure presented in the
previous paragraph, considering, therefore:

Tc,Eq =
1

2
[Tc4,heating + Tc3,cooling] (4.11)

The interpolation considering the data with higher ∆t gives an estimation
for the equilibrium value of the critical temperature, which in the case of
L = 96 is:

Tc,Eq = 2.307 (4.12)

This value measured is similar to the results already obtained, even though
the estimation error for the intercept is higher. This is consequence of the
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Figure 4.12: Critical temperature behaviour calculated from simulations on
system with lateral size L = 96.

presence of outliers, as discussed before, that worsen the precision of Tc3 and
Tc4.

This chapter explains the potentiality of the Lebowitz algorithm. On one
side is able to reproduce the same results obtained from the widely used
Metropolis algorithm in equilibrium conditions. On the other side, it enables
a new type of analysis that could drastically reduce the time required for
a single simulation: moving through out-of-equilibrium states and interpo-
lating the equilibrium behaviour allows quicker simulations. Another aspect
relies on the possibility of tracking the system while subjected to time-varying
external parameters, which will be the subject of the following chapter.
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Chapter 5

Field-induced Dynamic Phase
Transitions

As already said in chapter 3, simulations with the Metropolis algorithm,
considering Boltzmann dynamics, allow the analysis of the system’s equilib-
rium properties only. Therefore, as an example, the results obtained through
Metropolis algorithms in the presence of oscillating external fields possess full
physical meaning only if the oscillations period is assumed to be much longer
than the relaxation time of the spin system so that the system is allowed to
move adiabatically across equilibrium configurations.
With the Metropolis algorithm, a way to follow the evolution of the system
while the magnetic field is varied could be done in steps, moving through
equilibrium states:

1. The magnetic field is applied.

2. The simulation starts and the system is left free to reach equilibrium.

3. The physical parameters are determined once equilibrium has been
reached.

4. The value of the field is changed.

5. Points 2, 3 and 4 are repeated for the entire range of values for the
magnetic field we want to explore.
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Figure 5.1: Magnetization (orange line) of the system following the oscillation
of the magnetic field (blue line). Different conditions are represented, for
different values of the oscillating period. From the left: P = 100; 350; 1000.
Other parameters for the simulation: H0 = 0.3; Hb = 0.01; L = 128.

This requires a consistent effort in terms of computational time and, in any
case, leaves aside the possibility of analysing rapidly varying external fields.

An improvement can be made by considering, instead of the Boltzmann dy-
namics, the Glauber dynamics, as said in chapter 3. We only have to modify
the expressions of the transition rates between states. Now we can follow
the evolution between states while the magnetic field varies rapidly, giving
physical meaning at the system transition while moving out of equilibrium.

We now consider the presence of a uniform (independent from the position)
time-varying external field H applied to the lattice. We will express the field
in units of J , exchange constant. Generally, we will consider a sinusoidal
dependence:

H(t) = Hb +H0 sin

(
2π

P
t

)
(5.1)

Fig. 5.1 shows the possible scenarios for a magnetic system subjected to an
oscillating field.

Since every spin will gain energy from being oriented in the same direction of
the applied field, the lattice magnetization will try to follow as close as possi-
ble the field variation. If enough time is provided before the field changes its
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sign, we will observe the magnetization following the same time behaviour
(as happens in the third panel of fig. 5.1). If the field oscillates too quickly,
instead, the system will not have enough time to adapt to the external stimu-
lus: it will fluctuate near the equilibrium shown in the absence of the external
magnetic field (as happens in the first panel of fig. 5.1). Different parameters
influence which condition we will observe in the system: temperature, field
strength and oscillation period on top of them.

The aim of this chapter is the characterisation of some of the properties
related to this dynamic behaviour and a deep investigation of when and how
the inversion of the magnetization happens. Before proceeding with this
analysis, we have to consider problems deriving from the concept of time in
the simulation.

5.1 Physical-time in presence of a time

varying field

For the Metropolis algorithm, the time parameter regulating the change of
the magnetic field can be only the simulation step, as it is the only parameter
measuring the advance of time (the execution time of the algorithm cannot
represent a reliable parameter, as it may depend on the simulating device
and its computational power).
Attaching the MCSS in the Lebowitz algorithm would give incorrect results,
for the reasons explained in 3.8. Therefore, the key parameter regulating the
advance of time for time-varying parameters must be the physical-time.
A first investigation could be focused on the quantification of the relation
between physical-time and MCSS for the Lebowitz algorithm, now that we
add an oscillating field. We want to search for discrepancies with respect to
the results found in section 4.1 and to derive information over the system
equilibrium condition.

For this purpose, we simulate a period of oscillation of the magnetic field
applied over a lattice with lateral size L = 40. Temperature is fixed below
the critical one (T = 1.5), which would induce the unperturbed system in the
magnetized equilibrium condition. We can now derive the relation physical-
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Figure 5.2: The first panel shows the relation physical-time versus MCSS.
The second panel, how the magnetization (orange line) changes sign while
following an oscillating magnetic field (blue line). The period of oscillation
is chosen as the allow a complete inversion of the magnetization (P = 5000).
Other parameters used in the simulation: Hb = 0; H0 = 0.5.

time versus MCSS and compare it with fig. 4.1. Fig. 5.2 shows the result
of the devised simulation. By looking at it, different observations are worth
being listed.

• The relation physical-time versus MCSS is not linear. Instead, it is
periodic with half the periodicity of the magnetic field.

• The tangent to the curve in the top panel has a steeper angle when the
system is in the “near equilibrium”condition (i.e. when the magnetic
field and the magnetization share the same orientation) and a shallower
angle just before the magnetization inversion, where the system is in
the “far equilibrium”condition (i.e. when magnetization and field have
opposite signs).

• We want the magnetic field to have a sinusoidal time dependence with
the physical-time. Since the x-axis is in MCSS, and the dependence
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Figure 5.3: T fixed at 1.5. In the right panel “near equilibrium”coefficient;
in the left panel “far equilibrium”coefficient for different values of the lattice
lateral size. Simulations done for different values of the oscillation period.

physical-time versus MCSS is not linear, the magnetic field has a non-
sinusoidal dependence with MCSS, as can be clearly seen in the first
figure. This is emphasised during the inversion of the system’s magne-
tization.

Simulations with variable lattice lateral size and temperature were devised.
“Near equilibrium”and “far equilibrium”coefficients were defined as, respec-
tively, maximum and minimum angular coefficient of the tangent to the curve
physical-time versus MCSS.

From the comparison between fig. 4.2 and 4.3 with 5.3 and 5.4, it is possible
to derive the following conclusions:

• Generally, the “far equilibrium”coefficient does not change consistently
in presence or absence of an external magnetic field. Moreover, the
mismatch between the coefficients reduces while increasing the period of
oscillation, suggesting a similarity between the two out-of-equilibrium
conditions in absence or presence of a magnetic field when we leave
enough time to the system to adapt to the external stimulus.

• The “near equilibrium”coefficient, instead, has a factor of 2-3 of dis-
crepancy. In particular, we have a coefficient with a lower value in
the absence of the external magnetic field. In this condition, the tran-
sition towards equilibrium takes more steps when the system is near
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Figure 5.4: L fixed at 40. In the right panel, the “near equilib-
rium”coefficient; in the left panel, the “far equilibrium”coefficient for dif-
ferent values of the system temperature. Simulations executed for different
values of the oscillation period: P = 5000; 10000; 20000.

to it. This makes perfect sense: the application of a magnetic field
fights back the thermal fluctuations. This latter, near equilibrium, is
the main element that slows down the transition toward equilibrium.

• The graph, independently from the presence or the absence of the mag-
netic field seems to show the same dependency from T and L.

As previously anticipated, particular attention is required when a simulation
is devised: if not enough MCSS are provided before the conclusion of a
period of the magnetic field, we could fail to simulate the correct behaviour
of the system. This becomes a crucial aspect when considering Hysteresis
Loops, something that will be studied more in-depth in one of the following
chapters. As a safety rule, we can consider “reliable”the results coming from
a simulation in which in a period of oscillation, at least one MCSS lasts. In
order to understand the limits for the simulation parameters, fig. 5.5 should
be considered, representing the number of MCSS per period for different
choices of the simulation parameters. A shallow dependence from the system
size is shown, which tends to set constant for high system size. The period of
oscillation, as one can expect, influences heavily the outcome: if P decreases,
also the number of MCSS decreases. The real problem emerges in the case
of small periods and low T . This can lead us to the “danger zone”.

Before any simulation, the “at least one MCSS”condition must be checked.
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Figure 5.5: Plots of the number of MCSS per period for different system sizes
and temperatures. Different curves refer to different periods of oscillation:
P = 5000; 10000; 20000.

This is implicitly verified in the following simulations.

5.2 Magnetic systems in presence of an oscil-

lating field

Once seen the general behaviour of the magnetization following a sinusoidal
field and how the physical-time enters into play, we can deepen the analysis
and try to derive and compare the results obtained from our algorithm with
the ones from the standard Metropolis algorithm. Before proceeding, a brief
review of the theoretical aspects related to the Ising model subjected to an
oscillating field is presented.

5.2.1 Magnetization general behaviour

The two different behaviours illustrated in fig. 5.1 can be defined more
precisely as follows:

• When the magnetization follows the magnetic field with only a time
delay, the system is said to be in the Dynamic Disordered Phase (DDP).
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In this regime, the magnetization function of time is such that

〈m(t)〉 = −〈m(t+
P

2
)〉 (5.2)

where P is the period of the field and 〈m(t)〉 indicates the ensemble
average of the magnetization. Its behaviour is represented in the left
panel of fig. 5.6. In this dynamic phase, the average magnetization per
cycle defined as:

Q =
1

P

∫ P

0

〈m(t)〉dt (5.3)

takes null value.

• When, instead, the magnetization remains trapped near one of the two
equilibrium states and fluctuates around it, the system is said to be in
the Dynamic Ordered Phase (DOP). The magnetization does not share
the same property in equation (5.2). Instead, in the DDP, if we define
as m+(t) the magnetization of the system fluctuating near the positive
equilibrium state and as m−(t) the one fluctuating near the negative
equilibrium state, it is verified:

〈m(t)〉+ = −〈m(t+
P

2
)〉− (5.4)

Its behaviour is represented in the right panel of fig. 5.6. Moreover, we
have Q 6= 0.

To distinguish the two dynamical phases and study the phase transition,
one can consider one of the two order parameters Q or m0(t) = 1

2
[m+(t) +

m−(t+P/2)], both becoming null in the DDP and different from zero in the
DOP. For practical simulations, a reliable way to determine which phase the
system shows can be achieved by a histogram representation of a series of
Q: in the DOP we expect two deltas (or even just one) peaked around the
values ±1, indicating that the system is trapped in one of the two magnetized
equilibrium states; on the contrary, in the DDP we expect only one peak
around the value 0. Fig. 5.7 shows the two expected behaviours.
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Figure 5.6: Plots of the magnetization function of time in both the DDP (left
panel) and DOP (right panel) conditions. In the latter case, both 〈m(t)〉+
and 〈m(t)〉− are shown. The dotted line represent the sinusoidal magnetic
field; ξ is the time parameter. Source [13].

5.2.2 Dynamic Phase Transition

The transition between the two phases is regulated by the field strength H0

and its period P , the temperature T and the system size L. The transition is
of the second-order [14], in contrast with what has been predicted first and
then observed in the earlier works on the topic. Indeed, it has been found
that the order parameter Q varies with continuity from the two different
values that it assumes in the ordered and disordered phases, as shown for
a specific set of parameters in fig. 5.8. It must be noted that this type of
transition is different from the ones usually considered for the equilibrium
model since also the period of oscillation can induce the system to move from
one phase to the other, not only temperature. The clues on the first-order
transition were only due to the finite-size effect of the system, which becomes
negligible when the size L of the system is sufficiently increased. Moreover,
the second-order phase transition possesses the same exponent of the 2D
equilibrium transition for a bi-dimensional Ising Model [15].

The most reliable way to determine the critical dynamical conditions derives
from the analysis of the Binder cumulant [16], or fourth-order cumulant,
defined as:

U = 1− 〈Q4〉
3〈Q2〉2

(5.5)

Near the critical point, the Binder cumulant satisfies the finite-size scaling
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Figure 5.7: Histogram plots of the average magnetization per cycle Q, for
different values of the oscillation period: P = 50; 270; 400. From left to right:
DOP; transition between the two phases; DDP. The DOP was obtained by
superimposing two simulations starting from different opposite magnetization
conditions. The first 200 periods were discarded as to let the system reach
steady-state condition. Other parameters for the simulation: T = 0.8 · Tc,
L = 64, H0 = 0.3.

property [15]:

U(L, T ) = b(εL
1
ν ) (5.6)

where ε = (T − θc)/(T ) and ν = 1 is a critical exponent dependent on
the considered phenomena. Here, we define θc to be the dynamical critical
temperature, in the same fashion as the thermodynamical critical tempera-
ture Tc, even though they represent different phenomena. We can consider
the following parallelism: if T < Tc the system favours the ordered phase
(ferromagnetic); if T > Tc, the favoured phase is the disordered one (param-
agnetic). Similarly, for a given couple (P,H0), if T < θc the system favours
the ordered dynamical phase (DOP); if T > θc the DDP is favoured. From
now on, we will refer to Tc by the term “thermodynamical critical tempera-
ture”; to θc by the term “dynamical critical temperature”. Moreover, we will
refer to “Thermodynamical Phase Transition”(TPT) as the ferromagnetic-
paramagnetic phase transition and to “Dynamical Phase Transition”(DPT)
as the DOP-DDP phase transition.
Back to the Binder cumulant, by measuring the dependence of U from T for
different values of L, it is possible to derive the dynamic critical temperature
θc by interpolating the crossing point of all the curves. The Binder Cumulant
method can also be rearranged in order to determine also the critical period
Pc for fixed values of T and H0, through simple interpolation.
Nevertheless, a different and more accessible way for a first estimation of the
critical period involves a different property of the system: the metastable life-
time parameter τ . It is defined as the time required for a system completely
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Figure 5.8: plot of the order parameter Q for different values of the tem-
perature, obtained from simulations with Lebowitz algorithm. Simulations
details: L = 100; P = 258; H0 = 0.3; Hb = 0.

positively magnetized, subjected to a negative field, to invert the magneti-
zation. Practically speaking, it is taken as the time which passes before the
crossing of the m = 0 magnetization line. τ gives a clear indication of the
intrinsic time possessed by the system. It is natural to relate the metastable
life time with the field oscillating period P , or better, the semi-period P1/2.
If τ is larger than the semi-period, is impossible for the system to change the
magnetization accordingly to the external field. Therefore, when P1/2 < τ ,
the system is in the DDP. Vice versa, when P1/2 > τ , the system reacts
sufficiently fast as to follow adequately the inversion of the field. Therefore,
it is reasonable to assume Pc ≈ 2τ .
It must be pointed out that this methodology gives just an estimation of
Pc. Indeed, since the progression of the physical-time changes substantially
depending on how much the system is out of equilibrium, applying an os-
cillating field has different effects if compared to a sudden reversal of the
field.
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Figure 5.9: Plots of one hysteresis loops resulting from a simulation for
a system with lateral size 100, averaged over 10 cycles, with period P =
10; 100; 1000. It can be noted that in these conditions the system is always
in DDP since the magnetization changes from −1 to +1 and the cycle is cen-
tred in the origin (〈Q〉 = 0). The system is prepared completely negatively
magnetized. A linear field is applied and the magnetization is tracked. The
blue line represents the initial swept from -1.5 to 1-5, the orange line the
conclusive swept from 1.5 to -1.5. Increasing the period means that the mag-
netization is able to follow more closely the magnetic field. As a consequence,
the hysteresis loop shrinks. T fixed at 0.8 · Tc.

