
POLITECNICO DI MILANO
DIPARTIMENTO DI ELETTRONICA INFORMAZIONE E BIOINGEGNERIA

DOCTORAL PROGRAMME IN INFORMATION TECHNOLOGY

LEARNING IN NON-STATIONARY ENVIRONMENTS: FROM

A SPECIFIC APPLICATION TO MORE GENERAL

ALGORITHMS

Doctoral Dissertation of:
Giuseppe Canonaco

Supervisor:
Prof. Manuel Roveri
Co-Supervisor:
Fabrizio Podenzani
Tutor:
Prof. Nicola Gatti
The Chair of the Doctoral Program:
Prof. Barbara Pernici

2021 – Cycle XXXIV

Abstract

In recent years, Machine Learning (ML) has gained a lot of attention and popularity be-
cause of its ability to model highly complex phenomena given sufficiently large data sets.
This thriving field embraces all the algorithms and techniques able to automatically learn
a given task using a finite amount of data that can be thought of as experience. These
algorithms are usually paired with some assumptions which may or may not be satisfied
in real-world practical applications. For instance, some algorithms assume to have an in-
put signal and its associated output (also called supervised information) for each example
in their training data set such that they can learn a mapping from the input signal to the
output that generalizes on previously unseen examples. This assumption is not always
satisfied in practice, where the output signal could be too expensive to be collected. An
example of this mismatch between theory and practice can be found in the context of cor-
rosion prediction for pipeline infrastructures. Here the output signal, corresponding to the
presence of corrosion in a given point of the pipeline, is hardly available for the infrastruc-
ture of interest due to the incredibly huge cost companies have to bear in order to collect
it. Another fundamental assumption associated with ML techniques is about stationary
data-generating processes, which implies that the phenomenon we are trying to learn does
not change as time passes by. Examples of applications where the stationarity assump-
tion about the data-generating process does not hold are in the context of finance, due to
market evolution, in the context of water reservoir systems, due to climate change, in the
context of corrosion, because of the wear and tear of infrastructures that increases with
time, etc. In all the above-mentioned scenarios, ML techniques cannot be directly applied
without softening the assumptions about the availability of supervised information or sta-
tionarity they are equipped with. Therefore, in the context of this dissertation, inspired by
the specific application needs of corrosion prediction in pipeline infrastructures, we will

I

investigate ML solutions able to weaken the assumptions of available supervised infor-
mation and stationarity. Even though the lack of supervised information is a thoroughly
researched problem thanks to Transfer Learning (TL), it is overlooked in the context of
corrosion prediction requesting tailored solutions for this critical application. Softening
the assumption of stationary data-generating processes, instead, is much less studied in
lots of different ML sub-fields motivating a much more general investigation within the
scope of this dissertation.

The contribution of this dissertation is composed of three main parts.
The first part deals with ML-based techniques for corrosion prediction starting from

the data set creation up to the development of predictive models that can circumvent the
need for supervised information when it is not available for the pipeline infrastructure of
interest. Building a predictive model without the availability of supervised information on
the facility of interest while being never considered by the related literature on corrosion
prediction is of utmost importance because the collection of such information is incredibly
expensive for companies managing such infrastructures and constitutes an additional step
toward a more appropriate corrosion prevention through ML-based tools and techniques.

The second part deals with Reinforcement Learning (RL) in non-stationary environ-
ments developing two methodological solutions: the former is an active-adaptive approach
that can weaken the stationarity assumption in the context of the task the RL agent is cur-
rently trying to solve, and it achieves better average returns in presence of a concept drift
as opposed to its non-active-adaptive counterpart; the latter is a TL approach for RL able
to deal with a time-variant distribution underlying the task generating process that is an
overlooked setting in the related TL literature and in which the proposed solution obtains
performance improvements in terms of average return over its time-invariant equivalent.

The third part deals with Federated Learning (FL) under non-stationarity and pervasive
systems introducing a passive-adaptive approach to mitigate the effect of non-stationary
data-generating processes in FL settings, and an ad hoc birdsong detection approach for
highly constrained devices at the edge of a pervasive system. The passive-adaptive ap-
proach is able to experimentally improve the convergence rate of the learning curve after a
concept drift, and, in some cases, even in stationary conditions before the concept drift oc-
curs, w.r.t. its non-adaptive counterpart. Instead, the birdsong detection approach achieves
performances in line with the state of the art at a lower cost in terms of computational
demand and memory footprint. Furthermore, with appropriate approximations, this last
solution can be deployed on real Internet-of-Things (IoT) units.

II

Sommario

Negli ultimi anni, il Machine Learning (ML) ha guadagnato molta attenzione e popolar-
ità grazie alla sua capacità di modellare fenomeni altamente complessi attraverso l’uso di
un insieme di dati sufficientemente grande. Questa fiorente disciplina abbraccia tutti gli
algoritmi e le tecniche in grado di apprendere automaticamente un determinato compito
utilizzando una quantità finita di dati che possono essere pensati come esperienza. Questi
algoritmi sono solitamente associati ad alcune ipotesi che possono essere soddisfatte o
meno in contesti reali. Ad esempio, alcuni algoritmi presumono di avere un segnale di
ingresso e uno d’uscita (chiamato anche informazione supervisionata) per ogni campione
presente nel loro insieme di dati d’addestramento in modo tale da poter apprendere una
relazione tra il segnale di ingresso e quello d’uscita che generalizzi su campioni mai visti
in precedenza. Questa ipotesi non è sempre soddisfatta nella pratica, dove il segnale di
uscita potrebbe essere troppo costoso per essere collezionato. Un esempio di questa dis-
crepanza tra teoria e pratica lo si trova nel contesto della predizione della corrosione per le
condutture. Qui il segnale in uscita, corrispondente alla presenza di corrosione in un dato
punto della condotta, è difficilmente disponibile per l’infrastruttura di interesse a causa dei
costi incredibilmente alti che le aziende devono sostenere per raccoglierlo. Un’altra assun-
zione fondamentale associata alle tecniche di Machine Learning riguarda la stazionarietà
dei processi di generazione dei dati, il che implica che il fenomeno che stiamo cercando di
apprendere non cambia con il passare del tempo. Esempi di applicazioni in cui l’ipotesi di
stazionarietà del processo di generazione dei dati non regge li troviamo nel contesto della
finanza, a causa dell’evoluzione del mercato, nei sistemi di riserva idrica, a causa del cam-
biamento climatico, nella corrosione, a causa dell’usura delle infrastrutture che aumenta
con il passare del tempo, ecc. In tutti gli scenari summenzionati, le tecniche di Machine
Learning non possono essere applicate direttamente senza ammorbidire le ipotesi sulla

III

disponibilità di informazione supervisionata o sulla stazionarietà. Pertanto, nell’ambito
di questa tesi, ispirata alle specifiche esigenze applicative della predizione della corro-
sione nelle condutture, indagheremo soluzioni ML in grado di indebolire le ipotesi di
disponibilità di informazione supervisionata e stazionarietà. Anche se la mancanza di in-
formazione supervisionata è un problema studiato a fondo grazie al Transfer Learning
(TL), essa viene completamente trascurata nel contesto della predizione della corrosione,
che richiede, quindi, apposite soluzioni su misura. L’indebolimento dell’assunzione rela-
tiva alla stazionarietà dei processi di generazione di dati, invece, è molto meno studiato in
diverse aree del Machine Learning, motivando, quindi, un’indagine molto più generale di
questa tematica nell’ambito di questa tesi.

Il contributo di questa tesi è composto da tre parti principali.
La prima parte si occupa di tecniche basate sul Machine Learning per la predizione

della corrosione partendo dalla creazione di un insieme di dati rappresentativo del fenomeno
corrosivo fino allo sviluppo di modelli predittivi in grado di aggirare la necessità di in-
formazione supervisionata quando essa non è disponibile per la conduttura di interesse.
Costruire un modello predittivo senza la disponibilità di informazioni supervisionate sulla
struttura di interesse, pur non essendo una problematica mai considerata dalla relativa
letteratura sulla predizione della corrosione, rappresenta un obbiettivo di massima rile-
vanza perché la raccolta di tali informazioni è incredibilmente costosa per le aziende che
gestiscono tali infrastrutture e costituisce un ulteriore passo verso una prevenzione della
corrosione più appropriata attraverso strumenti e tecniche basati sul Machine Learning.

La seconda parte si occupa dell’appendimento per rinforzo (o Reinforcement Learning
(RL)) in ambienti non stazionari sviluppando due soluzioni metodologiche: la prima è un
approccio attivo-adattivo in grado di indebolire l’assunzione di stazionarietà nel contesto
del compito che l’agente RL sta attualmente cercando di portare a termine e che è in
grado di ottenere returns medi migliori rispetto alla sua controparte non attiva-adattiva; la
seconda è un approccio TL per RL in grado di gestire una distribuzione tempo-variante alla
base del processo di generazione dei compiti che l’agente RL deve portare a termine. Tale
approccio costituisce una soluzione per una configurazione che non viene mai considerata
dalla relativa letteratura transfer, e in cui l’approccio proposto ottiene miglioramenti delle
prestazioni in termini di return medio rispetto alla sua controparte tempo invariante.

La terza parte tratta l’apprendimento federato (o federated Learning (FL)) in sistemi
pervasivi caratterizzati da non-stazionarietà introducendo un approccio passivo-adattivo
per mitigare l’effetto della non-stazionarietà nei processi di generazione dei dati. Infine,
nel contesto di un’applicazione ML per sistemi pervasivi, viene presentato un approccio ad
hoc di rilevamento del canto degli uccelli per dispositivi fortemente vincolati. L’approccio
passivo-adattivo è in grado di migliorare sperimentalmente il tasso di convergenza della
curva di apprendimento dopo una non-stazionarietà, e, in alcuni casi, anche in condizioni
stazionarie prima che si verifichi la non-stazionarietà stessa, rispetto alla sua controparte
non adattiva. Per quanto riguarda l’approccio di rilevamento del canto degli uccelli, esso

IV

raggiunge prestazioni in linea con lo stato dell’arte ad un costo inferiore in termini di
necessità computazionali e di memoria, inoltre, con opportune approssimazioni questa
soluzione può essere implementata su unità IoT (Internet-of-Things) reali.

V

Contents

List of Figures XI

List of Tables XV

List of Algorithms XVII

List of Acronyms XIX

1 Introduction 1
1.1 Original Contributions and Outline . 3

1.1.1 Outline . 5

I Learning Techniques for Corrosion in Pipeline Infrastructures 7

2 Introduction and Related Literature 9
2.1 Introduction . 9
2.2 Related Literature . 11

3 A Machine Learning Approach for the Prediction of Internal Corrosion in Pipeline
Infrastructures 13
3.1 Data Set Creation . 13

3.1.1 Datasets Description . 15
3.1.2 Validation of the Integration: Cross-correlation Analysis 17
3.1.3 Gaining Insights about Corrosion: Feature Selection 20
3.1.4 Discussion . 23

VII

Contents

3.1.5 Conclusion . 23
3.2 Corrosion Prediction . 23

3.2.1 Problem Formulation . 23
3.2.2 Experiments . 26
3.2.3 Results . 26
3.2.4 Discussion . 29
3.2.5 Conclusion . 29

4 Corrosion Prediction in Pipeline Infrastructures Leveraging Transfer Learning 31
4.1 From supervised to transfer learning in corrosion prediction 31
4.2 The proposed transfer-learning approach for corrosion prediction 33

4.2.1 Transfer Learning from a source to a target pipeline 34
4.2.2 Ranking the source pipelines . 36

4.3 Experiments . 37
4.3.1 Data Sets Description . 38
4.3.2 Results . 38

4.4 Discussion . 43
4.5 Conclusion . 44

II Reinforcement Learning in Non-Stationary Environments 45

5 Introduction and Related Literature 47
5.1 Introduction . 47
5.2 Related Literature . 48

6 Model-Free Non-Stationarity Detection and Adaptation in Reinforcement Learning 51
6.1 Preliminaries and Problem Formulation 52

6.1.1 Reinforcement Learning Background 52
6.1.2 Importance Sampling . 53
6.1.3 Non-Stationarity in Reinforcement Learning: Problem Formulation . 54

6.2 Policy Selection to support Non-Stationarity Detection 55
6.3 Renyi Divergence Optimization . 57

6.3.1 Optimization for Gaussian Policies 59
6.3.2 Optimization for Gibbs Policies . 59

6.4 Change-Detection and Adaptation Mechanism for Reinforcement Learning 61
6.5 Experiments . 62
6.6 Conclusions . 66

7 Time-Variant Variational Transfer for Value Functions 67
7.1 Preliminaries . 68

VIII

Contents

7.1.1 Reinforcement Learning Background 69
7.1.2 Variational Transfer of Value Functions 69

7.2 Time-Variant Kernel Density Estimation for Variational Transfer 70
7.3 Finite-Sample Analysis . 73
7.4 Related Works . 74
7.5 Experiments . 75

7.5.1 Temporal Dynamics . 75
7.5.2 Two-Rooms Environment . 76
7.5.3 Three-Rooms Environment . 77
7.5.4 Mountain Car . 78
7.5.5 Choosing λ through Maximum-Likelihood 79
7.5.6 Real-World Scenario: Controlling the Lake Como Water System . . 79

7.6 Discussion and Conclusions . 81

III Non-Stationary Federated Learning and Pervasive Systems 83

8 Introduction 85

9 Adaptive Federated Learning in Presence of Concept Drift 87
9.1 Related Works . 89

9.1.1 Federated Learning . 89
9.1.2 Learning in presence of concept drift 90
9.1.3 Adaptive Optimizers . 90

9.2 The Proposed Algorithm . 91
9.2.1 Problem Formulation . 91
9.2.2 The proposed Adaptive-FedAVG algorithm 92
9.2.3 Adaptive-FedAVG: the Server-Side 92
9.2.4 Adaptive-FedAVG: the Client-Side 94

9.3 Experimental Results . 94
9.3.1 Experiment: MNIST digit recognition 97
9.3.2 Experiment: CIFAR-10 image classification 98

9.4 Conclusions . 98

10 Birdsong Detection at the Edge with Deep Learning 101
10.1 Related Works . 102
10.2 The Proposed ToucaNet Bird Detector . 104

10.2.1 Acquisition and Preprocessing . 104
10.2.2 The DL-based Birdsong Detector 105

10.3 BarbNet: the Approximated ToucaNet for IoT Units 106
10.3.1 Approximating the Input . 106

IX

Contents

10.3.2 Approximating the DL-Based Birdsong Detector 107
10.3.3 A Bird Song Detector on an ARM Cortex-M7: BarbNet 108

10.4 Experimental Results . 110
10.4.1 Data Sets and Figures of Merit . 110
10.4.2 Pareto Frontiers of the ToucaNet and its Approximations 110
10.4.3 Comparing ToucaNet and BarbNet with the State-of-the-Art Solutions 112
10.4.4 BarbNet on the STM32H7: Execution Time, Energy Consumption,

and Lifetime. 113
10.5 Conclusion and Future Work . 115

11 Final Remarks 117

A Corrosion Detection Experimental Results 119

B Time-Variant Variational Transfer for Value Functions: Proofs 123
B.1 Proof of Theorem 7.2.6 . 123
B.2 Upper Bound on the KL-Divergence Between the Prior and the Posterior . 130
B.3 Proof of Theorem 7.3.1 . 131
B.4 Experimental Details . 133

B.4.1 Parametrization . 133
B.4.2 Temporal Dynamics . 134
B.4.3 λ-Sensitivity Results . 135
B.4.4 Further Environmental Settings: Mountain Car and Lake Como Wa-

ter System . 135

Bibliography 141

X

List of Figures

1.1 Non-stationary Machine Learning. 4

3.1 Comprehensive scheme of the approach. 14
3.2 Critical configurations of the simulated fluid-dynamical points within the

bars of the pipeline. 15
3.3 Cross-correlation analysis on GP1. 18
3.4 Cross-correlation analysis on GP2. 18
3.5 Cross-correlation analysis on OP1. 20
3.6 Cross-correlation analysis on OP2. 21
3.7 Comprehensive scheme of the approach (in gray the sources of data which

together with the red block are associated to the data set creation, in green
the selected model and in violet the evaluation procedure). 24

3.8 Multi-class confusion matrices for the three classification algorithms on P1. 28
3.9 Multi-class confusion matrices for the three classification algorithms on P2. 28
3.10 Multi-class confusion matrices for the three classification algorithms on P3. 28

4.1 Comprehensive scheme of the approach (this image has been designed us-
ing resources from Flaticon.com). 34

4.2 Multi-Class Confusion Matrices on P1. 41
4.3 Multi-Class Confusion Matrices on P2. 41
4.4 Multi-Class Confusion Matrices on P3. 42
4.5 Multi-Class Confusion Matrices on P4. 43

6.1 Reinforcement Learning paradigm. 52

XI

List of Figures

6.2 Comparison of on-line performance over the iterations of the optimiza-
tion algorithm, with 90% t-student confidence intervals. The first vertical
line (dashed) highlight the injection point, whereas the second vertical line
(dotted-dashed) highlight the end of the transient part of the anomaly. . . . 64

7.1 2-Rooms Environment. 75
7.2 Average return achived by the algorithms with 95% confidence intervals

computed using 50 independent runs in the 2-rooms environment. 76
7.3 Average return achived by the algorithms with 95% confidence intervals

computed using 50 independent runs in the 3-rooms environment. 77
7.4 Average return achived by the algorithms with 95% confidence intervals

computed using 50 independent runs in the Mountain Car environment. . . 78
7.5 Average return achived by the algorithms with 95% confidence intervals

computed using 100 independent runs on the lake Como environment. . . . 80

9.1 MNIST-MLP: Comparison between FedAVG and Adaptive-FedAVG on
MNIST with the class-introduction concept drift at round 20. [β1; β2; β3] =
[0.5; 0.5; 0.5], E = 5, B = 10, Number of clients: 32. 95

9.2 MNIST-CNN: Comparison between FedAVG and Adaptive-FedAVG on
MNIST with the class-introduction concept drift at round 20. [β1; β2; β3] =
[0.5; 0.5; 0.5], E = 5, B = 10, Number of clients: 100. 95

9.3 MNIST-CNN: Comparison between FedAVG and Adaptive-FedAVG on
MNIST with the class-swap concept drift at round 20. [β1; β2; β3] = [0.5; 0.5; 0.5],
E = 5, B = 10, Number of clients: 100. 96

9.4 CIFAR-CNN: Comparison between FedAVG and Adaptive-FedAVG on CIFAR-
10 with the class-introduction concept drift at round 25. [β1; β2; β3] =
[0.7; 0.3; 0.7], E = 5, B = 32, Number of clients: 64. 96

9.5 CIFAR-CNN: Comparison between FedAVG and Adaptive-FedAVG on CIFAR-
10 with the class-swap concept drift at round 20. [β1; β2; β3] = [0.7; 0.3; 0.7],
E = 5, B = 32, Number of clients: 64. 96

10.1 Comprehensive scheme of the proposed solution to detect bird calls in audio
acquired on the field. 104

10.2 Outcomes in terms of AUC (a,b) and accuracy (c,d) against the memory
footprint and computational demand by the ToucaNet and its approxima-
tions A (in terms of acquisition frequency fa and layer l, annotated for one
plot only). 111

