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Abstract – This thesis deals with voltage 

regulation in MV networks with high 

penetration of distributed generation (DG) and 

electric vehicles (EVs). Line voltage regulators 

(LVRs) and Electronic On-Load Tap Changers (E-

OLTCs) are used exclusively as voltage 

regulation methods without help from any 

reactive power control mechanisms. This thesis 

will make use of machine learning algorithms, 

more specifically Deep Neural Networks (DNNs) 

to solve the problem of voltage regulation in 

these networks. The methodology used here is to 

model two MV feeders, create and assign 2-year 

characteristics to each load and to each 

photovoltaic plant. Then, Quasi-Dynamic (Q-D) 

simulations of 2-years with hourly steps will be 

run. From the Q-D analysis, the results of tap 

changer’s positions will be saved and used to 

train the deep neural networks. The PVs are 

modelled to have a constant power factor of 0.95. 

Their active power characteristic is built using 

solar irradiation database SARAH2 from 

European Commission’s PVGIs tool. The 

characteristics of loads are created using a similar 

feeder’s load profile for a year. The first goal of 

this study is to evaluate solely the impact of 

automatic tap changers (ATPs) in the feeder, 

hence not utilizing other methods. The second 

goal is to get an initial understanding of how 

machine learning can predict the correct tap 

positions of transformers when given inputs of 

loads and PV outputs. 
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1. Introduction 

In classical MV networks the power used to flow 

downstream, from the substations, along the lines, 

and towards the loads. This has been the case for 

more than 100 years, however, networks started to 

change after intense research in renewable energy 

sources (RES) was followed by a steep decline in 

prices of photovoltaic panels. The price dropped 

from 105 [$/Watt] in 1975 to just 0.2 [$/Watt] [1].  

Governmental incentives, public interest and 

common international targets for renewable 

sources pushed for medium networks to host even 

larger amounts of distributed generation (DG). 

One such target is the EU Directive 2018/2001 [2]. 

DGs have a positive impact in general, as they 

lower CO2 emissions, however, the downside is 

that RES render the power system more difficult to 

operate. That happens because of their 

unpredictable nature [3]. Even if the predictions of 

irradiation and wind velocity are correct, DGs may 

cause voltage fluctuations, over-voltages and even 

flicker [4]. 

For each load and PV system in the network, 2-year 

hourly time-series are used. That translates to 

17520 data points for each characteristic. For the 

loads, both the active and reactive powers will 

have their own characteristics. As for the PVs, both 

the active and reactive power they produce will 

also have their own characteristics. This thesis 

contains two studycases which will consider two 

different feeders. One is sub-urban and operates at 

20 [kV] while the other is rural and operates at 10 

[kV]. Both feeders are modelled from scratch in 

PowerFactory, using IEEE 33 bus as a base for the 

first one, while the second one is a real 

representation of feeder Rugova in Kosovo. In the 

first case, the installed peak power of the 

photovoltaic systems is around 72% of the 

aggregate peak loads of the feeder, while on the 

second case, it is around 90%. All transformers in 

MV are considered to have 5 tap positions 

including the neutral, with an additional voltage of 

2.5% per tap. 

 

The topologies of the feeders are depicted in Figure 

1 and Figure 2. 

 

Figure 1. Feeder 1 20 [kV] – SubUrb. 

 

Figure 2. Feeder 2  10 [kV] – Rugova. 

2. LVRs vs E-OLTCs 

Both LVRs and E-OLTCs are devices that make it 

possible to adjust the voltage, usually in a range of 

±5% or ±10%  of the nominal voltage. 

LVRs are suitable for longitudinal feeders, where 

they are preferred to be installed somewhere in the 

middle of the main branch. In these cases, LVRs are 

able to regulate the voltage for a portion of the 

feeder. Figure 3 shows a typical longitudinal 

feeder where LVRs are most effective. 

