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eravamo carichi e pieni d’esperienza per quest’ultimo anno: senza il

Covid ce l’avremmo SICURAMENTE fatta. Tutte queste esperienze si

ripeteranno, in un modo o nell’altro. Finché avrò con me il tesserino,
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Sommario

Il contributo principale di questo lavoro è lo sviluppo un algoritmo di

rilevamento automatico delle fasi del sonno e dei complessi K a partire

da segnali cerebrali collezionati tramite elettroencefalogramma (EEG).

La classificazione delle polisonnografie è un compito oneroso che viene

eseguito a occhio ancora oggi da molti medici e ricercatori. I complessi

K sono forme d’onda presenti nella fase 2 di sonno non-REM , e che

si caratterizzano per una primo stadio negativo seguita da un secondo

stadio di rapida risalita, ad alta tensione. La densità di complessi K

durante il sonno potrebbe essere collegata all’insorgenza di malattie

neurodegenerative.

Il rilevamento viene effettuato tramite un metodo di supervised learn-

ing; nello specifico, sono state implementate due foreste casuali allenate

con features provenienti dall’omologia persistente per la classificazione

dei complessi K, e dalla teoria dei sistemi dinamici caotici per la clas-

sificazione delle fasi del sonno. Il teorema di Takens permette di recu-

perare la topologia dello spazio delle fasi generato dai segnali tramite

l’immersione conosciuta come Sliding Window. I segnali, raccolti nella

forma di serie temporali a tempo discreto, vengono trasformati in nuv-

ole di punti. La tesi si propone di presentare alcuni risultati fondamen-

tali di topologia algebrica computazionale che permettono il calcolo

ottimizzato delle classi di omologia persistente da una nuvola di punti.

Inoltre vengono esposte le basi della teoria dei sistemi dinamici caotici

e discussa la nozione di dimensione frattale, utile per il riconoscimento

delle fasi del sonno.

L’estrazione delle features viene eseguita studiando le classi di omologia

persistente e la caoticità degli spazi topologici ottenuti come immagini

di queste immersioni. I risultati numerici ottenuti su di un dataset
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composto da varie polisonnografie fornite dall’ospedale San Raffaele di

Milano sono paragonabili con quelli della letteratura.
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Abstract

The main contribution of this work is the developement of an algorithm

for the automatic detection of sleep stages and K-complexes from brain

signals collected with electroencephalograms (EEGs). The classifica-

tion of polysomnographies is an onerous operation that is stil performed

at sight by physicians and researchers. K-complexes are waveforms that

appear in the NREM-2 sleep stage, and are characterized by an initial

negative phase followed by a rapid raising phase, with high voltage.

The densitiy of K-complexes during sleep could be connected with the

onset of neurodegenerative diseases.

The detection is carried out through a supervised learning method;

specifically, a random forest scheme. The classifiers have been trained

with features from persistent homology and chaotic dynamical systems

for the detection of K-complexes and sleep stages, respectively. Tak-

ens’ Theorem permits the recovery of the topology of the state space

generated by the signals via the embedding known as Sliding Window.

The signals, that are collected in the form of discrete time series, are

embedded into point clouds. The dissertation presents some funda-

mental results of computational algebraic topology on the optimized

computation of the persistent homology classes from a point cloud. In

addition, the basic definitions of chaotic dynamical sistems are intro-

duced together with the notion of fractal dimension; the latter is useful

in the detection of sleep stages.

Feature extraction is performed by studying the persistent homology

classes and the chaoticness of the topological spaces which are obtained

as images of this embeddings. The numerical results are obtained over

a dataset of multiple polysomnographies provided by San Raffaele Hos-

pital of Milan. The precision of the methods are comparable with the
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ones present in the scientific literature.
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Chapter 1

Introduction

1.1 Why TDA

Computational topology and topological data analysis (TDA) are re-

cently inaugurated fields of applied mathematics. The former is a

subfield of topology which makes extensive use of notions from top-

ics as computer science and geometry, among others. Two cornerstone

texts that led to the foudation of the subject in the early 2000s have

been written by Edelsbrunner and Harer [21] and by Zomorodian and

Carlsson [65]. One of the objectives of computational topology is the

efficient calculation and storing of topological features for opportunely

discretized shapes. Such features include connected sum decomposition

of manifolds, knots, links, homotopy and homology groups. Treating

algebraic objects computationally can be arduous in general. This dis-

sertation assesses the simpler case of simplicial homology groups, which

can be obtained through linear algebra. These tools can be employed

in multiple fields as numerical analysis or computational geometry. In

addition, as it will be underlined in this work, there is a strong con-

nection between topology, geometry and dynamical systems theory [57].

Topological data analysis aims at applying the results of computa-

tional topology in the investigation of the shape of data. Data often

comes in the form of a signal, or a point cloud. TDA offers the possi-

bility to associate to data topological, geometrical and algebraic quan-

tities that are not accessible from other techiques. Two fundamental

tools used in applications are the mapper algorithm, which summarizes

shapes into graphs, and persistent homology, that permits multiscale

3



4 Chapter 1. Introduction

topological analysis of point clouds [10]. The literature shows that

both of these techniques are suitable for the qualitative inspection of

data. In addition to that, TDA points at providing precise quantitative

results. For that to be possible, it is necessary to combine the com-

putational topology framework with a robust statistical theory. Com-

putational topology ensures that theoretical concepts as shapes, holes

an knots among other objects can be conveniently modeled and stored

in computers. Data, on the other hand, presents noise, missing val-

ues, outliers, and is represented as a random variable coming from a

probability distribution. Summarizing, TDA is computational topol-

ogy endowed with mathematical structures that open up the possibility

to compute stable means, variance, errors, distance functions, on topo-

logically derived objects [39, 9, 11].

TDA asserted itself as a valid scheme to study possibly complex data.

Some practical applications of TDA are the study of cities or spider

web networks [23, 8], 3D objects recognition [55], and in biology, the

inspection of RNA sequences and proteins [50, 17]. Another field of

application that we want to underline, as it is the one covered in this

dissertation, is signal analysis [62, 48].

The computed topological quantities are often employed in machine

learning algorithms, making TDA a new and reliable source of features

for both regression and classification tasks [49].

This dissertation has three different aims. The first objective is some-

what didactic: we hope that reading this text can be useful to under-

stand the theories behind simplicial homology and chaotic dynamical

systems, without enetering too much into the details but giving to the

reader all the references in which these topics are covered with higher

formalism and competence. The other two goals are of greater impor-

tance since they distinguish this work from the others. We desire to

fascinate the reader by showing that topology is intrinsecally present

in signals we collect in real life.

As presented in this work, brain waves can be modeled as dynami-

cal systems endowed with highly complex topological features, as high

dimensional nontrivial homology groups and chaotic sets of fractal di-

mension. Thus, a great amount of information can be extrapolated

from a scalar function. For the task of feature extraction, we assert
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that for some applications inspecting the topological aspect can lead

to high or even better precision in classification tasks. Specifically, for

EEG signals, the frequency spectrum or the precise value of a time se-

ries in each instant can be of less interest since these quantities depend

on the use of filters and the position of the electrodes. For the detection

of Sleep Stages a smart idea could be to seek for the complexity of the

trajectories described by the signal; for the detection of K-complexes a

useful feature can be given by the holes in the phase space. These are

topological concepts.

Finally, there is the interest in the classification tasks. Other than

the personal passion in sleep functioning and brain waves, the scientific

literature proposes highly-functioning methods and this work aims at

finding comparable or even better results. The methodology in this the-

sis could be shared with the Research Center for Sleep of San Raffaele

Hosiptal, in Milan, and employed both for research purposes and as a

routine methodology, with the hope of reaching gains in classification

precision and time savings. In particular the K-complexes waveforms

have been reported to decrease in density in Alzheimer’s disease (AD)

patients [38]; it would be a great fulfilment to be a part of this research

field.

1.2 Structure of the dissertation

This work is structured in the following way. Chapter 1 introduces the

motivation and the description of the topics. Chapter 2 defines basic

mathematical objects (groups, embeddings, dynamical systems) that

reappear throughout the whole thesis. Chapter 3 is devoted to the pre-

sentation of simplicies and simplicial complexes, which are fundamental

notions in the field of computational topology. Simplicial homology, its

interpretations and properties are defined in Chapter 4. Chapter 5 de-

scribes persistent homology, the main feature-extracting tool for the

detection of K-complexes in EEGs. In Chapter 6 the topics of signal

analysis, simplicial homology, and dynamical systems are connected

by the Takens’ embedding theorem. Chapter 7 interrupts the theoreti-

cal aspects of the dissertation and delineates the classification problems

which are assessed by exploiting machine learning algorithms. The two

problems are the detection of Sleep Stages and K-complex waveforms

in polysomnographies. Chapter 8 introduces to the statistical learn-
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ing scheme, and in particular, to decision trees and random forests.

Chapter 9 discusses feature selection for the two classification tasks:

features are chosen from chaotic dynamical systems and persistent ho-

mology theories to assess the problems of detection of Sleep Stages and

K-complexes, respectively. The same Chapter presents the numerical

results. Finally, Chapter 10 contains a brief conclusive discussion with

some hypotheses for future developments.



Chapter 2

Preliminary Notions

2.1 Shapes for an algebraic topologist

.

Figure 2.1: The torus (left) and the coffee mug (right) are topologically equivalent.

One of the main ideas of algebraic topology is to consider two spaces

to be equivalent if they have ”the same shape”. The first section of this

Chapter is devoted in presenting the basic intuitions and fundamental

definitions behind the concepts of simplicial homology and homotopy.

These notions are deeply correlated and are used to measure the shape

of a topological space. The following statements are useful to get an

informal description of the two mathematical objects.

Simplicial homology is the sequence of homology groups of a

particular type of set - the simplicial complex.

It formalizes the idea of the number of holes of a given dimension in

the complex.

Homotopy equivalent topological shapes can be transformed into

one another by bending, shrinking and expanding operations.

7
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Simplicial homology is endowed with an algebraic structure: for this

reason is necessary to introduce the basic concept of free abelian group.

Definition 1 (Free abelian group). A group (G,+) is a set G together

with a binary operator on G, here denoted on ·, with the following

properties:

• Associativity : for all a, b, c ∈ G it holds (a+ b) + c = a+ (b+ c);

• Identity element : there exists a unique element e in G such that,

for every a ∈ G, we have e+ a = a and a+ e = a;

• Inverse element : for each a ∈ G, there exists an element b ∈ G
such that a+ b = e and b+a = e, where e is the identity element.

A free abelian group is an abelian group with a basis. Being an abelian

group means that it is a set with an addition operation that is associa-

tive, commutative, and invertible. A basis is a subset such that every

element of the group can be uniquely expressed as a linear combination

of basis elements with integer coefficients.

Free abelian groups have properties which make them similar to vec-

tor spaces. Now we introduce homomorphisms, that are structure-

preserving maps between groups.

Definition 2 (Group homomorphism). A homomorphism from a group

(G,+G) to a group (H,+H) is a function φ : G → H such that for all

elements a, b ∈ G φ(a+G b) = φ(a) +H φ(b).

As we will see in the next Chapters, simplicial homology groups

count the holes and the connected components in a topological space.

Since both the torus and the coffee mug have 1 2-dimensional hole,

2 1-dimensional holes, and 1 connected component, their simplicial

homology groups are the same.

We now proceed and present homotopies and homeomorphisms [28],

[21].

Definition 3 (Homotopy). A homotopy between two continuous func-

tion f and g from a topological space X to a topological space Y is

defined to be a continuous function H : X × [0, 1] → Y such that

H(x, 0) = f(x) and H(x, 1) = g(x) for all x ∈ X. Given two topo-

logical spaces X and Y , a homotopy equivalence between X and Y is

a pair of continuous maps f : X → Y and g : Y → X, such that g ◦ f
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is homotopic to the identity map idX and f ◦ g is homotopic to idY . If

such a pair exists, then X and Y are said to have the same homotopy

type. Finally, g is said to be a homotopy inverse to f .

Definition 4 (Homeomorphism). A homeomorphism is a continuous

function between topological spaces that has a continuous inverse func-

tion.

Two spaces with a homeomorphism between them are called homeo-

morphic, and from a topological viewpoint they are the same. A home-

omorphism is a special case of a homotopy equivalence, in which g ◦ f
is equal to the identity map idX and f ◦ g is equal to idY . Therefore,

id X and Y are homeomorphic then they are homotopy equivalent, but

the opposite is not true.

Figure 2.2: Example: the Möbius strip (left) and an untwisted band (right) are

homotopically equivalent, but not homeomorphic.

Definition 5 (Isomorphism). An isomorphism is a structure-preserving

mapping between two structures of the same type that can be reversed

by an inverse mapping.

• An isometry is an isomorphism of metric spaces;

• An homeomorphism is an isomorphism of topological spaces;

• A group homomorphism is an isomorphism iff it is bijective.

In the following sections we will see that if two topological spaces are

homotopically equivalent, then they have isomorphic homology groups.

At this point we cover the foundational notion for the understanding

and the practical applications of this thesis: embeddings. Embeddings



10 Chapter 2. Preliminary Notions

are structure-preserving maps. We will see two definitions of embed-

ding: the topological one here, and one adapted for dynamical systems

in the next Chapters. Embeddings will be used in this work to map

time series into (higher dimensional) point clouds.

Definition 6 (Embedding). In topology, an embedding is an home-

omorphism onto its image. Specifically, an injective continuous map

f : X → Y between topological spaces is an embedding if X and f(X)

(considered with the subspace topology inherited by Y ) are homeomor-

phism.

2.2 Point clouds and manifolds

In the field of topological data analysis, collection of data can be seen

as the evaluation of the relative or collective position of the obser-

vated quantities, for example in an euclidean space. Often, once data

collection is carried out, a theoretical object as a topological space is

not available; instead we are given a discrete approximation of such a

space in the form of a point cloud.

Definition 7 (Point cloud). A point cloud is a set of data points in

Rn, with n > 0.

Now, it is crucial to understand the many interpretations of a point

cloud in an informal way, since it is the conceptual core of this thesis.

We state again the first of three ways to look at a point cloud:

1: point cloud = data.

A second possibility is to look at all the points of a point cloud

altogether and construct some sort of shape around them; a manifold,

for instance.

Definition 8 (Manifold). A topological manifold is a second countable

Hausdorff space that is locally homeomorphic to an Euclidean space.

2: under suitable conditions, a point cloud can be seen as the vertex

set of a simplicial manifold.
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Figure 2.3: Left: a torus-shaped point cloud. Right: a sphere-shaped point cloud.

Manifolds are useful for two reasons, the first being that as topolog-

ical spaces, they can be studied by themselves with the instruments

of algebraic topology. The second, more subtle reason comes from the

fact that manifolds can be seen as a domain of funtions whose output

is the observed data.

3: a point cloud ca be seen as the evolution of a discrete-time

dynamical system in an appropriate state-space.

Figure 2.4: the Lorentz system

We will see how these three interpretations are interconnected and

can help to solve real-life problems as the classification of signals.

2.3 Some concepts of dynamical systems and chaos

In Chapter 3 and Chapter 4 will show how computational algebraic

topology is suited to describe data alltogether, and to count or quan-
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tify the entity of the topologcal features of a set. On the other set,

dynamical systems theory is an intriguing tool to study the geometry

of a point cloud, this time viewed as a trajectory in an euclidean space.

We topic is introduced through some basic definitions.

Definition 9 (Phase space). In the theory of dynamical sistems, the

phase space is a space in which all possible states of a system are

represented, with each possible state corresponding to one unique point

in the phase space.

Definition 10 (Dynamical system, orbit). A dynamical system is a

manifold M (the phase space) endowed with a family of smooth func-

tions φt : M → M called evolution functions. Calling T the set of all

possible t, we can write a dynamical system as a triplet (T,M, φ).

An orbit is a collection of points related to a single evolution function.

An orbit can be understood as the subset of the phase space covered

by the trajectory of the dynamical system under a particular set of

initial conditions.

Time, denoted here with t, can be either a continuous or a discrete

integer-valued variable. An archetypal example of continuous time dy-

namical system is a system of N first-order, autonomous, ordinary

differential equations

dφ(1)

dt
= F1(φ

(1), φ(2), · · · , φ(N)),

dφ(2)

dt
= F2(φ

(1), φ(2), · · · , φ(N)),

...

dφ(N)

dt
= FN(φ(1), φ(2), · · · , φ(N)),

which can be written in vector form as

dφ

dt
= F [φ(t)] (2.1)

where φ is an N -dimensional vector.

