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1. Introduction
Over recent decades, global improvements in the
quality of life have led to an increase in the aging
population [1], with a notable rise in age-related
neurodegenerative diseases (NDDs). Among
them, dementia, characterized by chronic cogni-
tive disorders, represents a significant challenge
[2]. Early diagnosis of dementia remains elu-
sive due to its subtle onset and sporadic clinical
assessments [3]. At the state of art, between all
the most prominent diagnostic methods [4], elec-
troencephalography (EEG) and functional near-
infrared spectroscopy (fNIRS) result to prove in-
valuable in developing therapeutic strategies for
NDDs [5], thanks to their common attributes
such as minimal invasiveness, safety, ease of use,
and repeatability. EEG is an already strongly
validated non-invasive and cost-effective tech-
nique able to measure the brain electrical ac-
tivity with a high temporal resolution, but a
relatively low spatial one. It is also sensitive
to environmental noise and artifacts, making it
less reliable when used alone [6]. On the other
hand, fNIRS is a relative new optical technique,
able to measure hemodynamic changes with ad-
vantages like portability, low cost, and minimal

constraints on subjects, boasting a higher spa-
tial resolution but a lower temporal one [7]. In
particular, about brain state monitoring in clini-
cal settings, the integration of different diagnos-
tic techniques, such as EEG and fNIRS, appears
to be a much sought-after goal to date. Since
both EEG and fNIRS possess attributes such as
minimal invasiveness, safety, ease of use, and re-
peatability, they prove invaluable in developing
therapeutic strategies for NDDs [5].

2. ’The Glymphometer’,
Research to Business
project, University of Oulu

The primary goal of this work has been to
further explore and validate a hybrid device,
called Glymphometer, able to simultaneously
acquire and to real-time monitor EEG and
fNIRS signals, with the aim of commercializing
it and making it suitable for future studies,
especially about NDDs investigation. Currently
under development at the University of Oulu
by Professor Teemu Myllylä’s and his research
team [8], the Glymphometer is a user-friendly
wearable medical device designed for brain
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monitoring. The primary advantage of this
device lies in its compact size and non-invasive
nature, allowing for continuous brain monitor-
ing during both wakefulness and sleep phases.
It facilitates the easy measurement of various
brain health parameters and the activity of
the brain’s cleansing system, which is closely
linked to the glymphatic system’s functionality.
This device is intended for use both at home
and in hospital settings, with the ultimate goal
of advancing early diagnostic methods and
promoting brain well-being.

In order to validate this brand new device - es-
pecially for future developments in the field of
NDDs - two acquisition protocols have been de-
fined from sketch. One concerns the acquisition
of the Baseline signal, while the other one the
acquisition of the Memory Activation signal. In
particular, the last one is based on a previous
study [9] where it was demonstrated that rest-
ing fNIRS signals recorded from the prefrontal
cortex can provide a promising methodology for
detecting NDDs, resulting in a relatively lower
hemodynamic activity.

3. Methods and Materials
Glymphometer Device - For this work, the
Glymphometer prototype used consists of a
main unit box connected to a headcap unit that
incorporates the fNIRS system - equipped with
two photodiodes (PDs) and two LEDs - posi-
tioned in the middle of the forehead, a few cen-
timeters above the eyebrows.

(a) Main unit box

(b) fNIRS setup: PDs and LEDs

(c) Headband

Figure 1: Glymphometer Device.

Initially, the idea was to use the EEG system
integrated into the Glymphometer device but,
after some attempts, it resulted that using
both EEG and fNIRS systems caused a very
high battery consumption. Therefore, for this
pilot study, it has been decided to use an
external EEG acquisition system, the Bittium
NeurOne™ Tesla cap [10]. Since the fNIRS
signal was acquired from the forehead, also the
EEG signal was acquired from the same place,
so just the two electrodes (Fp1 and Fp2) at
the frontal cortex were considered. They are
placed in the middle of the forehead, a few
centimeters above the eyebrows and around 0.5
centimeters above the fNIRS system, while the
ground electrode is located behind the right
earlobe and the reference electrode (Cz) in the
middle of the head.

GlYmphometer Software - About the acqui-
sition software, the "GlYmphometer" Software
is an advanced and comprehensive platform,
totally developed by the Glymphometer re-
search team at the University of Oulu. It has
been designed for the simultaneous acquisition
and real-time visualization of both EEG and
fNIRS signals - even if, for this work, it was just
involved for the fNIRS signal acquisition: for
the EEG acquisition it was used the NeurOne™
Software, developed by Bittium [11].
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Participants - A sample of nine healthy
controls affiliated with the University of Oulu -
including both Erasmus students and employees
of different gender (2 males and 7 females),
nationality and age (between 21 and 47) - has
been analyzed.

Place - Data collection took place in Kieppi
Lab, located in the Kontinkangas campus of the
University of Oulu, between March and May
2023.

