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Abstract

For the most part of the 20th century, computers have benefited from transistor scaling in
order to support exponential performance improvement. As computer-chip features get
smaller, ever larger proportions of chips must be turned off during operation due to power
budget limitations. This new obstacle calls for a shift in paradigm in computer architec-
ture. As a consequence of this, we have moved from an era of single-core design in the 20th
century, through an era of homogeneous multi-core design in the beginning of the 21st
century to the now ever-expanding trend of heterogeneous multi-core architectures with
custom accelerators. In this thesis, we explore multi-directional systolic accelerators for
Band and Generic matrix-matrix multiplications (BMMM and GMMM). Starting from a
systolic design introduced in the 1970’s by Kung and Leiserson, we conceptualized chang-
ing the direction of some data paths in order to achieve more than one operation. We
then implemented the design in Verilog and the necessary memory management hardware
in C++, using HLS tools to compile it to hardware. To link the RTL and HLS designs
together, we developed a hybrid design workflow using Xilinx tools. For comparison, we
also implemented an equivalent fully-HLS kernel. Architecturally, our design achieves
20x performance improvement for many streamed 16x16 GMMM operations and a 610x
performance improvement in large BMMM matrices with a band size of 31, while using
30x more DSP’s than our best HLS counterpart. Using our own fully-parametric data
management hardware, we have achieved performance parity for GMMM and a 23x per-
formance improvement for BMMM. Our benchmarks were performed on a Alveo U280
Data Center Card containing a Virtex Ultrascale+ FPGA and High Bandwidth Memory.

Keywords: Heterogeneous Computer Architecture, Systolic Design, Xilinx Blackbox
Hybrid RTL-HLS Design, Matrix Multiplications.





Abstract in lingua italiana

Per la maggior parte del secolo XX, i computer hanno beneficiato della scalabilità dei tran-
sistor per sostenere un miglioramento esponenziale delle prestazioni. Man mano che le
caratteristiche dei chip dei computer diventano più piccole, una percentuale sempre mag-
giore di chip deve essere spenta durante il funzionamento a causa dei limiti del budget
energetico. Questo nuovo ostacolo richiede un cambiamento di paradigma nell’architettura
dei computer. Di conseguenza, siamo passati da un’era di design single-core nel secolo XX,
a un’era di design multi-core omogeneo all’inizio del secolo XXI, fino alla tendenza in con-
tinua espansione delle architetture multi-core eterogenee con acceleratori personalizzati.
In questa tesi esploriamo acceleratori sistolici multidirezionali per le moltiplicazioni matri-
ciali a banda e generiche (BMMM e GMMM). Partendo da un design sistolico introdotto
negli anni 70 da Kung e Leiserson, abbiamo concettualizzato il cambio di direzione di
alcuni percorsi di dati per ottenere più di un’operazione. Abbiamo quindi implemen-
tato il progetto in Verilog e l’hardware necessario per la gestione della memoria in C++,
utilizzando gli strumenti HLS per la compilazione in hardware. Per collegare insieme
i progetti RTL e HLS, abbiamo sviluppato un workflow di design ibrido utilizzando gli
strumenti Xilinx. A titolo di confronto, abbiamo anche implementato un kernel equiva-
lente completamente HLS. Dal punto di vista architetturale, il nostro progetto ottiene un
miglioramento delle prestazioni di 20x per molte operazioni GMMM 16x16 in streaming
e un miglioramento delle prestazioni di 610x in matrici BMMM di grandi dimensioni con
una dimensione di banda di 31, pur utilizzando un numero di DSP 30x superiore rispetto
alla nostra migliore controparte HLS. Utilizzando il nostro hardware di gestione dei dati
completamente parametrico, abbiamo ottenuto la parità di prestazioni per GMMM e un
miglioramento delle prestazioni di 23x per BMMM. I nostri benchmark sono stati eseguiti
su una scheda Data Center Alveo U280 contenente un FPGA Virtex Ultrascale+ e una
memoria ad alta larghezza di banda (HBM).

Parole chiave: Architettura di computer eterogenea, design sistolico, design ibrido RTL-
HLS Xilinx, moltiplicazioni matriciali.





v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1
1.1 Moore’s Laws and Dark Silicon . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Techniques for Dark Silicon Taming . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Shrinking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.2 Dimming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2.3 Material Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.4 Specialized Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Design of Heterogeneous Accelerators . . . . . . . . . . . . . . . . . . . . . 6
1.3.1 Manual Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3.2 Automatic and Semi-Automatic Design . . . . . . . . . . . . . . . . 6

1.4 Contributions of this Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background 9
2.1 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.2 Tensor Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Tensor Computations . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Modern Programming Languages . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Hardware Description Languages . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 High-Level Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 From RTL to Hardware: The FPGA Synthesis Flow . . . . . . . . . . . . . 14

2.5.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14



vi | Contents

2.5.2 Implementation: Optimisation and Mapping . . . . . . . . . . . . . 15
2.5.3 Implementation: Place and Route . . . . . . . . . . . . . . . . . . . 15

2.6 Systolicism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.7 State-of-the-Art Systolic Systems . . . . . . . . . . . . . . . . . . . . . . . 17

2.7.1 Google TPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7.2 Amazon AWS Inferentia . . . . . . . . . . . . . . . . . . . . . . . . 18

2.8 Systolic Arrays for Matrix Multiplications . . . . . . . . . . . . . . . . . . 18
2.8.1 Kung and Leiserson Designs . . . . . . . . . . . . . . . . . . . . . . 18
2.8.2 Kung and Leiserson Band Matrix-Matrix Multiplier . . . . . . . . . 21
2.8.3 Generic Matrix-Matrix Multiplication (GMMM) . . . . . . . . . . . 25

2.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3 RTL Design of a Parametric Multi-directional Systolic Kernel 29
3.1 KLPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2 Unified Array Core . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3 Peripherals: Generic Matrix-Matrix Multiplication . . . . . . . . . . . . . . 34

3.3.1 Generic Input Peripheral Device . . . . . . . . . . . . . . . . . . . . 34
3.3.2 Generic Output Peripheral Device . . . . . . . . . . . . . . . . . . . 35
3.3.3 GMMM Peripheral Devices Assembly . . . . . . . . . . . . . . . . . 35

3.4 Peripherals: Band Matrix-Matrix Multiplication . . . . . . . . . . . . . . . 37
3.4.1 Custom Input And Output Formats . . . . . . . . . . . . . . . . . . 37
3.4.2 Band Output Peripheral Device . . . . . . . . . . . . . . . . . . . . 44
3.4.3 BMMM Peripheral Devices Assembly . . . . . . . . . . . . . . . . . 47
3.4.4 Unified Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Integration of the RTL Kernel into a System 51
4.1 Hardware: Alveo U280 Data Center Card . . . . . . . . . . . . . . . . . . . 51

4.1.1 General Specifications . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.2 FPGA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.2 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.1 ModelSim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.2 Xilinx Vivado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2.3 Xilinx Vitis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Vitis Design Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.1 Main Vitis Commands . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.3.2 Target Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.3.3 Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55



| Contents vii

4.3.4 Makefile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4 Vitis Blackbox Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.4.1 Blackbox Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.4.2 Implementing FIFO’s . . . . . . . . . . . . . . . . . . . . . . . . . . 57
4.4.3 Linking RTL and HLS . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.4.4 Compiling a Blackbox . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.4.5 Blackbox Design Notes and Complications . . . . . . . . . . . . . . 61

4.5 Hybrid HLS-RTL Implementation . . . . . . . . . . . . . . . . . . . . . . . 62
4.5.1 Matrix Multiplication Controller . . . . . . . . . . . . . . . . . . . . 63
4.5.2 HLS Wrapper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5.3 Host Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.5.4 RTL Improvement: GMMM Streamability . . . . . . . . . . . . . . 78
4.5.5 RTL Improvement: Breaking DSP chains . . . . . . . . . . . . . . . 78

4.6 Equivalent Kernel HLS Implementation . . . . . . . . . . . . . . . . . . . . 79
4.6.1 Generic Matrix-Matrix Multiplication . . . . . . . . . . . . . . . . . 79
4.6.2 Band Matrix-Matrix Multiplication . . . . . . . . . . . . . . . . . . 80
4.6.3 HLS Improvement: GMMM Streamability . . . . . . . . . . . . . . 81
4.6.4 HLS Improvement: GMMM Optimisation . . . . . . . . . . . . . . 82
4.6.5 HLS Improvement: BMMM Optimisation . . . . . . . . . . . . . . 82
4.6.6 HLS improvement: BMMM Streamability . . . . . . . . . . . . . . 83

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Experiments and Results 87
5.1 Experiment Setup and Data . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.2 Baseline Designs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.1 Baseline RTL Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.2.2 Baseline HLS Kernel . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.3 Comparison of Baseline Kernels . . . . . . . . . . . . . . . . . . . . 91

5.3 Second Iteration Designs: Comparison . . . . . . . . . . . . . . . . . . . . 91
5.4 RTL GMMM Kernel Investigation . . . . . . . . . . . . . . . . . . . . . . . 92
5.5 RTL GMMM Analysis using Custom Memory Management Hardware . . . 96
5.6 Final kernels: Expectations and Measurements . . . . . . . . . . . . . . . . 100

5.6.1 Area Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
5.6.2 Comment on HLS Latency Calculation and Reporting . . . . . . . . 102
5.6.3 Speed Analysis: GMMM . . . . . . . . . . . . . . . . . . . . . . . . 105
5.6.4 GMMM Predictions and Measurements . . . . . . . . . . . . . . . . 105
5.6.5 Speed Analysis: BMMM . . . . . . . . . . . . . . . . . . . . . . . . 108



5.6.6 BMMM Predictions and Measurements . . . . . . . . . . . . . . . . 108
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

6 Conclusions and Future Developments 115

Bibliography 117

A Appendix: Source Code Repository 121

List of Figures 169

List of Tables 173

List of Listings 175

Acknowledgements 179



1

1| Introduction

1.1. Moore’s Laws and Dark Silicon

Ever since we moved on from tubes to transistors, and then to more specifically to CMOS,
we have been tracking many performance metrics of processors. These include transistor
count, computational capacity and computational efficiency, to name a few. Gordon
Moore, in his 1965 paper [13] noted an empirical trend which stated: “The complexity
[of integrated circuits] for minimum component costs has increased at a rate of roughly
a factor of two per year ”, where complexity referred to the number of components, not
just the number of transistors. This statement was not meant to be technological, but
more economical, noting a trend in cost of components over time. Later, in 1975, Moore
corrected his observation with a doubling of complexity every two years [12], as opposed to
one in his original paper. The famous statement “computing performance doubles every
18 months”, often referred to as Moore’s law is one that Moore himself never actually
made, but has held its course quite accurately from 1975 to 2009. In fact, as is explained
in [8], Moore’s law is, in a sense, a benchmark of innovation to which engineers have tried
to stick. This phenomenon renders the law a sort of self-fulfilling prophecy.[20]

Until the early 2000’s, the increase of computing performance was largely obtained from
the miniaturisation of transistors. Although this solution has has been the source of
progress in the first era of computing, CMOS scaling is unfortunately ceasing to provide
the fruits it once did, according to [20]. The rules of thumb regarding classical CMOS
scaling are called Dennardian scaling. They state roughly that the power density of chips
stays constant with miniaturisation of transistors. Meaning that by making chips smaller,
we can achieve the same computational performance with a smaller amount of power.
This is, of course, because in this regime, power is only proportional to the area of the
circuit. We have benefited from decreasing the threshold voltages and operating voltages
to obtain quadratic improvements to the energy efficiency each consequent generation in
the Dennardian scaling regime.

Sadly, it has been more recently studied that, as features become smaller and smaller,
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Dennardian scaling breaks down and leaves way to leakage-limited scaling. Indeed, we
cannot continue to reduce the threshold voltages without dramatically increasing the
leakage currents. This new scaling regime is often referred to as Post-Dennardian scaling.
In this regime, the power density is no longer constant but begins to scale quadratically
with process generation. Table 1.1 summarizes both regimes.

Table 1.1: Table summarising Dennardian and Post-Dennardian scaling, from [20]. S

represents ratios between minimum feature sizes of successive process generations. In
Post-Dennardian scaling, the voltages no longer scale quadratically, causing the final
power densities to increase quadratically.

Transistor Property Dennardian Post-Dennardian

Transistor Count (Quantity) S2 S2

Frequency S S
Capacity 1/S 1/S
V 2
dd 1/S2 1

Power density = QFCV 2 1 S2

Due to Post-Dennardian scaling, the power densities in circuits are increasing each gen-
eration, forcing larger and larger portions of the circuit to be shut off or partially shut
off to adhere to global power limitations. These portions are called Dark Silicon and Dim
Silicon respectively1. A common misconception about Dark Silicon is that the term “dark”
refers to areas of silicon that are unused or useless, or can not be used. Instead, it means
that at any point, locally (spatially and temporally), on average, there must be a certain
amount of the chip that must be dark in order not to exceed the thermal design power
(TDP). During the days of non-dark design, a lot of circuits were already intrinsically
dark-silicon friendly in the way that they were designed to be occasionally used. This is
the case for some SIMD units of the x86 architecture and last level caches, which should
only be occasionally accessed in normal operation.

Early model predictions state that Dark Silicon as a percentage of total area doubles
every generation [7]. Following this trend would result in over 90% of chip area needing
to be powered-off by 2020. State-of-the-art process generation ASIC designers must be
fully aware of these limitations and take special care when crafting their designs.

Researchers from [7] note that the classical model predicts that 22nm process node chips
would suffer from over 50% of Dark Silicon constraints, which has not been observed in
practise. It is thus accepted that classical Dark Silicon predictions are a “worst-case”
scenario and that these need to be revised in order to have more realistic constraints. In

1The term Dark Silicon seems to be more widely accepted and used than Dim Silicon in the literature.
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[7], using their own prediction technique, they have observed that overall, for 16nm, 11nm
and 8nm processes, we should more realistically expect as much as 20%, 30% and 40% of
Dark Silicon respectively.

1.2. Techniques for Dark Silicon Taming

Even with more optimistic amounts of Bright Silicon, state-of-the-art commercial proces-
sors are currently being manufactured on 5nm process nodes2, which is well into Dark
Silicon territory. Designers must thus take extra care to take this into consideration when
making chips. In the following section we will introduce some techniques that designers
can employ to embrace Dark Silicon and use it to their advantage.

1.2.1. Shrinking

The most simple way to take advantage of the Dark Silicon era is to not take advantage of
it at all. This can be achieved by simply shrinking existing devices to hope to get ahead
with economical advantages of smaller chip sizes. Note that when fully in Dark Silicon
territory, the increase of power density balances with the decrease of area and results in
a chip which has similar overall power usage. The only remaining advantage is thus the
possible savings from a smaller area. The chips that experience the most shrinkage will
be the ones that cannot benefit considerably from the other techniques. Shrinking chips
has its very obvious limit. At some point, the cost of silicon becomes negligible to the
cost of the packaging process, testing, marketing, sales, support etc. When this point is
reached, there is no more economical improvement to be made by shrinking.

A consequence of this is that, if a company relies on shrinking instead of making use of
the Dark Silicon for other improvements, it risks to fall behind its competitors and the
limited amount of price reduction offered by shrinking the chip compared to the potential
of offering a larger, dark-optimised, chip will render the product noncompetitive in the
market. Thus, the scenario of shrinking will probably only occur if there is no practical
use for Dark Silicon.

1.2.2. Dimming

If we accept that we should populate the additional area, we must consider Dim Silicon as
a possible solution. This term refers to general-purpose logic that is underclocked or used

2For example, Apple M2 SoC’s or Huawei’s HiSilicon Kirin 9000 models, the latter implementing
ARM’s new architecture called DynamIQ, the successor of the big.LITTLE architecture
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infrequently. Multiple options are available to us when considering Dim Silicon designs.

The first consideration is employing a Near-Treshold Voltage (NTV) design. NTV design
goes beyond Dynamic Voltage and Frequency Scaling (DVFS) by having specialised cir-
cuits that operate in this different, voltage-starved region. High-parallelizable workloads
might benefit from running on more low-performance NTV cores than fewer high perfor-
mance regular cores. NTV-design, however low in power budget, is unfortunately more
susceptible to failure through process variability [4]. We can expect the overall fabrication
yield to be affected by this.

Another technique for Dim Silicon design is to implement larger caches. Because of the
power-hungriness of off-chip data accesses, many designers have proposed to consume
most Dark Silicon expansion area with larger caches. This is specially advantageous for
miss-intensive workloads. This philosophy is however less productive as larger on-chip
memories become more common, acting almost like a last-level cache.

When discussing ideas for use of Dark Silicon, one could argue that filling dark area with
reconfigurable logic might be a good idea. This idea stems from the “build now, design
later” mindset. Considering that bit-level FPGA’s are usually very power hungry since
they need to power many interconnects and long wires, the obvious compromise is to
use Coarse Grain Reconfigurable Arrays (CGRA). CGRA’s are often useful in order to
consume space to steer data through different, more optimised paths in order to achieve
different operations. These paths are considered dim because of their occasional use,
rendering them dim in time. CGRA’s are nothing new in the grand scheme of computer
architecture research but new paradigms often make designers reconsider old designs with
fresh eyes.

Another temporal dimness technique is to use Computational Sprinting whenever needed.
This technique consists of exceeding the thermal budget for short periods of time in
order to achieve short bursts of high-performance, relying on thermal capacitance to keep
the design within operational temperatures3. This technique is part of a more general
approach called Dynamic Frequency and Voltage Scaling.

1.2.3. Material Change

All the considerations made in previous paragraphs are derived from our CMOS “ad-
diction”. Just like moving from vacuum tubes to integrated circuits opened up many
opportunities and ideas, moving from CMOS to another process might be the solution to

3Intel’s Turbo Boost technology relies on this approach
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keep increasing performance. The Dark Silicon problem stems from the intrinsic, phys-
ical properties of MOSFET device physics. A few examples of innovations in material
changes are Tunnel Field Effect Transistors [2], Nano-Electro-Mechanical switches [16],
or even silicon photonics [9, 17] for interconnect purposes. For now, these design are still
occupying the tables and blackboards of many research laboratories leaving us to remain
in the current computing era, the Dark Silicon era.

1.2.4. Specialized Circuits

With Dark Silicon, the paradigms of computer architecture need to change if we want to
keep up with Moore’s “Target”. “Where once we spent silicon area to buy performance we
must now spend silicon area to buy energy efficiency” states Michael B. Taylor in [20].
Comparatively speaking, with each new generation, additional area becomes exponentially
cheaper. A way to use this cheap area is to employ specialized co-processors, often called
accelerators. The aim of these co-processors is to achieve specific operations either much
faster4 or much more efficiently, by using techniques discussed earlier, like NTV cores
or simply using much more efficient architectures which, for instance, limit redundant
transfers of memory. Execution would be passed around processors and run always on
the most suited (all things considered) core. Unused logic would be shut-off when not in
use to save global thermal budget. This strategy is already showing its fruits in modern
architectures, where not only multiple general-purpose heterogeneous cores are employed
but also specialized heterogeneous cores5, whose function is restricted. Many researchers
consider that in the future designs will employ more specialized cores than general-purpose
ones. An instance of such an architecture can be found on [6].

An obvious obstacle to the trend of specialization is the elimination of the classical division
of labour and expertise between software and hardware designers. The more specialized
cores a system has, the more tailoring its software must undergo in order to function
adequately. The proliferation of specialized hardware is harshly handicapped by the
predicament of learning how to take advantage of it. Not only is it a bigger challenge
for programmers to make use of specific hardware for specific tasks, but it is also a much
bigger undertaking to write code that can run on many different architectures, each having
different sets of accelerators. This is one of the reasons why, in the consumer market, only
Apple has had success in moving away from the x86 architecture for its newest computers.
They are one of the only market players with a large enough influence and following that

4in terms of number of cycles, taking advantage of speed to improve the energy efficiency
5Again, a famous example is the new Apple M2 chip, which employs 4 high-performance cores, 4

low-performance cores, a Graphics Processing Unit, Specialized Neural Network Hardware and Image
Signal Processor.
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they have the power to motivate software manufacturers to adapt and rewrite software
suited to their architecture change6. Of course, we always live under the fantasy that the
days of low-level programming are close to over, but in order to make this new ecosystem
viable one of the biggest hurdles is to design compilers which will offload the appropriate
workloads to the appropriate accelerators, in turn freeing the programmers from this
burden. finally, the last hurdle to moving from a software-centered computing paradigm
to a hardware-centered one, is the possibility of specialized hardware becoming obsolete
with the update of data standards, giving an intrinsic expiration date to the hardware.

1.3. Design of Heterogeneous Accelerators

Given the importance of adapting to new paradigms of computing in the Dark Silicon
Era, it is essential to discuss details of accelerator core design.

1.3.1. Manual Design

In order to manually design accelerators, we must start from top-down, large-scale archi-
tectural ideas. The building on the other hand occurs from the bottom-up, module by
module, logic by logic, using any of the modern Hardware Description Languages (HDL)
to implement the design. Manual design allows the most amount of granular control over
the design but of course requires a large amount of expensive, hardware design engineering
hands and hours. Given the cost of validating and verifying hardware blocks, manual de-
sign may be accelerated using pre-built and pre-validated blocks called IP blocks. Indeed,
there is no use in reinventing the wheel when many components of modern systems are
common.

1.3.2. Automatic and Semi-Automatic Design

A recent trend that is gaining weight year over year is the use of computers to automat-
ically or semi-automatically design hardware from high-level specifications, using one of
many high-level programming languages7 to describe the desired functions.

Similarly to how assembly programming has become nearly obsolete thanks to the ad-
vances in compiler technology, many hope that in the future, High-Level Synthesis (HLS)
design will be so effective that manually designing accelerators may be considered a waste

6They also facilitated the transition by writing their own just-in-time compiler (more precisely, dy-
namic binary translator) to run x86 software on their ARM-based chips. They marketed this product
with the name Rosetta and the successor Rosetta 2.

7typically: C / C++ / SystemC
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of time and money.

Semi-automatic design tries to capture the best of both worlds by having fine-grain control
of crucial sections of the hardware but leaving the more mundane and simple tasks to be
generated by computers, from high-level specifications.

1.4. Contributions of this Thesis

During the course of this thesis, we have noticed that computer architects have been
considering systolic systems for a long time. We have however also noticed that, despite
most of them working on the basis of processing elements which are often very similar
if not identical, there seems to have been a lack of interest in studying multi-directional
systolic arrays. The systems that we consider implement fixed arrays of processing ele-
ments and achieve different operations by rerouting the connections between them. As a
working prototype, we have implemented a multi-directional array capable of two distinct
operations, depending on the routing and marginally sized peripheral systems.

For this purpose, we have also put in place a complete workflow allowing us to stitch
certain families of RTL kernels into HLS systems using tool kits developed by Xilinx.
Our working prototype can be used as an example for researchers, designers and students
who might want to interface custom RTL kernels with complete systems using RTL-HLS
hybrid design.

1.5. Summary

In this chapter, we have explored the phenomenon of Dark Silicon and its implications on
modern hardware design paradigms.

Before presenting the rest of our thesis, it is important that the reader familiarises theirself
to many background concepts which will form the backbone of this thesis. The following
section will encompass many of these concepts. The reader is however expected to have
some additional background knowledge in modern mathematics, common programming
and hardware description languages and computer architectures.
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2.1. Tensors

2.1.1. Definition

In modern mathematical, computing and engineering applications, a tensor is a struc-
ture that organize data along many dimensions, which are commonly called orders. The
modern tensor notation uses subscripts to identify elements of a tensor.

Example Let the variable aijk denote a third order tensor with subscripts i, j and k

and size 9 × 9 × 9. The element a111 denotes the first element in every dimension. The
element a999 denotes the last element along every dimension. The element a135 denotes
an element which is first along the i’th dimension, third along the j’th dimension and fifth
along the k’th dimension.

2.1.2. Tensor Algebra

Addition Tensor addition is straightforward. Adding two tensors together corresponds
to adding each corresponding element together.

Example Let a and b be two distinct third order tensors. We can write:

c = a+ b ≜ aijk + bijk = cijk ∀ i, j, and k

Contraction Tensor contraction is the most interesting of tensor operators. We say
that it contracts two tensors into another tensor. The size of the contracted dimensions
between both input tensors must match in order for the contraction to be a valid operation.
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Example Let a be a third order tensor and b be a second order tensor. Let the k’th
dimension of tensors a and b be of the same size. We can write:

cijm =
∑
k

aijkbkm ∀ i, j, and m

Note that under Einstein’s notation for tensor contractions, we can omit the summation
symbol for ease of reading.

cijm = aijkbkm ≜
∑
k

aijkbkm ∀ i, j, and m

Familiar special cases Note that matrices and vectors can be generalized as first and
second order tensors respectively. Thus, matrix-vector and matrix-matrix multiplications
are simply special cases of tensor contractions with low order tensors.

2.1.3. Tensor Computations

Tensor Addition

Tensor addition is usually not a concern because it can be fully parallelized and it benefits
linearly from additional computing elements. For every doubling of computing elements,
there should be a doubling of speed in tensor addition considering infinite memory band-
width. In terms of memory access, each memory element must only be accessed once.
This makes tensor addition a cheap and straightforward operation.

Memory Access Requirements of Matrix-Matrix Multiplications

When computing a matrix multiplication of the type C = AB (cij = aikbkj), when we
compute for instance c11 we need to access the first row of a as well as the first column
of b. So in other words we need to access a1x and bx1. The problem is that every one
of these elements needs to be accessed many times and at different times. If we do the
computation naively, i.e. we compute every element of cij in order, starting from c11,
c12, c13... then c21, c22, c23 and so on, we will have to access the a1x vector n times,
given c is of size n × n. Note that this is true for every single row and column. As
matrix sizes grow, it becomes increasingly impossible to store every necessary vector in
cache. Accessing external memory and scrapping the same cached elements multiple times
becomes unavoidable, leading to increased stalling of the processor and a drastic reduction
of speed. In modern artificial intelligence systems, the biggest bottleneck is the memory
access requirements.[19, 24]
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Modern Parallel Algorithms for Matrix-Matrix Multiplications

Naive divide and conquer This algorithm takes a N-by-N matrix and transforms it
into 8 N/2-by-N/2 matrix multiplications and 4 matrix additions.(

a b

c d

)
∗

(
e f

g h

)
=

(
ae+ bg af + bh

ce+ dg cf + dh

)

The complexity that this algorithm achieves is O(n3) [3], which is the same as the Naive
implementation.

Strassen This algorithm takes the previous divide and conquer and optimises it in order
to save one matrix multiplication with the expense of additional matrix additions. The
complete Strassen algorithm can be seen below:

(
a b

c d

)
∗

(
e f

g h

)
=

(
p5 + p4 − p2 + p6 p1 + p2

p3 + p4 p1 + p5 − p3 − p7

)

with



p1 = a(f − h)

p2 = (a+ b)h

p3 = (c+ d)e

p4 = d(g − e)

p5 = (a+ d)(e+ h)

p6 = (b− d)(g + h)

p7 = (a− c)(e+ f)

The Strassen algorithm achieves a theoretical complexity of O(n2.81) [3]. However, this
performance is far from begin trivial to achieve because of real world problems like need
for inter-core communication and load balancing.

Communication optimised Parallel Algorithm for Strassen’s matrix multipli-
cation (CAPS) is a state-of-the-art algorithm that ensures minimal communication
needs among processors and outperforms every previous naive and Strassen-like imple-
mentation before it. The details of the implementation are out of the scope of this thesis
and can be consulted in [3].
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Large Matrix Division Scheme

For matrices larger than a given hardware multiplier size, the operation must be parti-
tioned into manageable blocks. Luckily, this can be done quite easily with a linear algebra
based algorithm.

Cij =
∑
k

AikBkj for each i, j with Xyz a N-by-N matrix

We can observe that a large number of matrix sums are required but luckily they can
easily be sped up with a very simple SIMD1 adder array or more realistically computed
using the host computer’s SIMD hardware.

Special care must be taken for the side portions of large matrices because they might not
be of size N-by-N. To solve this, we use zero-padded matrices to have complete operations.
Luckily, this is very straightforward. We show an example of this operation in Figure 2.1,
note that

(
1 2
4 5

)(
1 2
4 5

)
+
(
3 0
6 0

)(
7 8
0 0

)
=
(
30 36
66 81

)
.

1 2 3 0

4 5 6 0

7 8 9 0

0 0 0 0




1 2 3 0

4 5 6 0

7 8 9 0

0 0 0 0




30 36 42 0

66 81 96 0

102 126 150 0

0 0 0 0


· =

Figure 2.1: Example of a 3x3 matrix multiplication as part of a 4x4 zero-padded matrix
divided into N = 2-sided slices

2.2. Modern Programming Languages

In their simplest form, modern programming languages are a set of high-level instructions
made to be readable and writable by humans. They are intended to be compiled into
binary machine code and ran on general-purpose processors. There are several possible
levels of abstraction in programming languages. Some languages, like C, are intended to
be relatively close to the hardware, whereas others are intended to be abstractions with
a specific purpose, like Matlab, which is a high-level language with a focus on matrix
operations. Some languages are intended to be of very high-level and decouple almost
completely the concept of programming from the concept of underlying hardware, like
Python. Popular features of very high-level languages include but are not limited to:

1Single Instruction Multiple Data. This refers to hardware which is capable of executing a single
instruction on an array of input data.
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• Packaging common operations into open-source or commercial libraries.

• Syntax to describe parallel instructions using many forms of threading mechanisms.

• Object-oriented abstractions.

• Variable type malleability.

• Syntax to offload compatible computations to auxiliary computing chips, most pop-
ularly GPU’s.

2.3. Hardware Description Languages

Hardware Description Languages (HDL), although visually similar to programming lan-
guages, are completely different in nature. They are used to describe combinational,
latched and sequential logic circuits in a high-level, human-readable way. This family
of languages describe the circuits in a level of complexity called Register-Transfer Level
(RTL). In this level, we break down the circuits into banks of clocked registers with
combinational logic between them. The most popular HDL are Verilog, VHDL and Sys-
temVerilog. Knowledge in one of these three transfers quite elegantly to the others. VHDL
is the most strongly typed language between them. It favours thoroughness over ease of
reading. On the other end of the scale, SystemVerilog is the most weakly typed of the
group, and includes many Object-Oriented features.

2.4. High-Level Synthesis

High-Level Synthesis (HLS) tools are intended to accelerate the design of hardware. These
tools compile sets of instructions written in high-level modern programming languages
(usually C-based), into hardware which yields equivalent results, usually presented in
one of the main HDL’s. Ideally, the equivalent circuits can achieve faster performances
than a normal processor executing these tasks due to the freedom of implementing more
ALU’s, increasing spatial parallelism and optimising the data paths between ALU’s and
local memories, attempting to ensure fast, unobstructed access to data during execution.
There are many commercial HLS tools in use today, each offering their own strengths and
weaknesses. Some are intended only for research purposes while others are intended for
real-world deployment. Figure 2.2 presents an overview of these tools.
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Figure 2.2: Overview of High-level synthesis tools, from [14]. Note that due to the age
of this overview, some tools have already been discontinued or renamed for marketing
purposes. An example for this is VivadoHLS, which is now called VitisHLS

2.5. From RTL to Hardware: The FPGA Synthesis

Flow

The process of placing RTL designs written in HDL, onto an FPGA happens in multiple
distinct steps. We will briefly go over these.

2.5.1. Synthesis

Synthesis is the first step in the implementation chain of processes. During synthesis,
the first thing that happens is syntax checking. The compiler will read the source files
and verify that they comply syntactically with the chosen language and that all the
statements are recognized and valid. The synthesis tool will then begin translating the
RTL representation of the circuit into a netlist. This step is target-agnostic, meaning it



2| Background 15

will be common whatever the target FPGA is.

2.5.2. Implementation: Optimisation and Mapping

The first step in implementation is called Optimisation. The implementation tool will try
to optimize the circuit. Many techniques are employed during this process. One of the
simpler techniques is the elimination of redundant logic. If many elements in the circuit
produce the same logical output, they will be simplified into a single element.

When a netlist is optimized, the following step is to map it onto the target hardware. This
process will transform the combinational functions in the netlist into boolean-equivalent
versions which can fit onto the target FPGA’s physical hardware. In this step, the arith-
metic functions could be mapped to dedicated DSP hardware logic and the generic boolean
functions are typically fitted onto lookup tables (LUT’s). This step varies depending on
the target platform, because different targets contain different hardware building blocks.

2.5.3. Implementation: Place and Route

When the design has been mapped onto the target hardware, it is then placed. This
step creates a correspondence between the target-aware representation of the functions
-created in the previous step- with their physical location in the FPGA fabric.

When all the functions have been placed, the final step in the process is to route the
signals between all the physical hardware blocks.

During this process it is common to work in iterations. When a frequency target is set
but the post-routing analysis determines that some nodes violate the timing targets, the
Place and Route process can be “ripped up”, replaced and rerouted to check if the new
configuration will be better. Due to the complexity of the optimisation problem that
needs to be solved in order to achieve an optimal configuration after place and route, this
method of replacing and rerouting follows some heuristic techniques to try to reach an
acceptable solution. This process induces quite a lot of variability in the final frequency
when the target is set much higher than the expected frequency of the circuit.

2.6. Systolicism

Systolicism is a VLSI design technique introduced in the end of the 1970’s. To introduce
the topic, we have included a quote from Prof. H. T. Kung, often considered one of the
fathers of systolicism.
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In a systolic system, data flows from the computer memory in a rythmic fash-
ion, passing through many processing elements before it returns to memory,
much as blood circulates to and from the heart. The system works like an au-
tomobile assembly line where different people work on the same car at different
times and many cars are assembled simultaneously. An assembly line is always
linear, however, and systolic systems are sometimes two-dimensional. They
can be rectangular, triangular, or hexagonal to make use of higher degrees of
parallelism. Moreover, to implement a variety of computations, data flow in
a systolic system may be at multiple speeds in multiple directions-both inputs
and (partial) results flow, whereas only results flow in classical pipelined sys-
tems. Generally speaking, a systolic system is easy to implement because of its
regularity and easy to reconfigure (to meet various outside constraints) because
of its modularity.

(H.T. Kung in [11])

Although his goals for studying these systems were different than ours, we see again an
interesting case of “looking at old design with fresh eyes”. Kung explains that the main
goal of his systolic systems is to resolve bottlenecks, whereas we would like to harness
their power because we have “free” silicon real estate, we hope to achieve better energy
efficiency by exploiting the opportunities of Dark Silicon using systolic techniques.