5.2.3 Hysteresis loop characterisation and properties

An interesting behaviour emerges if the magnetization is plotted against the
applied magnetic field. What results is a hysteresis loop, coming from the
presence of time lag between the two physical quantities, as represented in
fig. 5.9.

The already introduced Q parameter here represents the “centre of the loop”,
indicating the centre of mass around which the magnetization oscillates.
Therefore, for what said above, while the system is in DDP, the hysteresis
loop is expected to show a symmetric shape independently from the ini-
tial condition; if the system is in DOP, instead, the hysteresis loop becomes
asymmetric and is centred in different positions depending on the initialisa-
tion condition.
The transition from DOP to DDP can be achieved simply by modifying the
temperature of the system or the strength of the magnetic field. This also
allows to modify the shape of the loop, its area and its orientation. These
quantities can be derived from the simulations. The most studied property,
also for its straightforward derivation, is the loop area, defined by the rela-
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tion:

A =

∫ P

0

〈m(t)〉dh(t) (5.7)

The area allows a different way to estimate the dynamical critical tempera-
ture θc. Indeed, it shows finite-size scaling properties after T = θc and the
temperature derivatives dA/dT has a minimum at T = θc [15].
The loop area has been extensively studied also from the point of view of the
scaling behaviour with field (h0), frequency (ω = 1/P ) and temperature (T ).
In particular, it has been derived the following relation [17]:

A ∼ hα0T
−βg(

ω

hγ0T
δ
) (5.8)

where

g(x) =
xεe−x

2

σ
(5.9)

with α, β, γ, δ, ε, critical exponents. In the limit of ω → 0, i.e. for high
values of the period, the scaling relation reduces to a simple power-law:

A ∼ ha0ω
bT−c (5.10)

with a = 0.70, b = 0.36 and c = 1.18 for the bi-dimensional Ising model.
Other properties that allow us to derive information over the system, coming
from the analysis of the hysteresis loop, are the coercive field and the DC
magnetic susceptibility, defined as follows:

• Coercive field: value of the magnetic field when the magnetization
crosses the m = 0 line.

• DC magnetic susceptibility: slope of the tangent to the hysteresis loop
while the magnetization crosses the m = 0 line.

χ =
∂m

∂H

∣∣∣∣
H=0

(5.11)
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In particular, from the DC magnetic susceptibility, one can derive an estima-
tion of the thermodynamical critical temperature Tc considering the Curie-
Weiss law:

χ =
K

T − Tc
(5.12)

while sampling the tangent in the temperature range: T > Tc.

5.2.4 AC magnetic susceptibility

In the previous section, we have considered the DC magnetic susceptibility
even if we are applying an oscillating magnetic field. This can be justified
by the fact that, for T > Tc, the magnetization is able to follow the mag-
netic field without any time lag (the area of the loop shrinks to 0). In this
condition, when the magnetization crosses the m = 0 line (i.e when H = 0),
we reproduce the same condition as if the magnetic field was not oscillating.
Therefore, by considering the derivative of the magnetization with respect to
the field, we obtain the DC magnetic susceptibility.
Instead, when either the temperature or the period of oscillations decreases,
the magnetization will lag behind the magnetic field but still producing a
periodic function with the same period. The derivative does not give back
the DC magnetic susceptibility since we cannot define it in these conditions.
Fortunately, we can rely on something similar. From the analysis and com-
parison between the shapes of the two functions, it is possible to study the
AC magnetic susceptibility defined as:

χAC = χ
′ − iχ′′ (5.13)

where

χ
′
=
m0

h0
cos

(
2π

P
τeff

)
(5.14)

χ
′′

=
m0

h0
sin

(
2π

P
τeff

)
(5.15)

Here m0 and h0 represent the amplitudes of the magnetization and magnetic
field, and τeff their phase lag. The temperature behaviour of these compo-
nents allows retrieving the critical temperature for a fixed choice of h0 and P .
Indeed, as it happens for all the second-order phase transitions, the real and
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imaginary parts of the susceptibility (in this case AC, explicitly considering
the dynamic phase transition) show a different behaviour: χ

′
shows a dip,

while χ
′′

a sharp peak at θc. In the following, we will study the AC mag-
netic susceptibility for the dynamic phase transition and the DC magnetic
susceptibility for the thermodynamic phase transition.

5.2.5 Magnetization inversion mechanism

The inversion process of the magnetization follows always three steps:

1. (Nucleation) Under the effect of an external field, a first nucleation of
spins is formed, randomly positioned in the lattice.

2. (Growth) The nucleated region expands, by embodying the neighbour-
ing spins.

3. (Coalescence) Growing regions merge together.

The completion of the process determines in which dynamic phase we found
the system: if the nucleation is able to spread over all the lattice (or most
of them, depending on the equilibrium condition), then the system is in the
DDP; on the contrary, if the process has not enough time to complete before
the inversion of the external field, the system is in the DOP.
Two behaviours can be noted, depending on the size of the system L and
on the amplitude of the applied magnetic field H0. Right now, we consider
the effect of L, assuming a fixed value of H0. If L is sufficiently big, the
nucleation process can start independently in different regions and rapidly
spread over all the lattice through coalescence. Conversely, if L is small,
the inversion is more often achieved through the growth of one nucleation
centre since the system size is appropriate only for hosting one of it. These
two behaviours are respectively defined as Multi Droplet (MD) and Single
Droplet (SD) inversion mechanism and are represented in fig. 5.10.

This affects the stochasticity of the inversion mechanism: since the nucleation
takes place at random in the structure and with a certain probability in time,
a single droplet in the structure produces a rather unpredictable behaviour.
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Figure 5.10: Snapshots of two lattices with lateral size of 32 (in the left panel)
and 256 (in the right panel) while changing the orientation of the spins from
up to down (images taken after the crossing of the m = 0 line, following an
oscillating field). Black colour represents spins oriented down; white colour
represents spins oriented up. We can notice that the smaller system presents
only one black region from which the inversion mechanism is proceeding and,
therefore, is classified as SD. Differently, the system with a larger dimension
shows many inversion points and is classified as MD.

Instead, more nucleation centres reduce variability, due to a sort of averaging
effect. While lattices with greater lateral size (in the MD region) show a
deterministic behaviour, the smaller ones (in the SD region) produce bursty
magnetization cycles. This effect can be clearly seen while following the
magnetization in the presence of an oscillating field, as plotted in fig. 5.11.

Droplet theory explains well the dynamic phase transition experienced by
the bi-dimensional Ising model. Within this theory, other than the Single
Droplet and Multi Droplet regions, Coexistence and Strong Field regions
are defined, respectively in the limit of strong field or high system size and
weak field or small system size. Fig. 5.12 gives a graphical (not in scale)
representation of all the regions and where they are localised in the (H,L)
plot. For the scope of this work, only MD and SD will be taken into account.
Also, when we consider the deterministic (stochastic) regime, we always refer
to the MD (SD) region.

A way to determine if the system is in the SD or the MD regime involves the
measurement of the stochasticity of the system time-properties. For example,
we can consider the metastable lifetime (τ) already introduced. Its standard
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Figure 5.11: Plot of five periods of oscillation for lattices with different lateral
sizes. The blue line represents the common magnetic field. For smaller
systems, the stochasticity is evident, as much as the deterministic behaviour
for the larger ones.

deviation (στ ), derived after many measurements, gives a clear indication
about the system condition: a high value means that the measurements have
high variability and that the system is in the stochastic region; a low value,
instead, indicates that the system is in the deterministic region since all the
measurements have a similar value. In particular, if:

V =
στ
〈τ〉

< 0.5 (5.16)

then a deterministic behaviour is expected and the system is in the MD
regime.
For the metastable lifetime, we consider a static field H. In order to make
the analogy to the case in which we are applying an oscillating magnetic field
with amplitude H0 (for the study of DPT), we will have to compare different
values of the magnetic field. In particular we will consider the equivalence
H = 1/

√
(2)H0.

Since the metastable lifetime depends on the intensity of the field H and on
the lateral system size L, we expect the separation between the MD and the
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Figure 5.12: Map of the different regions representing the system behaviour,
depending on the applied field. The figure is not in scale and is derived for
a fixed value of L. In the left part, the deterministic region, in the right
part, the stochastic region, separated by the so-called spinodal line. The
deterministic region is divided into Strong Field (SF) and Multi Droplet
(MD) region; the stochastic region, instead, into the Single Droplet (SD)
and the Coexistence (CE). Source .[18].

SD regions to be defined by a line in the (L,H) plane. This line takes the
name of “dynamic spinodal line”(or simply spinodal line) and it can be found
by imposing V (H,L) = 0.5. In practical conditions, imposing V (H,L) = 0.4
or V (H,L) = 0.6 does not change consistently the position of the spinodal
line since the transition from SD to MD regions happens in a narrow range
of values.
Rikvold et al. [18] derived the following relation describing the spinodal line:

HDSL ∼ ln(L)−
1

D−1 (5.17)

in the limit of weak field. Since we are considering a bi-dimensional system,
the dimension D is 2 and we expect HDSL ∼ ln(L)−1. This result has been
derived from droplet theory, which considers the interplay between the dif-
ferent length scale characterising the inversion mechanism: the system size;
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the droplet radius; the mean droplet separation (average radius of a droplet
before it becomes likely to meet another).

5.2.6 Effect of bias magnetic field

Thus far, no bias field Hb superimposed to the oscillating component has
been considered. This allows the system to retain a sort of symmetry, not
showing any preferential direction for the magnetization to be. Instead, in
the presence of an external bias, the magnetization will modify its behaviour.
Let us consider a ferromagnetic system in the DDP and the presence of an
oscillating field superimposed to a weak positive bias field. In this condition,
the magnetic field is more intense when has positive value and the system,
while oscillating, will experience different free energies related to the two
magnetized equilibrium state. The positive magnetization condition will be
favoured if compared to the negative one. This brings consequences to the
behaviour of 〈Q〉. By deepening the analysis, it can be shown that Hb can be
considered the conjugate field of 〈Q〉 [19]. This was derived by considering
the analogy between Hb (bias field over an oscillating one) and H (static
field) for the DPT and the TPT near the critical point. They share the same
critical exponent δ = 3 when related to the order parameter (respectively
〈Q〉 and M). As analogous to the temperature in the thermodynamical case,
we have to consider the period of oscillation P in the dynamical case.
The analogy between the TPT and the DPT can be discussed comparing the
〈Q〉(P,Hb) and M(T,H) plots, as extensively discussed by Reigo et al. [20].
Note that we refer to Hb as the bias field superimposed to an oscillating field
with amplitude H0 for the dynamical case; with H to the DC field in the
thermodynamical case. Despite at first glance the two behaviours seem to
be completely equivalent due to the presence of a critical point separating
continuous from discontinuous transition of the order parameter, important
differences emerge while comparing the behaviour of 〈Q〉 and M for P > Pc
and T > Tc. To further proceed in the analysis one can compare and discuss
the fluctuations and the susceptibilities, namely:

σQ =
√
〈Q2〉 − 〈Q〉2 (5.18)

χQ =
∂〈Q〉
∂Hb

(5.19)
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in the dynamical case, and

σM =
√
〈M2〉 − 〈M〉2 (5.20)

χM =
∂〈M〉
∂Hb

(5.21)

in the thermodynamical case.
It has been shown [20] that above Pc, χQ(Hb) behaves differently from its
analogous χM(H) above Tc, especially when H0 → 0. The former presents
side-bands (symmetrical peaks at non-zero value of Hb), the latter only a
wide maximum for H = 0, as represented in fig. 5.13. This provides a strong
argument for the distinction between the two phenomena when moving out
of the critical point. What we can still consider is the equivalence of the
two phenomena only in the vicinity of the critical point and in absence of
external bias, since it was shown that the DPT belongs to the equilibrium
Ising universality class [21].

In the following sections we will present the results obtained from our simu-
lations by considering the Lebowitz algorithm with Glauber dynamics. The
remaining part of the chapter aims at gaining more insight over the cited
theoretical aspects and understand if significant discrepancies can be found
once our results are compared to the ones derived considering the standard
Metropolis algorithm with Glauber dynamics.

5.3 Critical conditions for the Dynamic

Phase Transition

In this chapter, we aim to reproduce the magnetization behaviour in the pres-
ence of an external magnetic field in different conditions (DOP and DDP).
We start with a qualitative investigation and, then we proceed with a quan-
titative analysis that could allow us to find agreement or discrepancy about
the known behaviour studied with the standard Metropolis algorithm.

As to derive a qualitative indication of the DPT, the following simulation is
devised:
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Figure 5.13: Different colours refers to different intensities. In the upper
block of subplots 〈Q〉 on the left and χQ on the right are represented, for
different intensity of the oscillating field, function of Hb and P. In the bottom
row, the behaviour of M and χM function of H and T . It can be noted that,
while H0 increases, the condition become equivalent to the equilibrium one.
If instead, we consider smaller H0, χQ shows two side-bands originating from
the critical point (yellow dot in most of the left column sub-plots) and we
lose the equivalence between 〈Q〉 and M . Source [20].
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1. A lattice with random initialisation of the spin orientation is left free to
evolve, at fixed T , following a sinusoidal external field with amplitude
H0.

2. The mean magnetization per cycle is derived considering a discrete
version of formula (5.3):

Q̂ =
1

P

∑
i

mi∆ti (5.22)

where mi and ∆ti represent respectively the magnetization and the
physical-time increase at the i-th step of the simulation. Q̂ is computed
for a total of 400 cycles, as to derive a good approximation of 〈Q〉.

3. Step 2 is repeated, for a fixed T , while H0 is varied from 1 down to 0
(without re-initialisation of the lattice).

4. Temperature is changed and the lattice is re-initialised completely ran-
dom.

5. The previous steps are repeated for the temperature range that we want
to investigate.

At the end of the simulation, we can derive a qualitatively map representing
the conditions in which the system shows a DOP (where 〈Q〉 ≈ 1) or a DDP
(where 〈Q〉 ≈ 0). From it, we can have a clear indication over the critical
line in the (H0,c, Tc) plot, for a fixed choice of P . Repeating many times the
measurements for different choices of P , we can completely characterise the
dynamic phase transition line. For this simulation, a system with lateral size
L = 100 was chosen, to put the system in the less stochastic MD region.
Results for P = 100 and P = 400 are represented in fig. 5.14. As one
can notice, the transition region seems to be well defined. The value of the
oscillation period does not influence the critical line for H0 → 0: as we can
expect, even if the field is varied slowly, the system remains magnetized if the
field has low intensity. What is affected, is the behaviour at high H0 and low
T : only an oscillating field with low frequency can induce the system to invert
magnetization since it gives the system enough time to react; instead, if the
temperature is increased, the stable region for the DOP reduces. Thermal
fluctuations can induce the system to follow better the magnetic field since
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the spins are less reluctant to align against the neighbours and then start the
inversion.