 
Figure 3. Prizren-Zhupa feeder in the Sharr Mountains. 
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In feeders similar to Feeder Zhupa which is around 

35 [km] long, one or more LVRs installed in the 

middle of the main branch will be effective in both 

compensating voltage drops when the load is 

large, and also in decreasing voltages at times 

when DGs cause over-voltages due to high 

generation and small loads. 

However, LVRs have not shown plausible results 

often enough when dealing with urban or sub-

urban feeders, especially when the number of DG 

points is high. That happens because those feeders 

are much more branched and shorter relative to 

rural feeders. This conclusion was reached after 

several tests in a longitudinal feeder where a LVR 

is installed somewhere in the middle of the feeder.  

 

Figure 4. Feeder with high DG facing overvoltages:  

LVR not employed 

In Figure 4 the feeder experiences overvoltages 

(red busbars) due to large amounts of distributed 

generation. In this case, LVR is bypassed and out 

of service. 

 

Figure 5. Feeder with large DG facing overvoltages: 

LVR employed. 

In the second case, shown in Figure 5, LVR is put to 

service, and though it is able to lower the voltage 

on one side of the feeder, it cannot help with 

overvoltages in busbars situated before the LVR. 

After performing several similar tests, with LVR 

being installed at various points in the network, it 

was deemed that LVRs aren’t an optimal solution 

for voltage regulation in networks with many long 

branches. Installing several LVRs at once is another 

possibility, but that may not be feasible compared 

to simply having transformers where PVs inject 

equipped with E-OLTCs. For this reason, in this 

study, E-OLTCs are the main tool taken into 

consideration for overvoltages. Anyhow, LVRs are 

used mainly in combination with E-OLTCs to help 

augment undervoltages at times of large aggregate 

load and low or no DG injection. 

3. Preparing the 

characteristics of loads  

It is rather difficult to obtain real data from 

distribution companies, therefore, the 

characteristics of loads (active component) are 

based on a single dataset provided by a German 

DSO. This characteristic (Lr) belongs to a similar 

feeder with household users as the ones in our 

studycases.  

𝐋𝐫 = (𝐿ℎ1, 𝐿ℎ2 , 𝐿ℎ3, … , 𝐿ℎ17520)1𝑥17520 

The loads characteristic is first scaled from zero to 

one to create a vector (Ln) that contains 2-year 

hourly data of the loads. 

 Ln = Lr/Lrmax 

Then, it is multiplied to the vector of peak values 

of all loads in the feeder (Lp), transposed.  

 
𝐋𝐩 = (𝐿𝑝1, 𝐿𝑝2 , 𝐿𝑝3, … , 𝐿𝑝𝑁)1𝑥𝑁 

 
𝐋 = (𝐋𝐧’ ×  𝐋𝐩)17520𝑥𝑁 

Matrix L contains N columns, where N is the 

number of loads in the feeder. Each column 

represents the 2-year hourly characteristic of the 

respective load. As for the reactive component of 

loads, a similar matrix of size 17520×N can be 

created utilizing power factors of each load, which 

are given. The idea of this study is to try different 

combinations of loads and PV inputs, so the load 

characteristic is the same in both years in the 

account of the PV characteristic changing in the 

second year, which is enough to fish out valuable 

results. The characteristic of a random load in one 
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of the studycases is shown in Figure 6, while  Same 

goes for all other loads. 

 
Figure 6. Characteristic of Load 12 in Feeder 1 [kW]. 

 

Figure 7. All loads of Feeder Rugova [kW]. 

 

Figure 8. All loads of Feeder Rugova for a random short 

period [kW]. 

4. Preparing the 

characteristics of PV 

outputs 

As for the PV outputs, the data obtaining 

methodology used here is identical to the 

industrial one. The coordinates of the geographical 

location of the feeder are used to access solar 

irradiation measurements databases. In this 

particular case, European Commission’s PVGIS 

tool from SARAH2 solar radiation database is 

utilized. SARAH2 offers data on Direct Normal 

Irradiance data (DNI), Diffuse Horizontal 

Irradiation (DHI), and Global Horizontal 

Irradiance (GHI), however, it also offers data 

directly in terms of power, measured in kilowatt. 