The dynamics of a systems can be of many different types. Some

of the points or subsets of the phase space of particular interests are

attractors, stable and unstable manifolds and saddle points. In this
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study the focus is not on these characteristics. The feature that we are

going to remark is the complexity, or the disorder, of the orbits of a

dynamical system. This aspect is addressed by chaos theory. Chaotic

dynamical systems are characterized by their unpredictability. Given

an aribitrary list of consecutive values of an evolution function, we

cannot infer its future values. Another factor to keep in mind is the

”butterfly effect”: a small change in the initial conditions leads to

macroscopic differences of the evolution functions.

We now give the definition of chaotic dynamical system introduced

by Robert Devaney in [15], since it intuitively highlights the fundamen-

tal aspects :

Definition 11 (Chaotic dynamical system). A dynamical system is

said to be chaotic if it has the following two properties:

• It must be topologically transitive: given two open sets A, B in

M, there exist an integer T such that, for all t > T it holds

φt(A) ∩B 6= ∅;

• Its periodic orbits must form a dense set.

A consequence of these two properties is the sensitivity to initial con-

ditions : for any x in M and any δ > 0 there are y in M such that

0 < d(x, y) < δ and d(φt(x), φt(y)) > eatd(x, y) for some a > 0.

Sensitivity to initial condition is famous with the name of ”butterfly

effect”: chaotic orbits can start really close to each other and end up

arbitrairly far after a certain amount of time. Chaos can appear in

the phase space of a system in many different ways. Two of them are

chaotic attractors and chaotic transients. In this thesis these notions

are going to be loosely interchanged. This is due to the fact that the

chaotic orbits that are going to be studied are observed for a limited

amount of time, neglecting the importance of the attractivness of the

chaotic set in which they lay.

To clarify what chaotic sets are we need the following definitions:

Definition 12 (Limit set, invariant set, attractor). Given a dynamical

system (T ;M, φ), we call y ∈ M a ω-limit point of x ∈ M (or of an

orbit containing x) if there exists a sequence (tn)n∈N such that lim
n→∞

tn =

∞ and lim
n→∞

φtn(x) = y

An attractor is a subset A of the pahse space characterized by the

following three conditions:
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• A is forward invariant under φ: if a ∈ A then so is φt(a) for all

t > 0;

• There exists a basin of attraction of A, composed by all the points

b in the phase space such that, for any open neighborhood N of

A, there is a positive constant t̄ such that φt(b) ∈ N for all t > t̄;

• There is no proper subset of A having the first two properties.

Figure 2.5: Left: a stationary point. Right: a transient converging into a limit

cycle.

Attractors can have multiple natures. Figure 2.5 shows two impor-

tant example of attractors: the stationary point, in which an orbit

collapses and never leaves, and the limit cycle, a set that is traveled

periodically by an orbit. We can appreciate the topological difference

of the two sets: the stationary point is a contractible set (homotopi-

cally equivalent to a point), while the limit cycle is homeomorphic to

a circle.

Definition 13 (Chaotic attractor). A chaotic set is the limit set (the

collection of the limit points) of a chaotic orbit.

If this set is an attractor, we call it a chaotic attractor.

The term chaotic transient refers to the fact that an orbit can spend a

long time in the vicinity of a nonattracting chaotic set before leaving it.

So, for a limited amount of time, the motion can appear very irregular

and indistinguishable from a motion on a chaotic attractor.
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Simplicial Complexes

This Chapter describes one of the key objects of computational topol-

ogy: the simplicial complex. We can think of it as a set composed of

points, line segments, triangles, and their n-dimensional counterparts.

They are used as bricks to construct shapes. We now take a look at

two conceptually different examples in which simplicial complexes are

employed:

1. Mesh: we want to discretize a given manifold (to solve numerically

a PDE on it, to calculate topological invariants,...). We construct

a computational mesh (simplicial complex) that is homeomor-

phic to the abstract manifold. The resulting operative scheme is:

manifold→ mesh (simplicial complex)→ vertices (point cloud);

2. Filtration: given a point cloud, we decide some criterion in order

to connect two points with an edge, or three points with a triangle,

and so on. The resulting operative scheme is: point cloud →
simplicial complex (mesh)→ manifold.

The operative scheme followed in this work is the second one. Data is

going to be embedded in a high dimensional space, obtaining a point

cloud. Its points will be connected with simplicial complexes, obtaining

a topological space. The simplicial nature of this space is crucial as it

permits to compute numerically its homology groups.

The following three Chapters are inspired by two books, that are

used worldwide to treat this subject: Elements of algebraic topology by

James Munkres [43], and Computational Topology: an Introduction, by

Edelsbrunner and Harer [21]. Also the elements of the course Compu-

tational algebraic topology in Politecnico di Milano has been object of

15
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study.

The starting point for this discussion is the notion of simplex.

3.1 Simplices

Simplices are convex sets created by connecting points in the euclidean

space, as illustrated by the following definitions.

Definition 14 (Affinely independent points). Let P0, ..., Pk be points

in Rd.

A point x =
∑k

i=0 λiPi, with each λi ∈ R, is an affine combination of

the Pi if the
∑k

i=0 λi = 1.

The affine hull is the set of affine combinations.

It is a k-plane if the k + 1 points are affinely independent, that is, the

k vectors Pi − P0, for 1 ≤ i ≤ k, are linearly independent.

Remark 1. In Rd we can have at most d linearly independent vectors

and therefore at most d+ 1 affinely independent points.

Definition 15 (Convex combination, convex hull). An affine combi-

nation, x =
∑
λiPi, is a convex combination if

∑k
i=0 λi = 1 and all λi

are non-negative.

The convex hull is the set of convex combinations.

Definition 16 (Simplex). A k-simplex is the convex hull of k + 1

affinely independent points, σ = conv{P0, P1, ..., Pk}.
Its dimension is dim σ = k.

Figure 3.1: simplices

Definition 17 (Face, boundary, interior, star). Let σ be a simplex. A

face τ of σ is the convex hull of a non-empty subset of the Pi (τ ≤ σ),

and it is proper if the subset is not the entire set (τ < σ).

The boundary of σ (bd σ), is the union of all its proper faces, and the

interior of σ (int σ) is defined as int σ = σ− bd σ. The star of σ is

defined as Stσ =
⋃

intρ, with σ ≤ ρ.
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The following Theorem is important as it lays the basis of the idea

that we can discretize homeomorphically a topological space, and hence

store a computational version of this space with the same topological

invariants.

Theorem 1. Let σ be a simplex such that dim σ = k. Call Bk and Sk−1
the unit ball and the unit sphere in Rk. Then there exist a homeomor-

phism ϕ : σ → Bk such that ϕ |bdσ: bdσ → Sk−1 is an homeomorphism.

.

Figure 3.2: Example:the 3-simplex is homeomorphic to a ball in R3. The boundary

of the 3-simplex is homeomorphic to the spherical surface.

3.2 Simplicial Complexes

We have seen that simplices are ”bricks” of various dimensions. We can

join these bricks to construct more involved shapes, called simplicial

complexes. These are the objects over which we can compute homology

groups numerically.

Definition 18 (Simplicial complex). A simplicial complex is a finite

collection of simplices K such that σ ∈ K and τ ≤ σ implies τ ∈ K ,

and σ, σ0 ∈ K implies σ ∩ σ0 is either empty or a face of both.

The dimension of K is the maximum dimension of any of its simplices.

bc

bc

bc

bc

bc

bc

bc

P1

P2

P3 P4
P5

P6

P7

P8

bc

bc

bc

P9

Figure 3.3: Example: the object to the left is a simplicial complex, the one to the

right is not.



18 Chapter 3. Simplicial Complexes

In figure 7.3 the left geometrical shape can be written as

{
{P1}, {P2}, {P3}, {P4}, {P1, P2}, {P1, P3}, {P2, P3}, {P3, P4}, {P1, P2, P3}

}

and it is a simplicial complex of dimension 2 since all the requirements

of the definition are satisfied. To the right, the set

{
{P5}, {P6}, {P7}, {P8}, {P9}, {P5, P6}, {P5, P9}, {P6, P7}, {P6, P9},

{P7, P8}, {P8, P9}, {P5, P6, P7}, {P6, P8, P9}
}

is not a simplicial complex as the intersection {P5, P6, P7} ∩ {P6, P8, P9} =

{P6, P9} is not a face of {P5, P6, P7}.

Definition 19 (Subcomplex). Let K be a simplicial complex. A col-

lection L of simplices of K that contains the faces of all its elements is

a simplicial complex, called subcomplex of K.

Definition 20 (p-skeleton). Let K be a simplicial complex. We call

p-skeleton of K the subcomplex K(p) = {σ ∈ K| dim σ ≤ p}.

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

bc

K = K(2) K(1) K(0)

Figure 3.4: From left to right: the 2,1,0-skeleton of a simplicial complex of dimen-

sion 2.

Definition 21 (Star). The star of a simplicial complex K is the union

of all the stars of each simplex in S.

Definition 22 (Topology of a simplicial complex, polytope). Let K

be a simplicial complex in RN . The underlying space, or polytope, of

K, is the subset of RN containing all the points in the simplices of K

and it is denoted by |K|.
On |K| we can define a topology in this way: A ⊂ |K| is a closed set

if and only if A ∩ σ is a closed set for each σ belonging to K.



3.3. Abstract Simplicial Complexes 19

Proposition 1. C closed set in the topology inherited by RN ⇒ C

closed set in the |K| topology.

Moreover, if K contains only a finite number of simplices, then the two

topoligies coincide.

Proposition 2. A function f : |K| → X is continuous ⇐⇒ f |σ:

σ → X is continuous ∀ σ ∈ K.

The underlying space will often appear in the following. In fact, it is

used to think of a simplical complex as a topological space ”by itself”,

that is without looking at the euclidean space in which it is embedded

(in the same way as topological manifolds can be seen by themselves

and embedded in Rn for some n).

Now we cover the definition of simplicial map. This notion will be

key for the functioning of simplicial homology and persistent homology.

Definition 23 (Simplicial map). Let K, L be two simplicial com-

plexes and let f : K(0) → L(0) be a function such that for each set

of vertices of K {P0, P1, ...Pk} that generates a simplex of K, the set

{f(P0), f(P1), ...f(Pk)} generates a simplex of L.

Then f can be extended to a countinuous map f̃ : |K| → |L| such

that given x ∈ σ ∈ K, x =
∑k

i=0 tiPi, with P0, ...Pk vertices of σ,

f̃(x) =
∑k

i=0 tif(Pi). We call f̃ the simplicial map induced by f .

3.3 Abstract Simplicial Complexes

In this section we introduce tha abstract counterpart of the simpli-

cial complex with its properties. Abstract simplicial complexes have a

greater synthetic and explanatory potential, as classic simplicial com-

plexes have always to be written with the tools of analytic geometry.

Definition 24 (Abstract simplicial complex). An abstract simplicial

complex is a finite collection of sets A such that α ∈ A and β ⊆ α

implies β ∈ A.

The sets in A are its simplices. The dimension of a simplex is dimα =

card α−1, and the dimension of a complex is the maximum dimension

of any of its simplices.

A face of α is a non-empty subset β ⊆ α, which is proper if β 6= α.

Two abstract simplicial complexes S, T are said to be isomorphic
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if there is a bijection between the vertices of S (the faces of car-

dinality 1) and the vertices of T such that {a0, ..., ak} ∈ S ⇐⇒
{f(a0), ..., f(ak)} ∈ T .

A1

A2

A3

A12

A13

A23

A123

Figure 3.5: Example: an abstract simplicial complex of dimension 2.

Definition 25 (Vertex Scheme). Let K be a simplicial complex and let

V = K(0) the set of its vertices The collection of subsets of V defined

by K = {{v0, ..., vk} ⊆ V |[v0, ..., vk] ∈ K} is an abstract simplicial

complex called the vertex scheme of K.

In the following definition we show how to switch from an abstract

simplicial complex to a geometric one and viceversa, when possible:

Definition 26 (Geometric Realization). If the abstract simplicial com-

plex S is isomorphic to the vertex scheme of a simplicial complex K,

we say that K is a geometric realization of S.

The geometric realization is unique up to homeomorphisms.

bc

bc

bc

A1

A2

A3

A12

A13

A23

A123

Abstract simplicial complex

isomorphism

geometric realization Simplicial complex

P1

P2

P3{
{P1},
{P2},
{P3},
{P1, P2},
{P1, P3},
{P2, P3},
{P1, P2, P3}

}

vertex scheme

Figure 3.6: Geometracal realization of an abstract simplicial complex.

Below, we define a particular kind of abstract simplicial complex: the

nerve of a finite collection of sets. This object catches the underlying

structure of the intersections between the sets of the collection.
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Definition 27 (Nerve). Let F be a finite collection of sets. We define

the nerve to consist of all non-empty subcollections of F whose sets

have a non-empty common intersection:

NrvF = {X ⊆ F |
⋂

X 6= ∅}

Nerve

bc

bc

bc

bc

O1

O2

O3

O4

P2

P3

P4

P1

Figure 3.7: Example: geometrical realization of the nerve of an open cover.

Theorem 2 (Nerve Theorem). Let F be a finite collection of closed,

convex sets in Euclidean space. Then the nerve of F and the union of

the sets of F have the same homotopy type.

3.4 Useful Simplicial Complexes

We present two particular categories of simplicial complex that are

easy to compute on a machine and that are intrinsically related to

the concept of filtration. Filtrations will be defined here and used

extensively (sometimes implicitaly) in Chapters 5, 6, 7, and 9 .

Definition 28 (Čech complex). Let S be a finite set of points in Rd

and write Bx(r) = x + rB for the closed ball with center x and radius

r. The Čech complex of S and r is the nerve of this collection of balls,

substituting in the intersection the center for each ball:

Čech(r) = {σ ⊆ S |
⋂

x∈σ

Bx(r) 6= ∅}

Clearly, a set of balls has a non-empty intersection iff their centers lie

inside a common ball of the same radius.

Remark 2. The nerve Theorem asserts that the homotopy type of a

sufficiently nice topological space is encoded in the Čech nerve of a

opportunely defined cover.
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Figure 3.8: Example: Čech complex of a finite set of points.

Definition 29 (Vietoris-Rips complex). The Vietoris-Rips complex of

S and r consists of all subsets of diameter at most 2r:

Vietoris-Rips(r) = {σ ⊆ S | diam σ ≤ 2r}
The edges in the Vietoris-Rips complex are the same as in the Čech

complex. Furthermore it is trivial to see that Čech(r) ⊆ V ietoris-Rips(r).
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bc

bc

bc

bc

bc

Figure 3.9: Example: Vietoris-Rips complex of a finite set of points.

The two simplicial complexes in figures 3.8 and 3.9 are the same

apart from the left triangle, which is not filled for the Čech complex
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while it is for the Vietoris-Rips complex. This is because the three

closed balls to the left do not have a common intersection, but the

diameter of the simplex generated by the three centers is smaller than

two times the radius of the balls.

Both the Čech and the Vietoris-Rips complexes depend on the free

parameter r. In both cases, as r varies we observe the following be-

haviour:

• If r < 0, then the resulting complex is the empty set.

• If r = 0, then the resulting complex is for both cases the starting

set of vertices in Rd.

• As r grows, new simplices get gradually added to the simpli-

cial complex. In particular, if any simplex σ ∈ Čech(r0) or

Vietoris-Rips(r0), then for any r > r0, σ ∈ Čech(r) or Vietoris-

Rips(r).

This kind of parameter-dependent simplicial complexes are widely

used in persistent homology, which the main topic of Chapter 5. This

theory does not study a single Čech or Vietoris-Rips simplicial complex,

but the evolution of the complexes as the free parameter varies. The

following definition of filtration describes exactly this notion.

Definition 30 (Filtration of a monotonic function). Consider a sim-

plicial complex, K, and a function f : K → R. We require f to be

monotonic, that is, f(σ) ≤ f(τ) whenever σ is a face of τ . Monotonic-

ity implies that the sublevel set Ka = f−1(−∞, a] is a subcomplex of

K for every a ∈ R.