Out of curiosity, simulations were run also with the system initialised in the
completely magnetized configuration. In this case, in Step 3, H0 is changed
from 0 up to 1, backwards with respect to before. This was done to investigate
the properties of the phase transition. Indeed, in the original work over the
DPT by Tomé et al. [13], it was shown the possibility for the system to have,
in a specific region in the (H0, T ) plane, an overlap between the DOP and
the DDP, as shown in fig. 5.15.

In this region of the plane, the dynamical phase showed by the system would
be related to the initialisation condition: if random, the DDP would appear.
If magnetized, DOP.
The simulation was devised such as to favour one of the two phases at a time.
If the system is initialised at random, the system will automatically be in the
DDP. Starting from H0 = 1 and swinging it back to 0, we hope to preserve
DDP as much as possible. Same in the opposite condition. If the system
were to show this particular behaviour we would notice a difference between
the two maps. Instead, comparing from the simulations, we notice that the
two maps completely overlap. This is in accordance with what found in more
recent works, where the DPT is demonstrated to be a second order phase
transition without any bi-modal regime.

If we want to get quantitative results, we have to consider the Binder cumu-
lant. As said, this technique allows deriving the dynamical critical temper-
ature θc for a given pair of values of magnetic field and oscillation period.
In our case, mostly for quantitative comparison with known theoretical re-
sults, we have decided to derive θc for H0 = 0.3 considering both P = 400
and P = 258. In the simulation, after initialisation of the lattice completely
magnetized, a sinusoidal magnetic field is applied for 10000 cycles. Then
the temperature is increased and the field is applied again for other 10000
cycles. The whole procedure is repeated for a specific temperature range
and different lattice dimensions L = 64; 128; 192; 256. From the intersection
point between all the Binder cumulant lines, we can estimate θc. The results
are shown in fig. 5.16. For P = 258, we found θc = 1.812 = 0.798 · Tc; for
P = 400, instead, θc = 1.717 = 0.757 · Tc. In the second case, the estimation
is more complex to derive since there are multiple intersection points in the
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Figure 5.14: Maps representing the conditions (in terms of field intensity and
temperature) in which the system shows the DOP or the DDP. In particular,
the value of Q̂ is calculated. Where Q̂ ≈ 0 (1), the system show a DDP
(DOP), which happens for high (low) T and high (low) H0. In the left panel,
P = 400. In the right panel P = 100.

Binder cumulant lines over a range of 0.02. An average of all the intersection
values is considered.

The estimated values happens to be in accordance with what derived from
other works ([22] [21]), where θc ≈ 0.8 · Tc for P = 258. Moreover, also the
crossing happens near the theoretically estimated value of U∗ ≈ 0.61 (with
more precision in the case of P = 258). This demonstrates how the whole
approach can give comparable quantitative results to ones derived from the
Metropolis algorithm. Even if we are considering a physical-time estimate,
instead of the MCSS, no relevant differences can be found for P = 258.

5.4 Spinodal line: more on magnetization in-

version mechanism

As previously anticipated, the spinodal line determines the separation be-
tween the MD and the SD region in the (L,H) plane. To understand in
which regime the system is before the actual simulation, has a major impor-
tance, since it can influence the stochasticity of our results. For this purpose,
a simulation can be devised as to derive the spinodal line. It is structured in
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Figure 5.15: Behaviour of the system in the (H0, T ) plane. The “F”label
indicates that the system is in the DOP; the “P”label indicates that the
system is in the DDP. The mixed region, “P + F”corresponds to a bi-phase
region. Depending on the starting conditions, the system remains in DDP
or DOP. The map is derived from theoretical calculations. Source [13].

the following way:

1. The system is initialised with a fixed L.

2. 〈τ〉 is calculated for 50 repetitions of the experiment. This allows the
measurement of its mean and standard deviation and the derivation of
the dimensionless parameter V following equation (5.16).

3. Depending on the value of V the lattice size is modified as to approach
the value 0.5: if V < 0.5, L is decreased; if V > 0.5 L is increased.

4. After the crossing of the 0.5 value, the system size for which V (L∗) =
0.5 is interpolated considering a linear dependence:

L∗ = Lbelow −
0.5− a1
a2 − a1

(5.23)

where Lbelow is the system size just before the crossing of V = 0.5 line,

V (Lbelow) = a1
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Figure 5.16: Binder cumulant derivation. U is derived for 4 system with
different lateral size L = 64; 128; 192; 256. In the left panel, P = 258. In the
left panel, P = 400.

and
V (Lbelow + 1) = a2

.

5. Points 1-2-3-4 are repeated for different intensities of the applied mag-
netic field H as to derive the spinodal line for the desired interval.

The derivation of the spinodal line requires the estimation of metastable life
time, which is dependent on the particular choice of L and H. τ can be
achieved through the following simulation:

1. The system with fixed L is prepared completely magnetized, for a choice
of T < Tc.

2. For t = 0, an external field with reverse sign with respect to the orien-
tation of the system magnetization is applied.

3. The physical-time elapsed before the magnetization crosses the m = 0.5
line is taken as the metastable lifetime.

A first investigation has been done with the purpose of determining the effect
over τ of the lateral size L of the system and the magnetic field applied H.
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Figure 5.17: Metastable lifetime function of the system lateral size L for
different choices of the magnetic field H.

Results of the simulation are reported in the table 5.1. See also fig. 5.17 for
a graphical representation for different H.

Metastable Lifetime
L H = 0.3 H = 0.4 H = 1

32 74± 6 40± 2 8.4± 0.2
64 73± 2 42.5± 0.8 8.4± 0.1
128 76± 1 42.0± 0.8 8.40± 0.06

Table 5.1: Table for equilibrium Metastable Lifetime.

By looking at the confidence intervals, we can assume τ to be independent
from the lattice size. This observation has been also demonstrated by Sides
et al. [22]. This characteristic becomes particularly helpful while calculating
the V parameter for the derivation of the spinodal line. As clearly observable,
in accordance with the stochasticity showed by small systems, the standard
deviation happens to decrease strongly while increasing the lattice size. This
introduces errors in the estimation of the mean value of the metastable time
while diminishing L. A way to avoid this problem could be achieved by
calculating, for a specific value of H, the mean value of τ for a system with a
relatively large size (in our case L = 256) to make a more precise estimation.
This value is considered as the reference for all the smallest systems.
Finally, following the previous procedure, the spinodal line can be derived.
Fig. 5.18 shows the result: below the line, the system is in the SD regime;
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Figure 5.18: Spinodal line, derived by imposing V (H,L) = 0.5 and iterating
over many values of H. The quantization of L has been broken by considering
a linear interpolation as illustrated in equation (5.23). In the left panel, it
can be appreciated the separation between the MD and SD regimes in the
(L,H) plane. Error bars are of the same size as the marker used for the data
representation (not showed). In the right panel, with logarithmic axes, the
linear interpolation proving the relation (5.17).

above the line, the system is in the MD regime. As to verify the relation
(5.17), a linear regression is performed between ln(L) and H in a log-log plot.
The linear regression suggested good agreement (R2 = 0.998) even though
the exponent has been found to be -0.366 instead of -1. Deepen in the reasons
for such discrepancy eludes the focus of this thesis, even though could reveal
important aspects related to the stochastic-deterministic properties of the
bi-dimensional Ising model.
The empirical formula is thus:

ln(L) = 10qHm (5.24)

where q = 0.3223±0.0004 and m = −0.366±0.001. This formula could help
while devising an experiment when a particular regime is desired.
Actually, as said before, when we consider an oscillating field, we have to look
at the plane (L,H0), built from (L,H) considering the relation H0 =

√
2H.
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5.5 Hysteresis loop properties

Simulations running over different values of H0, T and ω (i.e. P ) were devised
as to investigate the known results regarding the hysteresis loop properties.
All the simulation mainly consist of the following passages:

1. The system with fixed L is prepared coherently with the simulation
temperature (if T < Tc, complete magnetization, if T > Tc complete
randomness).

2. A sinusoidal magnetic field is applied and the magnetization tracked
down.

3. After a certain number of periods, to allow the system to reach the
steady-state condition, data are taken.

Since the simulations were mainly performed over one decade of values for
each parameter, nothing can be said with statistical relevance about the
dependencies. Nevertheless, it is interesting seeing the accordance or where
the data deviate from the known results, leaving further investigation for
future works. The range chosen for all the parameters matches the condition
of at least one MCSS per cycle if not otherwise specified. Moreover, the
lateral size of the system is chosen as to be in the MD regime. In particular,
L = 128 for all the following paragraphs.

5.5.1 Hysteresis area

The area of the loop can be easily derived from the simulations. The formula
considered is the following:

A =
end∑
i=2

mi(hi − hi−1) (5.25)

This is nothing more than a discretised version of equation (5.7). Here i
represents the simulation step running from the second step to the last step
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Figure 5.19: Value of the area plotted versus the oscillation frequency. Sim-
ulations for different choices of H0 and T are shown. The plot has both
the axes in logarithmic scale to reduce the power-law in a linear relation.
Standard errors are superimposed to the markers.

of the simulation; mi and hi respectively the values of the magnetization and
magnetic field at step i.

The power-law stated in (5.10) is now considered. One at a time, all the
possible dependencies are investigated.
Fig. 5.19 shows the results for the frequency dependency. The power-law is
followed relatively well (R2 > 0.995 in all the cases). Moreover, the angular
coefficient is comparable with the one suggested by previous results with
Metropolis algorithm. The values of the b coefficients derived from different
pairs of H0 and T parameters are reported in table 5.2 and is to be compared
to the theoretical value b = 0.36. The parameters show good agreement, even
if a residual dependence of b from the parameters H0 and T seems to be still
embedded.

Fig. 5.20 shows the results for the temperature dependency. In this case also
a simple linear dependence A ∼ T was tested. The coefficient for the power-
law and the angular coefficient for the linear regression are shown in table 5.3.
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b coefficient
H0 T = 1.3 T = 1.7 T = 2.1

1.5 0.217± 0.003 0.288± 0.003 0.412± 0.005
3 0.258± 0.004 0.314± 0.003 0.421± 0.004

Table 5.2: Table for the frequency exponent.

Figure 5.20: Value of the area plotted versus the temperature. Simulations
for different choices of P are shown. The plot at the left has both the axes
in logarithmic scale as to reduce the power-law in a linear relation. Standard
error are superimposed to the markers.

Assuming a logarithmic dependence produces a c constant in good agreement
with the one theoretically known of c = 1.18, though further investigation is
required. The discrepancy from the power-law could be caused by the choice
for the temperature range selected for the simulations.

Finally, fig. 5.21 shows the results for the magnetic field dependency. In
this case, issues were present while considering too high magnetic field in the
low-temperature range, due to insufficient MCSS per cycle. For this reason,

c coefficient angular coefficient

Dependence: logarithmic linear
P = 2000 1.35± 0.07 −2.84± 0.10
P = 500 1.12± 0.06 −3.19± 0.09

Table 5.3: Table for the temperature exponent considering an exponential
dependence and the angular coefficient considering a linear dependence.
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Figure 5.21: Value of the area plotted versus the magnetic field amplitude.
Simulations for different choices of P are shown. The plot has both the axes
in logarithmic scale as to reduce the power-law in a linear relation. Standard
error are superimposed to the markers.

P a coefficient

1000 0.360± 0.006
2000 0.32± 0.02

Table 5.4: Table for the field amplitude exponent.

only T = 1.6 was tested. The derived coefficients are shown in table 5.4 and
must be compared to the theoretical value a = 0.70. Although the power-law
is followed with high accuracy (R2 > 0.95) the exponent is off by a factor of
2.

All the discrepancies with respect to the theoretical values could derive from
an investigation in a range too far from the limit ω → 0. Anyway, since the
purpose of this chapter is to give a broad overview of the results obtainable
with the Lebowitz algorithm, and simulations with lower ω would require an
increasing amount of time, for our purpose this is considered enough.
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5.5.2 DC magnetic susceptibility

A different kind of analysis derives from the DC magnetic susceptibility.
Thus far, we have only considered a temperature range below Tc. What we
analyse now is the behaviour registered for T > Tc, where the hysteresis loop
should be characterised by a vanishing area and a crossing of the origin in the
(H,m) plane. By considering the limit for H0 → 0, it is possible to exploit
the Curie-Weiss (equation (5.12)) relation as to obtain an estimation for Tc.
The DC magnetic susceptibility can be obtained by considering the incre-
mental ratio in a relatively small interval around the origin. In particular,
the points in the loop between which the incremental ratio is calculated are
selected between m = ±0.2. For simplicity in the derivation of Tc, the inverse
of the magnetic susceptibility is calculated.

1

χ
∼ H(m = 0.2)−H(m = −0.2)

0.4
(5.26)

To reduce variability, since every cycle two measures can be derived (one
while H rises, one while it decreases), the average between them is consid-
ered. Simulations of 100 hysteresis loops are run for different choices of the
oscillation period P . Results are shown in fig. 5.22 and the derived Tc in
table 5.5. We can identify two regimes, one at low T in which 1/χ is almost
constant and one at high T , where 1/χ is linear. This is the theoretically
expected behaviour. Moreover, we can see that, for higher T , all the curves
have the same linear behaviour. Instead, if we increase the period P , what
changes is the delimitation of the two regimes: the high temperature regime
widens. Also the constant value of χ changes, decreasing while P increases.
The estimated value for Tc is around the theoretical value, even though it
does not agree with high accuracy. More reliable techniques are available,
e.g. the temperature driven experiments.

P Tc

500 2.71± 0.08
1000 2.75± 0.06
2000 2.77± 0.06
4000 2.78± 0.05

Table 5.5: Table for the estimation of Tc from DC magnetic susceptibility
measurements.
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Figure 5.22: Plot of the DC magnetic susceptibility function of temperature
for different choices of the period P . Error bars are not shown since are of
the same height as the markers. Two different domains can be noticed, one
for low temperature with a milder slope and one for high temperature with
a steeper angle. The Curie-Weiss low does apply only in the latter case.

5.6 AC magnetic susceptibility

In order to derive the AC magnetic susceptibility, a simulation based on
the following steps was devised, for different choices of the period P of the
magnetic field oscillation:

1. A system is initialised with random spin orientation in a fixed temper-
ature T > Tc.

2. An oscillating field is applied, for a certain number of periods, enough
to let the system reach steady-state condition.

3. The average magnetization in a cycle is calculated by averaging m(t)
over many cycles and a sinusoidal regression is made. Here the pe-
riodicity of the magnetization curve is taken equal to the one of the
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P χ
′

χ
′′

258 1.95± 0.05 2.05± 0.05
500 1.80± 0.05 1.90± 0.05
750 1.70± 0.05 1.80± 0.05

Table 5.6: Table for the estimation of θc from the two components of AC
magnetic susceptibility measurements.

external field, as to consider only the offset and the amplitude of the
magnetization as unknowns.