10.3 aucψ vs memory footprint mψ outcomes obtained by the proposed solution
working on an STM32H743ZI and other solutions available in the related
literature. 113

XII

List of Figures

A.1 Binarized Confusion Matrices on P1. 120
A.2 Binarized Confusion Matrices on P2. 120
A.3 Binarized Confusion Matrices on P3. 121
A.4 Binarized Confusion Matrices on P4. 121

B.1 Temporal dynamics. 134
B.2 Average return achieved by 1-T2VT w.r.t. different choices of λ with 95%

confidence intervals computed using 50 independent runs. 136
B.3 Average return achieved by 3-T2VT w.r.t. different choices of λ with 95%

confidence intervals computed using 50 independent runs. 137
B.4 Average return achieved by 1-T2VT w.r.t. different choices of λ with 95%

confidence intervals computed using 50 independent runs. 137
B.5 Average return achieved by 3-T2VT w.r.t. different choices of λ with 95%

confidence intervals computed using 50 independent runs. 138
B.6 Average return achieved by 1-T2VT w.r.t. different choices of λ with 95%

confidence intervals computed using 50 independent runs. 138
B.7 Average return achieved by 3-T2VT w.r.t. different choices of λ with 95%

confidence intervals computed using 50 independent runs. 139

XIII

List of Tables

1.1 Produced Publications. 5

3.1 Fluid-dynamical variables in the context of gas pipelines. 16
3.2 Fluid-dynamical variables in the context of oil pipelines. 16
3.3 Geometrical variables in the context of oil and gas pipelines. 17
3.4 Label distribution across the different pipelines. In the column Low, Medium,

and High, we show the respective number of low, medium and high cor-
roded points (i.e., with a peak depth percentage p such that 0.03 ≤ p < 0.08
for what concern Low, 0.08 ≤ p < 0.3 for what concern Medium and
p ≥ 0.3 for what concern High). 17

3.5 Feature Selection on gas pipelines. 20
3.6 Feature Selection on oil pipelines. 22
3.7 Categories and Thresholds. 25
3.8 Label distribution across the different pipelines. 27
3.9 F1-score associated to the optimal hyperparameter configuration for each

algorithm across the different pipelines. 27
3.10 Testing performances in accuracy across the different pipelines. 29
3.11 Testing performances in F1-score across the different pipelines. 29

4.1 Label (y) distribution across the different pipelines. 39
4.2 Estimate of the performance (F1-Score) on the target pipeline through Al-

gorithm 4. 39

XV

List of Tables

4.3 Accuracy on Target. The Supervised Oracle column is obtained by training
an Support Vector Machines (SVM) onto a portion of the data set repre-
senting this target pipeline and then testing this model onto the held out
part. 39

4.4 F1-Score on Target. The Supervised Oracle column is obtained by training
an SVM onto a portion of the data set representing this target pipeline and
then testing this model onto the held out part. 40

6.1 Estimated type I error of the bootstrap test [Efron and Tibshirani, 1993,
chap. 16] under H0 w.r.t. different choices of πµ. The two sampling poli-
cies, πθi−k and πθi , are N (10,13) and N (-1,4), respectively. First row is
associated with policy πµ chosen optimizing Equation (6.9). 56

6.2 Estimated type I error of the bootstrap test [Efron and Tibshirani, 1993,
chap. 16] under H0 increasing the distance of policy πθi−k from πθi which
instead remains fixed to N (-1,4). The mean policy πµ is always chosen
optimizing Equation (6.9). 57

6.3 G(PO)MDP experimental configuration. 65
6.4 Non-Stationarity Detector for Reinforcement Learning (NSD-RL) perfor-

mance in terms of False Positive Rate (FPR), False Negative Rate (FNR)
and Detection Delay (DD) in different scenarios. 66

9.1 A summary of the different types of experiments described in Section 9.3. . 97

10.1 The detailed memory footprint (with a 32-bit data type) and the computa-
tional requirements of the BarbNet implemented on the STM32H743ZI. To
optimize the memory, two arrays only are used to store the activations (an
asterisk marks the activations re-using such arrays). 108

10.2 A summary of the considered acquisition frequencies ta, along with the
details of the resulting spectograms, and its memory occupation Mx̂, as-
suming a 32-bit data type. 109

10.3 A comparison of the ToucaNet and BarbNet with the related literature. The
complexities are computed according to the description of the proposed so-
lution, whereas the figure of merit is taken as it is since the adopted datasets
are the same. 112

10.4 The BarbNet experimental execution timings on the STM32H743ZI, mea-
sured with an oscilloscope. 114

10.5 The energy analysis of the BarbNet deployment on the STM32H743ZI,
when considering a 3.3V power supply. 114

XVI

List of Algorithms

1 Cross-correlation graph . 19
2 Feature Selection Phase 1 . 22
3 Feature Selection Phase 2 . 22
4 Sources performance evaluation . 37
5 Multi-task TL . 38
6 PG-NSD-RL . 63
7 Variational Transfer . 71
8 Adaptive-FedAVG: Server . 93
9 Adaptive-FedAVG: ClientUpdate . 94

XVII

List of Acronyms

AUC Area Under Curve. 110, 112

CNN Convolutional Neural Network. 88, 97, 98, 103

CUSUM CUmulative SUM. 48, 61, 66

CV Cross-Validation. 11, 20, 22, 26, 36, 110

DL Deep Learning. 102, 103, 105, 106, 109, 110, 113

DMA Dynamic Memory Allocation. 113

DWT Discrete Wavelet Transform. 102

ELBO (negative) Evidence Lower BOund. 70, 73, 130

EMA Exponential Moving Average. 90, 92, 93, 97

FL Federated Learning. 3, 6, 85, 87–92, 94, 98, 117, 118

GMM Gaussian Mixture Model. 103

HMMDP Hidden Mode Markov Decision Process. 48

IoT Internet-of-Things. 3, 86, 87, 102, 105–108, 110, 112, 114, 115

IS Importance Sampling. 34, 51, 52, 54–56

XIX

List of Acronyms

IWCV Importance Weighted Cross-Validation. 10, 39–44, 120, 121

kIWCV k-fold Importance Weighted Cross-Validation. 36, 37

KMM Kernel Mean Matching. 35–37, 44

MDP Markov Decision Process. 2–4, 48, 49, 53, 58, 66, 68, 69, 74

ML Machine Learning. 1–3, 10, 11, 13, 23, 29–32, 47, 85–88, 102, 117

NSD-RL Non-Stationarity Detector for Reinforcement Learning. 51, 53–55, 57, 61–63,
65, 66

PG Policy Gradient. 53, 58

PIG Pipeline Inspection Gauge. 14, 15, 26, 30, 32

PIGs Pipeline Inspection Gauges. 10

RKHS Reproducing Kernel Hilbert Space. 35

RL Reinforcement Learning. 1–5, 47–49, 51–55, 57, 58, 62, 66–70, 74, 75, 79, 80, 85,
117, 118

ROC Receiver Operating Characteristic. 110

SL Supervised Learning. 1–4, 10, 11, 23, 32, 67, 118

STFT Short Time Fourier Transform. 102, 105–107

SVM Support Vector Machines. 25, 27, 29, 30, 38–40, 44

TD Temporal Difference. 69, 76, 133–135

TL Transfer Learning. 2–4, 10, 32, 33, 37, 39, 40, 42–44, 48, 67, 68, 85, 86, 103, 105,
118

UL Unsupervised Learning. 1, 3, 4

XX

CHAPTER1
Introduction

Machine Learning (ML) has recently become more and more effective in modeling highly
complex phenomena given sufficiently large and descriptive data sets. This characteris-
tic makes it a suitable tool for a plethora of applications in the most disparate fields such
as: computer vision, robotics, healthcare, natural language processing, transportation, in-
dustry etc. ML can be described as the set of all algorithms able to automatically learn
to perform a certain task using data which can be regarded as experience. The more the
experience the better the algorithm will learn the task.

The ML field can be classically split into three different macro-areas: Supervised
Learning (SL), Unsupervised Learning (UL) and Reinforcement Learning (RL). SL tech-
niques deal with problems where the supervised information is available and strive to
obtain a function ŷ = f(x) whose objective is to correctly predict the output y, called
supervised information, associated with the input vector x. UL techniques, instead, strive
to learn the underlying structure of the data without having access to the supervised infor-
mation. Finally, RL techniques strive to find the optimal policy to be executed by an agent
on the environment in order to reach a certain pre-specified goal. The optimal policy is
learned via an optimization process whose objective is to maximize the long-term cumu-
lative reward, where the reward is what the agent receives upon executing an action on the
environment itself.

1

Chapter 1. Introduction

The algorithms and techniques developed within the huge ML field are equipped with
some assumptions which are often not satisfied in practical applications. For instance, SL
algorithms assume to have enough labeled data so that predictive models can be properly
trained. This assumption does not always hold in real-world scenarios where the labeling
process could be too costly or time-consuming. An instance of this setting is in the context
of corrosion prediction for pipeline infrastructures, where, usually, the supervised informa-
tion about the presence of corrosion is hardly available for a pipeline of interest due to the
intrinsic cost companies have to bear in order to collect it. For these kinds of applications,
where the supervised information is very scarce if not missing at all, standard SL learning
techniques are not able to provide good predictors for the objective phenomenon. How-
ever, if supervised data is available for some related problem, we could leverage Transfer
Learning (TL) which coupled with SL will allow us to alleviate the need of supervised in-
formation in the target problem object of interest. TL is a transversal ML sub-field dealing
with knowledge transfer across different tasks. In order to be successful, a given TL tech-
nique needs to answer three main questions dealing with "what", "how", and "when" to
transfer the knowledge across different tasks, which translates into deciding what form of
knowledge to be transferred, the appropriate way to transfer it, and, most crucially, when
to execute the transfer. The last question is supposed to deal with the negative transfer
phenomenon that happens whenever source and target tasks are not sufficiently similar to
each other. In the SL context, we talk about inductive TL whenever there is some super-
vised data coming from the target task, instead, we talk about transductive TL whenever
there is only unsupervised data coming from the target task. In both the previously men-
tioned cases there is plenty of supervised data coming from the source tasks. Finally, we
talk about unsupervised TL whenever the supervised information is missing both from the
source and target tasks. In this context, clustering or dimensionality reduction problems
are usually transferred. On the other hand, for what concerns RL, the situation is a bit
more complex since we have an agent-environment interaction where the environment is
modeled through a Markov Decision Process (MDP) and the agent by a policy. In this con-
text, TL allows a greater sample efficiency, and transfer algorithms can be distinguished
in:

• techniques able to deal with source and target tasks that have different state or action
spaces

• and techniques working under the assumption that both state and action spaces will
stay the same among the source and target tasks.

The applications of TL are disparate and they span different fields such as robotics,
games, natural language processing, healthcare, bioinformatics, recommender systems,
corrosion, etc.

Besides the above-mentioned data-availability requirement, another crucial assumption

2

1.1. Original Contributions and Outline

tied to ML techniques is about stationary data-generating processes. This means that the
phenomenon we are trying to learn does not evolve with time and allows the ML algorithm
to converge to a solution for the problem of interest. In the SL context, this translates into
the fact that the couples (x, y) always come from the same distribution. For what concern
UL, instead of having couples (x, y) we will just have the vector x that still will always
come from the same distribution. Finally, in the RL setting, it is the MDP, modeling the en-
vironment and the allowed interactions, that will always stay the same, whereas, for what
concerns TL, it is the available historical knowledge that does not expose a time-variant
structure. However, there are many applications where the above-mentioned assumption
about stationarity does not hold, e.g., finance, due to market evolution, robotics, due to
faults affecting either sensors or actuators, water reservoir systems, due to the climate
change our planet is currently undergoing, corrosion, where the wear and tear of equip-
ment or infrastructures increase with time, etc. In all of these applications ML techniques
cannot be directly employed without taking particular care of the time variance at play,
that, depending on the particular framework we are using, will affect the distribution gen-
erating the couples (x, y) (see Figure 1.1a), the distribution generating the vector x (see
Figure 1.1b), the MDP (see Figure 1.1c), or the available historical knowledge (see Figure
1.1d).

In the context of this dissertation, guided by the specific application needs of corrosion
prediction in pipeline infrastructures, we will investigate ML solutions able to weaken the
assumptions of available supervised information and stationarity. Despite being a very
well researched area thanks to the thriving field of TL, reducing the requirement of super-
vised information in the context of corrosion prediction is not investigated at all motivating
the research of tailored solutions for this critical application. Weakening the assumption
of stationary phenomena, instead, is much less studied in lots of ML sub-fields motivating
a much more general investigation in the context of this dissertation.

1.1 Original Contributions and Outline

The contribution of this dissertation is threefold. The first one, examined in Part I, deals
with learning techniques for corrosion in pipeline infrastructures starting from the data set
creation up to devising SL techniques that, with the aid of TL, are able to build a model of
the corrosion phenomenon without using supervised information coming from the pipeline
of interest. The second one, examined in Part II, deals with RL in non-stationary environ-
ments and develops both an active-adaptive approach to cope with changing environments
and a TL technique for RL able to take into account an underlying time-variant structure
intrinsic to the available historical knowledge. Finally, the third one, examined in Part III,
deals with Federated Learning (FL) under non-stationarity and pervasive systems. This last
part introduces a passive-adaptive approach to mitigate non-stationarity in FL contexts and
a birdsong detection approach able to run on a highly constrained Internet-of-Things (IoT)

3

Chapter 1. Introduction

SL
Algorithm

(xt, yt)

(a) Non-stationary Supervised Learning: here the
data fed to the SL algorithm may be sampled

from a different distribution as time progresses.

UL
Algorithm

xt

(b) Non-stationary Unsupervised Learning: here the
data fed to the UL algorithm may be sampled

from a different distribution as time progresses.

Agent

Environment

r
s

a

(c) Non-stationary Reinforcement Learning: here the
environment, and hence the MDP, may change as

time progresses requiring an adaptation by the
RL agent.

TL
Algorithm

Historical Knowledge

Task 1

Task 2 Task 3

(d) Non-stationary Transfer Learning: here the
historical knowledge that comes from different

source tasks and that is leveraged by the TL
algorithm may expose a time-variant structure.

Figure 1.1: Non-stationary Machine Learning.

unit.

In Table 1.1, we list all the publications produced in the context of this dissertation.

4

1.1. Original Contributions and Outline

Table 1.1: Produced Publications.

Title Venue Reference Status

Corrosion Prediction in Oil and Gas Pipelines: a Ma-
chine Learning Approach

I2MTC 2020 Canonaco et al. [2020b] Published

A Machine-Learning Approach for the Prediction of
Internal Corrosion in Pipeline Infrastructures

I2MTC 2021 Canonaco et al. [2021b] Published

A transfer-learning approach for corrosion prediction
in pipeline infrastructures

Applied
Intelligence Canonaco et al. [2021c] Published

Model-Free Non-Stationarity Detection and Adapta-
tion in Reinforcement Learning

ECAI 2020 Canonaco et al. [2020a] Published

Time-Variant Variational Transfer for Value Functions UAI 2021 Canonaco et al. [2021d] Published
Adaptive Federated Learning in Presence of Concept
Drift

IJCNN 2021 Canonaco et al. [2021a] Published

Birdsong Detection at the Edge with Deep Learning Smartcomp
2021

Disabato et al. [2021] Published

1.1.1 Outline

Part I is composed of three Chapters:

Chapter 2 where an introduction to the problem of corrosion prediction in pipeline infras-
tructures together with a review of the literature are given.

Chapter 3 where we dive deep into building a data set representing the corrosion phe-
nomenon in Oil and Gas pipeline infrastructures followed by devising a corrosion
classification model for the produced data set.

Chapter 4 where we shift the attention onto building a corrosion classification model for
a given pipeline of interest where the supervised information about corrosion itself is
missing, but it is available for one or a set of related pipelines.

Part II is composed of three Chapters:

Chapter 5 where an introduction to the problem of non-stationarity in RL is given together
with a review of the related literature.

Chapter 6 where we develop two different tools in order to cope with non-stationarity.
The first one to detect a change in the environment. The second one that, in view of a
detected change, allows the RL agent to promptly react with the aim of bridging the
gap in performance induced by the non-stationarity as fast as possible.

Chapter 7 where we devise a variational transfer algorithm for RL able to account for a
time-variant distribution underlying the task-generating process which reflects in an
intrinsic time-variant structure exposed by the available historical knowledge.

5

Chapter 1. Introduction

Part III is composed of three Chapters:

Chapter 8 where an introduction to both FL and the problem of on-field birdsong detec-
tion are given.

Chapter 9 where we describe and develop an adaptive learning rate which is able to pas-
sively and adequately update the FL-model’s parameters in presence of changes in
the data-generating process.

Chapter 10 where we consider the problem of detecting bird songs at the IoT edge and
devise a model able to satisfy the highly restrictive constraints on memory and com-
putation imposed by a real IoT unit (namely an STM32 Nucleo H7 board).

Chapter 11 where conclusive remarks on the whole dissertation are given.

6

Part I

Learning Techniques for Corrosion in
Pipeline Infrastructures

7

CHAPTER2
Introduction and Related Literature

2.1 Introduction

Internal corrosion in pipeline infrastructures used to transport gas and oil poses various
threats to the environment and human beings in terms of both contamination and acci-
dents, which may lead also to explosions in presence of gas leakages [Li et al., 2015].
Therefore, the need to develop mechanisms able to predict the presence of such detrimen-
tal phenomenon is of utmost importance.

Unfortunately, this harmful phenomenon is very complex to be modeled or predicted.
This is due to the incredible amount of factors it depends on. In carbon-steel pipelines,
corrosion may be influenced by CO2, H2S, oil or water wetting, steel composition, and
internal surface conditions [Nešić, 2007]. Additionally, bacteria activity, fluid dynamics,
transport conditions over the entire operating lifespan, as well as geometrical characteris-
tics of the pipeline are certainly important influencing factors [De Masi et al., 2017].

The complexity of the envisaged phenomenon is not the only critical issue for corro-
sion prediction. In fact, the difficulty in gathering information about all the influencing
factors is an additional key concern. Indeed, only the geometrical characteristics of the
pipeline and its fluid-dynamic information are usually available, the latter via simulation,
and, to make the modeling of this phenomenon even harder, we have an integration in-
compatibility between these two sources of data [Canonaco et al., 2020b] (this is a crucial

9

Chapter 2. Introduction and Related Literature

point since a correct integration between them will lead to a reliable representation of
the factors influencing the corrosion phenomenon). On the other hand, information about
all the other influencing factors is extremely difficult (or often impossible) to be gath-
ered from the field. This is the reason why semi-empirical corrosion prediction models,
e.g., De Waard and Lotz [1993], Standard [2005], revealed to be not accurate in real-world
corrosion scenarios [De Masi et al., 2017].