Systolic systems are made up of regular, often uniformly clocked, locally interconnected
arrays of processing elements. The mindset behind them is to fetch data, only once, in a
rhythmic fashion and let it ripple through the processing elements in order to achieve a
computational result. The concept of systolic systems thrives on laying out an algorithm
in space as opposed to in time. Figure 2.3 shows an example of the systolic mindset.
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Figure 2.3: Basic principle of a systolic system, from [11]

Another way we can think of systolic arrays is as a block of memory intertwined with ALU
elements. In fact, if we consider an array of 100 processing elements, each with 3 registers
of 32 bits, it amounts to 1.2kB of memory. Their local interconnection patterns usually
allow to clock them more easily in custom ASIC’s since the results and data must only
travel to physically adjacent blocks every cycle, making the system an efficient pipeline.

In FPGA’s on the other hand, this property is not always true, since the physical place-
ment is often not decided by the designer, but rather by the Place and Route algorithm
and hardware constraints.

Many common problems have been studied using systolic mindsets and the main ones
are documented in [11]. After many years of dormancy, systolicism is starting to see a
comeback with the recent explosion of popularity of AI applications, which exploit matrix
multiplications intensively. This operation is very well suited for systolic approaches.

2.7. State-of-the-Art Systolic Systems

2.7.1. Google TPU

The Google TPU is a Deep Neural Network (DNN) accelerator which runs inference
faster and more efficiently than modern CPU’s and GPU’s. It implements a 256x256
MAC systolic array in order to save energy on memory accesses. It supports 8-bit integers
(INT8) and 16-bit Brain floating point (BF16) data types. Some cost-performance metrics
can be found in [15], and the documentation describing the product can be found in [5].
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2.7.2. Amazon AWS Inferentia

The AWS Inferentia is a custom chip built from the ground up by AWS to accelerate
machine learning inference workloads. From Amazon’s press releases [1], we can learn that
each Inferentia chip contains 4 NeuronCores, each of which implements a high-performance
matrix multiplication systolic array which supports 8-bit integers (INT8), 16-bit IEEE
floating point (FP16), and 16-bit Brain floating point (BF16) matrix multiplications.

2.8. Systolic Arrays for Matrix Multiplications

In order to try to combat the excessive memory accesses of a naive implementation of
matrix multiplications, we will resort to studying systolic implementations. Instead of
mapping an algorithm temporally, systolic implementations try to map algorithms spa-
tially. This means that instead of sequentially performing operations and writing back
to memory the intermediate results, a systolic implementation will access the necessary
data as seldom as possible and make it flow through the systolic array such as to mini-
mize memory access requirements. The systolic implementations we will study in-depth
are made up of macro-blocks called Processing Elements. Complex operations are broken
down into much simpler blocks and achieved by interconnecting these blocks. Usually,
when the blocks are immutable, we call the system systolic.

2.8.1. Kung and Leiserson Designs

Kung and Leiserson Processing Element

The Kung and Leiserson Processing Element (KLPE) features three inputs (A, B and
C) and three outputs (A, B, and C’). As the names suggest, the A and B inputs do
not undergo any operations and are registered to the A and B outputs. The C ′ output
is defined by the operation C ′ = C + A × B and is of course also registered. A visual
representation of the KLPE can be found in Figure 2.4. In other words, the KLPE is a
simple register in two directions and a MAC in the third. It employs 1 multiplier, 1 adder
and 3 registers.
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Figure 2.4: Innards of the KLPE, essentially a fully registered Multiply-Accumulate
(MAC) block with input data pass-through.

Kung and Leiserson Matrix-Vector Multiplication

A systolic implementation of a matrix-vector product (ci = aijbj) can be achieved with
an array of KLPE’s linearly interconnected as in Figure 2.6. In this representation, the
KLPE’s feature the first register banks going from left to right. The second register banks
flow from top to bottom. Notice how the top-to-bottom elements are discarded directly
after a single use, this is visible on the diagram from the lack of arrows exiting the bottom
of the KLPE’s. Finally, the MAC registers flow from right to left and exit into a buffer
where the final result vector is stored. The elements of aij are arranged starting with the
element a11 and proceeding diagonally though the matrix. As seen in Figure 2.5:

aij =

a11 a12 a13
a21 a22 a23
a31 a32 a33

→

∣∣∣∣∣∣∣∣∣∣
0 0 a33 0 0
0 a23 0 a32 0
a13 0 a22 0 a31
0 a12 0 a21 0
0 0 a11 0 0

∣∣∣∣∣∣∣∣∣∣
Figure 2.5: Disposition of an input matrix when used in a K&L Matrix-Vector Multipli-
cation

This structure will be fed through the system row by row, starting from the bottom row
(a row of zeros and the element a11). The bj vector on the other hand is fed element by
element at the rate of one element every two cycles. An appropriate amount of leading
zeros must be fed before the bottom row of the diagonal aij structure in order to syn-
chronize the element a11 with the element b1. In our example, the appropriate amount of
zero rows is two. A representation of the full implementation can be seen in Figure 2.6.
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Figure 2.6: Kung and Leiserson linear systolic array for matrix-vector multiplications

Using this implementation, we can imagine a strategy to implement a matrix-matrix
multiplication by considering that a matrix-matrix multiplication is nothing more than n

independent matrix-vector multiplications.

aijbjk =
[
aijbj1 aijbj2 . . . aijbjn

]
A machine that implements this strategy can be seen in Figure 2.7. Of course, using this
strategy requires that every batch of n columns of matrix B must load the entire A matrix
again. One could argue that a system to loop back the values of the A matrix could be
considered in order to save on global memory accesses. The viability of such a system
must be carefully considered since it requires to implement a large amount of registers.
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Figure 2.7: Kung and Leiserson-like multilinear array for batches of matrix-vector multi-
plications

2.8.2. Kung and Leiserson Band Matrix-Matrix Multiplier

Band Matrix-Matrix Multiplications (BMMM) Let A be a matrix with p non-
zero elements in the first line and q non-zero elements in the first row, and such that
no non-zero elements can be found outside the diagonal band dictated by these p and q

elements. Such a matrix looks as follows:

a11 a12 a13 0 . . . 0

a21 a22 a23 a24 0 . . . 0

0 a32 a33 a34 a35 0
... 0 a43 a44 a45

... . . . . . . . . .
0 0





q

p

This matrix is called a band matrix with width p and height q, because the number of
non-zero elements in the first row and column respectively are p and q.

We define a matrix B which features the same structure as matrix A only transposed:
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b11 b12 0 . . . 0

b21 b22 b23 0 . . . 0

b31 b32 b33 b34 0

0 b42 b43 b44 b45
...

... . . . . . . . . .
0 0





p

q

When matrices A and B are multiplied together, they result in a band matrix C, which
has width and height w = p + q − 1. We call w the band width. Note that w is also the
largest number of horizontal or vertical consecutive non-zero elements in matrices A and
B. The complete operation is displayed below:

a11 a12 a13 0 . . . 0

a21 a22 a23 a24 0 . . . 0

0 a32 a33 a34 a35 0
... 0 a43 a44 a45

... . . . . . . . . .
0 0





q

p

b11 b12 0 . . . 0

b21 b22 b23 0 . . . 0

b31 b32 b33 b34 0

0 b42 b43 b44 b45
...

... . . . . . . . . .
0 0





p

q

c11 c12 c13 c14 . . . 0

c21 c22 c23 c24 c25 . . . 0

c31 c32 c33 c34 c35 c36 . . . 0
c41 c42 c43 c44 c45 c46 c47
...

... . . . . . . . . .
0 0




w

w

· =

The multiplication of two band matrices with identical band width w can be accelerated
both in software, by limiting the multiplication to non-zero elements (as in Section 4.6)
and also in hardware, as we will see in the following section.

Systolic Array Design for BMMM

By extending the idea of interconnecting KLPE’s to two dimensions, we can study a
multiplier introduced by Kung and Leiserson in [10]. This implementation considers the
multiplication of two band matrices with equal band width (w). It allows us to pipeline
the multiplication of any size of matrices, as long as their band width is smaller or equal
than the lateral size of the array. In other words, to multiply two compatible matrices of
band width w, you need a quadratic2 array of w × w interconnected KLPE’s. In Figure
2.8, we can see the corresponding array design.

2In [10], this kind of array is called Hexagonal because of the triliniear motion of the data through
the array. We prefer to refer to the array as quadratic because we consider the input data streams as the
leading forces of the design and the diagonal interconnections as auxiliary enablers for the algorithm. Of
course, we are referring to the same design and all our drawings are adapted accordingly.
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Figure 2.8: K&L systolic array for BMMM

Input Data Patterning

The input data patterns used for the K&L BMMM are quite complex, they can be best
explained using a timing diagram. To help the reader, we have put together such a
diagram and displayed it in Figure 2.9. Each row must be sent element by element, with
each element being delayed by one cycle. Consecutive lines will be spaced in time by 2
empty cycles. This results in elements from multiple lines being dispatched in the same
cycles. In our example in 2.9, since we are dealing with a band width3 of 5, we can have
elements from at most two consecutive lines being dispatched. This can be calculated
with the formula ⌊w

3
⌋ + 1. The overlapping of multiple rows can be seen in cycle #3

where elements a12 and a31 are dispatched in the same cycle despite belonging to separate
rows in the matrix.

3and hence an array of 52 = 25 KLPE’s
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Figure 2.9: Data patterning example for the input paths of the K&L systolic array for
BMMM, seen in Figure 2.8

Output Data Patterning

The output data pattern can be seen in Figure 2.10. The center element is the first to
exit the array. Starting from the center element, every consecutive element exits the
array from the next processing elements left and right of the previous cycle. This pattern
repeats every 3 cycles. Similarly to the input pattern, the formula to figure out how many
lines can overlap in the same cycle is ⌊w

3
⌋+ 1.

Figure 2.10: Data patterning example for the output path of the K&L systolic array for
BMMM, seen in Figure 2.8
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2.8.3. Generic Matrix-Matrix Multiplication (GMMM)

Although we can multiply generic matrices with a BMMM systolic array by carefully
considering the full generic matrix as the band elements of a larger matrix (see Figure
2.11), we will study an array which is tailored to the GMMM operation, achieving more
throughput4 but using the same amount of computing hardware.

a11 a12 a13 0 . . . 0

a21 a22 a23 × . . . 0

a31 a32 a33 × . . . 0

0 × × ×
...

... . . .
0 0 ×




Figure 2.11: Example of a 3x3 matrix represented as part of a band of a larger matrix.
A 5x5 K&L band systolic array would be needed to accommodate this operation

Systolic Array Design for GMMM

Figure 2.12 displays an array which can achieve GMMM. We begin by noting that it is
comprised of KLPE’s and delay blocks, labeled D in the diagram. The input vectors
flow top to bottom and left to right and the MAC’s flow diagonally from top-left to
bottom-right.

4We will achieve N elements per cycle per input and output instead of 2N−1
3 elements per cycle. For

large N , this equates to an increase of throughput of 50%.
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Figure 2.12: Systolic array for GMMM

A naive version of our design employs the same amount of KLPE’s as the BMMM. We
notice that we can actually spare some KLPE’s, since these elements are expensive. We
can replace the green top-right and bottom-left triangles of KLPE’s with simple 2-way
delay blocks. Doing so, the amount of remaining KLPE’s that are actually necessary is
calculated below:

Let N be the lateral size of the matrix you want to multiply:

#KLPE,total = (2N − 1)2

#D−blocks = 2
N(N − 1)

2

#KLPE,final = #KLPE,total −#D−blocks

= (2N − 1)2 −N(N − 1)

= 3N2 − 3N + 1

Input and Output Data Patterning

In order for this design to work and produce the expected GMMM output, The input
data rows must be presented to the array row by row. Each consecutive row must be
skewed by one element every cycle. The A matrix must be sent row by row, whereas the
B matrix must be sent column by column. The output triangle of one-dimensional delay
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blocks5 allow us to retrieve the output matrix with a similar pattern, meaning row by
row, or column by column. We can choose which of these output types we want by which
side we place the output delay blocks. In Figure 2.12, the input and output data will
respectively enter and exit the array in the pattern shown in Figure 2.13.

Figure 2.13: Pattern for data delivery for the systolic array of Figure 2.12

2.9. Summary

In this chapter, we have gone over all the background concepts forming the backbone of
our thesis. We began with a recap of tensor algebra, the followed with an introduction of
systolic systems and some of their implementations focused on tensor algebra. We have
also very briefly introduced the modern FPGA synthesis flow.

In the following chapter, we will present the kernel upon which we have decided to base
our thesis and go inspect its RTL description.

5Essentially shift registers





29

3| RTL Design of a Parametric
Multi-directional Systolic
Kernel

Noticing the similarities between the BMMM and GMMM systems presented in the previ-
ous Chapter, we have decided to implement a Unified Matrix-Matrix Multiplier (UMMM)
as the study subject of our thesis. It will be fully parametric in array size and data width.
The heart of our UMMM consists of a quadratic systolic array of KLPE’s with inputs
flowing left-to-right and top-to-bottom. The diagonal paths of our design can be rerouted
to flow downwards or upwards, behaving either like the BMMM or GMMM array. Doing
so, it reuses expensive KLPE’s for both operations. The final design is presented in Figure
3.1. In addition to rerouting the systolic array, each operation will also employ bespoke
peripheral hardware to deliver data according to their respective data pattern needs.
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Figure 3.1: Systolic Unified Matrix-Matrix Multiplication Core (UMMM)

In this section, we will display and comment our RTL implementation of the unified array.
For reference, the entire system hierarchy lies in Figure 4.3. Consulting it can be useful
to the reader in order to visualize the hierarchy at a macro, top-down scale before reading
the following sections, which go through the design in a bottom-up order.

3.1. KLPE

The KLPE is an elementary block of the system and should be designed as simply as
possible. This module is fully parametrized in data width. It implements synchronous
reset and enable signals in order to be able to cycle through the computation one cycle
at a time. This stalling mechanism will be implemented for every consecutive block of
the system. This is required in case we need to pause operation because the peripheral
data systems are not able to keep up. We have limited our design to using only integer
unsigned data. If we wanted to accommodate different data types, this block is the only
one whose functionally would need to change.

Listing 1: Verilog description of the KLPE, equivalent to Figure 2.4. This code snippet
is a portion of Listing 54.
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11 wire [2*DATA_WIDTH-1:0] temp = A_in*B_in; //manually define the operation
12 always @ (posedge clk)
13 begin
14 if (reset) begin
15 A_out <= 0;
16 B_out <= 0;
17 C_out <= 0;
18 end
19 else if (array_en) begin
20 A_out <= A_in;
21 B_out <= B_in;
22 C_out <= C_in + temp[DATA_WIDTH-1:0]; //manually define the operation
23 end
24 end
25 endmodule // KLPE

3.2. Unified Array Core

The unified array core consists of an implementation of Figure 3.1. This module is fully
parametrized in data width and array size. The MAT_SIZE parameter consists of the size
of the largest GMMM operation we want to accommodate. If MAT_SIZE is 3, the Verilog
code will generate the same array as Figure 3.1. The reader must keep in mind that when
MAT_SIZE is set to N , the largest band width (w) it can accommodate during BMMM is
2N − 1. However, the size of the matrix that can be computed using this technique is
infinite, as long as its band fits in the array. For a MAT_SIZE= N , the resulting array will
feature (2N − 1)2 KLPE’s.

This module showcases several interesting particularities. The first of which is a short-
coming of the Verilog language. It does not support arrays of signals as module inputs
and outputs. This forces us to flatten and unflatten signals at the inputs and outputs of
the modules in order to keep the design fully parametric. Although this happens in many
places throughout the design, we will not mention it again as it is a recurring feature. An
example of module unflattening can be seen in Listing 2.

Listing 2: Signal unflattening in Verilog. This code snippet is a portion of Listing 55

36 generate
37 for (i=0;i<(2*MAT_SIZE-1);i=i+1) begin
38 assign A[i] = A_flattened[DATA_WIDTH*i+(DATA_WIDTH-1):DATA_WIDTH*i];
39 assign B[i] = B_flattened[DATA_WIDTH*i+(DATA_WIDTH-1):DATA_WIDTH*i];
40 end
41 endgenerate



32 3| RTL Design of a Parametric Multi-directional Systolic Kernel

In Listing 3, we can see our implementation of the unified array core. Note the presence
of the opmode signal, for example on line 71. It controls whether we are using the array
for GMMM or BMMM. Our unified array core not only generates the array of KLPE’s,
but it also links them all together according to opmode. All of this is achieved in a fully
parametrized fashion. In order to do so, the Verilog language obliges us to instantiate
arrays of wires for the top-down, left to right and bi-diagonal flows. Connecting to these
arrays correctly in the generate-endgenerate environment is the most fastidious part.

Listing 3: Verilog description of the unified array core. This code snippet is a portion of
Listing 55

58 wire [DATA_WIDTH-1:0] w_hor [0:(2*MAT_SIZE-1)-1][0:(2*MAT_SIZE-1)-2];
59 wire [DATA_WIDTH-1:0] w_ver [0:(2*MAT_SIZE-1)-1][0:(2*MAT_SIZE-1)-2];
60 //diagonal wires :
61 //some of these wires will not be used but are declared for simplicity of thought
62 wire [DATA_WIDTH-1:0] w_diag [0:(2*MAT_SIZE-1)-1][0:(2*MAT_SIZE-1)-1];
63

64 generate
65 for (j=0; j<(2*MAT_SIZE-1); j=j+1)
66 begin : j_loop
67 for (i=0; i<(2*MAT_SIZE-1); i=i+1)
68 begin : i_loop
69 wire [DATA_WIDTH-1:0] A_in = j==0 ? A[i] : w_ver[i][j-1];
70 wire [DATA_WIDTH-1:0] B_in = i==0 ? B[j] : w_hor[j][i-1];
71 wire [DATA_WIDTH-1:0] C_in = opmode ? ((i==(2*MAT_SIZE-1)-1 || j==(2*MAT_SIZE-1)-1) ? 0 :

w_diag[i+1][j+1]) : ((i==0 || j==0) ? 0 : w_diag[i-1][j-1]);↪→

72

73 wire [DATA_WIDTH-1:0] A_out;
74 wire [DATA_WIDTH-1:0] B_out;
75 wire [DATA_WIDTH-1:0] C_out;
76

77 if (j<(2*MAT_SIZE-1)-1) assign w_ver[i][j] = A_out ;
78 if (i<(2*MAT_SIZE-1)-1) assign w_hor[j][i] = B_out ;
79

80 assign w_diag[i][j] = C_out ;
81

82 if (j>0 && i>0) begin end
83 else if (i==0) assign C_array_out_ver[(2*MAT_SIZE-1)-j-1] = C_out; // needs checkup for

off-by-1↪→

84 else if (j==0) assign C_array_out_hor[i-1] = C_out;//because the top vector is shifted by 1
85

86 if (j<2*MAT_SIZE-2 && i<2*MAT_SIZE-2) begin end
87 else if (j==2*MAT_SIZE-2 && i >= MAT_SIZE-1) assign C_array_out[(3*MAT_SIZE-3) - i] = C_out;
88 else if (j >= MAT_SIZE-1 && j < 2*MAT_SIZE-2) assign C_array_out[j - MAT_SIZE+1] = C_out;
89

90

91

92 KLPE2 #(.DATA_WIDTH(DATA_WIDTH)) pe (
93 .clk(clk),
94 .array_en(array_en),
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95 .reset(reset),
96 .A_in(A_in),
97 .B_in(B_in),
98 .C_in(C_in),
99 .A_out(A_out),

100 .B_out(B_out),
101 .C_out(C_out));
102 end
103 end
104 endgenerate

Lastly, we also parametrically generate the output triangle of delay blocks for GMMM.
This is done in a similar way to the generation of the main array.

Listing 4: Verilog description of the output triangle of delay blocks for GMMM, visible
in Figure 3.1. This code snippet is a portion of Listing 55

123 wire [DATA_WIDTH-1:0] w_delays [0:(MAT_SIZE>=3? MAT_SIZE-3:0)][0:(MAT_SIZE>=3? MAT_SIZE-3:0)];
124

125 generate
126 for (i=0; i<MAT_SIZE-1; i=i+1)
127 begin : i_loop
128 for (j=0; j<=i; j=j+1)
129 begin : j_loop
130

131 wire [DATA_WIDTH-1:0] A_in = j==0 ? C_array_out[i] : w_delays[i-1][j-1];
132 wire [DATA_WIDTH-1:0] A_out;
133

134 if (i<MAT_SIZE-2) assign w_delays[i][j] = A_out;
135 else assign C_generic[MAT_SIZE-2-j] = A_out;
136

137 D1D #(.DATA_WIDTH(DATA_WIDTH)) dblock (
138 .clk(clk),
139 .reset(reset),
140 .array_en(array_en),
141 .A_in(A_in),
142 .A_out(A_out));
143 end
144 end
145 endgenerate
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3.3. Peripherals: Generic Matrix-Matrix Multiplica-

tion

3.3.1. Generic Input Peripheral Device

The sequence of data dispatching into the GMMM kernel is very straightforward. Each
input matrix sends one line of data per cycle and the peripherals must only ensure to steer
this data to the correct inputs. More precisely, each consecutive data line must be shifted
by one to keep up with the kernel operation. In Figure 3.2 we can see a representation of
the datasteerer working.

Figure 3.2: Visualisation of the workings of the datasteerer

The following Verilog module describes the datasteerer. It achieves the operation by
padding the input with zeros and rotating the vector. The complete operation is made
with flattened vectors.

Listing 5: Verilog description of the datasteerer, equivalent to Figure 3.2. This code
snippet is a portion of Listing 56.

13 module datasteerer #(parameter MAT_SIZE=3, DATA_WIDTH = 64)(
14 input clk,
15 input [(`CLOG2(MAT_SIZE))-1:0] counter,
16 input [MAT_SIZE*DATA_WIDTH-1:0] data_in,
17 output [(2*MAT_SIZE-1)*DATA_WIDTH-1:0] data_out);
18 wire [(MAT_SIZE-1)*DATA_WIDTH-1:0] zeropadding = 0;
19 assign data_out = {zeropadding,data_in} << DATA_WIDTH*counter;
20 endmodule // datasteerer
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3.3.2. Generic Output Peripheral Device

The following block is called the datacollector. It ensures the inverse operation to
the datasteerer and is used at the output of the array for GMMM. We can see a
representation of the workings of the datacollector in Figure 3.3.

Figure 3.3: Visualisation of the workings of the datacollector

Its Verilog description is very similar to the datasteerer.

Listing 6: Verilog description of the datacollector, equivalent to Figure 3.3. This code
snippet is a portion of Listing 56.

22 module datacollector #(parameter MAT_SIZE=3,DATA_WIDTH = 64)(
23 input clk,
24 input [(`CLOG2(MAT_SIZE))-1:0] counter,
25 input [(2*MAT_SIZE-1)*DATA_WIDTH-1:0] data_in,
26 output [MAT_SIZE*DATA_WIDTH-1:0] data_out
27 );
28 assign data_out = data_in >> DATA_WIDTH*(MAT_SIZE-1-counter);
29 endmodule // datacollector

3.3.3. GMMM Peripheral Devices Assembly

For the GMMM, the last step is to put all the peripherals in a module. For proper func-
tioning of our system we must ensure that the counter dictating the steering amount is ap-
propriately delayed in time between the input datasteerers and output datacollector.
A schematic of the GMMM assembly can be seen in Figure 3.4.
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Figure 3.4: Unified array core surrounded by the necessary peripherals to enable GMMM.

In order to instantiate the appropriate amount of delay blocks to ensure proper operation,
we have used a custom parametric shift register. For this particular application, a much
simpler Verilog description could be written. We decided to write it in this way because
we had already designed the delay blocks for the GMMM array and decided to reuse
them. Of course, the final generated hardware is not affected by these choices.

Listing 7: Verilog description of our parametric shift register, implementing the chain of
delay blocks visible in Figure 3.4. This code snippet is a portion of Listing 56.

66 genvar i;
67 wire [(`CLOG2(MAT_SIZE))-1:0] counter_intermediate [2*MAT_SIZE-2:0];
68 generate
69 for(i=0;i<2*MAT_SIZE-1;i=i+1) begin
70

71 wire [(`CLOG2(MAT_SIZE))-1:0] cnt_in,cnt_out;
72 assign cnt_in = i==0? counter_in : counter_intermediate[i-1];
73 assign counter_intermediate[i] = cnt_out;
74

75 D1D #(.DATA_WIDTH(`CLOG2(MAT_SIZE))) dblock (
76 .array_en(array_en),
77 .clk(clk),
78 .reset(0),
79 .A_in(cnt_in),
80 .A_out(cnt_out));
81 end
82 endgenerate
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3.4. Peripherals: Band Matrix-Matrix Multiplication

3.4.1. Custom Input And Output Formats

By taking advantage of the freedom of hardware-software co-design, we have decided to
organise the input matrices in a custom format. This will be extremely practical for
simplification of the hardware as well as for keeping our data in a very efficient format.

Custom Input Format

For the input matrices, we have packed the bands into a rectangular matrix structure
with width w = p + q − 1 and with height equal to the original matrix size. This allows
for a very efficient packing of the input band matrix and additionally allows for line by
line reading and memory dispatching to the multiplier’s input buffer.

The packing procedure is to take each row of the non-zero band and stack them vertically
in the rectangular matrix. The resulting matrix will be of the same height as the original
band matrix but the width will be only w = p + q − 1. Of course the first and last lines
need to be respectively pre- and post-padded with zeros to follow the procedure. We can
see an example of this format below, with a width (p) of 3 and height (q) of 2 resulting
in a band width (w) of 4.

a11 a12 a13 0 0 0 0
a21 a22 a23 a24 0 0 0
0 a32 a33 a34 a35 0 0
0 0 a43 a44 a45 a46 0
0 0 0 a54 a55 a56 a57
0 0 0 0 a65 a66 a67
0 0 0 0 0 a76 a77


→



0 a11 a12 a13
a21 a22 a23 a24
a32 a33 a34 a35
a43 a44 a45 a46
a54 a55 a56 a57
a65 a66 a67 0
a76 a77 0 0


Figure 3.5: Example of a rectangular representation of a band matrix with p = 3, q = 2,
w = 4 and an height of 7

For this custom input format, the rigorous index relocation function from normal indices
to rectangular indices is:

Ir(i, j) = i

Jr(i, j) = q + j − i
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The function can of course be inverted to find the following expression:

i(Ir, Jr) = Ir

j(Ir, Jr) = Ir + Jr − q

The relocation function can also be combined with a transposition1. This yields:

Ir(i, j) = j

Jr(i, j) = p+ i− j

Custom Input Format: Packing Efficiency

The number of zeros in the top left corner is simply found using the triangular number
formula:

ZTL(q) =
q(q − 1)

2

The number of zeros we can find in the bottom right corner is:

ZBR(p) =
p(p− 1)

2

The packing efficiency is thus:

η(p, q,M) =
M(p+ q − 1)− q(q−1)

2
− p(p−1)

2

M(p+ q − 1)

= 1− q(q − 1) + p(p− 1)

2M(p+ q − 1)

= 1− q2 − q + p2 − p

2M(p+ q − 1)

= 1− q2 + p2 − (p+ q − 1)− 1

2M(p+ q − 1)

= 1− 1

2M

(
p2 + q2 − 1

p+ q − 1
− 1

)
Although drawing conclusions from this formula is not straightforward, we can imme-
diately see that the efficiency approaches 100% as M , the original matrix lateral size,
becomes bigger, which is hardly surprising since the starting and ending zeros become

1This will be used in the design considered in Section 4.6
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negligible compared to the overall matrix size. We can also see that the formula is sym-
metrical in p and q. If we calculate an example with p = 5, q = 6 (such that w = 10) and
M = 1000, we get a packing efficiency of 99.75%. For comparison the original matrix,
without a sparse implementation has a packing efficiency of 1%.

Custom Output Format

The custom output format has been chosen according to the output data pattern seen
in Figure 2.10. Each row of the arrangement corresponds to a Γ shape in the original
output band matrix. The width of the resulting matrix is thus 2w − 1 and the height is
the original matrix size. An illustration of this format can be seen in Figure 3.6.

c11 c12 c13 c14 0 0 0
c21 c22 c23 c24 c25 0 0
c31 c32 c33 c34 c35 c36 0
c41 c42 c43 c44 c45 c46 c47
0 c52 c53 c54 c55 c56 c57
0 0 c63 c64 c65 c66 c67
0 0 0 c74 c75 c76 c77


→



c41 c31 c21 c11 c12 c13 c14
c52 c42 c32 c22 c23 c24 c25
c63 c53 c43 c33 c34 c35 c36
c74 c64 c54 c44 c45 c46 c47
0 c75 c65 c55 c56 c57 0
0 0 c76 c66 c67 0 0
0 0 0 c77 0 0 0


Figure 3.6: Example of an output rectangular representation of a band matrix with w = 4

and an height of 7

The rigorous function to find rectangular indices, although less trivial, is:


Ir(i, j) =

i if j ≥ i

j if j ≤ i

Jr(i, j) = w − i+ j

Its reciprocal is:


i(Ir, Jr) =

Ir if Jr ≥ w

w + Ir − Jr if Jr ≤ w

j(Ir, Jr) =

Jr − w + Ir if Jr ≥ w

Ir if Jr ≤ w

These formulas can be used to access the data of the resulting matrix without having to
rewrite the matrix in another shape in memory.
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Custom Output Format: Packing Efficiency

Keeping the data in this format in memory can be very space efficient. The waste in
memory zero trailing elements is easily calculated to be two triangles of side w− 1, thus:

Z(w) =
2(w − 1)(w − 1 + 1)

2
= w(w − 1)

The packing efficiency of this output format is:

η(r =
w

M
,w) =

(2w − 1)M − w(w − 1)

(2w − 1)M

= 1− w(w − 1)

(2w − 1)M

= 1− r
w − 1

2w − 1

with the w−1
2w−1

term being at most 0.5 for large values of w, we can safely say that the
efficiency is above 1 − w

2M
or 100% minus the half ratio of the band size to the matrix

size. For a matrix size of 1000 and a band size of 10, we get an efficiency of 99.53%. For
comparison, the packing efficiency of this matrix written in a non-sparse fashion is 1.89%.

Band Input Peripheral Device

The band input peripheral device takes in rows in the custom format and dispatches the
elements according to the pattern seen in Figure 2.9. Thanks to the custom input format,
no data steering is needed and we must only time the dispatching of the data vectors. In
order to do so, out solution employs internal buffers to have access to multiple rows of
data simultaneously. A visualisation of the band input device functionality is represented
in Figure 3.7.
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Figure 3.7: Visualisation of the workings of the band input device

The amount of rows of data which are simultaneously needed, and thus the size of the
buffer we must implement can be calculated using the following formula:

#entries =
⌊w
3

⌋
+ 1

This formula was implemented as a precompiler macro. An example of this can be seen
in Listing 57.

Table 3.1 showcases the beginning of the operation of the band input devices. We will
use it as a visual support to understand the inner workings of the band input device.



42 3| RTL Design of a Parametric Multi-directional Systolic Kernel

Table 3.1: Cycle-by-cycle operation of the band input devices. It shows the logic we
employ to ensure adequate data patterns for BMMM.

Example signals in time

cycle binary
pattern

dispatch
pattern

write
pointer data buffer output

0 00000 00000 0
0 0 0 a11 a21 a31
1 × × × × ×

0 0 0 0 0
1 10000 00000 1 0 0 0 0 0
2 01000 10000 1 0 0 0 0 0

3 00100 11000 1
0 0 0 a11 a21 a31
1 0 a12 a22 a32 a42

0 0 a11 0 0
4 10010 11100 0 0 0 0 a21 0
5 01001 01110 0 0 a12 0 0 a31
6 00100 00111 0

0 a13 a23 a33 a43 a53
1 0 a12 a22 a32 a42

0 0 a22 0 0
7 10010 00011 1 a13 0 0 a32 0
8 01001 10001 1 0 a23 0 0 a42
9 00100 11000 1

0 a13 a23 a33 a43 a53
1 a24 a34 a44 a54 a64

0 0 a33 0 0
10 10010 11100 0 a24 0 0 a43 0
11 01001 01110 0 0 a34 0 0 a53
12 00100 00111 0

0 a35 a45 a55 a65 a75
1 a24 a34 a44 a54 a64

0 0 a44 0 0
13 10010 00011 1 a35 0 0 a54 0
14 01001 10001 1 0 a45 0 0 a64

For better understanding, we have described below the workings of the most important
signals in the band input device.

• binary_pattern: This signal is positional. It initiates a one in the first position
every 3 cycles. These ones then ripple rightwards towards the end of the vector.
The position of these ones determine which element in the buffer address should be
dispatched.

Listing 8: Verilog description of the binary_pattern signal behaviour. This code snippet
is a portion of Listing 57.

27 always @(posedge clk) begin
28 for(k=0;k<BAND_SIZE;k=k+1) begin
29 if(k==0) begin
30 if(reset) binary_pattern[k] <= 0;
31 else if (array_en) binary_pattern[k] <= (tricounter==0) ? 1'b1 : 1'b0;
32 end
33 else begin
34 if (reset) binary_pattern[k] <= 0;
35 else if(array_en) binary_pattern[k] <= (tricounter == 2'b11) ? 1'b0 : binary_pattern[k-1];
36 end
37 end
38 end
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• dispatch_pattern: This signal is also positional and is not binary, although be-
cause of the small size of the example in Table 3.1 it may appear so. Each position
increments by 1 when the binary pattern was a 1 at the same position. This signal
serves to know from which buffer address the next value should be dispatched.

Listing 9: Verilog description of the dispatch_pattern signal behaviour. This code
snippet is a portion of Listing 57

50 always @(posedge clk) begin
51 if(reset) begin
52 for(k=0;k<BAND_SIZE;k=k+1) begin
53 dispatch_pattern[k]<= 0;//reset everything
54 end
55 end
56 else if(array_en) begin
57 for(k=0;k<BAND_SIZE;k=k+1) begin
58 dispatch_pattern[k] <= (binary_pattern[k]==1) ? (dispatch_pattern[k] + 1) %

(`GET_BUF_SIZE(BAND_SIZE)) : dispatch_pattern[k];↪→

59 end
60 end
61 end

• write_pointer: This signal determines which address in the buffer the next input
row of values should be written to every 3 cycles. Every time a vector is written
into the data buffer this value will be incremented.

Listing 10: Verilog description of the write_pointer signal behaviour. This code snippet
is a portion of Listing 57

41 always @(posedge clk)
42 if (reset)
43 write_pointer<=0;
44 else if(array_en)
45 if(binary_pattern[0]==1)
46 write_pointer <= (write_pointer+1) % (`GET_BUF_SIZE(BAND_SIZE));
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• data_buffer: This buffer holds the vectors that need to be appropriately dis-
patched.