Since there are PVs with different sizes (installed 

peak power), first the power output of a PV plant 

of 1[kW] is downloaded and made into a vector 

Ipv. 

 𝐈𝐩𝐯 = (0, 0, 0, … , 0.89, 0.91, 0.93, 0.88, … )1 × 17520 

Next, a vector of peak installed powers of PV is 

built. 

𝐏𝐩𝐯 = (PP1, PP2, . . , PPM)1𝑥𝑀 

where M is the number of PVs installed in the 

feeder. Now, multiplying these vectors will give a 

matrix containing the PV output characteristics for 

all the plants. 

𝐏𝐨 = (𝐈𝐩𝐯’ ×  𝐏𝐩𝐯)17520𝑥𝑀 

Matrix Po has M columns, each representing the 

characteristic of its respective PV plant in the 

feeder. One such characteristic of hourly steps of 2 

years is shown below in Figure 9. 

 

Figure 9. A random PV characteristic [kW]. 

As the figure shows, the PV output characteristic 

changes from the first year to the second, thus 

assuring that the overall inputs will never be the 

same in any two different time steps, although the 

load may not change between the first and the 

second year. The same process is done with all PVs 

of the feeder. As for their reactive power 

component, a constant power factor of 0.95 is 

considered, which coincides with the minimum 

required level in many countries. Inverter 

producers guarantee a power factor of up to 0.99, 

however, the idea here is to see the network’s 

behavior in worst cases. 

The next figure shows all PV outputs of one of the 

feeders, zoomed in a random short period. 
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Figure 10. PV outputs of Feeder 1, zoomed in a short 

random period [kW]. 

5. Running the Quasi-

Dynamic Simulation  

In order to train a machine learning algorithm, 

large training examples must be used. In this 

study, Q-D simulations were run in the feeders 

modelled in PowerFactory in order to obtain 

thousands of training examples. The simulations 

cover a time-series window of 2 years, in hourly 

steps. That translate to 17520 load flows. For each 

load flow that is run, different inputs of loads and 

PV generation is used, and the results of the correct 

tap changers are saved. In order to realize the first 

goal of this study, which is analyzing the effects of 

automatic tap changers (ATP) in the network, a 

first Q-D analysis is run without employing ATPs. 

When that is done, the voltage constraint violations 

are counted. In the second run of the Q-D analysis, 

ATPs are employed and the voltage constraint 

violations are counted again. 

Figure 11 shows the tap positions of transformers 

in a short period of the simulation. The effect of 

ATP is imminent, as the positions change very 

often in order to adjust the voltage within the 

suitable preset range. Feeder 1 shows similar 

behaviour. In order to obtain as much data as 

possible, the Q-D simulations are run without 

including any outages or maintenance. In the 

future, upon finding relevant data of multiple 

years, outages and maintenance could be included 

for more realistic results. 

 

 

Figure 11. Tap positions of transformers in Rugova 

feeder when ATP is on. 

The results of both feeders show clear 

improvements of parameters in the case where 

ATPs are employed.  

The correct tap positions are saved from the Q-D 

analysis with ATPs on. They are later to be used to 

train the machine learning algorithm. 

In numerical terms, as seen in Figure 12, for the 

first feeder (Sub-Urb) without using ATPs, there 

were 21,924 instances of voltage constraint 

violations of over 1.05 [p.u] and no instances of 

violations of over 1.1 [p.u]. 

SU_noEOLTC_violations_5percent = 

(SU_voltages_noEOLTC>1.05).sum().sum()  
print(SU_noEOLTC_violations_5percent) 
21924 

 

SU_noEOLTC_violations_10percent = 

(SU_voltages_noEOLTC>1.1).sum().sum()  
print(SU_noEOLTC_violations_10percent) 
0 

 

Figure 12. Feeder 1 voltages without ATPs [p.u]. 