In the previously described scenario, ML-based solutions constitute a promising alter-
native to semi-empirical models. Notice that there have been some solutions proposed in
the literature trying to model the corrosion phenomenon via ML-based tools, but usually
the data set used to do this are very small or the performance evaluation has not been
properly carried out questioning the generality of the obtained results (see Section 2.2).
Furthermore, the major critical point of ML solutions available in the literature is that,
following a SL approach, they require information about the presence of corrosion in a
given pipeline. Such information is gathered directly from the field employing Pipeline
Inspection Gauges (PIGs) that are robot inspection systems measuring the presence of
corrosion within a pipeline. In other words, the main limitation of such supervised ap-
proaches for corrosion prediction is that a model is built only when information about the
real presence of corrosion is already available which is not usually the case for companies
managing pipeline infrastructures. Therefore, it is crucial to overcome such a limitation
by designing corrosion prediction models able to operate even in the scenarios where su-
pervised information is not available for a given target pipeline. As mentioned in Section
1.1, this constitute the ultimate objective of this Part of the dissertation which is organized
as follows: in Chapter 3, we will start by describing all the necessary steps to integrate
the aforementioned data sources (geometrical and fluid-dynamical) and validate their in-
tegration in the context of both oil and gas pipelines (see Section 3.1). The quality of the
integration procedure will be assessed through a cross-correlation analysis carefully eval-
uated by domain experts, and, a set of feature selection experiments will be used to better
understand the corrosion phenomenon across the different pipelines. Then, we will pro-
ceed developing and appropriately testing an ML-based predictive model of the corrosion
leveraging the integrated data sets (see Section 3.2). Finally, in Chapter 4, we will leverage
TL to design an algorithmic solution for corrosion prediction when supervised informa-
tion is not available for the target pipeline [Canonaco et al., 2021c] which constitutes an
important step toward corrosion prevention through ML-based tools and techniques. In-
deed, TL allows overcoming the lack of supervised information on the target pipeline by
exploiting a set of source pipelines where supervised information is available, which is a
very common real-world scenario for oil and gas companies. In more detail, the proposed
approach will rely on the joint use of a transductive TL technique and an Importance
Weighted Cross-Validation (IWCV) technique; the former to build the predictive model
onto the target pipeline and the latter to rank the sources w.r.t. their estimated performance
over the pipeline of interest. Remarkably, all the experiments will be carried out on a set

10

2.2. Related Literature

of real-world pipelines.

2.2 Related Literature

Recently, there has been some work trying to leverage ML approaches in order to tackle the
corrosion prediction problem. In De Masi et al. [2017] they use a mutual information based
approach to select the most important features with respect to the corrosion phenomenon
and then they apply a neural network to predict the corrosion level on the pipeline using
the features having more than a certain value of mutual information with respect to the
corrosion level. Information on the data set size are not available. Moreover, it is unclear
whether they have evaluated the neural network performance in Cross-Validation (CV) or
on a test set. In De Masi et al. [2014], they also use a neural network to perform predictions
of the phenomenon’s behavior in terms of corrosion rate from one period to another, metal
loss and area of defect. They apply a feature selection procedure based on the sensitivity of
the network output with respect to infinitesimal input variations. Unfortunately, the neural
network is trained on a data set consisting of 150 instances obtained by a groundless selec-
tion of a subset from the starting pipeline composed of 1700 samples. It is again unclear
whether they asses the performance of the network on a test set or in CV. In Liao et al.
[2012], instead, they build a neural-network-based prediction model on a data set sampled
from different pipelines (similar in terms of physical and operating characteristics). The
data set is split in a training part and a testing part, one to build the model itself the other
to asses its performances. They select the features to use in order to build the predictive
model via a Grey Relational Analysis. Unfortunately, the data set used is composed of 116
samples.

Therefore, to the best of our knowledge, it appears that ML techniques are not properly
leveraged in this real-world scenario because either experiments are incorrectly carried out
or the data set used is incredibly small. Furthermore, none of these works take into account
the fact that the supervised information, composed of corrosion measurements along the
pipeline profile, is hardly available for a given infrastructure of interest due to the huge cost
associated to the procedure that retrieves it. This make standard SL techniques useless in
real-world corrosion prediction settings for oil and gas companies without circumventing
the need for supervised information coming from the pipeline of interest.

11

CHAPTER3
A Machine Learning Approach for the Prediction of

Internal Corrosion in Pipeline Infrastructures

In the context of this Chapter, we will start by reviewing how to build a rich and descriptive
data set out of the available sources of data for a pipeline of interest. The resulting data sets
will be evaluated by domain experts and used to build a predictive model of the corrosion
for each pipeline. These steps are necessary to reach the final goal of this part of the
dissertation consisting in designing an ML-based model able to soften the assumption of
available supervised information coming from the target pipeline infrastructure.

The work herein presented is taken from Canonaco et al. [2020b] and Canonaco et al.
[2021b], where I am the main researcher.

3.1 Data Set Creation

As mentioned in Section 2.1, a proper integration of the different sources of data (geomet-
rical and fluid-dynamical) is crucial to describe the corrosion phenomenon. Therefore, in
this section, we will go through all the steps needed to accomplish this goal, uncovering
all the pitfalls hidden inside the integration procedure and describing how to avoid them.

As already mentioned, we have two sources of data (depicted in Figure 3.1), the geom-
etry of the pipeline and the fluid-dynamical simulations, containing information that can

13

Chapter 3. A Machine Learning Approach for the Prediction of Internal Corrosion in
Pipeline Infrastructures

Data
IntegrationOLGA Data PIG Data

Cross-
Correlation

Analysis

Validation
of the

Integration

Feature
Selection

Expert

Privileged Descriptors of
the Corrosion Phenomenon

Figure 3.1: Comprehensive scheme of the approach.

help to model the corrosion phenomenon. The geometrical data come from pigging opera-
tions, which means that a PIG is sent through the pipeline to harvest data about the geome-
try (the PIG also collects data about the corrosion itself). The fluid-dynamical data comes
from OLGA, a dynamic multiphase flow simulator [Schlumberger]. These two sources of
data cannot be directly integrated due to some limitations in the simulator, which prevent
us from obtaining fluid-dynamical information for each corrosion point harvested by the
PIG in the pipeline. In other words, we can perform fluid-dynamical simulations down to a
certain granularity under which OLGA returns us non-stationary solutions. Therefore, we
need to devise a proper strategy to associate fluid-dynamical information with corrosion
and geometrical data coming from the PIG. In order to do this, we will split our pipeline
into bars whose beginning and end are information yielded by the PIG. More precisely,
the beginning and end of a bar coincide with its welding points joining it with the previ-
ous and next bar, respectively. Hence, given a bar identified by the PIG, we just need to
summarize all the corrosion and fluid-dynamical information associated with that bar. For
what concerns the corrosion information, we will assume the maximum peak of corrosion
within the bar as a representative. The peak of corrosion is intended in terms of corroded
thickness percentage w.r.t. the thickness of the bar itself. If we have two corrosion points
with the same corroded thickness, we choose the one with a wider area. At this point, we
need to choose fluid-dynamical representatives for the bar. We have three main cases to
consider:

14

3.1. Data Set Creation

1. multiple fluid-dynamical points fall within the same bar (see Figure 3.2a);

2. no fluid-dynamical point falls within the bar, but the bar is neither at the beginning
nor a the ending of the pipeline (see Figure 3.2b);

3. no fluid-dynamical point falls within the bar and the bar is the first or the last one of
the pipeline (see Figure 3.2c).

In all these three cases we need to be careful to preserve the physical relationships among
all the fluid-dynamical variables when choosing the representative for the bar. For in-
stance, in the first case is not appropriate to perform a simple arithmetic average to reach
our goal. We need to average w.r.t. the volume associated with each point. Table 3.1
reports all the fluid-dynamical variables used in the context of gas pipelines, whereas in
Table 3.2 we can find those used in the context of oil pipelines. For what concerns the
second case, the simplest solution is to interpolate the nearest next and previous fluid-
dynamical points to prevent duplication. Unfortunately, in the context of oil pipelines, this
straightforward solution, in some cases, could lead to unacceptable results according to
the domain experts. Therefore, only for oil pipelines, if the next or previous point is closer
to the current empty bar than a certain threshold, the duplication is applied (this threshold
is set to 0.25 m). Unfortunately, in the third case, we cannot do anything but duplicate the
nearest fluid-dynamical point both for oil and gas pipelines.

(a) Multiple simulated fluid-dynamical points within the
same bar.

(b) No simulated fluid-dynamical point within a given
pipeline bar.

(c) No simulated fluid-dynamical point within a given bar,
but the bar is either at the beginning or at the ending

of the pipeline.

Figure 3.2: Critical configurations of the simulated fluid-dynamical points within the bars of the pipeline.

3.1.1 Datasets Description

In our scenario, we applied the proposed integration strategy on two gas pipelines and two
oil pipelines, namely: GP1, GP2, OP1, and OP2. For each of these pipelines, we gathered
information from both OLGA and the PIG. Table 3.3 reports all the geometrical variables,
which are the same for oil and gas pipelines, whereas Table 3.4 details summary informa-
tion about the pipelines. Observe that both oil and gas pipelines show a morphological
taxonomy highlighted by the type in Table 3.4, representing two different shapes of the
pipeline.

15

Chapter 3. A Machine Learning Approach for the Prediction of Internal Corrosion in
Pipeline Infrastructures

Table 3.1: Fluid-dynamical variables in the context of gas pipelines.

OLGA Variable Meaning Unit of Measurement

IDflow flow regime -
PT pressure bara
GT total mass flow rate kg/s
QT total volumetric flow rate m3/s
GG gas mass flow rate kg/s
QG gas volumetric flow rate m3/s
UG gas velocity m/s
TAUWG gas wall shear stress Pa
GLWV T total water mass flow rate including vapor kg/s
QLTWT water volumetric flow rate m3/s
UWTCONT water continuous velocity m/s
TAUWWT water film wall shear stress Pa
HOLWT water hold-up -
INCL horizontal inclination degree
TM temperature Celsius
A section area m2

Table 3.2: Fluid-dynamical variables in the context of oil pipelines.

OLGA Variable Meaning Unit of Measurement

IDflow flow regime -
PT pressure bara
GT total mass flow rate kg/s
QT total volumetric flow rate m3/s
GG gas mass flow rate kg/s
QG gas volumetric flow rate m3/s
UG gas velocity m/s
TAUWG gas wall shear stress Pa
GLWV T total water mass flow rate including vapor kg/s
QLTWT water volumetric flow rate m3/s
UWTCONT water continuous velocity m/s
TAUWWT water film wall shear stress Pa
HOLWT water hold-up -
INCL horizontal inclination degree
TM temperature Celsius
A section area m2

GLTHL total oil mass flow rate kg/s
QLTHL oil volumetric flow rate m3/s
UHLCONT oil continuous velocity m/s
TAUWHL oil film wall shear stress Pa
HOLHL oil hold-up -

16

3.1. Data Set Creation

Table 3.3: Geometrical variables in the context of oil and gas pipelines.

Geometrical Variable Meaning

Odometry Odometry of a given bar
Barinit Odometric point where the bar begins
Barend Odometric point where the bar ends
Lat Latitude of the bar
Long Longitude of the bar
Elev Elevation of the bar
Bar length Length of the bar

Table 3.4: Label distribution across the different pipelines. In the column Low, Medium, and High, we show
the respective number of low, medium and high corroded points (i.e., with a peak depth percentage p such
that 0.03 ≤ p < 0.08 for what concern Low, 0.08 ≤ p < 0.3 for what concern Medium and p ≥ 0.3 for
what concern High).

Pipeline Type Data Points Low Medium High

GP1 Gas type I 1720 33 462 170
GP2 Gas type II 910 38 194 56
OP1 Oil type I 1442 152 909 256
OP2 Oil type II 1047 542 280 14

3.1.2 Validation of the Integration: Cross-correlation Analysis

After the integration of the two aforementioned sources of data, we need to assess the rela-
tionships among the variables within the resulting data set. In order to do so, we performed
a cross-correlation analysis for each couple of features we have in the reconstructed data
sets (i.e., the data sets for GP1, GP2, OP1, and OP2). Notice that some variables com-
ing from the OLGA simulator were excluded from this analysis because they showed an
unexpected behavior according to the domain experts, while some others were removed
because redundant or constant. In both cases, features have been removed from the data
sets. In particular, the removed features in the oil and gas pipelines are: GLWV T , QT ,
GT , QG, GG (removed only in gas pipelines since it is constant), Barinit and Barend
(both redundant). Notice that the first four variables mentioned above were removed be-
cause they showed unsatisfactory behavior according to the domain experts. Furthermore,
IDflow has been removed from this analysis because it is a categorical variable.

The outcome of the cross-correlation analysis is represented in a graph as follows:
given a graph G = (V,E), where V is the set of nodes and E is the set of arcs of the
graph, every node in V represents a feature of our data set and an arch exists in E between
a couple of nodes vi and vj if and only if the cross-correlation between the associated
features is greater than or equal to an expert-defined threshold T , which in our specific

17

Chapter 3. A Machine Learning Approach for the Prediction of Internal Corrosion in
Pipeline Infrastructures

TM

UWTCONT

Bar length

Odometry

HOLWT

UG

LatLong

Elev INCL

PT

TAUWWT

TAUWG

QLTWT

Figure 3.3: Cross-correlation analysis on GP1.

TM UWTCONT

Long

Bar length

Elev

Odometry

HOLWT

UG

PT Lat

INCL

TAUWWT

TAUWG

QLTWT

Figure 3.4: Cross-correlation analysis on GP2.

case is set to 0.9 (in order to highlight strong relationships). The cross-correlation between
couples of features is computed in the following way [Alippi et al., 2013]:

Ri,j =
Ci,j√
Ci,i · Cj,j

, (3.1)

where Ci,j represents the covariance between features i and j, and Ci,i represents the
variance of the feature i. The overall procedure is described in Algorithm 1.
Experimental results, that are given in Figure 3.3, 3.4, 3.5 and 3.6, are notably interesting
and relevant.

In particular, from the cross-correlation analysis in gas pipelines GP1 and GP2, we see
two main clusters of features. More precisely, the first cluster comprises UG, HOLWT ,

18

3.1. Data Set Creation

TAUWG, UWTCONT , and TAUWWT , which are related to each other through the
velocity of the two fluids (water and gas). The second cluster comprises Odometry,
Latitude, Longitude, Elevation and PT . In this cluster, the pressure is related to the
other variables because the depth varies w.r.t. the odometry. The slight differences be-
tween Figure 3.3 and 3.4 are due to different flow regimes within the pipelines together
with the fact that the length of the bars increases (or decreases) w.r.t. the Elev in GP2.

In the context of oil pipelines OP1 and OP2, we still have the cluster of features associ-
ated with the geometry and pressure together with the cluster of variables associated with
the velocities of the fluids composing the blend. Moreover, in the case of oil pipelines,
an additional cluster comprising GG (Gas mass flow rate), GLTHL (Total oil mass flow
rate), TM (Temperature), QLTHL (Total oil volume flow rate) exists. Interestingly, this
cluster is correlated with LAT , LONG, and ODOMETRY . The reason is now com-
mented. In a pipeline, the temperature of the input fluid of the pipeline (comprising the
different phases in thermal equilibrium) could be higher than the one of the seabed (e.g.,
pipelines operating on the seabed as OP1 and OP2). For this reason, the fluid cools down
over the pipeline. Hence, TM results to be correlated to the ODOMETRY . Similarly,
theGLTHL (Total oil mass flow rate) andGG (Gas mass flow rate) result to be correlated
with LAT , LONG and ODOMETRY since the oil can evaporate or condense over the
pipeline due to pressure variations. This implies that the gas/oil equilibrium changes over
the pipeline and, for this reason, a correlation among GLTHL (Total oil mass flow rate),
GG (Gas mass flow rate), ODOMETRY and PT could exists (see Figure 3.5 and 3.6).

Thanks to the interaction with domain experts, we were able to validate the proposed
integration phase through the results reported above, which highlights the preservation of
the involved fluid-dynamical physics.

Algorithm 1 Cross-correlation graph

1: Input: cross-correlation matrix R, number of features N , user defined threshold T
2: E = R
3: for i in 1 · · ·N do
4: for j in 1 · · ·N do
5: if E(i, j) ≥ T then
6: E(i, j) = 1
7: else
8: E(i, j) = 0
9: end if

10: end for
11: end for
12: return E

19

Chapter 3. A Machine Learning Approach for the Prediction of Internal Corrosion in
Pipeline Infrastructures

UG TAUWWT

TAUWHL

UHLCONT

UWTCONTHOLHL

Bar length

Elev

HOLWTTAUWGINCL QLTWT

PTGLTHL

GG

TM

QLTHL Long Lat

Odometry

Figure 3.5: Cross-correlation analysis on OP1.

Table 3.5: Feature Selection on gas pipelines.

GP1 GP2

Bar length X
HOLWT X
PT X
Odometry X X
x X X
y X X
z X
x’ X

3.1.3 Gaining Insights about Corrosion: Feature Selection

In this section, we describe the analysis performed to identify the features that could rep-
resent the corrosion phenomenon in a privileged way. In order to do this, we used the
feature selection algorithm proposed in Alippi et al. [2001]. This algorithm comprises two
phases described in Algorithm 2 and 3, respectively. For what concerns the first phase,
the algorithm starts by analyzing all the subsets of features whose cardinality is 1. For
each subset, we compute the performance in terms of k-fold CV accuracy (while leave
one out was used in Alippi et al. [2001]), choosing only the best W subsets. Now, this

20

3.1. Data Set Creation

UG TAUWWT

TAUWHL

UHLCONT

UWTCONTHOLHL

Bar length

Elev

HOLWTTAUWGINCL QLTWT

Odometry Lat

Long GG

PTQLTHL

GLTHL TM

Figure 3.6: Cross-correlation analysis on OP2.

procedure is repeated on all the subsets of dimension two over the set given by the union
of the best W subsets previously spotted. The first phase iterates until convergence, which
happens when the cardinality of the subsets is equivalent to the cardinality of the union
set. The second phase of the algorithm consists in adding one left-out feature at a time to
the set yielded by the first phase: if the feature increases the performance, then it is added
to the solution, otherwise, it is discarded. Once the second algorithm iterates over all the
left-out features, if no left-out feature has been added to the current set of features then
the algorithm ends, otherwise it iterates again over the remaining left-out features. For a
comprehensive description of this algorithm see Alippi et al. [2001].

The results of the execution of this algorithm (Phase 1 and 2) on the gas and oil data sets
are shown in Tables 3.5 and 3.6, respectively. Observe that, Lat, Long and Elev where
replaced by their equivalent representation in Cartesian coordinates (x, y and z) so as to
allow an easier computation of the first- and second-order derivatives (represented as x′,
y′, z′ and x′′, y′′, z′′ respectively). These derivatives show the rate of change of the pipeline
profile along a fixed component (x, y, or z). As we can see from Table 3.5, it seems that

21

Chapter 3. A Machine Learning Approach for the Prediction of Internal Corrosion in
Pipeline Infrastructures

Table 3.6: Feature Selection on oil pipelines.

OP1 OP2

ID flow X
HOLHL X
QLTHL X
Odometry X
QLTWT X
x X X
TAUWHL X
TM X

some features are associated with the corrosion modeling when we have a type I pipeline,
whereas some others are associated with a more general description of the corrosion. The
same comment arises in the context of oil pipelines as shown in Table 3.6.