Acquisition Protocols - Two distinct proto-
cols have been created from sketch specifically
for the main aim of this work: the Baseline Ac-
quisition Protocol and the Memory Activation
Protocol. For the Baseline Acquisition Protocol,
subjects were asked to sit in a relaxed position,
with eyes closed, trying to minimize their think-
ing. A 5-minute signal was recorded under these
conditions. On the other side, the Memory Ac-
tivation Protocol consisted of two segments: a
1.5-minute open-eyed rest phase and a memory
activation task. The task itself includes three
phases: visualization, memorization and recall.
In the visualization phase, subjects were pre-
sented 10 images of common objects, each one
displayed for 2 seconds, and were instructed to
name aloud these objects in English. After the
presentation, they closed their eyes for 15 sec-
onds (memorization), thinking about the images
they had just seen. At the end, subjects opened
their eyes and verbally recalled as many images
as they could remember (recall).

3.1. Signal Analysis
After data collection, a detailed analysis of
both fNIRS and EEG signals has been entirely
conducted in MATLAB®.

fNIRS Signal Analysis - The fNIRS signal
analysis involved several key steps. The raw
fNIRS data were first downsampled from 250 Hz
to 10 Hz. Then, a forward and backward mov-
ing average filter - window size (N) = 100 - has
been applied in order to improve the signal-to-
noise ratio (SNR) and smooth the data. From
the filtered signals, optical density (OD) was cal-
culated using the Modified Beer-Lambert’s Law

OD = log
Io
I

= ϵ(λ) · C · l (1)

where Io is the incident light intensity, I is
the transmitted light intensity, ϵ is the molar
absorption coefficient of the medium at a certain
wavelength λ, C is the molar concentration
of the analyzed molecule and l is the optical
path length. From the OD, Hb02 and HbR

concentrations have been calculated and then
shown through plots representing their temporal
evolution. Additionally, for each subject and
for each side sensor, a Variation of Concentra-
tion Index (VCI) representing the percentage
mean variation of Hb02 concentration - during
each task phase, relatively to the baseline -
has been calculated. Positive VCIs indicates
hemodynamics activation, while negative VCIs
indicates hemodynamics inhibition.

EEG Signal Analysis - On the other side,
also the EEG signal analysis involved several
key steps. In this case, the raw EEG data were
pre-processed using the EEGLAB® Toolbox.
They were first downsampled from 1000 Hz
to 250 Hz, and then a digital FIR bandpass
filter between 0.5 Hz and 45 Hz has been ap-
plied to remove noise and unwanted frequency
components. Additionally, blink artifacts were
removed from the EEG signals by dividing
the signal into 2-seconds non-overlapping
epochs, and then by discarding all the epochs
with a maximum absolute amplitude above a
defined threshold (50 µV in this case). From
the pre-processed EEG signals, PSDs were
calculated using the Welch method, allowing
for the analysis of power distribution across
different frequency bands - in particular θ (3-8
Hz), α (8-13 Hz), and β (13-30 Hz). Then,
the dominant frequency within each band was
determined, and the power was averaged within
±2 Hz of it. For each electrode (Fp1 and Fp2)
and during each task phase, PSD plots have
been finally displayed. Baseline PSD has been
also displayed, as a reference. Additionally, for
each subject and for each side electrode, an
Attention Index (AI) was calculated as the ratio
of α power to β power, in order to provide an
estimation of the subject’s attention level. An
AI higher than 1 indicates lower attention, while
an AI lower than 1 indicates higher attention
compared to the baseline.
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Statistical Analysis - For what concerns the
statistical analysis, aimed to investigate data
distribution and to identify potential correla-
tions, the Shapiro-Wilk Test was first used to
assess whether the data of both the AI and the
VCI follow a normal distribution across the six
different classes - corresponding to the three cog-
nitive task phases on the left and right forehead
sides. Due to the small sample size - just 8 sub-
jects were considered for further analysis, one
has been discarded because extremely noisy -
two non-parametric tests were then applied re-
gardless: the Wilcoxon Signed Rank Test and
the Friedman’s Test. In order to visualize both
AI and VCI distributions across different condi-
tions, boxplots were generated and both medi-
ans and interquartile ranges were calculated for
each class considered. Additionally, a combined
analysis between AI and VCI was led in order to
try to find potential correlations between EEG
and fNIRS signals. Scatterplots and linear re-
gression lines were used to visually explore this
relationship. Additionally, the Pearson Coeffi-
cient (PC) was calculated in order to quantita-
tively measure the correlation between AI and
VCI.

4. Results
Given the small sample size, the combination
of these statistical tests and visualization
techniques should be interpreted with caution.

fNIRS Analysis

median iqr
left 0.8708 41.9142

right 2.0327 21.8243

Table 1: The table shows both medians and in-
terquartile ranges (iqr) of the VCI divided into
the two sides.

Figure 2: The boxplot shows the comparison be-
tween VCI from different sides.

The visual comparison of VCI between the two
sides suggests that the left one has a wider
distribution range, so greater data variability,
even if medians in both groups are similar, sug-
gesting similar data distribution. Additionally,
longer whiskers in the left group indicate higher
data dispersion and, even if outliers are present
in both groups. In general, the VCI analysis
shows an increased HbO2 concentration during
cognitive tasks with respect of the baseline.