Given −∞ = a0 < a1 < a2 < ... < an the filtration of f is the sequence

of n+ 1 complexes defined as:

∅ = K0 ⊆ K1 ⊆ K2 ⊆ ... ⊆ Kn = K

For the Čech or Vietoris-Rips complexes the filtration can be defined

in this manner: f(Čech(r)) = r. The same reasoning holds for the

Vietoris-Rips complexes. As aforementioned, starting from r < 0, the

sublevel sets of f generate a sequence of simplicial complexes such that

∅ = K0 ⊆ K1 ⊆ K2 ⊆ ... ⊆ Kn.
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To end the chapter, we present the definition of simplicial manifold,

or traingulation, which was introduced in Chapter 2 without expla-

nation. These object are commonly used in other fields of applied

mathematics as numerical analysis.

Definition 31 (Triangulation). A triangulation of a topological space

X is a simplicial complex K, homeomorphic to X, together with a

homeomorphism h : K → X.

Figure 3.10: A triangulated dolphin shape.



Chapter 4

Simplicial Homology

Topological invaraints are a handy tool. In fact, given two spaces,

a fundamental topological problem is to determine wether they are

homeomorphic or not. Using the definition the process can become

particularly hard, especially when it has to be proven that a map be-

tween the two spaces that is continuous, bijective and with continuous

inverse does not exist. A much simpler scheme is often to compute

and confront topological invariants. The introduction of a sequence of

topologically invariant groups for a space is due to Enrico Betti. Al-

tough simplicial homology groups can be computed over a limited set

of topological spaces (the simplicial complexes), they are really useful

in practice. For example, it can be proven that if a space is homeomor-

phic to a simplicial complex, then the homology groups of the former

space are isomorphic to the simplicial homology groups of the latter.

The simplicial homology groups have a clear topological interpretation,

as they count the connected components and the holes of a space.

A newer application, highlighted in this thesis, comes from the field of

computational topology: simplicial complexes can be used to approxi-

mate homeomorphically various shapes and to construct filtrations that

permit the inspection of the nature of a point cloud of data. In this

Chapter we will see the definitions of simplicial homology groups and

the algorithms that are involved to compute them in practice.

25
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4.1 Chain Complexes

Definition 32 (Oriented simplex). Let K be a simplex (geometric or

abstract). We say that two orderings of the vertices are equivalent if

one can be obtained from the other with an even permutation. The

two equivalence classes obtained in this way are called orientations of

the simplex. An oriented simplex is a simplex with a choice of an ori-

entation.

We denote by σ and σ′ the same simplex chosen with different orien-

tations.

P0 P1 P0 P1 P0 P1

{P0, P1} [P0, P1] [P1, P0]

Figure 4.1: Example: a non-oriented 1-simplex (left) and its corresponding oriented

versions (centre, right). Notice that there is a difference in the notation.

P1

P2

P3

P1

P2

P3

P1

P2

P3

{P1, P2, P3} [P1, P2, P3] ∼ [P2, P3, P1] ∼ [P3, P1, P2] [P1, P3, P2] ∼ [P3, P2, P1] ∼ [P2, P1, P3]

Figure 4.2: Example: a non-oriented 2-simplex (left) and its corresponding oriented

versions (centre, right). Notice that there is a difference in the notation.

Definition 33 (Group of p-chains). Let K be a simplicial complex and

p a dimension. We first define the following set:

Sp = p-oriented simplices of K

.

A p-chain on K, with coefficients in the group G is a function c : Sp →
G such that:

1. c(σ) + c(σ′) = 0G

2. c−1(G/{0G}) contains a finite number of elements.
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The set Cp(K,G) of the p-chains of K with the sum operation + :

Cp(K,G)× Cp(K,G)→ Cp(K,G), (c1 + c2)(σ) = c1(σ) + c2(σ) ∀σ ∈ Sp
is a group called the group of oriented p-chains of K, with coefficients

in G.

With a little abuse of notation, we can confuse the simplices in K

with the elements of Cp(K,G), expressing them as a formal sum of

simplices c =
∑
aiσi, where the σi are the p-simplices and the ai are

the coefficients.

bc

bc

bc

bc

P1

P2

P3

P4

K

Cp(K) = {0}

C0(K) = 〈P1, P2, P3, P4〉 ∼= Z4

C1(K) = 〈[P1, P2], [P1, P3], [P2, P3], [P3, P4]〉 ∼= Z4

C2(K) = 〈[P1, P2, P3]〉 ∼= Z

p < 0 or p > 2

Figure 4.3: Example: group of p-chains for a simplicial complex, with coefficients

in Z.

The group of p-chains permits us to write combinations of faces of a

simplicial complex, endowing an algebraic structure on it. Take as an

example Figure 4.3. We can add vertices: P1 + 3P2 + P4 ∈ C0(K); the

same reasoning holds for the other dimensions.

To fix the ideas, we state some important considerations:

• If c1 =
∑
aiσi and c2 =

∑
biσi, then c1 + c2 =

∑
(ai + bi)σi;

• For simplicity, we will omit the group G and write Cp(K)

• We have a group of p-chains for each integer p. For p less than

0 and greater then the dimension of K this group is trivial, con-

sisting only of the neutral element.

Cp(K) is an abelian group whose neutral element is 0 =
∑

0σi
and the inverse of c is −c = c since c+ c = 0.

• Cp(K) is isomorphic to the direct sum of G with itself card(Sp)
times.
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• If G = Z, Cp(K) is a free group: a base for such a group can be

obtained considering every p-simplex of K, fixing an orientation

for each one of them.

Corollary 2.1. Let K be a simplicial complex, G be a group and f be a

function such that f : {p-oriented simplices of K} → G and f(−σ) =

−f(σ) ∀ σ ∈ K. Then f can be extended univocally to a homomorphism

f̃ : Cp(K)→ G.

4.1.1 The boundary operator

We said that simplicial homology counts the holes of a topological

space. But what is a ”hole”? Think of a circle: it has a 1-dimensional

hole, a void enclosed by the curve describing the circle. In the language

of simplicial homology, a hole is present when a p-chain encloses a

p − 1 dimensional void. We can formalize this idea starting from the

definitions of boundary operator and chain complex.

Definition 34 (Boundary homomorphism). The boundary of a p-

simplex is the alternating sum of its (p−1)-dimensional faces. Writing

σ = [u0, u1, ..., up] for the simplex spanned by the listed vertices, its

boundary is

∂pσ =

p∑

j=0

(−1)j[P0, ..., P̂j, ...Pp]

where the hat indicates that Pj is omitted. We notice that ∂p : Cp →
Cp−1: for a p-chain, ∂pc =

∑
ai∂pσi; moreover the boundary operator

commutes with addition, ∂p(c1 + c2) = ∂p(c1) +∂p(c2). Therefore, since

∂p commutes with the group operation, we refer to it as the boundary

homomorphism, or for short, the boundary map for chains.

Definition 35 (Chain complex). A chain complex is denoted as C =

{Cp, ∂p}p and it is the sequence of chain groups connected by boundary

homomorphisms:

...
∂p+2−−→ Cp+1

∂p+1−−→ Cp
∂p−→ Cp−1

∂p−1−−→ ...

Last, we introduce exact sequences, as there is a link between the

rank simplicial homology groups and the degree of non-exactess of a

sequence.
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∂1 : C1(K) → C0(K)

P1

P2

K

∂1([P1, P2]) = (−1)0[P̂1, P2] + (−1)1[P1, P̂2] = P2 − P1

bc

bc

P1

P2

Figure 4.4: Example: boundary homomorphism applied to a 1 dimensional simplex.

K

P1

P2

P3

P1

P2

P3∂2 : C2(K) → C1(K)

= [P2, P3] + [P3, P1] + [P1, P2]

∂2([P1, P2, P3]) = (−1)0[P̂1, P2, P3] + (−1)1[P1, P̂2, P3] + (−1)2[P1, P2, P̂3] =

Figure 4.5: Example: boundary homomorphism applied to a 2 dimensional simplex.

Definition 36 (Exact sequence). A possibly infinite sequence

...
φ1−→ G1

φ2−→ G2
φ3−→ ...

φn−→ Gn
φn+1−−−→ ...

of groups and groups homomorphisms is called exact if the image of

each homomorphism is equal to the kernel of the next:

im(φk) = ker(φk+1).

A short exact sequence is an exact sequence of the form

0→ G1
φ−→ G2

ϕ−→ G3 → 0.

To shorten the notation, we’ll refer to ∂p as ∂, since the index of the

boundary homomorphism is implied by the dimension of the chain it

applies to.
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4.2 Simplicial Homology Groups

Simplicial homology groups are defined as quotient of two other groups:

the cycles, that are chains whose boundary is the trivial group, and the

boundaries, that are chains resulted from boundary operations.

Definition 37 (Cycles). The group of p-cycles is defined as Zp =ker

∂p. So, a p-cycle is a p-chain with empty boudary: ∂c = 0.

Definition 38 (Boundaries). The group of p-boundaries is defined as

Bp =im ∂p+1. So, a p-boundary is a p-chain that is the boundary of a

p+ 1-chain: c = ∂d with d ∈ Cp+1.

Remark 3. Cycles and boundaries are subgroups of the chain groups.

Since the chain groups are abelian, so are these subgroups.

bc

bc

bc

bc

P1

P2

P3

P4

Figure 4.6: Example: boundary and cycle.

In figure 4.6 we have a simplicial complex containing both a cycle

and a boundary of dimension 1:

• The 1-dimensional cycle is the chain [P2, P4]+[P4, P3]+[P3, P2]. In

fact ∂1([P2, P4]+[P4, P3]+[P3, P2]) = P4−P2+P3−P4+P2−P3 = 0.

• The 1-dimensional boundary is the chain [P1, P2] + [P2, P4] +

[P4, P1]. In fact applying the boundary operator ∂2 to the 2-

dimensional complex [P1, P2, P3] we get the 1-dimensional chain

mentioned above.

Lemma 3 (Fundamental Lemma of Homology). ∂p∂p+1d = 0 for every

integer p and for every (p+ 1)-chain d.
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Proof. Since ∂ commutes withthe chain sum operation, we just have

to prove ∂p∂p+1τ = 0 for a (p + 1) simplex τ . ∂p+1τ consists of all the

p-faces of τ . As every (p − 1)-faceof τ belongs to exactly two p faces,

so ∂p(∂p+1τ) = 0.

We are finally ready to define the simplicial homology groups. An

important consequence of Lemma 3 is that every p-boundary is also

a p-cycle; that is, Bp is a subgroup of Zp. This means that not every

cycle encloses a hole: a chain whose boundary is the trivial group could

be an element of Bp. The quotient operation permits to choose only

the cycles that enclose a hole.

Figure 4.7: Images of the boundary operator: every chain gets mapped to a bound-

ary; every cycle and boundary gets mapped to 0.

Definition 39 (Homology groups and Betti numbers). The p-th ho-

mology group is the p-th cycle group modulo the p-th boundary group:

Hp = Zp/Bp.
The p-th Betti number is the rank of this group: βp = rankHp.

The two following Theorems have to be pondered with particular at-

tention. They provide the basic topological interpretations of homology

groups: 0-th dimensional homology conunts the connected components

of a set; higher dimensional homology groups count the holes of the
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space. Two other results will state that homeomorphic (Theorem 7)

and homotopically equivalent (Theorem 8) underlying spaces of sim-

plicial complexes determine isomorphic homology groups.

Singular homology, that will not be treated in this dissertation, works

on generic topological spaces and a fundamental result of this theory

is the invariance under homotopy of homology groups. Thus, a way

to compute the homology groups of a space is to find a homotopically

equivalent simplicial complex and to compute its simplicial homology

groups.

Theorem 4 (0-th dimensional homology). Let K be a simplicial com-

plex.

1. The group H0(K) is a free group.

2. Let {Pα} be a collection of vertices, one for each connected com-

ponent of |K|. Then the homology classes of the points Pα form

a basis of H0(K).

Theorem 5 (Homology of the boundary of a simplex). Let ∆n the com-

plex composed by a n-simplex and its faces, with n > 0. Let Σn−1 be the

subcomplex of ∆n given by Σn−1 = ∆n−∆
(n)
n .

(
|Σn−1| = ∆̄n − int(∆n)

)
.

Then

Hp(Σ
n−1) =

{
〈∂∆n〉 = Z, if p = n− 1 or p = 0

{0}, otherwise.

bc
bc

homotopy equivalence

Figure 4.8: Example: The homology groups of the space to the left can be obtained

by computing the simplicial homology groups of the complex to the right. As there

are four connected components and two 1-dimensional holes, the 0-th dimensional

homology group is isomorphic to Z4 and the 1-st dimensional homology group is

isomorphic to Z2.
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Remark 4. Homology groups can also be interpreted as a measure of

how much a sequence of chain complex is non exact. For instance, if

we assume that this sequence is exact, we have:

...
∂p+2−−→ Cp+1

∂p+1−−→ Cp
∂p−→ Cp−1

∂p−1−−→ ...

with the restriction

Bp = im∂p+1 = ker∂p = Zp ∀p,

which suggests that ”every cycle is a boundary”: from the definition

of homology groups we get that Hp = Zp/Bp ∼= 0 ∀p. On the other

end, if the chain complex is not exact, the rank of the homology groups

tells us ”how many cycles are not boundaries”: these particular cycles

enclose a ”hole”.

Homology groups of some simple shapes.

Space (S) Name H0(S) H1(S) H2(S)b
Point Z 0 0

Circle Z Z 0

Möbius Strip Z Z 0

Torus Z Z2 Z

Sphere Z 0 Z

Table 4.1: Homology groups of simple topological spaces.

4.3 Topological invariance of the homology groups

Simplicial homology groups are topological invariants. This means that

if two simplicial complexes are homeomorphic, then the corresponding

groups are isomorphic. To prove this important property (as said be-

fore, the same holds with homotopies), the first step is to show that

simplicial maps, defined in 23, can induce homomorphism between the

chain groups and consequently, between simplicial homology groups.
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Definition 40 (Chain map). Let f : K → L be a simplicial map. If

P0, ..., Pp is a simplex of K, then the points f(P0), ..., f(Pp) describe a

simplex of L. The chain map induced by the simplicial map f is the

homomorphism (f#)p : Cp(K)→ Cp(L) defined as:

(f#)p([P0, ...Pp]) =

{
[f(P0), ...f(Pp)] if f(P0), ..., f(Pp) are distinct,

0 otherwise

Lemma 6. The homomorphism (f#)p commutes with ∂. Therefore,

(f#)p induces a homomorphism (f∗)p : Hp(K)→ Hp(L).

Proof. We prove only the second statement. Consider a chain of order

p, cp. Since (f#)p commutes with ∂, it follows that (f#)p carries cycles

to cycles, as

∂(f#)p(cp) = (f#)p(∂cp) = 0.

Moreover, boundaries are carried to boundaries, as assuming it exists

dp+1 such that cp = ∂dp+1 we get

(f#)p(cp) = (f#)p(∂dp+1) = ∂(f#)p(dp+1).

Thus (f#)p induces a homomorphism (f∗)p : Hp(K) → Hp(L) of ho-

mology groups.

The second step is not covered entirely in the following due to its

technicality. We have to show that any continous map between un-

derlying spaces generates a simplicial maps between simplicial com-

plexes, as homotopies and homeomorphisms are not simplicial maps

in general. Then it can be proved that the simplicial maps relative to

structure-preserving transformations induce isomorphism between ho-

mology groups, as stated in Thorems 7 and 8.

Definition 41 (Star condition). Let h : |K| → |L| be a continuous

map. We say that h satisfies the star condition with respect to K

and L if for each vertex P of K, there is a vertex Q of L such that

h(StP ) ⊂ StQ.

Definition 42 (Simplicial approximation). Let h : |K| → |L| be a

continuous map. If f : K → L is a simplicial map such that h(StP ) ⊂
StP for each vertex P of K, f is called a simplicial approximation to

h.
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If h : |K| → |L| satisfies the star condition (relative to K and L), we

can define a homomorphism

(h∗)p : Hp(K)→ Hp(L)

by setting h∗ = f∗, where f is any simplicial approximation to h.

Theorem 7 (Topological invariance of the homology groups). If h :

|K| → |L| is a homeomorphism, then (h∗)p : Hp(K) → Hp(L) is an

isomorphism.