Algorithm 2 Feature Selection Phase 1

1: Input: user defined threshold W , folds to use k, evaluation model M , alive features A initially set to all
the feature of the dataset, n=1

2: while |A| > n do
3: compute all the subsets of A whose cardinality is n
4: compute the performance in k-fold CV of each subset using model M
5: select the best T subsets and put their union into A
6: n = n+ 1
7: end while
8: return the subset associated to the best performance

Algorithm 3 Feature Selection Phase 2

1: Input: solution given by phase 1 S, folds to use k, evaluation model M , left-out features L, added
feature AF = True

2: while AD do
3: AD = FALSE
4: for f in L do
5: compute the performance in k-fold CV of S ∪ f using model M
6: if performance improve then
7: S = S ∪ f , AD = TRUE, remove f from L
8: end if
9: end for

10: end while
11: return the subset associated to the best performance

22

3.2. Corrosion Prediction

3.1.4 Discussion

Building a data set aiming at representing a given phenomenon is a tricky task, especially
when the available information is scarce and we cannot directly measure all the variables
influencing the corrosion phenomenon we want to capture. However, even though we do
not have the direct measurements of the fluid-dynamical variables influencing the given
phenomenon sometimes, a simulator for those variables is available. Hence, our problem
required understanding how the data integration phase should be guided by the physics
of the phenomenon in order to guarantee a reliable physical/fluid-dynamical representa-
tion. This reasoning implied discussions with domain experts in order to devise a strategy
to check the soundness of the obtained representation, which, in this context, required to
apply a cross-correlation analysis and evaluate the results. Once the data sets have been
correctly integrated, we started to analyze their properties in order to find out more about
the corrosion phenomenon, which was accomplished through a feature selection proce-
dure. Notice that every step of this investigation was constantly supervised by domain
experts validating the definition of the data set and the performed analysis.

3.1.5 Conclusion

In this Section, we tackled the problem of integrating the two different sources of data
available for corrosion prediction. We uncovered some of the pitfalls hidden in the inte-
gration procedure showing how to avoid them. We have, also, evaluated the reconstructed
data sets through a cross-correlation analysis, which helped us checking the physical re-
lationships among the variables at hand. Finally, we applied a feature selection algorithm
in order to identify privileged descriptors of the corrosion phenomenon across different
pipelines.

3.2 Corrosion Prediction

In the previous Section, we have devised a strategy to properly integrate fluid dynamics
and geometry for any given pipeline. Now, given an integrated data set, we would like to
focus on the corrosion prediction problem leveraging SL techniques.

3.2.1 Problem Formulation

From an ML perspective, in order to tackle the corrosion prediction problem, we need
three steps to follow. At first, we need to build a data set representing the phenomenon
to be modeled. Secondly, we need to apply a learning algorithm to this data set in order
to get a predictive model of the phenomenon. Finally, we need to assess the predictive
performance of the learned model. In this Section, we will describe these three steps one
after the other (for a summary see Figure 3.7).

23

Chapter 3. A Machine Learning Approach for the Prediction of Internal Corrosion in
Pipeline Infrastructures

OLGA Data

PIG Data

D = {(x, y)}ni=1 Cross-Validation Selected Model

Expert

Test Set Confusion
Matrix

Figure 3.7: Comprehensive scheme of the approach (in gray the sources of data which together with the
red block are associated to the data set creation, in green the selected model and in violet the evaluation
procedure).

The Data Set

As mentioned in Section 2.1 and more thoroughly in Section 3.1, we have an incompat-
ibility between the two available sources of data, which are the geometry of the pipeline
and the fluid dynamics. This incompatibility is due to the fact that one source of data is
simulated the other is sampled directly from the infrastructure. This integration problem
was tackled in Section 3.1, where we proposed to split the pipeline into bars and summa-
rize all the corrosion and fluid dynamical information related to each bar in such a way
as to preserve the physical relationships among all the descriptors of the corrosion phe-
nomenon. Now, leveraging this integration procedure we can build a rich and descriptive
data set faithfully representing the corrosion phenomenon in a fixed given pipeline. Once
the integration has been performed on the two sources of data, we have a set of couples
D = {(xi, yi)}ni=1 where xi represent the vector whose components are the descriptors of
the corrosion phenomenon and yi is the scalar representing the corrosion level (intended
as a percentage of the pipe thickness being corroded). It is noteworthy to point out that
xi is made of geometrical and fluid-dynamical components which are described in Table
3.3 and 3.1 respectively, whereas yi is transformed into a categorical variable with four
possible classes which are derived from the corrosion level according to the thresholds
given by the domain experts that are reported in Table 3.7. This latter categorization of
the corrosion level is done since companies managing pipeline infrastructures are mainly
interested in being able to classify the corrosion level in a certain number of categories
directly related to the rupture risk in a given point of the pipe.

24

3.2. Corrosion Prediction

Table 3.7: Categories and Thresholds.

Threshold Category

y < 0.03 Absent
0.03 ≤ y < 0.08 Low
0.08 ≤ y < 0.30 Medium
y ≥ 0.30 High

Classification of Internal Corrosion

The corrosion classification problem is formalized as follows:

θ∗ ∈ arg min
θ

E(x,y)∼P [l(x, y, f(x, θ))] , (3.2)

where x ∈ Rm is the m-dimensional vector representing the input given to the clas-
sification model, y ∈ 1, . . . , C represents the output to be predicted, P is the joint dis-
tribution from which all the couples (x, y) are sampled, θ ∈ Rd is the d-dimensional
vector parametrizing the classification model f(x, θ) and l is a suitable loss function to
be optimized by the learning algorithm in order to find the optimal classification model.
Of course, the distribution P is not available in practice, but we have a finite data set,
D = {(xi, yi)}ni=1, sampled from it. Therefore, we resort to find:

θ̂ ∈ arg min
θ

1

n

n∑
i=1

l(xi, yi, f(xi, θ)), (3.3)

minimizing the empirical risk.
In our scenario, we employed three different types of classification algorithms to solve

the above formalized problem: Support Vector Machines (SVM) [Scholkopf and Smola,
2018], Neural Networks [Bishop, 2006] and XGBoost [Chen and Guestrin, 2016]. The
first one is a kernel-based tool that involves solving a convex optimization problem to
determine the optimal parameters of the predictive model during the training phase. For
what concerns SVM the main hyperparameters are: the kernel (radial basis functions were
used in this context), the kernel coefficient γ, and the regularization parameter C. The
second one consists of a series of layers (stacked one after the other) made of neurons
with a non-linear activation function. This model is trained with gradient-descent-based
optimization algorithms and its hyperparameters are: the number of neurons in each layer
and the number of hidden layers (in this work, we used a single hidden layer). The third
one is an efficient tree-boosting algorithm, hence it falls into the ensemble approaches.
XGBoost has lots of different hyperparameters. To name a few of them, we have: max
depth, column sample by tree and number of estimators.

25

Chapter 3. A Machine Learning Approach for the Prediction of Internal Corrosion in
Pipeline Infrastructures

Performance Evaluation

In order to properly assess the performance of the learning algorithms, we need to split
our data set in two. One part representing the training set and the other the test set. The
first part will be used to train the predictive model, whereas the second one to assess its
performance. We split the data set into an 80% training set part and a 20% test set part. The
hyperparameters maximizing the performance of a learning algorithm are chosen via CV
on the training set. Then the best predictive model obtained for each learning algorithm
is allowed to predict on the test set and its performance is reported as a confusion matrix
(for completeness, we report also the performances measured in accuracy and F1-score).
A confusion matrix is a C×C matrix where the rows represent true labels and the column
the predicted ones. Therefore, on the diagonal, we have the per-class accuracy of the
algorithm, whereas, in the other cells, we can see how the algorithm confuses one class
with another.

3.2.2 Experiments

Data Sets Description

In the context of this work, we will apply the classification algorithms on three pipelines,
namely: P1, P2 and P3. For each of these three pipelines, we have data coming from the
PIG and OLGA. These two sources are integrated as mentioned in Section 3.1. Subse-
quently, some features have been removed from the data sets because, according to the
domain experts, they showed unexpected behavior, whereas some others were removed
due to redundancy. More specifically, GLWV T , QT , GT , QG, Bar length and GG
removed under domain expert advice, Barinit because redundant. The GPS coordinates
(Lat, Long and Elev) are transformed into their equivalent Cartesian coordinates (x, y
and z), then their first and second-order derivatives are computed (and added to the feature
set), which represent the rate of change of the pipeline profile along a fixed component.
Moreover, under the suggestion of the domain experts, the samples associated with the
beginning or the ending of the pipeline were removed because they have a completely
different behavior in terms of corrosion. Concluded this enrichment step, the features are
normalized. Finally, in Table 3.8, we can see some summary information on the three
pipelines. Notice that the pipelines have a morphological taxonomy represented by Type
in the previously mentioned table.

3.2.3 Results

A grid search in CV over the training set (corresponding to the 80% of the whole data
set) is performed to select the best hyperparameters for each of the classification algo-
rithms mentioned in Section 3.2.1. F1-score is the figure of merit taken into account for
the grid search. Performances of the optimal parameter configuration on each algorithm

26

3.2. Corrosion Prediction

Table 3.8: Label distribution across the different pipelines.

Pipeline Type Data Points Low Medium High

P1 Type I 1702 32 459 170
P2 Type II 861 36 186 53
P3 Type I 3321 144 609 19

Table 3.9: F1-score associated to the optimal hyperparameter configuration for each algorithm across the
different pipelines.

Pipeline XGB SVM NN

mean std mean std mean std
P1 0.62 0.03 0.51 0.04 0.59 0.02
P2 0.77 0.04 0.72 0.06 0.74 0.05
P3 0.74 0.02 0.58 0.02 0.73 0.02

are reported in Table 3.9. After the best parametrization is obtained, the model is run
onto the test set to assess its performance. Therefore, for each available pipeline, we re-
port the associated confusion matrix representing the performance obtained by the three
classification algorithms on the test set.

As we can see from Figures 3.8 and 3.10 XGBoost seem to predict nearly always ab-
sent, whereas in Figure 3.9 it misses on the low component of the phenomenon. In the
case of neural networks, instead, we have a similar behavior in the context of pipeline P3
(even though, to be precise, this model seems to better capture the medium component
of the phenomenon w.r.t. XGBoost), but not for what concern P1 and P2. Indeed in P1
neural networks miss on the low component of the phenomenon, whereas in P2 all the
components are captured even though some of them partially. Both neural networks and
XGBoost are quite polarized toward the absent class, which is not the case of SVM, in-
deed, it is able to capture, even though not perfectly, also the other corrosion components
of the phenomenon. Finally, if we take into account the accuracy, then the best model
seems to be the one produced by XGBoost (see Table 3.10). In terms of F1-score, instead,
the neural network seems to have a slightly better performance w.r.t. the others (see Ta-
ble 3.11). However, this can be misleading if we do not take into account the confusion
matrices which shed some light on the per-class behavior of the employed models.

Top vs Bottom

The corrosion phenomenon within a pipeline can be split into two different components,
one related to the top portion of a given pipe the other to the bottom. In the context of the
analyzed pipelines, we have approximately 3%, 1.7%, and 8.6% of top corrosion in P1, P2,
and P3 respectively. This makes the corrosion phenomenon almost completely dominated

27

Chapter 3. A Machine Learning Approach for the Prediction of Internal Corrosion in
Pipeline Infrastructures

Absent Low Medium High
G

ro
un

d
Tr

ut
h

Absent 0.99 0 0.0096 0

Low 1 0 0 0

Medium 0.97 0 0.033 0

High 0.97 0 0.029 0

Predicted

(a) XGB

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.51 0.15 0.2 0.14

Low 0.17 0.17 0.5 0.17

Medium 0.35 0.12 0.41 0.12

High 0.18 0.059 0.5 0.26

Predicted

(b) SVM

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.79 0 0.15 0.057

Low 0.67 0 0.33 0

Medium 0.63 0 0.3 0.065

High 0.29 0 0.44 0.26

Predicted

(c) NN

Figure 3.8: Multi-class confusion matrices for the three classification algorithms on P1.

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.99 0 0 0.0085

Low 0.86 0 0.14 0

Medium 0.32 0 0.57 0.11

High 0.45 0 0.27 0.27

Predicted

(a) XGB

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.87 0.051 0.051 0.025

Low 0.57 0 0.14 0.29

Medium 0.35 0.11 0.32 0.22

High 0.45 0 0.18 0.36

Predicted

(b) SVM

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.92 0.017 0.051 0.0085

Low 0.71 0.14 0.14 0

Medium 0.38 0.027 0.38 0.22

High 0.45 0 0.18 0.36

Predicted

(c) NN

Figure 3.9: Multi-class confusion matrices for the three classification algorithms on P2.

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.99 0 0.0059 0

Low 0.93 0 0.069 0

Medium 0.98 0 0.016 0

High 1 0 0 0

Predicted

(a) XGB

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.59 0.18 0.082 0.14

Low 0.31 0.24 0.14 0.31

Medium 0.43 0.22 0.16 0.18

High 0.25 0.5 0 0.25

Predicted

(b) SVM

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.97 0 0.033 0

Low 0.9 0 0.1 0

Medium 0.8 0 0.2 0

High 1 0 0 0

Predicted

(c) NN

Figure 3.10: Multi-class confusion matrices for the three classification algorithms on P3.

28

3.2. Corrosion Prediction

Table 3.10: Testing performances in accuracy across the different pipelines.

Pipeline XGB SVM NN

P1 0.62 0.45 0.60
P2 0.82 0.69 0.74
P3 0.77 0.50 0.78

Table 3.11: Testing performances in F1-score across the different pipelines.

Pipeline XGB SVM NN

P1 0.48 0.50 0.57
P2 0.78 0.68 0.72
P3 0.67 0.57 0.72

by the behavior at the bottom of the pipeline. Therefore, distinguishing between the two
phenomena is nearly irrelevant from the domain expert point of view, at least in these three
pipelines.

3.2.4 Discussion

Modeling the corrosion phenomenon using an ML-based approach is a tricky task, which
starts with the need to create a data set faithfully representing the phenomenon to be mod-
eled, continues with the choice of the learning algorithm to approximate the phenomenon,
and ends with the evaluation of the performance obtained with the chosen learning algo-
rithm.

As highlighted in the previously described results, deciding how to evaluate the perfor-
mance of a model is a crucial step in the ML framework. Indeed, switching from one figure
of merit to another could affect the identification of the best ML model as we have seen
comparing accuracy to F1-score in Tables 3.10 and 3.11 respectively. Moreover, the ex-
perimental results described above show that, through the performance evaluation via con-
fusion matrices, there are models able to capture only partially the corrosion phenomenon,
while other models seem to provide a more complete characterization of the phenomenon
under inspection (see for instance Figure 3.10 where XGBoost and the neural network
polarize toward the absent class, whereas the SVM better catches all the phenomenon’s
components).

3.2.5 Conclusion

The aim of this Chapter was to introduce an ML-based approach for the prediction of
corrosion in pipeline infrastructures leveraging a data set built with the aim to compensate
for the missing information. Differently from the ML solutions for corrosion prediction

29

Chapter 3. A Machine Learning Approach for the Prediction of Internal Corrosion in
Pipeline Infrastructures

present in the literature (where small data sets have been considered or the performance
evaluations have not been properly carried out, hence impairing the claims and the ob-
tained results), the proposed approach formalizes how to create the data set (comprising
information coming from the PIG and the simulator), how to effectively train an ML-
based model (i.e., SVM, Neural Networks and XGBoost) and how to properly evaluate its
performance.

30

CHAPTER4
Corrosion Prediction in Pipeline Infrastructures

Leveraging Transfer Learning

In this Chapter, which is taken from Canonaco et al. [2021c], where I am the main re-
searcher, we will finally turn our attention to the problem of building an ML-based predic-
tive model for the corrosion when there is absence of supervised information for a given
target pipeline. This absence is due to the high cost associated with the retrieval of such
information and constitute a common use case for oil and gas companies managing such
infrastructures.

4.1 From supervised to transfer learning in corrosion prediction

From a machine learning perspective, predicting the presence of corrosion in an oil or gas
pipeline requires effective modeling of the relationships between the corrosion-influencing
factors and the presence of corrosion in a pipeline. More specifically, as we have seen
in Chapter 3, a pipeline is divided into bars, i.e., independent segments of the pipeline,
and the machine learning task aims at modeling the relationship between the corrosion-
description factors of each bar and its level of corrosion.

Let us define a learning task as the tuple (X,P (x), Y, P (y|x)), where Y is the label
set, P (y|x) is the conditional distribution, X is the feature space and P (x) is the marginal

31

Chapter 4. Corrosion Prediction in Pipeline Infrastructures Leveraging Transfer Learning

distribution. Here x represents the feature vector associated with a bar and y its corro-
sion level. In the context of a learning task, the objective is to learn a function correctly
predicting y when evaluated on x.

In this setting, two main problems arise. First, as commented in Sections 2.1 and 3.1,
not all the corrosion influencing factors are available. Hence the feature vector x comprises
only geometrical and fluid dynamical information about a bar: the former is available given
the pipeline on-the-field deployment, while the latter is provided by a fluid-dynamical
simulator [Schlumberger]. Second, as highlighted in Section 2.1, the supervised informa-
tion, i.e., the presence or absence of corrosion in a bar, is provided through an inspection
campaign where a PIG passes inside the pipeline collecting a set of corrosion level mea-
surements together with their GPS coordinates along the pipeline profile. This poses a
relevant compatibility issue since the geometrical characteristics, mainly represented by
the inclination and curvature of the pipeline profile, are not directly compatible with the
fluid dynamical descriptors creating a resolution mismatch between the information gath-
ered through the PIG and the simulator [Schlumberger]. More precisely, we can obtain
fluid-dynamical data down to a certain granularity under which the simulator starts return-
ing non-stationary solutions. This issue has been highlighted and addressed in Section 3.1
and we will follow this approach in the context of this Chapter to build a given data set
D = {(xi, yi)}ni=1 with x representing the feature vector, made of fluid dynamical and
geometrical components, and y representing the corrosion level.

From the ML perspective, SL techniques, like the ones mentioned in Section 2.2, work
under the assumption that the distribution of training and test data is the same. In real-
world oil and gas pipeline infrastructures, it may happen that we would like to solve a
certain target task (XT , PT (x), YT , PT (y|x)) for which some of the elements allowing a
proper application of SL techniques are missing (e.g., we do not have access to the la-
bels since they are too costly to be retrieved), but we can access another related source
task (XS, PS(x), YS, PS(y|x)) that may help us overcome the difficulties we would have
in learning the target task by itself. This implies that we cannot directly build a predic-
tive model onto a given pipeline (XS, PS(x), YS, PS(y|x)) for which the supervised infor-
mation is available and then reuse it onto another pipeline (XT , PT (x), YT , PT (y|x)) for
which the supervised information is missing. We emphasize that there is a potential dis-
tributional shift to take into account and our predictive models may suffer a performance
hindering if this is not properly considered.