Listing 11: Verilog description of the data_buffer signal behaviour. This code snippet
is a portion of Listing 57

72 always @(posedge clk) begin
73 if (reset) begin
74 for(k=0;k<BAND_SIZE;k=k+1) begin
75 for(l=0;l<(`GET_BUF_SIZE(BAND_SIZE));l=l+1) begin//not generate block but loop block
76 databuffer[l][k] <= 0; // reset everything
77 end
78 end
79 end
80 else if(array_en)
81 if (tricounter == 2'b00)
82 for(k=0;k<BAND_SIZE;k=k+1) begin
83 databuffer[write_pointer][k] <= IN_flattened[k*DATA_WIDTH +: DATA_WIDTH];
84 end
85 end

• output: The output is determined using a combination of the other signals.

Listing 12: Verilog description of the output signal behaviour. This code snippet is a
portion of Listing 57

66 generate
67 for(i=0;i<BAND_SIZE;i=i+1) begin
68 assign OUT_flattened[i*DATA_WIDTH +: DATA_WIDTH] = (binary_pattern[i] == 1) ?

databuffer[dispatch_pattern[i]][i] : 0;↪→

69 end
70 endgenerate

3.4.2. Band Output Peripheral Device

The band output device takes the output vectors dispatched as previously seen in Figure
2.10. It receives the individually dispatched values and packs them into compact vectors.
Only when these vectors are full, are they dispatched. A visualisation of the band output
device functionality is represented of Figure 3.8.
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Figure 3.8: Visualisation of the workings of the band output device

Due to the similarities between this block and the band input device, we will only explain
its functionality using Verilog code snippets.

The necessary signals are the following:

• current_line: This signal says which vector is the next to be dispatched.

Listing 13: Verilog description of the current_line signal behaviour. This code snippet
is a portion of Listing 58

23 always @(posedge clk) begin
24 if(reset) current_line <= 0;
25 else if(array_en) if(binary_pattern[0]==1) current_line <= write_pointer[0];
26 end
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• binary_pattern: This signal contains the pattern with which values should be
written into the data buffer. This signal begins with a 1 in the center every three
cycles which ripples outward in both directions.

Listing 14: Verilog description of the binary_pattern signal behaviour. This code snippet
is a portion of Listing 58

28 always @(posedge clk) begin
29 for(k=0;k<=2*BAND_SIZE-2;k=k+1) begin
30 if(reset) binary_pattern[k] <= 0;
31 else if (array_en) begin
32 if(k==BAND_SIZE-1) binary_pattern[k] <= (tricounter == 0) ? 1'b1 : 1'b0;
33 else if(k<BAND_SIZE-1) binary_pattern[k] <= (tricounter == 2'b11) ? 1'b0 :

binary_pattern[k+1];↪→

34 else binary_pattern[k] <= (tricounter == 2'b11) ? 1'b0 :
binary_pattern[k-1];↪→

35 end
36 end
37 end

• write_pointer: This signals indicates which data buffer address should be written
to, for each position.

Listing 15: Verilog description of the write_pointer signal behaviour. This code snippet
is a portion of Listing 58

39 always @(posedge clk) begin
40 for(k=0;k<=2*BAND_SIZE-2;k=k+1) begin
41 if (reset) write_pointer[k] <= 0;
42 else if(array_en) begin
43 if(binary_pattern[k] == 1) begin
44 if(write_pointer[k] == (`GET_BUF_SIZE(BAND_SIZE))-1) write_pointer[k] <= 0;
45 else write_pointer[k] <= write_pointer[k] + 1;
46 end
47 end
48 end
49 end
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• data_buffer: This is the data buffer which contains all temporary vectors until
they are complete and ready to be dispatched. The buffer depth is the same as with
the input device.

Listing 16: Verilog description of the data_buffer signal behaviour. This code snippet
is a portion of Listing 58

51 always @(posedge clk) begin
52 for(k=0;k<=2*BAND_SIZE-2;k=k+1) begin
53 for(l=0;l<=(`GET_BUF_SIZE(BAND_SIZE))-1;l=l+1) begin
54 if (reset) databuffer[l][k] <= 0;
55 else if (array_en)
56 if(binary_pattern[k]==1)
57 if(write_pointer[k]==l)
58 databuffer[l][k] <= IN_flattened[k*DATA_WIDTH +: DATA_WIDTH];
59 end
60 end
61 end

• output: The output is simply made of vectors of numbers in the custom format
described previously.

Listing 17: Verilog description of the output signal behaviour. This code snippet is a
portion of Listing 58

64 generate
65 for(i=0;i<=2*BAND_SIZE-2;i=i+1)
66 assign OUT_flattened[(i+1)*DATA_WIDTH-1:i*DATA_WIDTH] = databuffer[current_line][i];
67 endgenerate

3.4.3. BMMM Peripheral Devices Assembly

The band peripherals module puts together two input devices and one output device.
The whole band assembly is dictated by a single tricounter, which is a two-bit counter
that increments upwards from 0b00 to 0b10 then cycles back to 0b00. For correct opera-
tion, the output device must be controlled with a delayed version of the input tricounter
regardless of the size of the array.
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Figure 3.9: Unified array core surrounded by the necessary peripherals to enable BMMM

Note that because the tricounter is reset to 0b00, the delayed version must be reset to
the value that comes prior to 0b00. In our case this value is 0b10 (or 2).

Listing 18: Verilog description of the implementation of the delayed_tricounter. This
code snippet is a portion of Listing 59

53 reg [1:0] tricounter_delayed;
54

55 always @(posedge clk) begin
56 if (reset) tricounter_delayed <= 2;
57 else if(array_en) tricounter_delayed <= tricounter;
58 end

3.4.4. Unified Array

The only thing left to do to complete our unified array kernel is to put all the modules
together. A final overview of the kernel can be seen in Figure 3.10. We can see the
addition of some multiplexers controlled by the opmode signal, which chooses whether we
are want to execute a BMMM or a GMMM.
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Figure 3.10: Unified array, assembling the unified array core and all its necessary periph-
erals for both BMMM and GMMM.

The description of this module is straightforward and features no notable particularities.
This module can be consulted in Listing 59.

3.5. Summary

In this chapter, we have shown how we implemented our UMMM in RTL. We have also
presented our motivation for using custom data formats for the BMMM operation.

In the next chapter, we will see how we integrated our kernel into a system. This will
be achieved by writing a Matrix Multiplication Controller (MMC) which serves as the
controller for our kernel and implements the necessary interfaces with the HLS hardware,
which in turn will deal with data communication to and from the host machine.

This integration is enabled by Xilinx’s blackbox design capabilities, which we will present
in Section 4.4.
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into a System

4.1. Hardware: Alveo U280 Data Center Card

4.1.1. General Specifications

The Xilinx® Alveo™ U280 Data Center accelerator cards are Peripheral Component
Interconnect express (PCIe®) Gen3 x16 compliant and Gen4 x8 compatible cards fea-
turing the Xilinx 16 nm UltraScale+™ technology. The Alveo U280 card offers 8 GB of
HBM2 at 460 GB/s bandwidth to provide high-performance, adaptable acceleration for
memory-bound, compute-intensive applications including database, analytics, and ma-
chine learning inference.

4.1.2. FPGA

From [21], the Xilinx Alveo U280 accelerator card is a custom-built UltraScale+ FPGA
that runs optimally (and exclusively) on the Alveo architecture. The Alveo U280 card
features the XCU280 FPGA, which uses Xilinx stacked silicon interconnect (SSI) tech-
nology to deliver breakthrough FPGA capacity, bandwidth, and power efficiency. This
technology allows for increased density by combining multiple super logic regions (SLRs).
The XCU280 comprises three SLRs with the bottom SLR (SLR0) integrating an HBM
controller to interface with the adjacent 8 GB HBM2 memory.
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Figure 4.1: Floorplan of the XCU280 FPGA, from [21]

4.2. Tools

4.2.1. ModelSim

ModelSim is an RTL simulation software. It was designed by Mentor Graphics and is
now distributed by many companies, such as Intel or Siemens, under slightly different
releases. This software has the particularity of being barebones but excelling in reliability
and speed. The free version (accessible to students) is limited in simulation size. It can
also be used as the RTL simulator for larger software suites such as Xilinx Vivado or Intel
Quartus. We have used this software as a RTL simulator in the early stages of designing
and testing our unified array.

4.2.2. Xilinx Vivado

Vivado is an FPGA development tool which aims to unify the RTL simulation with
synthesis and implementation into a single software. Naturally, this software is intended
as a complete workflow environment for RTL development on Xilinx hardware. We have
used this software to finalize our RTL design and as a separate support tool for Vitis.

4.2.3. Xilinx Vitis

Vitis is a unified software platform designed to be the complete work environment for de-
velopers designing hardware accelerators. It includes the HLS compiler, hardware linker,
bitstream generator and host program development environment for systems including an
FPGA and a host computer. Vitis englobes Vivado and uses it to synthesize, implement
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and write the FPGA bitstream. We need to use Vitis in order to develop and run our
hybrid RTL-HLS systolic array.

4.3. Vitis Design Workflow

Our workflow has been primarily based on the Linux Terminal version of Vitis. Vitis
allows us to package many types of sources into a single hardware kernel. The different
options for doing so are featured in Figure 4.2.

Figure 4.2: Vitis device build process, from [22]

4.3.1. Main Vitis Commands

Building a Vitis system requires three main steps, each having its own command. In the
following section we will go through the building process.

Vitis Compile: v++ -c

The Vitis compile (-c) command builds all the source files into Xilinx Object (.xo) files.
This process includes but is not limited to:

• Compiling the source C/C++ files into their HDL-equivalent through Xilinx’s high-
level synthesis process.

• Checking that the interfaces between RTL and HLS blocks are valid when using
RTL blackboxes.
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Vitis Link: v++ -l

The Vitis link command takes the resulting .xo files and links them all together into a
cohesive system. Depending on the target options, different kinds of files will be created
and different processes will be launched.

Vitis Compile Host Code: g++

The Vitis Host Code compiler takes the host C++ code into the appropriate machine code
for the host computer.

4.3.2. Target Options

Vitis target options must be included when compiling and linking, using the -t tag.

Software Emulation (-t sw_emu)

This option allows us to compile everything into a fully-software version of our algorithm.
This is particularly useful for fully HLS systems because it allows us to quickly and
efficiently debug and check the validity of our C++ algorithms. The compile time is the
shortest among targets and is thus adequate for iterative design. It is also useful for
hybrid HLS-RTL kernel workflows to create golden results to which the hardware results
can later be compared.

Hardware Emulation (-t hw_emu)

This option allows us to compile the hardware into a netlist and normally compiles the
software. It also compiles an emulation-equivalent version of the data transfer hardware
between the host and the FPGA. The emulation is then run on an RTL simulation en-
vironment. This allows us to check the validity of our handmade RTL kernels and their
interaction with the HLS portions of the device. Any internal signals can be probed post-
linking, which makes the debugging workflow convenient and efficient. The compile time
for hardware emulation is approximately one order of magnitude longer than for software
emulation.

Hardware (-t hw)

This option allows us to run synthesis and implementation for our desired FPGA. This
then lets us run the actual hardware in real life and in real time. The compile time for
hardware takes the longest and should not be used for iterative design. For a similar
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design, this option’s compile time is an order of magnitude longer than for hardware
emulation.

4.3.3. Debugging

All three Vitis flow steps must receive the debugging directive (-g or –debug). For the
compile step, some debugging features will be activated in order to produce a debuggable
design. For the linking step, the design will be implemented into the appropriate version of
the design, including debugging capabilities. For the host code compilation, the directive
is a simple g++ debugging toggle.

Software Emulation Debugging

Software emulation debugging allows us to use the Linux console to print out any inter-
mediate values of variables in order to check their validity and compliance to the design,
much like we would in regular computer program debugging. This is true even for parts
of the design which are intended to be compiled into hardware later on.

In order to keep compilable HLS functions, we must surround them with a precompiler
macro conditional statement. This will ensure that when we are compiling the design
into hardware, these sections of code will be ignored. An example of this can be seen in
Listing 19.

Listing 19: Example of debugging code intended for sw_emu. This code snippet is a
portion of Listing 64.

440 #ifndef __SYNTHESIS__
441 std::cout << "line_accu_bit: " << line_accu_bit << std::endl << std::flush;
442 std::cout << "chunk_accu_bit: " << chunk_accu_bit << std::endl << std::flush;
443 #endif

Hardware Emulation Debugging

Hardware emulation debugging allows us to use the Vivado simulator to run our design
and probe any signals in our kernel and examine them cycle by cycle. This is extremely
useful in order to debug and verify RTL designs. After adding the directives presented
above, setting up hardware emulation debugging requires an additional step.

In order to open a Vivado session with a live waveform viewer, we must add the following
code into a xrt.ini file before compiling the host code:
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1 [Emulation]
2 debug_mode=gui

This will ensure that the Vivado simulation GUI is opened when launching the kernel,
allowing us to probe any signals. When the GUI launches, the user must pause the
simulation and probe the signals they need. This must be done every time the user
relaunches the simulation. The user can also speed up this process by saving a waveform
configuration file (.wcfg) and opening it manually every time the simulation starts.

Hardware debugging

Hardware debugging consists of implementing additional hardware into our FPGA fabric
whose role is to record and relay specific signals’ timeline traces back to the host computer.
This hardware is often referred to as an Integrated Logic Analyzer (ILA). During our
thesis, we were unable to include an ILA into our workflow. Luckily, relying on hardware
emulation and synthesis reports has proven to be sufficient for debugging our systems.

4.3.4. Makefile

In order to package all our building necessities into concise commands, we will use a
Makefile. This Makefile will call v++ -c, v++ -l, and g++ with all the appropriate
arguments and make the appropriate path managements in order to cleanly build our
kernels. Our Makefile is heavily inspired by the work of S. Soldavini in [18].

4.4. Vitis Blackbox Design

Vitis allows us to replace a function in the source C++ code with our own version of
the circuit, essentially stitching a handmade kernel into an otherwise computer-generated
RTL system. We will use this functionality to transform our RTL kernel into a Vitis
blackbox, allowing us to implant it into a complete system. In the following section we
will go through the procedure to set up a blackbox using Vitis.

4.4.1. Blackbox Signals

Vitis blackboxes use simple block-level control protocols to interact with the rest of the
system. The two protocols which are supported for use in blackboxes are ap_ctrl_hs

and ap_ctrl_chain. The prior is intended for single execution kernels and the latter is
intended for pipelined execution kernels. These protocols use a handful of signals to com-
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municate between the blackbox top module and the HLS peripherals. The documentation
describing the blueprint for these protocols features in [23]. We will mainly focus on the
ap_ctrl_chain protocol, which features the following signals:

• ap_start: This signal is an input to the blackbox. It asserts to the blackbox that
it can begin operation. For non-pipelined designs, this signal is also intended as an
indicator that the data is ready to be read on the inputs of the blackbox.

• ap_idle: This signal is an output of the blackbox. It signals to the wrapper
if the blackbox is idle or not. It must be asserted low immediately and asyn-
chronously when the ap_start signal is asserted high and it must be asserted high
synchronously one cycle after the ap_done signal is asserted high.

• ap_ready: This signal is an output of the blackbox. It signals to the wrapper that
the blackbox is ready to accept new data. For pipelined designs this signal can be
permanently pulled high, because the data timing management is handled by FIFO
interfaces. We will discuss this further in Section 4.4.2.

• ap_done: This signal is an output of the blackbox. It indicates to the wrapper that
the operation is done.

• ap_return: This signal is an output of the blackbox. It indicates to the wrapper
that the data is valid on the return line for simple designs. We will not need this
signal and did not implement it because the data timing management will be handled
by FIFO interfaces. We will discuss this further in Section 4.4.2.

• ap_continue: This signal is an input to the blackbox. It asserts to the blackbox
that the next block in the kernel chain is ready to receive more data. We will not
need this signal and did not implement it because the data timing management is
handled by FIFO interfaces. We will discuss this further in Section 4.4.2.

4.4.2. Implementing FIFO’s

Since our kernel’s operation falls under the pipeline category, we must interface with input
and output FIFO’s. If we implement the following signals, the Vitis compiler will build a
pipelined design.
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• input_empty_n: This signal is an input to our blackbox. It is active-low and indi-
cates if there is any data left in the FIFO to read. In other words, it indicates if the
FIFO is empty. The blackbox must check if this signal is high before reading the
associated input.

• input_re: This signal is an output to our blackbox. It must be asserted high when
the blackbox is reading the data at the interface and signals to the input FIFO that
the data has been read, can be discarded and should be replaced with the next data
in the FIFO. The suffix _re refers to the common read enable terminology.

• output_full_n: This signal is an input to our blackbox. It is active-low and in-
dicates if it is possible to write to the output FIFO. In other words, in indicates if
the FIFO is full. The blackbox must check if this signal is high before attempting
to write any data.

• output_we: This signal is an output to our blackbox. It must be asserted high
when the blackbox is presenting data at the interface. It signals to the output FIFO
that the data is valid on the interface, should be read and should be queued. The
abbreviation _we refers to the common write enable terminology.

On the C++ side of the design, these FIFO’s present themselves as C++ streams. The HLS
stream library must be included into the HLS source code using #include "hls_stream.h" .
A stream can then be instantiated using hls::stream<data_type> stream_name; . Data
can be pushed into the FIFO with stream_name << data; and can be pulled from the
FIFO with stream_name >> data; .

4.4.3. Linking RTL and HLS

In order for the HLS compiler to properly map the RTL module IO with its high-level C++
representation of the kernel, we must fill a JSON file which defines all the correspondences
between C++ functions and RTL signals. The first part of the JSON file deals with source
code file paths.

It is important to note that your blackbox function must have a corresponding C++ func-
tion signature in your C++ source code or header. If you are working with a purely RTL
kernel, you must define a C++ dummy function, with the appropriate function arguments.
The body of the function can stay empty, because it will be replaced with its RTL equiv-
alent during compilation of the kernel.
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Listing 20: JSON declaration of the source file input paths. This code snippet is a portion
of Listing 60.

1 {
2 "c_function_name" : "mmc",
3 "rtl_top_module_name" : "mmc",
4 "c_files" : [{
5 "c_file" : "/.../mmc.cpp",
6 "cflag" : ""
7 }],
8 "rtl_files" : [
9 "/.../mmc.v",

10 "/.../unified_array.v",
11 "/.../datasteering.v",
12 "/.../KLPE.v",
13 "/.../band_peripherals.v",
14 "/.../band_input_device.v",
15 "/.../band_output_select_and_route.v"
16 ],

We must then map each C++ function argument with its corresponding RTL top mod-
ule inputs and outputs. Note that these entries will have different fields depending on
the type of interface desired. In our case we have only implemented FIFO’s for the
inputs and outputs so we must define the FIFO_empty_flag, FIFO_read_enable, and
FIFO_data_read_in ports.

Listing 21: JSON example declaration of the mapping between RTL signals and their C++
counterparts. This code snippet is a portion of Listing 60

17 "c_parameters" : [
18 {
19 "c_name" : "opmode_stream",
20 "c_port_direction" : "in",
21 "rtl_ports" : {
22 "FIFO_empty_flag" : "opmode_empty_n",
23 "FIFO_read_enable" : "opmode_re",
24 "FIFO_data_read_in" : "opmode"
25 }
26 },
27 ...
28 ],

We must then define the RTL common signals, which we earlier referred to as block-
level control protocol signals. They do not have C++ counterparts because they will be
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automatically implemented by the high-level synthesis compiler. Note the addition of the
purely RTL signals ap_clk, ap_rst, and ap_ce, which are self-explanatory.

Listing 22: JSON declaration of the control signals. This code snippet is a portion of
Listing 60

99 "rtl_common_signal" : {
100 "module_clock" : "ap_clk",
101 "module_reset" : "ap_rst",
102 "module_clock_enable" : "ap_ce",
103 "ap_ctrl_chain_protocol_idle" : "ap_idle",
104 "ap_ctrl_chain_protocol_start" : "ap_start",
105 "ap_ctrl_chain_protocol_ready" : "ap_ready",
106 "ap_ctrl_chain_protocol_done" : "ap_done",
107 "ap_ctrl_chain_protocol_continue" : "ap_continue"
108 },

The next section allows the user to input data about the kernel. Functionally, no part of
this section is useful for us. In designs which do not feature input or output FIFO’s, the
latency field dictates for how long the ap_ce signal remains high after the last ap_start
signal goes high. The Initiation Interval (II) field indicates the minimal interval
between consecutive launches of our kernel. Since our design features FIFO’s, we did not
notice any influence from these fields. The Xilinx documentation [22, 23] is unclear about
this field’s use under these circumstances. We will thus set them to dummy values.

The last section allows for data about the RTL IP to be manually input. This fields have
also been filled with dummy values because these values are not fixed throughout our
designs and do not have any functional purpose.

Listing 23: JSON declaration of performance and resource usage data. This code snippet
is a portion of Listing 60

109 "rtl_performance" : {
110 "latency" : "0",
111 "II" : "1"
112 },
113 "rtl_resource_usage" : {
114 "FF" : "0",
115 "LUT" : "0",
116 "BRAM" : "0",
117 "URAM" : "0",
118 "DSP" : "1"
119 }
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4.4.4. Compiling a Blackbox

When the JSON and the source files have been prepared, we must instruct the compiler
to include the blackbox in the design. This can be done by running the Tcl command:
add_files –blackbox path.json before HLS begins. Realistically, this can be done by
putting this instruction into a .tcl file and running the v++ -c command with the fol-
lowing option: –hls.pre_tcl=pre.tcl.

4.4.5. Blackbox Design Notes and Complications

RTL C function prototype Since the Vitis workflow is primarily designed for fully
HLS designs, a kernel function prototype must always be defined. Thus, when designing
our RTL kernel, in order to make a valid blackbox interface, we had to include a dummy
function with the same inputs and outputs as our RTL function. Although the exact
specifications of such a function are still unclear to us, we think that it is good practice
to at least read the inputs and put some data on the output, for good measure. We have
also found that reading and writing some data in the dummy function has been quite
useful in order to be able to use the sw_emu feature to quickly debug the HLS peripherals.
An even better approach is to always write a software version of your kernel instead of a
dummy one, if it is possible.

Properly defining functions in a HLS source code When writing functions in an
HLS source code, their prototype must always feature in the header file and must be
surrounded by an extern C{} construct. If this rule is not respected, the compilation of
the source C code will fail and the error messages are not obvious to decode.

Unusual behaviour of the Vitis Verilog parsing during HLS compilation When
defining a Verilog top module with global parameters, we advise you to use our example as
a starting point. Any other configuration of line breaks and spaces in the lines surrounding
the module keyword will result in a failure to compile and one of the following error
messages to be displayed:

1 ERROR: [v++ 200-653] Can not find blackbox json port 'xxx' in the port list of RTL top module 'xxx'
2 ERROR: [v++ 200-654] Cannot find blackbox RTL port 'module' in the json file

To be more precise, a space must be included between the module name and the # symbol
and a line break must be used after the parameter declaration section. This information
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is not featured in any Xilinx documentation and has been discovered through trial and
error. The configuration we came up with which works is the following:

Listing 24: Working syntax for the header of a Verilog top module including global pa-
rameters. Note the space between module and the # character. Note also the line break
after the global parameters and before the declaration of the inputs and outputs. This
code snippet is a portion of Listing 61

29 module mmc #(parameter MAT_SIZE=4, DATA_WIDTH=8)
30 (input ap_clk, ap_rst, ap_ce, ap_start, ap_continue,

4.5. Hybrid HLS-RTL Implementation

In this section we will go through the last blocks necessary to implement a fully work-
ing system. We will first go through the top RTL module which must implement the
aforementioned ap_ctrl_chain protocol and synchronizes the data management with
the kernel control signals of the unified array. We will then discuss the HLS blocks we
have implemented to bridge the RTL kernel with the host computer. The final block
diagram of the full RTL-HLS hybrid system is featured in Figure 4.3.

Figure 4.3: Block diagram of the entire system
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4.5.1. Matrix Multiplication Controller

The Matrix Multiplication Controller (MMC) deals not only with reading and writing
data from and to the input and output FIFO’s but also with synchronizing the kernel’s
operating counter and enable signals with the availability of data. The MMC is also the
interface with the surrounding HLS portions of the design and thus must implement the
ap_ctrl_chain protocol. It is implemented as a complex Finite State Machine (FSM).

Our FSM features 8 main states, a main counter and some states also employ sub-states.
The FSM macro-diagram can be found in Figure 4.4.

Figure 4.4: FSM implemented in the MMC

The Verilog FSM style we used divides the state transitions into a clocked always block
and the next state logic into a separate combinational always block. This structure can be
seen in Listing 25. Note that in addition to our state transitions and counter transitions,
the clocked always block also features two other signals. These are part of a speedup
trick we employed to increase our maximum clock speed and will be discussed later. Also
note the comment on line 174. When using a segmented FSM style, all the registers
which are not assigned in the clocked always block must be given a default value in the
combinational always block, outside of the case statement. This will ensure that latches
are not inferred in the design. Failure to prevent latches will result in hardware which
does not guarantee behaviour equivalence with hardware emulation.
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Listing 25: Verilog template for our top-level finite state machine. This code snippet is a
portion of Listing 61

154 always @ (posedge ap_clk)
155 if (ap_rst) begin
156 current_state <= s_reset;
157 counter <= 0;
158 tricounter <= 0;
159

160 band_duration <= 1;
161 start_band_validity <= 1;
162 end
163 else if (ap_ce) begin
164 current_state <= next_state;
165 counter <= next_counter;
166 tricounter <= next_tricounter;
167

168 band_duration <= next_band_duration;
169 start_band_validity <= next_start_band_validity;
170 end
171

172 always @(*)
173 begin
174 // HERE GO THE DEFAULT ASSIGNMENTS TO PREVENT LATCHING
175 case(current_state)
176 // HERE GOES THE NEXT STATE LOGIC
177 endcase
178 end

In the following part, we will go over each of our states and describe what they do.

FSM: Reset

• Resets all the registers to a known state

• Moves to the next state when the ap_start signal is asserted

Listing 26: Verilog description of the reset state. This code snippet is a portion of Listing
61

199 s_reset: begin
200 // reset all the output registers in the reset state
201 a_band_re = 0;
202 b_band_re = 0;
203 a_gen_re = 0;
204 b_gen_re = 0;
205 opmode_re = 0;
206 size_re = 0;
207 band_type_re = 0;
208 c_band_we = 0;



4| Integration of the RTL Kernel into a System 65

209 c_gen_we = 0;
210

211 array_en_reg = 0;
212 inputs_zero = 0;
213

214 next_state = s_reset;
215 next_counter = 0;
216 next_tricounter = 0;
217

218 if (ap_start) begin
219 next_state = s_readparams;
220 end
221 end

FSM: Read Parameters

• Waits until the parameter FIFO’s are all populated, then moves to the next state.

Listing 27: Verilog description of the read parameters state. This code snippet is a
portion of Listing 61

223 s_readparams: begin
224 opmode_re = 0;
225 size_re = 0;
226 band_type_re = 0;
227 next_state = s_readparams;
228 if (opmode_empty_n && band_type_empty_n && size_empty_n) begin
229 next_state = s_selectopmode;
230 end
231 end

FSM: Select Opmode

• Computes and stores some constants which involve multiplications of the input
parameters with other constants. This is an unplanned addition of functionality to
this state which helped resolve some timing bottlenecks and allowed us to increase
the clock speed of our kernel.

• Moves either to the generic compute state, or to the band compute state, depending
on the value read from the opmode parameter.
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Listing 28: Verilog description of the select opmode state. This code snippet is a portion
of Listing 61

233 s_selectopmode: begin
234

235 next_start_band_validity = `START_BAND_VALIDITY; // make the actual calculation here
236 next_band_duration = `BAND_DURATION;
237

238 case(opmode)
239 mode_gen: begin
240 next_state = s_gencompute;
241 next_counter = 0;
242 next_tricounter = 0;
243 end
244

245 mode_band: begin
246 next_state = s_bandcompute;
247 next_counter = 0;
248 next_tricounter = 0;
249 end
250

251 default: begin
252 next_state = s_done;
253 end
254 endcase
255 end

FSM: Generic Compute

• Deals with timing, array enabling, data reading and writing in order to enable the
GMMM operation. This state works in three phases. First, it must cycle through
the computation while reading the input data. Then, it must cycle through the
computation without taking in more inputs. Lastly, it must cycle through the
computation while only writing out data. While working, this state always checks
if the inputs are ready to be read and the output is ready to be written to. If any
condition is missing, the entire operation is stalled and waits for the problems to be
resolved. Note that some modifications will be made to this state in 4.5.4.

• Moves to the done state when the operation is finished. This is determined by
comparing the counter with the theoretical value the counter should have when the
operation is complete. This value is computed from the input parameters.
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Listing 29: Verilog description of the generic compute state. This code snippet is a
portion of Listing 61

267 s_gencompute: begin
268 // go into this state with counter = 0 and substate = 0;
269 //cleanup the re signals from previous state
270 //for generic operation, reading and writing are separate in time,
271 //thus we do not need to check if the inputs and the outputs are both free to enable the register
272

273 //-------deal with inputs ----------/
274 a_gen_re = 0;
275 b_gen_re = 0;
276 next_counter = counter;
277 array_en_reg = 0;
278 inputs_zero = 0;
279 c_gen_we = 0;
280

281 case(gen_substate)
282 ss_0: begin //read inputs
283 if (a_gen_empty_n && b_gen_empty_n) begin // overwrite previous statements in necessary
284 a_gen_re = 1;
285 b_gen_re = 1;
286 next_counter = counter + 1;
287 array_en_reg = 1;
288 end
289 end
290

291 ss_1: begin //dead cycling
292 a_gen_re = 0;
293 b_gen_re = 0;
294 next_counter = counter + 1;
295 array_en_reg = 1; //corresponding 0 is up top
296 inputs_zero = 1;
297 end
298

299 ss_2: begin //write outputs
300 if (c_gen_full_n) begin
301 c_gen_we = 1;
302 next_counter = counter + 1;
303 array_en_reg = 1;
304 end
305 end
306 endcase
307

308 //------mark end of operation-------/
309 next_state = current_state;
310 if(end_of_gen_op) begin
311 next_state = s_done;
312 next_counter = 0; //reset the counter, you never know
313 end
314 end
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FSM: Band Compute

• Deals with timing, array enabling and data reading and writing. The band operation
data needs are more complex and result in a more complicated state. We first note
that we have employed a structure of substates which are dictated by the combina-
tion of the must_read and must_write flags. These flags are set according to the
parameters computed in the select_opmode state and the value of tricounter.
The different substates are: read only, read and write, write only, cycle without
reading or writing. In order to properly complete the operation we also have a
inputs_zero signal which sets all inputs to zero when no more data is to be sent to
the array. This is necessary because of the direction of flow of the data. At the end
of the operation, if we do not set all the inputs to zero when cycling the operation,
the non-zero leftovers in the FIFO ports will contaminate the calculations.

• Moves to the done state when the operation is finished. This is determined by
comparing the counter with the theoretical value the counter should have when the
operation is complete. This value is computed from the input parameters.

Listing 30: Verilog description of the band compute state. This code snippet is a portion
of Listing 61

325 s_bandcompute: begin // reachable now. The design has to be smart.
326 inputs_zero = 0;
327 array_en_reg = 0;
328 next_counter = counter;
329 next_tricounter = tricounter;
330 must_read = 0;
331 must_write = 0;
332

333 a_band_re = 0;
334 b_band_re = 0;
335 c_band_we = 0;
336 if (counter >= band_duration) begin
337 inputs_zero = 1;
338 end
339 if(tricounter == 2'b00 && counter < band_duration) begin // if the counter is below the band

duration then we must read↪→

340 must_read = 1;
341 end
342

343 if (counter >= start_band_validity && tricounter == 2'b00) begin
344 must_write = 1;
345 end // then we must write
346

347

348 //put a case statement here
349 case(band_substate)
350 ss_0: begin// must only read
351 if(a_band_empty_n && b_band_empty_n) begin //read and cycle
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352 a_band_re = 1;
353 b_band_re = 1;
354 next_counter = counter + 1;
355 next_tricounter = (tricounter == 2'b10 )? 0 : tricounter + 1;
356 array_en_reg = 1;
357 end //else jsut wait
358 end
359

360 ss_1: begin// must read and write
361 if(a_band_empty_n && b_band_empty_n && c_band_full_n) begin
362 a_band_re = 1;
363 b_band_re = 1;
364 c_band_we = 1;
365 next_counter = counter + 1;
366 next_tricounter = (tricounter == 2'b10 )? 0 : tricounter + 1;
367 array_en_reg = 1;
368 end // else just wait
369 end
370

371 ss_2: begin // must only write
372 if(c_band_full_n) begin
373 c_band_we = 1;
374 next_counter = counter + 1;
375 next_tricounter = (tricounter == 2'b10 )? 0 : tricounter + 1;
376 array_en_reg = 1;
377 end
378 end
379

380 ss_3: begin //must do nothing but still cycle
381 next_counter = counter + 1;
382 next_tricounter = (tricounter == 2'b10 )? 0 : tricounter + 1;
383 array_en_reg = 1;
384 end
385

386 default: begin // must do nothing, same as ss_3
387 next_counter = counter + 1;
388 next_tricounter = (tricounter == 2'b10 )? 0 : tricounter + 1;
389 array_en_reg = 1;
390 end
391 endcase
392

393

394 next_state = s_bandcompute;
395 if (end_of_band_op) next_state = s_done;
396 end

FSM: Done

• Empties the parameter FIFO’s

• Is used to set the blackbox output ap_done signal

• Moves to the idle state immediately
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Listing 31: Verilog description of the generic compute state. This code snippet is a
portion of Listing 61

398 s_done: begin // put all the output we to 0;
399 opmode_re = 1;
400 size_re = 1;
401 band_type_re = 1;
402 c_gen_we = 0;
403 c_band_we = 0;
404 next_state = s_idle;
405 end

FSM: Idle

• Provides cleanup for the FIFO’s which require it

• Is used to set the blackbox output ap_idle

• Moves to the reset state immediately

Listing 32: Verilog description of the idle state. This code snippet is a portion of Listing
61

407 s_idle: begin
408 opmode_re = 0;
409 size_re = 0;
410 band_type_re = 0;
411 next_state = s_reset;
412 end

4.5.2. HLS Wrapper

The HLS wrapper is an HLS block which will wrap around our kernel and deal with
memory transfers to and from the Host computer. It is organised into three distinct
functions and is structurally inspired by the work of S. Soldavini in [18]. This structure
is also the one suggested by Xilinx in [22].
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Figure 4.5: Internal structure of the HLS wrapper

Read Data Function

The read function is tasked with receiving chunks of data from the High Bandwith Memory
(HBM) and packing them into the correct line width to feed to the kernel. This is of
course because our kernel needs its data to be delivered line by line. An astute reader
might question why we did not use simple interfaces instead of FIFO’s for the parameters,
since they do not require to be streamed. This is simply due to a limitation from Vitis
blackboxes. A blackbox is not allowed to have simple interfaces and FIFO’s at the same
time. Since our design inherently uses FIFO’s for the streaming of input and output data,
we had to move every input and output to FIFO’s, including the one-time parameters.