Theorem 8 (Homotopy and Homology). If |K| → |L| are homotopi-

cally equivalent, then (f∗)p is an isomorphism for all p.

4.4 Computation of simplicial homology groups

via Matrix Reduction

In this section we describe the natural context of computational topol-

ogy, and we show how the machine calculates the homology groups of

a simplicial complex.

Recall the definition of group of p-chains 33. If the coefficients of our

group of p-chains lie in Z2, we say that we are working with modulo 2

coefficients. As the only elements of Z2 are 0 and 1, the p-simplices in a

modulo 2 chain can be only ”swithced on” (1·σ) or ”switched off” (0·σ),

obtaining a configuration that resembles the boolean nature of the bit.

From now on in this work, we suppose to be using Z2 coefficients. This

choice brings some important consequences:

• Any sum between p-chains corresponds to their symmetric differ-

ence: c1+c2 =
∑

(aiσi+biσi) =
∑

(ai+bi)σi where the coefficients

satisfy 1 + 1 = 0;

• As for any simplex it holds σ + σ = 0, then σ = σ′. This identity

means that with modulo 2 coefficients we lose the information

regarding the orientation of the simplices.

• The boundary map defined in 34 assumes the easier form ∂pσ =∑p
j=0[P0, ..., P̂j, ...Pp].
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The computer can easily reckon homology groups of a simplicial com-

plex using linear algebra, exploiting the linearity of the boundary op-

erator and the resemblances between free abelian groups and vector

spaces.

Let f : U → V be a linear transformation between vector spaces: we

have that the dimension of U equals to the sum of the dimension of

the kernel of f and the dimension of the image of f . That is dim U =

dim ker f+dim im f . In the same manner, considering f = ∂ to be the

boundary map and writing np = rank Cp for the number of p-simplices

in K, zp = rank Zp and bp = rank Bp for the ranks of the cycle and

boundary groups, we have np = zp + bp−1.

Definition 43 (Boundary matrices). Let K be a simplicial complex.

Its p-th boundary matrix inserts the (p− 1)-simplices as rows and the

p-simplices as columns. Fix an ordering for the simplices. For each

dimension, ∂p = [aji ], where i ranges from 1 to np−1, j ranges from 1 to

np, and aji = 1 if the i-th (p− 1) simplex is a face of the j-th p-simplex

and aji = 0 otherwise.

Given a p-chain c =
∑
aiσi, the boundary can be computed by matrix

multiplication,

∂pc =




a11 a21 · · · a
np
1

a12 a22 · · · a
np
2

...
...

. . .
...

a1np−1
a2np−1

· · · a
np
np−1







a1
a2
...

anp




The boundary matrix is such that its rows form a basis of Cp−1, and

its columns form a basis of Cp. To compute homology groups, ∂p has

to be reduced to an easier configuration, the Smith normal form. This

can be done with two types of matrix multiplications, called row and

column operations, that translate into these possible effects:

• Both row and column operations do not affect the rank of ∂p;

• Row operations consist in adding or exchanging two rows;

• column operations consist in adding or exchanging two columns.

Definition 44 (Smith normal form). The p-th boundary matrix is

reduced to the Smith normal form if it is obtained using row and column

operations, so it has the form Np = Up−1∂pVp, and all its elements are

0 with the exception of an initial segment of the diagonal.
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rank Cp

rank Zp

rank Bp−1rank Cp−1

Figure 4.9: Structure of a matrix in Smith normal form

Reduction algorithm. Row and column operations can be per-

formed optimally via the following Reduction algorithm, that requires

a running time of C ·2np−1npmin{np−1, np} and an allocation of memory

of C · (np−1 + np)
2:

Initialize the boundary matrix to Np[i, j] = aji .

Call Reduce(1), structured as follows:

Reduce(x)

if ∃ k ≥ x, l ≥ x with Np[k, l] = 1{
exchange rows x and k; exchange columns x and l;

for i = x+ 1 : np−1{
ifNp[i, x] = 1{ add row x to row i; }}

for j = x+ 1 : np{
ifNp[x, j] = 1{ add column x to column j; }}

Call Reduce(x+ 1); }

Computation of Betti numbers. Once we have all boundary ma-

trices in normal form, we can extract the Betti numbers as differences

between ranks, β = rank Zp − rank Bp, for p ≥ 0, in this way:
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• recall that np = rank Cp is the number of columns of the p-th

boundary matrix;

• let np = bp−1 + zp so that the leftmost bp−1 columns have ones in

the diagonal and the rightmost zp columns are zero. The former

represents p-chains whose non-zero boundaries generate the group

of (p−1)-boundaries. The latter represents p-cycles that generate

Zp;

• it is possible to obtain the bases of Zp and Bp using the matrices

Vp and Up−1, respectively. The new basis for the cycle group is

given in the last zp columns of Vp. The new basis for the boundary

group is made by the first bp−1 columns of the inverse of Up−1.
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Persistence

This Chapter is devoted to persistent homology. This tool is of huge

practical importance, as standard simplicial homology cannot be used

univocally to recover the shape of data. In fact, as data comes in the

form of a point cloud. From this point cloud we can build infinite tri-

angulations, each one endowed with different topological features. This

arbitrariness hides the true shape of data.

Persistent homology comes in aid in the following way. The point

cloud is seen as a set of vertices, which become increasingly connected

through higher dimensional simplices using a filtration. For example,

Čech or Vietoris-Rips filtrations can be built with increasing values

of the free parameter, r. Then, simplicial homology is computed for

each simplicial complex in the filtration. The key concept is that some

homology classes will persist when passing from a simplicial

complex in the filtration to the next; in the same way, some

new classes will appear, and some will vanish. The more a class

is present while going through the filtration, the more the geometri-

cal hole represented by that class is big. From the persistence of the

homology classes we can reconstruct the topological space hidden in a

point cloud.

We begin by recalling the definition of filtration (already seen in

Chapter 3), as it is crucial for the understanding of the chapter.

Definition 45 (Filtration of a monotonic function). Consider a sim-

plicial complex, K, and a function f : K → R. We require f to be

monotonic, that is, f(σ) ≤ f(τ) whenever σ is a face of τ . Monotonic-

39
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ity implies that the sublevel set Ka = f−1(−∞, a] is a subcomplex of

K for every a ∈ R.

Given −∞ = a0 < a1 < a2 < ... < an the filtration of f is the sequence

of n+ 1 complexes defined as:

∅ = K0 ⊆ K1 ⊆ K2 ⊆ ... ⊆ Kn = K

More than in the sequence of complexes, we are interested in the

corresponding sequence of homology groups. For every i ≤ j we

have an inclusion map from the underlying space of Ki to that of Kj

and therefore an induced homomorphism, f i,jp : Hp(Ki) → Hp(Kj),

for each dimension p. The filtration thus corresponds to a sequence of

homology groups connected by homomorphisms,

0 = Hp(K0)→ Hp(K1)→ ...→ Hp(Kn) = Hp(K)

for each dimension p. Going from Ki−1 to Ki, we might:

• gain new homology classes;

• lose some homology classes when they become trivial or merge

with each other.

We collect the classes that ”are born” at or before a given point of

the sequence, and ”die” after another point in groups.
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Figure 5.1: Example-1: element of a Čech filtration. The point clouds suggests a

shape with one connected component, one small hole and one big hole. At this stage

of the filtration,only 13 0-dimensional homology classes (connected components are

alive).
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Figure 5.2: Example-2: as the radius of the Čech complex grows, all connected

components die apart from one. Two one dimensional homology classes (the two

holes) are born.
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Figure 5.3: Example-3: suppose this is the last element of the filtration. We remain

with a 0-th dimensional homology class. One of the two classes representing the

holes has died. This suggests that the shape behind the point cloud has 1 connected

component, 1 small hole and 1 big hole.

Definition 46 (Persistent homology groups). The p-th persistent ho-

mology groups are defined as Hi,j
p =imf i,jp , for 0 ≤ i ≤ j ≤ n, so they

are the images of the homomorphism induced by inclusion.

The corresponding p-th persistent Betti numbers are the ranks of these
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groups, βi,jp = rank Hi,j
p

Remark 5 (Properties and nomenclature).

• Hi,i
p = Hp(Ki).

• From the definition, the persistent homology groups consist of the

homology classes of Ki that are still alive at Kj; thus they can be

written in the form

Hi,j
p = Zp(Ki)/(Bp(Kj) ∩ Zp(Ki)).

In fact, if the homology class is persistent it means that it encloses

a hole both in Ki and in Kj. A cycle in Ki is automatically a

cycle in Kj due to Lemma 6. But if this class happens to be also

a boundary in Kj, then the application of the boundary operator

on this class returns 0, but there is no hole enclosed in Kj.

• Letting γ be a class in Hi,j
p , we say that it is born at Ki if γ /∈

Hi−1,i
p

• If γ is born at Ki, then it dies entering Kj if it merges with an

older class after the homomorphism induced by the inclusion of

Kj−1 in Kj is applied. That is:

f i,jp (γ) /∈ Hi−1,j−1
p ∩ f i,jp (γ) ∈ Hi−1,j

p

Definition 47 (Persistence). If γ is born at Ki and dies entering Kj,

then we call the difference of the values of f the persistence:

pers γ = aj − ai.

If γ is born at Ki but never dies, then we set its persistence at ∞.

Another quantity, similar to persistence, is the persistence index i−j,
which tells for how many complexes in a filtration the homology class

remains alive. This dissertation covers the case in which all filtrations

are composed by Čech or Vietoris-Rips complexes; each one of these

complexes corresponds to a critical value of r, a value for which at

least one new homology class is born or dies, causing a change in the

topology. A class with high persistence is generally considered to be

relevant for the description of the topology of the point cloud (with re-

spect to the sublevel sets of the function f !). To classes with low
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persistecne correspond the effects generated by noise and topological

features with small size.

Figure 5.4: Example: the homology class γ is born in the complex Ki of the filtra-

tion. Its image f i,jp (γ) persists in the complex Kj−1, and finally f j−1,j
p (γ) dies in

the complex Kj−1. The persistence index of γ is j − i.

5.1 Persistence Diagrams

In this section we introduce the mathematical objects that permits the

complessive analysis of a filtration: the persistence diagram. The per-

sistence diagram collects all the afromentioned topological information:

birth, death and persistence of all the persistent homology classes. Let

us see how.

Let µi,jp be the number of p-dimensional classes born at Ki and dying

entering Kj. This number can be expressed as:

µi,jp = (βi,j−1p − βi,jp )− (βi−1,j−1p − βi−1,jp ),

for all i < j and all p. Indeed, (βi,j−1p −βi,jp ) counts the classes that are

born at or before Ki and die entering Kj, while (βi−1,j−1p − βi−1,jp )

counts the classes that are born at or before Ki−1 and die entering

Kj.
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Definition 48 (p-th persistence diagram - 1). Drawing each point

(ai, aj) in the extended real plane R̄2 with multiplicity µi,jp , we get a

multiset of points called the p-th persistence diagram of the filtration,

denoted as Dgmp(f).

• In the persistence diagram, a class is represented by a point whose

vertical distance from the diagonal is the persistence;

• Since the multiplicities are defined only for i < j, all points lie

above the diagonal;

• All points on the diagonal are added to the diagonal, each with

infinite multiplicity. This is needed to define distances between

persistence diagrams, as we shall see later;
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Figure 5.5: Example: a juxtaposition of persistente diagrams of dimension 0, 1 and

2. The black dots represent the 0-th dimensional classes. The red triangles and the

blue rhombuses constitute 1 and 2 dimensional classes, respectively.
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Persistence diagrams of some point clouds.

Point cloud Shape Persistence diagram
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Table 5.1: Persistence diagrams of some point clouds. Notice the consistency with

the homology groups of Table 4.2.

The following lemma asserts that the persistent diagram actually en-

codes all the information about persistence homology groups. This is
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true as each section of the diagrams presents the multiplicities µi,jp cor-

responing to a specific complex in the filtration. Adding them together

we obtain the persistent Betti numbers of that same complex.

Lemma 9 (Fundamental Lemma of Persistent Homology). Let ∅ =

K0 ⊆ K1 ⊆ · · · ⊆ Kn = K be a filtration. For every pair of indices

0 ≤ k ≤ l ≤ n and every dimension p, the p-th persistent Betti number

is βk,lp =
∑

i≤k
∑

j<l µ
i,j
p .

Being a multiset of points, the persistence diagram can also be de-

fined without any link with algebraic topology. This approach is used

to study spaces of persistent diagrams, metrics, or statistical proper-

ties.

Definition 49 (Metrics on the space of persistence diagrams). The set

of all persistence diagrams is denoted by D. One metric on D is the

L2-Wasserstein metric

dL2(X, Y )2 = inf
φ:X→Y

∑

x∈X

‖x− φ(x)‖2

where all the possible bijections φ between X and Y are considered.

Let’s remark thar these bijections always exist as any point can be

paired to the diagonal, that contains infinitely many points.

Another metric is the q-Wasserstein distance between two persistence

diagrams, defined in this way:

dWq(X, Y ) =

(
inf

φ:X→Y

∑

x∈X

‖x− φ(x)‖q∞

) 1
q

.

A third one is the so called bottleneck distance:

d∞(X, Y ) = inf
φ:X→Y

sup
x∈X
‖x− φ(x)‖∞.

As shown in [39],the space of persistence diagrams as defined in 48

together with the q-Wasserstein distance is not complete. A counterex-

ample of a non-converging Cauchy sequence is given by defining Dn as

the diagram containing the points x1, ..., xn, where xk = (0, 2−k) ∈ R2.

Then dWq(Dn, Dn+k) ≤
1

2n+k
, so {Dn} is Cauchy. However, as n→∞

the number of off-diagonal points tends to∞, so the limit object cannot

be a persistence diagram. This inconvenience leads to a more general

definition of persistence diagram.
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Definition 50 (Generalized persistence diagram - 2). A persistence

diagram is a countable multiset of points in R2 along with the infinitely

many copies of the diagonal ∆ = {(x, y) ∈ R2 | x = y}. For the

countably many points xj ∈ R2 not lying on the diagonal, it is required

that
∑

j ‖xj −∆‖ <∞.

This definition permits the introduction of a space of persistence

diagrams with much better properties.

Theorem 10 (Space of persistence diagrams). Let D0 be the empty

persistence diagram, that is, the diagram with only the diagonal. The

space Dq = {D|dWq(D,D0) <∞} is complete and separable.

The space Dq has other relevant properties as the possibility to define

adequate concepts of expectation, variance, and conditional probabil-

ity, giving to topological persistence a theoretical base for numerous

statistical applications.

As we will briefly see in Chapter 9, another approach to extract

statistical information from the persistence diagrams is the implemen-

tation of summary functions, which are defined on much more handy

spaces and condense the relevant features of a diagram.

5.2 Stability of Persistence Diagrams

For practical purposes as classification tasks it is crucial to enjoy sta-

bility results for persistence diagrams. First, if we consider the same

topological space with two filtrations generated by similar functions, we

expect similar persistence diagrams. Second, when we fix the mono-

tonic function and we compute the filtration on similar point clouds,

we also the persistence diagrams to be similar.

For the results of this thesis the second consideration is of great

importance: if a noiseless and noisy version of the same point cloud

have dissimilar diagrams then persistent feature extraction for machine

learning purposes becomes useless, as also similar point clouds would

give rise to contrasting features.

Below we show the needed hypotheses for stability and corresponding

important results.

Definition 51 (Tame functions). Let X be triangulable and f : X→ R
continuous. Given the sublevel sets Xa (= f−1(−∞, a]) and Xb we can
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define a map connecting the p-th dimensional homology groups of the

sublevel sets, fa,bp : Hp(Xa)→ Hp(Xb). We call a an homological critical

value if there is no ε > 0 for which fa−ε,a+εp is an isomorphism for

each dimension p. Finally, we call f tame if it has only finitely many

homological critical values and all homology groups of all sublevel sets

have finite rank.