EEG Analysis

median iqr
Fp1 0.3142 0.2067
Fp2 0.3346 0.2108

Table 2: The table shows the medians and in-
terquartile ranges (iqr) of the AI divided into
the two sides.

Figure 3: The boxplot shows the comparison be-
tween AI from different sides.
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The visual comparison of AI between Fp1
and Fp2 suggests that Fp1 has slightly higher
variability, while Fp2 has a slightly higher
median, indicating higher AI on the right side
(Fp2) of the prefrontal cortex. In general, the
AI analysis during different task phases shows
that it is higher during the visualization phase,
decreases during recall, and is lowest during
memorization on both sides.

fNIRS-EEG Combined Analysis

(a) AI

Figure 4: Scatterplot between AI and VCI, di-
vided into the 8 subjects.

Starting from the general scatterplot, repre-
senting the AI-VCI relation divided into the 8
subjects, it has been noticed that Subject 6 and
Subject 8 visually resulted as outliers, so they
both have been removed for further analysis.

Figure 5: Scatterplot between AI and VCI, di-
vided into the remaining 6 subjects.

Figure 6: Scatterplot between AI and VCI, with
the linear regression line.
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Figure 7: The pictures show the scatterplots be-
tween AI and VCI, divided into the three task
phases - visualization, memorization and recall
- with the linear regression line.

Scatterplot analysis suggests, in general, some
correlation between AI and VCI. During the
memorization phase, there is a medium-strength
negative correlation (PC = -0.4842), suggest-
ing that higher mental relaxation corresponds to
lower oxygen supply to the frontal brain region.
On the other side, there is a positive correlation
in both memorization (PC = 0.1746) and recall
phases (PC = 0.6504), suggesting that higher
concentrations require less oxygen supply to the
frontal brain region.

5. Discussions
Despite the small sample size, these results
provide some interesting insights and trends.

fNIRS Analysis
Visualizing changes in Hb02 and HbR concen-
trations over time provides valuable insights
into neural hemodynamic activity in the brain.
In a resting state, elevated Hb02 levels and
reduced HbR levels are commonly observed,
signifying increased blood flow and metabolic
activity in specific brain regions due to ongo-
ing neural processes related to introspection
and maintenance of baseline brain functions
[12]. During cognitive tasks, the behavior of
Hb02 and HbR reflects the brain’s adaptive
responses to cognitive demands: positive Hb02

levels typically accompany heightened neural
activity, while elevated HbR concentrations
suggest increased oxygen consumption due to
neural firing. Additionally, also VCI behavior
results consistent with expectations [13], with
positive values during the memory activation
task phases, indicating brain activation during
cognitive tasks.

EEG Analysis
The Power Spectral Density (PSD) plot of an
EEG signal is a valuable tool for understanding
how the brain adapts and responds to cognitive
tasks. The PSD plot during the close-eyed rest
condition shows a dominant α rhythm, indicat-
ing a relaxed state of open-eyed wakefulness.
In contrast, during the performance of the
cognitive task, there is a shift with decreasing
α power and increasing β power, highlighting
brain’s cognitive engagement. Also in this case,
the importance of the outcomes obtained lies
mainly in their scientific consistency [14–16].
Consistently [17], during baseline condition, the
AI tends to get value higher than 1, reflect-
ing a dominance of α power associated with
relaxation. In contrast, during the open-eyed
cognitive task, the AI tends to get values
lower than 1, indicating both lower α power
and greater β power associated with focused
attention.

Combined Analysis
As already mentioned, it is essential to approach
all these statistical outcomes with caution, since
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it results challenging to drawn robust conclu-
sions about the significance of the data when
the sample size is limited. However, the com-
bined fNIRS-EEG statistical analysis revealed a
positive correlation trend between AI and VCI,
indicating that as mental effort increased - AI
increases - hemodynamic activation tended to
increase as well - VCI increases. Analyzing the
correlation by task phase, a negative correla-
tion during memorization suggests that higher
mental relaxation - higher AI - corresponds to
lower oxygen supply - lower VCI - in the frontal
brain region. On the contrary, during both visu-
alization and recall, a positive correlation indi-
cates that lower mental relaxation is associated
with lower oxygen supply, which might seem
counterintuitive physiologically. This behavior
could be justified as an adaptive response, where
increased α activity modulates cognitive effort
during open-eyed tasks, as a compensation for
the higher oxygen demand.

6. Conclusions and
Future Developments

In this study, the validation of the Glymphome-
ter device marks a significant beginning of a path
toward the field of neurodegenerative disease di-
agnosis. Through rigorous signals collection,
analysis, and then validation, it has been demon-
strated that the device works as intended, pro-
viding coherent and consistent results that align
with expectations based on empirical reality and
scientific researches. Furthermore, the device’s
correlation with established benchmarks from
scientific literature searches adds to its credibil-
ity. However, while the Glymphometer repre-
sents a significant advancement, there is room
for further exploration and refinement. Overall,
this study establishes the technical credibility of
the Glymphometer and paves the way for proac-
tive and personalized neurological care.
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