Naive Implementation Our naive implementation achieves the reading of the HBM
chunks by taking data-wide pieces from the chunks and putting them into a data-wide
FIFO. Once the data is in a data-wide FIFO, we then pull the necessary amount of data
and fill a line-wide FIFO with it. This line-wide FIFO is the one from which our blackbox
can read data.

Listing 33: Portion of the naive (almost) fully parametric data delivery function, show-
casing the GMMM

41 for(unsigned int i=0;i<num_transfers;i++){
42 chunk_A = in_A[i];
43 chunk_B = in_B[i];
44 for(unsigned int j=0;j<data_per_transfer && j<elems_left;j++){ // this will fill the fifo

with the data↪→

45 A_data_fifo << chunk_A.range(DATA_WIDTH*(j+1)-1,j*DATA_WIDTH);
46 B_data_fifo << chunk_B.range(DATA_WIDTH*(j+1)-1,j*DATA_WIDTH);
47 }
48 elems_left -= data_per_transfer;
49 }
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50 for(unsigned int i=0;i<size;i++){ // for each line, pull out as many elements as you need,
51 //concatenate them and put them into the line FIFO (connected to the blackbox)
52 gen_in_t A_line;
53 data_t A_data;
54 gen_in_t B_line;
55 data_t B_data;
56 for(unsigned int j=0;j<size;j++){ // this will fill the fifo with the data
57 A_data_fifo >> A_data;
58 A_line.range(DATA_WIDTH*(j+1)-1,j*DATA_WIDTH) = A_data.range();
59 B_data_fifo >> B_data;
60 B_line.range(DATA_WIDTH*(j+1)-1,j*DATA_WIDTH) = B_data.range();
61 }
62 A_gen_line << A_line;
63 B_gen_line << B_line;
64 }

Although simple in nature, this technique has its obvious drawbacks, the first being it
restricts the data bit-width to be a power of two so that it properly fits in the chunks. It
also does not work if the data width is larger than the size of the chunk.

The ultimate drawback this design is its inherent slowness. We will illustrate this state-
ment with an example. In order to fill a 16-element wide line of data, it must pull from
the data-FIFO 16 times. We can thus expect that this will take 16 cycles if an element
is pulled each cycle. This could result in it being a severe bottleneck since it only allows
the kernel to run 1 out of every 16 cycles. This equates to a 94% stall rate, for such a
configuration. It also becomes slower with the increase of the size of the input lines, which
is counterproductive. Figure 4.6 displays this algorithm.

Figure 4.6: Diagram of the naive read data algorithm

Optimised implementation Our optimised Implementation achieves much better per-
formances in theory by filling the line-wide FIFO directly. We use pointers to keep track
of our position in the chunks and in our temporary line. Each cycle we pull as many bits
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as we can, being either limited by the bits left in the chunk or by the bits needed to fill a
line of data. Whenever a line is ready it is dispatched to the kernel. As well as working
with any size of data, not just powers of two, this algorithm also allows for line widths
which are larger than the chunk width, taking more than one chunk to entirely fill up a
line. Figure 4.7 displays this algorithm and Listing 34 shows our implementation.

Listing 34: Portion of the optimised fully parametric data delivery function, showcasing
the GMMM

40 gen_in_t A_line_accu;
41 gen_in_t B_line_accu;
42

43 for(unsigned int i=0;i<num_transfers;i++){
44

45 chunk_A = in_A[i];
46 chunk_B = in_B[i];
47 chunk_accu_bit = 0;
48

49 while(chunk_accu_bit < BUSWIDTH){ //while the chunk still has data to pull
50 bits_to_be_pulled = min(BUSWIDTH-chunk_accu_bit,GEN_IN_SIZE-line_accu_bit); //determine

if we are line-limited or chunk-limited↪→

51 A_line_accu.range(line_accu_bit + bits_to_be_pulled - 1, line_accu_bit) =
chunk_A.range(chunk_accu_bit + bits_to_be_pulled - 1,chunk_accu_bit);↪→

52 B_line_accu.range(line_accu_bit + bits_to_be_pulled - 1, line_accu_bit) =
chunk_B.range(chunk_accu_bit + bits_to_be_pulled - 1,chunk_accu_bit);↪→

53 chunk_accu_bit += bits_to_be_pulled;
54 line_accu_bit += bits_to_be_pulled;

Figure 4.7: Diagram of the optimised read data algorithm
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Write Data Function

The write function is tasked with receiving the output data lines from the kernel and
packaging them into HBM-compatible chunks of data. It is designed exactly like the read
function and thus will not be further discussed. The writing functions in their entirety
can be consulted in Listing 64.

4.5.3. Host Code

Our host code is based on the OpenCL 1.2 API. In the following sections, we will describe
the steps to build up the Host code.

Platform and Devices

We must go through all Platforms to find the Xilinx Platform and then find our device.

Listing 35: Host code portion showcasing the Platform and Devices. This code snippet is
a portion of Listing 63

85 std::vector<cl::Device> devices;
86 cl::Device device;
87 cl_int err;
88 cl::Context context;
89 cl::CommandQueue q;
90 cl::Kernel krnl_matrix_mult;
91 cl::Program program;
92 std::vector<cl::Platform> platforms;
93 bool found_device = false;
94

95 //traversing all Platforms To find Xilinx Platform and targeted
96 //Device in Xilinx Platform
97 cl::Platform::get(&platforms);
98 for(size_t i = 0; (i < platforms.size() ) & (found_device == false) ;i++){
99 cl::Platform platform = platforms[i];

100 std::string platformName = platform.getInfo<CL_PLATFORM_NAME>();
101 if ( platformName == "Xilinx"){
102 devices.clear();
103 platform.getDevices(CL_DEVICE_TYPE_ACCELERATOR, &devices);
104 if (devices.size()){
105 device = devices[0];
106 found_device = true;
107 break;
108 }
109 }
110 }
111 if (found_device == false){
112 std::cout << "Error: Unable to find Target Device "
113 << device.getInfo<CL_DEVICE_NAME>() << std::endl;
114 return EXIT_FAILURE; }
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Context and Command Queues

The next step is to set up the context and the command queues.

Listing 36: Host code portion showcasing the Context and Command Queues creation.
This code snippet is a portion of Listing 63

118 OCL_CHECK(err, context = cl::Context(device, NULL, NULL, NULL, &err));
119 OCL_CHECK(err, q = cl::CommandQueue(context, device, CL_QUEUE_PROFILING_ENABLE, &err));

Load the Binary and Program the FPGA

The next step is to find the device binary, load it into memory and use it to program the
FPGA.

Listing 37: Host code portion showcasing binary reading and FPGA programming. This
code snippet is a portion of Listing 63

121 std::cout << "INFO: Reading " << xclbinFilename << std::endl;
122 FILE* fp;
123 if ((fp = fopen(xclbinFilename.c_str(), "r")) == nullptr) {
124 printf("ERROR: %s xclbin not available please build\n", xclbinFilename.c_str());
125 exit(EXIT_FAILURE);
126 }
127

128 // Load xclbin
129 std::cout << "Loading: '" << xclbinFilename << "'\n";
130 std::ifstream bin_file(xclbinFilename, std::ifstream::binary);
131 bin_file.seekg (0, bin_file.end);
132 unsigned nb = bin_file.tellg();
133 std::cout << "number of program bytes: " << nb << std::endl;
134 bin_file.seekg (0, bin_file.beg);
135 char *buf = new char [nb];
136 bin_file.read(buf, nb);
137

138

139 std::cout << "Creating Program from binary file..." << std::endl;
140 // Creating Program from Binary File
141 cl::Program::Binaries bins;
142 bins.push_back({buf,nb});
143 devices.resize(1);
144 std::cout << "OK" << std::endl << "Programming Device...";
145 OCL_CHECK(err, program = cl::Program(context, devices, bins, NULL, &err));
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Kernel Object Creation and Buffer Allocation

The next step is to create a kernel object from the program. We then allocate memory
on the device. We set up two buffers for the inputs and one buffer for the output with
the appropriate space.

Listing 38: Host code portion showcasing the Context and Command Queues creation.
This code snippet is a portion of Listing 63

147 std::cout << "OK" << std::endl << "Calling Kernel...";
148 // This call will get the kernel object from program. A kernel is an
149 // OpenCL function that is executed on the FPGA.
150 OCL_CHECK(err, krnl_matrix_mult = cl::Kernel(program,"hls_wrapper", &err));
151 std::cout << "OK" << std::endl << "Allocating memory...";
152 // These commands will allocate memory on the Device. The cl::Buffer objects can
153 // be used to reference the memory locations on the device.
154 OCL_CHECK(err, cl::Buffer buffer_A(context, CL_MEM_READ_ONLY, gen_matrix_size_in_bytes, NULL, &err));
155 OCL_CHECK(err, cl::Buffer buffer_B(context, CL_MEM_READ_ONLY, gen_matrix_size_in_bytes, NULL, &err));
156 OCL_CHECK(err, cl::Buffer buffer_C(context, CL_MEM_WRITE_ONLY, gen_matrix_size_in_bytes, NULL,

&err));↪→

Setting the Kernel Arguments

The next step is to set the kernel arguments. They must be set in the same order as the
order in which they are in the top level function of our C++ kernel. We will set first our
input and output buffers, then our kernel parameters.

Listing 39: Host code portion showcasing the Kernel Arguments setup. This code snippet
is a portion of Listing 63

162 OCL_CHECK(err, err = krnl_matrix_mult.setArg(0,buffer_A));
163 OCL_CHECK(err, err = krnl_matrix_mult.setArg(1,buffer_B));
164 OCL_CHECK(err, err = krnl_matrix_mult.setArg(2,buffer_C));
165 OCL_CHECK(err, err = krnl_matrix_mult.setArg(3,size));
166 OCL_CHECK(err, err = krnl_matrix_mult.setArg(4,opmode));
167 OCL_CHECK(err, err = krnl_matrix_mult.setArg(5,band_type));

Filling the Input Data and Mapping Pointers to Buffers

In the next code portion, we will map C++ pointers to the previously allocated memory
buffers. We will then fill the input memories via these pointers with the appropriate data.
In this case we will fill each element with consecutive integers.
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Listing 40: Host code portion showcasing input data filling and mapping pointers to
Buffers. This code snippet is a portion of Listing 63

175 data_t *ptr_A;
176 data_t *ptr_B;
177 data_t *ptr_C;
178

179 OCL_CHECK(err, ptr_A = (data_t*)q.enqueueMapBuffer (buffer_A , CL_TRUE , CL_MAP_WRITE , 0,
gen_matrix_size_in_bytes, NULL, NULL, &err));↪→

180 OCL_CHECK(err, ptr_B = (data_t*)q.enqueueMapBuffer (buffer_B , CL_TRUE , CL_MAP_WRITE , 0,
gen_matrix_size_in_bytes, NULL, NULL, &err));↪→

181 OCL_CHECK(err, ptr_C = (data_t*)q.enqueueMapBuffer (buffer_C , CL_TRUE , CL_MAP_READ , 0,
gen_matrix_size_in_bytes, NULL, NULL, &err));↪→

182 std::cout << "OK" << std::endl << "Preparing the input data..." << std::flush;
183

184 //fill in the matrices with relevant numbers here.
185 for(unsigned int k=0;k<size*size;k++){
186 ptr_A[k] = k;
187 ptr_B[k] = k;
188 }

Migrating Data and Launching the Kernel

The next step is to migrate the data from the host computer to the FPGA and launch
the kernel.

Listing 41: Host code portion showcasing Data Migration and Kernel Launching. This
code snippet is a portion of Listing 63

205 OCL_CHECK(err, q.finish());
206 OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_B},0/* 0 means from host*/ ));
207 OCL_CHECK(err, q.finish());
208 //Launch the Kernel
209 OCL_CHECK(err, err = q.enqueueTask(krnl_matrix_mult));
210 OCL_CHECK(err, q.finish());
211 // The result of the previous kernel execution will need to be retrieved in
212 // order to view the results. This call will transfer the data from FPGA to
213 // source_results vector
214 OCL_CHECK(err, q.enqueueMigrateMemObjects({buffer_C},CL_MIGRATE_MEM_OBJECT_HOST));
215 OCL_CHECK(err, q.finish());
216 }
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Releasing the Resources

Finally, after executing the kernel, we must release the resources and clean-up everything.

Listing 42: Host code portion showcasing Data Migration and Kernel Launching. This
code snippet is a portion of Listing 63

245 OCL_CHECK(err, err = q.enqueueUnmapMemObject(buffer_B , ptr_B));
246 OCL_CHECK(err, err = q.enqueueUnmapMemObject(buffer_C , ptr_C));
247

248 OCL_CHECK(err, err = q.finish());

4.5.4. RTL Improvement: GMMM Streamability

Although we designed our GMMM core to be streamable, our FSM did not allow it to
reach its full potential. Thus we have decided to redesign our FSM in order to accomodate
for streamability. The first obstacle for streamability is that the host must be able to
communicate to the kernel that it is sending multiple input matrices one after the other
which are intended to be multiplied together. Since we had an extra parameter band_type
which was unused for the GMMM, we decided to reuse it as a signal that indicates how
many matrices should be multiplied together. This way we can launch the kernel, execute
a certain number of matrix multiplications back-to-back and then stop the execution. The
modifications in the kernel are fully contained within the FSM.

We needed to add a local generic counter, which will count from 0 to MAT_SIZE - 1 then
start over at 0. This will ensure that the steering mechanisms are properly fed throughout
the numerous operations. The next step is to change the state model to look more like the
BMMM. We split the logic into must_read and must_write signals whose combinations
determine the substate. Indeed, now that many operations can be streamed, it is possible
that we need to read and write at the same time. We must also modify the HLS wrapper
read and write functions to read and write more lines of data according to the band_type
parameter. These changes can be consulted in Listings 62 and 64.

4.5.5. RTL Improvement: Breaking DSP chains

When compiling different sized arrays, we noticed that we began getting problems when
trying to compile arrays of MAT_SIZE larger than 16. When this was attempted, the
implementation would fail and the following error would occur: “Failed to build a DSP
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chain shape. The height of the device or SLR DSP column is 110 DSPs. Modify the source
so that the chain will fit onto one device or SLR DSP column”. This error indicated that
somehow, some carry chain exists between our DSP’s. This is not normal and does not
correspond to our design. We have thus assumed that some optimisation step must be
eliminating the boundaries between our processing elements and artificially creating DSP
chains. Our solution to this problem has been to encapsulate the processing elements in a
Vivado dont_touch directive. When this directive is included, the Vivado synthesis tool
keeps this entity separate and prevents it from being absorbed into other logic during
synthesis optimisation steps.

When this solution was applied, we ran into a new problem. After an unusually long
compilation time, the implementation failed with the following error message: “Routing
results verification failed due to partially-conflicted nets”. While checking the area reports
for the placed but not yet routed system, we noticed that the area usage was not high
enough to trigger such an error. We concluded that setting our target frequency at
450MHz might be too stringent, making the implementation tool spend all its time trying
to reach an unreachable target instead of building a working system. Reducing this
target to a more realistic frequency resulted in the successful compilation of a system
with MAT_SIZE = 32. We also noticed that decreasing the target frequency to values
which are closer to realistic values results in less variability in achieved kernel frequency.

4.6. Equivalent Kernel HLS Implementation

Our HLS implementation is designed to fit perfectly in place of the RTL implementation.
It will feature the same interfaces and works by receiving the lines of data, putting them
into a Private Local Memory (PLM) then working on the data when it is structured
there. Both the GMMM section and the BMMM section are structured into a triple-for-
loop implementation of the matrix multiplication.

4.6.1. Generic Matrix-Matrix Multiplication

For our GMMM portion of the code, the resulting implementation is very simple and does
not need to be further discussed.

Listing 43: HLS version of the unified matrix multiplication kernel, focus on GMMM.

53 for(unsigned int i=0;i<MAT_SIZE;i++){
54 for(unsigned int j=0;j<MAT_SIZE;j++){
55 index = i*MAT_SIZE + j;
56 c_data_array[index]=0; // start the accumulator at 0
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57 for(unsigned int k=0;k<MAT_SIZE;k++){
58 index_a = i*MAT_SIZE + k;
59 index_b = k*MAT_SIZE + j;
60 c_data_array[index] += a_data_array[index_a]*b_data_array[index_b];
61 }
62 }
63 }

4.6.2. Band Matrix-Matrix Multiplication

For our BMMM portion of the code, the first implementation features a few particularities.
In Listing 44, note the checks implemented on line 99. These serve to make sure we are
not computing any elements outside of the band of the output matrix. The checks on line
102 ensure that only the elements within the input band matrices are considered. When
all the preliminary checks have been executed, we can begin the actual computation. This
step happens in 3 parts. First, we must calculate where the input data can be found.
Then we use these indices to access the data and calculate the contribution to the final
result. Finally, we calculate the corresponding output index in rectangular coordinates
and write out the data to the output matrix.

Listing 44: HLS version of the unified matrix multiplication kernel, focus on BMMM

90 unsigned int index_a;
91 unsigned int index_b;
92 unsigned int index_c;
93

94 const int q = band_type + 1;
95 const int p = in_width - q + 1;
96

97 for(int c_i=0;c_i<size;c_i++){
98 for(int c_j=0;c_j<size;c_j++){
99 if((c_i-c_j) < in_width && (c_i-c_j) > -in_width){

100 index_c = get_c_index(c_i,c_j,in_width);
101 for(int c_k=0;c_k<size;c_k++){
102 if((c_i-c_k) < q && (c_i-c_k) > -p && (c_k-c_j) < p && (c_k-c_j)> -q){
103 index_a = get_a_index(c_i,c_k,in_width,p);
104 index_b = get_a_index(c_j,c_k,in_width,p);
105 c_data_array[index_c]+=a_data_array[index_a]*b_data_array[index_b];
106 }
107 }
108 }
109 }
110 }
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4.6.3. HLS Improvement: GMMM Streamability

Until this point our HLS design was not able to stream operations, meaning every time the
kernel was launched, it could only execute one GMMM. Following the logic put in place
by the RTL design, we reused the band_type parameter to convey how many operations
must be executed. The only necessary change to the kernel was to encompass the entire
operation in a for-loop. For each loop, data is pulled into a PLM large enough to fit the
input matrix. When an operation is finished, the output data is dispatched and the next
operation is also loaded.

Listing 45: Source code of the improved GMMM portion of the HLS kernel. This code
snippet is a portion of Listing 64

156 const unsigned int in_array_size = MAT_SIZE*MAT_SIZE;
157 const unsigned int out_array_size = MAT_SIZE*MAT_SIZE;
158

159 data_t a_data_array[in_array_size];
160 data_t b_data_array[in_array_size];
161 data_t c_data_array[out_array_size];
162

163 for(unsigned int opcount = 0; opcount < band_type; opcount++){
164 #pragma HLS loop_tripcount max=1000
165 for(unsigned int i=0; i < MAT_SIZE; i++){ //loop through the lines
166 gen_in_t a_temp;
167 gen_in_t b_temp;
168 A_gen_stream >> a_temp;
169 B_gen_stream >> b_temp;
170 for(unsigned int j=0; j<MAT_SIZE; j++){//loop through each line and cut it up and

fill the array↪→

171 index_a = i*MAT_SIZE + j;
172 index_b = j*MAT_SIZE + i; // in order to match the rtl design
173 a_data_array[index_a] = a_temp.range(DATA_WIDTH*(j+1)-1,j*DATA_WIDTH);
174 b_data_array[index_b] = b_temp.range(DATA_WIDTH*(j+1)-1,j*DATA_WIDTH);
175 }
176 }
177

178 for(unsigned int i=0;i<MAT_SIZE;i++){
179 for(unsigned int j=0;j<MAT_SIZE;j++){
180 index = i*MAT_SIZE + j;
181 c_data_array[index]=0; // start the accumulator at 0
182 for(unsigned int k=0;k<MAT_SIZE;k++){
183 index_a = i*MAT_SIZE + k;
184 index_b = k*MAT_SIZE + j;
185 c_data_array[index] += a_data_array[index_a]*b_data_array[index_b];
186 }
187 }
188 }
189 //put the data back into streams
190 for(unsigned int i=0; i<MAT_SIZE; i++){ //loop through the lines
191 gen_out_t c_temp;
192 for(unsigned int j=0; j<MAT_SIZE; j++){//loop through each line and cut it up and

fill the array↪→
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193 index = i*MAT_SIZE + j;
194 c_temp.range(DATA_WIDTH*(j+1)-1,j*DATA_WIDTH) = c_data_array[index];
195 }
196 C_gen_stream << c_temp;
197 }
198 }

4.6.4. HLS Improvement: GMMM Optimisation

Adding the following pragmas to our PLM which deals with the GMMM operating stor-
age allows the innermost loop to be effectively unrolled and executed much faster. These
pragmas partition the memory into multiple memory blocks so that they can be simulta-
neously accessed. The A array uses a cyclic pattern for memory partitioning because it
is expected to be accessed row by row, whereas the B array uses a block pattern because
it is expected to be accessed column by column. This change overall has allowed us to
obtain an II of 1 for the innermost loop of the GMMM operation.

Listing 46: Source code of the pragmas employed to speed up the GMMM portion of the
HLS kernel. This code snippet is a portion of Listing 64

162 data_t a_data_array[in_array_size];
163 DO_PRAGMA(HLS array_partition variable=a_data_array type=cyclic factor=MAT_SIZE/2 dim=1)
164 #pragma HLS bind_storage variable=a_data_array type=RAM_2P
165 data_t b_data_array[in_array_size];
166 DO_PRAGMA(HLS array_partition variable=b_data_array type=block factor=MAT_SIZE/2 dim=1)
167 #pragma HLS bind_storage variable=b_data_array type=RAM_2P

4.6.5. HLS Improvement: BMMM Optimisation

Until now, although functionally correct, our HLS code is very inefficient. At its core it
consists of a triple-for-loop that goes through the entire output matrix. This means that
for a matrix size of 1000, this operation is designed to go through every 10003 indices,
despite most of these indices having no contribution and being expected to result in a 0
in the output, by the very axioms of band matrices.

The solution we employed is much more efficient. Instead of looping through the entire
output matrix, we loop through its rectangular representation. As we mentioned in Section
3.4.1, for large matrices, we expect this matrix to be very densely packed and thus only
consider index pairs that are expected to be non-zero. This brings down the indices from



4| Integration of the RTL Kernel into a System 83

the first two for-loops from N2 to N(2w− 1). For every one of these indices, we compute
the overlap. This overlap dictates how many elements from the input matrices are
overlapping and might thus result in a non-zero contribution. The upper bound of the
overlap variable is w. We loop only on the overlapping data. We then figure out which
indices the overlapping data correspond to in the inputs matrices and convert them to
rectangular indices. We finally use these rectangular indices to access the input data and
compute the contributions to the output matrix. We thus bring the amount of indices
considered from N3 to N(2w − 1)w. When w is much smaller than N , we can expect a
large increase in speed. These improvements can be seen in Listing 47.

4.6.6. HLS improvement: BMMM Streamability

Until now, if we wanted to compute the BMMM, we store the entire rectangular represen-
tation of the input and output matrices. This is of course overkill. Exploiting a pattern in
locality of data requirements, we noticed that we could fit the entire working set of input
data into a w-wide, 2w-long window. Whenever we finish computing a line of output
data in rectangular indices, we can afford to discard a line of input data. Since we have a
moving window of active operating data, we have decided to implement a circular buffer
structure. It works by replacing the obsolete lines of data with the next lines of data. By
wrapping around the access indices of the input matrices, we were able to keep the data
accesses and actual data in the active memory synchronized.

Listing 47: Source code of the improved BMMM portion of the HLS kernel. This code
snippet is a portion of Listing 64

204 const int in_width = 2*MAT_SIZE-1;
205 const int out_width = 2*in_width-1;
206

207 const unsigned int in_array_size = 2*in_width*in_width;
208 const unsigned int out_array_size = out_width;
209

210 data_t a_data_array[in_array_size];//define arrays with sufficient size
211 data_t b_data_array[in_array_size];
212

213 int pattern[in_array_size];
214

215 data_t c_data_array[out_array_size];
216

217

218

219 //simple generic printer
220

221

222 for(unsigned int i=0; i<2*in_width && i<size; i++){ //fill the circular buffer initially
223 #pragma HLS loop_tripcount max=1000
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224 band_in_t a_temp;
225 band_in_t b_temp;
226 A_band_stream >> a_temp;
227 B_band_stream >> b_temp;
228 for(unsigned int j=0; j<in_width; j++){//loop through each line and cut it up and fill the

array↪→

229 index = i*in_width + j;
230 a_data_array[index] = a_temp.range(DATA_WIDTH*(j+1)-1,j*DATA_WIDTH);
231 b_data_array[index] = b_temp.range(DATA_WIDTH*(j+1)-1,j*DATA_WIDTH);
232 }
233 }
234

235 // now that the data is into an array we can easily make the computations with the standard
3-loop technique↪→

236 int index_a;
237 int index_b;
238 int index_c;
239

240 int c_i;
241 int c_j;
242 int c_k;
243

244 int overlap;
245 int dif;
246 int abs_dif;
247

248 const int q = band_type + 1;
249 const int p = in_width - q + 1;
250 const int w = in_width;
251

252 int circ_buffer_offset = 0;
253

254 #ifndef __SYNTHESIS__
255 std::cout << "q= "<< q << " p= " << p << " w= " << in_width << std::endl;
256 #endif
257

258 for(unsigned int c_i_rect = 0 ; c_i_rect < size ; c_i_rect++){
259 #pragma HLS loop_tripcount max=1000
260 if(c_i_rect > in_width && c_i_rect <= size-in_width){
261 band_in_t a_temp;
262 band_in_t b_temp;
263

264 A_band_stream >> a_temp; // these lines are deadlocking in sw_emu
265 B_band_stream >> b_temp;
266 for(unsigned int j=0; j<in_width; j++){
267 index = circ_buffer_offset*in_width + j;
268 a_data_array[index] = a_temp.range(DATA_WIDTH*(j+1)-1,j*DATA_WIDTH);
269 b_data_array[index] = b_temp.range(DATA_WIDTH*(j+1)-1,j*DATA_WIDTH);
270 }
271 circ_buffer_offset = (circ_buffer_offset==2*in_width-1) ? 0 : circ_buffer_offset + 1;
272 }
273 for(unsigned int c_j_rect = 0 ; c_j_rect < out_width ; c_j_rect++){
274 index_c = c_j_rect;
275 c_data_array[index_c] = 0; //start off every output memory at 0
276 if(is_in(c_i_rect,c_j_rect,size,in_width,out_width)){
277 c_i = get_c_i_index(c_i_rect , c_j_rect , w);
278 c_j = get_c_j_index(c_i_rect , c_j_rect , w);
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279

280 dif = c_i-c_j;
281 abs_dif = (dif < 0)? -dif : dif;
282 overlap = w - abs_dif;
283

284 for(unsigned int iter=0 ; iter < overlap ; iter++){
285 DO_PRAGMA(HLS loop_tripcount max=in_width)
286 c_k = (c_i>c_j) ? c_i + iter - (w-p) : c_j + iter - (w-p);
287 if(c_k>=0 && c_k<size){
288 index_a = get_a_index(c_i, c_k , in_width,p);
289 index_b = get_a_index(c_j, c_k , in_width,p);
290

291 c_data_array[index_c] += a_data_array[index_a % in_array_size] *
b_data_array[index_b % in_array_size];↪→

292 }
293 }
294 }
295 }
296 band_out_t c_temp;
297 for(unsigned int j=0; j<out_width; j++){
298 c_temp.range(DATA_WIDTH*(j+1)-1,j*DATA_WIDTH) = c_data_array[j];
299 }
300 C_band_stream << c_temp;
301 }
302 }

4.7. Summary

In this chapter, we have not only gone through the suite of tools and workflows we needed
to implement a full system, but we also showed the modules we wrote in Verilog and the
functions we wrote in C++ to enable that. We then synthesized the entire system using
Vitis. We have also presented our alternative kernel, fully written in C++. Lastly, we
discussed the shortcomings of our kernels and how we implemented their improvements.

In the next chapter, we will present and discuss the different results we obtained from
implementing and running our kernels.
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5.1. Experiment Setup and Data

When our kernels are built, we can make many measurements. We begin by making
sure that the kernels we build are functionally correct. For every kernel we have built,
its correctness has been rigorously checked. The test inputs have been generated using
Matlab programs and their corresponding outputs have been cross-checked.

The next data we can examine is the area utilisation. This information can be found
in a report file called impl_1_full_util_routed.rpt. Our data will be presented as a
percentage of total available resources of the Alveo U280 Ultrascale+ FPGA.

The next data we will examine is the achieved clock frequency of each kernel. The
information can be found in a log file in the project called vivado.log and will always
be presented in MHz.

The following data we can extract from our experiments are run-time data. These data
can be extracted only after running the operations.

For most of our kernels, we will measure the time it takes to complete a given operation.
This will allow us to compare corresponding kernels together. In order to accomplish this,
we must set up some lines in the host code. Our measurements will use the C++ standard
libraries’ timing functions. We must instantiate some high resolution time variables and
encompass the main data migration and kernel launching functions into a for-loop which
we can use to repeat multiple times the same calculation. We insist on pointing out that
“running multiple times the same operation” and “streaming multiple operations” is not
the same thing. In the first case, we launch the kernel multiple times, in the second case
we launch the kernel only once and the operations are streamed through the kernel. For
some of our experiments, multiple operations were streamed through our kernel (especially
when talking about the GMMM kernel) and multiple runs were executed for a single
measurement (to filter out variability noise). The additional code necessary for timing
can be found in Listing 48.
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When executing multiple runs, we have taken the final result and divided it by the amount
of times we launched the kernel to get an accurate average time per kernel execution.

Listing 48: Host code snippet from Listing 63 showcasing timing functionality.

203 unsigned int loopcount = 1;
204

205 std::chrono::duration<double> full_time(0);
206 std::chrono::duration<double> kernel_time(0);
207

208 std::cout << "OK" << std::endl << "Starting " << loopcount << " Operations" << std::flush;
209

210

211 auto kernel_start = std::chrono::high_resolution_clock::now();
212

213 for(unsigned int i=0;i<loopcount;i++){
214 //std::cout << "OK" << std::endl << "Migrating data to the kernel space..." << std::flush;
215

216 // Data will be migrated to kernel space
217 OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_A},0/* 0 means from host*/ ));
218 OCL_CHECK(err, q.finish());
219 OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_B},0/* 0 means from host*/ ));
220 OCL_CHECK(err, q.finish());
221 //std::cout << "OK" << std::endl << "Launching Kernel..." << std::endl << std::flush;
222 //Launch the Kernel
223 OCL_CHECK(err, err = q.enqueueTask(krnl_matrix_mult));
224 OCL_CHECK(err, q.finish());
225 //std::cout << "EXECUTION FINISHED" << std::endl << "Migrating datafrom the kernel space..."<<

std::flush;↪→

226 // The result of the previous kernel execution will need to be retrieved in
227 // order to view the results. This call will transfer the data from FPGA to
228 // source_results vector
229 OCL_CHECK(err, q.enqueueMigrateMemObjects({buffer_C},CL_MIGRATE_MEM_OBJECT_HOST));
230 OCL_CHECK(err, q.finish());
231 //std::cout << "OK" << std::endl << std::flush;
232 //std::cout << std::endl;
233 }
234

235 std::cout << "EXECUTION FINISHED" << std::endl << std::flush;
236

237 auto kernel_end = std::chrono::high_resolution_clock::now();
238

239 full_time = std::chrono::duration<double>(kernel_end - kernel_start);
240

241 kernel_time = full_time / (double) loopcount;
242

243 std::cout << "time per kernel execution:" << kernel_time.count() << "s" << std::endl << std::flush;
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5.2. Baseline Designs

5.2.1. Baseline RTL Kernel

Our baseline for the RTL-infused system yields the area results in Table 5.1. We begin
by noting that the RAM requirements seem not to scale with size or data-width of the
array. The next interesting note is that the size 16 systems with 8 bit and 16 bit data
width appear to use the same DSP blocks, since their utilisation is identical.

Table 5.1: Area results for the implementation of the baseline RTL kernel

MAT_SIZE DATA_WIDTH LUT REG DSP RAM
(%) (%) (%) (%)

4 8 10.41 7.53 0.73 11.41
8 8 10.88 7.79 2.68 11.41
16 8 11.91 8.69 10.84 11.41
16 16 12.96 9.96 10.84 11.41
16 32 18.07 13.53 32.11 11.41

In Table 5.2, we begin by pointing out something unusual. We expected clock frequency to
scale with data width, because larger arithmetic operations take longer. However, we did
not expect the clock frequency to also scale considerably with array size. Next, if we look
at the system with MAT_SIZE = 16 and DATA_WIDTH = 8, we see that on average, a 16x16
matrix multiplication takes 821µs. Theoretically, this operation should take 47 cycles. At
182MHz, this equates to 0.26µs. We presume that the reason we are measuring such a
comparatively long time is that launching the kernel is taking up most of this time, since a
very small fraction of this time is spent actually computing an answer. This measurement
reinforces the streamability improvement discussed in 4.5.4.

Table 5.2: Clock frequency and timing results for the baseline RTL kernel. The GMMM
test consisted of 1000 launches of the kernel each achieving one GMMM. The BMMM
test consisted of launching the kernel once on a band matrix with lateral size 1000 and
band size w = 2∗MAT_SIZE−1.

MAT_SIZE DATA_WIDTH Clock Frequency Time per GMMM Time per BMMM
(MHz) (µs) (ms)

4 8 231 762 1.78
8 8 229 832 1.76
16 8 182 821 2.04
16 16 181 847 1.94
16 32 95 796 2.84
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5.2.2. Baseline HLS Kernel

For the area results of the baseline HLS kernel, we can see that the RAM usage increases
greatly with array size and data width. This is to be expected and reinforces our stream-
bility improvement considered in 4.6.6. Indeed, this version of the HLS kernel stores the
input and output matrices completely into a PLM. Doing so results in the memory usage
increasing considerably with both MAT_SIZE and DATA_WIDTH.

Table 5.3: Area results for the implementation of the baseline HLS kernel

MAT_SIZE DATA_WIDTH LUT REG DSP RAM
(%) (%) (%) (%)

4 8 10.40 7.53 0.24 14.04
8 8 10.81 7.64 0.29 17.40
16 8 11.53 7.85 0.38 24.16
16 16 12.14 8.23 0.38 37.23
16 32 13.22 8.95 0.70 62.70

For the timing and frequency results, we begin by noting that the clock frequencies remain
comfortably above 250MHz for the DATA_WIDTH= 8 implementations. We can see that no
real pattern can be extracted from the three DATA_WIDTH= 8 kernels. Their frequency is
quite variable since these tests were targeting 450MHz and achieving only up to 300MHz.
The reason for this is briefly discussed in 4.5.5.