4. Imaginary and real components of the AC magnetic susceptibility are
calculated through equations (5.14) and (5.15).

5. The temperature is decreased and steps 2-3-4-5 are repeated until T is
sufficiently low (in our case, Tmin = 1).

Fig. 5.23 shows the results of the simulation from a system with L = 64 as
lateral size and H0 = 0.3. Before deciding the size of the system, multiple
runs were completed varying L from 32 to 100, and no particular differences
in the AC magnetic susceptibility were noticed. For this reason, a sufficiently
low value for L was chosen, a compromise between a quick enough simulation
and the condition of MD regime.
From the analysis of the curve shape the dynamical critical temperature θc
can be derived. The values are reported in table 5.6, for different choices of
the oscillating period. The first simulation was devised as to have P = 258,
condition already analysed in the previous paragraph for the critical tem-
perature θc = 0.798 · Tc. From the analysis of AC magnetic susceptibility,
instead, we obtain θc = 0.88 · Tc. in both cases we have agreement with the
known value.
The thermodynamical critical temperature is instead very difficult to deter-
mine due to the wide broadening of χ

′
peak. Better methods for its derivation

have been previously considered.
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Figure 5.23: Plot of the two components (real on the left and imaginary on
the right) of AC magnetic susceptibility function of temperature. Near the
dynamical critical temperature (θc), the imaginary part shows a peak; the
real part shows a dip. Moreover, the real part has a wide peak in proximity
of the thermodynamical critical temperature (Tc).
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Chapter 6

Thermodynamic and dynamic
transitions in systems with
defects

The Lebowitz algorithm employed thus far has been shown to be able to re-
produce results qualitatively equivalent to those derived with the Metropolis
algorithm, once we consider a standard Ising model. Now, we want to sim-
ulate the presence of imperfections (or defects) inside the structure. For the
Metropolis algorithm, many variations of the Ising model are known (i.e.
the Random-Bound Ising Model, Random-Field Ising Model) which allow
mimicking the presence of imperfections inside the lattice in different ways.
How do we implement the presence of imperfections inside the Lebowitz algo-
rithm? A new approach is devised: the imperfections in the structure can be
represented by fixed spins in the lattice, that, once initialised, cannot change
orientation. In this way, we create pinned sites that do not participate in the
system evolution. This idea has been used before for the Metropolis Algo-
rithm [23], even though it has not developed further.
This chapter is focused on the main implications derived from the previous
definition of defects. The results from such investigation span from the de-
termination of a quantitative relation between physical properties and the
fraction of defects to the modification of the dynamical and thermodynam-
ical critical conditions as to devise a more suitable material for potential

89



Figure 6.1: The black colour indicates fixed spins with value −1; white colour
fixed spin +1. Orange colour indicates spins that participate to the system
dynamics: they can switch between +1 or −1 values along the time evolution.
In the first two panel, two ways to define coherently oriented defects (com-
pletely up or down). In the right panel, randomly oriented defects. Defects
at 5%, over a structure with 100× 100 spins.

technological applications.

6.1 Introduction of defects

In this chapter, the term defect is associated with the concept of a spin in
the lattice with a fixed orientation, which cannot vary in time nor space.
In this work, in case of multiple defects in the structure, they have been
arranged in random positions in the lattice. Usually, not more than 5%
defects in the whole structure are considered. There are two possible ways to
implement defects in the structure: coherently or randomly oriented defects,
as represented in fig. 6.1. In this work, only randomly oriented defects are
considered.

From a physical point of view, such definition can be associated with the
idea of impurities in the structure with very slow dynamics: they display the
same interaction with all the neighbours but their motion is characterised
by a completely different time scale. Therefore, all the simulations devised
are thought to last for a time shorter than it would require the inversion of
the spin associated with a defect. This assumption not only gives a physical
meaning to the defect but also ensures the validity of the Hamiltonian asso-
ciated with the lattice. Otherwise, we would not be able to perform reliable
Monte Carlo simulations.
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Once introduced, it is now time to understand how defects come into play
when considering the Lebowitz algorithm. Since they cannot be targeted for
a spin-flip event, they can be grouped in an “eleventh”class, which will be
invisible while choosing from which class the inverted spin has to come from.
In particular, the following steps are being implemented/modified:

1. A “Mask”is initialised, with the structure represented in fig. 6.1: only
the position and the orientation of the defects is established, leaving
all the non-defects spin undefined.

2. During the building of the auxiliary matrices (CLASS and LOCA-
TION), once a defect from the mask is considered, it is added to the
eleventh class and the corresponding position in the LOCATION ma-
trix is substituted with a fictitious value.

3. During the selection of the class for the spin to be inverted, the eleventh
class is not taken into consideration.

4. During the change of the nearest neighbours class, if the LOCATION
of the considered neighbour has the fictitious value, no change in the
class happens.

5. The time of the simulation is updated as in the ideal case:

∆t =
1

Q-ARRAY(10)
log(R) (6.1)

By starting with the following paragraph, various phenomena are analysed.
As shown by the Random-Bound Ising Model, the presence of impurities can
induce the system to transact in the spin-glass phase. A definition of this
phase and a consequent investigation is presented in paragraph 6.2. Even
in the ferromagnetic phase, the system characteristics are modified by the
defects: dynamical and thermodynamical critical temperatures vary in the
presence of defects. The hysteresis loop properties are also being influenced.
Finally, the presence of jumps in the hysteresis loops is addressed and the
Barkhausen noise is analysed to investigate the power-law in the jump am-
plitude probability distribution
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6.2 The spin-glass transition

The introduction of random fixed-orientation spins within the lattice pro-
duces different effects on the system. Firstly, it may cause frustration, in-
tended as the competition between interactions among different spins in the
lattice. As an example, consider a chain of spins as follows. Spins 1 and 3
are both defects with opposite orientations.

1 2 3
+ + + ? − − −

The two defects cause indecision in the spin in the middle since both orienta-
tions will produce the same interaction energy and therefore could be equally
chosen. This configuration is equivalent to the one in which the orientations
of the defects are both positive, but the exchange interactions J are opposite
in sign, one ferromagnetic like, the other anti-ferromagnetic, which is a more
common situation for the Random-Bound Ising Model.
Secondly, the random positioning of defects inside the lattice causes quenched
randomness in the structure. Both of these effects (frustration and random-
ness) represent the basic requirements for the presence of the spin-glass phase
in the system. Since this phase changes the general properties of the system
it is necessary to investigate which (if any) are the conditions that induce
the system to undergo a transition from the ferromagnetic to the spin-glass
phase.

6.2.1 Definition of the spin-glass phase

After a brief introduction about what we may expect when increasing the
density of the defects, we can now deepen into the topic a little further.
We know that frustration and randomness are key elements required to the
spin-glass phase to show, but what is, in reality, a spin-glass and how can we
recognise it?
The first spin glasses were obtained through magnetic systems composed of
spins with interactions randomly chosen as ferro- or antiferromagnetic. In
general, below a specific temperature (Tf ) there is cooperative freezing of the
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spins and the usual long-range order is not shown. This freezing is highly
irreversible: after the cooling, the system falls in a metastable frozen state
[3]. Further characteristics shared by spin glasses are the following:

• Temperature behaviour: at high temperature, as for all the magnetic
systems, all the spins behave individually due to thermal interaction
overcoming spin-to-spin interaction. In this condition, the material is
in the paramagnetic phase. While cooling the sample, since the interac-
tions between neighbouring magnetic moments become more relevant,
many clusters are created. Proceeding with the temperature decrease
below a particular value Tf , the system freezes into a stable configu-
ration through a cooperative phase transition. This transition differs
from the usual paramagnetic-ferromagnetic phase transition due to the
absence of long-range order. The transition can be investigated through
the AC magnetic susceptibility, as the imaginary part χ′′ shows a sharp
peak for T = Tf .

• Metastability: there are multiple states in which the system can be
found once the condition T < Tf is reached. All of these states share
similar energy values and therefore while repeating the heating and
cooling of the material several times, we can “jump”from one of them
to the others.

6.2.2 Spin-glass identification

Metastability has been investigated to identify and locate the spin-glass tran-
sition. If the system is in a ferromagnetic state, starting from many different
random configurations (random orientation of the spins) of the lattice and
letting the systems evolve freely, only two states will be reached (positive or
negative magnetization). If the system is in the spin-glass phase, instead,
the number of final states reached will be higher due to metastability.
Now, let us chose two of the many final configurations reached by the system
at the end of the simulations (which from now on we will cal simply final
configurations) α and β and consider the overlap between them defined as:

qα,β =

∑N
i=1m

α
im

β
i

N
(6.2)
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where mα
i and mβ

i represent the average magnetization of the i-th spin, once
equilibrium has been reached, in two different replicas α and β. If the system
is in the ferromagnetic phase, we will have qα,β ≈ ±1 (if we neglect for
now thermal fluctuations, which would cause the reduction of the absolute
value of the overlap), since the final configurations are or completely equal
or completely opposite. If the system is in the spin-glass phase, instead qα,β
might take also intermediate values in the interval [−1,+1]. If the system
is in the paramagnetic phase, qα,β ≈ 0, since every final configuration will
contain randomly oriented spins. Therefore, if we consider C different initial
configurations (randomly oriented spin in the lattice) and we compute the
C(C−1)/2 possible overlaps qα,β, we should have a clear indication on where
the system can be found: if only ±1 values are obtained, the system is
ferromagnetic; if other values are seen, the system is in the spin-glass phase.
If only 0 is obtained, the system is in paramagnetic phase.
For C −→∞ the collection of qα,β give the probability distribution of q: P (q)
which should be symmetric with respect to q = 0. From spin-glass theory,
it is known that once P (q) is a continuous function in the interval [−1,+1],
different from two deltas (showed in the ferromagnetic phase) or a Gaussian
function (showed in the paramagnetic phase) the system can be considered in
a spin-glass phase. More precisely, we will identify the ferromagnetic phase
when P (0) vanishes; the spin-glass phase when P (q) is non-null everywhere,
and it is convex in the interval ranging between its two symmetric maxima,
placed at ±qmax; the paramagnetic phase when the maximum of P (q) is
located at q = 0.

The following simulation was devised to compute the overlap distribution:

1. C different replicas (lattice with randomly chosen initial orientation of
the spins with same location of the defects) of the system with fixed
temperature and fraction of defects are initialised.

2. The replicas are left free to evolve for a certain ∆t, after which qα,β is
calculated for all the possible couples (α, β).

3. A histogram is derived representing the distribution of the C(C−1)
2

values
between [−1, 1].

4. Steps 2 and 3 are repeated until equilibrium is reached for all the repli-
cas. The final histogram is derived.
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Figure 6.2: First panel indicates the “Mask”used for the defects (position
and orientation). The others represent different replicas left free to evolve
towards equilibrium after a reasonably long physical-time. In all of them it
is possible to recognise a yellow cluster in the bottom-left corner in which
the spins have all the same orientation.

The initialisation of the C replicas, although, requires particular attention.
For the Random-Bound Ising Model, the system created has spins that are
able to fluctuate freely among the two directions. What makes the inversion
more or less likely is the strength of the inter-atomic bound. In the current
situation, the defects are spins which are not able to invert orientation. This
has an effect on the general properties of the previously defined quantities.
As an example, P (q) happens to be asymmetric: having defects always in
the same location with the same orientation induces formation of clusters
(regions of spins all with the same direction) with direction independent
from the replica, as shown in fig. 6.2. Therefore, the overlap between these
configurations will be affected by a positive bias, taking into account all the
clusters that are find more likely in a given direction instead of the opposite
one.

As to recover the P (q) symmetry, the initialisation was devised considering
defects always in the same position but randomly oriented replica by replica.
This completely eliminates the presence of clusters with the same orientation
common to all the replicas. The situation is like as if we were considering
C replicas of just one configuration of the defects and then we would wait
for a sufficiently long time (∆t −→ ∞) to observe some of the magnetic
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moments with infinite inertia change orientation before the beginning of the
simulation.

Since the Lebowitz algorithm allows to study out-of-equilibrium conditions,
information regarding the time required before reaching the equilibrium can
be derived. For this reason, the overlaps q are calculated at a distance of ∆t =
1000 (in physical-time units). Therefore, P (q) can be expressed function also
of time. Moreover, as to understand the vicinity to the equilibrium condition,
we define the overlap correlation:

G(t) =
∑
q

P (q, t)P (q, t+ ∆t) (6.3)

At the beginning of the simulation, P (q, t) and P (q, t + ∆t) are relatively
different; instead, near equilibrium, P (q, t) is almost independent from t.
Consequently, the overlap correlation will vary with time while the systems
move out of equilibrium. Once equilibrium is reached, G(t) will show a
plateau.
Results of the simulation over C = 100 replicas are represented in fig. 6.3
and 6.4.

By looking at the result of the simulation, one can see the expected be-
haviour: for lower fraction of defects, the P (q, t) distributions are made of
two symmetric deltas near ±1. Increasing the temperature, the two deltas
shift towards the middle. Indeed, the thermal fluctuation of the spins be-
comes more relevant at higher temperatures and the configurations have less
and less spins with same orientation. This causes a decrease in the abso-
lute value of qα,β and consequently a change in the P (q, t) distribution. For
D = 2.5%, at high temperature, the system is not any longer in the ferro-
magnetic phase. Instead, the spin-glass phase is shown as P (0) 6= 0. For
higher values of the defects (D = 5), even at lower temperatures, the system
is in spin-glass phase. In it, all the replicas show presence of clusters, in
different locations and with different orientation.

Other important observations now follow:

• At the beginning of each simulation, P (q, t) presents a sharp peak at
q = 0. This is due to the initialisation condition with random orienta-
tion of the spins. In all the simulations, it rapidly dissolves after few
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Figure 6.3: In the left column, the time evolution of P (q, t). In the middle
column, the histogram plot of the equilibrium P (q, t). In the right column,
the tendency to reach the equilibrium. Percentage of defects 0% and 1%;
temperatures: 1.2, 1.5 and 1.8. In all the cases, the system behaves as a
ferromagnet.
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Figure 6.4: In the left column, the time evolution of P (q, t). In the middle
column, the histogram plot of the equilibrium P (q, t). In the right column,
the tendency to reach the equilibrium. Percentage of defects 2.5% and 5%;
temperatures: 1.2, 1.5 and 1.8. In the third row, the system is in the spin-
glass phase. In the fourth row, the phase shown is more difficult to be
determined. In the last two rows, the system is in the paramagnetic phase.
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∆t, in a different way with respect to the one of a paramagnetic system
(simulated in fig. 6.5).

• Even in the case of absence of defects, the system takes a considerable
amount of time before reaching equilibrium (plateau of G(t)). By visu-
ally analysing the replicas, it has been noticed the presence of striped
configurations (as the one represented in fig. 6.6) which are metastable.
These configurations, when overlapped to a magnetized system, give a
value of q near 0. Their presence can be detected also by looking at
the G(t) plot: the small final jumps before the plateau, are due to
dissolving striped configurations (from stripe to magnetized systems).
These striped configurations tend to last for a long time before decay-
ing and cause the presence of extra peaks in the histogram plots near
q = 0. Interestingly, when the temperature is increased, less striped
configurations are found. Their metastable lifetime seems to decrease
when the system is heated, as we can deduce by considering how fast
the plateau of G(t) is reached.

