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1. Introduction
In the last two decades, the space segment has
been characterized by two major trends: the
increase in satellites’ launch rates and the de-
crease in the satellites’ dimensions. As a conse-
quence, not only the number of satellites orbit-
ing Earth has increased, but also the strategy
of distributed systems, in the form of constella-
tions and formation flying missions, is becoming
more widespread.
The main objective of this work is to develop
a tool for formation reconfiguration for satel-
lites flying in close-range. Two cornerstones have
been set: perform trajectory optimization by
means of a shape-based method and perform for-
mation reconfiguration by means of a decentral-
ized approach. The reason behind these corner-
stones is to increase the autonomy of satellites
from ground stations, which will be not only
desirable but also mandatory, as their number
increases. In particular, shape-based methods
allow to obtain a feasible solution with a low
computational effort when dealing with satellites
capable to perform maneuvers with continuous
thrust. A decentralized approach, instead, al-
lows to spread the computational burden among
all the satellites of the formation and increases
the reliability of the overall mission.

The solution of the trajectory optimization
problem by means of a shaped-based method
has been tackled by a wide variety of shape func-
tions, the most commons being polynomials [1],
exponential sinusoid [2], the Fourier series [3],
and the Bézier one [4].
Concerning formation reconfiguration, possible
approaches to such problem are: disciplined
convex programming, collective control [5], di-
rect approach [6], and a centralized approach by
means of a shape-based method [4].
This work is structured as follows: Sec. 2
presents the dynamical model, Sec. 3 deals
with the trajectory optimization problem, Sec. 4
shows the testing of the developed model and an
analysis on how the results of the optimization
process are affected by the order of the Bézier
series. Finally, Sec. 5 deals with the formation
reconfiguration problem solving it by means of
a decentralized approach.

2. Dynamical Models
To describe the dynamics of the involved
satellites two different reference frames have
been used: the Earth-Centered Inertial (ECI)
reference frame and the Local-Vertical-Local-
Horizontal (LVHL) reference frame, centered in
the leader satellite and moving with it.
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The equations of motion for each satellite in the
ECI can be expressed as follows:

R̈I = − µ

R3
I

RI + FI(t) (1)

In which RI is the position vector, the subscript
I is used to identify the satellite I, µ is the
Earth’s gravitational constant, and FI is the ap-
plied control.

2.1. Hill-Clohessy-Wiltshire Model
In this work, the Hill-Clohessy-Wiltshire (HCW)
equations have been used to describe the rela-
tive dynamics between the leader and the fol-
lower satellites. The HCW model is obtained
by means of a linearization of the relative mo-
tion between the two satellites. The dynamics of
the follower satellite are described in the LVLH
reference frame as follows:

ẍ− 2Nẏ − 3N2x = fx

ÿ + 2Nẋ = fy

z̈ +N2z = fz

(2)

In which:
• fx, fy, and fz are the thrust acceleration

components of the control.
• N =

√
µ/a3L is the average orbital angular

velocity of the leader satellite and aL is its
semi-major axis.

This model is suitable when the leader satellite
is flying on a circular orbit, the propagation time
is at most one orbital period, and the satellites
are in close formation. Note that this model
does not include perturbative effects since their
differential effect, between leader and follower
satellites, is negligible when the distances be-
tween the involved satellites are within tens of
meters.

3. Trajectory Optimization
The minimization problem to be solved is the
following: minimize the ∆V of a satellite that
has to change its configuration with respect to
a leader satellite. Such satellite is subjected to
two constraints:
• The total thrust acceleration, f(t), must

be lower than the maximum available one,
fmax.

• The distance between the leader and the fol-
lower satellites, dLF (t), must be higher than
a given threshold value, dmin.

The mathematical statement of the optimization
problem is the following:

min
x,y,z

∆V =

∫ T

0
f(t) dt

s.t.