The next observation is that increasing data size decreases the clock frequency, this is
expected because using multipliers and adders with a larger bit-width increases the delay
of the critical path of the circuit.

Similarly to the RTL kernel, the results of the GMMM time are somewhat constant and
unusually large. Leading us to suspect that they must also be dominated by the launching
of the kernel.

Table 5.4: Clock frequency and timing results for the baseline HLS kernel tests. The
GMMM test consisted of 1000 launches of the kernel each achieving one GMMM. The
BMMM test consisted of launching the kernel once on a band matrix with lateral size
1000 and band size w = 2∗MAT_SIZE−1.

MAT_SIZE DATA_WIDTH Clock Frequency Time per GMMM Time per BMMM
(MHz) (µs) (ms)

4 8 290 676 247
8 8 263 830 568
16 8 293 756 1051
16 16 262 674 1171
16 32 174 778 1439
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5.2.3. Comparison of Baseline Kernels

In our area comparison, we can notice that our RTL kernels uses considerably more DSP’s
than our HLS kernels. RAM usage is much smaller in the RTL kernels since they do not
feature any internal PLM’s. The amount of LUT’s and REG’s is larger for the RTL
compared to the HLS.

Table 5.5: Area Ratio (RTL/HLS) for the baseline kernels.

MAT_SIZE DATA_WIDTH LUT REG DSP RAM
Ratio Ratio Ratio Ratio

4 8 1.00 1.00 3.04 0.81
8 8 1.01 1.02 9.24 0.66
16 8 1.03 1.11 28.53 0.47
16 16 1.07 1.21 28.53 0.31
16 32 1.37 1.51 45.87 0.18

In our timing comparison, we begin by noting that our RTL kernels are consistently
clocked at lower frequencies than our HLS kernels. We also note that the time ratio per
GMMM is close to 1. This result would make sense if our assumption that launching the
kernel is currently dominating the operation time, is right. Next, we can see that the
BMMM is substantially slower in the HLS design than the RTL design. This observation
corroborates the optimisation improvements considered in 4.6.5.

Table 5.6: Clock frequency and timing ratio (RTL/HLS) for the unimproved kernels

MAT_SIZE DATA_WIDTH Clock Frequency Time per GMMM Time per BMMM
Ratio Ratio Ratio

4 8 0.797 1.127 0.007
8 8 0.871 1.002 0.003
16 8 0.621 1.086 0.002
16 16 0.691 1.257 0.002
16 32 0.546 1.023 0.002

5.3. Second Iteration Designs: Comparison

For this experiment we implemented the improvement to the RTL considered in 4.5.4.
This optimisation enables the Host to stream as many1 GMMM operations as it wants
with a single launch of the kernel. To the HLS, we have implemented the improvements
considered in 4.6.6 and 4.6.5. Similarly to the RTL, these optimisations allow the HLS
to stream both GMMM and BMMM operations using a fixed amount of local memory.
These optimizations also allow the BMMM implementation to save large amounts of

1Limited only by the size of the HBM memory
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cycles, in turn making it considerably faster. This test is the first comparison of kernels
which is considered completely fair since both kernels feature the same functionality and
capabilities.

We begin by observing that all the area metrics are similar, except for the DPS’s, of which
the RTL employs considerably more. The execution times of both RTL and HLS are very
similar. The achieved clock frequencies for the RTL are almost half those for the HLS.

Table 5.7: Comparison of area and performance metrics for optimised kernels with
MAT_SIZE = 16 and DATA_WIDTH = 8. The time for the GMMM is reported as the
total time divided by the 1000 streamed operations in order to obtain an average time
per operation. The time for BMMM is calculated for one operation of matrix size 1000.

MAT_SIZE=16 LUT REG DSP RAM Clock Time Time
DATA_WIDTH=8 Frequency GMMM BMMM

(%) (%) (%) (%) (MHz) (µs) (ms)

RTL 11.92 8.70 10.96 11.41 148.6 10.43 15.20
HLS 11.75 7.81 0.39 12.20 287.3 9.26 15.48

RTL/HLS ratio 1.014 1.114 28.10 0.935 0.517 1.126 0.982

The results from this experiment are surprising. Firstly, from the architecture alone, we
would expect our RTL kernel to be much faster than our HLS kernel in both GMMM
and BMMM. As we can see by the comparable times, this is not the case. In tandem
with this first consideration, we also realise that the operations take a similar time to
complete, despite the large difference in clock frequency. In addition, each streamed
GMMM operation on the RTL kernel should take approximately 16 cycles. At 148.6MHz,
this equates to 108ns per generic operation. This is approximately 100 times faster than
the measured time.

All of these considerations lead us to speculate that our RTL kernel is not operating at
its full potential. We cannot make any conclusion on the potential of the HLS kernel with
this data alone. In the following section, we will investigate this.

5.4. RTL GMMM Kernel Investigation

In order to attempt to check our hypothesis, we have implemented a counter within our
RTL kernel’s GMMM section which increments whenever the kernel is ready to receive
more data but is obliged to wait instead. For this investigative section, we have focused
on the GMMM. In Figure 5.1, we show the results of this experiment.
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Figure 5.1: Running rate of a RTL kernel’s GMMM operation with MAT_SIZE = 16 and
DATA_WIDTH = 8. The running rate has been calculated by dividing the number of working
(non-stalled) cycles by the total number of cycles used for the operation.

As the number of streamed operations increases, we can see that we approach a running
rate of 0.0136. This signifies that, when 1000 GMMM operations are streamed through
our current kernel, 98.64% of its operating time is spent waiting for data. This counter
only starts counting the cycles when the first data arrives. This means that launching
the kernel is not a parameter of this experiment. Judging from these results, we expect
that this operation could run 73.5 times faster with appropriate memory delivery systems.
This observation seems to corroborate the gap in performance observed in Section 5.3.
After the fact, we have found that this is not necessarily the explanation because, as we
will see in Section 5.5, 1000 streamed GMMM operations might not be enough to draw
solid conclusions.

The next kernel we have implemented employs input and output PLM’s into which the
data will be loaded before the execution of the kernel. The data is then to be streamed
at the rate of 1 line per cycle to and from the array using a simple HLS for-loop with a
precompiler pragma which ensures the data is dispatched at the rate of 1 line per cycle.
The code we employed for this purpose can be seen in Listing 49 and 50. This test will
show us if the RTL has the capability of running uninterrupted, at its theoretical speed.
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Listing 49: Reading function with a PLM for a MAT_SIZE = 16 and DATA_WIDTH = 8

kernel. Note the pragma at line 369, which tells the Vitis compiler to try to make the loop
iteration take 1 cycle. This signals to the compiler to ensure that one line is dispatched
to the FIFO every single cycle.

339 const unsigned int opcount_max = 1000; // can accomodate a maximum of 2 operations
340 gen_in_t A_PLM[MAT_SIZE*opcount_max];
341 gen_in_t B_PLM[MAT_SIZE*opcount_max];
342

343 unsigned int index_PLM=0;
344

345 for(unsigned int i=0;i<num_transfers;i++){
346

347 chunk_A = in_A[i];
348 chunk_B = in_B[i];
349 chunk_accu_bit = 0;
350

351 while(chunk_accu_bit < BUSWIDTH && bits_left != 0){ //while the chunk still has data to pull
352 bits_to_be_pulled = min(BUSWIDTH-chunk_accu_bit,GEN_IN_SIZE-line_accu_bit); //determine

if we are line-limited or chunk-limited↪→

353 A_line_accu.range(line_accu_bit + bits_to_be_pulled - 1, line_accu_bit) =
chunk_A.range(chunk_accu_bit + bits_to_be_pulled - 1,chunk_accu_bit);↪→

354 B_line_accu.range(line_accu_bit + bits_to_be_pulled - 1, line_accu_bit) =
chunk_B.range(chunk_accu_bit + bits_to_be_pulled - 1,chunk_accu_bit);↪→

355 chunk_accu_bit += bits_to_be_pulled;
356 line_accu_bit += bits_to_be_pulled;
357 bits_left -= bits_to_be_pulled;
358 if(line_accu_bit == GEN_IN_SIZE){ //dispatch it
359 A_PLM[index_PLM] = A_line_accu;
360 B_PLM[index_PLM] = B_line_accu;
361 index_PLM++;
362 line_accu_bit=0;
363 }
364 }
365 }
366 //now the data features in the PLM, we must dipatch it super fast. Do as few conditions and

callculations as possible↪→

367 const unsigned int max = MAT_SIZE*opcount_max;
368 for(unsigned int index_PLM=0; index_PLM < band_type*MAT_SIZE; index_PLM++){
369 #pragma HLS pipeline II=1
370 A_gen_line << A_PLM[index_PLM];
371 B_gen_line << B_PLM[index_PLM];
372 }
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Listing 50: Writing function with a PLM for a MAT_SIZE = 16 and DATA_WIDTH = 8

kernel’s GMMM portion. Note the pragma at line 434, which tells the Vitis compiler to
try to make the loop iteration take 1 cycle. This signals to the compiler to ensure that
one line is pulled from the FIFO every single cycle.

428 const unsigned int opcount_max=1000;
429 gen_out_t Temp_C;
430 const unsigned int max = MAT_SIZE*opcount_max + 1;
431 gen_out_t C_PLM[max];
432

433 for(unsigned int index_PLM = 0; index_PLM < band_type*MAT_SIZE + 1; index_PLM++){
434 #pragma HLS pipeline II=1
435 C_gen_line >> C_PLM[index_PLM];
436 }
437

438 unsigned int in_matrix_size_in_bits = (band_type*size+1)*size*DATA_WIDTH; //one extra line
439 unsigned int bits_left = in_matrix_size_in_bits;
440 const unsigned int num_transfers = (in_matrix_size_in_bits % BUSWIDTH == 0) ?
441 in_matrix_size_in_bits /BUSWIDTH : in_matrix_size_in_bits /BUSWIDTH + 1;
442

443 for(unsigned int i=0; i<band_type*size + 1; i++){ //for each line, work until the line is empty
444 Temp_C = C_PLM[i];
445 line_accu_bit = 0;
446 while(line_accu_bit < GEN_OUT_SIZE){ //while there is still data in the line to dump into

chunk↪→

447 bits_to_be_pulled = min(BUSWIDTH-chunk_accu_bit,GEN_OUT_SIZE-line_accu_bit);//determine
how many bits we can pull↪→

448 chunk_C.range(chunk_accu_bit + bits_to_be_pulled - 1, chunk_accu_bit)=
Temp_C.range(line_accu_bit + bits_to_be_pulled - 1, line_accu_bit);↪→

449 chunk_accu_bit += bits_to_be_pulled;
450 line_accu_bit += bits_to_be_pulled;
451 bits_left -= bits_to_be_pulled;
452 if(chunk_accu_bit == BUSWIDTH || bits_left == 0){
453 out_C[chunk_counter++] = chunk_C;
454 chunk_accu_bit = 0;
455 }
456 }
457 }

When implementing a PLM large enough to accommodate 1000 operations, while still
keeping the stall-counting hardware, we have found that, when running up to 1000
streamed GMMM operations, the kernel never stalls. This experiment proves that
our kernel is capable of running uninterrupted, if the memory management solutions were
adequate. This means that a theoretical improvement of 73.5x is possible to the operating
time.
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5.5. RTL GMMM Analysis using Custom Memory

Management Hardware

In this section we will focus once more on the GMMM operation. We have implemented
a bespoke memory management system for a kernel of parameters MAT_SIZE = 16 and
DATA_WIDTH = 8. By using the same pragmas as in Listing 49 and 50, we were able to
ensure a 1 line per cycle rate of data delivery. This is facilitated because this specific
kernel needs 128 bits per cycle per input and produces 128 bits per cycle for its output.
Since we have configured our HBM channels to be 256 bits wide, each HBM channel
will contain exactly 2 lines of data. The HLS code is thus very simple and the resulting
hardware achieves our data rate goals. We have presented this code in Listings 51 and
52.

Listing 51: Custom reading function for a MAT_SIZE = 16 and DATA_WIDTH = 8 kernel’s
GMMM portion. Note the pragma at line 338, which tells the Vitis compiler to try to
make the loop iteration take 2 cycles. This value has been chosen because each HBM
chunk contains 2 lines. This signals to the compiler to ensure that one line is dispatched
to the FIFO every single cycle.

338 for(unsigned int i=0;i<num_transfers;i++){//for each transfer, dispatch two lines
339 #pragma HLS pipeline II=2
340 chunk_A = in_A[i];
341 chunk_B = in_B[i];
342

343 A_line_accu.range(127, 0) = chunk_A.range(127, 0);
344 A_gen_line << A_line_accu;
345 A_line_accu.range(127, 0) = chunk_A.range(255,128);
346 A_gen_line << A_line_accu;
347

348 B_line_accu.range(127, 0) = chunk_B.range(127, 0);
349 B_gen_line << B_line_accu;
350 B_line_accu.range(127, 0) = chunk_B.range(255,128);
351 B_gen_line << B_line_accu;
352 }

Listing 52: Custom writing function for a MAT_SIZE = 16 and DATA_WIDTH = 8 kernel’s
GMMM portion. Note the pragma at line 421, which tells the Vitis compiler to try to
make the loop iteration take 1 cycle. This signals to the compiler to ensure that one line
is pulled from the FIFO every single cycle.
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420 for(unsigned int i=0; i<band_type*size + 1; i++){ //for each line, work until the line is empty
421 #pragma HLS pipeline II=1
422 C_gen_line >> Temp_C;
423 if(i%2==0){
424 chunk_C.range(127,0)= Temp_C.range(127,0);
425 }
426 else{
427 chunk_C.range(255,128)= Temp_C.range(127,0);
428 out_C[chunk_counter++] = chunk_C;
429 }
430 }

This time we will use no PLM at all, but will ensure that our kernels can be sustainably fed
by checking the HLS compilation logs to see if the desired Iteration Intervals of our loops
are achieved. This would mean that the HLS compiler reports that the data management
hardware achieves a dispatching rate of 1 line per cycle. For this experiment, we will keep
the stall-counting hardware in our processor and use it to make sure that the desired data
delivery rate is actually achieved. The kernel we compiled for this experiment has been
clocked at 216.4MHz.
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Figure 5.2: Time measurement for a RTL kernel with specifications MAT_SIZE = 16 and
DATA_WIDTH = 8 using custom (non-parametric) memory management. The theoretical
time is calculated using the achieved clock frequency and the amount of cycles needed to
complete the operation.
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The results of our experiment are in Figure 5.2,. The following observations can be made:

• Until 1000 operations, we clearly see that the operating time is dominated by the
launch of the kernel. It does not matter how many operations are launched, our
kernel will take approximately the same time. This seems to explain the apparent
similarity in times we have found earlier in Table 5.7. We previously assumed that
this slowness was due to the memory management inadequacy. Instead, we see
here that even a kernel with optimal memory hardware is bottlenecked by the time
needed to migrate the data and launch the kernel.

• At high amounts of streamed operations, launching the kernel becomes absolutely
negligible. Thus, we expect that the time per GMMM operation should start to
approach the theoretical time. This is however not what we observe. There is a
constant performance gap of 2.6x between our measured time and the theoretical
achievable time. We remind the reader that throughout this entire experiment, we
have been controlling that no stalls are measured.

Noticing this performance gap, we have decided to investigate it further. Our guess is that
the HBM interface might have been wrongly configured and could be the source of this
slow-down. For the next test, we configured the HBM channel using the recommended
settings presented in [23]. We then reran the same test and found the data in Figure 5.3.
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Figure 5.3: Time measurement for a RTL kernel with specifications MAT_SIZE = 16 and
DATA_WIDTH = 8 using custom (non-parametric) memory management.
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As we can quickly see, with a large number of operations, we approach the same 2.6x
performance gap. We suspect that the mechanism which is slowing down our kernel is
probably stalling the entire kernel, including the kernel controller, using the ap_ce signal.
This would explain why we have not measured any stalls with our integrated stall counter
but still observe a performance gap. Measuring this would be possible by including an
Integrated Logic Analyzer (ILA) in our design. Unfortunately, as explained in Section
4.3.3, we have not been able to incorporate this hardware into our workflow.

Our next experiment uses the former RTL kernel and compares it with an optimized
HLS kernel, featuring the optimizations presented in 4.6.4. They both will run at their
maximal achievable speed since we are using the same data management hardware from
the previous experiment.
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Figure 5.4: Time measurement for a RTL kernel and an HLS kernel, both with speci-
fications MAT_SIZE = 16 and DATA_WIDTH = 8 using custom (non-parametric) memory
management.

From this experiment, the following observations can be made:

• For a low amount of generic operations streamed, virtually no improvement can be
obtained by using a systolic kernel in this system because the operation is largely
dominated by the actual launch of the kernel. If the target application only runs
occasional GMMM operations, implementing a systolic GMMM array compared to
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a HLS version is a waste of area and will not improve the speed or latency of the
calculation.

• At a high amount of generic operations streamed, our RTL GMMM kernel performs
6.63x faster compared to our HLS GMMM kernel. As we will see in Table 5.8,
the RTL kernel employs nearly 30x the amount of DSP’s that the HLS kernel em-
ploys. We remind that these kernels also include the hardware to enable BMMM,
so independant conclusions on the performance/area metrics should not be made.

In Table 5.8, we see that the theoretical cycles per line needed for the HLS is 20 times
greater than for the RTL. We would expect that this translates to an increase of perfor-
mance of 20x, as opposed to 6.63x. It is possible to find the gap in performance. Indeed,
if we compound the 6.63x real-world performance gap with the 2.6x gap between the real
RTL and the theoretical RTL, we reach 17.24x in performance gap between the real HLS
measurement and the theoretical RTL speed. In order to bridge the final gap to 20x, we
need to take into account the difference in achieved clock speeds. If we multiply 17.24x
with 250

216.4
, we do indeed obtain 19.95x. This consideration shows us that the HLS is run-

ning at its full potential but the RTL is being throttled because data requirements might
be too stringent for the FPGA we are employing.

Table 5.8: Comparison of area for optimised kernels with MAT_SIZE = 16, DATA_WIDTH
= 8 and custom memory management hardware. The compute cycles have been found
from the HLS report for the HLS kernel and theoretically for the RTL kernel.

MAT_SIZE =16 LUT REG DSP RAM FREQ Compute
DATA_WIDTH =8 (%) (%) (%) (%) (MHz) Cycles

HLS 11.00 7.62 0.33 11.46 250.0 20
RTL 11.58 8.53 10.83 13.05 216.4 1

RTL/HLS ratio 1.053 1.119 32.818 1.139 0.866 1/20

5.6. Final kernels: Expectations and Measurements

For our final experiments, we have compiled a family of kernels using our fully-parametric
data management hardware.

5.6.1. Area Analysis

The results of the area utilisation can be found in Table 5.9.
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Table 5.9: Area report for our final kernels. Every kernel has DATA_WIDTH= 8.

MAT_SIZE FREQ LUT REG DSP RAM
(MHz) (%) (%) (%) (%)

R
T

L

4 242 10.32 7.45 0.75 11.41
8 214 10.98 7.69 2.70 11.41
16 203 12.17 8.55 10.86 11.76
32 153 15.14 11.81 44.19 12.80

H
L
S

4 251 10.47 7.48 0.79 11.46
8 226 10.97 7.54 0.28 11.46
16 199 11.83 7.63 0.37 11.81
32 174 12.55 7.78 0.54 13.37

R
T

L
H

L
S

ra
ti

o 4 0.97 0.99 1.00 0.95 1.00
8 0.95 1.00 1.02 9.64 1.00
16 1.02 1.03 1.12 29.35 1.00
32 0.88 1.21 1.52 81.83 0.96

The usage of LUT’s, REG’s and RAM is very similar between our kernels. The achieved
frequencies are also close. The next observations will be made after extracting the DSP
usage into a graph.

4 8 16 32

MAT_SIZE Parameter

10
-1

10
0

10
1

10
2

D
S

P
 U

ti
lis

a
ti
o
n
 [
%

]

RTL

HLS

Figure 5.5: DSP usage of our RTL and HLS UMMM kernels.

The first anomaly lays in the smallest HLS kernel. It uses more DSP’s than any other
HLS block. The next observation is that the RTL’s DSP usage quadruples with every
doubling of the lateral size. This is expected since this is by design. In fact, function from
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MAT_SIZE to number of PE’s is (2N −1)2, with N being MAT_SIZE. The gap in DSP usage
between HLS and RTL seems to approximately triple for every doubling of MAT_SIZE.

5.6.2. Comment on HLS Latency Calculation and Reporting

Before beginning our speed analysis, we will discuss briefly how we use the HLS tool to
extract information about loop latency.

For reasons which will become apparent in the following Section, our explanation begins
with a showcase of the structure of our write function, which is visible in Listing 53.
For our BMMM and GMMM we have used a for-loop within which a while-loop sits.
In the outer for-loop we pull a line of data from the FIFO. In the inner while loop, we
take bits from this line and append them to the current working HBM chunk of data.
Ideally, we would like our outer loop to operate at the same speed as our RTL kernels,
in order for them not to be limited. The problem is that this inner while-loop will cycle
an unpredictable amount of times from the perspective of the HLS tool. The HLS tool
will not report the number of cycles per iteration of the outer for-loop when it contains
an unpredictable loop within. A way to force the HLS tool to predict outer loop latencies
is to use the #pragma loop_tripcount min=x max=x (Seen in Listing 53 at lines 34 and
68) withing the inner loop. This will tell the HLS tool how many times the inner loop is
expected to cycle. We must thus calculate how many times we expect the inner while-loop
to loop. The results can be found in Table 5.10.

Listing 53: Source code of the write function. This code snippet is a portion of Listing 64

1 void write_data_optimised(
2 BUS_TYPE* out_C,
3 const unsigned int size,
4 const bool opmode,
5 const unsigned int band_type,
6 hls::stream<band_out_t >& C_band_line,
7 hls::stream<gen_out_t >& C_gen_line)
8 {
9 #pragma HLS INLINE OFF

10 #pragma HLS dataflow
11

12 BUS_TYPE chunk_C;
13

14 unsigned int line_accu_bit;
15 unsigned int chunk_accu_bit=0;
16 unsigned int bits_to_be_pulled;
17 unsigned int chunk_counter = 0;
18

19 if (opmode==OPMODE_GEN){
20 gen_out_t Temp_C;
21
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22 unsigned int in_matrix_size_in_bits = band_type*size*size*DATA_WIDTH;
23 unsigned int bits_left = in_matrix_size_in_bits;
24 const unsigned int num_transfers = (in_matrix_size_in_bits % BUSWIDTH == 0) ?
25 in_matrix_size_in_bits /BUSWIDTH : in_matrix_size_in_bits /BUSWIDTH + 1;
26

27 for(unsigned int i=0; i<band_type*size; i++){ // for each line, work until the line is empty
28 #pragma HLS loop_tripcount max=16000
29

30 C_gen_line >> Temp_C;
31 line_accu_bit = 0;
32

33 while(line_accu_bit < GEN_OUT_SIZE){ //while there is still data in the line to dump into
chunk↪→

34 #pragma HLS loop_tripcount min=1 max=1
35 #pragma HLS pipeline II=1
36 bits_to_be_pulled = min(BUSWIDTH-chunk_accu_bit,GEN_OUT_SIZE-line_accu_bit);//determine

how many bits we can pull↪→

37 chunk_C.range(chunk_accu_bit + bits_to_be_pulled - 1, chunk_accu_bit)=
Temp_C.range(line_accu_bit + bits_to_be_pulled - 1, line_accu_bit);↪→

38 chunk_accu_bit += bits_to_be_pulled;
39 line_accu_bit += bits_to_be_pulled;
40 bits_left -= bits_to_be_pulled;
41 if(chunk_accu_bit == BUSWIDTH || bits_left == 0){
42 out_C[chunk_counter++] = chunk_C;
43 chunk_accu_bit = 0;
44 }
45 }
46 }
47 }
48

49

50 else if(opmode==OPMODE_BAND){
51 band_out_t Temp_C;
52

53 const unsigned int width = 2*(2*MAT_SIZE-1)-1;
54 const unsigned int length = size;
55

56 unsigned int in_matrix_size_in_bits = width*length*DATA_WIDTH;
57 unsigned int bits_left = in_matrix_size_in_bits;
58 const unsigned int num_transfers = (in_matrix_size_in_bits % BUSWIDTH == 0) ?
59 in_matrix_size_in_bits /BUSWIDTH : in_matrix_size_in_bits /BUSWIDTH + 1;
60

61 for(unsigned int i=0; i<length; i++){ // for each line, work until the line is empty
62 #pragma HLS loop_tripcount max=1000
63 #pragma HLS pipeline II=1
64 C_band_line >> Temp_C;
65 line_accu_bit = 0;
66

67 while(line_accu_bit < BAND_OUT_SIZE){ //while there is still data in the line to dump into
chunk↪→

68 #pragma HLS loop_tripcount min=3 max=3
69 //#pragma HLS pipeline II=1
70 bits_to_be_pulled = min(BUSWIDTH-chunk_accu_bit,BAND_OUT_SIZE-line_accu_bit);//determine

how many bits we can pull↪→

71 chunk_C.range(chunk_accu_bit + bits_to_be_pulled - 1, chunk_accu_bit)=
Temp_C.range(line_accu_bit + bits_to_be_pulled - 1, line_accu_bit);↪→

72 chunk_accu_bit += bits_to_be_pulled;
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73 line_accu_bit += bits_to_be_pulled;
74 bits_left -= bits_to_be_pulled;
75 if(chunk_accu_bit == BUSWIDTH || bits_left == 0){//if the chunk is full or there's no

more data to pull↪→

76 out_C[chunk_counter++] = chunk_C;
77 chunk_accu_bit = 0;
78 }
79 }
80 }
81 }
82 }

As we can see from Table 5.10, the expected amount of loops are fractional, and in the
case of the GMMM they all feature between 0 and 1. In these cases, the tool will still
preform the inner loop entirely, thus we always fill in the inner-loop pragmas using the
upper bounds of the Chunks per Line metric, named Expected Loops in Table 5.10.

Table 5.10: Expected amount of loops to fill an entire chunk for both GMMM and BMMM
and for different MAT_SIZE

GMMM BMMM
MAT_SIZE Bits / Line Chunks / Line Expected Loops Bits / Line Chunks / Line Expected Loops

4 32 0.125 1 104 0.406 1
8 64 0.250 1 232 0.906 1
16 128 0.500 1 488 1.906 2
32 256 1.000 1 1000 3.906 4

As a result, we can extract the expected amount of cycles for the outer loops from the
HLS tool. These can be seen in Table 5.11. Note how despite having always the same
amount of expected loops, for some reason the MAT_SIZE= 8 and = 16 feature one fewer
reported cycle than the MAT_SIZE= 4 and = 32. These numbers come from the HLS
report and we cannot explain the reason for the small disparity.

Table 5.11: Reported cycles for the write function for BMMM and GMMM.

GMMM HLS reports BMMM HLS reports
MAT_SIZE Expected Loops Reported Cycles Expected Loops Reported Cycles

4 1 76 1 76
8 1 75 1 76
16 1 75 2 150
32 1 76 4 298
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5.6.3. Speed Analysis: GMMM

Our speed analysis begins with the HLS reports, which we have displayed in Table 5.12.

Table 5.12: Latency report of the functions within our kernels for the GMMM operation.
All the data presented here is in number of cycles per line. The slowest kernels in the
chain are highlighted. The fields marked with an asterisk (*) have gone through some
post-processing and do not feature as is in the HLS report. The RTL compute field
features the theoretical value. The HLS compute field is an average obtained by dividing
the total cycles for a single GMMM operation by the amount of lines produced by that
same operation (the corresponding MAT_SIZE).

GMMM RTL HLS
MAT_SIZE Read Compute* Write Read Compute* Write

4 2 1 76 3 3.00 76
8 2 1 75 3 13.00 75
16 2 1 75 2 20.00 75
32 3 1 76 3 36.53 76

Before moving on, we would like to highligh that the amount of cycles per line for the RTL
write function and the RTL compute function differ by a factor 75x. This is probably
the reason why, when we measured the stalls for the GMMM portion in Section 5.4, we
measured that we could increase the speed by a factor 73.5x.

5.6.4. GMMM Predictions and Measurements

In Table 5.12, we can see that both the HLS and RTL kernels are bottlenecked by the
writing hardware. We begin by predicting that all the comparable kernels will take the
same amount of time to complete, given we account for clock frequency disparities. The
timing tests feature in Figure 5.6.
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Figure 5.6: Timing results for different amounts of streamed GMMM operations and for
every kernel. The kernels with MAT_SIZE= 4, 8 and 16 feature measurements up to 1M
operations, whereas the MAT_SIZE= 32 kernel features data up to 100k operations. This
is due to the HBM’s 256MB limit for data, which is surpassed when running 1M 32x32,
8-bit calculations. Indeed, this operation would require 1.024GB of HBM memory. Small
disparities can be seen between HLS and RTL results. These differences become even
smaller when taking the different achieved clock speeds into account.

In Figure 5.6, we can see that our hypothesis is correct. Both the RTL kernel and the
HLS kernel take the same time to complete the operation. We can thus say that with
it does not matter how fast our kernels are, if they are bottlenecked by data delivery
hardware it is not worth to implement expensive systolic kernels, rather than cheap HLS
kernels. This statement is hardly surprising, since one of the golden rules of good computer
architecture is to match the throughput of data delivery to the computing throughput to
achieve maximum performance for a given area. What is interesting about these results is
that with a fast (in the order of minutes) HLS compilation, we have accurately predicted
the results of this experiment.
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In our next experiment we will try to predict our total running time using only the data
in our table, using the following formula:

Running time = Number of lines produced ∗
Cycles
Line

Achieved Frequency
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Figure 5.7: Timing results for different amounts of streamed operations for our RTL kernel
and the associated theoretical equivalents. Since our HLS and RTL times are so similar,
we will only compare with one of them.

In Figure 5.7, we can see that our predictions are very precise. The biggest error we made
is on the MAT_SIZE= 32 kernel, for which we observed an error of 2%. In Table 5.13, we
showcase the quality of our results.

Table 5.13: Comparison of the predicted and real times for 100k streamed GMMM oper-
ations

Times: 100k GMMM ops.
Predicted Real Ratio

MAT_SIZE (s) (s) (-)

4 0.13 0.13 1.00
8 0.28 0.28 1.00
16 0.59 0.60 0.98
32 1.59 1.62 0.98
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5.6.5. Speed Analysis: BMMM

Our analysis begins once again with the HLS reports in Table 5.14. This time it features
the results for the BMMM operation.

Table 5.14: Latency report of the functions within our kernels for the BMMM operation.
All the data presented here is in number of cycles per line. The slowest kernels in the
chain are highlighted. The RTL compute field features the theoretical value.

BMMM RTL HLS
MAT_SIZE Read Compute* Write Read Compute Write

4 2 3 76 2 666 76
8 2 3 76 2 1591 76
16 3 3 150 3 3823 150
32 3 3 298 2 9824 298

5.6.6. BMMM Predictions and Measurements

In Table 5.14, we can see that the write function is still the bottleneck for our RTL
implementation. However, the HLS is limited by the computation of the data itself. This
is due to the increased complexity of our final BMMM kernel.

Our first prediction is that despite using non-optimal data management hardware, our
RTL kernels still run faster than our HLS kernels. In Figure 5.8 we can see the results of
the measured times for our kernels.
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Figure 5.8: Time comparison between our RTL kernels and HLS kernels using fully-
parametric memory management running BMMM operations.

In Figure 5.8, we can see first that at low size of the band matrix, all the operations take
the same amount of time and the operation time is limited once again by the launching
of the kernel. Very quickly after that, we can see that the HLS kernel computation time
becomes dominant while the RTL kernel only starts becoming dominant at matrices sized
100 to 1000.

When computing very large matrices, we can indeed see that our RTL kernel runs up to
26.76x faster than our HLS kernel. From the HLS report, we also know that our RTL’s
kernel potential is limited by the write function. In order to double-check this, we have
implemented a version of the MAT_SIZE = 16, DATA_WIDTH = 8 kernel with a built-in stall
counter to see the potential speed increases. The measurements from this experiment
feature in Figure 5.9.
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Figure 5.9: Running rate of a RTL kernel’s BMMM operation with MAT_SIZE = 16 and
DATA_WIDTH = 8. The running rate has been calculated by dividing the number of working
(non-stalled) cycles by the total number of cycles used for the operation.

According to this experiment we can see that our kernel is only operational 3.81% of the
time. This means that our theoretical increase in speed is in the order of 26.25x, given
an optimal data management hardware. When this number is compounded with the
measured speed difference between RTL and HLS for this specific kernel of 23.26x, this
would compound to a theoretical performance gap of 610.34x in speed. This consideration
is valid because we know that the HLS kernel is limited by its compute hardware and
thus would not benefit from any speedup from better data management, contrarily to the
RTL kernel.

In the following section we will use the data in our tables to try to predict the working
times of our kernels, and then compare those to the actual working time. This time, since
our RTL and HLS kernels are bottlenecked for different reasons, we will have to do the
discussion twice.

We begin with the RTL kernel discussion.
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Table 5.15: Comparison of the predicted and real times for our RTL preforming a BMMM
of size 100k

RTL Times : Size 100k BMMM
Predicted Real Ratio

MAT_SIZE (s) (s) (-)

4 0.031 0.019 0.68
8 0.035 0.039 0.84
16 0.074 0.083 0.85
32 0.195 0.213 0.90

We can see in Table 5.15, that our predictions achieve the correct order of magnitude.
The smallest kernel features an error of 32%, which is far from being negligible. The other
three kernels feature an error of less than 16%. In Figure 5.10 we visualize our predictions
versus the achieved values.
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Figure 5.10: Timing results for different sizes of band matrices for our RTL kernel and
the associated theoretical predictions.

We can see in Figure 5.10 that our predictions do approach the measurements for large
BMMM operations, except for the smallest kernel, whose predictions are quite inaccurate.
In our opinion this is because of the number of loops that need to be preformed is more
unpredictable. According to Table 5.10, the amount of chunks per line is 0.41, making
the inner loop run sometimes once, sometimes twice, but constantly leaving leftovers in
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the accumulator. This is different than the GMMM case because the Chunks per line for
that operation were simple fractions of 1, meaning the amount of inner loops is constant
and predictable. This phenomenon is less apparent in the other three kernels since their
Chunk per Line metric more closely approaches the Expected Loops.

Next, we will turn our attention to the HLS kernel’s BMMM predictions.