Theorem 11 (Bottleneck stability for tame functions). Let X be a

triangulable topological space and f, g : X→ R two tame functions. For

each dimension p, let Df,p and Dg,p the persistence diagrams generated

by the sublevel sets of f, g on X. Then:

∀ p d∞(Df,p, Dg,p) ≤ ‖f − g‖∞. (5.1)

Theorem 12 (Wasserstein stability for Lipschitz functions). Let f, g :

X → R be tame Lipschitz functions on a metric space. With some

hypotheses on the triangulations generated by f ,g, there exist constants

C and k > 1 such that:

dWq(Df , Dg) ≤ C‖f − g‖k/q∞ ∀ q ≥ k. (5.2)

Proposition 3 (Botttleneck-Hausdorff Stability). Let PCX , PCY two

point and X, Y , their corresponding persistent diagrams. Then d∞(X, Y ) ≤
2dH(PCX , PCY ).



Chapter 6

Sliding Window embedding

This chapter is devoted to a famous and widely used tool in signal anal-

ysis. It is known as Takens’ embedding in dynamical systems theory

and as Sliding Window Embedding in computational topology. Suppose

our data is a continuous-time scalar function. From the topological

point of view, as any loop is forbidden in the graph of a scalar func-

tion, the only relevant feature is the number of connected components,

given by the number and the magnitude of the jump discontinuities.

From the point of view of dynamical systems we can detect some ba-

sic properties by sight: a stationary point is present if the function

becomes indefinitely constant. A limit cycle is present if the function

becomes periodic. The key concept here is that the topology of these

attractors is contracted: in 1D, there is no trace of a point in which

an the orbit collapses. Same for the limit cycle, that should appear

in the phase space as a closed curve. In addition, a cirular limit cycle

can be the graph of a function only in a 3 (or more)-dimensional space,

whereas a scalar function’s graph lives in R2.

The Sliding Window Embedding is a transformation from a scalar

signal to a higher dimensional vector. It is employed to recover the

topology of the attractors, or the transients, of a phase space. We

will se that the image of a constant scalar function through this em-

bedding is a stationary point; the image of a periodic scalar function

is a limit cycle.

Notice that once we embed a scalar signal in a higher dimensional

space we end up with a point cloud that can be studied with the tools

49
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of persistent homology and dynamical systems.

6.1 Dynamical systems: delay coordinates and Tak-

ens’ Theorem

Let φ(t) :M→ Rn be a vectorial evolution function of our dynamical

system. We assume that we can only observe a component, or more

generally, one scalar function of the state vector,

g(t) = G(φ(t)).

In this context we aim at obtaining information on the phase space.

For example we want to determine if we are in presence of a chaotic

transient or not, or reveal some fractal structure in the dynamics of

the system. To do that we can rely on the so called delay coordinate

vector, defined as

ψ(t) =




g(t)

g(t+ τ)

g(t+ 2τ)
...

g(t+Mτ)



. (6.1)

where τ is some fixed time interval. τ should be chosed to be of the

order of the characteristic time over which g(t) varies. Some techniques

for the choiche of τ are presented in Chapter 7. Thanks to equation

(2.1), for each initial time t0 the evaluation φ(t0 − mτ) is uniquely

determined by φ(t0) and thus can be written as

φ(t0 −mτ) = φ(t0) +

∫ (t0−mτ)

t0

F [φ(t)]dt = Lm(φ(t)).

Hence, g(t −mτ) = G(Lm(φ(t))) and so we can view the vector ψ(t)

as a function of φ(t):

ψ = H(φ). (6.2)

The advantage of this representation comes from the fact that if the

number of delays M is sufficiently large and if the function G is suffi-

ciently regular, then we might inspect the phase space of ψ to recover

the dynamics of φ.
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Let us examine the situation from a more practical point of view.

Say we use delay coordinates to construct a dψ-dimensional vector ψ.

Then we assume that there exist an actual smooth low dimensional

system which describes the dynamics:

dφ

dt
= F (φ),

where φ has some dimensionality dψ. We now employ the afromen-

tioned reasoning 6.2 and write ψ = H(φ). Now we have to impose

that ψ have to be a dynamical system: its orbits cannot overlap. This

translates into

φ 6= φ
′

implies H(φ) 6= H(φ
′
). (6.3)

If (6.3) holds, then we say that H is an embedding of the dφ dimen-

sional space into the dψ.

Consider the example in the figures below. The original dynami-

cal system is a sinusoid. Applying a 3-dimensional embedding we find

a limit cycle in the 3-d space. There is no overlapping in this case,

even if the cycle is winded. If we try to apply the same transforma-

tion with one less delay coordinate, we find an overlapping plot in the

2-dimensional space. This cannot be a dynamical sytem. Thus the

Figure 6.1: Left: sin(t). Center: 3-dimensional embedding with function G(x) =

sin(10x). Right: 2-dimensional delay coordinates.

questions that becomes evident is: how large does dψ typically have

to be to ensure that we avoid self-intersections of the dφ-dimensional

φ when we attempt to embed it in a dψ-dimensional delay coordinate

ψ-space? The answer is due to Floris Takens [61]: his famous theorem

says that generically dψ ≥ dφ + 1 is sufficient.
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Theorem 13 (Takens). Let M be a compact manifold of dimension

m. For pairs (χ, y) with χ ∈ Diff 2(M), y ∈ C2(M,R), it is a generic

property that the map χχ,y :M→ R2m+1, defined by

χχ,y(x) = (y(x), y(χ(x)), · · · , y(χ2m(x))) (6.4)

is an embedding.

In this context the expression ”generic property” stands for a prop-

erty that holds for ”almost any” map. We can try to give a simple

justification to Theorem 13 in this way: say we have a smooth surface

of dimension d1 and another of dimension d2, both lying in an N -

dimensional space. If these surface intersect (in a ”good” intersection),

then the dimension d0 of the intersection is

d0 = d1 + d2 −N. (6.5)

If (6.5) yields d0 < 0, then the two sets do not instersect. Theorem

13 comes from equation (6.5) by taking d1 = d2 = dφ and requiring

d0 < 0. Thus, th smallest possible N is indeed 2 ∗ dφ + 1.

In other words Takens’ theorem gives a condition on the minimum

number of delay coordinates, so that the resulting embedding recovers

the topology of a smooth attractor (or of a smooth chaotic nonat-

tracrive set) in a chaotic dynamical system. The condition is that the

dimension of the embedding should be greater than two times that of

the attractor. In Chapter 9 we will see that the standard notion of

dimension is not appropiate for certain chaotic sets, thus we will intro-

duce more general definitions of dimension.

6.2 Delay embedding application in persistent ho-

mology

6.2.1 Basic properties

The previous section showed how an attractor can be recovered from

the application of Takens’ theorem and delay coordinates. In the fol-

lowing we will study how the topology of these attractors can be stud-

ied through persistent homology, in order to obtain information on the

original scalar signal.
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Definition 52 (Sliding window embedding). Suppose f is a function

defined on an interval of the real numbers. Choose an integer M and

a real number τ , both greater than 0. The sliding window embedding

of f based at t ∈ R into RM+1 is the point

SWM,τf(t) =




f(t)

f(t+ τ)
...

f(t+Mτ)


 . (6.6)

Choosing different values of t gives a collection of points called sliding

window point cloud for f . A critical parameter for this embedding is

the window-size Mτ .

Perea and Harer studied in [48] the characteristic of SWM,τ as a linear

operator. Then, we present an important approximation Theorem from

the same paper. The Theorem states that the persistent homology of

the sliding window point cloud of a function f ∈ Ck(T,R) is stable

when higher frequencies are filtered.

Proposition 4. Let T = R/2πZ. Then for all M ∈ N and τ > 0, the

mapping SWM,τ : C(T,R)→ C(T,RM+1) is a bounded linear operator

with norm ‖SWM,τ‖ ≤
√
M + 1.

Proof. Linearity is obvious. For any f ∈ C(T,R) and t ∈ T it holds:

‖SWM,τf(t)‖2RM+1 = |f(t)|2+|f(t+τ)|2+...+|f(t+Mτ)|2 ≤ (M+1)‖f‖2∞.

Thus also boundedness is proven

To introduce the approximation Theorem, we now imagine to ap-

proximate a function f through its Fourier polynomials and study how

the sliding windows change with respect to the treshold frequency. In

particular, let

f(t) = SNf(t) +RNf(t)

where

SNf(t) =
N∑

n=0

ancos(nt) + bnsin(nt)

is the N -truncated Fourier series expansion of f and RNf is the re-

mainder.
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Definition 53. Let D be a persistence diagram. Define pers(x, y) =

y − x for (x, y) ∈ R2, and as inf otherwise. We let

mp(D) = max
x∈D

pers(x)

Theorem 14 (Approximation). Let T ⊂ T, and f ∈ Ck(T.R). Call

PC = SWM,τf(T ) and PCN = SWM,τSNf(T ). Finally,, let D, DN be

the persistence diagrams relative to PC and PCN , respectively. Then;

dH(PC, PCN) ≤
√

4k − 2‖RNf
(k)‖2 (6.7)

|mp(D)−mp(DN)| ≤ 2d∞(D,DN) (6.8)

d∞(D,DN) ≤ 2
√

4k − 2‖RNf
k‖2

√
M + 1

(N + 1)k−1/2
(6.9)

It follows that in signal analysis, and in particular in feature ex-

traction for machine learning, filters can be used reasonably without

altering the persistence diagrams too much.

6.2.2 Examples

1) : Approximation theorem in action. Two similar signals, filtered

differently, have a similar persistence diagram.
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Figure 6.2: Example: 3-dimensional embedding of a filtered signal. The band-pass

filter keeps only frequencies between 0.5 and 2.3 Hz. On the right we have the

corresponding persistence diagram.
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Figure 6.3: Example: 3-dimensional embedding of a filtered signal. The band-pass

filter keeps only frequencies between 0.5 and 13 Hz. On the right we have the

corresponding persistence diagram.

2) : Recovering simple attractors. The sliding window embedding un-

folds with great clarity attractors as stationary points and limit cycles.

Their topology can be studied with persistent homology.

Figure 6.4: Example: f(t) = cos(0.01t) · e
−t
1000 ; recovery of a stationary point.
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Figure 6.5: Example: f(t) = cos(0.01t); recovery of a limit cycle.

3) : Recovering complex attractors. Attractors can have the shape

of more complicated topological spaces. For example, in [25], [62] and

[47] it is shown that quasiperiodic signals give rise to toroidal phase

spaces through the sliding window embedding. Moreover, persistent

homology can be exploited as a very precise tool (more precise than

spectrum analysis, for example) to quantify periodicity, as in Figure

6.5, and quasiperiodicity, as shown in the Figure below. The phase

space can also be a chaotic set or even a strange attractor.

Definition 54 (Quasiperiodic function). A scalar quasiperiodic func-

tion f : R → C has the form f(t) =
∑N

n=0 cne
iωnt, where N ∈ N,

the cn are non-zero complex numbers and the ωn are incommensurate

positive real numbers. Incommensurate means that 1, ω0, ..., ωN are

linearly independent over Q.
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Figure 6.6: Example: f(t) = 2sin(0.01t)+1.8sin(0.01
√
3t); recovery of a limit torus.
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Figure 6.7: Example: persistence diagram of the reconstructed phase space of Figure

6.6. The two 1-dimensional and the single 2-dimensional high persistence classes

suggest that the attractor is a torus.

Figure 6.8: Example: recovery of a strange attractor (the Lorentz system).
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Chapter 7

Automatic recognition of

Sleep Phase and

K-complexes

7.1 Sleep and Sleep Stages

Following a simple behavioral definition given in [14], sleep is a re-

versibile behavioral state of perceptual disengagement from and un-

responsiveness to the environment. Sleep is tipically accompained by

a combination of physiologic and behavioral processes, as postural re-

cumbence, behavioral quiescence, closed eyes. Nonetheless, other be-

haviors and anomalies can occur during sleep. Examples are given by

sleepwalking, sleeptalking, teeth grinding, falling asleep and waking up,

and dream imaginery.

Within sleep, two separate states have been defined over a multi-

tude of physiologic parameters. These states, the rapid eye movement

(REM ) and non-rapid eye movement (NREM ) are as distinct from one

another as each is from wakefullness. NREM sleep, also known as qui-

escent sleep, is the collection of sleep stages 1-3. The EEG pattern in

NREM sleep is commonly described as synchronous, with character-

istic waveforms as sleep spindles, K-complexes, and high voltage slow

waves. According to studies, the mental activity that takes place dur-

ing NREM sleep is believed to be thought-like, whereas REM sleep

includes hallucinatory and bizarre content. Dreaming is rare during

NREM sleep. As mentioned, NREM sleep is divided into three stages:

• Stage 1 : occurs mostly at the onset of sleep. It is characterized by
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the disappearence of alpha waves (8-12 Hz) and the appearence

of theta waves (4-7 Hz). People aroused from this stage often

believe that they have been fully awake; for this reason this state

is sometime referred to as relaxed wakefulness [27].

Figure 7.1: EEG signal during stage 1.

• Stage 2 : EEG recordings tend to show charcteristic sleep spindles,

which are short bursts of high frequency brain activity,and K-

complexes during this stage. Dreaming is rare during this stage.

Figure 7.2: EEG signal during stage 2.

• Stage 3 : it is also called deep sleep or slow-wave sleep (SWS). In
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this stage delta waves (0.5-4 Hz) begin to occur and then become

predominant. Dreaming is more common in this stage than in

other stages of NREM sleep though not as common as in REM

sleep.

Figure 7.3: EEG signal during stage 3.

REM sleep, by contrast, is defined by EEg activation, muscle atonia,

and episodic bursts of rapid eye movements. The mental activity of

human REM sleep is associated with dreaming.

Figure 7.4: EEG signal during REM stage.

The polysomnography (PSG) is a diagnostic test in which various

bio-paramters of the patient are measured during sleep. We are going
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to concentrate on brain activity, quantified by electroencephalograms

(EEGs). PSG is used to detect sleep disorders including narcolepsy, id-

iopathic hypersomnia, periodic limb movement disorder (PLMD), REM

behavior disorder, parasomnias, and sleep apnea. Some conditions are

revealed by labeling the sleep stages of the patient and analyzing the

equilibrium in the sleep cycles.

The assigning of sleep stages is currently done by sleep technicians

that must manually label the sleep state for each epoch (a 30 second

interval) based on the PSG multi-channel time series. The labeling

of the stage is performed every 30 seconds of polysomnography. This

process is onerous and subjected to human error.

Figure 7.5: EEG signal during wakefulness.

7.1.1 Automatic classification of sleep stages: state of the

art

In recent years, many models for the automatic sleep scoring have been

proposed. The division in sleep stages changes in the literature, both

because each different division serves different applications and also to

obtain the best numerical results. For example Persistent, Sinha [56]

proposed a division in epoques of sleep spindles, REM, and awakeness,

obtaining a classification accuracy of 95.35%. Subasi et al. [59] trained

an artificial neural network based on wavelet features, with a precision

of over 90 % for epoques with the labels: “drowsy”, “alert ”and “sleep

”. Wavelet and ANN have been used also by Ebrahimi et al. [20], using
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the standard division of sleep stages and with an accuracy of 93%. Hsu

et al. [30] employed an ANN trained with energy-based features, with a

precision of 90.93%. Also Hidden Markov Models have been exploited

for this task, by Doroshenkov et al [19]:their method is really good in

classifying the REM stage. A combination of persistent homology and

random forests is has been performed by Tymochko et al, in [63], with

a maximum performance of 90%.

7.2 K-complexes (KCs)

KC is one of the distinctive features of NREM sleep and represents the

EEG grapho-element with highest amplitude during normal sleep[13].

It was discovered more than 70 years ago by Loomis et al. It is charac-

terized by a short positive transient followed by a slower, larger surface-

negative complex with peaks at 350 and 550 ms, and them a final

positivity peaking near 900 ms [58]. The frequency of a K-complex is

estimated to be between 8 and 16 Hz. The K-complex represents the

synchronized output of a network of cortical cells and therefore has

the potential to be used as a marker for the functional integrity of the

central nervous system. [12]

Figure 7.6: A K complex.

The presence of K-complexes is one of the characteristic markers

of Stage 2 sleep. However, Stage 2 can also be recognized by other

transient waveforms, such as sleep spindles. Altough the detection

of these particular kind of waveforms can be done by visual inspection
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(following the guidelines of the American Association of Sleep Medicine,

[31]), the procedure is time consuming and requires experience.