{
(f(t))2 − f2

max ≤ 0

d2min − (dLF (t))
2 ≤ 0

(3)

In which T is the maneuvering time.
The total thrust acceleration, f(t), and the dis-
tance between leader and follower satellites are
computed as follows:

f(t) =

√
(fx(t))

2 + (fy(t))
2 + (fz(t))

2

dLF (t) =

√
(x(t))2 + (y(t))2 + (z(t))2

(4)

(5)

In which fx(t), fy(t), and fz(t) are the thrust
acceleration components of the follower satellite
while x(t), y(t), and z(t) are its position compo-
nents in the LVLH reference frame.
Note that the nonlinear inequality constraints
have been expressed by means of their square
values to provide to the optimizer a region of
feasible solutions broader than the one provided
by the square root of the same expressions.
The optimization problem has twelve boundary
conditions in the form of initial and final states
of the follower satellite in the LVLH reference
frame: [

x0 y0 z0 ẋ0 ẏ0 ż0
][

xT yT zT ẋT ẏT żT
]

3.1. Bézier Shape Function
The Bézier series is defined as follows:

a(τ) =
n∑

j=0

Bj(τ)Pj = B(τ)P (6)

In which n is an integer that represents the order
of the Bézier series, Pj are the geometric coeffi-
cients, and Bj(τ) are the Bernstein polynomials.
It is worth highlighting that the Bernstein poly-
nomials form a complete basis over the interval
[0, 1] for all polynomials of degree ≤ n.
The first and second τ derivatives of the Bézier
series are the following:

a′(τ) =
n∑

j=0

B′
j(τ)Pj = B′(τ)P

a′′(τ) =

n∑
j=0

B′′
j (τ)Pj = B′′(τ)P

(7)

(8)
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Note that the geometric coefficients do not de-
pend on τ and remain constant upon derivation.

3.1.1 Components of the Follower Satel-
lite by Means of the Bézier Series

Due to the definition of the Bézier series, it is
necessary to define a scaled time that ranges in
the interval [0, 1]:

τ = t/T (9)

In which t is the time variable that ranges be-
tween 0 and T .
With this scaling, the velocity and the accelera-
tion components are now expressed as follows:

ẋ(t)T = x′(τ)

ẍ(t)T 2 = x′′(τ)

(10)

(11)

In which the notation · represents the time
derivative while the subscript ′ represents the
τ derivative.
It is now possible to express the position, ve-
locity, and acceleration components by means of
the Bézier series:

x(τ) =
[
BxPx ByPy BzPz

]
x′(τ) =

[
B′

xPx B′
yPy B′

zPz

]
x′′(τ) =

[
B′′

xPx B′′
yPy B′′

zPz

]
(12)

(13)

(14)

Note that the subscripts x, y, and z indicate
that each component might have a different or-
der of the Bézier series and that the geometric
coefficients are different for each component.
The boundary conditions allow to compute four
geometric coefficients for each component; this
is possible due to the fact that for the Bernstein
polynomials the following is valid:

B(0) =

{
1 j = 0

0 j ∈ [1, n]

B(1) =

{
0 j ∈ [0, n− 1]

1 j = n

B′(0) =


− n j = 0

n j = 1

0 j ∈ [2, n]

B′(1) =


0 j ∈ [0, n− 2]

− n j = n− 1

n j = n

(15)

Therefore, for the x component the following is
valid:

x(0) = x0 = P0,x

x(1) = xT = Pnx,x

x′(0) = ẋ0T = −nxP0,x + nxP1,x

x′(1) = ẋTT = −nxPnx−1,x + nxPnx,x

(16)

In which nx is the order of the Bézier series of
the x component. The same can be written for
the y and z components.
The set of equations above shows that, for each
component, four geometric coefficients can be
determined by means of the boundary condi-
tions. Also note that, if nx = ny = nz = 3 there
will be four unknown geometric coefficients for
each component that can be determined by im-
posing the boundary conditions.