Table 5.16: Comparison of the predicted and real times for our HLS preforming a BMMM
of size 100k

HLS Times : Size 100k BMMM
Predicted Real Ratio

MAT_SIZE (s) (s) (-)

4 0.266 0.261 1.02
8 0.703 0.697 1.01
16 1.917 1.929 0.99
32 5.643 5.699 0.99

In Table 5.16, we can see that our predictions are incredibly accurate. In our HLS source
code for the compute kernel, we also feature many nested loops and thus need to help
the HLS tool to estimate the amount of cycles by giving it accurate inner-loop count
estimations. For this, we had to estimate the overlap for the inner-most loop in the
algorithm. Since the maximal value for this overlap is 2 ∗MAT_SIZE− 1 and the minimum
value is 0, we have taken the floored average values of 3, 7, 15 and 31 respectively for
our kernels with MAT_SIZE= 4, 8, 16, and 32. These have proven to be extremely good
indicators for this loop count since our final results are of high quality. In Figure 5.11, we
can see the final comparison between all our predicted times and the measured times.
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Figure 5.11: Timing results for different sizes of band matrices for our HLS kernel and
the associated theoretical predictions.

We see once again that for every kernel size, the estimations begin to be very precise
starting from a size 1000 band matrix.

5.7. Summary

In this Chapter, we have implemented our kernels and measured their utilisation and
achieved times. We have also investigated more closely some specific kernels and imple-
mented stall counters to examine by how much they are being held back from non-optimal
memory management hardware. We have found that with our fully-parametric data hard-
ware, our MAT_SIZE = 16, DATA_WIDTH = 8 RTL GMMM is being slowed down 73.5x from
its theoretical speed and our RTL BMMM is being slowed down by 26.2x.

We have also uncovered a 2.6x inexplicable gap in performance between our RTL GMMM
operation with custom (ideal) memory management and its theoretical running time.

Lastly, we have compiled a family of kernels utilising our fully-parametric data manage-
ment functions, and compared our predictions of their running time using only the HLS
compilation summaries with their measured running time. We have found that most of
our predictions were very accurate and have tried to explain those which were not.



114 5| Experiments and Results

From the data we have gathered, we can say that our current MAT_SIZE=16, 8-bit Unified
Matrix-Matrix Multiplication RTL kernel is as fast as the HLS version when performing
GMMM operations and 23x faster when performing BMMM operations.

We have also proven that architecturally, given optimal memory management, this same
configuration utilises approximately 30x more DSP’s but can achieve 20x faster GMMM
and 610x faster BMMM, given large operations are streamed.
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Developments

During this thesis we have gone through the study case of implementing a Unified Matrix-
Matrix Multiplier, capable of preforming Generic Matrix-Matrix Multiplications and Band
Matrix-Matrix Multiplications by reusing the same processing elements. We have also
implemented functionally equivalent kernels in C++ using HLS to compile them into hard-
ware. We have then connected these kernels to a host computer using HLS peripherals
and developed a complete workflow for Hybrid RTL-HLS design using Xilinx Software.

We have found that for a kernel containing 30x more DSP’s, we could theoretically achieve
performance increases of 20x for streamed GMMM operations and 610x for streamed
BMMM operations, by using a systolic RTL kernel rather than an HLS kernel with optimal
memory management hardware. With our memory management hardware, we achieved
performance parity in GMMM and a 23.2x improvement in BMMM.

We have also found that with our development board and our methods of communicating
between the host computer and the accelerator, implementing expensive systolic hardware
is a waste of area if the end application does not require to lump together more than 1000
GMMM operations. On the other hand, for most if not all sizes of BMMM operations,
the end application will observe an increase in speed by implementing an RTL systolic
kernel rather than an HLS one.

Furthermore, during our tests, we have discovered an unexplained gap of 2.6x in perfor-
mance between our bottleneck-free kernels, and their theoretical maximum speed, despite
the FPGA manufacturer claiming that their hardware is fast enough to implement our
architecture at full speed.

In the future, further investigating this 2.6x performance gap is absolutely necessary,
in order to understand the limitations of the underlying hardware or what we could do
differently in order to achieve the theoretical times.

We have also seen that our fully-parametric data management functions generated in
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HLS result in incredibly slow hardware, achieving only a rate of 1 line every 75 cycles for
the kernels which expected 1 line per cycle. We believe that much better results can be
achieved and more research in this field is crucial.

We do not claim that the systolic architecture we developed is in any way optimal, but we
do believe that if a Kung and Leiserson-inspired systolic design is to be implemented for
large, streaming BMMM applications, the designers should have very good reasons not to
include the GMMM functionality, since it can be implemented with marginal additional
hardware.

Some more work must also be done to streamline our Hybrid RTL-HLS workflow, adding
fool-proofing for the setup of high-level parameters in multiple files in order to avoid
mismatching HLS peripherals with RTL blackboxes intended for different sized kernels,
overall decreasing the odds of compiling hardware destined to fail.

Our workflow would also benefit from being able to incorporate Integrated Logic Analyzers
into the hardware in order to get a deeper look into what is happening during hardware
execution.

Another very welcome feature to add to the workflow would be the automation of kernel
compilation, testing, and data logging, allowing for tests to be fully executed without the
constant surveillance of the engineer.

Lastly, some more efforts could be made in order to shorten the learning curve for new
users willing to make and integrate blackboxes into their own systems. A collection of
guidelines in Verilog design and setup tutorials for the many components in a hybrid
design would be very convenient.

With this thesis, we only are scratching the surface of multi-directional systolic systems.
We believe their potential is immense and we would like to see more research being carried
out in this field.
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A| Appendix: Source Code

Repository

Listing 54: KLPE.v

1 module KLPE2 #(parameter DATA_WIDTH=64)
2 (input [DATA_WIDTH-1:0] A_in,
3 input [DATA_WIDTH-1:0] B_in,
4 input [DATA_WIDTH-1:0] C_in,
5 output reg [DATA_WIDTH-1:0] A_out,
6 output reg [DATA_WIDTH-1:0] B_out,
7 output reg [DATA_WIDTH-1:0] C_out,
8 input array_en,
9 input clk,

10 input reset);
11 wire [2*DATA_WIDTH-1:0] temp = A_in*B_in; //manually define the operation
12 always @ (posedge clk)
13 begin
14 if (reset) begin
15 A_out <= 0;
16 B_out <= 0;
17 C_out <= 0;
18 end
19 else if (array_en) begin
20 A_out <= A_in;
21 B_out <= B_in;
22 C_out <= C_in + temp[DATA_WIDTH-1:0]; //manually define the operation
23 end
24 end
25 endmodule // KLPE
26

27 module D1D #(parameter DATA_WIDTH=64)
28 (input [DATA_WIDTH-1:0] A_in,
29 output reg [DATA_WIDTH-1:0] A_out,
30 input array_en,
31 input clk,
32 input reset);
33

34 always @ (posedge clk)
35 if (reset) A_out <= 0;
36 else if (array_en) A_out <= A_in;
37 endmodule // Delay - 1D
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Listing 55: unified_array.v

1 `define CLOG2(x) \
2 (x <= 2) ? 1 : \
3 (x <= 4) ? 2 : \
4 (x <= 8) ? 3 : \
5 (x <= 16) ? 4 : \
6 (x <= 32) ? 5 : \
7 (x <= 64) ? 6 : \
8 (x <= 128) ? 7 : \
9 (x <= 256) ? 8 : \

10 (x <= 512) ? 9 : \
11 (x <= 1024) ? 10 : 0 //go unrealistically high to cover the basis
12

13 module unified_array_core #(parameter MAT_SIZE = 3, DATA_WIDTH=32)
14 (
15 input clk,
16 input array_en,
17 input reset,
18 input opmode,//0 for generic multiplier, 1 for band multiplier
19 input [DATA_WIDTH*(2*MAT_SIZE-1)-1:0] A_flattened,
20 input [DATA_WIDTH*(2*MAT_SIZE-1)-1:0] B_flattened,
21 output [DATA_WIDTH*(2*(2*MAT_SIZE-1)-1)-1:0] C_band_flattened,
22 output [DATA_WIDTH*(2*MAT_SIZE-1)-1:0] C_generic_flattened
23 );
24

25

26 wire [DATA_WIDTH-1:0] A [0:(2*MAT_SIZE-1)-1];
27 wire [DATA_WIDTH-1:0] B [0:(2*MAT_SIZE-1)-1];
28 wire [DATA_WIDTH-1:0] C_array_out_ver [0:(2*MAT_SIZE-1)-1];
29 wire [DATA_WIDTH-1:0] C_array_out_hor [0:(2*MAT_SIZE-1)-2];
30 wire [DATA_WIDTH-1:0] C_array_out [0:2*MAT_SIZE-2];
31 wire [DATA_WIDTH-1:0] C_generic [0:2*MAT_SIZE-2];//still needs to be flattened and set to

C_flattened↪→

32 wire [DATA_WIDTH-1:0] C_band [0:2*(2*MAT_SIZE-1)-2];
33

34 genvar i,j;
35 //unflattening
36 generate
37 for (i=0;i<(2*MAT_SIZE-1);i=i+1) begin
38 assign A[i] = A_flattened[DATA_WIDTH*i+(DATA_WIDTH-1):DATA_WIDTH*i];
39 assign B[i] = B_flattened[DATA_WIDTH*i+(DATA_WIDTH-1):DATA_WIDTH*i];
40 end
41 endgenerate
42

43 generate
44 for (i=0;i<2*(2*MAT_SIZE-1)-1;i=i+1) begin
45 assign C_band_flattened[DATA_WIDTH*i+(DATA_WIDTH-1):DATA_WIDTH*i] = C_band[i];
46 end
47 endgenerate
48

49 generate
50 for (i=0; i<(2*MAT_SIZE-1); i=i+1)
51 assign C_generic_flattened[DATA_WIDTH*i+(DATA_WIDTH-1):DATA_WIDTH*i] = C_generic[i];
52 endgenerate
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53

54

55

56 //must preemptively declare as many wire arrays as I need
57 //horizontal and vertical wires :
58 wire [DATA_WIDTH-1:0] w_hor [0:(2*MAT_SIZE-1)-1][0:(2*MAT_SIZE-1)-2];
59 wire [DATA_WIDTH-1:0] w_ver [0:(2*MAT_SIZE-1)-1][0:(2*MAT_SIZE-1)-2];
60 //diagonal wires :
61 //some of these wires will not be used but are declared for simplicity of thought
62 wire [DATA_WIDTH-1:0] w_diag [0:(2*MAT_SIZE-1)-1][0:(2*MAT_SIZE-1)-1];
63

64 generate
65 for (j=0; j<(2*MAT_SIZE-1); j=j+1)
66 begin : j_loop
67 for (i=0; i<(2*MAT_SIZE-1); i=i+1)
68 begin : i_loop
69 wire [DATA_WIDTH-1:0] A_in = j==0 ? A[i] : w_ver[i][j-1];
70 wire [DATA_WIDTH-1:0] B_in = i==0 ? B[j] : w_hor[j][i-1];
71 wire [DATA_WIDTH-1:0] C_in = opmode ? ((i==(2*MAT_SIZE-1)-1 || j==(2*MAT_SIZE-1)-1) ? 0 :

w_diag[i+1][j+1]) : ((i==0 || j==0) ? 0 : w_diag[i-1][j-1]);↪→

72

73 wire [DATA_WIDTH-1:0] A_out;
74 wire [DATA_WIDTH-1:0] B_out;
75 wire [DATA_WIDTH-1:0] C_out;
76

77 if (j<(2*MAT_SIZE-1)-1) assign w_ver[i][j] = A_out ;
78 if (i<(2*MAT_SIZE-1)-1) assign w_hor[j][i] = B_out ;
79

80 assign w_diag[i][j] = C_out ;
81

82 if (j>0 && i>0) begin end
83 else if (i==0) assign C_array_out_ver[(2*MAT_SIZE-1)-j-1] = C_out; // needs checkup for

off-by-1↪→

84 else if (j==0) assign C_array_out_hor[i-1] = C_out;//because the top vector is shifted by 1
85

86 if (j<2*MAT_SIZE-2 && i<2*MAT_SIZE-2) begin end
87 else if (j==2*MAT_SIZE-2 && i >= MAT_SIZE-1) assign C_array_out[(3*MAT_SIZE-3) - i] = C_out;
88 else if (j >= MAT_SIZE-1 && j < 2*MAT_SIZE-2) assign C_array_out[j - MAT_SIZE+1] = C_out;
89

90

91

92 KLPE2 #(.DATA_WIDTH(DATA_WIDTH)) pe (
93 .clk(clk),
94 .array_en(array_en),
95 .reset(reset),
96 .A_in(A_in),
97 .B_in(B_in),
98 .C_in(C_in),
99 .A_out(A_out),

100 .B_out(B_out),
101 .C_out(C_out));
102 end
103 end
104 endgenerate
105 //CHECK THIS AS WELL
106

107 generate
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108 for (i=0; i<2*(2*MAT_SIZE-1)-1; i=i+1)
109 begin
110 if (i<(2*MAT_SIZE-1)) assign C_band[i] = C_array_out_ver[i];
111 else assign C_band[i] = C_array_out_hor[i-(2*MAT_SIZE-1)];
112 end
113 endgenerate
114

115

116

117

118 //generate output for generic multiplier
119 generate
120 for (i=MAT_SIZE-1; i<(2*MAT_SIZE-1); i=i+1) assign C_generic[i] = C_array_out[i];
121 endgenerate
122

123 wire [DATA_WIDTH-1:0] w_delays [0:(MAT_SIZE>=3? MAT_SIZE-3:0)][0:(MAT_SIZE>=3? MAT_SIZE-3:0)];
124

125 generate
126 for (i=0; i<MAT_SIZE-1; i=i+1)
127 begin : i_loop
128 for (j=0; j<=i; j=j+1)
129 begin : j_loop
130

131 wire [DATA_WIDTH-1:0] A_in = j==0 ? C_array_out[i] : w_delays[i-1][j-1];
132 wire [DATA_WIDTH-1:0] A_out;
133

134 if (i<MAT_SIZE-2) assign w_delays[i][j] = A_out;
135 else assign C_generic[MAT_SIZE-2-j] = A_out;
136

137 D1D #(.DATA_WIDTH(DATA_WIDTH)) dblock (
138 .clk(clk),
139 .reset(reset),
140 .array_en(array_en),
141 .A_in(A_in),
142 .A_out(A_out));
143 end
144 end
145 endgenerate
146

147 endmodule
148

149

150

151

152 module unified_array #(parameter MAT_SIZE = 16, DATA_WIDTH=32)
153 (
154 input clk,
155 input reset,
156 input [31:0] counter,//last two bits are used as tricounter when in band operation
157 input array_en,
158 input opmode, //0 for generic, 1 for band
159 input [DATA_WIDTH*(2*MAT_SIZE-1)-1:0] A_band_flattened,
160 input [DATA_WIDTH*(2*MAT_SIZE-1)-1:0] B_band_flattened,
161 output [DATA_WIDTH*(2*(2*MAT_SIZE-1)-1)-1:0] C_band_flattened,
162 input [DATA_WIDTH*MAT_SIZE-1:0] A_generic_flattened,
163 input [DATA_WIDTH*MAT_SIZE-1:0] B_generic_flattened,
164 output [DATA_WIDTH*MAT_SIZE-1:0] C_generic_flattened
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165 );
166

167 //GENERIC MULTIPLIER PERIPHERALS
168

169 wire [DATA_WIDTH*(2*MAT_SIZE-1)-1:0] A_generic_flattened_steering2array;
170 wire [DATA_WIDTH*(2*MAT_SIZE-1)-1:0] B_generic_flattened_steering2array;
171 wire [DATA_WIDTH*(2*MAT_SIZE-1)-1:0] C_generic_flattened_array2steering;
172

173

174

175 IO_altarray_steering #(.DATA_WIDTH(DATA_WIDTH),
176 .MAT_SIZE(MAT_SIZE))
177 steerer0 (
178 .clk(clk),
179 .array_en(array_en),
180 .counter_in(counter[(`CLOG2(MAT_SIZE))-1:0]),
181 .flattened_data_in_A(A_generic_flattened),
182 .flattened_data_to_array_A(A_generic_flattened_steering2array),
183 .flattened_data_in_B(B_generic_flattened),
184 .flattened_data_to_array_B(B_generic_flattened_steering2array),
185 .flattened_data_from_array_C(C_generic_flattened_array2steering),
186 .flattened_data_out_C(C_generic_flattened)
187 );
188

189

190

191 //BAND MULTIPLIER PERIPHERALS
192

193 wire [DATA_WIDTH*(2*(2*MAT_SIZE-1)-1)-1:0] array_to_output_device_flattened;
194 wire [DATA_WIDTH*(2*MAT_SIZE-1)-1:0] input_device_A_to_array_flattened;
195 wire [DATA_WIDTH*(2*MAT_SIZE-1)-1:0] input_device_B_to_array_flattened;
196

197 band_peripherals #(.DATA_WIDTH(DATA_WIDTH),.BAND_SIZE(2*MAT_SIZE-1))
198

199 band_peripherals_0 (
200 .clk(clk),
201 .reset(reset),
202 .tricounter(counter[1:0]),
203 .array_en(array_en),
204 .A_flattened(A_band_flattened),
205 .B_flattened(B_band_flattened),
206 .C_flattened(C_band_flattened),
207 .input_device_A_to_array_flattened(input_device_A_to_array_flattened),
208 .input_device_B_to_array_flattened(input_device_B_to_array_flattened),
209 .array_to_output_device_flattened(array_to_output_device_flattened)
210 );
211

212 //UNIFIED ARRAY
213

214 unified_array_core #(.MAT_SIZE(MAT_SIZE), .DATA_WIDTH(DATA_WIDTH))
215 unified_array_0 (
216 .clk(clk),
217 .array_en(array_en), //half implemented /!\
218 .reset(reset), //not yet implemented /!\
219 .opmode(opmode), //0 for generic multiplier, 1 for band multiplier
220 .A_flattened(opmode ? input_device_A_to_array_flattened : A_generic_flattened_steering2array),
221 .B_flattened(opmode ? input_device_B_to_array_flattened : B_generic_flattened_steering2array),
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222 .C_band_flattened(array_to_output_device_flattened),
223 .C_generic_flattened(C_generic_flattened_array2steering)
224 );
225

226

227 endmodule

Listing 56: datasteering.v

1 `define CLOG2(x) \
2 (x <= 2) ? 1 : \
3 (x <= 4) ? 2 : \
4 (x <= 8) ? 3 : \
5 (x <= 16) ? 4 : \
6 (x <= 32) ? 5 : \
7 (x <= 64) ? 6 : \
8 (x <= 128) ? 7 : \
9 (x <= 256) ? 8 : \

10 (x <= 512) ? 9 : \
11 (x <= 1024) ? 10 : 0 //go unrealistically high to cover the basis
12

13 module datasteerer #(parameter MAT_SIZE=3, DATA_WIDTH = 64)(
14 input clk,
15 input [(`CLOG2(MAT_SIZE))-1:0] counter,
16 input [MAT_SIZE*DATA_WIDTH-1:0] data_in,
17 output [(2*MAT_SIZE-1)*DATA_WIDTH-1:0] data_out);
18 wire [(MAT_SIZE-1)*DATA_WIDTH-1:0] zeropadding = 0;
19 assign data_out = {zeropadding,data_in} << DATA_WIDTH*counter;
20 endmodule // datasteerer
21

22 module datacollector #(parameter MAT_SIZE=3,DATA_WIDTH = 64)(
23 input clk,
24 input [(`CLOG2(MAT_SIZE))-1:0] counter,
25 input [(2*MAT_SIZE-1)*DATA_WIDTH-1:0] data_in,
26 output [MAT_SIZE*DATA_WIDTH-1:0] data_out
27 );
28 assign data_out = data_in >> DATA_WIDTH*(MAT_SIZE-1-counter);
29 endmodule // datacollector
30

31

32 module IO_altarray_steering #(parameter MAT_SIZE=3,DATA_WIDTH=64)(
33 input clk,
34 input [(`CLOG2(MAT_SIZE))-1:0] counter_in,
35 input array_en,
36

37 input [MAT_SIZE*DATA_WIDTH-1:0] flattened_data_in_A,
38 output [(2*MAT_SIZE-1)*DATA_WIDTH-1:0] flattened_data_to_array_A,
39

40 input [MAT_SIZE*DATA_WIDTH-1:0] flattened_data_in_B,
41 output [(2*MAT_SIZE-1)*DATA_WIDTH-1:0] flattened_data_to_array_B,
42

43 input [(2*MAT_SIZE-1)*DATA_WIDTH-1:0] flattened_data_from_array_C,
44 output [MAT_SIZE*DATA_WIDTH-1:0] flattened_data_out_C



A| Appendix: Source Code Repository 127

45 );
46

47 datasteerer #(.DATA_WIDTH(DATA_WIDTH),
48 .MAT_SIZE(MAT_SIZE))
49 datasteererA (
50 .clk(clk),
51 .counter(counter_in),
52 .data_in(flattened_data_in_A),
53 .data_out(flattened_data_to_array_A)
54 );
55

56 datasteerer #(.DATA_WIDTH(DATA_WIDTH),
57 .MAT_SIZE(MAT_SIZE))
58 datasteererB (
59 .clk(clk),
60 .counter(counter_in),
61 .data_in(flattened_data_in_B),
62 .data_out(flattened_data_to_array_B)
63 );
64

65

66 genvar i;
67 wire [(`CLOG2(MAT_SIZE))-1:0] counter_intermediate [2*MAT_SIZE-2:0];
68 generate
69 for(i=0;i<2*MAT_SIZE-1;i=i+1) begin
70

71 wire [(`CLOG2(MAT_SIZE))-1:0] cnt_in,cnt_out;
72 assign cnt_in = i==0? counter_in : counter_intermediate[i-1];
73 assign counter_intermediate[i] = cnt_out;
74

75 D1D #(.DATA_WIDTH(`CLOG2(MAT_SIZE))) dblock (
76 .array_en(array_en),
77 .clk(clk),
78 .reset(0),
79 .A_in(cnt_in),
80 .A_out(cnt_out));
81 end
82 endgenerate
83

84

85 datacollector #(.DATA_WIDTH(DATA_WIDTH),
86 .MAT_SIZE(MAT_SIZE))
87 datacollectorC (
88 .clk(clk),
89 .counter(counter_intermediate[2*MAT_SIZE-2]),
90 .data_in(flattened_data_from_array_C),
91 .data_out(flattened_data_out_C)
92 );
93 endmodule

Listing 57: band_input_device.v
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1 `define GET_BUF_SIZE(x) x/3+1
2

3 module band_input_device #(
4 parameter DATA_WIDTH=32,
5 parameter BAND_SIZE=5)
6 (
7 input clk,
8 input reset,
9 input [1:0] tricounter,//figure out how many bits are needed later

10 input array_en,
11 input [DATA_WIDTH*(BAND_SIZE)-1:0] IN_flattened,
12 output [DATA_WIDTH*(BAND_SIZE)-1:0] OUT_flattened
13 );
14 reg [BAND_SIZE-1:0] binary_pattern;
15 reg [9:0] dispatch_pattern [0:BAND_SIZE-1];//figure out how many bits are needed later
16 reg [9:0] write_pointer;//figure out how many bits are needed later
17 reg [DATA_WIDTH-1:0] databuffer [0:(`GET_BUF_SIZE(BAND_SIZE))-1][0:BAND_SIZE-1];//internal data

buffer↪→

18

19

20 genvar i,j;
21 integer k,l;
22

23

24 initial binary_pattern=0;
25 initial write_pointer=0;
26

27 always @(posedge clk) begin
28 for(k=0;k<BAND_SIZE;k=k+1) begin
29 if(k==0) begin
30 if(reset) binary_pattern[k] <= 0;
31 else if (array_en) binary_pattern[k] <= (tricounter==0) ? 1'b1 : 1'b0;
32 end
33 else begin
34 if (reset) binary_pattern[k] <= 0;
35 else if(array_en) binary_pattern[k] <= (tricounter == 2'b11) ? 1'b0 : binary_pattern[k-1];
36 end
37 end
38 end
39

40

41 always @(posedge clk)
42 if (reset)
43 write_pointer<=0;
44 else if(array_en)
45 if(binary_pattern[0]==1)
46 write_pointer <= (write_pointer+1) % (`GET_BUF_SIZE(BAND_SIZE));
47

48

49

50 always @(posedge clk) begin
51 if(reset) begin
52 for(k=0;k<BAND_SIZE;k=k+1) begin
53 dispatch_pattern[k]<= 0;//reset everything
54 end
55 end
56 else if(array_en) begin
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57 for(k=0;k<BAND_SIZE;k=k+1) begin
58 dispatch_pattern[k] <= (binary_pattern[k]==1) ? (dispatch_pattern[k] + 1) %

(`GET_BUF_SIZE(BAND_SIZE)) : dispatch_pattern[k];↪→

59 end
60 end
61 end
62

63

64

65

66 generate
67 for(i=0;i<BAND_SIZE;i=i+1) begin
68 assign OUT_flattened[i*DATA_WIDTH +: DATA_WIDTH] = (binary_pattern[i] == 1) ?

databuffer[dispatch_pattern[i]][i] : 0;↪→

69 end
70 endgenerate
71

72 always @(posedge clk) begin
73 if (reset) begin
74 for(k=0;k<BAND_SIZE;k=k+1) begin
75 for(l=0;l<(`GET_BUF_SIZE(BAND_SIZE));l=l+1) begin//not generate block but loop block
76 databuffer[l][k] <= 0; // reset everything
77 end
78 end
79 end
80 else if(array_en)
81 if (tricounter == 2'b00)
82 for(k=0;k<BAND_SIZE;k=k+1) begin
83 databuffer[write_pointer][k] <= IN_flattened[k*DATA_WIDTH +: DATA_WIDTH];
84 end
85 end
86

87 endmodule

Listing 58: band_output_select_and_route.v

1 `define GET_BUF_SIZE(x) x/3+1
2

3 module band_output_select_and_route #(
4 parameter DATA_WIDTH=32,
5 parameter BAND_SIZE=5)
6 (
7 input clk,
8 input reset,
9 input [1:0] tricounter,//figure out how many bits are needed later

10 input array_en,
11 input [DATA_WIDTH*(2*BAND_SIZE-1)-1:0] IN_flattened,
12 output wire [DATA_WIDTH*(2*BAND_SIZE-1)-1:0] OUT_flattened
13 );
14 reg [9:0] current_line;//figure out how many bits are needed later
15 reg [2*BAND_SIZE-2:0] binary_pattern;
16 reg [9:0] write_pointer [2*BAND_SIZE-2:0];//figure out how many bits are needed later
17 reg [DATA_WIDTH-1:0] databuffer [0:(`GET_BUF_SIZE(BAND_SIZE))-1][0:2*BAND_SIZE-2];//internal data

buffer↪→
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18

19

20 genvar i,j;
21 integer k,l;
22

23 always @(posedge clk) begin
24 if(reset) current_line <= 0;
25 else if(array_en) if(binary_pattern[0]==1) current_line <= write_pointer[0];
26 end
27

28 always @(posedge clk) begin
29 for(k=0;k<=2*BAND_SIZE-2;k=k+1) begin
30 if(reset) binary_pattern[k] <= 0;
31 else if (array_en) begin
32 if(k==BAND_SIZE-1) binary_pattern[k] <= (tricounter == 0) ? 1'b1 : 1'b0;
33 else if(k<BAND_SIZE-1) binary_pattern[k] <= (tricounter == 2'b11) ? 1'b0 : binary_pattern[k+1];
34 else binary_pattern[k] <= (tricounter == 2'b11) ? 1'b0 : binary_pattern[k-1];
35 end
36 end
37 end
38

39 always @(posedge clk) begin
40 for(k=0;k<=2*BAND_SIZE-2;k=k+1) begin
41 if (reset) write_pointer[k] <= 0;
42 else if(array_en) begin
43 if(binary_pattern[k] == 1) begin
44 if(write_pointer[k] == (`GET_BUF_SIZE(BAND_SIZE))-1) write_pointer[k] <= 0;
45 else write_pointer[k] <= write_pointer[k] + 1;
46 end
47 end
48 end
49 end
50

51 always @(posedge clk) begin
52 for(k=0;k<=2*BAND_SIZE-2;k=k+1) begin
53 for(l=0;l<=(`GET_BUF_SIZE(BAND_SIZE))-1;l=l+1) begin
54 if (reset) databuffer[l][k] <= 0;
55 else if (array_en)
56 if(binary_pattern[k]==1)
57 if(write_pointer[k]==l)
58 databuffer[l][k] <= IN_flattened[k*DATA_WIDTH +: DATA_WIDTH];
59 end
60 end
61 end
62

63

64 generate
65 for(i=0;i<=2*BAND_SIZE-2;i=i+1)
66 assign OUT_flattened[(i+1)*DATA_WIDTH-1:i*DATA_WIDTH] = databuffer[current_line][i];
67 endgenerate
68

69 endmodule

Listing 59: band_peripherals.v
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1

2 //this module encapsulates the band matrix multiplier array with the input and output data interface
3

4 module band_peripherals #(parameter DATA_WIDTH=32, BAND_SIZE=5)
5 (input clk,
6 input reset,
7 input [1:0] tricounter,
8 input array_en,
9 input [DATA_WIDTH*BAND_SIZE-1:0] A_flattened,

10 input [DATA_WIDTH*BAND_SIZE-1:0] B_flattened,
11 output [DATA_WIDTH*(2*BAND_SIZE-1)-1:0] C_flattened,
12 input [DATA_WIDTH*(2*BAND_SIZE-1)-1:0] array_to_output_device_flattened,
13 output [DATA_WIDTH*(BAND_SIZE)-1:0] input_device_A_to_array_flattened,
14 output [DATA_WIDTH*(BAND_SIZE)-1:0] input_device_B_to_array_flattened
15 );
16

17 genvar i;
18

19 //debugging help to read flattened garbage
20 /*
21 wire [DATA_WIDTH-1:0] DEBUG [0:2*BAND_SIZE-2];
22 generate
23 for (i=0; i<2*BAND_SIZE-1; i=i+1)
24 begin
25 assign DEBUG[i] = array_to_output_device_flattened[DATA_WIDTH*i+(DATA_WIDTH-1):DATA_WIDTH*i];
26 end
27 endgenerate
28 */
29

30

31 band_input_device #(.DATA_WIDTH(DATA_WIDTH),.BAND_SIZE(BAND_SIZE)) band_input_device_A
32 (
33 .clk(clk),
34 .reset(reset),
35 .tricounter(tricounter),//figure out how many bits are needed later
36 .array_en(array_en),
37 .IN_flattened(A_flattened),
38 .OUT_flattened(input_device_A_to_array_flattened)
39 );
40

41

42 band_input_device #(.DATA_WIDTH(DATA_WIDTH),.BAND_SIZE(BAND_SIZE)) band_input_device_B
43 (
44 .clk(clk),
45 .reset(reset),
46 .tricounter(tricounter),//figure out how many bits are needed later
47 .array_en(array_en),
48 .IN_flattened(B_flattened),
49 .OUT_flattened(input_device_B_to_array_flattened)
50 );
51

52

53 reg [1:0] tricounter_delayed;
54

55 always @(posedge clk) begin
56 if (reset) tricounter_delayed <= 2;
57 else if(array_en) tricounter_delayed <= tricounter;
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58 end
59

60 band_output_select_and_route #(.DATA_WIDTH(DATA_WIDTH),.BAND_SIZE(BAND_SIZE)) output_device_0
61 (.clk(clk),
62 .reset(reset),
63 .tricounter(tricounter_delayed),
64 .array_en(array_en),
65 .IN_flattened(array_to_output_device_flattened),
66 .OUT_flattened(C_flattened));
67

68

69 endmodule

Listing 60: mmc.json

1 {
2 "c_function_name" : "mmc",
3 "rtl_top_module_name" : "mmc",
4 "c_files" : [{
5 "c_file" : "/.../mmc.cpp",
6 "cflag" : ""
7 }],
8 "rtl_files" : [
9 "/.../mmc.v",

10 "/.../unified_array.v",
11 "/.../datasteering.v",
12 "/.../KLPE.v",
13 "/.../band_peripherals.v",
14 "/.../band_input_device.v",
15 "/.../band_output_select_and_route.v"
16 ],
17 "c_parameters" : [
18 {
19 "c_name" : "opmode_stream",
20 "c_port_direction" : "in",
21 "rtl_ports" : {
22 "FIFO_empty_flag" : "opmode_empty_n",
23 "FIFO_read_enable" : "opmode_re",
24 "FIFO_data_read_in" : "opmode"
25 }
26 },
27 {
28 "c_name" : "size_stream",
29 "c_port_direction" : "in",
30 "rtl_ports" : {
31 "FIFO_empty_flag" : "size_empty_n",
32 "FIFO_read_enable" : "size_re",
33 "FIFO_data_read_in" : "size"
34 }
35 },
36 {
37 "c_name" : "band_type_stream",
38 "c_port_direction" : "in",
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39 "rtl_ports" : {
40 "FIFO_empty_flag" : "band_type_empty_n",
41 "FIFO_read_enable" : "band_type_re",
42 "FIFO_data_read_in" : "band_type"
43 }
44 },
45 {
46 "c_name" : "A_gen_stream",
47 "c_port_direction" : "in",
48 "rtl_ports" : {
49 "FIFO_empty_flag" : "a_gen_empty_n",
50 "FIFO_read_enable" : "a_gen_re",
51 "FIFO_data_read_in" : "a_gen"
52 }
53 },
54 {
55 "c_name" : "B_gen_stream",
56 "c_port_direction" : "in",
57 "rtl_ports" : {
58 "FIFO_empty_flag" : "b_gen_empty_n",
59 "FIFO_read_enable" : "b_gen_re",
60 "FIFO_data_read_in" : "b_gen"
61 }
62 },
63 {
64 "c_name" : "A_band_stream",
65 "c_port_direction" : "in",
66 "rtl_ports" : {
67 "FIFO_empty_flag" : "a_band_empty_n",
68 "FIFO_read_enable" : "a_band_re",
69 "FIFO_data_read_in" : "a_band"
70 }
71 },
72 {
73 "c_name" : "B_band_stream",
74 "c_port_direction" : "in",
75 "rtl_ports" : {
76 "FIFO_empty_flag" : "b_band_empty_n",
77 "FIFO_read_enable" : "b_band_re",
78 "FIFO_data_read_in" : "b_band"
79 }
80 },
81 {
82 "c_name" : "C_band_stream",
83 "c_port_direction" : "out",
84 "rtl_ports" : {
85 "FIFO_full_flag" : "c_band_full_n",
86 "FIFO_write_enable" : "c_band_we",
87 "FIFO_data_write_out" : "c_band"
88 }
89 },
90 {
91 "c_name" : "C_gen_stream",
92 "c_port_direction" : "out",
93 "rtl_ports" : {
94 "FIFO_full_flag" : "c_gen_full_n",
95 "FIFO_write_enable" : "c_gen_we",
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96 "FIFO_data_write_out" : "c_gen"
97 }
98 }],
99 "rtl_common_signal" : {