In this setting, TL allows us to leverage the source task in order to better approxi-
mate the joint distribution on the target task. In the TL literature, several approaches are
available differing in how source and target tasks relate to each other (see Pan and Yang
[2009] for an extensive treatment). For instance, we can talk about inductive TL when-
ever (YS, PS(y|x)) 6= (YT , PT (y|x)) (notice that (XS, PS(x)) = (XT , PT (x)) or (XS,
PS(x)) 6= (XT , PT (x))), whereas we have transductive TL whenever (YS, PS(y|x)) =
(YT , PT (y|x)) and (XS, PS(x)) 6= (XT , PT (x)). The former requires access to at least

32

4.2. The proposed transfer-learning approach for corrosion prediction

a set of labeled data from the target context, whereas the latter only requires a set of
unlabeled data coming from it. Furthermore, we can classify TL approaches w.r.t. the
knowledge being transferred across the two tasks: parameters [Evgeniou and Pontil, 2004,
Duan et al., 2012], features [Argyriou et al., 2006, Raina et al., 2007, Pan et al., 2008,
Long et al., 2013], samples [Dai et al., 2007, Wu and Dietterich, 2004, Huang et al., 2006]
or relational knowledge [Mihalkova et al., 2007, Li et al., 2012]. Finally, TL techniques
may be either homogeneous or heterogeneous as they are classified in Weiss et al. [2016],
Zhuang et al. [2020], where, in Zhuang et al. [2020], we may find a review of recent works
with the main focus on homogeneous approaches.

In the context of this Chapter, we will focus on transductive TL techniques because
companies managing pipelines usually have supervised information only for some of their
pipeline infrastructures. In particular, this approach is justified by the assumption that, as
commented by the domain experts, the corrosion phenomenon is the same in two different
pipelines provided that the influencing factors are equal, which translates into PS(y|x) =
PT (y|x) (trivially, the label set Y does not change w.r.t. the considered pipeline). This
implies that, in the context of corrosion prediction for pipeline infrastructures, we can
assume that (YS, PS(y|x)) = (YT , PT (y|x)) and (XS, PS(x)) 6= (XT , PT (x)), where the
change is given by PS(x) 6= PT (x) since the feature space is the same.

4.2 The proposed transfer-learning approach for corrosion prediction

An overview of the proposed approach based on TL for corrosion prediction in pipeline
infrastructures is given in Figure 4.1. More specifically, we have a set of source pipelines
for which the supervised information is available and a target pipeline where only the
influencing factors of the corrosion are accessible. Our goal is to create a predictive model
for the target pipeline leveraging the source pipelines thanks to TL. This last step is done
in two phases: at first, we rank the models built on a given source w.r.t. an estimate of their
performance on the target (Algorithm 4 in Figure 4.1); then the best B sources (being B a
tunable parameter of the algorithm) are selected to build a predictive model for the target
in a multi-task manner (Algorithm 5 in Figure 4.1). Finally the predictive model θ̄ is used
onto the target pipeline to get the corrosion levels.

In the rest of this Section, we will initially discuss how to build a model for the target
pipeline when only one source is available, then we will review how to estimate the per-
formance of a model onto the target pipeline, and finally, we will show how to leverage
more than one source to build the target model in a multi-task manner.

33

Chapter 4. Corrosion Prediction in Pipeline Infrastructures Leveraging Transfer Learning

Figure 4.1: Comprehensive scheme of the approach (this image has been designed using resources from
Flaticon.com).

4.2.1 Transfer Learning from a source to a target pipeline

Given DS = {(xsi , ysi)}ni=1 and DT = {xTi }n
′
i=1 representing the source and target pipelines

data, the problem we want to tackle is:

θ∗ ∈ arg min
θ∈Θ

E(x,y)∼PT (·,·) [l(x, y, f(x, θ))] , (4.1)

where θ is the vector parametrazing our predictor f(x, θ) and l is a fixed loss function
measuring the mismatch between predictions and ground truth. We emphasize that sam-
ples coming from PT (x, y) are not available, but we have samples coming from PT (x) and
PS(x, y). Therefore, by exploiting Importance Sampling (IS) [Fishman, 2013, Hesterberg,
1988], we can rewrite the objective of Equation (4.1) in the following way:

E(x,y)∼PS(·,·)

[
PT (x, y)

PS(x, y)
l(x, y, f(x, θ))

]
. (4.2)

Now, since we have finite samples, we reformulate our problem by optimizing the empiri-
cal version of the above objective function:

θ̂ ∈ arg min
θ∈Θ

1

n

n∑
i=1

PT (xSi , y
S
i)

PS(xSi , y
S
i)
l(xSi , y

S
i , f(xSi , θ)), (4.3)

34

4.2. The proposed transfer-learning approach for corrosion prediction

which gives us a consistent estimator of θ̂ [Shimodaira, 2000].
The problem of optimizing Equation (4.3) can be tackled only if we can estimate the

ratio PT (x,y)
PS(x,y)

. Since we do not have labels coming from the target pipeline, the afore-
mentioned estimation, in a general case, cannot be achieved. In our scenario, we know
that, by assumption of the domain experts, PS(y|x) = PT (y|x). Hence, by definition of
conditional probability, PT (x,y)

PS(x,y)
= PT (x)

PS(x)
, allowing an estimation of Equation (4.3) on the

available data.
In order to estimate the ratio ω(x) = PT (x)

PS(x)
, we will resort to the approach proposed

in Huang et al. [2006], which consists in solving the following Kernel Mean Matching
(KMM) optimization problem:

min
ω
||µ(PT)− Ex∼PS(·) [ω(x)Φ(x)] ||,

subject to :

ω(x) ≥ 0 and Ex∼PS(·)[ω(x)] = 1,

(4.4)

where µ(PT) = Ex∼PT (·) [Φ(x)] and Φ : X → F (being F a feature space). Then,
under the assumptions that PT is absolutely continuous w.r.t. PS and F is a Reproducing
Kernel Hilbert Space (RKHS) with universal kernel k(x, u) = 〈Φ(x),Φ(u)〉, we have
that a solution to Equation (4.4) is such that PT (x) = ω(x)PS(x). Unfortunately, both
µ(PT) and PS(x) are a priori unknown, but we have samples {xSi }ni=1 and {xTi }n

′
i=1 to rely

on. Considering the empirical version of the objective function in Equation (4.4), under
the assumptions that ω : X → [0,W] is a fixed function with finite mean and non-zero
variance given xSi ∼ PS (W is an upper bound on how much the two distributions can be
different on a given x ∈ X), {xTi }n

′
i=1 is an iid (independent and identically distributed) set

of samples drawn from PT (x) = ω(x)PS(x) and ||Φ(x)|| ≤ R for any x ∈ X then with
probability at least 1− δ:∣∣∣∣∣

∣∣∣∣∣ 1n
n∑
i=1

ω(xSi)Φ(xSi)− 1

n′

n′∑
i=1

Φ(xTi)

∣∣∣∣∣
∣∣∣∣∣ ≤(

1 +

√
− log

(
δ

2

))
R

√
W 2

n
+

1

n′
,

(4.5)

giving us an upper bound on the empirical optimization outcome (notice that the largerW ,
the larger the number of samples needed to obtain meaningful convergence guarantees).
Now, lettingKi,j = k(xSi , x

S
j), κi = n

n′

∑n′

j=1 k(xSi , x
T
j) and ω̄i = ω(xSi), the left hand side

of Equation (4.5) squared can be reformulated as follows:

1

n2
ω̄TKω̄ − 2

n2
κT ω̄ + const, (4.6)

35

Chapter 4. Corrosion Prediction in Pipeline Infrastructures Leveraging Transfer Learning

which yields the following optimization problem:

min
ω̄

1

2
ω̄TKω̄ − κT ω̄

subject to :

ω̄i ∈ [0,W] and

∣∣∣∣∣
n∑
i=1

ω̄i − n
∣∣∣∣∣ ≤ nε.

(4.7)

The first constraint in Equation (4.7) provides an upper bound to the degree up to which
the two distributions may be different, whereas the second one forces ω(x)PS(x) to be
close to a probability measure. For a more detailed discussion about KMM please refer to
Huang et al. [2006] and the references therein. Solving the optimization problem stated in
Equation (4.7) will return us the weight vector ω̄ to correct the shift in distribution between
the source and target pipelines.

4.2.2 Ranking the source pipelines

In a real-world scenarios, we may have multiple available source pipelines, {DSm}Mm=1.
Hence, we would like to identify the most appropriate source within the given set. More
precisely, we would like to select the source pipeline which allows us to minimize the
generalization error defined as:

E{(xTi ,yTi)}ni=1,u,v

[
l(u, v, f(u, θ̂))

]
, (4.8)

where (u, v) is a test point coming from the target pipeline and not present in the training
set. The generalization error is usually estimated through CV, which, in this context, is
useless because we do not have access to the target pipeline labels. However, we can obtain
this estimate through k-fold Importance Weighted Cross-Validation (kIWCV) [Sugiyama
et al., 2007] as follows:

1

k

k∑
j=1

1

|Dj
Sm
|

∑
(x,y)∈DjSm

ω(x)l
(
x, y, f

(
x, θ̂DjSm

))
, (4.9)

where θ̂DjSm
is the parametrization learned over the data set DSm \ Dj

Sm
(\ is the set dif-

ference operator) and the estimation of ω(x) can be performed by solving Equation (4.7).
The generalization error estimate provided by kIWCV with k = n is almost unbiased and a
similar claim can be proved for k < n with a larger bias than that incurred with k = n (for
a more thorough treatment see Sugiyama et al. [2007]). Therefore, choosing the source
pipeline Sm maximizing the above equation will allow us to get the best performance for
our models on the target pipeline. Moreover, from a more general standpoint, Equation

36

4.3. Experiments

(4.9) allows us to optimize all the hyperparameters of our model to maximize performance
on the target pipeline.

In Algorithm 4, we combine KMM, used to estimate ω(x), and kIWCV. More specif-
ically, at line 4, we compute the importance weights to correct the distributional shift
between the current source and the target pipeline. At line 5, we compute the optimal
hyper-parameters and their performance through kIWCV. At line 6, the performance and
hyperparameters of the current source pipeline are appended to their respective lists, (i.e.,
Perf and ρ). Finally, in line 8, we return the lists of performances and the correspond-
ing hyper-parameters. This completes the TL framework we will use in the context of
corrosion prediction for pipeline infrastructures.

We could extend this solution by considering more than one source pipeline for the cor-
rosion prediction. This can be done through a multi-task learning approach which could
use up to all the source pipelines together with their related importance weights to build a
model for the target one [Sugiyama et al., 2012, Chapter 9]. However, evaluating the per-
formance of all the possible subsets of source pipelines does not scale well. To avoid this
issue we could combine the B best sources according to the ranking we obtain by sorting
the results of Algorithm 4 (the effect ofB will be experimentally evaluated in Section 4.3).
This procedure is reported in Algorithm 5, where, at lines 4 and 5, we concatenate the data
sets and the weights. At line 7, we compute the optimal hyperparameters of the learning
algorithm, and, finally, at line 8, the best parametrization for the predictor is computed and
subsequently returned.

4.3 Experiments

This Section aims to evaluate the effectiveness of the proposed TL approach in real-world
scenarios of corrosion prediction within 4 different gas pipeline infrastructures, namely P1,
P2, P3, and P4. The section is organized as follows: Section 4.3.1 describes the employed
data sets, whereas the experimental results are given in Section 4.3.2.

Algorithm 4 Sources performance evaluation

1: Input: Source data sets {DSm}Mm=1, Target samples {xTi }n
′
i=1, W , ε, k

2: Perf = [], ρ = []
3: for m in 1 . . .M do
4: ω̄ = KMM(DSm , {xTi }n

′
i=1,W, ε) solving Eq. (4.7)

5: hyperParams, p = IWCV (DSm , ω̄, k)
6: Perf = Perf + [p], ρ = ρ+ [hyperParams]
7: end for
8: return ρ, Perf

37

Chapter 4. Corrosion Prediction in Pipeline Infrastructures Leveraging Transfer Learning

4.3.1 Data Sets Description

In order to integrate the geometrical and fluid dynamical data, we rely on the approach
proposed in Section 3.1. Such an integration will return us a data set D = {xi, yi}ni=1 for
each pipeline. Here the vector xi’s components represent the corrosion influencing factors
(see Tables 3.3 and 3.1), whereas yi is the scalar value representing the corrosion level
(in terms of bar thickness percentage being corroded). Such a value is transformed into a
categorical variable with four possible classes according to the thresholds provided by the
domain experts and reported in Table 3.7. After the integration, a data transformation and
enrichment is performed as follows. The Lat, Long and Elev are transformed into their
equivalent Cartesian coordinates x, y and z. Then their first and second-order derivatives
are computed (and added to the feature set), which represent the pipeline profile’s rate of
change along a fixed component. Additionally, some features have been removed from
the data sets because, according to the domain experts, they showed unexpected behavior,
whereas some others were removed due to redundancy. More specifically, GLWV T , QT ,
GT , QG, Bar length and GG have been removed under domain expert advice, together
with Barinit because redundant. Finally, under the domain experts’ suggestion, the sam-
ples associated with the beginning or end of the pipeline were removed because they have
completely different behavior in terms of corrosion. At the end of this enrichment step, the
features are normalized. Some summary information on the different pipelines after the
above-mentioned transformations is provided in Table 4.1, where we may notice a severe
imbalance among the various classes. It is worth noting that the High class is very rare
and the Absent class is dominating the others.

4.3.2 Results

For each available target pipeline, we will evaluate the performance of Algorithm 5 in
three different configurations: B = 1, B = 2 and B = 3. We used a SVM [Scholkopf
and Smola, 2018] with Radial Basis Kernel as f(x, θ). In Table 4.2, we report the results

Algorithm 5 Multi-task TL

1: Input: The B best Source data sets obtained by Algorithm 4 {DSm}Bm=1, Target samples {xTi }n
′
i=1, W ,

ε, k
2: D = [], Ω = []
3: for m in 1 . . . B do
4: Ω = Ω + [KMM(DSm , {xTi }n

′
i=1,W, ε)] solving Eq. 4.7

5: D = D + [DSm]
6: end for
7: hyperParams, Perf = IWCV (D,Ω, k)
8: θ̄ = TrainLearningAlgorithm(D,hyperParams,Ω)
9: return θ̄

38

4.3. Experiments

Table 4.1: Label (y) distribution across the different pipelines.

Pipeline Data Points Low Medium High

P1 861 36 186 53
P2 3321 144 609 19
P3 1215 206 213 3
P4 1681 276 568 33

Table 4.2: Estimate of the performance (F1-Score) on the target pipeline through Algorithm 4.

Target 1st Source 2nd Source 3rd Source

P1 P3 0.56 P2 0.56 P4 0.45
P2 P1 0.71 P3 0.60 P4 0.45
P3 P1 0.71 P4 0.45 P2 0.30
P4 P1 0.71 P3 0.58 P2 0.56

Table 4.3: Accuracy on Target. The Supervised Oracle column is obtained by training an SVM onto a
portion of the data set representing this target pipeline and then testing this model onto the held out part.

Target Supervised
Oracle

First Two
Sources
B = 2

All B = 3 1st Source B = 1

No TL TL No TL TL No TL TL

P1 0.69 0.54 0.59 0.41 0.41 0.33 0.57
P2 0.50 0.54 0.58 0.35 0.42 0.71 0.68
P3 0.52 0.26 0.43 0.44 0.45 0.40 0.47
P4 0.38 0.27 0.41 0.35 0.44 0.41 0.43

returned by Algorithm 4 when the F1-Score is chosen to perform the 10-IWCV (the model
hyper-parameters are not reported for the sake of brevity). We will review each one of
the aforementioned configurations of Algorithm 5 one target pipeline at a time. We will
first look at the multi-class confusion matrices, then at their binarized version (reported
in Appendix A) to check also the corrosion detection capabilities of each solution, and,
finally, at the performances in F1-Score and accuracy.

Pipeline P1

As we can see by comparing Figures 4.2a and 4.2d, applying the TL technique gives us an
improvement on the class low and the class absent recognition with a degradation effect
on the class high and medium. For what concern the solution offered by using the first
two sources (B = 2) according to IWCV (compare Figures 4.2b and 4.2e), we have an

39

Chapter 4. Corrosion Prediction in Pipeline Infrastructures Leveraging Transfer Learning

Table 4.4: F1-Score on Target. The Supervised Oracle column is obtained by training an SVM onto a
portion of the data set representing this target pipeline and then testing this model onto the held out part.

Target Supervised
Oracle

First Two
Sources
B = 2

All B = 3 1st Source B = 1

No TL TL No TL TL No TL TL

P1 0.68 0.53 0.56 0.45 0.42 0.35 0.51
P2 0.57 0.57 0.60 0.41 0.48 0.70 0.68
P3 0.54 0.28 0.45 0.48 0.44 0.43 0.47
P4 0.41 0.30 0.38 0.35 0.41 0.35 0.36

improvement on both the absent and medium-class recognition with a degradation on the
class low (the class high reduction is very slight). Using just the first ranked solution
(B = 1) w.r.t. IWCV, we obtain a model that nearly always predicts absent (see Figure
4.2f). If we take a look at the binarized version of the confusion matrices (see Figure A.1
in Appendix A), then only the solution proposed by leveraging the first two sources w.r.t.
IWCV is useful in terms of corrosion detection (compare Figures A.1a, A.1b, A.1c with
A.1d, A.1e, A.1f respectively). Finally, by looking at Tables 4.3 and 4.4, we may notice
that applying transfer almost always increases our performance w.r.t. these two figures of
merit.

Pipeline P2

If we compare Figures 4.3a and 4.3d (B = 3), we may notice an improvement on the
absent class recognition at the expense of a degradation for the classes low and medium.
For what concern Figures 4.3b and 4.3e (B = 2), we can see an improvement on the
recognition of the classes low and absent to which corresponds a slight reduction on the
medium and high classes. By comparing Figures 4.3c and 4.3f (B = 1), instead, we may
see an improvement in the medium class recognition accompanied by a worsening on the
absent class. Now, taking a look at the binarized versions of the confusion matrices (please
compare Figures A.2a, A.2b, A.2c with A.2d, A.2e, A.2f respectively in Appendix A) only
the confusion matrix associated to the usage of the best source (B = 1) according to IWCV
is meaningful. Finally, by looking at Tables 4.3 and 4.4, we see that applying transfer
improves the accuracy and the F1-Score in all the cases except when we choose the best
source (B = 1) w.r.t. IWCV. Furthermore, notice that, in some cases, the TL technique is
able to get an improvement in F1-Score or accuracy w.r.t. to what was obtained by training
a model onto a portion of the data set representing this target pipeline and then testing this
model onto the held out part (i.e., the Supervised Oracle).

40

4.3. Experiments

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.53 0.18 0.28 0.0085

Low 0.42 0.17 0.42 0

Medium 0.62 0.17 0.18 0.032

High 0.62 0.094 0.19 0.094

Predicted

(a) Confusion Matrix without transfer on
P1 using all the sources.