• For D = 1% the number of replicas showing final striped configuration
increases considerably (without cluster formation). This justifies the
extra peaks increase, which can be observed around q = 0 in the his-
togram plot for longer times. For what said in the previous point, we
can suppose that these extra peaks will decay if the simulation is run
for a longer time or if the temperature is increased.

• The simulation with T = 1.8 and D = 2.5% struggles while reach-
ing equilibrium: G(t) doesn’t reach any plateau and P (q, t) lacks the
presence of the deltas near ±1.

• The time required for the completion of the simulation increases while
increasing the fraction of defects. An explanation now follows. Since
the simulation is set to last for a fixed amount of physical-time, the sim-
ulation time increase must be related to a decrease in the slope of the
linear relation physical-time versus MCSS. Recalling what seen in the
previous chapters, this means that “near equilibrium”configurations
are rarely obtained. This is reasonable: the introduction of defects
with different orientation with respect to the one chosen as equilibrium
condition doesn’t allow their nearest neighbours to fall in the lowest
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Figure 6.5: Time evolution of a paramagnetic ensembles of replicas (T > Tc).
In the left column, the time evolution of P (q, t). In the right column, the
histogram plot of the equilibrium P (q, t).

energetic class (the one of equilibrium). Rather, as the fraction of de-
fects increases, more spins will occupy higher energetic classes, inducing
smaller ∆t for each simulation step. As consequence, the physical-time
elapses slower for system with high fraction of defects compared to the
one without defects and the simulation lasts longer.

• In the last case (T = 1.8 and D = 5%), P (q, t) is a Gaussian function
centred in 0, resembling the histogram we would obtain for a paramag-
netic system. Although the transition spin-glass - paramagnetic phase
is not considered, we can infer that for higher temperature and fraction
of defects, the paramagnetic phase emerges.

Table 6.1 sums up the results from the simulations.

D T = 1.2 T = 1.5 T = 1.8

0% Ferro Ferro Ferro
1% Ferro Ferro Ferro

2.5% Ferro Ferro spin-glass
5% spin-glass/ Para Para Para

Table 6.1: Results from the simulations with different temperatures and
fraction of defects. Ferro stands for ferromagnetic; Para for paramagnetic.

Therefore, the introduction of defects can induce the spin-glass phase, with
formation of clusters and systems that remains trapped in metastable states
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Figure 6.6: Striped configuration showed in a system without defects.

for a long physical-time. The spin-glass phase becomes stable depending on
both the temperature and the fraction of defects values.
Later on, we will consider mostly fractions of defects and temperatures for
which the spin-glass phase is avoided. Indeed the focus is on how the prop-
erties of a ferromagnetic system change with the introduction of a small
fraction of defects.

6.3 Effect on the thermodynamical

critical temperature

As previously mentioned, the introduction of defects, besides introducing a
new phase, modifies the equilibrium among the paramagnetic - ferromagnetic
phases. The aim of this chapter is to analyse how the thermodynamical
critical temperature changes while modifying the fraction of defects in the
structure and possibly gain more insight about the causes for this shift.

We can now proceed by repeating the same kind of analysis done in chapter
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Figure 6.7: In the left panel, the magnetization function of temperature;
in the left panel, the magnetic susceptibility function of temperature on a
semi-logarithmic plot. Both are derived for different fraction of defects D =
0%; 1%1.5%; 2%.

4.2, with a basic analysis of the magnetic susceptibility. The addiction of
defects in the lattice changes partially the initialisation of the lattices: for
the analysis of magnetic susceptibility, only one Mask (for the defects initial-
isation) is considered and Tc is derived simply from the peak in the magnetic
susceptibility.

6.3.1 Magnetic susceptibility

For this study, lattices with L = 128 were considered. In particular, for each
fraction of defects D = 0%; 1%, 1.5%; 2%, the magnetization and the mag-
netic susceptibility function of the temperature are derived. T is changed
from 2.4 to 1. Fig. 6.7 presents the results of the simulation. Notice that
the magnetic susceptibility is represented in a semi-logarithmic plot for con-
venience.

These graphics are full of information. The ideal case, D = 0%, is what we
expected: the magnetic lattice shows a spontaneous magnetization after a
peak in the magnetic susceptibility, localised at T = 2.26 ± 0.01. When we
increase the percentage of defects, D = 1%, the system shows exactly the
same behaviour, with only a shift in the value of the critical temperature
towards lower values. This is reasonable: the presence of few randomly ori-
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ented fixed spins in the structure favours the disordered phase. The ordered
phase now requires a lower value of the temperature to be dominant. We can
suppose that the presence of defects with the same orientation should cause
the opposite behaviour, favouring the ordered phase and shifting Tc up in
value.
Notice also a slight decrease in the value of the magnetization when T → 1.
This comes from the presence of fixed spins in the opposite direction. In
presence of defects randomly oriented (fraction f) the maximum value of the
magnetization is m ≈ 1− f for T → 0.
Increasing further the fraction of defects, m(T ) starts to change consistently.
For D = 1.5% we have a stair: in the intermediate temperature range, the
system is partially magnetized. Only for lower values of T , the system escapes
from this metastable state and magnetizes. Also, the magnetic susceptibil-
ity has a non-standard behaviour: the peak widens and in the intermediate
range it does not decrease as before. For lower temperatures, it has a bump
and then shows the same behaviour of the systems with a lower percentage
of defects. In the case D = 2% these characteristics are heightened.
The magnetic susceptibility resembles the behaviour experimentally observed
in real spin-glass: a shallow peak with an almost constant behaviour for
temperature below the peak. For further agreement with experimental ob-
servations, we could investigate the irreversibility property of the magnetic
susceptibility, to confirm the transition to spin-glass for D ≥ 1.5% for a sys-
tem with L = 128.
We have found two methods for the determination of the spin-glass transi-
tion. The first one relies on the analysis of the P (q, t) distribution; the second
one on the analysis of χM . The main difference between the two methods
is that through P (q, t) we have an indication regarding the phase shown by
the system during the evolution toward equilibrium at a fixed temperature;
instead, with χM , we have to wait for equilibrium and then derive the phase
of the system at different temperatures. Depending on the scope of the in-
vestigation (out of equilibrium or not), one or the other methods could be
better.
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Figure 6.8: Magnetization cycles in presence of an oscillating field for lattices
with lateral size L = 32; 64; 128; 256. Other simulation values: P = 250,
T = 0.8 · Tc, H0 = 0.3, Hb = 0.01.

6.4 Effect of defects on the dynamical

critical temperature

We can now focus on the dynamic properties of the system. First obser-
vations come from the analysis of the magnetization in the presence of an
oscillating field while increasing the fraction of defects. For this purpose, five
periods were simulated for systems with different lateral sizes while applying
an oscillating field (H0 = 0.3) over a small bias (Hb = 0.01, to establish a
preferential direction for the magnetization). The results are represented in
fig. 6.8.

At first glance, we can observe a reduction in the stochasticity of the in-
version mechanism. The smaller system (orange line), in absence of defects
inside the SD region, even in presence of a small fraction of defects (1% of
defects which with L = 32 implies just 10 defects over all the lattice), show
a more deterministic behaviour. Indeed, it follows better the inversion of
higher-sized systems (purple and green lines) which are in the MD region
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Figure 6.9: Magnetization cycles in presence of an oscillating field for a lat-
tices with increasing fraction of defects D = 0%, 1%, 2%, 3%, 4%, 5%. Other
simulation values: L = 128, P = 250, T = 0.8 · Tc, H0 = 0.3, Hb = 0.01.

and therefore characterized by a deterministic inversion mechanism.
Another important observation regards the expected dynamical phase. In
the absence of defects, the systems are in the DOP (P < Pc), showing a
preferential direction for the magnetization and an average magnetization
per cycle 〈Q〉 6= 0. If we increase the fraction of defects, instead, the magne-
tization seems to follow better the oscillating field, and 〈Q〉 approaches zero.
Considering fig. 6.9, we can appreciate better the transition from DOP to
DDP due to an increasing percentage of defects.

Therefore, we expect a modification of the spinodal line (regulating the tran-
sition from MD to SD regime) and a reduction of the critical period Pc while
increasing the fraction of defects. The following paragraphs try to verify
these observations and give more insights on the topics.
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Figure 6.10: In the left panel, the spinodal line for different fraction of defects
inside the system. For D = 0%, the line is the same one presented in chapter
5.4. For higher defects concentration, lower values of the magnetic field have
been analysed. In the right panel, the linear regression for all four cases (in
a log-log plot). The error bars are not displayed since of the same size of the
markers.

6.4.1 Spinodal line

To evaluate the effect of defects over the inversion mechanism, the spinodal
line is calculated while considering different percentages of randomly oriented
defects. The simulation and the methodology is the same adopted in section
5.4, with the only difference that, while calculating the metastable life-time,
each repetition has a different defects initialisation. Fig. 6.10 shows the
results of the simulations for defects fractions: D = 0%; 1%; 2%; 4%.

For small values of the magnetic field, the fraction of defects strongly in-
fluences the spinodal line. The effect is in accordance with the simulations
shown in fig. 6.8 and 6.9: while D is increased, systems with smaller lateral
size change regime, from stochastic to deterministic.
The theoretical relation HSDL(L) has also been verified in the presence of
defects by means of a linear regression (all with R2 ≈ 0.995) in a log-log
plot, even if some discrepancy can be seen at the extremes of the analysed
interval. The coefficients for the relation:

ln(L) = 10qHm (6.4)

are shown in table 6.2.
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Spinodal line coefficients
D q m

1% −0.3384± 0.0005 −0.308± 0.001
2% −0.34568± 0.0005 −0.278± 0.001
4% −0.3501± 0.0005 −0.254± 0.001

Table 6.2: Table for the spinodal line coefficients, for different fractions of
defects.

This behaviour follows our expectation: in smaller systems, the inversion
mechanism that normally would spread from a single nucleation centre, now
begins around the defects with opposite direction. Since the lattice has sev-
eral of them, even if L is rather small, the inversion mechanism proceeds as
the system was in the MD regime and therefore more deterministically.

6.4.2 Critical period

We can now deal with the modification of the critical period. As done in
section 5.3 we start by considering a qualitative analysis of the region over
the (H0, T ) plane in which DOP (or DDP) is shown by the system. The same
simulations are devised and executed over a system of lateral size L = 128,
with the only difference in the presence of defects. Different fractions of ran-
domly oriented spins are here considered, to investigate how the dynamical
critical line changes. Results for D = 1%; 2%, next to the one from the
defect-free system, are shown in fig. 6.11. A small difference can be noticed:
in both cases (P = 100; 400) the transition line drifts towards smaller fields
and temperature, This indicates that the DDP is definitely favoured in pres-
ence of defects in the structure, as already supposed previously. Also, if we
consider the case H0 = 0, we can notice that for T → Tc the DDP is not
favoured anymore, since the estimated mean magnetization per cycle Q̂→ 0.
Since the magnetization in absence of field does not oscillate, it means that
m = 0. No spontaneous magnetization is shown for T → Tc. This is in agree-
ment with the critical temperature shifts towards lower values in presence of
defects.

We can now proceed with the quantitative analysis. In particular, as be-
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Figure 6.11: Maps representing the conditions (in terms of field intensity and
temperature) in which the system shows the DOP or the DDP. In particular,
the value of Q̂, the estimated mean magnetization per cycle, is calculated.
Where Q̂ = 0 (1), the system show a DDP (DOP), which happens for high
(low) T and high (low) H0. In the upper row, P = 100. In the lower row
P = 400. Each column refers to a different amount of defects, respectively,
from left to right: D = 0%; 1%; 2%.

fore, we calculate the Binder cumulant for lattices with different fractions
of defects. Fig. 6.12 shows the results in the case of D = 1%, 2% and
P = 258; 400.

Clearly, a dynamical temperature cannot be derived in this case. For L = 64,
the behaviour is the one expected. For larger system lateral sizes, instead, the
binder cumulant shows an unpredictable behaviour and no intersection can
be derived. A possible interpretation to this effect can be derived considering
that what really makes comparable two systems, is not the fraction of defects,
but the number of defects inside the structure, at least while we speak of
dynamical properties. Indeed, D = 1% for L = 64 means 40 defects in
the structure, different from the 655 for the L = 256. If this is true, we
will be able to observe the intersection between the Binder cumulant lines
considering the same number of defects in the lattices. Another possible
reason could be the fact that the spin-glass phase could emerge, eliminating
the presence of the dynamical critical temperature. This will be investigated
in future, for now we limit, once considering the fraction of defects to compare
the results between structure of the same lateral size.
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Figure 6.12: Binder cumulant derivation. U is derived for four system with
different lateral size L = 64; 128; 192; 256. In the upper row, P = 258. In the
bottom line, P = 400. In the bottom row P = 400. Left column D = 1%;
right column D = 2%.

6.5 Effect of defects on the hysteresis loop

We can now focus the attention over the modification of the hysteresis loop
properties in presence of defects. The same simulations of section 5.5 are
considered while introducing defects, for a system with L = 64. Since data
derived from a single fixed configuration of defects could be misleading (in
case the defects are unfortunately localised in “particular”positions), all the
calculated parameters are averaged over different initialisation of the Mask.
The presence of clusters (in the spin-glass phase) has an important role in the
hysteresis loop formation. Indeed, while the magnetization inversion takes
place and the droplets providing the inversion grow, clusters of different di-
mensions merge together and expand. Moreover, not all the clusters cooper-
ate cooperate with the external field and could cause important delays before

109



Figure 6.13: Plots of 1 hysteresis cycle. In the left panel, system in absence
of defects. In the middle and right panel, system with D = 2% and 4%. We
can notice a shrink in the value of the coercive filed and in the saturation
magnetization.

reaching inversion. This could strongly affect the hysteresis properties. For
this reason, we will focus our attention over systems both in ferromagnetic
and spin-glass phases, i.e. also when the system shows cluster formation.

6.5.1 Hysteresis area

Having spins fixed with a certain orientation has effects on the area of the
loop. Roughly speaking, the loop can be approximated with a parallelogram
with width double the value of the coercive field and height double the ∆m
experienced during a semi-cycle, as represented in fig. 6.13. Therefore, the
area can be estimated by four times the value of the coercive field.
Since the introduction of defects allows the system to better follow the exter-
nal magnetic field we expect a reduction on the coercive field value. Also ∆m
in a semi-cycle will be less than two: some spins remains fixed no matter the
intensity of the external field and therefore complete magnetization cannot
be reached. We expect the area of the loop to decrease while the defects
fraction is increased.