3.2. Optimization Problem by Means
of a Shape-Based Method

Concerning the implementation, to ease the op-
timization process, the involved quantities have
been made dimensionless in space and time; the
latter is also a requirement of the Bézier series.
This process is performed by either multiplying
or dividing the involved quantities by the time
of flight (or its square value) and by a space
scaling. The latter is the maximum, in absolute
value, of the position components obtained with
a third order Bézier series and the given bound-
ary conditions.
After this process, the overall structure of the
problem is still the same as the one presented in
Eq. (3). The main differences are that the in-
volved quantities are now in dimensionless form
and the optimization variables are different. In-
deed, the optimization variables are the un-
known geometric coefficients of the three com-
ponents of the follower satellite. In particular,
because the boundary conditions allow to com-
pute the first two and the last two geometric
coefficients for each component, there will be a
number of optimization variables equal to:

nx + ny + nz − 9 (17)

Finally, note that the first guess of the geomet-
ric coefficients, that are also the optimization
variables, is obtained by data fitting of the tra-
jectory obtained from a third order Bézier series.
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4. Testing of the Model
The developed optimizer has been tested by
comparing the results with data available from
literature [4]. The most relevant parameters are
the following:

• The minimum distance between the leader
and the follower satellite is 1.6 m.

• The maximum thrust acceleration is 6 ×
10−3 m/s2.

• The time of flight is 300 s.
• The order of the Bézier series for each co-

ordinate is n = [12 12 16].
Several test cases have been performed, below is
reported the result for one of those.
The initial and final positions, in meters,
of the follower satellite are, respectively,
(−1.5,−3,−3) and (1, 2, 1.5), while the initial
and final relative velocities are equal to 0. The
∆V obtained in literature is equal to 0.083 m/s
while the one obtained with the developed op-
timizer is equal to 0.078 m/s. Considering the
computation time, the one obtained in litera-
ture is equal to 138.848 s while the one obtained
with the developed optimizer is equal to 13.204
s. Three remarks:
• All the tests of the developed optimizer

were carried out on a i7-4720HQ 2.60 GHz
processor, 16.0 GB RAM, with Windows 10
and run on MATLAB R2022b.

• In the developed optimizer the time of flight
is not an optimization variable while in lit-
erature it is.

• In the developed optimizer only one satellite
is considered while in literature three satel-
lites are considered simultaneously; this ex-
plains the high difference between the com-
putation times of the two methods.

Figure 1 and Figure 2 show, respectively, the
obtained thrust acceleration history and the dis-
tance between the leader and the follower satel-
lites as a function of time. It can be noted that
the obtained total thrust acceleration tries to
resemble a bang-bang solution, which is the op-
timal one when dealing with the fuel-optimal
problem; such solution cannot be obtained by
means of the implemented method due to the
mathematical description of the shape function.
It is also worth noting that the follower satellite
tends to get closer to the leader one, up until
the safe distance is reached, and then reaches
the final boundary condition.

Figure 1: Total Thrust Acceleration and Thrust
Acceleration Components as a Function of Time.

Figure 2: Distance Between the Satellites.

4.1. An Analysis on the Order of the
Bézier Series

Figure 3 shows the ∆V as a function of the or-
der of the Bézier series for the case presented in
Sec. 4. It can be noted that the ∆V decreases
for increasing orders of the Bézier series up to
n = 10; instead, when the order is n ≥ 12 the
∆V remains almost constant.

Figure 3: ∆V as a Function of the Bézier Series.

Figure 4 shows the thrust acceleration compo-
nents and the total thrust acceleration as a func-
tion of time, for the case presented in Sec. 4.
It is worth noting that for lower orders of the
Bézier series, n ≤ 10, the thrust acceleration
profiles are quite simple and resemble a second
or third order polynomial; this is expected since
Bézier series of lower orders are limited in terms
of the possible functions that they can represent

4



Executive summary Matteo Brioschi

and, therefore, only simple functions can be ob-
tained. For higher orders of the Bézier series,
n ≥ 12, the thrust acceleration profiles remain
almost unchanged, since an optimal solution has
been reached and a different profile would lead
to a higher ∆V .

Figure 4: Thrust Acceleration as a Function of
Time for Different Orders of the Bézier Series.

5. Formation Reconfiguration
When dealing with circular orbits, once the tra-
jectory of a follower satellite is computed, such
result is valid at any point along the orbit.
Therefore, collision avoidance between the fol-
lower satellites can be enforced by time-shifting
the starting maneuvering time of each satellite.
The most relevant aspects of the developed al-
gorithm, shown in Figure 5, are the following:

• If reconfiguration is not possible by maneu-
vering all the satellites at the same time,
a genetic algorithm is executed. Such al-
gorithm tries to minimize the starting ma-
neuvering times while enforcing a minimum
distance between the satellites.