While when ATPs were applied, all voltage 

constraint violations were eliminated. 

SU_withEOLTC_violations_5percent = 

(SU_voltages_withEOLTC>1.05).sum().sum()  
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print(SU_withEOLTC_violations_5percent) 
0 

 

SU_withEOLTC_violations_10percent = 

(SU_voltages_withEOLTC>1.1).sum().sum()  
print(SU_withEOLTC_violations_10percent) 
0 

 

Figure 13. Feeder 1 voltages with ATPs [p.u]. 

As for the second feeder (Rugova), when ATPs are 

used, there are 11,174 instances of voltage 

violations of 5%, and 2,404 instances of 

overvoltages of 10%. 

ru_noEOLTC_violations_5percent = 

(RU_voltages_noEOLTC>1.05).sum().sum()  
print(ru_noEOLTC_violations_5percent) 
11174 

 

ru_noEOLTC_violations_10percent = 

(RU_voltages_noEOLTC>1.1).sum().sum()  
print(ru_noEOLTC_violations_10percent) 
2404 

 

Figure 14. Feeder 2 voltages without ATPs [p.u]. 

When applying ATPs to the second feeder, there 

were only 2,432 overvoltage instances of over 5%, 

and zero instances of voltages over 10%. 

ru_withEOLTC_violations_5percent = 

(RU_voltages_withEOLTC>1.05).sum().sum()  
print(ru_withEOLTC_violations_5percent) 
2432 

 

ru_withEOLTC_violations_10percent = 

(RU_voltages_withEOLTC>1.1).sum().sum()  
print(ru_withEOLTC_violations_10percent) 
0 

 

Figure 15. Feeder 2 voltages with ATPs [p.u]. 

That translates to around 80% less violations of 

over 5%, and complete elimination of overvoltage 

violations of over 10%. 

At this point, the impact of E-OLTCs in the feeder 

is clear as they prove to be a very successful tool 

against overvoltages. However, Figure 15 shows 

voltages dropping down to 0.85 [p.u], meaning 

that E-OLTCs do not also guarantee to regulate 

undervoltages. This is where LVRs come in handy. 

Feeder 2 will be re-modelled with four additional 

LVRs installed at strategic points in the feeder, 

designed specifically to augment undervoltages. 

 

Figure 16. Feeder 2 with four LVRs installed. 
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Figure 17. Feeder 2 voltages with E-OLTCs and LVRs 

combined [p.u]. 

Figure 17 shows improvements in undervoltages 

where they are almost 100% avoided. That is 

thanks to LVRs. 

6. Building and training the 

Deep Neural Networks  

The Q-D simulations have provided 17520 training 

examples for each studycase. The inputs or 

features used are: 

• Active powers of loads 

• Reactive powers of loads 

• Active power injection of PVs 

• Reactive power injection of PVs 

The outputs of features are: 

• Tap positions of transformers 

• Tap positions of LVRs (if they’re installed) 

With that being said, the DNN model will train in 

a manner such as when, in the future, it is fed new, 

unseen inputs as the ones above, it will be able to 

predict the results of the correct tap positions of all 

transformers. 

As far as the DNN network for this particular 

problem is concerned, it is deemed feasible that: 

i) DNNs should be Multi-Output. 

ii) The algorithm should be Non-

exclusive. 

iii) Classification should be Binary, using 

Sigmoid activation function in the 

output layer. 

iv) The number of neurons in the output 

layer will be 5∙Ntransformers. 