100 "module_clock" : "ap_clk",
101 "module_reset" : "ap_rst",
102 "module_clock_enable" : "ap_ce",
103 "ap_ctrl_chain_protocol_idle" : "ap_idle",
104 "ap_ctrl_chain_protocol_start" : "ap_start",
105 "ap_ctrl_chain_protocol_ready" : "ap_ready",
106 "ap_ctrl_chain_protocol_done" : "ap_done",
107 "ap_ctrl_chain_protocol_continue" : "ap_continue"
108 },
109 "rtl_performance" : {
110 "latency" : "0",
111 "II" : "1"
112 },
113 "rtl_resource_usage" : {
114 "FF" : "0",
115 "LUT" : "0",
116 "BRAM" : "0",
117 "URAM" : "0",
118 "DSP" : "1"
119 }
120 }
121

Listing 61: mmc.v

1 //
2 // Copyright 2021 Xilinx, Inc.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 // http://www.apache.org/licenses/LICENSE-2.0
9 //

10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 //
16 `timescale 100ps/100ps
17

18 `define BAND_IN_SIZE (DATA_WIDTH*(2*MAT_SIZE-1))
19 `define GEN_IN_SIZE (DATA_WIDTH*MAT_SIZE)
20 `define BAND_OUT_SIZE (DATA_WIDTH*(2*(2*MAT_SIZE-1)-1))
21 `define GEN_OUT_SIZE (DATA_WIDTH*MAT_SIZE)
22 `define ARRAY_SIZE (2*MAT_SIZE-1)
23

24 `define START_BAND_VALIDITY ((2*MAT_SIZE-1)*4-1-3*band_type)
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25 `define BAND_DURATION (3*size)
26

27 (* use_dsp = "simd" *)
28 (* dont_touch = "true" *)
29 module mmc #(parameter MAT_SIZE=4, DATA_WIDTH=8)
30 (input ap_clk, ap_rst, ap_ce, ap_start, ap_continue,
31 output ap_idle, ap_done, ap_ready,
32 input [`GEN_IN_SIZE-1:0] a_gen,
33 input a_gen_empty_n,
34 output reg a_gen_re,
35 input [`GEN_IN_SIZE-1:0] b_gen,
36 input b_gen_empty_n,
37 output reg b_gen_re,
38 input [`BAND_IN_SIZE-1:0] a_band,
39 input a_band_empty_n,
40 output reg a_band_re,
41 input [`BAND_IN_SIZE-1:0] b_band,
42 input b_band_empty_n,
43 output reg b_band_re,
44 input opmode,
45 input opmode_empty_n,
46 output reg opmode_re,
47 input [31:0] size,
48 input size_empty_n,
49 output reg size_re,
50 input [31:0] band_type,
51 input band_type_empty_n,
52 output reg band_type_re,
53 output [`BAND_OUT_SIZE-1:0] c_band,
54 input c_band_full_n,
55 output reg c_band_we,
56 output [`GEN_OUT_SIZE-1:0] c_gen,
57 input c_gen_full_n,
58 output reg c_gen_we);
59

60 /*---------declare states and substates as local parameters-----*/
61

62 localparam [4:0] s_reset = 5'd0;
63 localparam [4:0] s_write = 5'd1;
64 localparam [4:0] s_done = 5'd2;
65 localparam [4:0] s_idle = 5'd3;
66 localparam [4:0] s_readparams = 5'd4;
67 localparam [4:0] s_readinputs = 5'd5;
68 localparam [4:0] s_gencompute = 5'd6;
69 localparam [4:0] s_bandcompute = 5'd7;
70 localparam [4:0] s_selectopmode = 5'd8;
71

72 localparam [4:0] ss_0 = 5'd0;
73 localparam [4:0] ss_1 = 5'd1;
74 localparam [4:0] ss_2 = 5'd2;
75 localparam [4:0] ss_3 = 5'd3;
76 localparam [4:0] ss_4 = 5'd4;
77 localparam [4:0] ss_5 = 5'd5;
78

79 localparam mode_gen = 1'b0;
80 localparam mode_band = 1'b1;
81
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82 /*FSM defined by states and a counter*/
83

84 reg [4:0] current_state;
85 reg [4:0] next_state;
86

87 reg [31:0] counter;
88 reg [31:0] next_counter;
89

90 reg [1:0] tricounter;
91 reg [1:0] next_tricounter;
92

93 /* define speedup parameters */
94

95 reg [31:0] start_band_validity;
96 reg [31:0] next_start_band_validity;
97

98 reg [31:0] band_duration;
99 reg [31:0] next_band_duration;

100

101

102 /*--------declare necessary stuff--------*/
103 wire [4:0] gen_substate = (counter < size) ? ss_0 : (counter < (`ARRAY_SIZE))? ss_1 : ss_2;
104 wire end_of_gen_op = (counter == (size + (`ARRAY_SIZE)));
105

106 wire band_output_valid = (counter >= start_band_validity);
107 wire end_of_band_op = counter == (start_band_validity + band_duration);
108

109 reg must_read;
110 reg must_write;
111

112 wire [4:0] band_substate = (must_read && must_write)? ss_1 : (must_read)? ss_0 : (must_write)? ss_2 :
ss_3;↪→

113

114 /*assign bb signals*/
115 assign ap_ready = 1;
116 assign ap_idle = ap_start ? 0 : (current_state == s_idle || current_state == s_reset);
117 assign ap_done = current_state == s_done;//(current_state == s_done || current_state == s_idle);
118

119 /*signals related to array and array itself*/
120 reg array_en_reg;
121 reg inputs_zero;
122

123

124 wire [31:0] counter_to_array = opmode ? tricounter : counter;
125 wire array_en = ap_ce ? array_en_reg : 0 ;
126 wire array_rst = ap_rst ? 1 : current_state == s_reset;
127

128 wire [`GEN_IN_SIZE-1:0] a_gen_in = inputs_zero ? 0 : a_gen;
129 wire [`GEN_IN_SIZE-1:0] b_gen_in = inputs_zero ? 0 : b_gen;
130

131 wire [`BAND_IN_SIZE-1:0] a_band_in = inputs_zero ? 0 : a_band;
132 wire [`BAND_IN_SIZE-1:0] b_band_in = inputs_zero ? 0 : b_band;
133

134

135 unified_array #(.MAT_SIZE(MAT_SIZE), .DATA_WIDTH(DATA_WIDTH)) array0
136 (
137 .clk(ap_clk),
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138 .reset(array_rst),
139 .counter(counter_to_array),//last two bits are used as tricounter when in band operation
140 .array_en(array_en),
141 .opmode(opmode), //0 for generic, 1 for band
142 .A_band_flattened(a_band_in),
143 .B_band_flattened(b_band_in),
144 .C_band_flattened(c_band),
145 .A_generic_flattened(a_gen_in),
146 .B_generic_flattened(b_gen_in),
147 .C_generic_flattened(c_gen)
148 );
149

150

151

152 /*---------------FSM STARTS HERE-------------*/
153 /*-----CLOCKED PART--------------------------*/
154 always @ (posedge ap_clk)
155 if (ap_rst) begin
156 current_state <= s_reset;
157 counter <= 0;
158 tricounter <= 0;
159

160 band_duration <= 1;
161 start_band_validity <= 1;
162 end
163 else if (ap_ce) begin
164 current_state <= next_state;
165 counter <= next_counter;
166 tricounter <= next_tricounter;
167

168 band_duration <= next_band_duration;
169 start_band_validity <= next_start_band_validity;
170 end
171

172

173 always @(*)
174 begin
175 a_band_re = 0;
176 b_band_re = 0;
177 a_gen_re = 0;
178 b_gen_re = 0;
179 opmode_re = 0;
180 size_re = 0;
181 band_type_re = 0;
182 c_band_we = 0;
183 c_gen_we = 0;
184

185 array_en_reg = 0;
186 inputs_zero = 0;
187

188 next_state = s_reset;
189 next_counter = counter;
190 next_tricounter = tricounter;
191

192 must_read = 0;
193 must_write = 0;
194
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195 next_start_band_validity = start_band_validity;
196 next_band_duration = band_duration;
197

198 case(current_state)
199 s_reset: begin
200 // reset all the output registers in the reset state
201 a_band_re = 0;
202 b_band_re = 0;
203 a_gen_re = 0;
204 b_gen_re = 0;
205 opmode_re = 0;
206 size_re = 0;
207 band_type_re = 0;
208 c_band_we = 0;
209 c_gen_we = 0;
210

211 array_en_reg = 0;
212 inputs_zero = 0;
213

214 next_state = s_reset;
215 next_counter = 0;
216 next_tricounter = 0;
217

218 if (ap_start) begin
219 next_state = s_readparams;
220 end
221 end
222

223 s_readparams: begin
224 opmode_re = 0;
225 size_re = 0;
226 band_type_re = 0;
227 next_state = s_readparams;
228 if (opmode_empty_n && band_type_empty_n && size_empty_n) begin
229 next_state = s_selectopmode;
230 end
231 end
232

233 s_selectopmode: begin
234

235 next_start_band_validity = `START_BAND_VALIDITY; // make the actual calculation here
236 next_band_duration = `BAND_DURATION;
237

238 case(opmode)
239 mode_gen: begin
240 next_state = s_gencompute;
241 next_counter = 0;
242 next_tricounter = 0;
243 end
244

245 mode_band: begin
246 next_state = s_bandcompute;
247 next_counter = 0;
248 next_tricounter = 0;
249 end
250

251 default: begin
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252 next_state = s_done;
253 end
254 endcase
255 end
256 /*
257 ----------------------------------------
258 ----------------------------------------
259 ----------------------------------------
260 --------------GENERIC-------------------
261 ----------------------------------------
262 ----------------------------------------
263 ----------------------------------------
264 ----------------------------------------
265 */
266

267 s_gencompute: begin
268 // go into this state with counter = 0 and substate = 0;
269 //cleanup the re signals from previous state
270 //for generic operation, reading and writing are separate in time,
271 //thus we do not need to check if the inputs and the outputs are both free to enable the register
272

273 //-------deal with inputs ----------/
274 a_gen_re = 0;
275 b_gen_re = 0;
276 next_counter = counter;
277 array_en_reg = 0;
278 inputs_zero = 0;
279 c_gen_we = 0;
280

281 case(gen_substate)
282 ss_0: begin //read inputs
283 if (a_gen_empty_n && b_gen_empty_n) begin // overwrite previous statements in necessary
284 a_gen_re = 1;
285 b_gen_re = 1;
286 next_counter = counter + 1;
287 array_en_reg = 1;
288 end
289 end
290

291 ss_1: begin //dead cycling
292 a_gen_re = 0;
293 b_gen_re = 0;
294 next_counter = counter + 1;
295 array_en_reg = 1; //corresponding 0 is up top
296 inputs_zero = 1;
297 end
298

299 ss_2: begin //write outputs
300 if (c_gen_full_n) begin
301 c_gen_we = 1;
302 next_counter = counter + 1;
303 array_en_reg = 1;
304 end
305 end
306 endcase
307

308 //------mark end of operation-------/



140 A| Appendix: Source Code Repository

309 next_state = current_state;
310 if(end_of_gen_op) begin
311 next_state = s_done;
312 next_counter = 0; //reset the counter, you never know
313 end
314 end
315 /*
316 ----------------------------------------
317 ----------------------------------------
318 ----------------------------------------
319 -----------------BAND-------------------
320 ----------------------------------------
321 ----------------------------------------
322 ----------------------------------------
323 ----------------------------------------
324 */
325 s_bandcompute: begin // reachable now. The design has to be smart.
326 inputs_zero = 0;
327 array_en_reg = 0;
328 next_counter = counter;
329 next_tricounter = tricounter;
330 must_read = 0;
331 must_write = 0;
332

333 a_band_re = 0;
334 b_band_re = 0;
335 c_band_we = 0;
336 if (counter >= band_duration) begin
337 inputs_zero = 1;
338 end
339 if(tricounter == 2'b00 && counter < band_duration) begin // if the counter is below the band

duration then we must read↪→

340 must_read = 1;
341 end
342

343 if (counter >= start_band_validity && tricounter == 2'b00) begin
344 must_write = 1;
345 end // then we must write
346

347

348 //put a case statement here
349 case(band_substate)
350 ss_0: begin// must only read
351 if(a_band_empty_n && b_band_empty_n) begin //read and cycle
352 a_band_re = 1;
353 b_band_re = 1;
354 next_counter = counter + 1;
355 next_tricounter = (tricounter == 2'b10 )? 0 : tricounter + 1;
356 array_en_reg = 1;
357 end //else jsut wait
358 end
359

360 ss_1: begin// must read and write
361 if(a_band_empty_n && b_band_empty_n && c_band_full_n) begin
362 a_band_re = 1;
363 b_band_re = 1;
364 c_band_we = 1;
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365 next_counter = counter + 1;
366 next_tricounter = (tricounter == 2'b10 )? 0 : tricounter + 1;
367 array_en_reg = 1;
368 end // else just wait
369 end
370

371 ss_2: begin // must only write
372 if(c_band_full_n) begin
373 c_band_we = 1;
374 next_counter = counter + 1;
375 next_tricounter = (tricounter == 2'b10 )? 0 : tricounter + 1;
376 array_en_reg = 1;
377 end
378 end
379

380 ss_3: begin //must do nothing but still cycle
381 next_counter = counter + 1;
382 next_tricounter = (tricounter == 2'b10 )? 0 : tricounter + 1;
383 array_en_reg = 1;
384 end
385

386 default: begin // must do nothing, same as ss_3
387 next_counter = counter + 1;
388 next_tricounter = (tricounter == 2'b10 )? 0 : tricounter + 1;
389 array_en_reg = 1;
390 end
391 endcase
392

393

394 next_state = s_bandcompute;
395 if (end_of_band_op) next_state = s_done;
396 end
397

398 s_done: begin // put all the output we to 0;
399 opmode_re = 1;
400 size_re = 1;
401 band_type_re = 1;
402 c_gen_we = 0;
403 c_band_we = 0;
404 next_state = s_idle;
405 end
406

407 s_idle: begin
408 opmode_re = 0;
409 size_re = 0;
410 band_type_re = 0;
411 next_state = s_reset;
412 end
413

414 default: begin
415 a_band_re = 0;
416 b_band_re = 0;
417 a_gen_re = 0;
418 b_gen_re = 0;
419 opmode_re = 0;
420 size_re = 0;
421 band_type_re = 0;
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422 c_band_we = 0;
423 c_gen_we = 0;
424

425 array_en_reg = 0;
426 inputs_zero = 0;
427

428 next_state = s_reset;
429 next_counter = 0;
430 next_tricounter = 0;
431

432 must_read = 0;
433 must_write = 0;
434 end
435 endcase
436 end
437

438

439 endmodule

Listing 62: mmc2.v

1 //
2 // Copyright 2021 Xilinx, Inc.
3 //
4 // Licensed under the Apache License, Version 2.0 (the "License");
5 // you may not use this file except in compliance with the License.
6 // You may obtain a copy of the License at
7 //
8 // http://www.apache.org/licenses/LICENSE-2.0
9 //

10 // Unless required by applicable law or agreed to in writing, software
11 // distributed under the License is distributed on an "AS IS" BASIS,
12 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 // See the License for the specific language governing permissions and
14 // limitations under the License.
15 //
16 `timescale 100ps/100ps
17

18 `define CLOG2(x) \
19 (x <= 2) ? 1 : \
20 (x <= 4) ? 2 : \
21 (x <= 8) ? 3 : \
22 (x <= 16) ? 4 : \
23 (x <= 32) ? 5 : \
24 (x <= 64) ? 6 : \
25 (x <= 128) ? 7 : \
26 (x <= 256) ? 8 : \
27 (x <= 512) ? 9 : \
28 (x <= 1024) ? 10 : 0 //go unrealistically high to cover the basis
29

30 `define BAND_IN_SIZE (DATA_WIDTH*(2*MAT_SIZE-1))
31 `define GEN_IN_SIZE (DATA_WIDTH*MAT_SIZE)
32 `define BAND_OUT_SIZE (DATA_WIDTH*(2*(2*MAT_SIZE-1)-1))
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33 `define GEN_OUT_SIZE (DATA_WIDTH*MAT_SIZE)
34 `define ARRAY_SIZE (2*MAT_SIZE-1)
35

36 `define START_BAND_VALIDITY ((2*MAT_SIZE-1)*4-1-3*band_type)
37 `define BAND_DURATION (3*size)
38

39 (* use_dsp = "simd" *)
40 (* dont_touch = "true" *)
41 module mmc #(parameter MAT_SIZE=16, DATA_WIDTH=8)
42 (input ap_clk, ap_rst, ap_ce, ap_start, ap_continue,
43 output ap_idle, ap_done, ap_ready,
44 input [`GEN_IN_SIZE-1:0] a_gen,
45 input a_gen_empty_n,
46 output reg a_gen_re,
47 input [`GEN_IN_SIZE-1:0] b_gen,
48 input b_gen_empty_n,
49 output reg b_gen_re,
50 input [`BAND_IN_SIZE-1:0] a_band,
51 input a_band_empty_n,
52 output reg a_band_re,
53 input [`BAND_IN_SIZE-1:0] b_band,
54 input b_band_empty_n,
55 output reg b_band_re,
56 input opmode,
57 input opmode_empty_n,
58 output reg opmode_re,
59 input [31:0] size,
60 input size_empty_n,
61 output reg size_re,
62 input [31:0] band_type,
63 input band_type_empty_n,
64 output reg band_type_re,
65 output [`BAND_OUT_SIZE-1:0] c_band,
66 input c_band_full_n,
67 output reg c_band_we,
68 output [`GEN_OUT_SIZE-1:0] c_gen,
69 input c_gen_full_n,
70 output reg c_gen_we);
71

72 /*---------declare states and substates as local parameters-----*/
73

74 localparam [4:0] s_reset = 5'd0;
75 localparam [4:0] s_write = 5'd1;
76 localparam [4:0] s_done = 5'd2;
77 localparam [4:0] s_idle = 5'd3;
78 localparam [4:0] s_readparams = 5'd4;
79 localparam [4:0] s_readinputs = 5'd5;
80 localparam [4:0] s_gencompute = 5'd6;
81 localparam [4:0] s_bandcompute = 5'd7;
82 localparam [4:0] s_selectopmode = 5'd8;
83

84 localparam [4:0] ss_0 = 5'd0;
85 localparam [4:0] ss_1 = 5'd1;
86 localparam [4:0] ss_2 = 5'd2;
87 localparam [4:0] ss_3 = 5'd3;
88 localparam [4:0] ss_4 = 5'd4;
89 localparam [4:0] ss_5 = 5'd5;
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90

91 localparam mode_gen = 1'b0;
92 localparam mode_band = 1'b1;
93

94 /*FSM defined by states and a counter*/
95

96 reg [4:0] current_state;
97 reg [4:0] next_state;
98

99 reg [31:0] counter;
100 reg [31:0] next_counter;
101

102 reg [1:0] tricounter;
103 reg [1:0] next_tricounter;
104

105 reg [`CLOG2(MAT_SIZE)-1:0] gen_counter;
106 reg [`CLOG2(MAT_SIZE)-1:0] next_gen_counter;
107

108

109 /* define speedup parameters */
110

111 reg [31:0] start_band_validity;
112 reg [31:0] next_start_band_validity;
113

114 reg [31:0] counter_for_end_of_gen_op;
115 reg [31:0] next_counter_for_end_of_gen_op;
116

117 reg [31:0] band_duration;
118 reg [31:0] next_band_duration;
119

120 reg must_read;
121 reg must_write;
122

123 /*--------declare necessary stuff--------*/
124 wire [4:0] gen_substate = (must_read && must_write)? ss_1 : (must_read)? ss_0 : (must_write)? ss_2:

ss_3;↪→

125 wire end_of_gen_op = (counter == counter_for_end_of_gen_op);
126

127 wire band_output_valid = (counter >= start_band_validity);
128 wire end_of_band_op = counter == (start_band_validity + band_duration);
129

130

131

132 wire [4:0] band_substate = (must_read && must_write)? ss_1 : (must_read)? ss_0 : (must_write)? ss_2 :
ss_3;↪→

133

134 /*assign bb signals*/
135 assign ap_ready = 1;
136 assign ap_idle = ap_start ? 0 : (current_state == s_idle || current_state == s_reset);
137 assign ap_done = current_state == s_done;//(current_state == s_done || current_state == s_idle);
138

139 /*signals related to array and array itself*/
140 reg array_en_reg;
141 reg inputs_zero;
142

143 wire [31:0] counter_to_array = opmode ? tricounter : gen_counter;
144 wire array_en = ap_ce ? array_en_reg : 0 ;
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145 wire array_rst = ap_rst ? 1 : current_state == s_reset;
146

147 wire [`GEN_IN_SIZE-1:0] a_gen_in = inputs_zero ? 0 : a_gen;
148 wire [`GEN_IN_SIZE-1:0] b_gen_in = inputs_zero ? 0 : b_gen;
149

150 wire [`BAND_IN_SIZE-1:0] a_band_in = inputs_zero ? 0 : a_band;
151 wire [`BAND_IN_SIZE-1:0] b_band_in = inputs_zero ? 0 : b_band;
152

153

154 unified_array #(.MAT_SIZE(MAT_SIZE), .DATA_WIDTH(DATA_WIDTH)) array0
155 (
156 .clk(ap_clk),
157 .reset(array_rst),
158 .counter(counter_to_array),//last two bits are used as tricounter when in band operation
159 .array_en(array_en),
160 .opmode(opmode), //0 for generic, 1 for band
161 .A_band_flattened(a_band_in),
162 .B_band_flattened(b_band_in),
163 .C_band_flattened(c_band),
164 .A_generic_flattened(a_gen_in),
165 .B_generic_flattened(b_gen_in),
166 .C_generic_flattened(c_gen)
167 );
168

169

170

171 /*---------------FSM STARTS HERE-------------*/
172 /*-----CLOCKED PART--------------------------*/
173 always @ (posedge ap_clk)
174 if (ap_rst) begin
175 current_state <= s_reset;
176 counter <= 0;
177 tricounter <= 0;
178 gen_counter <= 0;
179

180 band_duration <= 1;
181 start_band_validity <= 1;
182 counter_for_end_of_gen_op <= 1;
183 end
184 else if (ap_ce) begin
185 current_state <= next_state;
186 counter <= next_counter;
187 tricounter <= next_tricounter;
188 gen_counter <= next_gen_counter;
189

190 band_duration <= next_band_duration;
191 start_band_validity <= next_start_band_validity;
192 counter_for_end_of_gen_op <= next_counter_for_end_of_gen_op;
193 end
194

195

196 always @(*)
197 begin
198 a_band_re = 0;
199 b_band_re = 0;
200 a_gen_re = 0;
201 b_gen_re = 0;
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202 opmode_re = 0;
203 size_re = 0;
204 band_type_re = 0;
205 c_band_we = 0;
206 c_gen_we = 0;
207

208 array_en_reg = 0;
209 inputs_zero = 0;
210

211 next_state = s_reset;
212 next_counter = counter;
213 next_tricounter = tricounter;
214 next_gen_counter = gen_counter;
215

216 must_read = 0;
217 must_write = 0;
218

219 next_start_band_validity = start_band_validity;
220 next_band_duration = band_duration;
221 next_counter_for_end_of_gen_op = counter_for_end_of_gen_op;
222

223 case(current_state)
224 s_reset: begin
225 // reset all the output registers in the reset state
226 a_band_re = 0;
227 b_band_re = 0;
228 a_gen_re = 0;
229 b_gen_re = 0;
230 opmode_re = 0;
231 size_re = 0;
232 band_type_re = 0;
233 c_band_we = 0;
234 c_gen_we = 0;
235

236 array_en_reg = 0;
237 inputs_zero = 0;
238

239 next_state = s_reset;
240 next_counter = 0;
241 next_tricounter = 0;
242 next_gen_counter = 0;
243

244 if (ap_start) begin
245 next_state = s_readparams;
246 end
247 end
248

249 s_readparams: begin
250 opmode_re = 0;
251 size_re = 0;
252 band_type_re = 0;
253 next_state = s_readparams;
254 if (opmode_empty_n && band_type_empty_n && size_empty_n) begin
255 next_state = s_selectopmode;
256 end
257 end
258
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259 s_selectopmode: begin
260

261 next_start_band_validity = `START_BAND_VALIDITY; // make the actual calculation here
262 next_band_duration = `BAND_DURATION;
263

264 next_counter_for_end_of_gen_op = size*band_type + (`ARRAY_SIZE);
265

266 case(opmode)
267 mode_gen: begin
268 next_state = s_gencompute;
269 next_counter = 0;
270 next_gen_counter = 0;
271 end
272

273 mode_band: begin
274 next_state = s_bandcompute;
275 next_counter = 0;
276 next_tricounter = 0;
277 end
278

279 default: begin
280 next_state = s_done;
281 end
282 endcase
283 end
284 /*
285 ----------------------------------------
286 ----------------------------------------
287 ----------------------------------------
288 --------------GENERIC-------------------
289 ----------------------------------------
290 ----------------------------------------
291 ----------------------------------------
292 ----------------------------------------
293 */
294

295 s_gencompute: begin
296 // go into this state with counter = 0 and substate = 0;
297 //cleanup the re signals from previous state
298 //for generic operation, reading and writing are separate in time,
299 //thus we do not need to check if the inputs and the outputs are both free to enable the register
300

301 //-------deal with inputs ----------/
302 a_gen_re = 0;
303 b_gen_re = 0;
304 next_counter = counter;
305 next_gen_counter = gen_counter;
306 array_en_reg = 0;
307 inputs_zero = 0;
308 c_gen_we = 0;
309

310 if(counter < counter_for_end_of_gen_op - `ARRAY_SIZE) begin
311 must_read = 1;
312 end
313 if(counter >= `ARRAY_SIZE ) begin
314 must_write = 1;
315 end
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316

317 case(gen_substate)
318 ss_0: begin //must_read
319 if (a_gen_empty_n && b_gen_empty_n) begin // overwrite previous statements in necessary
320 a_gen_re = 1;
321 b_gen_re = 1;
322 next_counter = counter + 1;
323 next_gen_counter = (gen_counter == MAT_SIZE-1) ? 0 : gen_counter + 1;
324 array_en_reg = 1;
325 end
326 end
327

328 ss_1: begin //must read and write
329 if (a_gen_empty_n && b_gen_empty_n && c_gen_full_n) begin
330 a_gen_re = 1;
331 b_gen_re = 1;
332 c_gen_we = 1;
333 next_counter = counter + 1;
334 next_gen_counter = (gen_counter == MAT_SIZE-1) ? 0 : gen_counter + 1;
335 array_en_reg = 1; //corresponding 0 is up top
336 end
337 end
338

339 ss_2: begin //must_write
340 if (c_gen_full_n) begin
341 c_gen_we = 1;
342 next_counter = counter + 1;
343 next_gen_counter = (gen_counter == MAT_SIZE-1) ? 0 : gen_counter + 1;
344 array_en_reg = 1;
345 end
346 end
347

348 ss_3: begin // deadcycling
349 c_gen_we=0;
350 a_gen_re=0;
351 b_gen_re=0;
352 next_counter = counter + 1;
353 next_gen_counter = (gen_counter == MAT_SIZE-1) ? 0 : gen_counter + 1;
354 inputs_zero=1;
355 array_en_reg=1;
356 end
357 endcase
358

359 //------mark end of operation-------/
360 next_state = current_state;
361 if(end_of_gen_op) begin
362 next_state = s_done;
363 next_counter = 0; //reset the counter, you never know
364 next_gen_counter = 0;
365 end
366 end
367 /*
368 ----------------------------------------
369 ----------------------------------------
370 ----------------------------------------
371 -----------------BAND-------------------
372 ----------------------------------------
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373 ----------------------------------------
374 ----------------------------------------
375 ----------------------------------------
376 */
377 s_bandcompute: begin // reachable now. The design has to be smart.
378 inputs_zero = 0;
379 array_en_reg = 0;
380 next_counter = counter;
381 next_tricounter = tricounter;
382 must_read = 0;
383 must_write = 0;
384

385 a_band_re = 0;
386 b_band_re = 0;
387 c_band_we = 0;
388

389 if (counter >= band_duration) begin
390 inputs_zero = 1;
391 end
392 if(tricounter == 2'b00 && counter < band_duration) begin // if the counter is below the band

duration then we must read↪→

393 must_read = 1;
394 end
395

396 if (counter >= start_band_validity && tricounter == 2'b00) begin
397 must_write = 1;
398 end // then we must write
399

400

401 //put a case statement here
402 case(band_substate)
403 ss_0: begin// must only read
404 if(a_band_empty_n && b_band_empty_n) begin //read and cycle
405 a_band_re = 1;
406 b_band_re = 1;
407 next_counter = counter + 1;
408 next_tricounter = (tricounter == 2'b10 )? 0 : tricounter + 1;
409 array_en_reg = 1;
410 end //else jsut wait
411 end
412

413 ss_1: begin// must read and write
414 if(a_band_empty_n && b_band_empty_n && c_band_full_n) begin
415 a_band_re = 1;
416 b_band_re = 1;
417 c_band_we = 1;
418 next_counter = counter + 1;
419 next_tricounter = (tricounter == 2'b10 )? 0 : tricounter + 1;
420 array_en_reg = 1;
421 end // else just wait
422 end
423

424 ss_2: begin // must only write
425 if(c_band_full_n) begin
426 c_band_we = 1;
427 next_counter = counter + 1;
428 next_tricounter = (tricounter == 2'b10 )? 0 : tricounter + 1;
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429 array_en_reg = 1;
430 end
431 end
432

433 ss_3: begin //must do nothing but still cycle
434 next_counter = counter + 1;
435 next_tricounter = (tricounter == 2'b10 )? 0 : tricounter + 1;
436 array_en_reg = 1;
437 end
438

439 default: begin // must do nothing, same as ss_3
440 next_counter = counter + 1;
441 next_tricounter = (tricounter == 2'b10 )? 0 : tricounter + 1;
442 array_en_reg = 1;
443 end
444 endcase
445

446

447 next_state = s_bandcompute;
448 if (end_of_band_op) next_state = s_done;
449 end
450

451 s_done: begin // put all the output we to 0;
452 opmode_re = 1;
453 size_re = 1;
454 band_type_re = 1;
455 c_gen_we = 0;
456 c_band_we = 0;
457 next_state = s_idle;
458 end
459

460 s_idle: begin
461 opmode_re = 0;
462 size_re = 0;
463 band_type_re = 0;
464 next_state = s_reset;
465 end
466

467 default: begin
468 a_band_re = 0;
469 b_band_re = 0;
470 a_gen_re = 0;
471 b_gen_re = 0;
472 opmode_re = 0;
473 size_re = 0;
474 band_type_re = 0;
475 c_band_we = 0;
476 c_gen_we = 0;
477

478 array_en_reg = 0;
479 inputs_zero = 0;
480

481 next_state = s_reset;
482 next_counter = 0;
483 next_tricounter = 0;
484

485 must_read = 0;
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486 must_write = 0;
487 end
488 endcase
489 end
490

491

492 endmodule

Listing 63: Host_gen.cpp

1 /*******************************************************************************
2 Vendor: Xilinx
3 Associated Filename: vadd.cpp
4 Purpose: VITIS vector addition
5

6 *******************************************************************************
7 Copyright (C) 2019 XILINX, Inc.
8

9 This file contains confidential and proprietary information of Xilinx, Inc. and
10 is protected under U.S. and international copyright and other intellectual
11 property laws.
12

13 DISCLAIMER
14 This disclaimer is not a license and does not grant any rights to the materials
15 distributed herewith. Except as otherwise provided in a valid license issued to
16 you by Xilinx, and to the maximum extent permitted by applicable law:
17 (1) THESE MATERIALS ARE MADE AVAILABLE "AS IS" AND WITH ALL FAULTS, AND XILINX
18 HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS, EXPRESS, IMPLIED, OR STATUTORY,
19 INCLUDING BUT NOT LIMITED TO WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, OR
20 FITNESS FOR ANY PARTICULAR PURPOSE; and (2) Xilinx shall not be liable (whether
21 in contract or tort, including negligence, or under any other theory of
22 liability) for any loss or damage of any kind or nature related to, arising under
23 or in connection with these materials, including for any direct, or any indirect,
24 special, incidental, or consequential loss or damage (including loss of data,
25 profits, goodwill, or any type of loss or damage suffered as a result of any
26 action brought by a third party) even if such damage or loss was reasonably
27 foreseeable or Xilinx had been advised of the possibility of the same.
28

29 CRITICAL APPLICATIONS
30 Xilinx products are not designed or intended to be fail-safe, or for use in any
31 application requiring fail-safe performance, such as life-support or safety
32 devices or systems, Class III medical devices, nuclear facilities, applications
33 related to the deployment of airbags, or any other applications that could lead
34 to death, personal injury, or severe property or environmental damage
35 (individually and collectively, "Critical Applications"). Customer assumes the
36 sole risk and liability of any use of Xilinx products in Critical Applications,
37 subject only to applicable laws and regulations governing limitations on product
38 liability.
39

40 THIS COPYRIGHT NOTICE AND DISCLAIMER MUST BE RETAINED AS PART OF THIS FILE AT
41 ALL TIMES.
42

43 *******************************************************************************/
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44 #define OCL_CHECK(error, call) \
45 call; \
46 if (error != CL_SUCCESS) { \
47 printf("%s:%d Error calling " #call ", error code is: %d\n", __FILE__, __LINE__, error); \
48 exit(EXIT_FAILURE); \
49 }
50

51 #include <stdlib.h>
52 #include <fstream>
53 #include <iostream>
54 #include "Host.h"
55 #include "../src/HLS_wrapper.h"
56 //#include "xcl2.hpp"
57

58 //Operation specs
59 static const unsigned int size = MAT_SIZE; // only full operations for now
60 unsigned int opcount = 10;
61 bool opmode = OPMODE_GEN; // choose the opmode here
62 size_t gen_matrix_size_in_bytes = opcount*size*size*DATA_WIDTH/8; // full size of the matrix
63

64 static const std::string error_message =
65 "Error: Result mismatch:\n"
66 "i = %d CPU result = %d Device result = %d\n";
67

68 //static const std::string print_results ="C element: %5d\n";
69

70 int main(int argc, char* argv[]) {
71

72 //TARGET_DEVICE macro needs to be passed from gcc command line
73 if(argc != 3) {//this line used to be !=2
74 std::cout << "Usage: " << argv[0] <<" <xclbin>" << std::endl;
75 return EXIT_FAILURE;
76 }
77