This justifies what can be observed in fig. 6.14, 6.15 and 6.16. Moreover,
the power-laws regarding the hysteresis loop area and the magnetic field
intensity or frequency are still confirmed even in presence of defects (all R2

values above 0.995). We are considering log-log plots, as to reduce the power-
law to a linear relation. The b coefficient, relating the frequency ω = 1/P
with the loop area, ranges from 0.250 ± 0.002 in the absence of defects up
to 0.400 ± 0.005 in case of D = 6%. The a coefficient, instead relating
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Figure 6.14: Area of the loop versus the oscillating frequency in a logarithmic
plot, as to verify the power low suggested. Standard errors are superimposed
to the markers.

the intensity of the field with the loop area, ranges from 0.248 ± 0.008 to
0.411± 0.004 in case of D = 4%.
In the case of the temperature dependence, the relation A(T ) cannot be
considered a power-law, probably due to the fact that the power-laws are
expected only in the ω → 0 (or P →∞) limit, as anticipated in the previous
chapter. For this reason, the plot is presented in linear scale, with a linear
regression characterised by R2 > 0.99 in all the presented cases. The angular
coefficient increases while increasing the the fraction of defects, from −3.11±
0.09 in absence of defects to −1.90± 0.01 in case of D = 4%.

A better visualisation of the defects effect can be seen while plotting the
area function of the fraction of defects, as done in fig. 6.17 for different
choices of T and H. As it can be seen, the fraction of defects investigated
exceeds the limit we were considering as to remain in the ferromagnetic phase.
Percentage greater than 10% will move for sure the system in the spin-glass
phase, with cluster formation and losing the ability to show spontaneous
magnetization. Nevertheless, out of curiosity, the plot is extended also for
higher defects fractions. It was found an exponential dependency from the
fraction of defects. In particular:

A ∼ 10d·D (6.5)
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Figure 6.15: Area of the loop versus the temperature in a logarithmic plot,
as to verify the power low suggested. Standard errors are superimposed to
the markers.

where D is the considered fraction of defects and d is a temperature and mag-
netic field dependent coefficient. The calculated values in the simulations are
presented in table 6.3. All the linear regression in the semi-logarithmic plane
showed R2 > 0.995. Finally, in presence of defects, we suggest the following
formula describing the dependencies with temperature, field frequency, field
intensity and fraction of defects:

A ∼ ha0ω
bT c10d·D (6.6)

d coefficient
H = 1.5 H = 3

T = 1.3 −3.47± 0.07 −3.04± 0.06
T = 1.7 −3.90± 0.03 −3.27± 0.03

Table 6.3: Table for the defects dependence coefficient.
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Figure 6.16: Area of the loop versus the field intensity in a logarithmic plot,
as to verify the power low suggested. Standard errors are superimposed to
the markers.

6.5.2 Magnetic susceptibility

As in the previous chapter, we now analyse the DC magnetic susceptibility
coming from the analysis of the hysteresis loop through the Curie-Weiss law.
An indication of the behaviour while increasing the fraction of defects would
be enough. With the same procedure adopted in the previous chapter, with
the only difference that random defects are present and at least 5 replicas
considered, the plot represented in fig. 6.18 is derived. Table 6.4 shows
instead the estimated value for Tc.

D Tc

0% 2.75± 0.06
1% 2.72± 0.06
2% 2.79± 0.06
3% 2.65± 0.06

Table 6.4: Table for the estimation of Tc from DC magnetic susceptibility
measurements for different fraction of defects.

The critical temperature seems to decrease linearly with the fraction of de-
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Figure 6.17: Area of the loop versus fraction of defects in a semi-logarithmic
plot. Standard errors are superimposed to the markers.

fects, even though the estimated values are not in good agreement with the
ones that can be derived considering the static magnetic susceptibility plots,
in paragraph 6.3.1. This is expected, since already for the case without de-
fects we obtain an overestimation of the critical temperature.
Moreover, no differences can be seen in the χM behaviour when the fraction
of defects is high enough to induce the spin-glass-phase (as it should happen
in the case D = 3%).

6.6 Statistical analysis of Barkhausen jumps

Thus far, our concern with the hysteresis loop properties has touched only
the characteristics over a complete cycle. Nothing has been said about the
transition that brings the magnetization to reverse its value. By looking
more closely to the transition in real systems, it has been noticed that the
magnetization does not proceed smoothly as the magnetic field is applied.
Instead, it changes abruptly through discrete jumps with different amplitude.
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Figure 6.18: Magnetic susceptibility, function of the temperature for different
fraction of defects:D = 0%; 1%; 2%; 3%. Error bars are not shown since are
of the same dimension of the markers.

This behaviour was first noticed by Barkhausen in 1919 and was named
after him as Barkhausen noise. A basic explanation of this phenomenon
has been given considering the presence of growing regions in the material
characterised by magnetic moments oriented in the same direction of the
external magnetic field H. Indeed, while H is increased, these energetically
favoured regions start to grow inside the material. Once they reach a defect
in the structure, they suddenly stop their motion and remain stuck with
the defect until the magnetic field is sufficiently high to unpin them. This
procedure repeats until the material has been completely magnetized or the
external magnetic field is reversed.
After the unpinning of a growing region, the magnetization experiences a
jump with a certain amplitude (∆m). If many amplitudes are collected over
multiple loop cycles their probability distribution can be derived P (∆m).
Puppin and Zani [24] [25] investigated over this topic and found a power-law
emerging in real systems between ∆m and P (∆m):

P (∆m) = ∆mτ (6.7)
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Figure 6.19: ∆M represents a magnetization jump associated to the rever-
sal of the magnetization inside a material while a magnetic field is applied.
Source [25].

for both positive (∆m with same sign of the applied magnetic field) and neg-
ative jumps (∆m with opposite sign of the applied magnetic field). Equilib-
rium Monte Carlo simulations were devised as to reproduce such power-laws,
giving good agreement [26]. In this paragraph, we try to extend such in-
vestigation in out-of-equilibrium systems with the Lebowitz algorithm which
could be a more appropriate approach considering the out equilibrium nature
of hysteresis loops.

Before proceeding with the statistical analysis an important clarification must
be done. What do we take as a magnetization jump? In the real physical
world, a jump can be easily identified as the magnetization difference between
two metastable levels, as can be seen in fig. 6.19. In the Equilibrium Monte
Carlo simulation, instead, a jump is defined as the ∆m before and after the
magnetic field is increased/decreased of a fixed amount dH, following the
procedure illustrated at the beginning of chapter 4. In the dynamic Monte
Carlo defining a jump is less straightforward. We cannot rely over the ∆m
between metastable states, since it is rather complex to locate them. If one
looks closely enough, the magnetization varies at each simulation step by a
tiny amount ∆m = ±2/L2 and it is not possible understand if a fluctuation
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is simply an effect due to the simulation that requires a modification of the
magnetization at each step or if it is due to the system stuck in a metastable
state. Moreover, measuring every fixed amount of MCSS, as to resemble
the method done for the Equilibrium Monte Carlo simulation, doesn’t have
physical sense, since the magnetic field is related to the physical-time instead
of the MCSS and we would end up measuring every now and then depending
on the relation physical-time versus MCSS.
Two practical ways can be considered:

1. We take as a jump the ∆m between the magnetizations sampled at
time distance of a fixed quantity ∆t (in physical-time).

2. We consider the previous definition, but we group together the consec-
utive jumps with same sign, as to alternate a positive with a negative
jump.

In the following the former methodology has been considered. Attention
must be paid while choosing the ∆t value. Indeed we want to ensure that
the system has enough time to perform at least the same number of spin
updates as the number of spin of the system. This set a minimum threshold
in the ∆t value, which can be quantified considering the external parameters
of the simulation (T , L, P , . . . ) and the plots in fig. 5.3 and 5.4. Moreover, if
we choose a too high ∆t, we may miss to register smaller jumps and consider
them as one bigger. Also negative jumps become more difficult to catch.
This, instead, set an upper level for ∆t, which cannot be easily calculated.
For this reason, ∆t was taken as small as possible, equal to the physical-time
equivalent to few MCSS.

We have to remember that we can properly speak about hysteresis jumps only
in presence of defects. Indeed, if the external magnetic field is slowly varied
in absence of defects, the system experiences a sudden reversal magnetization
when H becomes equal to the coercive field. In order to understand the right
choice for ∆t, we have also to look at the percentage of defects inside the
lattice. With this aim, the plots represented in fig. 6.20 were derived.

As we can see, the fraction of defects does not strongly influence the re-
lation physical-time versus MCSS far from equilibrium. Near equilibrium,
the situation changes and the fraction of defects must be considered while

117



Figure 6.20: L fixed at 50. In the right panel the ratio between the physical-
time and the MCSS in near equilibrium conditions; in the left panel the same
ratio in far from equilibrium conditions for different values of the defects
concentration D. Simulations done for different initialisation temperatures
T and magnetic field periods P . H fixed at 1.

deciding the appropriate ∆t. Moreover, if we fix a particular ∆t, it may
happen that the appropriate number of MCSS are spent in the near equi-
librium condition but not for the far equilibrium condition and vice versa,
since the proportionality coefficients have different order of magnitudes for
the two cases.

As to have a reliable statistic, at least three order of magnitudes for the jump
amplitudes (∆m) were considered. This sets a condition over the lateral size
of the system. Indeed, the maximum jumps that can be measured are of the
order of 5 · 10−1. Therefore, we want to be able to detect jumps of the order
from 10−1 to 10−5. Since the minimum detectable ∆m is 2/L2, we must have
at least L ≥ 200.

The following simulation is devised:

1. A lattice with L = 200 is initialised completely negatively magnetized,
with fixed temperature T < Tc.

2. Random defects are added to the lattice, in fixed positions and orien-
tation.

3. A sinusoidal magnetic field is superimposed with fixed amplitude H0 =
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0.5. The period for the oscillation is chosen as to leave enough time to
the system to vary the magnetization. in particular, P = 106

4. Every ∆t, the magnetization is sampled and ∆m is derived. The mea-
surement are repeated along all the cycle and for a fixed number of
cycles.

5. The precedent steps are repeated many times as to have a considerable
amount of data derived from multiple initialisation of defects.

We have proceeded with the analysis regarding positive and negative jumps
separately, both in the cases near equilibrium and far from equilibrium. As
to distinguish between the vicinity to equilibrium, we have considered all the
jumps when |m| > 0.9 as near equilibrium jumps. Otherwise, as far from
equilibrium jumps. The power low is interpolated beginning from the peak
in P (∆m) up to ∆m −→ 1. The fraction of defects is chosen to be 3%,
which, dependently on the value of the temperature could cause the system
to fall in the spin-glass phase. For this reason, we expect worse results for
higher temperatures. Results from the simulation while the temperature of
the system is varied are presented in fig. 6.21.

As predicted, increasing the temperature, the linear regression worsens. By
looking at the plot of the hysteresis cycles, for T = 1.8 the system seems
to approach the paramagnetic behaviour in which the area of the loop ap-
proaches zero. Another problem can derive from the failure in the identi-
fication of the metastable states and therefore in the identification of the
incorrect jumps (and a worse P (∆m) statistics). Indeed, in the considered
approach, a transition between metastable states could be decomposed in
many intermediate steps if the time the system takes to move from two
metastable states is lower then ∆t. Indication of this behaviour can be seen
in the absence of jumps in the order of magnitude of 10−1 for all temperatures,
which sounds a little strange considering the hysteresis plots. Moreover, as
can be better seen in the second simulation for T = 1.6, the overall jump
statistics has a shallow peak towards higher ∆m. What makes inaccurate
the estimate is the “far equilibrium”jumps, for which no power-law seems to
be found.

A significant improvement is obtained if we group together all the consecu-
tive jumps with same sign. In this way, we obtain an alternation between
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Figure 6.21: In the left panel, the hysteresis loops from which the jump
statistic is derived. In the right panel, the P (∆m) calculated for positive
(“+”) and negative jumps (“-”) far from equilibrium, near equilibrium and
total. The scale is logarithmic as to reduce the power-law in a linear regres-
sion. Parameters of the simulation: field period P = 5 · 105; field amplitude
H0 = 1; fraction of defects D = 3%; Number of replicas: 8; Number of
hysteresis cycles: 4; Lateral Size: L = 200.
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positive and negative jumps and we do not risk to separate a unique jump
in multiple smaller ones. Fig. 6.22 shows the derived jumps statistical anal-
ysis. As we can observe, the positive jumps statistics improves. Instead,
the negative jumps statistic does not seem to improve, especially for the
“far from equilibrium”jumps. This behaviour is expected. Indeed, in the“far
equilibrium”condition, the system undergoes a magnetization reversal.

Finally, the coefficients for the power-law are derived. Results are reported
in table 6.5. The coefficients found are in reasonable agreement with what
experimentally observed by Puppin [25] and Zani et al. [24]: in the overall
statistic, the experimental power-law coefficients were found to be τ = −1.1
in case of positive jumps and τ = −1.6 for negative jumps.

T τ R2

1.4
-0.95 -1.56 0.962 0.921
-1.33 -1.62 0.995 0.914
-0.49 -1.80 0.563 0.843

1.6
-0.88 -1.30 0.956 0.931
-1.22 -1.37 0.979 0.920
-0.44 -2.25 0.421 0.801

1.8
-0.90 -1.18 0.926 0.870
-1.08 -1.21 0.974 0.947
-0.65 -1.73 0.720 0.856

Table 6.5: Table for the jump statistics. In each sub-table, the coefficient
and the R2 refers to the corresponding statistic in the sub-plot of fig. 6.22.
The statistic for the overall near plus far equilibrium jumps are in the 1st,
4th and 7th row, for each temperature value considered.

As final remark, also simulations for D = 4% were considered and the statis-
tics derived. No major differences in the power-law coefficient could be found.
The defect concentration seems not to influence significantly the critical expo-
nent associated with the jumps statistics. What we expect is that the fraction
of defects could influence the range over which we can found a power-law.
Indeed, in D −→ 0 we cannot consider a statistic since the magnetic reversal
happens in just one jump.

121



Figure 6.22: In the figure, the P (∆m) calculated for positive (“+”) and neg-
ative jumps (“-”) far from equilibrium, near equilibrium and total. The scale
is logarithmic as to reduce the power-law in a linear regression. Parameters
of the simulation: field period P = 5 · 105; field amplitude H0 = 1; fraction
of defects D = 3%; Number of replicas: 8; Number of hysteresis cycles: 4;
Lateral Size: L = 200.
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Chapter 7

Application to opinion
formation in human dynamics

Thus far, we have extensively described the behaviour of magnetic systems
out or in equilibrium conditions. This could misleadingly induce to think the
Ising Model as describing “merely”physical systems. This is not the case.
What happens if we try to apply the Ising Model to a completely different
field of study? Its relatively simple structure, decomposed to its essence,
describes the interplay between many actors, characterised by a binary be-
haviour (i.e. yes or no, spin up or spin down, . . . ) and with the ability
to influence whoever is near them. Possibly, it accounts for the effect of a
“noise”(in the physical system interpreted by a non-zero temperature) that
brings disorder into the structure.
In this final chapter we will investigate one of the possible extensions and
applications of the Ising Model to non-magnetic systems. More precisely,
we will analyse the ability of the model to describe the process of opinion
formation in human society, when the opinion is characterised by only two
levels. The parallelism is almost straightforward: individuals take the place
of magnetic moments in the structure; binary opinion replaces spin direction
(accounting for “vote yes”or “vote no”; “vote A”or “vote B”in a bicameral
type of government,...) and the interaction is represented by opinion ex-
change in all kind of conditions. The effect of temperature over the system
can be interpreted as the possibility that individuals can change their opinion
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without any influence, counterbalancing the opinion exchange process.
This type of application finds place into the realm of the sociophysics, which
considers mathematical techniques ad tools in order to derive information
regarding the behaviour of human crowds.
Once clarified how the Ising Model could be extended out of the magnetic
applications, we can ask ourselves on which occasion we can perform Monte
Carlo simulations. This is a delicate issue. Indeed, the convergence to equi-
librium of the Monte-Carlo simulations is ensured in the presence of a Hamil-
tonian, which is something that, depending on the type of the model, cannot
be always easily assigned.
initial part of this chapter, we present an opinion formation model known as
Sznajd Model (SM). Then, we consider the issue of making it Hamiltonian,
by implementing a minimal number of modifications on the original SM. We
devise Monte Carlo simulations to validate the similarity between the two
models, and, finally, we describe the effect of “social temperature”.