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.74 0.12 0.094 0.048

Low 0.64 0.22 0.083 0.056

Medium 0.67 0.17 0.13 0.032

High 0.87 0.057 0.057 0.019

Predicted

(b) Confusion Matrix without transfer on
P1 using the first two sources

according to the IWCV metric.

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.44 0.06 0.49 0.01

Low 0.69 0.11 0.19 0

Medium 0.83 0.016 0.15 0.0054

High 0.96 0 0.038 0

Predicted

(c) Confusion Matrix without transfer on
P1 using solely the best source
according to the IWCV metric.

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.56 0.39 0.053 0

Low 0.53 0.39 0.083 0

Medium 0.77 0.17 0.059 0

High 0.74 0.15 0.11 0

Predicted

(d) Confusion Matrix with transfer on P1
using all the sources.

Absent Low Medium High
G

ro
un

d
Tr

ut
h

Absent 0.77 0.002 0.23 0

Low 0.61 0 0.39 0

Medium 0.68 0 0.32 0

High 0.6 0 0.4 0

Predicted

(e) Confusion Matrix with transfer on P1
using the first two sources according

to the IWCV metric.

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.82 0.039 0.14 0

Low 0.92 0.056 0.028 0

Medium 0.94 0.032 0.032 0

High 0.92 0.057 0.019 0

Predicted

(f) Confusion Matrix with transfer on P1
using solely the best source

according to the IWCV metric.

Figure 4.2: Multi-Class Confusion Matrices on P1.

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.35 0.17 0.48 0

Low 0.48 0.16 0.36 0

Medium 0.46 0.13 0.4 0

High 0.37 0.11 0.53 0

Predicted

(a) Confusion Matrix without transfer on
P2 using all the sources.

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.65 0.0075 0.3 0.045

Low 0.69 0 0.27 0.042

Medium 0.7 0.0033 0.22 0.072

High 0.68 0 0.26 0.053

Predicted

(b) Confusion Matrix without transfer on
P2 using the first two sources

according to the IWCV metric.

Absent Low Medium High
G

ro
un

d
Tr

ut
h

Absent 0.87 0.00078 0.079 0.046

Low 0.72 0 0.17 0.1

Medium 0.67 0.0016 0.23 0.1

High 0.89 0 0.11 0

Predicted

(c) Confusion Matrix without transfer on
P2 using solely the best source
according to the IWCV metric.

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.47 0.12 0.42 0

Low 0.63 0.1 0.26 0

Medium 0.57 0.11 0.31 0

High 0.32 0.21 0.47 0

Predicted

(d) Confusion Matrix with transfer on P2
using all the sources.

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.71 0.066 0.23 0

Low 0.68 0.076 0.24 0

Medium 0.74 0.072 0.19 0

High 0.79 0 0.21 0

Predicted

(e) Confusion Matrix with transfer on P2
using the first two sources according

to the IWCV metric.

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.78 0 0.22 0

Low 0.58 0 0.42 0

Medium 0.56 0 0.44 0

High 0.63 0 0.37 0

Predicted

(f) Confusion Matrix with transfer on P2
using solely the best source

according to the IWCV metric.

Figure 4.3: Multi-Class Confusion Matrices on P2.

41

Chapter 4. Corrosion Prediction in Pipeline Infrastructures Leveraging Transfer Learning

Absent Low Medium High

G
ro

un
d

Tr
ut

h
Absent 0.49 0.24 0.26 0.01

Low 0.33 0.45 0.22 0.0049

Medium 0.25 0.49 0.23 0.023

High 0 0.33 0.67 0

Predicted

(a) Confusion Matrix without transfer on
P3 using all the sources.

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.24 0.63 0.084 0.049

Low 0.18 0.63 0.039 0.15

Medium 0.23 0.62 0.019 0.14

High 0.67 0.33 0 0

Predicted

(b) Confusion Matrix without transfer on
P3 using the first two sources

according to the IWCV metric.

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.59 0.055 0.14 0.22

Low 0.64 0.049 0.073 0.24

Medium 0.59 0.033 0.061 0.31

High 0.33 0 0 0.67

Predicted

(c) Confusion Matrix without transfer on
P3 using solely the best source
according to the IWCV metric.

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.59 0.014 0.4 0

Low 0.67 0.015 0.32 0

Medium 0.64 0.014 0.35 0

High 0.33 0 0.67 0

Predicted

(d) Confusion Matrix with transfer on P3
using all the sources.

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.53 0.069 0.4 0

Low 0.47 0.11 0.42 0

Medium 0.53 0.11 0.36 0

High 1 0 0 0

Predicted

(e) Confusion Matrix with transfer on P3
using the first two sources according

to the IWCV metric.

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.58 0 0.41 0.0038

Low 0.49 0 0.51 0

Medium 0.47 0.0047 0.53 0

High 0.33 0 0.67 0

Predicted

(f) Confusion Matrix with transfer on P3
using solely the best source

according to the IWCV metric.

Figure 4.4: Multi-Class Confusion Matrices on P3.

Pipeline P3

Comparing Figure 4.4a with 4.4d (B = 3) and Figure 4.4b with 4.4e (B = 2), we may
see as the TL technique improves the absent and medium classes recognition at the cost
of increasing misclassifications within the low class. Differently, when comparing Figure
4.4c with 4.4f (B = 1), we have the same behavior as before with also an increment on the
misclassification error for the class high. In the context of the binarized versions (please
see Figures A.3a, A.3b, A.3c compared with A.3d, A.3e, A.3f, respectively, in Appendix
A), we have that both the confusion matrices represented in Figures A.3e and A.3f are
meaningful. Also in the case of this target pipeline, we have that applying transfer almost
always improves accuracy and F1-Score (see Tables 4.3 and 4.4).

Pipeline P4

As we can see from Figure 4.5a compared with 4.5d (B = 3) and Figure 4.5b compared
with 4.5e (B = 2), applying the TL technique allows us to improve the recognition perfor-
mance both on the absent and medium classes with a degradation effect on the low class
(in Figure 4.5d a slight degradation on the high class is perceivable w.r.t. Figure 4.5a). In
the context of Figures 4.5c and 4.5f (B = 1), we have the same behavior described for
Figures 4.5a and 4.5d. Here, the only difference is that the absent class true positive rate
remains the same. For what concern the binarized version (see Figure A.4 in Appendix

42

4.4. Discussion

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.52 0.12 0.24 0.12

Low 0.47 0.15 0.28 0.1

Medium 0.46 0.27 0.22 0.04

High 0.3 0.42 0.21 0.061

Predicted

(a) Confusion Matrix without transfer on
P4 using all the sources.

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.25 0.077 0.4 0.27

Low 0.22 0.16 0.43 0.19

Medium 0.24 0.29 0.36 0.11

High 0.12 0.45 0.42 0

Predicted

(b) Confusion Matrix without transfer on
P4 using the first two sources

according to the IWCV metric.

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.75 0.049 0.14 0.057

Low 0.7 0.069 0.18 0.051

Medium 0.63 0.24 0.095 0.032

High 0.42 0.39 0.12 0.061

Predicted

(c) Confusion Matrix without transfer on
P4 using solely the best source
according to the IWCV metric.

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.55 0.0037 0.44 0.0012

Low 0.55 0.018 0.43 0

Medium 0.48 0.0035 0.52 0.0018

High 0.24 0 0.76 0

Predicted

(d) Confusion Matrix with transfer on P4
using all the sources.

Absent Low Medium High
G

ro
un

d
Tr

ut
h

Absent 0.53 0 0.47 0.0012

Low 0.55 0.011 0.44 0

Medium 0.53 0 0.47 0.0035

High 0.24 0 0.76 0

Predicted

(e) Confusion Matrix with transfer on P4
using the first two sources according

to the IWCV metric.

Absent Low Medium High

G
ro

un
d

Tr
ut

h

Absent 0.75 0.0037 0.24 0.0012

Low 0.8 0.0072 0.2 0

Medium 0.78 0.007 0.21 0

High 0.82 0 0.18 0

Predicted

(f) Confusion Matrix with transfer on P4
using solely the best source

according to the IWCV metric.

Figure 4.5: Multi-Class Confusion Matrices on P4.

A), in the context of this target pipeline, choosing the best source (B = 1) w.r.t. IWCV
does not produce a meaningful confusion matrix, whereas the other two approaches do
(please compare Figures A.4a, A.4b, A.4c with A.4d, A.4e, A.4f, respectively). Finally, as
we may see from Tables 4.3 and 4.4, the TL technique always improves the two figures of
merit surpassing or matching the performances obtained by training a model onto a por-
tion of the target pipeline and then testing it onto the held out test set (i.e., the Supervised
Oracle).

4.4 Discussion

In the previous section, we have seen how the three configurations (B = 1, 2, 3) of the pro-
posed solution behaved in terms of corrosion classification onto a target pipeline for which
the labels are not available. The lack of labels was bridged with the aid of a TL technique
described in Section 4.2.1. We have shown models’ performance along four distinct com-
ponents: the multi-class confusion matrices, their binarized version (to assess the detection
capabilities of the developed models), the accuracy, and the F1-Score. Among the three
different configurations, the one built using the first two best sources (B = 2) according
to IWCV seemed to be the most stable, especially concerning the binarized version of the
confusion matrices. This is a reasonable solution to trade off the intrinsic uncertainty in
identifying the best source pipeline with the need to limit the number of sources to be used.

43

Chapter 4. Corrosion Prediction in Pipeline Infrastructures Leveraging Transfer Learning

In the context of corrosion classification for oil and gas pipelines (the tackled applica-
tion scenario), it would be also useful to get access to the confidence with which the model
is predicting a certain label. To achieve this, for what concerns SVMs, we can capture the
probabilities for each class given a fixed sample. More precisely, multiclass probability
estimates are computed by combining all pairwise probability estimates ri,j for class i and
j. So, given all the ri,j , the estimate of p(y = i|x) is obtained by solving a linear system,
see Wu et al. [2004] for further details. The pairwise probability estimates are obtained by
logistic regression on the score of the SVM [Platt et al., 1999]. It is noteworthy to point out
that this technique to produce probabilities can be seamlessly integrated into the proposed
TL approach.

4.5 Conclusion

In this Chapter, we tackled the problem of building a predictive model for the corrosion
phenomenon in the context of a pipeline infrastructure for which the supervised informa-
tion is not available (see Section 1.1 for a summary of the original contributions of this
dissertation). To achieve this goal we used a KMM-based TL technique to leverage la-
beled data coming from a source pipeline infrastructure. Moreover, in a context where
different labeled source pipelines are available, we combined KMM, IWCV, and multi-
task learning to produce a model for the target infrastructure by selecting the appropriate
sources.

As possible future directions, we would like to mention the need to acquire time-
varying data for a set of fixed pipelines to develop models accounting for time variations
of the corrosion phenomenon both in the TL context and in the supervised learning one.
Furthermore, taking into account the pipelines’ material and chemical composition of the
blend flowing within the pipelines is another important future direction. As of right now,
the material is homogeneous among our pipelines and we do not possess data describing
the chemical composition of the blend flowing through them. However, it would be rele-
vant to extend our methodology in this direction, maybe giving more importance to those
source pipelines having similar material and chemical composition of the blend w.r.t. the
target pipeline.

44

Part II

Reinforcement Learning in
Non-Stationary Environments

45

CHAPTER5
Introduction and Related Literature

5.1 Introduction

In the previous Chapters, we have dealt with the problem of corrosion in pipeline infras-
tructures which constitutes an intrinsic non-stationary phenomenon. Unfortunately, the
time-variability of corrosion could not be taken into account due to a lack of data repre-
senting the phenomenon through time. However, this has motivated us to investigate, in
different ML sub-fields, new solutions able to weaken the stationarity assumption learn-
ing algorithms usually come equipped with. In this Part of the dissertation, we will focus
on RL tackling the second contribution of this dissertation (see Section 1.1). Indeed, RL
literature [Sutton and Barto, 2011] usually assumes the task assigned to the agent to be
stationary. This assumption is not likely to hold in real-world applications, where the sys-
tem to be controlled may be subject to different variations over time [Padakandla, 2021].
For instance, in the context of finance, applying RL under the assumption of stationary
markets would impair the performance of our agent in the long run due to seasonality or
market evolution usually intrinsic to this kind of scenario. Similarly, while controlling a
water reservoir system, the agent must be able to take into account shifts to the system’s
dynamics induced through the decades by climate change [Giuliani et al., 2016]. Finally,
also in the context of robotic systems, stationarity assumptions could impair the attainable
performances because the agent is not prepared to deal with faults affecting sensors or

47

Chapter 5. Introduction and Related Literature

actuators.
Being able to relax the stationarity assumption would both highly increase the applica-

bility of RL in real-world scenarios and allow us to build more sophisticated agents. To
this end, in Chapter 6, we will present an active-adaptive approach that is able to endow
an RL agent with the capability to detect and promptly react to non-stationarities affecting
its performance [Canonaco et al., 2020a] hence producing greater average returns w.r.t. a
standard RL algorithm whenever this kind of non-stationarity occurs. This handles non-
stationarities associated with the current task being tackled. However, while solving an
RL problem, there could be available some historical knowledge that could be leveraged
via TL in order to speed up the learning phase on the current target task. This available
historical knowledge could be produced by a non-stationary process, hence requiring to
account for an intrinsic time-variant structure when transferring it to the current task. This
last setting is never considered by the related literature. Therefore, in Chapter 7, we will
propose a TL algorithm for RL able to account for such time-variant structures intrin-
sic to the available historical knowledge [Canonaco et al., 2021d]. Accounting for this
time variance will allow our proposed solution to outperform its time-invariant counter-
part [Tirinzoni et al., 2018a] that represents a state-of-the-art algorithm from the TL for
RL literature.

In the remainder of this Chapter, we will review the related literature in the context of
non-stationary RL.

5.2 Related Literature

In recent years, a range of solutions designed to deal with non-stationarity in RL have
been proposed. An extension of the MDP model [Puterman, 2014], called Hidden Mode
Markov Decision Process (HMMDP), where non-stationarity is modeled through a Hidden
Markov Chain is proposed by Choi et al. [2000]. The HMMDP is learned through a variant
of the Baum-Welch algorithm. In such a scenario, once a model of the environment,
including the non-stationary dynamics, is learned, traditional model-based RL techniques
could be considered. Unfortunately, the number of working modes or, equivalently, the
number of changes in the environment must be known a priori. This assumption rarely
holds in the real world. In order to overcome the assumption of having a fixed and a
priori known number of environment changes, a solution based on the estimation of both
the reward function and the environment transition-function was proposed by Da Silva
et al. [2006]. The main drawback of this solution lies in the way it performs the change
detection, which is not theoretically-grounded (i.e., a heuristic is proposed) and based on
several problem-dependent parameters. The previously mentioned solution was extended
by using a CUmulative SUM (CUSUM) [Basseville et al., 1993] sequential statistical test
to perform the change detection in the environment [Hadoux et al., 2014]. Unfortunately,
this solution is meant to operate on finite MDPs. Furthermore, along the rationale of

48

5.2. Related Literature

Da Silva et al. [2006] and Hadoux et al. [2014], Alegre et al. [2021] developed a model-
based RL algorithm able to deal with continuous non-stationary environments, whereas
Padakandla et al. [2020] proposed an extension to Q-Learning [Watkins and Dayan, 1992]
that is able to detect context changes. The latter solution, in addition to being designed for
finite MDPs, it requires to know the change pattern among models in order to update the
correct Q-function when the context change is detected.

In order to deal with non-stationarity in RL, Sutton et al. [2007] proposed tracking.
This technique is based on customizing the policy to the current situation via an adaptive
learning rate. In other words, this solution can meta-learn the step-size to adequately
adapt to the scenario it is facing. This technique does not detect the environment change,
but simply mitigates the potentially catastrophic effect of non-stationarity on the algorithm
performance.

Repeated Update Q-Learning (RUQL) [Abdallah and Kaisers, 2016] is another way
to indirectly address non-stationarity in the RL task. This algorithm aims at solving the
policy-bias problem of Q-Learning [Watkins and Dayan, 1992], which severely injures
performance in a particularly noisy or non-stationary environment. A different line of re-
search has been recently pursued by Gajane et al. [2018] and Ortner et al. [2019]. These
solutions are based on a passive adaptation to the changing environment through a sliding
window. However, a fixed number of changes is assumed by Gajane et al. [2018], whereas
an upper-bound on the amount of variation the reward function (or the state-transition
function) can undergo is assumed to be known by Ortner et al. [2019]. Along this line of
research, Cheung et al. [2020] devised a sliding window approach to RL in non-stationary
MDPs together with a bandit over RL framework to remove the dependency of their al-
gorithm on the variation budget. Moreover, Gajane et al. [2018], Ortner et al. [2019], and
Cheung et al. [2020] only deal with finite-state MDPs.

Domingues et al. [2021], instead, propose an algorithm where time-dependent kernels
are leveraged in order to recover a regret upper bound for continuous non-stationary en-
vironments and Chandak et al. [2020b] propose a policy gradient algorithm which strives
to optimize the future performance of the policy assuming that smooth changes in the en-
vironment imply smooth changes in a given policy performance. Furthermore, Chandak
et al. [2020a], building on Chandak et al. [2020b], propose an RL algorithm that strives
to ensure safety, intended as an high-probability performance improvement w.r.t. an al-
ready deployed policy, in non-stationary MDPs. Additionally, Lecarpentier and Rachel-
son [2019] introduce the concept of Lipschitz Continuous Non-Stationary MDP for which
they propose a planning algorithm that aims to be robust w.r.t. the worst-case evolution of
the MDP itself.

Finally, fast-adaptation algorithms based on meta-learning [Al-Shedivat et al., 2017,
Nagabandi et al., 2018] are also able to deal with non-stationary environments. Anyhow,
these algorithms assume to have access to the distribution over the tasks to face (through
which they construct a meta-model able to nearly immediately adapt to new tasks coming

49

Chapter 5. Introduction and Related Literature

from this distribution).

50

CHAPTER6
Model-Free Non-Stationarity Detection and

Adaptation in Reinforcement Learning

In this Chapter, we present a theoretically-grounded change-detection mechanism to de-
tect non-stationarities related to performance degradation during the learning process of
any RL algorithm. This tool, called NSD-RL, is able to detect changes in both the reward
function and in the state transition function of the task the RL algorithm is learning, as long
as the non-stationarity implies a variation in the agent performance.1 More specifically,
NSD-RL is hierarchically composed of two main modules. The lower module is a statisti-
cal hypothesis test coupled with an IS [Hesterberg, 1988, Fishman, 2013] strategy, where
the IS strategy will be used to transform two independent batches of data to allow the
change detection. The upper module sequentially analyses the outcome of the low-level
module by means of a CUSUM approach to detect non-stationarities in the RL problem.
The proposed NSD-RL allows to trigger, following the active-adaptive approach intro-
duced by Ditzler et al. [2015], the reaction to the detected change and the adaptation of
the RL algorithm by resetting the first and second moments of the Adam [Kingma and Ba,
2014] optimizer. The effectiveness of the proposed NSD-RL is tested in two well-known
continuous control RL tasks under the effect of different kinds of non-stationarities.

1We are not interested in non-stationarities not affecting the agent’s performance since they are not so crucial in a real-world
scenario.