78 std::string xclbinFilename = argv[1];
79

80 // Compute the size of array in bytes
81 //size_t size_in_bytes = DATA_SIZE * sizeof(int);
82

83 // Creates a vector of DATA_SIZE elements with an initial value of 10 and 32
84 // using customized allocator for getting buffer alignment to 4k boundary
85

86 std::vector<cl::Device> devices;
87 cl::Device device;
88 cl_int err;
89 cl::Context context;
90 cl::CommandQueue q;
91 cl::Kernel krnl_matrix_mult;
92 cl::Program program;
93 std::vector<cl::Platform> platforms;
94 bool found_device = false;
95

96 //traversing all Platforms To find Xilinx Platform and targeted
97 //Device in Xilinx Platform
98 cl::Platform::get(&platforms);
99 for(size_t i = 0; (i < platforms.size() ) & (found_device == false) ;i++){

100 cl::Platform platform = platforms[i];



A| Appendix: Source Code Repository 153

101 std::string platformName = platform.getInfo<CL_PLATFORM_NAME>();
102 if ( platformName == "Xilinx"){
103 devices.clear();
104 platform.getDevices(CL_DEVICE_TYPE_ACCELERATOR, &devices);
105 if (devices.size()){
106 device = devices[0];
107 found_device = true;
108 break;
109 }
110 }
111 }
112 if (found_device == false){
113 std::cout << "Error: Unable to find Target Device "
114 << device.getInfo<CL_DEVICE_NAME>() << std::endl;
115 return EXIT_FAILURE;
116 }
117

118 // Creating Context and Command Queue for selected device
119 OCL_CHECK(err, context = cl::Context(device, NULL, NULL, NULL, &err));
120 OCL_CHECK(err, q = cl::CommandQueue(context, device, CL_QUEUE_PROFILING_ENABLE, &err));
121

122 std::cout << "INFO: Reading " << xclbinFilename << std::endl;
123 FILE* fp;
124 if ((fp = fopen(xclbinFilename.c_str(), "r")) == nullptr) {
125 printf("ERROR: %s xclbin not available please build\n", xclbinFilename.c_str());
126 exit(EXIT_FAILURE);
127 }
128

129 // Load xclbin
130 std::cout << "Loading: '" << xclbinFilename << "'\n";
131 std::ifstream bin_file(xclbinFilename, std::ifstream::binary);
132 bin_file.seekg (0, bin_file.end);
133 unsigned nb = bin_file.tellg();
134 std::cout << "number of program bytes: " << nb << std::endl;
135 bin_file.seekg (0, bin_file.beg);
136 char *buf = new char [nb];
137 bin_file.read(buf, nb);
138

139

140 std::cout << "Creating Program from binary file..." << std::endl;
141 // Creating Program from Binary File
142 cl::Program::Binaries bins;
143 //std::cout << "CP1.1" << std::endl;
144 bins.push_back({buf,nb});
145 //std::cout << "CP1.2" << std::endl;
146 devices.resize(1);
147 std::cout << "OK" << std::endl << "Programming Device...";
148 OCL_CHECK(err, program = cl::Program(context, devices, bins, NULL, &err));
149

150 std::cout << "OK" << std::endl << "Calling Kernel...";
151 // This call will get the kernel object from program. A kernel is an
152 // OpenCL function that is executed on the FPGA.
153 OCL_CHECK(err, krnl_matrix_mult = cl::Kernel(program,"hls_wrapper", &err));
154 std::cout << "OK" << std::endl << "Allocating memory...";
155 // These commands will allocate memory on the Device. The cl::Buffer objects can
156 // be used to reference the memory locations on the device.
157 //OCL_CHECK(err, cl::Buffer buffer_a(context, CL_MEM_READ_ONLY, size_in_bytes, NULL, &err));
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158

159 OCL_CHECK(err, cl::Buffer buffer_A(context, CL_MEM_READ_ONLY, gen_matrix_size_in_bytes, NULL, &err));
160 OCL_CHECK(err, cl::Buffer buffer_B(context, CL_MEM_READ_ONLY, gen_matrix_size_in_bytes, NULL, &err));
161 //OCL_CHECK(err, cl::Buffer buffer_b(context, CL_MEM_READ_ONLY, size_in_bytes, NULL, &err));
162 OCL_CHECK(err, cl::Buffer buffer_C(context, CL_MEM_WRITE_ONLY, gen_matrix_size_in_bytes, NULL,

&err));↪→

163 //OCL_CHECK(err, cl::Buffer buffer_result(context, CL_MEM_WRITE_ONLY, size_in_bytes, NULL, &err));
164 std::cout << "OK" << std::endl << "Setting Kernel Arguments...";
165 //set the kernel Arguments
166 //int narg=2;
167

168

169 OCL_CHECK(err, err = krnl_matrix_mult.setArg(0,buffer_A));
170 OCL_CHECK(err, err = krnl_matrix_mult.setArg(1,buffer_B));
171 OCL_CHECK(err, err = krnl_matrix_mult.setArg(2,buffer_C));
172 OCL_CHECK(err, err = krnl_matrix_mult.setArg(3,size));
173 OCL_CHECK(err, err = krnl_matrix_mult.setArg(4,opmode));
174 OCL_CHECK(err, err = krnl_matrix_mult.setArg(5,opcount));
175 std::cout << "OK" << std::endl << ((opmode==OPMODE_GEN)?
176 "Running Generic Operation with operation size " : "Running Band Operation with operation size ")
177 << size << " and data width " << DATA_WIDTH <<std::endl;
178

179 std::cout << "Mapping OpenCL buffer to data pointers..." << std::flush;
180

181

182 data_t *ptr_A;
183 data_t *ptr_B;
184 data_t *ptr_C;
185

186

187 OCL_CHECK(err, ptr_A = (data_t*)q.enqueueMapBuffer (buffer_A , CL_TRUE , CL_MAP_WRITE , 0,
gen_matrix_size_in_bytes, NULL, NULL, &err));↪→

188 OCL_CHECK(err, ptr_B = (data_t*)q.enqueueMapBuffer (buffer_B , CL_TRUE , CL_MAP_WRITE , 0,
gen_matrix_size_in_bytes, NULL, NULL, &err));↪→

189 OCL_CHECK(err, ptr_C = (data_t*)q.enqueueMapBuffer (buffer_C , CL_TRUE , CL_MAP_READ , 0,
gen_matrix_size_in_bytes, NULL, NULL, &err));↪→

190 std::cout << "OK" << std::endl << "Preparing the input data..." << std::flush;
191

192

193 //fill in the matrices with relevant numbers here.
194 for(unsigned int j=0; j < opcount; j++)
195 for(unsigned int k=0;k<size*size;k++){
196 ptr_A[j*size*size + k] = k;
197 ptr_B[j*size*size + k] = k;
198 }
199

200

201 static const std::string print_results = "%4d";
202

203 unsigned int loopcount = 1;
204

205 std::chrono::duration<double> full_time(0);
206 std::chrono::duration<double> kernel_time(0);
207

208 std::cout << "OK" << std::endl << "Starting " << loopcount << " Operations" << std::flush;
209

210
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211 auto kernel_start = std::chrono::high_resolution_clock::now();
212

213 for(unsigned int i=0;i<loopcount;i++){
214 //std::cout << "OK" << std::endl << "Migrating data to the kernel space..." << std::flush;
215

216 // Data will be migrated to kernel space
217 OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_A},0/* 0 means from host*/ ));
218 OCL_CHECK(err, q.finish());
219 OCL_CHECK(err, err = q.enqueueMigrateMemObjects({buffer_B},0/* 0 means from host*/ ));
220 OCL_CHECK(err, q.finish());
221 //std::cout << "OK" << std::endl << "Launching Kernel..." << std::endl << std::flush;
222 //Launch the Kernel
223 OCL_CHECK(err, err = q.enqueueTask(krnl_matrix_mult));
224 OCL_CHECK(err, q.finish());
225 //std::cout << "EXECUTION FINISHED" << std::endl << "Migrating datafrom the kernel space..."<<

std::flush;↪→

226 // The result of the previous kernel execution will need to be retrieved in
227 // order to view the results. This call will transfer the data from FPGA to
228 // source_results vector
229 OCL_CHECK(err, q.enqueueMigrateMemObjects({buffer_C},CL_MIGRATE_MEM_OBJECT_HOST));
230 OCL_CHECK(err, q.finish());
231 //std::cout << "OK" << std::endl << std::flush;
232 //std::cout << std::endl;
233 }
234

235 std::cout << "EXECUTION FINISHED" << std::endl << std::flush;
236

237 auto kernel_end = std::chrono::high_resolution_clock::now();
238

239 full_time = std::chrono::duration<double>(kernel_end - kernel_start);
240

241 kernel_time = full_time / (double) loopcount;
242

243 std::cout << "time per kernel execution:" << kernel_time.count() << "s" << std::endl << std::flush;
244

245

246

247 //Verify the result
248 //int match = 0;
249 for(unsigned int k = 0; k< opcount ; k++) {
250 std::cout << std::endl;
251 std::cout << "C=" << std::endl;
252 //simple generic printer
253 for (unsigned int i = 0; i < size; i++)
254 for (unsigned int j = 0; j < size; j++){
255 printf(print_results.c_str(), (int) ptr_C[k*size*size + i*size + j]);
256 cout <<" \n"[j == size-1];
257 }
258

259 }
260

261 std::cout << "Cleaning up...";
262 //OCL_CHECK(err, err = q.enqueueUnmapMemObject(buffer_a , ptr_a));
263 OCL_CHECK(err, err = q.enqueueUnmapMemObject(buffer_A , ptr_A));
264 OCL_CHECK(err, err = q.enqueueUnmapMemObject(buffer_B , ptr_B));
265 OCL_CHECK(err, err = q.enqueueUnmapMemObject(buffer_C , ptr_C));
266 //OCL_CHECK(err, err = q.enqueueUnmapMemObject(buffer_result , ptr_result));
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267 OCL_CHECK(err, err = q.finish());
268

269

270 std::cout << "OK" << std::endl << "KERNEL_DONE" << std::endl;
271 //std::cout << "TEST " << (match ? "FAILED" : "PASSED") << std::endl;
272 return 0;//(match ? EXIT_FAILURE : EXIT_SUCCESS);
273

274 }

Listing 64: hls_wrapper_FINAL.cpp

1 /*
2 * Copyright 2021 Xilinx, Inc.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *

10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16

17 #include "HLS_wrapper.h"
18

19 //--------------------------------------------------------
20 #ifndef __SYNTHESIS__ // dont care for hw_emu
21 void mmc(
22 hls::stream<band_in_t >& A_band_stream, //this will be used to tranfer a stream of data to the kernel
23 hls::stream<band_in_t >& B_band_stream,
24 hls::stream<gen_in_t >& A_gen_stream,
25 hls::stream<gen_in_t >& B_gen_stream,
26

27 hls::stream<bool>& opmode_stream,
28 hls::stream<int>& size_stream,
29 hls::stream<int>& band_type_stream,
30

31 hls::stream<band_out_t >& C_band_stream,
32 hls::stream<gen_out_t >& C_gen_stream)
33 {
34 #pragma HLS inline off
35

36 C_gen_stream << 1;
37 C_gen_stream << 1;
38 C_gen_stream << 1;
39 C_gen_stream << 1;
40 }
41 #endif
42
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43 #ifdef __SYNTHESIS__
44 void mmc(
45 hls::stream<band_in_t >& A_band_stream, //this will be used to tranfer a stream of data to the kernel
46 hls::stream<band_in_t >& B_band_stream,
47 hls::stream<gen_in_t >& A_gen_stream,
48 hls::stream<gen_in_t >& B_gen_stream,
49

50 hls::stream<bool>& opmode_stream,
51 hls::stream<int>& size_stream,
52 hls::stream<int>& band_type_stream,
53

54 hls::stream<band_out_t >& C_band_stream,
55 hls::stream<gen_out_t >& C_gen_stream);
56 #endif
57 //--------------------------------------------------------
58 /*-----------extra function bodies--------------*/
59 unsigned int get_c_rect_index(int i,
60 int j,
61 int width){
62 //calculate the rectangular indices:
63 i++;
64 j++;
65 unsigned int Ir = (j>i)? i : j ;
66 unsigned int Jr = width - i + j;
67 Ir--;
68 Jr--;
69

70 //calculate the index of the 1D arry and return it
71 return Ir*(2*width-1) + Jr;
72 }
73 unsigned int get_c_i_index(int c_i_rect,
74 int c_j_rect,
75 int w){
76 //calculate the rectangular indices:
77 c_i_rect++;
78 c_j_rect++;
79 unsigned int c_i = (c_j_rect>=w) ? c_i_rect : w + c_i_rect - c_j_rect ;
80 c_i--;
81 return c_i;
82 }
83

84 unsigned int get_c_j_index(int c_i_rect,
85 int c_j_rect,
86 int w){
87 //calculate the rectangular indices:
88 c_i_rect++;
89 c_j_rect++;
90 unsigned int c_j = (c_j_rect>=w) ? c_j_rect - w + c_i_rect : c_i_rect ;
91 c_j--;
92 return c_j;
93 }
94

95 unsigned int get_a_index(int i,
96 int j,
97 int width,
98 int p){
99 //calculate the rectangular indices:
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100 i++;
101 j++;
102 unsigned int Ir = j;
103 unsigned int Jr = p - j + i;
104 //calculate the index of the 1D arry and return it
105 Ir--;
106 Jr--;
107 return Ir*width + Jr;
108 }
109 bool is_in( int c_i_rect,
110 int c_j_rect,
111 int size,
112 int in_width,
113 int out_width)
114 {
115 int k = size-in_width;
116 if(c_i_rect <= k) return true;//for the first portion the criterion is simple
117 else{
118 if (c_j_rect > c_i_rect-k-1 && c_j_rect < out_width - (c_i_rect-k)) return true;
119 else return false;
120 }
121 }
122 unsigned int min(unsigned int a, unsigned int b){
123 return (a<b)? a : b;
124 }
125 void hls_mmc(
126 hls::stream<band_in_t >& A_band_stream,
127 hls::stream<band_in_t >& B_band_stream,
128 hls::stream<gen_in_t >& A_gen_stream,
129 hls::stream<gen_in_t >& B_gen_stream,
130

131 hls::stream<bool>& opmode_stream,
132 hls::stream<int>& size_stream,
133 hls::stream<int>& band_type_stream,
134

135 hls::stream<band_out_t >& C_band_stream,
136 hls::stream<gen_out_t >& C_gen_stream){
137

138 #pragma HLS dataflow
139

140 bool opmode;
141 int band_type;
142 int size;
143

144 size_stream >> size;
145 opmode_stream >> opmode;
146 band_type_stream >> band_type;
147

148 int index;
149 unsigned int index_a;
150 unsigned int index_b;
151

152 if(opmode==OPMODE_GEN){
153 /*--------------------------------------------------GENERIC

OPERATION-----------------------------------------------------*/↪→

154 //let's cut up the input lines of data and fill an array with the individual data
155
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156 const unsigned int in_array_size = MAT_SIZE*MAT_SIZE;
157 const unsigned int out_array_size = MAT_SIZE*MAT_SIZE;
158

159 data_t a_data_array[in_array_size];
160 data_t b_data_array[in_array_size];
161 data_t c_data_array[out_array_size];
162

163 for(unsigned int opcount = 0; opcount < band_type; opcount++){
164 #pragma HLS loop_tripcount max=1000
165 for(unsigned int i=0; i < MAT_SIZE; i++){ //loop through the lines
166 gen_in_t a_temp;
167 gen_in_t b_temp;
168 A_gen_stream >> a_temp;
169 B_gen_stream >> b_temp;
170 for(unsigned int j=0; j<MAT_SIZE; j++){//loop through each line and cut it up and

fill the array↪→

171 index_a = i*MAT_SIZE + j;
172 index_b = j*MAT_SIZE + i; // in order to match the rtl design
173 a_data_array[index_a] = a_temp.range(DATA_WIDTH*(j+1)-1,j*DATA_WIDTH);
174 b_data_array[index_b] = b_temp.range(DATA_WIDTH*(j+1)-1,j*DATA_WIDTH);
175 }
176 }
177

178 for(unsigned int i=0;i<MAT_SIZE;i++){
179 for(unsigned int j=0;j<MAT_SIZE;j++){
180 index = i*MAT_SIZE + j;
181 c_data_array[index]=0; // start the accumulator at 0
182 for(unsigned int k=0;k<MAT_SIZE;k++){
183 index_a = i*MAT_SIZE + k;
184 index_b = k*MAT_SIZE + j;
185 c_data_array[index] += a_data_array[index_a]*b_data_array[index_b];
186 }
187 }
188 }
189 //put the data back into streams
190 for(unsigned int i=0; i<MAT_SIZE; i++){ //loop through the lines
191 gen_out_t c_temp;
192 for(unsigned int j=0; j<MAT_SIZE; j++){//loop through each line and cut it up and

fill the array↪→

193 index = i*MAT_SIZE + j;
194 c_temp.range(DATA_WIDTH*(j+1)-1,j*DATA_WIDTH) = c_data_array[index];
195 }
196 C_gen_stream << c_temp;
197 }
198 }
199

200

201 }else{
202 /*------------------------------------------------BAND

OPERATION----------------------------------------------------------*/↪→

203

204 const int in_width = 2*MAT_SIZE-1;
205 const int out_width = 2*in_width-1;
206

207 const unsigned int in_array_size = 2*in_width*in_width;
208 const unsigned int out_array_size = out_width;
209
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210 data_t a_data_array[in_array_size];//define arrays with sufficient size
211 data_t b_data_array[in_array_size];
212

213 int pattern[in_array_size];
214

215 data_t c_data_array[out_array_size];
216

217

218

219 //simple generic printer
220

221

222 for(unsigned int i=0; i<2*in_width && i<size; i++){ //fill the circular buffer initially
223 #pragma HLS loop_tripcount max=1000
224 band_in_t a_temp;
225 band_in_t b_temp;
226 A_band_stream >> a_temp;
227 B_band_stream >> b_temp;
228 for(unsigned int j=0; j<in_width; j++){//loop through each line and cut it up and fill the

array↪→

229 index = i*in_width + j;
230 a_data_array[index] = a_temp.range(DATA_WIDTH*(j+1)-1,j*DATA_WIDTH);
231 b_data_array[index] = b_temp.range(DATA_WIDTH*(j+1)-1,j*DATA_WIDTH);
232 }
233 }
234

235 // now that the data is into an array we can easily make the computations with the standard
3-loop technique↪→

236 int index_a;
237 int index_b;
238 int index_c;
239

240 int c_i;
241 int c_j;
242 int c_k;
243

244 int overlap;
245 int dif;
246 int abs_dif;
247

248 const int q = band_type + 1;
249 const int p = in_width - q + 1;
250 const int w = in_width;
251

252 int circ_buffer_offset = 0;
253

254 #ifndef __SYNTHESIS__
255 std::cout << "q= "<< q << " p= " << p << " w= " << in_width << std::endl;
256 #endif
257

258 for(unsigned int c_i_rect = 0 ; c_i_rect < size ; c_i_rect++){
259 #pragma HLS loop_tripcount max=1000
260 if(c_i_rect > in_width && c_i_rect <= size-in_width){
261 band_in_t a_temp;
262 band_in_t b_temp;
263

264 A_band_stream >> a_temp; // these lines are deadlocking in sw_emu
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265 B_band_stream >> b_temp;
266 for(unsigned int j=0; j<in_width; j++){
267 index = circ_buffer_offset*in_width + j;
268 a_data_array[index] = a_temp.range(DATA_WIDTH*(j+1)-1,j*DATA_WIDTH);
269 b_data_array[index] = b_temp.range(DATA_WIDTH*(j+1)-1,j*DATA_WIDTH);
270 }
271 circ_buffer_offset = (circ_buffer_offset==2*in_width-1) ? 0 : circ_buffer_offset + 1;
272 }
273 for(unsigned int c_j_rect = 0 ; c_j_rect < out_width ; c_j_rect++){
274 index_c = c_j_rect;
275 c_data_array[index_c] = 0; //start off every output memory at 0
276 if(is_in(c_i_rect,c_j_rect,size,in_width,out_width)){
277 c_i = get_c_i_index(c_i_rect , c_j_rect , w);
278 c_j = get_c_j_index(c_i_rect , c_j_rect , w);
279

280 dif = c_i-c_j;
281 abs_dif = (dif < 0)? -dif : dif;
282 overlap = w - abs_dif;
283

284 for(unsigned int iter=0 ; iter < overlap ; iter++){
285 DO_PRAGMA(HLS loop_tripcount max=in_width)
286 c_k = (c_i>c_j) ? c_i + iter - (w-p) : c_j + iter - (w-p);
287 if(c_k>=0 && c_k<size){
288 index_a = get_a_index(c_i, c_k , in_width,p);
289 index_b = get_a_index(c_j, c_k , in_width,p);
290

291 c_data_array[index_c] += a_data_array[index_a % in_array_size] *
b_data_array[index_b % in_array_size];↪→

292 }
293 }
294 }
295 }
296 band_out_t c_temp;
297 for(unsigned int j=0; j<out_width; j++){
298 c_temp.range(DATA_WIDTH*(j+1)-1,j*DATA_WIDTH) = c_data_array[j];
299 }
300 C_band_stream << c_temp;
301 }
302 }
303 }
304

305 void read_data_optimised(
306 BUS_TYPE* in_A, BUS_TYPE* in_B,
307 const unsigned int size,
308 const bool opmode,
309 const unsigned int band_type,
310 hls::stream<band_in_t >& A_band_line, //this will be used to tranfer a line of data to the kernel
311 hls::stream<band_in_t >& B_band_line,
312 hls::stream<gen_in_t >& A_gen_line,
313 hls::stream<gen_in_t >& B_gen_line,
314 hls::stream<int >& size_line,
315 hls::stream<int >& band_type_line,
316 hls::stream<bool >& opmode_line)
317 {
318 #pragma HLS INLINE OFF
319 #pragma HLS dataflow
320 /*-------------optimise for 16x16 8 bit generic operation---------*/
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321 BUS_TYPE chunk_A , chunk_B;
322 //put the parameters in their own fifos
323 size_line << size;
324 band_type_line << band_type;
325 opmode_line << opmode;
326

327 unsigned int line_accu_bit=0;
328 unsigned int chunk_accu_bit;
329 unsigned int bits_to_be_pulled;
330

331 if (opmode==OPMODE_GEN){
332 const unsigned int in_matrix_size_in_bits = band_type*size*size*DATA_WIDTH;
333 unsigned int bits_left = in_matrix_size_in_bits;
334 const unsigned int num_transfers = (in_matrix_size_in_bits % BUSWIDTH == 0) ?
335 in_matrix_size_in_bits /BUSWIDTH : in_matrix_size_in_bits /BUSWIDTH + 1; // I believe this is

correct↪→

336 //if the modulo of the division is 0 then we can spare one transfer
337

338 gen_in_t A_line_accu;
339 gen_in_t B_line_accu;
340

341 for(unsigned int i=0;i<num_transfers;i++){
342 #pragma HLS loop_tripcount max=8000
343 #pragma HLS pipeline II=1
344 chunk_A = in_A[i];
345 chunk_B = in_B[i];
346 chunk_accu_bit = 0;
347

348 while(chunk_accu_bit < BUSWIDTH && bits_left != 0){ //while the chunk still has data to pull
349 #pragma HLS loop_tripcount max=2
350 #pragma HLS pipeline II=1
351 bits_to_be_pulled = min(BUSWIDTH-chunk_accu_bit,GEN_IN_SIZE-line_accu_bit); //determine

if we are line-limited or chunk-limited↪→

352

353 A_line_accu.range(line_accu_bit + bits_to_be_pulled - 1, line_accu_bit) =
chunk_A.range(chunk_accu_bit + bits_to_be_pulled - 1,chunk_accu_bit);↪→

354 B_line_accu.range(line_accu_bit + bits_to_be_pulled - 1, line_accu_bit) =
chunk_B.range(chunk_accu_bit + bits_to_be_pulled - 1,chunk_accu_bit);↪→

355 chunk_accu_bit += bits_to_be_pulled;
356 line_accu_bit += bits_to_be_pulled;
357 bits_left -= bits_to_be_pulled;
358 if(line_accu_bit == GEN_IN_SIZE){ //dispatch it
359 A_gen_line << A_line_accu;
360 B_gen_line << B_line_accu;
361 line_accu_bit = 0;
362 }
363 }
364 }
365 }
366 else{ // OPMODE_BAND
367 const unsigned int width = (2*MAT_SIZE-1) ;
368 const unsigned int length = size;
369

370 const unsigned int in_matrix_size_in_bits = width*length*DATA_WIDTH; // num elements * bytes per
element // here = 512 bits: lucky↪→

371 unsigned int bits_left = in_matrix_size_in_bits;
372 const unsigned int num_transfers = (in_matrix_size_in_bits % BUSWIDTH == 0) ?
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373 in_matrix_size_in_bits /BUSWIDTH : in_matrix_size_in_bits /BUSWIDTH + 1; // I believe this is
correct↪→

374

375 band_in_t A_line_accu;
376 band_in_t B_line_accu;
377

378 for(unsigned int i=0;i<num_transfers;i++){
379 #pragma HLS pipeline II=1
380 #pragma HLS loop_tripcount max=967
381 chunk_A = in_A[i];
382 chunk_B = in_B[i];
383 chunk_accu_bit = 0;
384 while(chunk_accu_bit < BUSWIDTH && bits_left != 0){ //while the chunk still has data to pull
385 #pragma HLS loop_tripcount max=9
386 #pragma HLS pipeline II=1
387 bits_to_be_pulled = min(BUSWIDTH-chunk_accu_bit,BAND_IN_SIZE-line_accu_bit);//determine

if we are line-limited or chunk-limited↪→

388

389 A_line_accu.range(line_accu_bit + bits_to_be_pulled - 1, line_accu_bit) =
chunk_A.range(chunk_accu_bit + bits_to_be_pulled - 1,chunk_accu_bit);↪→

390 B_line_accu.range(line_accu_bit + bits_to_be_pulled - 1, line_accu_bit) =
chunk_B.range(chunk_accu_bit + bits_to_be_pulled - 1,chunk_accu_bit);↪→

391 chunk_accu_bit += bits_to_be_pulled;
392 line_accu_bit += bits_to_be_pulled;
393 bits_left -= bits_to_be_pulled;
394 if(line_accu_bit == BAND_IN_SIZE){ //dispatch it
395 A_band_line << A_line_accu;
396 B_band_line << B_line_accu;
397 line_accu_bit = 0;
398 }
399 }
400 }
401 }
402 }
403

404 void write_data_optimised(
405 BUS_TYPE* out_C,
406 const unsigned int size,
407 const bool opmode,
408 const unsigned int band_type,
409 hls::stream<band_out_t >& C_band_line,
410 hls::stream<gen_out_t >& C_gen_line)
411 {
412 #pragma HLS INLINE OFF
413 #pragma HLS dataflow
414

415 BUS_TYPE chunk_C;
416

417 unsigned int line_accu_bit;
418 unsigned int chunk_accu_bit=0;
419 unsigned int bits_to_be_pulled;
420 unsigned int chunk_counter = 0;
421

422 if (opmode==OPMODE_GEN){
423 gen_out_t Temp_C;
424

425 unsigned int in_matrix_size_in_bits = band_type*size*size*DATA_WIDTH;
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426 unsigned int bits_left = in_matrix_size_in_bits;
427 const unsigned int num_transfers = (in_matrix_size_in_bits % BUSWIDTH == 0) ?
428 in_matrix_size_in_bits /BUSWIDTH : in_matrix_size_in_bits /BUSWIDTH + 1;
429

430 for(unsigned int i=0; i<band_type*size; i++){ // for each line, work until the line is empty
431 #pragma HLS loop_tripcount max=16000
432 #pragma HLS pipeline II=1
433 C_gen_line >> Temp_C;
434 line_accu_bit = 0;
435

436 while(line_accu_bit < GEN_OUT_SIZE){ //while there is still data in the line to dump into
chunk↪→

437 #pragma HLS loop_tripcount max=1
438 #pragma HLS pipeline II=1
439 bits_to_be_pulled = min(BUSWIDTH-chunk_accu_bit,GEN_OUT_SIZE-line_accu_bit);//determine

how many bits we can pull↪→

440 #ifndef __SYNTHESIS__
441 std::cout << "line_accu_bit: " << line_accu_bit << std::endl << std::flush;
442 std::cout << "chunk_accu_bit: " << chunk_accu_bit << std::endl << std::flush;
443 #endif
444 chunk_C.range(chunk_accu_bit + bits_to_be_pulled - 1, chunk_accu_bit)=

Temp_C.range(line_accu_bit + bits_to_be_pulled - 1, line_accu_bit);↪→

445 chunk_accu_bit += bits_to_be_pulled;
446 line_accu_bit += bits_to_be_pulled;
447 bits_left -= bits_to_be_pulled;
448 if(chunk_accu_bit == BUSWIDTH || bits_left == 0){
449 out_C[chunk_counter++] = chunk_C;
450 chunk_accu_bit = 0;
451 }
452 }
453 }
454 }
455

456

457 else if(opmode==OPMODE_BAND){
458 band_out_t Temp_C;
459

460 const unsigned int width = 2*(2*MAT_SIZE-1)-1;
461 const unsigned int length = size;
462

463 unsigned int in_matrix_size_in_bits = width*length*DATA_WIDTH;
464 unsigned int bits_left = in_matrix_size_in_bits;
465 const unsigned int num_transfers = (in_matrix_size_in_bits % BUSWIDTH == 0) ?
466 in_matrix_size_in_bits /BUSWIDTH : in_matrix_size_in_bits /BUSWIDTH + 1;
467

468 for(unsigned int i=0; i<length; i++){ // for each line, work until the line is empty
469 #pragma HLS loop_tripcount max=1000
470 #pragma HLS pipeline II=1
471 C_band_line >> Temp_C;
472 line_accu_bit = 0;
473

474 while(line_accu_bit < BAND_OUT_SIZE){ //while there is still data in the line to dump into
chunk↪→

475 #pragma HLS loop_tripcount max=2
476 #pragma HLS pipeline II=1
477 bits_to_be_pulled = min(BUSWIDTH-chunk_accu_bit,BAND_OUT_SIZE-line_accu_bit);//determine

how many bits we can pull↪→
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478 chunk_C.range(chunk_accu_bit + bits_to_be_pulled - 1, chunk_accu_bit)=
Temp_C.range(line_accu_bit + bits_to_be_pulled - 1, line_accu_bit);↪→

479 chunk_accu_bit += bits_to_be_pulled;
480 line_accu_bit += bits_to_be_pulled;
481 bits_left -= bits_to_be_pulled;
482 if(chunk_accu_bit == BUSWIDTH || bits_left == 0){//if the chunk is full or there's no

more data to pull↪→

483 out_C[chunk_counter++] = chunk_C;
484 chunk_accu_bit = 0;
485 }
486 }
487 }
488 }
489 }
490

491

492 void hls_wrapper(
493 BUS_TYPE* in_A,
494 BUS_TYPE* in_B,
495 BUS_TYPE* out_C,
496 const unsigned int size,
497 const bool opmode,
498 const unsigned int band_type) {
499

500 //how to set this one up ?
501 #pragma HLS INTERFACE m_axi port=in_A offset=slave bundle=gmem0
502 #pragma HLS INTERFACE m_axi port=in_B offset=slave bundle=gmem1
503 #pragma HLS INTERFACE m_axi port=out_C offset=slave bundle=gmem2
504

505 #pragma HLS INTERFACE s_axilite port=in_A bundle=control
506 #pragma HLS INTERFACE s_axilite port=in_B bundle=control
507 #pragma HLS INTERFACE s_axilite port=out_C bundle=control
508

509 #pragma HLS INTERFACE s_axilite port=size bundle=control
510 #pragma HLS INTERFACE s_axilite port=opmode bundle=control
511 #pragma HLS INTERFACE s_axilite port=band_type bundle=control
512

513 #pragma HLS INTERFACE s_axilite port=return bundle=control
514

515 band_out_t C_band_fake;
516 gen_out_t C_gen_fake;
517

518

519 #pragma HLS dataflow
520

521 hls::stream<gen_in_t > A_gen_stream("readAGen");
522 hls::stream<gen_in_t > B_gen_stream("readBGen");
523 hls::stream<gen_out_t > C_gen_stream("writeCgen");
524

525 hls::stream<band_in_t > A_band_stream("readABand");
526 hls::stream<band_in_t > B_band_stream("readBBand");
527 hls::stream<band_out_t > C_band_stream("writeCBand");
528

529 hls::stream<int> size_stream("sizeStream");
530 hls::stream<int> band_type_stream("band_typeStream");
531 hls::stream<bool> opmode_stream("opmodeStream");
532
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533

534 #define FIFODEPTH 64
535 DO_PRAGMA(HLS STREAM variable=A_gen_stream depth=FIFODEPTH)
536 DO_PRAGMA(HLS STREAM variable=B_gen_stream depth=FIFODEPTH)
537 DO_PRAGMA(HLS STREAM variable=C_gen_stream depth=FIFODEPTH)
538

539 DO_PRAGMA(HLS STREAM variable=A_band_stream depth=FIFODEPTH)
540 DO_PRAGMA(HLS STREAM variable=B_band_stream depth=FIFODEPTH)
541 DO_PRAGMA(HLS STREAM variable=C_band_stream depth=FIFODEPTH)
542

543 //these fifos are used for simple parameter transfer
544 DO_PRAGMA(HLS STREAM variable=size_stream depth=1)
545 DO_PRAGMA(HLS STREAM variable=band_type_stream depth=1)
546 DO_PRAGMA(HLS STREAM variable=opmode_stream depth=1)
547

548

549 #if OPTIMISED == 1
550 read_data_optimised(
551 #else
552 read_data(
553 #endif
554 in_A,
555 in_B,
556 size,
557 opmode,
558 band_type,
559 A_band_stream,
560 B_band_stream,
561 A_gen_stream,
562 B_gen_stream,
563 size_stream,
564 band_type_stream,
565 opmode_stream
566 );
567

568 #if USERTL == 1
569 mmc(
570 #else
571 hls_mmc(
572 #endif
573 A_band_stream,
574 B_band_stream,
575 A_gen_stream,
576 B_gen_stream,
577

578 opmode_stream,
579 size_stream,
580 band_type_stream,
581

582 C_band_stream,
583 C_gen_stream);
584

585

586 #if OPTIMISED == 1
587 write_data_optimised(
588 #else
589 write_data(
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590 #endif
591 out_C,
592 size,
593 opmode,
594 band_type,
595 C_band_stream,
596 C_gen_stream);
597 }
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