The DNN architecture in discussion will look 

something like this: 

 

Figure 18. Deep Neural Networks for voltage 

regulation using E-OLTCs 

So, each neuron in the output will represent the 

probability of its corresponding tap position of a 

transformer to be the correct one. For example, 

neuron number 8 represents tap position (0 or 

neutral) of transformer 2. If that neuron shows a 

result of 1, it means that given those inputs, the 

model is predicting that transformer 2 is operating 

at tap position (0). Since the algorithm in non-

exclusive, more than one tap position can be 

correct simultaneously, which reflects the real life 

case. The code for both studycases is standard and 

unchanged, except for the architecture of DNNs, 

where the number of neurons must be suitable to 

the specific dataset. Next, the full code of the 

second studycase is shown and the main steps are 

explained briefly. 

First the relevant libraries are imported, then the 

features and labels. 

import pandas as pd 

import seaborn as sns 

import numpy as np 

import matplotlib.pyplot as plt 
X = pd.read_csv('X.csv') #importing the 

features (inputs) 

y = pd.read_csv('y.csv') #importing the 

labels (outputs) 

 

Next, the dataset is shuffled and then divided in a 

training set and in the testing set, which will later 

measure how well the model was trained. 

from sklearn.model_selection import 

train_test_split 

X_train, X_test, y_train, y_test = 

train_test_split(X, y, test_size=0.3, 

random_state=74) 

 

Next, the inputs or features are normalized in a 

manner that disallows large discrepancies 

between input magnitudes. 
 

from sklearn.preprocessing import 

MinMaxScaler 

scaler = MinMaxScaler() 

scaler.fit(X_train) 
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X_train = scaler.transform(X_train) 

X_test = scaler.transform(X_test) 
 

Here, the Deep Neural Networks are built with 4 

layers. The first one contains 88 neurons, and the 

last one contains 45 neurons. 45 coincides with the 

number of possible tap positions of the second 

feeder, which has 9 transformers equipped with E-

OTLCs. 

Activation functions used here represent the 

probabilistic functions of that neuron to assume a 

certain output. If the inputs are low or negative, 

that neuron may not ‘fire’ its own output, which at 

the same time is an input for the next layer. 

Sigmoid is similar to Heaviside (Unit step) 

function, however, it is smoother and continuous 

around the y-axis.  
 

from tensorflow.keras.models import 

Sequential 

from tensorflow.keras.layers import 

Dense, Dropout 

 

model = Sequential() 

 

model.add(Dense(88, activation='relu')) 

model.add(Dropout(0.5)) 

 

model.add(Dense(75, activation='relu')) 

model.add(Dropout(0.5)) 

 

model.add(Dense(58, activation='relu')) 

model.add(Dropout(0.5)) 

 

model.add(Dense(45, 

activation='sigmoid')) 

 

model.compile(optimizer='adam',loss='bina

ry_crossentropy') 

 

Dropout randomly turns on and off a portion of 

the neurons to find better results. Here, the model 

is trained and taught to stop early if the loss 

function does not improve after 25 epochs. 
 

from tensorflow.keras.callbacks import 

EarlyStopping 

early_stop = 

EarlyStopping(monitor='val_loss', 

mode='min',verbose=1, patience=25) 

 

model.fit(x=X_train, y=y_train, 

epochs=600, 

validation_data=(X_test,y_test),callbacks

=[early_stop]) 

 

Finally, the results of the DNN training are shown 

below.  

 

Figure 19. Feeder 2 - Training the Deep Neural 

Networks 

The Deep Neural Network takes inputs in the 

input layer, then moves along the layers 

multiplying the inputs to the weights and biases of 

each neuron, when it reaches the end, it compares 

the its results to the actual results. According to 

that comparison, which in mathematical terms can 

be different, depending on the loss function type, 

the values move back from the output towards the 

input, adjusting weights and biases 

(backpropagation). This cycle is called an Epoch. 

With each epoch, the weights of neurons are 

adjusted in such a manner that the predicted 

outputs tend to be equal to the real ones, as 

measured by the loss function. In Figure 19, it is 

notable how the algorithm has a very steep decline 

of the loss function within the very first epochs. 