7.1 Sznajd model

The Sznajd Model was introduced in 2001 [27] with the aim of describing
the formation and evolution of democratic decisions inside society. After its
appearance, it received a lot of attention and was further extended to describe
more complex systems ([28] [29] [30]). In its simplest form, it considers a
society modelled as a linear chain of N spins with either opinion “yes”or
“no”, i.e. orientation +1 or −1. The interaction between two individuals
produces the spreading of opinions to their neighbours. This process repeats
again and again until a steady-state condition is reached. From a practical
point of view, the algorithm consists of the following steps:

1. Selection: a spin in the chain is randomly selected (Si).

2. Dynamical rule:

• (First dynamical rule): if Si and Si+1 share the same opinion, they
extend it to their neighbours. Si+2 = Si−1 = Si
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• (Second dynamical rule): if the Si and Si+1 have different opinion,
then their neighbours Si+2 and Si−1 take opposite opinion. In
particular, Si+2 = Si and Si+1 = Si−1.

3. Repeat: step 1-2 are repeated until an equilibrium condition is reached.

The algorithm is explicitly devised to let the system evolve towards one of
the following equilibrium configurations:

• Dictatorship: all the individuals share the same opinion (either “yes”or
“no”)

• Stalemate: indecision rules. All the individuals have opposite opinion
with respect to their neighbours. “Yes”and “no”are equally shared
among the whole population.

In the first publication [27], it was found that these configurations emerge
with different probabilities depending on the initialisation condition. In par-
ticular, it depends on the initial fraction of individuals voting “yes”(or, if
one prefers, “no”), as shown in fig. 7.1.

Extensions to this simple model were proposed within the same paper. In
particular, since in reality the decision formation does not come from the
mere contact between people but also requires some sort of persuasion, it
was introduced the possibility to not follow the deterministic algorithm. In
practical terms, a neighbour can decide to behave randomly with probability
p (p < 1) instead of being updated following the dynamical rules. This
modification emulates a sort of information noise, which affects are similar
to the ones brought by thermal noise. This topic will be analysed in the last
paragraph of this chapter.

In subsequent publications, another interesting modification to the SM has
been proposed. In particular, the second dynamical rule was modified as
follows:

• if spins Si and Si+1 have different opinion, then with probability p < 1
their neighbours Si+2 and Si−1 take opposite opinion Si+2 = Si and
Si+1 = Si−1, with probability 1− p nothing happens.
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Figure 7.1: Achieved final configuration at equilibrium. The three equilib-
rium condition are here indicated with BBBB and AAAA as dictatorship
and ABAB as stalemate. cB is the fraction of individuals voting B for an
election. Source [27].

For their peculiarity, some SMs with particular choices of p have been de-
fined: p = 1 is named “United we Stand, Divided we Fall”(USDF ) which is
the standard algorithm; p = 0.5 is named “if you Don’t Know what to do,
just Do Whatever”(DKDW ); p = 0 is named “if you Don’t Know what to
do, just Do Nothing”(DKDN ). These three possibilities lead to a different
spectrum of results, depending also on the initialised fraction of voting “yes”.
A practical representation is offered in fig. 7.2, where the 3 conditions over p
are simulated with different choice of the initial fraction of individuals voting
“yes”(c = 0.25; 0.5; 0.75).

The developed model is a very elegant way of describing the formation of
opinions inside a society. But, to derive a Hamiltonian from the rules stated
is not a simple task. If we want to introduce Monte Carlo simulations, we
have to find a way to express the system Hamiltonian, possibly with a slight
modification of the dynamical rule. In the following paragraph, we present a
slightly different model that tries to emulate the behaviour of the SM, char-
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Figure 7.2: Evolution of the different SMs (left column, p = 0: if you Don’t
Know what to do, Do Nothing ; middle column, p = 0.5: if you Don’t Know
what to do, Do Whatever ; right column, p = 1: United we Stand, Divided
we Fall) for different fraction c. Each row correspond to the 1D chain at a
different MCSS. In each subplot, time flows from top to bottom row. Source
[31].

acterised by an explicit Hamiltonian. We will consider this model a possible
alternative to the SM only if we are able to reproduce the same steady-state
behaviour (probability of final configurations appearance function of the ini-
tial fraction of people voting “yes”) and the same properties.

7.2 A Hamiltonian for the Sznajd Model

To find a suitable Hamiltonian for an opinion formation model, we can start
considering the SM dynamics and then introduce some modifications. Firstly,
for convenience, when we pick a spin in the structure, instead of extending its
opinion to its neighbours, we would like to question its opinion and therefore
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decide whether to flip it or not. Secondly, we would like that the chosen
spin checks its first and second neighbours and then it decides based on
the majority of them. This means that only if three of the four nearest
neighbours are equally oriented (i.e. there’s at least a couple of consecutive
spins with the same orientation) it becomes convenient for a spin to flip.
This should modele the first dynamical rule of the SM, in which couples of
consecutive individuals with the same opinion produce the spreading of their
opinion. Moreover, another feature of the SM is reproduced: indecision. To
understand it, we can use the following case:

1 2 3 4 5
+ + − − − (7.1)

Depending on which couples 1 & 2 or 4 & 5 is selected in the standard
SM, the spin 3 should be oriented as + or -. Our approach also considers
indecision since there is no clear majority in the neighbours of spin 3 and
both orientations are accepted.

And for the second dynamical rule? In reality, it is not well reproduced. As
an example, consider the following case:

1 2 3 4 5
+ − − − +

(7.2)

If one of the two couples 1 & 2 or 4 & 5 is selected in the SM, the spin 3 should
be oriented as +. In our approach, instead, spin 3 shows indecision and there
is not a preferable orientation. A possible solution for this indecision could
be consider a different value for the interactions between first and second
neighbours, even though it will not be implemented and analysed in this
work. For this reason, we expect some differences between the two models.

From the two initial requests, considering a linear chain, we can consider the
following Hamiltonian:

HSM = −
∑
i

(si)(si−2 + si−1 + si+1 + si+2) (7.3)
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with si = ±1. Here, we have considered equal the exchange integrals between
first and second neighbours, J1 = J2 = 1, since in the SM spin 1 has the same
interaction over 3 as 2. Once the majority of the neighbours share the same
direction, si minimises the total energy by choosing the same orientation of
its neighbours, as desired. Equation (7.3) is simply equivalent to the second-
neighbour Ising Model Hamiltonian. Indeed:

HSM = −
∑
i

(sisi−2 + sisi−1 + sisi+1 + sisi+2) = −
∑
〈i,j〉2

(sisj) = H1D
2N (7.4)

in which 〈i, j〉2 denotes the sum over all the first and second neighbours.

Once found a suitable Hamiltonian model emulating the Sznajd dynamics,
we can now focus on what is still missing before proceeding with actual
simulations. Both the Glauber dynamics and the Lebowitz algorithm must
be adapted. And, each one of them requires a little discussion.

7.2.1 Adapting the Glauber dynamics

Thus far, the Glauber dynamics has been used in the transition probabili-
ties expression (wi(si)), representing the probability of a transition between
states characterised by the reversal of the i-th spin. The deterministic na-
ture of the SM (i.e. the presence of an algorithm following which we arrive
at equilibrium) induces us to pick a T = 0 model. What does it happen to
the transition probabilities in such a critical condition? If we simply take
T −→ 0, we obtain:

lim
T→0

wi(si) = lim
T→0

[
1

2

(
1− si tanh

(
∆Ei
kBT

))]
=


0, if ∆Ei > 0

0.5, if ∆Ei = 0

1, if ∆Ei < 0

(7.5)

where ∆Ei represents the energy gain the system has upon inversion of spin
i. In other words, the transition into a state with the i-th spin inverted
has a transition rate equal to 1 if during the process the total energy lowers
(∆Ei < 0), equal to 0 if the total energy increases (∆Ei > 0), equal to 0.5 if
the total energy remains constant(∆Ei = 0). This is the behaviour we would
expect at zero temperature: the transition into states with higher energy is
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now not allowed since the thermal energy is null. Before any other possible
observation, it could be helpful analysing also the modifications required in
the Lebowitz algorithm.

7.2.2 Adapting the Lebowitz algorithm

Differently from the previous version of the Lebowitz algorithm used for a
bi-dimensional, first nearest-neighbours Ising Model, we now consider a chain
of spins and the interaction with the second nearest neighbours. As seen in
chapter 2 (Methods), the Lebowitz algorithm requires as many classes as the
number of different ∆E that a spin-flip could bring into the system energy.
If we assume equal interactions (J1 = J2 = 1) between first and second
neighbours, the total number of classes is, fortunately, 10: it coincides with
the one we had for the bi-dimensional system. This is reasonable if one
considers that, provided that both J1 and J2 are equals, nothing changes in
terms of energy between the cross and the line configurations.

+
+ − + ⇐⇒ + + − + +

+
(7.6)

Continuing with the analogies, during a spin-flip event, the selected spin
changes the class of ±5. Its first and second neighbours change classes by ±1.
Everything remains equal to the previous version of the algorithm, except
the structure of the variables Location and Class. They will be turned into
an array instead of a matrix, reflecting the system’s mono-dimensionality.
Table 7.1 sums up all the characteristics of the classes.

Starting from a random disposition of the opinions in the chain, at the begin-
ning of the simulation classes 3 and 8 will be more occupied; classes 1-5-6-10
less occupied. Once started, we will observe a progressive emptying of the
3-4-5-6-7-8 classes and the consequently filling of the 1-2-9-10 classes. This
may take a consistent amount of simulation steps. Indeed, it could happen
that the 1D analogous of the striped configurations encountered in chapters 4
and 5 emerge (shown in fig. 7.3). In these configurations, almost the totality
of spins are in classes 1 and 10 and classes 2-3-8-9 are all populated by 1
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class opinion # of +1 neighbours ∆Ei wi

1 +1 4 +4 0
2 +1 3 +2 0
3 +1 2 0 0.5
4 +1 1 -2 1
5 +1 0 -4 1
6 −1 4 -4 1
7 −1 3 -2 1
8 −1 2 0 0.5
9 −1 1 +2 0
10 −1 0 +4 0

Table 7.1: 10 Classes for the 2 nearest neighbours Lebowitz algorithm. The
second column represent the opinion of the spin in a particular class. The
third column, the number of spins with orientation +1 considering all the
first and second neighbours. Fourth column represents the change in the total
system energy that the inversion of a spin in a particular class would bring.
Fifth column the transition probability related to the spin in a particular
class.

Figure 7.3: 1D analogous of a stripe configuration. It is possible to recognise
2 clusters with opposite opinions.

spin. This metastable state can dissolve only if one of the two equally ori-
ented regions shrinks to the point that it consists of only 1 spin. Then it will
be reversed the next step. And then? Actually, this is a big problem from
the point of view of the simulation with the Lebowitz algorithm: the algo-
rithm will fail in the identification of the next spin to invert. From the point
of view of the model, once dictatorship is reached (all individuals share the
same opinion), we can say that an equilibrium condition has been reached
and nothing will happen again, forever and ever, since we are at T = 0.
Therefore, it makes complete sense that the simulation stops running.

In the following, the created model will be referred to as Hamiltonian Sznajd
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Model (HSM), even if one of the basic dynamical rules of SM has been slightly
modified. We can now proceed with the analysis of the results coming from
the HSM and compare them with the ones from SM.

7.3 Zero-temperature models analysis

Before presenting the results coming from simulations over the HSM, we have
to clarify with which SM we should compare them. We have defined three
possible SMs, depending on the value p chosen for accepting or not the second
dynamical rule. We can consider the following cases. For simplicity, as done
in the previous paragraph, we switch for just a few lines to the Metropo-
lis Algorithm instead of the Lebowitz Algorithm, speaking of a posteriori
inversion instead of a priori. This should not harm the argumentation.

• + +−+ +: the spin in the middle has transition probability (w) equal
to +1. Therefore, if selected, it will be flipped.

• + + − − +: the spin in the middle has also w = 1. If selected it will
be flipped.

• + − + + −: the spin in the middle is characterised by w = 0.5. Its
selection does not lead unequivocally to the inversion: there’s 50%
chance.

• + − − − −: the spin in the middle has w = 0. It will not change
orientation.

• − − − − −: the spin in the middle has w = 0. It will not change
orientation.

The third case is the one we are interested in since it resembles the condition
in which the second dynamical rule of SM applies (i.e. indecision condition).
Since here we have w = 0.5, we will consider the SM with p = 0.5, which
corresponds to the If you Don’t Know what to do, just do whatever (DKDW )
for the comparison.
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Figure 7.4: EP after 2000 MCSS considering SM (DKDW) in the left panel
and HSM in the right panel. Each line correspond to one of the possible
equilibrium configuration: dictatorship positive red line, dictatorship nega-
tive yellow line, stalemate blue line.

Now, we aim to compare the results of the simulations obtained from the two
models (SM and HSM). In particular, we are interested in the Exit Proba-
bilities (EP), defined as the probability that a chain will evolve reaching a
specific equilibrium configuration. Since we have three possible equilibrium
configurations, we will have three different EPs. Every single EP depends
on the initial fraction c of spins +1. As an example, starting from a small
fraction c, it is more likely to obtain the negative dictatorship as equilibrium
configuration.
Fig. 7.4 shows the EPs, function of the initial fraction c of spins +1, ob-
tained from a simulation over 2000 chains with size N = 100, considering
the SM (DKDW ) and HSM. Before the system reaches one of the possible
equilibrium configurations, a certain amount of simulation steps are required
(here expressed as the usual MCSS ). For these simulations, 2000 MCSS were
waited. Only 0.2% of the chains did not reach one of the possible equilibrium
configurations, as they had not enough simulation steps to reach them and
were discarded.

As it is possible to observe, no major differences between the equilibrium
configurations are showed. Moreover, in both cases, we have a clear indication
that the stalemate is an unstable equilibrium configuration since it has not
been reached even once. As one expects, the dictatorship configurations are
symmetric with respect to c = 0.
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We can now analyse how fast a chain approaches equilibrium for both models.
Since the final configurations are characterised by spins equally oriented, how
fast they will be reached depends on the fraction of initialised spins up c. For
this purpose 2000 chains with N = 100 were considered. Simulations with
different values of c were run for 200; 400; 800 MCSS for both models.
The number of chains that did not reach one of the possible equilibrium
configurations at the end of the simulation was derived and it is plotted in
fig. 7.5. As one can expect, the number of configurations that do not reach
equilibrium is higher when c is near 0.5: reaching the equilibrium requires a
longer time if the system has equally oriented spins up or down. If we now
compare the results, we notice that the HSM, with the Lebowitz algorithm,
proceeds towards equilibrium in less MCSS. Indeed, all the chains reached
equilibrium, even when the simulation was run for the shorter amount of
MCSS.