7.2.1 Automatic detection of K-complexes: state of the art

Automatic detection of K-complex combines machine learning tech-

niques as SVM, decision trees and artificial neural network with various

types of feature extraction and signal filtering [4]. A succesfull scheme

has been to extract features from the frequency spectra through the

wavelet transform, as shown by Tang and Ishii in [35], by Krohne et

al. in [46], and by Patti et al. in [36], with precisions of 87%, 84% and

81.57% respectively. An example of neural network trained for the task

is presented by Bankman et al. in [5]. They reached a peak accuracy

of 90%. On the other hand, statistical methods comprehend Hidden

Markov Models, implemented by Kam et al. in [32] (they found a sen-

sitivity of 85%) and likelihood tresholding, performed by Devuyst et

al. in [16], with an average sensitivity of 60.94%. Another approach

comes from a plainer signal analysis; relevant features and connected

outcomes are analyzed by Erdamar et al. in in [29], reaching an ac-

curacy of 91%. Finally, fractal-based features have been exploited by

Al-Salman et al. with good results in [4], with an estimated precision

of around 95% over their dataset.

7.3 From Polysomnography to Point Clouds

Data has been provided by the sleep research group of San Raffaele Hos-

pital, in Milan. The dataset consists of 10 polysomnographies; each of

them traces brain activity for the duration of an entire night. The file

extension for the EEG data is .edf.

Each EEG has been imported in R [1] through the package edfReader

[64], and divided in epoques, that is, periods of 30 seconds. Each .edf

file contains multiple signals, coming from the different electrodes ap-

plied to the patients. The choice of the electrodes has been the follow-

ing:

• For the automatic classification of sleep stages we used the elec-

trode O2-A1, as it is positioned near the eye of the patient. The

idea is to use this vicinity to have a better classification of NREM

vs REM stages;
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• For the automatic classification of K-complex we employed the

electrode F4-A1, as it is the nearest to the frontal cortex. The

idea is to catch K-complexes at the highest possible voltage in

order to have a sharper definition of the characteristic transient.

The values of the EEG at a give instant suffer from measurement

noise; we can eliminate part of it by applying a band-pass filter, get-

ting rid of non-important highest and lowest frequencies. A theoretical

result ensures that we do not lose additional information due to the

low sampling frequency of the signal.

Theorem 15 (Nyquist-Shannon sampling Theorem). If a function f(t)

contains no frequencies higher than W cps (characters per second), it

is completely determined by giving its ordinates at a series of points

spaced W/2 seconds apart.

The Nyquist-Shannon sampling Theorem [54] states that a band-

limited signal can be recovered (exactly) from a sequence of observa-

tions whenever the sampling frequency is greater than twice the posi-

tion, in the frequency domain, of the limiting band. .edf files provide

a sampling frequency of 256 Hz. As we will see in greater detail, the

maximum frequency allowed by the band-pass filter is 30 Hz. In this

context the sampling Theorem holds.

7.3.1 Embedding parameters selection

The EEG dataset is composed by a collection of brain signals, that

can be viewed as functions f from R (time) to R (voltage). We aim

at embedding these signals in a higher dimensional space, in order to

catch topological and chaotic features from the shape of the phase

space. We remind that the sliding window vector takes the form

SWM,τf(t) = [f(t), f(t + τ), f(t + 2τ), ..., f(t + Mτ)]. The param-

eters for this transformations are therefore the embedding dimension

M + 1 and the delay τ . There are multiple ways to select satisfactory

values for these parameters. Let us investigate some.

Embedding dimension. The embedding dimension must be large

enough so that Takens’ theorem holds. At the same time, for compu-

tational purposes it could be convenient to choose a reasonably small

embedding dimension. This tradeoff can be performed optimally by

knowing the dimensionality d of the chaotic set described by the phase
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space of the dynamical system, and choose M > d. As we will se in

Chapter 9, the appropriate dimension of the attractors can be non-

integer. Two quantities that estimate this fractal dimension are the

box-counting dimension and the correlation dimension.

Definition 55 (Box-counting dimension). Let F ⊆ Rd and δ > 0. Let

Nδ(F ) be the smallest number of sets with diameter less than or equal

to δ that are needed for covering F . Then the box-counting dimension

of F is the limit

dimB(F ) = lim
δ→0+

lnNδ(F )

−lnδ

if it exists.

The limit of the box-counting dimension is that it is not sensible to

the density of the orbits, but only to the overall geometrical shape of

the set. For this reason the correlation dimension can be preferable in

specific situations.

Definition 56 (Correlation dimension). Letψ(i) = [φ(i), φ(i+τ), φ(i+

2τ), · · · , φ(i + (m− 1)τ)] ∈ Rm be a time delay embedding, N be the

number of considered states ψ(i), and ε be a treshold distance. The

correllation sum is defined as

CN(ε) =
1

N

N∑

i,j=1,i 6=j

Θ(ε− ‖ψ(i)−ψ(j)‖).

The correlation integral is the mean probability that the states at two

different times are close:

C(ε) = lim
N→∞

CN(ε).

As N →∞ and ε→ 0 the correlation integral will take the form:

C(ε) ∼ εν

We call ν the correlation dimension of the phase space generated by φ.

Delay. The delay τ quantifies the ”unfolding” of the phase space

in RM+1. [33]. If τ is too small, we observe the phenomenon of re-

dundance: the attractor is compressed along the identity line. On the

other end, if τ is too big, we may lose the connectedness of the dy-

namics, thus ruining also its topological features. This phenomenon is
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called irrilevance [33]. A good delay value has to be reasonably small,

to avoid the folding of the attractor onto itself; at the same time it has

to be large enough to avoid redundance. This tradeoff can be addressed

adequately using the notion of autocorrelation.

Definition 57 (Autocorrelation). For a discrete-time deterministic

real signal f , the autocorrelation R at delay τ is defined as

Rff (τ) =
∑

n∈Z

f(n)f(n− τ)

Autocorrelation is the correlation of a signal with a delayed copy of

itself as a function of delay. A good choice for τ in Takens’ embedding

is therefore the value for which the autocorrelation becomes smaller

then a certain treshold (
1

e
in our case), as Rff (τ) = 0 ⇒ f(t) and

f(t− τ) are linearly independent on average, avoiding redundance.

A better criterion to choose τ is to select the value for which the auto

mutual information (AMI) becomes smaller than a certain treshold. In

fact, as the autocorrelation is a linear statistic, it ignores nonlinear

dynamical correlations [24]. AMI can be thought as a generalized non-

linear version of the autocorrelation.

Definition 58 (Average Mutual Information). Given a univariate discrete-

time signal f , divide the range of possible values of the signal in N bins.

Let pi the probability that f(t) is in bin i, and pi,j(τ) the probability

that f(t) is in bin i and f(t+ τ) is in bin j. The auto mutual informa-

tionis then defined as

Iff (τ) =
N∑

i,j

pi,j(τ)log

(
pi,j(τ)

pi, pj

)
.
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7.4 Embedding of Epoques

For the problem of detection of sleep stages, the entire epoques (30 sec-

onds) are embedded in a 5 dimensional space. This choice is supported

by the computation of the box-counting and correlation dimensions

and permits the unfolding of all the chaotic sets described by the brain

waves. The Sliding Window delay is choosen with the autocorrelation

method 57, for computational purposes. For this problem we apply

a band-pass filter (using package seewave [60]) with a band between

0.5 and 30 Hz, in order to distinguish the features of each sleep stage.

In the images below the phase spaces have been projected in a 3D

space and plotted with the package rgl [3]. The labels for the different

sleep stages are: WAKE (wakefullness), NREM1, NREM2, NREM3

(non-REM stages 1,2,3), and REM.

.

Figure 7.7: A Wakefullness and the corresponding 3-dimensional embedding

.

Figure 7.8: A Stage NREM1 epoque and the corresponding 3-dimensional embed-

ding.
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.

Figure 7.9: A Stage NREM2 epoque and the corresponding 3-dimensional embed-

ding.

.

Figure 7.10: A Stage NREM3 epoque and the corresponding 3-dimensional embed-

ding.

.

Figure 7.11: A REM stage epoque and the corresponding 3-dimensional embedding.

.

Figure 7.12: An epoque with a very sharp K-complex and the corresponding 3-

dimensional embedding.

We can appreciate at sight some differences between the different

phase spaces. In wakefulness epoques we have a sparse point cloud as
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the signal is strong rich of frequencies. Point clouds from stage NREM1

is charactertzied by more compact point clouds. In stage NREM2 K-

complexes and sleep spindles result in big cycles that leave the center

and then come back. Point clouds from stage NREM3 are very definite

as higher frequencies disappear. Finally, point clouds from REM stages

present some sort of ”spikes” due to fast and low-voltage oscillations.

7.5 Embedding of Waveforms

For the problem of detection of K complexes, from each epoque we ex-

tracted the 5 highest peaks. Each peak is the center of a signal fraction

with length equal to 6 seconds. This permits also the recognition of

longer K-complexes. The 6-seconds signals are embedded in a 5 dimen-

sional space, in order to recover the corresponding phase spaces. The

Sliding Window delay is choosen with the autocorrelation method 57.

For this problem we apply a band-pass filter (using package seewave

[60]) with a band between 0.5 and 2.3 Hz, in order to remove noise and

catch only the characteristic shape of the waveform. The figures below

are again projected in a 3D space.

The K-complex waveform is always embedded in a large cycle. This

cycle results in a high persistence 1-dimensional homology class. More-

oever, the time in which the K-complex happens is ”stolen” from

other smaller oscillations. This means that point clouds in which

the K-complex is not present possess a multitude of low persistence

1-dimensional homology classes. This feature will be crucial in the

classification task.
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Figure 7.13: K1: example of a K-complex waveform (left), its three dimensional

embeddting (center) and the corresponding persistence diagram (right).
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Figure 7.14: K2: example of a K-complex waveform (left), its three dimensional

embeddting (center) and the corresponding persistence diagram (right).
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Figure 7.15: K3: example of a K-complex waveform (left), its three dimensional

embeddting (center) and the corresponding persistence diagram (right).
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Figure 7.16: K4: example of a K-complex waveform (left), its three dimensional

embeddting (center) and the corresponding persistence diagram (right).
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Figure 7.17: non-K1: example of a non-K-complex waveform (left), its three di-

mensional embeddting (center) and the corresponding persistence diagram (right).
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Figure 7.18: non-K2: example of a non-K-complex waveform (left), its three di-

mensional embeddting (center) and the corresponding persistence diagram (right).
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Figure 7.19: non-K3: example of a non-K-complex waveform (left), its three di-

mensional embeddting (center) and the corresponding persistence diagram (right).
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Figure 7.20: non-K4: example of a non-K-complex waveform (left), its three di-

mensional embeddting (center) and the corresponding persistence diagram (right).
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Chapter 8

Methodology

This Chapter presents the operative scheme used to solve the detec-

tion problem. We choose to implement random forest classifiers for

two reasons. First, random forest and in general, decision trees, pro-

vide a fascinating theoretical foundation that connects basic concepts

of machine learning to physical and phylosophical ones, such as entropy

and description length. The second and most important reason is their

operativeness, consequent to their ability to not overfit and automat-

ically perform cross-validation. The texts that inspired this Chapter

are [53, 40, 6].

8.1 Main concepts of supervised Machine Learn-

ing

Definition 59 (Statistical learning framework). The statistical learn-

ing model used in this thesis makes use of the following concepts and

definitions:

1. Learner’s input: the set of objects we wish to label is called in-

stance space X . Usually the elements of X are vectors of features,

or instances, and belong to RN for some N ∈ N.

Our label set is Y = {0, 1}.
The training data is a finite sequence of labeled domain points and

belongs to the training set S = {(x1, y1), (x2, y2), ...(xm, ym)}.
2. Learning algorithm: a function A : S → {h : X → Y} that

given a training set, outputs a rule to classify data in the instance

space.

75
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3. Learner’s output: the learner outputs a prediction rule, or clas-

sifier A(S) = h : X → Y . This function can be used to predict

the label of new domain ponts.

4. Data generating distribution: we assume there is some joint

probability distribution over domain points and labels D : X ×
Y → [0, 1].

5. The i.i.d. assumption: we assume that the examples in the

training set are indipendently and identically distributed accord-

ing to the marginal distribution DX .

6. Measures of success: for a probability distribution D over X ×
Y one can measure how likely h is to predict wrongly when labeled

points are randomly drawn from D. We define the true error, or

true risk of h as:

LD(h)
def
= P(h(x) 6= y)

(x,y)∼D

def
= D({(x, y) : h(x) 6= y}).

We are looking for a predictor h such that this error is minimized.

However, the learner does not know the data generating distribu-

tion D. For this reason we are brought to define another error,

called empirical error of h, based on the training data S:

LS(h)
def
=
|{i ∈ [m] : h(xi) 6= yi}|

m
.

Given S, a learner can compute LS(h) for any function h : X →
Y .

7. Informal goal: to find a prediction rule, h, such that with high

probability h approximately minimizes LD. We will search h over

a restricted space, H ⊆ {all possible functions f : X → Y}. H is

called hypotesis class.

At this point, we have to decide a criterion to select our predictor,

h. The obvious best choice would be the minimizer of the true error

LD but as we said, our only knowledge is the training data. A possible

criterion is therefore the empirical error minimization, or ERM rule:

Definition 60 (ERM rule). For a given hypothesis class H, and a

training sample S, the ERMH learner uses the ERM rule to choose a

predictor h ∈ H with the lowest possible error over S:

ERMH(S) ∈ argmin
h∈H

LS(h)
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As we do not know the real data distribution D, minimizing the em-

pirical error could lead to a classificator that fits well the data in S
but that does not cach the patterns of the real distribution. The phe-

nomenon of low empirical risk and high true risk is commonly known as

overfitting. Formally, given a hypothesis class H, a hypothesis h is said

to overfit the data if there exists some alternative hypothesis h′ ∈ H
such that h has a smaller error than h′ over the training examples, but

h′ has a smaller error than h over the entire distribution of instances.

Next section introduces the idea that if new information or assump-

tions are added, then the criterion to choose the best classifier h in the

hypothesis class H can be changed. SRM (Structural Risk Minimiza-

tion) is an example of alternative of this kind to ERM.

8.2 Minimum Description Lenght

The Structural Risk Minimization Paradigm. We have seen that

the choice of the hypothesis class H results in different trade-offs be-

tween approximation and estimation errors. The Structural Risk Min-

imization (SRC) learner is used in decision trees theory and it is based

on two concepts:

1. We assume that the set H can be written as a countable union

of classes H =
⋃
n∈NHn. Moreover we assume that for each n,

the class Hn enjoys the uniform convergence property with sam-

ple complexity mUC
Hn (ε, δ). This means that if S is a sample of

m ≥ mUC
H (ε, δ) examples drawn i.i.d. according to D, then, with

probability of at least 1− δ,

∀ h ∈ H, |LS(h)− LD(h)| ≤ ε.

2. We specify preferences over the different classes Hn through a

weight function w : N → [0, 1]: the higher is the weight of a

class, the more we prefer it. Finally, we impose the condition∑∞
n=1w(n) ≤ 1.

Once we fix a sample size m, we are interested in the lowest possible

upper bound on the difference between empirical and true risk. To do

that we define the function:

εn : N× (0, 1)→ (0, 1), εn(m, δ) = min{ε ∈ (0, 1) : mUC
Hn (ε, δ) ≤ m}.
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From the definition of uniform convergence and εn, it can be proved

that for every m and δ, with probability at least 1− δ over the choice

of S ∼ D we have that

∀ h ∈ Hn, |LD(h)− LS(h)| ≤ εn(m,w(n) · δ).

SRM for singleton classes. Let’s stick to a case that is useful to

us. Let’s assume that H =
⋃
n∈N{hn} is a countable union of singleton

classes : then each singleton class satisfies εn(m, δ) =

√
log(2/δ)

2m
.

Moreover, as now we can think of w as a function from H to [0,1], we

can state that the output of the SRM paradigm for singleton classes is

the following prediction rule:

SRMH(S) ∈ argmin
h∈H

[
LS(h) +

√
−log(w(h)) + log(2/δ)

2m

]
.

The difference between the ERM and the SRM paradigm is that with

SRM we are willing to trade part of the bias towards a low empirical

risk towards classes with a small εn(m,w(n) ·δ), hoping to get a smaller

estimation error.