51

Chapter 6. Model-Free Non-Stationarity Detection and Adaptation in Reinforcement
Learning

Agent

Environment

r
s

a

Figure 6.1: Reinforcement Learning paradigm.

The content of this Chapter is taken from Canonaco et al. [2020a], where I am the
main researcher, and is organized as follows. In Section 6.1, we describe the preliminaries
and formulate the RL problem in non-stationary environments. In Section 6.2, we intro-
duce the policy selection to support non-stationarity detection, while Section 6.3 details
the optimization of the Renyi divergence for policy selection. The change-detection and
adaptation mechanism for RL is introduced in Section 6.4. Experimental results are given
in Section 6.5 and conclusions are drawn in Section 6.6.

6.1 Preliminaries and Problem Formulation

In this section we initially introduce the RL framework needed in the context of this Chap-
ter; we then provide the theoretical background of the IS technique and we conclude by
providing a formulation of the problem of RL in non-stationary environments.

6.1.1 Reinforcement Learning Background

In a generic RL setting [Sutton and Barto, 1998], we have an agent that interacts with the
environment (see Figure 6.1). The agent, while being in a certain state of the environment,
executes an action, receives a certain reward associated with that action, and observes the
next state of the environment. This setting can be modeled via a discrete-time continuous
MDP M = {S,A,P ,R, γ, p0} [Puterman, 2014], where S and A represent the state
space and the action space, respectively, either continuous or discrete. P represents the
Markovian transition function, where P(s′|s, a) is the transition density from state s to
state s′ given that the action a is executed. r = R(s, a) ∈ [−R,R] represents the expected
reward for the pair (s, a). γ ∈ [0, 1) and p0 are the discount factor and the initial state
distribution, respectively. The agent’s behavior is modeled through a policy π, where
π(·|s) describes a probability density function over the action space A given the state
being currently visited.

52

6.1. Preliminaries and Problem Formulation

We are considering episodic MDPs with effective horizon H , hence a trajectory τ can
be a finite sequence of states and actions (s0, a0, s1, a1, . . . , sH−1, aH−1), where s0 ∼ p0.
Following a given policy, we can sample a trajectory from the environment. We denote
by p(τ |π) the density distribution induced by policy π on the set T of all the possible
trajectories defined as:

p(τ |π) = p0(s0)π(a0|s0)
H∏
t=1

P(st|st−1, at−1)π(at|st).

R(τ) =
∑H−1

t=0 γtR(st, at) is the total discounted reward associated with trajectory τ .
All policies can be ranked based on their expected total discounted reward: J(π) =
Eτ∼p(·|π) [R(τ)]. Solving an RL task modeled through an MDP M means finding π∗ ∈
arg maxπ{J(π)}.

The most interesting application of NSD-RL refers to the continual learning setting. In
this setting, Policy Gradient (PG) [Sutton et al., 2000] techniques offer general and flexible
solutions to RL problems and, for this reason, we will rely on this family of algorithms to
present the proposed solution.

Policy gradient methods focus on searching for the best-performing policy over a set
of parametrized policies Πθ = {πθ : θ ∈ Rd}, with πθ differentiable w.r.t. θ. For brevity,
the performance of a parametric policy will be denoted by J(θ) or equivalently by Jθ.
Furthermore, the probability of a trajectory τ will be denoted by p(τ |θ) or equivalently
by pθ(τ) (on some occasions, pθ(τ) will be replaced by pθ omitting the dependence on τ
for the sake of readability). Gradient ascent is used to find a locally optimal policy. The
policy gradient is defined as [Sutton et al., 2000, Peters and Schaal, 2008]:

∇J(θ) = E
τ∼p(·|θ)

[∇ log pθ(τ)R(τ)] . (6.1)

At each iteration i > 0, a batch DNi = {τj}Nj=0 of N > 0 trajectories is collected using
policy πθi . The policy is then updated as θi+1 = θi + α∇̂NJ(θi), where α is a step size
and ∇̂NJ(θ) is an estimate of Eq. (6.1) on DNi , i.e.,

∇̂NJ(θ) =
1

N

N∑
j=1

g(τj|θ), τj ∈ DNi , (6.2)

where g(τj|θ) is an estimate of∇ log pθ(τj)R(τj). Depending on how we define the policy
gradient estimator, we obtain different RL algorithms.

6.1.2 Importance Sampling

The idea behind the proposed NSD-RL is to evaluate the performance of a fixed policy
using a pair of estimators fed with data coming from two different iterations of the RL

53

Chapter 6. Model-Free Non-Stationarity Detection and Adaptation in Reinforcement
Learning

algorithm. Therefore, we need a mechanism to take into account the fact that the data
were sampled with different policies.

Let us assume that we want to find Ex∼P [f(x)] =
∫
D f(x)p(x)dx where p is a proba-

bility density function on D ⊆ Rd with p(x) = 0, ∀x /∈ D, then:∫
D
f(x)p(x)dx =

∫
D

f(x)p(x)

q(x)
q(x)dx = Ex∼Q

[
f(x)p(x)

q(x)

]
, (6.3)

where q is a positive probability density function on Rd such that supp(q) ⊃ supp(p)
and Ex∼Q [·] denotes expectation for x ∼ Q. The IS technique introduces a multiplicative
correction coefficient that compensates the fact that we are sampling from Q instead of
sampling directly from P .

Importance sampling allows off-policy evaluation in RL [Thomas et al., 2015, Thomas
and Brunskill, 2016]. In the off-policy evaluation settings, two policies, called behavioral
πB and target πT , are involved. In this context, we aim at estimating the performance of
the target policy πT on samples collected using the policy πB. We use IS to correct the
fact that we sampled the trajectories using πB and obtain an unbiased estimate of J(πT):

J(πT) = E
τ∼p(·|πT)

[R(τ)] = E
τ∼p(·|πB)

[
ωT/B(τ)R(τ)

]
, (6.4)

where ωT/B(τ) = p(τ |πT)
p(τ |πB)

=
∏H

t=0 ωT/B(st, at) and ωT/B(st, at) = πT (at|st)
πB(at|st) . In the con-

text of our NSD-RL, we will use the per-decision version of the above IS estimator that
exploits the fact that a given reward should not be weighted according to the future of that
trajectory, but only w.r.t. the likelihood of the trajectory up to that point [Precup et al.,
2000].

6.1.3 Non-Stationarity in Reinforcement Learning: Problem Formulation

We can model non-stationarity in any RL task through a change in the Markovian state
transition function P or in the reward function R. In the most general scenario, P and
R may be both affected by non-stationarity (possibly at the same time). Therefore, there
exists an iteration i∗ of the RL algorithm after which the trajectories sampled from the
environment will be, partially or totally, associated to a new task. All the trajectories
in i∗ are associated with the new task if the transition to this new task takes place at
the beginning of the sampling procedure performed at step i∗ of the RL algorithm itself,
otherwise, just a subset of them will be associated to the new task. Since NSD-RL is not
influenced by the latter situation we have just described, we will formulate non-stationarity
in RL by assuming that the change in either P or R (or both) occurs at the beginning of
the sampling process of a given optimization step of the algorithm. In other words, we
can formalize non-stationarity in RL tasks as follows: for any i < i∗ we have M1 =

54

6.2. Policy Selection to support Non-Stationarity Detection

{S,A,P1,R1, γ, p0}, whereas for i ≥ i∗ we have M2 = {S,A,P2,R2, γ, p0}, where
P1 6= P2 ∨R1 6= R2. We are assuming that p0 is not affected by the non-stationarity.

The goal of the proposed NSD-RL is to promptly detect changes inM without intro-
ducing false positive or negative detections. Such a change-detection represents also a
crucial information to support the next adaptation and learning phase of the RL algorithm.

6.2 Policy Selection to support Non-Stationarity Detection

As mentioned in Section 6.1.3, if the task we are trying to solve is non-stationary, then
it may happen that, between steps i and i − 1, P or R (or both) may change. The first
question we have to address is how to detect a change that can occur at any time during the
execution of our RL algorithm? Answering this question is crucial to support an effective
reaction and adaptation of the policy in a non-stationary environment. In order to reach our
goal, we first need to be able to detect a change between two arbitrary fixed steps of the RL
algorithm. Therefore, given data collected through policy πθi at step i and data collected
through policy πθi−k at step i− k, we need to testH0: there is no change inM between i
and i − k against H1: there is a change inM between i and i − k. Before resorting to a
statistical test, we need to spot the figure of merit on which to apply the test. This figure of
merit is meant to operate on two independent data sets available in the two different steps
of the RL algorithm. Therefore, by using the IS technique described in Section 6.1.2, we
can write:

J̄(πµ) = E
τ∼p(·|πµ)

[
R̄(τ)

]
= E
τ∼p(·|πθi)

[
ωpµ/pθi (τ)R̄(τ)

]
(6.5)

J̄(πµ) =E
τ∼p(·|πµ)

[
R̄(τ)

]
=E

τ∼p(·|πθi−k)

[
ωpµ/pθi−k (τ)R̄(τ)

]
, (6.6)

where R̄(τ) =
∑H−1

t=0 R(st, at) is the expected total undiscounted reward. If there are no
changes inM between iteration i and i− k, the two expected values are equal, otherwise
they are different.2 Since we cannot exactly compute the expected values in Eq. (6.5)
and (6.6), we resort to the associated estimators:

ˆ̄Jµ/θ =
1

N

N∑
j=0

ωµ/θ(τj)R̄(τj), (6.7)

where N is the number of trajectories sampled using πθ. Then, our goal is to properly
choose the policy πµ in order to have an effective hypothesis test able to detect changes in
M between iteration i and i− k. From Metelli et al. [2018] we know that:

Var
[

ˆ̄Jµ/θ

]
≤ 1

N
||R||2∞d2(pµ||pθ), (6.8)

2Notice that if the transition between the tasks happens in the middle of the sampling procedure at step i, the two expected values
will still be different.

55

Chapter 6. Model-Free Non-Stationarity Detection and Adaptation in Reinforcement
Learning

Table 6.1: Estimated type I error of the bootstrap test [Efron and Tibshirani, 1993, chap. 16] under H0

w.r.t. different choices of πµ. The two sampling policies, πθi−k and πθi , are N (10,13) and N (-1,4),
respectively. First row is associated with policy πµ chosen optimizing Equation (6.9).

πµ Mean Type I error Std. Dev. Obj. Fun. (6.9)

N (-0.3487, 4.846) 0.0462 0.0206 3.95
N (4, 4.5) 0.0578 0.0206 9.21
N (8, 2) 0.109 0.0315 31.96
N (8, 5) 0.1687 0.0333 128237.5

where d2(pµ||pθ) is the exponetiated Renyi divergence [Rényi, 1961] of the distribution
induced by policy πµ from the distribution induced by policy πθ. Therefore, choosing the
policy πµ such that:

π∗µ ∈ arg min
πµ

d2(pµ||pθi) + d2(pµ||pθi−k) (6.9)

will allow us to minimize the upper bound on the variance of the estimators of Eq. (6.5)
and (6.6), hence increasing the power of our hypothesis test.

The optimization task in Eq. (6.9) aims at picking a policy πµ such that we do not have
unbounded weights when using IS, which means that the estimators of Eq. (6.5) and (6.6)
converge smoothly in the number of samples. Note that having unboundend weights might
induce the estimators of Eq. (6.5) and (6.6) to abruptly change as we increase the number
of samples [Robert and Casella, 2013, chap. 3]. In this case, we cannot rely on the smooth
convergence properties of the estimators. In other words, we will likely end up with an
estimate very far from the real value, which in turn severely affects the ability of the
hypothesis test to keep the type I error under control (see Table 6.1). We should also
observe that if the two sampling policies, πθi and πθi−k , are very far from each other (in
terms of Renyi divergence) there will be no policy πµ able to induce good behavior in the
IS procedure (an example of this behavior is experimentally given in Table 6.2). Observe
that, in order to produce both Table 6.1 and 6.2, we have used the "Guess a Number"

task. This is a single state task where the reward function is R(a) = 1
σ
√

2π
e−

(a−µ)2
2σ for a

fixed µ and σ which define the task. The agent will get higher rewards executing actions
which are as close as possible to µ. Therefore, the optimal policy consists in always
playing a = µ. As an example, in the context of the above described experiments, we

have R(a) = 1
10
√

2π
e−

(a+4)2

20 . This setting, while being rather simple, already confirms the
complexity of selecting an evaluation policy without side effects on the type I error.

We emphasize that the estimators for Eq. (6.5) and (6.6) share the expected value but
they are characterized by different and unknown probability distributions. In fact, we do
not have any a priori information about the family of probability distributions the estima-
tors for Eq. (6.5) and (6.6) belong to, e.g., we cannot assume they are Gaussians. Hence, in

56

6.3. Renyi Divergence Optimization

Table 6.2: Estimated type I error of the bootstrap test [Efron and Tibshirani, 1993, chap. 16] under H0

increasing the distance of policy πθi−k from πθi which instead remains fixed to N (-1,4). The mean
policy πµ is always chosen optimizing Equation (6.9).

πθi Mean Type I error Std. Dev. Obj. Fun. (6.9)

N (1, 13) 0.0478 0.0231 3.12
N (10, 13) 0.0462 0.0206 3.95
N (35, 13) 0.0334 0.017 47.23
N (50, 13) 0.0087 0.009 586.86
N (100, 13) 0 0 7931313070349.74

order to support our analysis, we need a statistical hypothesis test able to detect variations
in the expected value without making any assumption about the underlying probability
distributions. We emphasize that not satisfying the assumptions of the statistical hypoth-
esis test would induce critical issues in controlling the type I error. In our specific case,
such a problem would severely affect the sequential analysis characterizing NSD-RL that
will be described in Section 6.4. For these reasons, we resort to a bootstrap hypothesis
test proposed by Efron and Tibshirani [1993, chap. 16] which, being a test for detecting
variations in the mean of two arbitrary distributions, perfectly fits into the context we are
working with. Hence, in the scenario of RL in non-stationary environments, we define the
hypothesis test as a function

Te(DNµ/θi ,DNµ/θi−k , α) =

{
+1, if we rejectH0

−1, otherwise
(6.10)

where DNµ/θi and DNµ/θi−k are the data sets sampled at iterations i and i − k, respectively,
after applying IS, and H0 represents the null hypothesis, i.e., the two expected values are
equal. If the output of this function is +1, then a change is detected between iterations i
and i − k of the RL algorithm given a confidence level α otherwise no change occurred.
We would like to stress the fact that NSD-RL is able to detect only changes affecting the
performance of the agent, here represented by the expected total undiscounted reward.
However, changes not affecting the performance are less relevant to be detected in a real-
world scenario.

6.3 Renyi Divergence Optimization

In the previous section, we defined an objective function aiming at selecting the policy πµ
to be used in the hypothesis test defined in Eq. (6.10). In this section, we propose a way to
optimize such an objective function. Notice that computing the Renyi divergence between
two distributions over trajectories is, of course, intractable also given the transition density

57

Chapter 6. Model-Free Non-Stationarity Detection and Adaptation in Reinforcement
Learning

of the task we are currently solving. For this reason the following estimator was introduced
in Metelli et al. [2018]:

d̂2(pµ||pθ) =
1

N

N∑
j=1

H−1∏
t=0

d2(πµ(·|sτj ,t)||πθ(·|sτj ,t)). (6.11)

If we plug Eq. (6.11) into the optimization problem stated in Eq. (6.9) we get:

π∗µ ∈ arg min
πµ

d̂2(pµ||pθi) + d̂2(pµ||pθi−k) =

= arg min
πµ

1

N

N∑
j=1

(
H−1∏
t=0

d2(πµ(·|sτj ,t)||πθi−k(·|sτj ,t))+

H−1∏
t=0

d2(πµ(·|sτj ,t)||πθi−k(·|sτj ,t))
)
. (6.12)

Now we can solve a separate optimization problem for each trajectory since we have in-
dependent variables for each sτj ,t:

arg min
πµ

(
H−1∏
t=0

d2(πµ(·|sτ,t)||πθi−k(·|sτ,t))+

H−1∏
t=0

d2(πµ(·|sτ,t)||πθi−k(·|sτ,t))
)
, ∀τ ∈ DNi ∪ DNi−k. (6.13)

We reformulated the problem in the following way to allow independent optimization over
all the states sτ,t:

arg min
πµ

(
d2(πµ(·|sτ,t)||πθi−k(·|sτ,t)) + d2(πµ(·|sτ,t)||πθi−k(·|sτ,t))

)
,

∀τ ∈ DNi ∪ DNi−k∀t = 0 · · ·H − 1. (6.14)

We emphasize that in RL with PG we have two popular choices for the set of smoothly
parametrized policies Πθ: Gibbs policies and Gaussian policies. The first one is generally
used when we have a finite number of actions executable on the environment by the agent,
while the second one is employed whenever the set of executable actions is infinite. Since
we are dealing with finite-horizon MDPs, each trajectory τ , sampled from the environ-
ment, will have a maximum number H of visited states. For what concern Gaussian (or
Gibbs) policies, we have a parametrized Gaussian (or Gibbs) distribution for which the

58

6.3. Renyi Divergence Optimization

Renyi divergence can be computed analytically in each state. Since we have a per-state
analytical form of the Renyi divergence, we will find the πµ only for those states stored
in DNi and DNi−k. It is worth noting that we do not have the parametrized Gaussians (or
Gibbs) generated by policy πθi−k in the context of the states in DNi and the same holds
for πθi in the states in DNi−k. However, the missing parametrizations can be computed
straightforwardly without any interactions with the environment. Notice that πµ is only
used for non-stationarity detection, and not to perform actions on the environment. In
Section 6.3.1, we will focus on Gaussian policies, whereas, in Section 6.3.2, we provide
an optimal solution to the problem described in Eq. (6.14) in the context of Gibbs policies.

6.3.1 Optimization for Gaussian Policies

Once we fix a state s, we have an analytical expression for the two terms of the objective
function in Eq. (6.14) [Burbea, 1984]:

d2(N (µ,Σ)||N (µθi ,Σθi)) =
|Σθi |√
|Σ||Σ∗θi|

e
(µ−µθi)

TΣ∗−1
θi

(µ−µθi)

d2(N (µ,Σ)||N (µθi−k ,Σθi−k)) =
|Σθi−k |√
|Σ||Σ∗θi−k |

e
(µ−µθi−k)TΣ∗−1

θi−k
(µ−µθi−k)

,

where | · | denotes the determinant of a matrix, Σ∗θi = 2Σθi − Σ and Σ∗θi−k = 2Σθi−k − Σ
assuming that both Σ∗θi and Σ∗θi−k are positive-definite. In order to match this assumption,
we restrict the optimization procedure over all the possible solutions having a diagonal Σ.
In this way, we only need to satisfy the constraints on the diagonal elements of Σ:

σjj < min(
√

2σjjθi ,
√

2σjjθi−k) ∧ σ
jj > 0 ∀j = 1 . . . dim(A), (6.15)

where dim(A) denotes the action space dimension.3 Now we can resort to any optimiza-
tion procedure present in the literature provided that it supports bounds on the objective
function domain.