What found is reasonable. This is a feature of the Lebowitz algorithm that,
when the temperature approaches 0, proceeds rapidly towards equilibrium.
For a better understanding, consider the particular case in which a simple
N = 10 chain has only one spin −1 aside from all the others (actually, this
configuration, or one of the possible permutations, is very likely to happen
in the simulation before positive dictatorship is reached):

+ + + + + − + + + + (7.7)

By applying the Sznajd algorithm 5/10 spin choices do not modify anything
in the structure. The simulation step in which no modification happens is
defined as “wasted step”. The number of these “wasted steps”in the Sz-
najd algorithm reasonably increases if we increase the dimensionality of the
chain. Instead, with the Lebowitz algorithm, since the chosen spin will be
reversed no matter what, no “wasted steps”can happen. This explains why
the Lebowitz algorithm could be a better choice describing opinion formation
while considering large systems.

It may be interesting also comparing how the transition towards equilibrium
happens in both models. With this purpose, the same chain was left free to
evolve following first the standard SM and then the HSM. Fig. 7.5 shows,
row by row the chain after a MCSS. In this case, to test different initial
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Figure 7.5: Results of the simulations considering SM in the first row, HSM
in the second row. On the left, the EPs, function of the fraction c. On the
right, the number of configurations that did not reach one of the equilibrium
configurations, function of the fraction c. In both models, the simulations
were run for a different amount of steps: 200; 400; 800 MCSS.

conditions, three chains with c = 0.25; 0.5; 0.75 were considered.
It is possible to understand better the difference between the MCSS of the
two models. For SM, minor modifications differentiate one step from the
following. For HSM, instead, changes in the chain happen faster. Moreover,
looking at the case c = 0.5, we can observe the formation of regions equally
oriented quite differently following the two models. Therefore the transition
towards equilibrium is not comparable.

Inside the simulation, an individual may change his/her opinion multiple
times. We define the time occurring before an opinion change as “time of
stubbornness”and we refer to it as τ . In the original work [27], it was analysed
the statistic coming from the time of stubbornness applied to the SM with
(USDF ) and it was found a power-law relating τ with its probability P (τ),
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Figure 7.6: Transition towards equilibrium. Each row of each square repre-
sents the chain at a fixed MCSS. For each model, c = 0.25 (left); c = 0.5
(middle); c = 0.75 (left). SM on the top. HSM on the bottom.

with exponent −1.5. By analysing the SM (DKDW ) (and even DKDN ), the
power-law happens to be still verified. Now we want to understand if it does
apply to the new model (HSM).
It is necessary now a clarification. The time of stubbornness, for the SM
(in all three cases), is calculated following a fictitious time t∗ that follows
the opinion change: it increases only when someone in the chain changes
opinion. Practically speaking, t∗ is quite similar to the MCSS in the HSM.
For this reason, the comparison between the results from SM and HSM is
reliable. Additionally, for the HSM we can measure the time of stubbornness
considering the physical-time. Fig. 7.7 investigates the power-law coming
from the time of stubbornness, calculated considering 100 chains of N = 100
that reached equilibrium, and 7.3 reports the values of the exponential and
R2 for the linear regressions, considering logarithmic plots.
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Figure 7.7: Power-law. Left panel: SM (p = 0.5). Middle panel: HSM
considering MCSS. Right panel: HSM considering the physical-time. For
both systems, data from 100 simulations over chains of size N = 100 were
collected and analysed. Only simulations in which the equilibrium configu-
ration is reached were considered. Linear regression was performed only over
the interval [1, 103] for the simulations in MCSS and [10−3, 3 ∗ 102] for the
simulations as to reduce the noise deriving from high times of stubbornness
with very low frequency.

Model α R2

SM (p = 0.5) −1.57± 0.01 0.99
HSM (MCSS ) −1.49± 0.01 0.99

HSM (physical-time) −1.50± 0.01 0.98

Table 7.2: Power-law information estimation. The exponents (α) are pre-
sented with the R2 of linear regression in the logarithmic plot P (τ), τ .

As a final remark, we can conclude that, an alternative to the Sznajd Model of
the type Don’t Know what to do, just Do Whatever, could be the Hamiltonian
Sznajd Model with the Lebowitz algorithm, even though the transition is not
comparable. Every other important aspect as the Exit Probability and the
power-law statistic from the time of stubbornness does not show particular
discrepancies depending on the considered model.

7.4 Noise for opinion formation

As said at the beginning of the chapter, it is possible to consider the presence
of a “social temperature”defined as the possibility that an individual does
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Figure 7.8: Magnetization evolution for a chain with N = 1000, considering
SM (USDF ), with noise. For p < 3 · 10−6 the system is able to maintain the
equilibrium configuration. Instead, for lower values of p, it drifts away from
it. Source [27].

not follow the dynamical rule with probability p. In this case, in the original
paper, it was found that for p > 10−6 the representative Ising chain is not
able to reach equilibrium and has a magnetization that fluctuates around
m = 0, as shown in fig. 7.8.

How can we reproduce such “social temperature”for the HSM? A possibility
could be to consider a T 6= 0 model. In our case, we simply rewrite the
Lebowitz algorithm considering the transition probabilities for T 6= 0. The
critical temperature determines the transition from an ordered to a disor-
dered chain and therefore we can think that for T < Tc dictatorship can
be reached, instead for T > Tc the chain will fluctuate without reaching a
unanimous decision. It must be noted that, considering the thermodynam-
ical limit (L −→ ∞), the second neighbours Ising model has been found to
have Tc = 0 [32]. Therefore, dictatorship seems to be a rather unrealistic
equilibrium condition for a society with a large population, modelled with
a 1D second-neighbours Ising model, even with a tiny presence of “social
temperature”. Our model suggests a quite philosophical conclusion: a dic-
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Figure 7.9: Mean “opinion”function of temperature, obtained from simula-
tions over chains with different sizes L = 10; 50; 100; 200; 500. It is possible
to notice a trend in the critical temperature: it decreases while increasing the
system size, indicating that the thermodynamical phase transition is only a
finite size scaling consequence.

tatorship has not long life if in the society there’s even just one individual
that is able to think by him/her-self, change opinion and transmit it to other
peoples. Sooner or later, the interaction with individuals will make this seed
grow until an avalanche will be created which will overthrow the dictatorship.

Let us come back to our Ising system. The previous conclusion is valid only
in the thermodynamical limit. If one considers a finite system, as we do
with our simulations, Tc moves away from 0, as one can observe in fig. 7.9.
Here the mean “opinion”over 50 chains is derived function of the system
temperature. We can observe the finite-size system showing the spontaneous
formation of an overall “opinion”below a certain temperature which seems
to depend on the system size.

We now focus on what happens in terms of time of stubbornness τ . In the
original paper, the power-law was found to drift away from its behaviour at
T = 0 for the SM (USDF ) in presence of noise p, as shown in fig. 7.10. This
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Figure 7.10: Modification of the power-law in presence of noise. For τ > τ ∗

we have an exponential behaviour. For τ < τ ∗ a power-law. In the left panel,
the SM (USDF ), source [27]. In the right panel, the HSM.

behaviour is also observed for the SM (DKDW ).
In particular, there is a value τ ∗(p) for which in the range τ > τ ∗, P (τ) has
an exponential behaviour with τ . Instead in the range τ < τ ∗ the power-law
is still confirmed. The position of τ ∗ tends to shift towards infinite in case
n −→ 1. With HSM something similar still happens. Instead of increasing
the noise, we increase the temperature and the P (τ) changes in the same
way. This analogy sets a further argument in favour of the analogy between
social temperature p and the actual temperature of the Lebowitz algorithm.

7.5 Further implementations and final

remarks

Thus far, the HSM has been developed and compared to the known SM. Since
it has a Hamiltonian, we can perform Monte Carlo simulations and derive
conclusions over its transition towards equilibrium. For completeness, ideas
for future implementations that did not found space for further investigation
in this work are now presented:

• Mono-dimensional Ising systems were only considered. Instead, also bi-
dimensional (or generally multidimensional systems) can give interest-
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ing results. Several studies have been published on the bi-dimensional
Sznajd Model, with an appropriate extension of the dynamical rule.
Also, the Lebowitz algorithm could be adapted for this dimensionality
upgrade. In particular, since it must be a second-neighbours model, we
will have an increase of the number of ∆E deriving from a spin-flip in-
version and consequently an increase in the number of classes involved
in the algorithm. A possibility is to consider as second neighbours
all the spins that touch the first neighbours. In this case, each spin
will be interacting with 12 neighbours, in which 4 of them will have a
double interaction with the central spin and the remaining 8 a single
interaction. This model will require a 34 class Lebowitz algorithm. An
alternative, instead, comes from considering as second neighbours the
nearest in terms of distance, i.e. the ones on the vertex of the 3 × 3
square surrounding the considered spin. In this case, the interacting
spins will be 8. In this case, an 18 class Lebowitz algorithm would be
required.

• Inside our model, we can consider the presence of “stubborn”people
who could be reluctant to change opinion. They cannot be selected in
the selection step (or have transition probability w = 0), resembling
what we have defined as defects in the previous chapter.

What seen in this chapter is one of the potential applications of the Ising
Model. For sure, opinion formation in society is a rather complex topic and
cannot be entirely described by such a simple model. However, if we focus
on the essential characteristics of a society (interaction between individuals,
exchange of opinions, presence of “social temperature”, . . . ) and we imple-
ment them in the algorithm, good results can be derived.
Within this chapter, we explore the similarity between the Lebowitz algo-
rithm and the Sznajd dynamics. This allowed us to derive a T = 0 second
neighbour model that is able to reproduce the same exit probabilities and
power-law obtained by the Sznajd model (in the case p = 0.5, if you Do not
Know what to do, just Do Whatever) and on which we can perform Monte
Carlo simulations. Therefore, we think that this approach can be considered
a valuable alternative describing the formation and motion towards equilib-
rium.
Now we present a final remark: since the Lebowitz algorithm does not con-
sider “wasted steps”, it reduces heavily the computational time required to
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reach equilibrium. if compared to the Sznajd model. This could allow faster
simulations or extend the investigation over larger systems.

142



Chapter 8

Conclusions

We now recall some of the most important results derived within this work.

8.1 Lebowitz vs. Metropolis

We have demonstrated the efficacy of the Lebowitz algorithm, able to repro-
duce the same results deriving from the Metropolis approach and allowing
a saving in the computational time due to the absence of rejected steps. In
particular, the Lebowitz algorithm is appropriate to describe all the critical
phenomena (thermodynamical and dynamical), allowing to derive their crit-
ical temperature: 2.27±0.01 for the thermodynamical case; 0.798 ·Tc for the
dynamical case, for the particular choices of H0 = 0.3 and P = 258.

8.2 System with defects with Lebowitz

algorithm

Here we have presented a different approach to the problem of modeling
defects in magnetic materials. We have considered defects as frozen spins in
the structure, which allows us to reproduce the same results of the Random-

143



Figure 8.1: Static magnetic susceptibility for a lattice with lateral size L =
128 with increasing percentage of defects.

Bond Ising Model. In particular, this new approach reveals the presence of
spin-glass phase transition at a specific fraction of defects, as can be seen
in fig. 8.1 by the analysis of the static magnetic susceptibility. Indeed, the
broadening of the peak below Tc and the discrepancy in the behaviour for
T → 0 are key characteristics of the spin-glass phase.

Moreover, the experimental Barkhausen noise statistic is confirmed also by
the considered approach, supporting the idea of defects in the structure as
the main cause of the Barkhausen noise (fig. 8.2). In particular, it was found
a temperature dependency, milder in the case of positive jumps. Another
observation regards the difference between the near and the out of equilibrium
power-law exponents. For all the investigated temperatures, the negative
Barkhausen jumps showed a decrease in the exponent while considering far
from equilibrium condition. On the contrary, for positive Barkhausen jumps,
in the far from equilibrium condition, the exponents are higher. Further
investigation is required.
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Figure 8.2: In the figure, the P (∆m) calculated for positive (“+”) and neg-
ative jumps (“-”) far from equilibrium, near equilibrium and total (in the
top row). The scale is logarithmic as to reduce the power law in a linear
regression. Parameters of the simulation: field period P = 5 · 105; field am-
plitude H0 = 1; fraction of defects D = 3%; Number of replicas: 8; Number
of hysteresis cycles: 4; Lateral Size: L = 200.

8.3 Modification of the DPT due to defects

The introduction of few defects in the structure produces a modification in
the DPT phenomenon. The system magnetization is able to follow more pre-
cisely the variation of the external field, showing also a more deterministic
behaviour with respect to the case with no defects, as shown in fig. 8.3. The
more deterministic behaviour is caused by just few defects in the structure,
even lower then 1%. This opens new possible applications for magnetic mate-
rials with a small percentage of defects, able to induce ferromagnetic system
to faster time response but still maintaining the ferromagnetic nature.
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Figure 8.3: Magnetization cycles in presence of an oscillating field for lattices
with lateral size L = 32; 64; 128; 256. Other simulation values: P = 250,
T = 0.8 · Tc, H0 = 0.3, Hb = 0.01.

8.4 Application to opinion formation

The Lebowitz algorithm was adapted to reproduce the behaviour of the Sz-
najd model, describing opinion formation in society. Very similar exit proba-
bilities were found (as represented in fig. 8.4), as the same power law related
to the time of stubbornness.

A proper Monte Carlo simulation can be considered with the developed ap-
proach, since a Hamiltonian has been structured. Moreover, by setting the
temperature T > 0 we are able to simulate the effect of indecision in the
society. T > 0 has been found to be analogous to the concept of noise in
the Sznajd model. The main result is that no dictatorship can develop in a
society in which individuals can change opinions by their own and influence
others.
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Figure 8.4: Exit Probabilities after 2000 MCSS considering Sznajd model
(DKDW) in the left panel and the Hamiltonian Sznajd model with Lebowitz
algorithm in the right panel. Each line correspond to one of the possible
equilibrium configuration: dictatorship positive red line, dictatorship nega-
tive yellow line, stalemate blue line.

8.5 Future works

As future development, we suggest continuing by further deepen the investi-
gation over the finite-size scaling properties of the system in presence of de-
fects, as a complete understanding of the phenomenon still lacks. Moreover,
it could be studied an optimal configuration of defects inside the structure as
to provide a more deterministic behaviour of the magnetic system but still
retaining the same ferromagnetic nature, even when the lattice has a smaller
size.
The Lebowitz algorithm could be adapted to follow not only time-varying
parameters but also space-varying parameters. As a possible example, one
can consider applying a uniform magnetic field over just half of the system
or the central part of the system and study how the system behaves in these
conditions. From the point of view of the algorithm, it would double the
number of classes: from 10 to 20, considering 10 classes for the part of the
system without a field and the other 10 for the part with a field. This im-
plementation could be considered to reproduce the behaviour of a magnetic
system over which a laser (an electromagnetic wave source) is applied.
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