Minimum description length. The last step needed to have an

operative paradigm is to define thw weight function in a convenient

way. The Minimum Description Length (MDL) paradigm is a partic-

ular type of SRM in which the weight function is derived from the

length of the hypotesis h, once they are translated in some description

language.

Definition 61 (Description language). Let H be a hypothesis class.

An alphabet is a finite set of symbols and it is denoted by Σ. A string

σ is a finite sequence of symbols from Σ. The length of a string is

denoted by |σ| and Σ∗ is the set of all finite length strings.

A description language for H is a function d : H → Σ∗. d(h) is called

the description of h and it is a string of length |h|.
A description languge is prefix-free if for every distinct h, h′, d(h) is

not a prefix of d(h′).

Lemma 16 (Kraft Inequality). If J ⊆ {0, 1}∗∗ is a prefix-free set of

strings, then
∑
σ∈J

1

2|σ|
≤ 1.
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So, once we choose a description language on H , Kraft’s inequality

gives us the possibility to define a weight function w over that hypotesis

class, simply taking w(h) =
1

2|h|
. This yealds the following:

Theorem 17. Let H be a hypothesis class and let d : H → {0, 1}∗ be

a prefix-free description language for H. Then, for every sample size

m every δ > 0, and every probability distribution D, with probability

greater than 1− δ over the choice of S ∼ Dm we have that

∀ h ∈ H, LD(h) ≤ LS(h) +

√
|h|+ log(2/δ)

2m

where |h| is the length of d(h).

This theorem suggests that the output of the MDL paradigm is the

result of the tradeoff between empirical risk and shorter description

length:

MDLH(S) ∈ argmin
h∈H

[
LS(h) +

√
|h|+ log(2/δ)

2m

]
.

Occam’s Razor. To end the section we try to answer to this nat-

urally arising question: why it is better to classification rules with

shorter descriprion length? A philosophical answer can be given by

the Occam’s razor principle (stated around the year 1320), which is

believed to belong to William of Ockam, and reads:

A short explanation tends to be better than a long one.

The MDL paradigm can be seen as application of this principle. We

make two considerations on the issue. The first is that we decide what

”short” means through a description language. The advantages of MDL

depend totally on our capacity to model the complexities of the hy-

potheses h. The second aspect is that we still rely on the presumption

that nature generally acts in this way, with its own description lan-

guage which we try to mimic. This assumption can be true on average

but false in specific cases.
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8.3 Decision Trees

Previous sections were devoted in presenting the theoretical aspect of

SRM and MLD for a generic hypothesis class H. In this section we

apply the theory to the hypotheses h involved in the classificaton tasks

introduced in Chapter 7: decision trees. A decision tree is a predictor

h : X → Y , that uses a tree structure to predict the label associated

with the instance x by travelling from a root node of a tree to a leaf.

In general, decision trees represent a disjunction of conjunctions of con-

straints on the attribute values of instances. Each path from the tree

root to a leaf corresponds to a conjunction of attribute test. Each test,

and so, every path split is given by comparing the attribute values to

a treshold value.

In the following we will consider the case of binary classification, that

is Y = {0, 1}.

x2 = ?

x1 = ?

x1 = 1x1 = 0

x2 = 0 x2 = 1

y = 0

y = 0

y = 1

y = 0

y = 1

Figure 8.1: Example: a simple binary classification decision tree with binary in-

stances.

Decision trees with binary instances. For simplicity we’ll start

by assuming that each instance is a vector of k bits, that is, X = {0, 1}k.
We notice that any classifier h : {0, 1}k → {0, 1} can be represented by

a tree with 2k leaves and depth k + 1. This means that the size of the

hypothesis class H grows exponentially with k, and a ERM paradigm

is not suggested. Moreover, in this simplified setting thresholding the

value of a single attribute value corresponds to the splitting rule 1{xi=1}
for some i ∈ {1, ..., k}.

To partially overcome this issue we rely on the MDL scheme. The set
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of all possible decision trees is in fact countable, so we can construct a

suitable description language on the basis of the intuition that smaller

trees should be prefered over larger ones.

A possible description language is the following: if h is a tree with n

nodes, we build d(h) as a sequence of n + 1 vectors, each one of size

log2(k + 3) bits. Each block indicates the state of each node:

• The node is an internal node of the form 1{xi=1} for some i ∈
{1, ..., k};
• The node is a 1-valued leaf;

• The node is a 0-valued leaf;

• End of the code (k + 1 - th block).

Since there are d+3 possibilities for each node, we use log2(k+3)-sized

blocks. Assuming without loss of generality that every internal node

has two children, we have that the previous is a prefix-free encoding

of the tree, and with this encoding a tree with k nodes has a length

of log2(k + 3). By Theorem 17, it follows that for every m and every

decision tree h ∈ H with k nodes, the bound

LD(h) ≤ LS(h) +

√
log2(k + 3) + log(2/δ)

2m
.

holds with a probability of at least 1− δ.
This equation represents a tradeoff: from one hand we want to mini-

mize the empirical error as in the ERM paradigm, but from the other

hand we prioritize small trees; this leads to a raise of our empirical

error but hopefully to a decrease of the true error.
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The CART algorithm. The MDL scheme suggests a theorical

learning rule for decision trees. Unfortunately, if NP 6= P , it can be

proven that no algorithm can minimize the right side of the bound in

polynomial time.

For this reason, general algorithms that aim to treat trees of different

sizes are based on heuristics: the tree is constructed graudally, and

locally optimized decisions are made at the construction of each node.

With these greedy approach algorithms we are not obtaining the best

tree but hopefully one that works well in practice.

A possible implementation of this stragegy is the CART algorithm

by Breiman, Friedman Olshen, and Stone [7]. It is based on these

fundamental steps:

• We start with a single leaf, the root, labeled with a majority vote

among all labels over the training set;

• We perform a series of iterations, and at each iteration, we eval-

uate the effect of splitting a single node. To do that, we define a

gain measure that quantifies the improvement due to the split.

• Among all the possible splits, we choose to perform the one that

maximizes the gain, or we can decide to not perform the split at

all.

CART works by recursive calls, with the initial inputs being the train-

ing set S and a set of features F . The Gain function, used to evaluate

the gain of a split of the tree, recieves as inputs S and a feature index

i.
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CART (S,F)

Breiman, Friedman Olshen, and Stone.

Input: Training set S, set of features F ∈ {1,...,k}

if all samples in S are labeled by 1, return 1.

if all samples in S are labeled by 0, return 0.

if F = ∅, return a leaf whose value = majority of labels in S
else

Let j = argmaxi∈F Gain(S, i)
if all examples in S have the same label, return a lead whose value

= majority of labels in S else

Let T1 be the tree returned by CART({(x, y) ∈ S : xj = 1},F/{j});
Let T2 be the tree returned by CART({(x, y) ∈ S : xj = 0},F/{j});

return the tree:

y = 0

xj = 1xj = 0

xj = ?

T1T2

Gain Measure for CART. Different algorithms use different im-

plementations for Gain(S, i). We present the one for CART.

Let PS [B] be the probability that the event B holds with respect to the

uniform distribution over S. We now define a gain measure (the Gini

impurity) based on statistics, and that can be interpreted as a measure

of entropy of a physical system.

Definition 62 (Entropies). The macroscopic state of a system is char-

acterized by a distribution on the microstates. For a collection of clas-

sical particles with a discrete set of microstates, if Ei is the energy

of the microstate i and pi is the probability that it occurs during the
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system’s fluctuations (call p the set of all this probabilities), then the

Boltzmann-Gibbs entropy of the system is

S(p) = −k
∑

i

pilnpi.

A generalization of this entropy measure is the Tsallis entropy, which

is dependent on a real parameter q (the deformation coefficient):

Sq =
k

q − 1

(
1−

∑

i

pqi

)
.

Notice that, in the limit as q → 1, the Boltzmann-Gibbs entropy is

recovered, namely S = S1.

Definition 63 (Gini impurity). The Gini impurity is a measure of how

often a randomly chosen element from the set X would be incorrectly

labeled if it was randomly labeled according to the distribution of labels

in the subset S. For a set of items with 2 classes (i ∈ {0, 1}), let pi the

fraction of items labeled with class i in S. Then we have:

IG =
2∑

i=1

(
pi
∑

k 6=i

pk

)
=

2∑

i=1

pi(1− pi) = 2pi(1− pi).

The Gini impurity corresponds to Tsallis Entropy with deformation

coefficient p = 2.

Now we are ready to define the Gain function. Notice that the training

error before a split on the feature i is equal to

eb(S, i) = IG(PS [y = 1]),

whereas the error after the split has the form

ea(S, i) = PS [xi = 1]IG(PS [y = 1|xi = 1])+PS [xi = 0]IG(PS [y = 1|xi = 0]).

We define the Gain function to be the difference between the two errors:

Gain(S, i) = eb(S, i)− ea(S, i).

Remark 6. Until now we covered binary trees. This model can be

easily generalized to include real-valued features, thus using split rules

of the form 1{xi<γ}.
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8.4 Random Forests

The MDL paradigm has the goal of trading off empirical error in order

to get a smaller true error, that is, to reduce the chance of overfitting.

Another technique that can be used in parallel to reduce the possibility

of overfitting is using an ensamble of trees over differents parts of the

datasets and considering the ”average decision tree” with the random

forest method, introduced by Breiman in 2008 [6].

Definition 64 (Random forest). A random forest is a classifier con-

sisting of a collection of decision trees {h(x,θt, t = 1, ..., T )}, where

the {θt} are i.i.d. random vectors and each tree outpuys a vote for the

classification of each new data sample, given the input x. Then each

new sample is labeled by the class that obtains the most votes.

Let k be the number of features. We generate {θt} in this way: first,

we sample a new training set S ′ using the uniform distribution over S,

and elements from S with repetition. Then we construct a sequence

I1, I2, ..., IT , where each It is a subset of {1, ..., k} of size k′ generated

uniformly at random. Finally we grow a decision tree over S ′ and with

the subset of features It. Intuitively, if k′ is reasonably small, this

method should prevent overfitting.

Decision Tree 1 Decision Tree 2

Label 1 Label 2 Label N

Decision Tree N

New instance xnew

b bb

Output: most voted label

Figure 8.2: Scheme of the random forest classifier.

Definition 65 (Margin). Given an ensemble of classifiers h1(x), h2(x), ..., hT (x)

and with the training set X,Y = {1, ..., J} drawn at random from D,
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we define the margin function as

mg(X,Y ) = avgt1{ht(X)=Y } −maxj 6=Y avgt1{ht(X)=j}.

The margin measures how much the average number of votes atX,Y

for the right class exceeds the average vote for any other class. The

higher the margin, the higher is the confidence in our classification.

For our specific case, that is, random forest with label set Y = {0, 1},
the margin has the simpler form

mg(X,Y ) = 2PΘ(h(X,Θ) = Y )− 1.

The following result shows how random forests do not overfit as the

number of trees increases, as the error converges to a limiting value.

Theorem 18. Let us define the generalization error as

PE∗ = PX,Y (mg(X,Y ) < 0). As the number of trees increases, for

almost surely all sequences {Θ1,Θ2, ...}

PE∗ → PX,Y [PΘ(h(X,Θ) = Y )−maxj 6=Y PΘ(h(X,Θ) = j) < 0]

Proof. To prove the theorem we have to show that there is a set C of

probability 0 on the sequence space {Θ1,Θ2, ...} such that outside of

C and for all x,

1

N

N∑

n=1

1h(Θn,x)=j → PΘ(h(Θ,x) = j).

For a dixed training set X and fixed Θ, the set of all x such that

h(Θ,x = j) is an union of hyper-rectangles. For all h(Θ,x) there is

only a finite number K of such hyper-rectangles, denoted by S1, ..., Sk.

Define φ(Θ) = k if {x : h(Θ,x) = j} = Sk. Let Nk be the number of

times that φ(Θn) = k in the first N trials. Then

1

N

N∑

n=1

1h(Θn,x)=j =
1

N

∑

k

Nk1x∈Sk .

By the law of Large Numbers,

1

N

N∑

n=1

1φ(Θn)=k
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converges a.s. to P(φ(Θ) = k). Taking unions of all sets on which

convergence does not occur for some value of k gives a set C of zero

probability such that outside of C,

1

N

N∑

n=1

1h(Θn,x)=j →
∑

k

PΘ(φ(Θ) = k)1x∈Sk . (8.1)

The right hand side of equation (8.1) is equal to PΘ(h(Θ,x) = j). This

ends the proof.
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Chapter 9

Feature extraction and

numerical results

The classification problems and the relative classifiers have been de-

scribed in Chapters 7 and 8. In the following, we engage persistent

homology and chaos theory to try to obtain precise classifiers. We de-

velop six random forests. The first five are trained on epoques, and

makes use of features coming from the computation of fractal dimen-

sion and signal correlations. Their task is to detect single sleep stages

in an EEG and more in general to recognize the state of wakefullness or

sleep. The last random forest is trained on shorter signals (6 seconds)

and employs features coming from persistent homology.

9.1 Feature extraction for sleep stage detection:

chaotic dynamical systems

By applying the Sliding Window Embedding to the EEG epoques,

we uncover the true state spaces on which the trajectories run. The

aestetic complexity of these spaces varies with the sleep stage; the no-

tion of fractal dimension can help in qunatifying this concept. Fractals

are self-similar sets, meaning that zooming in a specific points we can

appreciate the repetition of the large scale structures, infinite times.

On the other side, a measure of the complexity is given by the min-

imum embedding dimension. We saw that a limit cycle can be drawn

in R2. More complicated attractors present higher dimensionalities.

89
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9.1.1 Fractal dimension

We begin by defining the Lebesgue dimension, that is the commonly

known notion of dimension. Then, passing from the Hausdorff measure

we will introduce non-integer dimensions.

Definition 66 (Order, refinement). The order of an open cover of a

topological space X is the smallest number n such that each point of

the space belongs to, at most, n sets in the cover. A refinement of a

cover C is another cover such that each of its sets is a subset of a set

in C.

Definition 67 (Lebesgue covering dimension). The covering dimen-

sion of a topological space X is defined to be the minimum value of n

such that every open cover C of X has an open refinement with order

n + 1 or less. If no such minimal n exists, the space is said to be of

infinite covering dimension.

Definition 68 (Hausdorff measure). For any subset F of Rn and any

s ≥ 0 we define the s-dimensional Hausdorff measure of F as

Hs(F ) = lim
δ→0+

Hs
δ(F ) = sup

δ>0
Hs
δ(F )

where, for 0 < δ < +∞

Hs
δ(F ) =

ωs
2s

inf

{
+∞∑

j=1

(diamUj)
s : F ⊂

∞⋃

j=1

Uj, diamUj ≤ δ

}
.

For any s the constant

ωs = πs/2
(∫ ∞

0

e−xxs/2dx

)−1
=

(Γ(1/2))s

Γ(1 + s/2)

is positive and finite; Γ denotes the Euler Gamma function: Γ(z) =∫∞
0
e−ttz−1.

Definition 69 (Hausdorff dimension). The Hausdorff dimension of a

set F ⊂ Rn is defined as

dimH(F ) = inf{s ≥ 0 : Hs(F ) = 0} = sup{s ≥ 0 : Hs(F ) = +∞}
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Figure 9.1: Example: the Hausdorff measure of a portion of surface is approximated

by the sum of median section of small spheres (with diameter less than δ) that

provide a covering of the surface.

Definition 70 (Fractal Set). A set F ⊂ Rdis called fractal if its Haus-

dorff dimension is non integer.

Definition 71 (Strange attractor). A strange attractor is a chaotic

attractor with non integer Hausdorff dimension.

Figure 9.2: Example: the Sierpinski gasket is a chaotic attractor G with dimH(G) =

ln3/ln2.

Figure 9.3: Example: the Koch snowflake is a chaotic attractor G with dimH(G) =

ln4/ln3.
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.

Figure 9.4: Example: the Julia sets, which are the basin of attraction for systems

of the type z 7→ z2+ c ∈ C, have a fractal dimension that satisfies 1+C−1
√
c+ 2 ≤

dimH(J) ≤ 1+C|log(c+2)|3/2
√
c+ 2 for some constant C > 1 and suitable c. [18]

We have seen in Chapter 7 that there are multiple algorithms for

the computation of fractal dimensions. It can be proved that for most

practical applications, both the box-counting dimension and the corre-

lation dimension are a good measure of the ”fractalness” of a set. In

the trivial cases as sets of integer dimension and for simple fractals, (as

Hutchinson fractals like the Cantor set, the Sierpinski gasket, the Koch

snowflake,...) these measures are equal to the Hausdorff dimension of

the set.