That is reasoned by the fact that DNNs are a robust 

tool which are able to very quickly ‘figure out’ the 

mathematical inter-relations of power system’s 

parameters such as power flows, voltages, loads, 

etc.  

 

Figure 20. Feeder 1 - Training the Deep Neural 

Networks. 

The model, code, and results of the first studycase 

are almost identical as those of the second 

studycase discussed above, hence they were 
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mostly skipped. Different activation functions, 

number of neurons, rates of Dropout, etc., were 

tried as attempts to improve the algorithm. The 

results do not exhibit any significant differences. 

 

A perhaps more useful representation is if instead 

of loss functions, voltages of a feeder working 

based on the DNN model are shown graphically. 

That can be done by using a dataset that the model 

has not trained on before. In this case, 5000 sets of 

randomly shuffled inputs that were fed to the 

model, then the DNN model has predicted the tap 

positions of each transformer for each of those 

datasets. These tap positions that are predicted by 

the DNN model are then used to create 

characteristics for each transformer equipped with 

E-OLTC. After that, another Quasi-Dynamic 

simulation is run, this time the difference is that it 

only runs around 5000 load flows (hourly data), 

and more importantly, the tap positions are now 

inputs together with loads and PVs, instead of 

outputs as they were in previous Q-D runs. This 

means, PowerFactory’s algorithm of guessing the 

tap positions is replaced by the DNN’s predictions, 

after which the voltages are monitored and 

graphed as seen below. 

 

 

Figure 21. Feeder 1 voltages when the DNN 

predicts the taps positions [p.u]. 

Figure 21 confirms what the loss function is 

showing, which is that the DNN has been able to 

train so well, it can predict the tap positions in such 

a manner that allow no voltage constraints to be 

broken, and it performs as good as PowerFactory’s 

equivalent shown in Figure 13. On the other hand, 

Figure 22 shows the voltages of the second feeder. 

They are as good as ones of the first feeder. The 

differences in range are reasonably justified by the 

feeder’s design and parameters even before the 

ATPs and DNNs were used. To have a better 

understanding of the performance of the DNN on 

guessing the tap positions of the second feeder, 

Figure 22 should be compared with Figure 15. 

 

Figure 22. Feeder 2 voltages when the DNN 

predicts the tap positions [p.u]. 

7. Conclusions 

The two studycases carried out in this study reach 

two conclusions. First one is the fact that E-OLTCs 

can have immense impact in voltage regulation of 

MV networks with high penetration of DGs, even 

without the help of some sort of reactive power 

control method. The second conclusion is that 

DNNs can be used to find the correct tap positions 

of all transformers in a feeder, instead of classical 

approach of software modelling and running load 

flows. The results show that DNNs can learn fast 

and in such a manner that voltage constraint 

violations are almost eliminated or completely 

eliminated. The first studycase shows that the loss 

function was already significantly lower than the 

loss function of the second studycase, that makes 

perfect sense provided that the first studycase had 

a much lower number of voltage constraints 

violations even before using ATPs.  

 

Although between the two studycases there are 

around 5.4 million data points, the computational 

part is quite cheap in terms of memory 

requirements and time it consumes. The code is 

also short and flexible, allowing to fill any missing 

data from measurements or add new 

features/inputs. The trained algorithm can be 

saved and programmed to learn constantly from 

new examples. This makes it possible to regulate 

the voltage without any human input, provided 

that the model has access to measurements or at 
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least accurate predictions of loads and PV outputs 

in the feeder.  

 

DSOs could apply similar methods by installing 

these trained models in computers of control 

rooms in HV/MV substation. The model could be 

programmed to act on its own, thus saving on costs 

of expensive software licenses and staff training. 

The ML algorithm is also programmed in a manner 

that in the future, it can easily integrate other 

voltage control methods such as reactive power 

control ones and combine them with the existing 

methods of this case to enhance even further its 

performance. 
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