• In case such algorithm fails, the trajectory
of the satellites that get too close to each
other is computed again with additional
constraints in the form of a minimum dis-
tance with respect to the initial and final
positions of the involved satellites.

• After computing the new trajectory, the
same genetic algorithm is executed again to
obtain a feasible reconfiguration.

• The last two points are repeated in a while
loop, in which the minimum distance men-
tioned above is progressively increased un-
til a possible reconfiguration is obtained, or
the maximum value of the minimum dis-
tance is reached; if the latter condition is
reached, reconfiguration is not possible.

Figure 5: Reconfiguration Algorithm.

5.1. Testing of the Developed Algo-
rithm

The developed algorithm has been tested by
comparing the results with data available from
literature [4]. The most relevant parameters are
the same as the ones presented in Sec. 4.
Three satellites have been considered: their
initial positions in meters are respectively
(2,−3, 0), (−1.5,−3, 3), and (−1.5,−3,−3);
their final positions are respectively (−2, 2, 0),
(1, 2,−1.5), and (1, 2, 1.5). The initial and fi-
nal relative velocities are equal to 0. In Table 1
are reported the results of the reconfiguration
and are compared with the data from literature.
Note that the computation time is obtained by
assuming that the trajectory optimization is si-
multaneously performed by each satellite. The
∆V is lower than the one obtained in literature
and the total time of flight is higher; this is ex-
pected due to the idea behind the algorithm.
Conversely, the computation time is higher than
the one in literature because it was necessary to
compute new trajectories.

Literature Algorithm

Total ∆V 0.238 m/s 0.234 m/s

Flight Time 299.992 s 525.711 s

Comp. Time 233.338 s 406.101 s

Table 1: Results of Formation Reconfiguration.

Figure 6 shows the distances between all the
satellites in two cases: in the top part such
distances are obtained in case all the satellites
perform the reconfiguration maneuvers simulta-
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neously; in the bottom part, instead, after the
reconfiguration algorithm. Figure 7 shows the
trajectories for all the satellites: the initial tra-
jectories are on the left side and are obtained
without the introduction of the additional con-
straints; on the right side are the final ones, ob-
tained after the execution of the reconfiguration
algorithm. It can be noted that the trajectories
of satellites 5 and 6 have been changed to make
the formation reconfiguration possible.

Figure 6: Distance Between Satellites When
Maneuvers are Performed Simultaneously (Top)
and After Reconfiguration Algorithm (Bottom).

Figure 7: Trajectory of the Satellites Before
(Left) and After (Right) the Algorithm.

Three important considerations: the compari-
son, in terms of ∆V , with the literature is only
related to the quality of the reconfiguration but
the two results cannot be compared directly be-
cause an equal time window would be required.
The second consideration relates to the condi-
tions of the satellites before and after the recon-
figuration: as shown in Figure 6, the satellites
remain fixed in either the initial and/or the final
positions depending on the starting maneuver-
ing times. To do so an additional control is nec-
essary; in the considered scenario it is negligible
because the initial and final relative velocities
are equal to zero. Therefore, the developed tool
works well when a zero velocity at the bound-
aries is assumed and, in case this condition can-
not be imposed, not only a poor solution might
be obtained, but also errors could arise.

6. Conclusions
Trajectory optimization has been successfully
performed by means of a shape-based method
exploiting the Bèzier series. The main lesson
that has been learned is that, even increasing
the order of the Bézier series, the obtained re-
sult is limited by the mathematical nature of the
shape function.
Considering now formation reconfiguration, this
optimization problem has been tackled by means
of a decentralized approach; this choice is dic-
tated by the goal of achieving a higher autonomy
with respect to ground stations. Concerning the
developed algorithm, it has been proved to be
working correctly when tested with data from
literature. Nonetheless it has some limitations
related to the conditions of the satellites.
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