9.1.2 Minimum embedding dimension through through False

Nearest Strand

We have seen ways to compute the fractal dimension of a set. Then

the minimum embedding dimension can be taken as the nearest integer

greater than the fractal dimension. Another idea is to compute directly

the minimum embedding dimension.

The False Nearest Strands (FNS) method is predisposed to execute

this tasks in this manner: first, a tolerance ε is decided. Then consider

A to be the sample standard deviation of the original time series. This

quantity is connected to the size of the attractor. For each d = 1, 2, ...

let S(d) be the mean Euclidean distance in the projected (d + 1) co-

ordinate between strand pairs (segments between consecutive samples)

found to be nearest neighbors in dimension d. If S(d)/A > ε, where A

is the estimated attractor size, then the strand is considered to be a

false strand. The S(d) statistic is a measure of the average additional

Euclidean distance we gain by embedding the strand in the next di-
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mension, and is used to assess when this extra distance has grown too

large, indicating a false strand.

9.2 Feature extraxtion for K-complex classifica-

tion: persistent homology

In this section we present two examples of two summary functions of

persistence diagrams. Summary functions are useful as, being from R
to R and regular, they can be studied easily and are prone to feature

extraction. Moreover, as shown in [9], they possess statistical proper-

ties (a notable one being the weak convergence of the sample average

summary function) that make them suitable for data analysis.

After that, we will see the connection between Euler Characteris-

tic and Homology groups. Euler Characteristic will prove to be an

important feature for the classification of K-complexes.

9.2.1 Landscapes and silhouettes

Definition 72 (Persistence landscape). Let D be a persistence dia-

gram and p = (x, y) =

(
b+ d

2
,
d− b

2

)
a point of D. Define then the

following function:

Λp(t) =





t− x+ y t ∈ [x− y, x]

x+ y − t t ∈ (x, x+ y]

0 otherwise

=





t− b t ∈ [b, (b+ d)/2]

d− t t ∈ ((b+ d/2), d]

0 otherwise

p is itself on the graph of Λp(t). Given the arrangement of curves

obtained by overlaying the graphs of the functions {Λp}p∈D, the per-

sistence landscape of D is the collection of functions

λD(k, t) = kmax
p∈D

Λp(t) t ∈ [0, T ], k ∈ N,

where kmax is the k-th largest value in the set.

From the definition of persistence landscape we immediately observe

that λD(k, ·) is one-Lipschitz, since Λp is one-Lipschitz.
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Figure 9.5: Example: The first persistence landscape of dimension 1, λD(1, t), for

a K-complex (left) and for a non-K-complex (right). K complexes are characterized

by less classes with low persistence and more classes with high persistence.

Definition 73 (Power weighted silhouette). Consider a persistence di-

agram D with m off diagonal points. Let each point of D be represent-

edby a pair (bj, dj). For every 0 < p ≤ ∞ we define the power-weighted

silhouette as

φp(t) =

∑m
j=1 |dj − bj|pΛj(t)∑m

j=1 |dj − bj|p
For each positive weight p,also the power weighted silhouette is a

one-Lipschitz function.
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Figure 9.6: Example: The weighted silhouette of dimension 1 and power 1, φ1(t), for

a K-complex (left) and for a non-K-complex (right). K complexes are characterized

by less classes with low persistence and more classes with high persistence.

9.2.2 Euler characteristic

The Euler characteristic of a topological space is a number related its

shape. Its importance comes from being a topological invariant: two

homeomorphic topological spaces have the same Euler characteristic.

Moreover, this quantity is also invariant under homotopies.

Definition 74 (Euler characteristic). Let K be a simplicial complex,

and let np be the number of p-simplices, n ≥ 0. The Euler characteristic
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of K is equal to the alternatingsum

χ = n0 − n1 + n2 − n3 + ...

We can compute the Euler characteristic of a simplicial complex in

two ways: with the definition, or exploiting homology groups. Altough

the latter seems an unintuitive procedure, simplicial complexes and fil-

trations can be practically inconvenient to store in memory.

The Euler-Poincaré theorem elegantly connects homology groups

with the Euler characteristic.

Recall that from Chapter 4 we learnt that writing np = rank Cp for

the number of p-simplices in K, zp = rank Zp and bp = rank Bp for the

ranks of the cycle and boundary groups, we have np = zp + bp−1.

Theorem 19 (Euler-Poincaré). The Euler characteristic of a topolog-

ical space is the alternating sum of its Betti numbers:

χ =
∑

p≥0

βp.

Proof.

χ =
∑

p≥0

np =
∑

p≥0

(−1)p(zp + bp−1) =
∑

p≥0

(−1)pβp.

Remark 7 (”Truncated” Euler characteristic). Once a persistence di-

agram is obtained, we have acces to the persistent Betti numbers and

not to the normal Betti numbers. We are insterested in the evolution

of the Euler characteristic when passing from a complex in the filtra-

tion to the next. To do that, the diagram can be divided in vertical

stripes, mimicking the difference in classes births. On these stripes we

can compute the persistent Euler characteristic using the definition.

Unfortunately, computing the persistent Betti numbers for dimension

≥ 2 is computationally demanding. For this reason, we make use of

the truncated persistent Euler characteristic χ̃s = β0,s − β1,s, where s

indicates th number of the stripe considered. This quantity equals the

persistent Euler characteristic we would have found by always limiting

the embedding dimension to 2.
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9.3 Numerical Results

This section presents the numerical results for the two classification

tasks. The adherence of the estimated labels and the true ones is sum-

marized in a confusion matrix, containing the number of true positives

TP , true negatives TN , false positives FP , and false negatives FN .

From these quantities we estimate the overall performance of the clas-

sifier, by defining:

• Accuracy: (TP + TN)/(TP + TN + FP + FN);

• Sensitivity: (TP )/(TP + FN);

• Precision: (TP )/(TP + FP );

• False positive rate: (FP )/(TN + FP ).

The performance is evaluated by cross-validation over the whole

dataset, consisting of 10 polysomnographies. Each polysomnography

belongs to a different patient. Every EEG spans an entire night, start-

ing from the onset of sleep until the patient is fully awake again the

next morning.

Dataset Structure

Dataset #Epoques #Awake #NREM1 #NREM2 #NREM3 #REM #KCs

EEG1 916 240 68 343 112 153 589

EEG2 918 136 121 296 158 207 447

EEG3 905 190 80 370 84 181 1059

EEG4 809 345 52 188 57 167 312

EEG5 810 101 62 318 188 141 536

EEG6 935 130 81 490 110 124 957

EEG7 876 181 111 328 90 166 509

EEG9 964 109 145 441 59 210 859

EEG11 950 97 80 557 95 121 1028

EEG14 879 183 96 387 108 105 782

Table 9.1: For each polysomnography we present the total number of 30 seconds

epoques, partitioned into the 5 different Sleep Stages. In addition we display the

number of K complexes (KCs) appearing during the night.

The features have been extracted employing the following R packages:

TDA [22], tibble [41], Rfast [45], distances [52], moments [34], and

nonlinearTseries [26]. The random forests have been created with

the package randomForest [37]. Feature selection has been executed
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choosing the most important variables. Importance is automatically

computed by analyzing the precsion gain for the splitting of each vari-

able in the decision trees, using the Gini index.

Remark 8 (Same size samples). In the binary classification case, ran-

dom forest methods often provide a better performance when the set

of instances labeled with 0 and 1 have the same or similar size.

1. For the detection of sleep stages, each of the five random forests

is trained on a set of labels equal to 1 if we are dealing with an

epoque of a particular stage (for example, the REM stage) and

equal to 0 in any other case. Thus each stage-detecting random

forest learns from the totality the stages in of a particular kind

in the dataset and a randomly chosen collection of other stages of

the same size.

2. For the detection of K complexes, the random forest is trained

over all the KCs (corresponding to instances labeled with 1) and a

randomly chosen collection of non-K complexes of the same size.
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9.3.1 Detection of sleep stages

Feature extraction. For each epoque we extacted a series of features

connected to the self-correlation, the complexity and the self-similarity

of the signal. Self-correlation is measured through the average mutual

information 58 and the autocorrelation function 57. The first values

resulted to have greater importance. We also considered the optimized

Sliding Window delays τ relative to these two functions. Self similarity

has been assessed by computing various types of dimension and fractal

dimension (box-counting 55 and correlation 56 dimensions, minimum

embedding dimension using FNS 9.1.2). Also the output of the de-

trended fluctuation analysis method [42] happened to be an important

feature. DFA is another measure of self -affinity of a signal.

Lyapunov exponents [51] are one of the main quantifiers of the chaotic-

ness of a signal, as they measure the scale of divergence of close tra-

jectories. We also computed the Kolmogorov-Sinai entropy [44] of the

signals to evaluate the carried information. As the importance of these

two quantities resulted to be low, we discarded this set of features.

Finally we determined standard features as maximum, minimum,

mean, variance, higher moments and frequency spectrum of the sig-

nals. Luckily also these quantities have been rejected, making the

results more specifically connected to the signals’ chaoticness.

Below we present the features that overcame the selection process.

Detection of sleep stages: Complexity

Selected features:

F1: Mutual information function Iff ;

F2: Autocorrelation function Rff ;

F3: Box-counting dimension of the 5D embedding dimB(SW5,τ (f)));

F4: Correlation dimension ν;

F5: Detrended Fluctuation Analysis (DFA): long range correlation between values;

F6: Dimension with False Nearest Strands method (FNS);

F7: Delay with autocorrelation method τAC ;

F8: Delay with mutual information method τAMI ;



9.3. Numerical Results 99

0
1

2
3

4

Wake NREM1 NREM2 NREM3 REM

Figure 9.7: F3: box-counting dimension for the diffeent sleep stages.
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Figure 9.8: F2: critical value of mutual information function for the different sleep

stages.

Detection of single Sleep Stages

Sleep Stage Accuracy Sensitivity Precision False posi-

tive rate

AWAKE 0.87 0.88 0.85 0.15

NREM1 0.65 0.73 0.63 0.43

NREM2 0.77 0.78 0.78 0.22

NREM3 0.89 0.89 0.89 0.11

REM 0.82 0.84 0.8 0.21

Table 9.2: Detection of sleep stages.

The results for this detection problem show that the NREM1 stage

is the hardest to classify correctly. This can be explained as this stage

is very similar by its nature to a awakeness stages and NREM2 stages.

In the onset of sleep a person alternates rapidly between wakefulness

and stage NREM1; for this reason the labeling of this period has an

higher arbitrarity. Stage NREM3 and awakeness, on the other hand,
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are classified with great precision.

Classification of state of consciousness

State Accuracy Sensitivity Precision False posi-

tive rate

Asleep 0.81 0.84 0.80 0.21

Deep Sleep 0.87 0.89 0.86 0.14

Table 9.3: Detection of state of sleep.

The classification of the state of sleeps resents on the problem of stage

NREM1 labeling. When awakeness and Stage NREM1 are considered

together the task becomes the detection of deep sleep (Stages NREM2,

NREM3, and REM). In this case the precision is significantly higher.
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9.3.2 Detection of K-complexes

We resume the procedure to extract perstsent homology features.

1. We select only NREM2 epoques (30 seconds signals), as KCs appear during this

Stage.

2. The 5 highest peaks are centered in 6 seconds signals, which are then filtered.

3. We apply the Sliding Window Embedding to the signals to obtain point clouds.

4. We compute the persistent diagram (and landscape, silhouette) from each pioint

cloud.
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5. Features are extracted and used as input to classify the signals. In this case the

output is

1 0 0 0 0
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Feature extraction. For the detection of K complexes, the ob-

jects employed in the production feature values are three: persistence

diagrams 48, persistence landscapes and silhouettes 9.2.1. A first set

of instances is obtained by summarizing the persistences, births and

deaths in a sequence of vectors. The procedure is similar to the one

showed in [2]. As shown in Chapter 7, diagrams corresponding to K

complexes often display few (1-dimensional) classes with high persis-

tence and few classes with medium persistence. On the other side,

diagrams corresponding signals without a K complex present no (1-

dimensional) classes with high persistence and a high number of classes

with medium persistence. Small persistence classes are also very im-

portant: K complexes posses only few of them since there are less small

scale oscillations in the signal.

The same reasoning can be repeated with 0-th dimensional classes as

K-complexes result in more disconnected state spaces and other signals

translate in more compact state spaces.

In addition we considered the norms of the diagrams 49 and the

Euler Characteristic of the 2-dimensional embedding 7.

Finally, important features were extracted from specific values of the

persistence landscape and silhouette.
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Figure 9.9: F2: the number of 1-dimensional persistent homology classes is lower

for K-complexes.
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Detection of K-complexes: Persistent homology

Selected features:

F1: # of persistence classes of dimension 0;

F2: # of persistence classes of dimension 1;

F3: mp0(D, 1)/mp0(D, 2) (max 0-dimensional persistence / 2nd max 0-dimensional per-

sistence);

F4: mp0(D, 1)/mp0(D, 3) (max 0-dimensional persistence / 3rd max 0-dimensional per-

sistence);

F5: mp1(D, 1)/mp1(D, 2) (max 0-dimensional persistence / 2nd max 0-dimensional per-

sistence);

F6: mp1(D, 1)/mp1(D, 3) (max 0-dimensional persistence / 3rd max 0-dimensional per-

sistence);

F7: 0 and 1-dimensional silhouette φ1(t);

F8: 0 and 1-dimensional landscape λD(1, t);

F9: Early births and deaths for classes of dimension 1;

F10: Truncated Euler characteristic χ̃s.

F11: Bottleneck distance of dimension 1 from empty diagram d∞(D,D0).

F12: 1-Wasserstein distance of dimension 1 from empty diagram dW1(D,D0).
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Figure 9.10: F6: the quotient between the highest 1-dimensional persistent class

and the third one is higher for K-complexes.



104 Chapter 9. Feature extraction and numerical results

Detection of K-complexes

Label Accuracy Sensitivity Precision False posi-

tive rate

KC 0.92 0.93 0.91 0.09

Table 9.4: Detection of K complexes.

The set of features from topological data analysis results in a very

good overall performance of the classification method. The charac-

teristic shape of the K-complexes is translated effectively in higher

dimensions through the Sliding Window Embedding. In addition, the

band-filtering and the parameter of the embedding ensure that 0 and

1 dimensional homology groups are sufficient to achieve a satisfactory

level of precision.
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Conclusions

Final considerations. This dissertation presented an application of

TDA and dynamical systems theory for the classification of bio-signals

provided from EEGs. As in other works from the scientific literature,

these fields of mathematics are revealed to be suitable for the recogni-

tion of shapes and patterns. The topology of the phase spaces obtained

through the Sliding Window Embedding contains a great amount of in-

formation on the nature of biosignals. The study of the complexity of

the orbits and of the persistent homology groups is less affected on the

positioning of electrodes and possible noise in the measurements. The

numerical results show good precision of the classification method for

the detection of sleep stages, and very good precision for the detection

of K complexes.

Future developements. There are multiple ideas that can be

brought forward starting from the analysis of this dissertation, the

first being elaborate a scheme to avoid the high computational costs

of persistent homology. The application of TDA to sleep stages has

been unfeasible: every attempt in summarizing the 30 seconds point

clouds resulted in fatal loss of information. Concerning K-complexes

and possibly other waveforms or patterns, an interesting idea could be

that of employing higher dimensional persistent homology groups and

study their interpretation.

The effectivness of the K-complex classifier could be exploited to

quantify the strength, or other detailed characteristic of the waveforms:

this feature, together with density, are shown to depend on age and pos-

105
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sibly be connected to neurodegenerative illnesses.

An interesting theoretical topic to elaborate on is the connection be-

tween fractals (Hutchinson fractals, for example) and their correspond-

ing persistent homology patterns. It seems reasonable that fractals can

be encoded via persistent diagram as their holes present self-similar and

precise behaviour.

Finally, as numerous publications keep apart the fields of TDA and

chaos when studying biosignals, it might be compelling to understand

the causes of the fractal nature of brain waves with the countinuous

support of the mapper algorithm and persistent homology.
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