6.3.2 Optimization for Gibbs Policies

Following the rationale of the previous section, we will show how to optimize the Renyi
divergence with Gibbs policies on a per state basis. Given a state s, we have a parametrized
categorical distribution assigning a certain probability to each action available in s. There-
fore, denoting with Pθi = (pθi,1, . . . , pθi,n) and Pθi−k = (pθi−k,1, . . . , pθi−k,n) the categori-
cal distributions parametrized by θi and θi−k, respectively, in state s we can write Equation
(6.14) as follows:

3Notice that in a mono-dimensional action space the restricted optimization problem is equivalent to the not restricted one.

59

Chapter 6. Model-Free Non-Stationarity Detection and Adaptation in Reinforcement
Learning

arg min
Pµ

n∑
h=0

p2
µ,h

pθi,h
+

n∑
h=0

p2
µ,h

pθi−k,h
(6.16)

subject to :
n∑
h=0

pµ,h = 1, (6.17)

pµ,h ≥ 0 ∀ h. (6.18)

If we do not take into account the constraint (6.18), we have a relaxed problem which
can be solved by using Lagrangian multipliers:

L =
n∑
h=0

p2
µ,h

pθi,h
+

n∑
h=0

p2
µ,h

pθi−k,h
+ λ

(
n∑
h=0

pµ,h − 1

)
, (6.19)

taking derivatives we have:

∂L

∂pµ,h
= 2

(
1

pθi,h
+

1

pθi−k,h

)
pµ,h + λ = 0 ∀ h (6.20)

∂L

∂λ
=

n∑
h=0

pµ,h − 1 = 0, (6.21)

and now solving:

pµ,h =
1(

pθi,h+pθi−k,h

pθi,hpθi−k,h

)
C

(6.22)

λ = − 2

C
, (6.23)

where

C =
n∑
h=0

pθi,hpθi−k,h

pθi,h + pθi−k,h
. (6.24)

Since the objective function in Eq. (6.16)) is convex and the solution we have just found
also satisfies the constraint in Eq. (6.18), then the solution we found is also optimal and
unique for the non-relaxed problem.

60

6.4. Change-Detection and Adaptation Mechanism for Reinforcement Learning

6.4 Change-Detection and Adaptation Mechanism for Reinforcement Learn-
ing

The hypothesis test aiming at detecting a non-stationarity between step i and i− k defined
in Eq. (6.10) is here extended to operate sequentially by introducing a sequential change-
detection mechanism based on the well-known and theoretically-grounded CUSUM [Bas-
seville et al., 1993, Roveri, 2019]. More specifically, the proposed CUSUM-based NSD-
RL mechanism operates as follows. Let ī be the reference iteration initially set to a point
where the agent has reached convergence. ī represents the iteration at which we activate
the NSD-RL change detection mechanism. The sequential analysis of M is performed
over windows of length 2k (being k ∈ N+) and relies on the computation of a figure of
meritmi able to take into account the outcome of the hypothesis test Te(DNµ/θi ,DNµ/θi−k , α)
applied sequentially to detect a non-stationarity, i.e.,

mi = max
(

0,mi−1 + Te(DNµ/θi ,DNµ/θi−k , α)
)
, (6.25)

with i = ī+ k, . . . , ī+ 2k − 1 and being mī+k−1 = 0. This allows us to take into account
the first window ranging from ī to ī+2k−1. Once we have analysied the first window, the
algorithm switches to the next window and mi−1 withhold the last value of the figure of
merit on the previous window. Notice that this window-based approach allows us to keep
independent all the different tests we perform in the sequential analysis.

A change is detected at the i-th iteration when,

mi ≥ K, (6.26)

being K ∈ N+ a change-detection threshold, which is set at design time. The choice
of K is crucial to trade-off false positive detections (i.e., detections of changes before
i∗) and false negative detections (i.e., changes are not detected by the change-detection
mechanism). In our analysis, such a choice is supported by the theoretical analysis of the
mean time to a false positive detection, i.e., the Average Run Length (ARL0), provided in
Roveri [2019] stating that

ARL0(α) = u(I − Pα)−11 (6.27)

where I is the (K + 1) × (K + 1) identity matrix, Pα is the (K + 1) × (K + 1) matrix
defined as follows

Pα =

 1− α α 0 . . . 0
1− α 0 α . . . 0

...
...

...
0 0 0 . . . 0

 ,
1 is the (K + 1)-dimensional vector of ones, and u is the (K + 1)-dimensional vector
defined as u = [1, 0, . . . , 0], being α the confidence level of the hypothesis test stated
in Eq. (6.10). In our scenario ARL0(α) refers to the mean number of executions of the

61

Chapter 6. Model-Free Non-Stationarity Detection and Adaptation in Reinforcement
Learning

hypothesis test before the NSD-RL raises a false positive detection. Setting the expected
ARL0 (that is application-specific) allows to identify the corresponding value of the thresh-
old K.

The proposed NSD-RL change-detection mechanism operating on a generic PG algo-
rithm is shown in Algorithm 6. More specifically, Lines 4 and 21 refer to the PG imple-
mentation. Lines 5 - 20 implement the computation of the figure of merit mi as described
above. More precisely, in Line 6 we store the data in order to perform the hypothesis tests,
in Line 9 we compute πµ solving the optimization problem stated in Eq. (6.14), in Line
10 the hypothesis test Te(DNµ/θi ,DNµ/θi−k , α) is evaluated and mi is computed as described
in Eq. (6.25), in Line 12 we move to the next window and in Line 13 we reset the buffer.
Finally, in Line 15, the value of mi is tested w.r.t. K to detect a change. Once the change
has been detected, in Line 17 we reset all the configurations for the next change-detection
phase and in Line 18 we react to the change to compensate as fast as possible the loss in
performance. In the context of this work, we adopted a straightforward adaptation tech-
nique that consists in resetting the Adam [Kingma and Ba, 2014] optimizer by erasing
its history related to the first and second moments, allowing it to forget what it currently
knows about the behavior of the gradients in the previous task, which in turn implies a
greater reactivity of the optimizer in the new task.

6.5 Experiments

In this section, we evaluate the improvement in performance of NSD-RL over G(PO)MDP
[Baxter and Bartlett, 2001], which is a traditional non-adaptive RL algorithm. More pre-
cisely, G(PO)MDP is a refinement of REINFORCE [Williams, 1992] exploiting the fact
that the current reward does not depend on future actions. In other words the gradient
estimator of G(PO)MDP performs a proper credit assignment, which may imply a vari-
ance reduction on the gradient estimate itself. G(PO)MDP is coupled with the average
discounted reward baseline to further reduce the gradient estimator variance. In order to
make a fair comparison the learning algorithm used in PG-NSD-RL is also G(PO)MDP.
Both PG-NSD-RL and G(PO)MDP use Adam [Kingma and Ba, 2014] as optimizer en-
dowing them with an adaptive learning rate. The considered RL tasks are Pendulum-v0
[Brockman et al., 2016] and Mountain Car [Duan et al., 2016] that are widely used RL
tasks in the related literature. Pendulum-v0 consists of a classical pendulum swing-up
problem. The goal of the agent is to keep the pendulum in an upright position via the ap-
plication of forces to the pendulum. The observation space is a 3-dimensional vector com-
posed of cosϕ, sinϕ, and the pole velocity ϕ̇. The monodimensional action is the force
applied to the pendulum by the agent. The reward R(s, a) = −(ϕ2 + 0.1ϕ̇2 + 0.001a2).
Mountain Car, instead, consists in escaping a valley via the application of limited tangetial
forces. Due to this limitation, the car has to alternately drive up along the two slopes of the
valley in order to gain sufficient momentum to overcome gravity. The observation space is

62

6.5. Experiments

Algorithm 6 PG-NSD-RL

1: Input: change-detection threshold K, confidence level α, step size η, policy initialization θ0, batch size
N, number of epochs I , reference epoch ī, distance between epochs k

2: B = {φ}
3: for i = 0 to I − 1 do
4: sample N trajectories DN

i = {τj}Nj=1 from p(·|θi)
5: if i >= ī and i < ī+ k then
6: B = B ∪ (DNi , θi)
7: end if
8: if (i >= ī+ k) then
9: compute πµ according to Eq. (6.14) and apply IS on both DNi and DNi−k

10: mi = max
(

0,mi−1 + Te(DNµ/θi ,D
N
µ/θi−k

, α)
)

, see Eq. (6.25)

11: if i− ī == 2k − 1 then
12: ī+ = 2k
13: B = {φ}
14: end if
15: if mi > K then
16: Change detected
17: Reset configuration for the next detection
18: Resetting Adam
19: end if
20: end if
21: θi = θi + η∇̂NJ(θ)
22: end for
23: return πθ∗

made of a 2-dimensional vector composed of the horizontal position, x, and the horizontal
velocity, ẋ, of the car. The reward function isR(s, a) = −1 +height, where height is the
car’s vertical offset. The G(PO)MDP parametrization is shown in Table 6.3. Notice that
this configuration is shared by the baseline (i.e., vanilla G(PO)MDP) and by our proposed
algorithm (PG-NSD-RL). Moreover, while our algorithm is at regime, Adam’s learning
rate is fixed to 10−5 in order to prevent the policies from different iteration to be too far
from each others, whereas, when our algorithm detects a change, Adam is reset to the
initial conditions stated in Table 6.3.

The experiments have been organized as follows. Each run comprises at most I = 500
learning iterations for Pendulum-v0 and I = 300 for Mountain Car. The learning process
begins at iteration i = 0. The algorithm NSD-RL is activated at iteration ī. A change in
the state transition function P is introduced at iteration i∗ = ī + 50. Let î be the iteration
at which NSD-RL detects a change, we define a false positive detection when î < i∗

and a false negative detection when î > I − 1. A correct detection is considered when
i∗ ≤ î ≤ I − 1 and, in this case, we compute the detection delay as î− i∗.

Let s = [cosϕ, sinϕ, ϕ̇] be the vector representing the state in the pendulum-v0 task, to

63

Chapter 6. Model-Free Non-Stationarity Detection and Adaptation in Reinforcement
Learning

G(PO)MDP PG-NSD-RL

0 100 200 300 400 500

−1,200

−1,000

−800

−600

−400

−200

Iterations

A
ve

ra
ge

R
et

ur
n

(a) PG-NSD-RL vs G(PO)MDP on
Pendulum-v0 with c = 20 and e = 0.2.

0 100 200 300 400 500

−1,200

−1,000

−800

−600

−400

−200

Iterations

A
ve

ra
ge

R
et

ur
n

(b) PG-NSD-RL vs G(PO)MDP on
Pendulum-v0 with c = 10 and e = 0.2.

0 100 200 300 400 500

−1,200

−1,000

−800

−600

−400

−200

Iterations

A
ve

ra
ge

R
et

ur
n

(c) PG-NSD-RL vs G(PO)MDP on
Pendulum-v0 with c = 30 and e = 0.15.

0 100 200 300 400 500

−1,200

−1,000

−800

−600

−400

−200

Iterations

A
ve

ra
ge

R
et

ur
n

(d) PG-NSD-RL vs G(PO)MDP on
Pendulum-v0 with c = 20 and e = 0.2.

0 60 120 180 240 300

−450

−375

−300

−225

−150

−75

0

Iterations

A
ve

ra
ge

R
et

ur
n

(e) PG-NSD-RL vs G(PO)MDP on Mountain
Car with c = 15 and e = 0.09.

Figure 6.2: Comparison of on-line performance over the iterations of the optimization algorithm, with 90%
t-student confidence intervals. The first vertical line (dashed) highlight the injection point, whereas the
second vertical line (dotted-dashed) highlight the end of the transient part of the anomaly.

model non-stationarity we have considered an additive clamped-ramp perturbation affect-

64

6.5. Experiments

Table 6.3: G(PO)MDP experimental configuration.

Parameter Pendulum-v0 Mountain Car

Neural Network hidden weights (32,32) (32,32)
Neural Network activation function tanh tanh
Batch size N 100 100
Task horizon 200 500
Discount factor γ 0.99 0.99
Adam β1 0.9 0.9
Adam β2 0.999 0.999
Adam α 0.005 0.005

ing ϕ̇ after i∗ defined as follows:

s =

{
[cosϕ, sinϕ, ϕ̇] if i < i∗

[cosϕ, sinϕ, ϕ̇+ ν] otherwise ,
(6.28)

where

ν =

{
e(i− i∗), if i− i∗ <= c

e · c otherwise,
(6.29)

being e the speed of the anomaly and c the duration of its transient component. In
particular, we considered three different configurations of ν, i.e., (e = 0.2, c = 20),
(e = 0.2, c = 10) and (e = 0.15, c = 30). Moreover, we have considered two differ-
ent onset points of the anomaly i∗ = 200 and i∗ = 300. In the context of Mountain Car,
the perturbation is still an additive clamped-ramp similarly to what defined above, but it
affects ẋ. For this task we have considered one configuration of ν, i.e., (e = 0.09, c = 15).
Furthermore, for this experiment the onset point of the anomaly is i∗ = 100. The param-
eter K of NSD-RL has been set to 3, while α = 0.05 and k = 10 in all the experiments.
For all the configurations, we considered 50 runs with different seeds and average results
are shown in Figure 6.2.

Two main comments arise. In Figures 6.2a, 6.2c, 6.2d and 6.2e, we can see how PG-
NSD-RL shows a better behavior in terms of average undiscounted return after i∗. This is
due to a prompt detection combined with the adaptation guaranteeing a higher plasticity
of PG-NSD-RL. Interestingly, in Figure 6.2b we show that PG-NSD-RL and G(PO)MDP
have similar performances. This is due to the the fact that the anomaly does not induce
a relevant change on the environment. Furthermore, in Figures 6.2a and 6.2d, we can see
how changing the onset point of the anomaly has a huge impact on performance. Indeed,
in the first case the neural network parametrizing the policy reaches a worse configuration
of the weights w.r.t. the second case due to a greater number of regime updates, which in
some sense could be thought as overfitting the environmental noise in the task.

65

Chapter 6. Model-Free Non-Stationarity Detection and Adaptation in Reinforcement
Learning

Table 6.4: NSD-RL performance in terms of False Positive Rate (FPR), False Negative Rate (FNR) and
Detection Delay (DD) in different scenarios.

ν i∗ Task FPR FNR DD DD std.

e = 0.2, c = 20 300 Pendulum-v0 0 0 4.26 0.955
e = 0.15, c = 30 300 Pendulum-v0 0 0 4.76 1.141
e = 0.2, c = 20 200 Pendulum-v0 0 0 3.74 0.743
e = 0.09, c = 15 100 Mountain Car 0 0 4.66 0.839

In Table 6.4, we show some indicators assessing the quality of the detection phase
of the proposed change detection algorithm. As we can see, FPRs are equal for all the
configurations. This is reasonable since false positive detections do not depend on the type
of change. Moreover, we can see how the detection delay increases from (e = 0.2, c =
20, i∗ = 300) to (e = 0.15, c = 30, i∗ = 300). This is due to the fact that e is smaller in
the second configuaration (i.e., e = 0.15, c = 30) inducing a more gradual drift which is,
of course, more subtle to be detected. Notice that in Table 6.4 we have not reported the
results relative to the configuration (e = 0.2, c = 10, i∗ = 300) since they are equivalent
to those of (e = 0.2, c = 20, i∗ = 300). This is reasonable since we have only decreased
the duration of the transient part and the maximum detection delay in the configuration
(e = 0.2, c = 20, i∗ = 300) is 7. Finally, as expected, the two configurations, (e =
0.2, c = 20, i∗ = 200) and (e = 0.2, c = 20, i∗ = 300), have very similar average and
standard deviation for the detection delay. In the last row of Table 6.4 we show how our
NSD-RL algorithm is able to properly detect non-stationarities in another task.

6.6 Conclusions

The aim of this Chapter was to introduce a change-detection mechanism to detect changes
in a RL problem and integrate it into a RL algorithm to deal with non-stationary tasks. The
proposed change-detection mechanism relies on the joint use of a statistical hypothesis test
(aiming at comparing the expected value of the reward at two different iterations) and a
CUSUM-based sequential mechanism to detect changes in the MDP. Whereas the adapta-
tion phase relies on resetting the history associated to the moments of the Adam optimizer
in order to increase the plasticity of the algorithm. The proposed solution is theoretically-
grounded and has been successfully tested in two well-known RL tasks showing perfor-
mance improvements over G(PO)MDP.

Potential future directions for this work may encompass the design of a transfer learn-
ing algorithm to be included into the adaptation phase of the current proposed solution,
and, also, extending the detection mechanism with a diagnostic part able to identify and
characterize the type, temporal evolution, and magnitude of the change (representing valu-
able information that could be leveraged by the adaptation phase).

66

CHAPTER7
Time-Variant Variational Transfer for Value

Functions

In addition to the stationarity assumption, RL algorithms require a huge amount of expe-
rience to achieve effective results [Vinyals et al., 2019, Silver et al., 2018, OpenAI et al.,
2019], hence, in most cases, it is impractical to directly apply an RL algorithm onto a real
system because the experience collection would be incredibly slow. This translates into
the need for sample efficient RL algorithms, which could be built, among all other alter-
natives, through TL [Taylor and Stone, 2009, Lazaric, 2012]. In a nutshell, TL enables an
RL algorithm to reuse knowledge coming from a set of already solved tasks in order to
speed up the learning phase on related new ones.

Depending on what kind of knowledge representation is being transferred, we have
different TL algorithms in the related literature.1 Therefore, in order to perform the trans-
fer, we may have algorithms leveraging policies or options [Fernández and Veloso, 2006,
Konidaris and Barto, 2007], samples [Taylor et al., 2008, Lazaric et al., 2008, Tirinzoni
et al., 2018b, 2019], features [Barreto et al., 2017, Lehnert and Littman, 2018], value-
functions [Taylor et al., 2007, Tirinzoni et al., 2018a] or parameters [Killian et al., 2017,
Nagabandi et al., 2018, Du and Narasimhan, 2019]. In the classical TL setting, the source

1Observe that the TL literature discussed in this Chapter differs from that one reviewed in Section 4.1 because of the differences
we have between RL and SL.

67

Chapter 7. Time-Variant Variational Transfer for Value Functions

and target tasks usually come from the same distribution, hence the Bayesian framework
particularly fits because we can iteratively refine the prior knowledge coming from the
source tasks as more evidence from the target is collected. Following this rationale, in Wil-
son et al. [2007], under the assumption that the tasks share similarities in their MDP
representation, a hierarchical Bayesian solution is proposed, whose main drawback lies
in the need to solve an auxiliary MDP in order to perform actions on the task currently
faced. Another methodology, along this line of research, has been developed in Lazaric
and Ghavamzadeh [2010], which still leverages hierarchical Bayesian models, but this
time assuming the tasks share commonalities through their value functions. Furthermore,
in Doshi-Velez and Konidaris [2016], a Bayesian framework able to adapt optimal policies
to variations of the task dynamics is developed. They use a latent variable, which, together
with the state-action couple, entirely describes the system dynamics. The uncertainty over
the latent variable is modeled independently of the uncertainty over the state. This limi-
tation is overcome in the extension to their framework proposed in Killian et al. [2017].
In Perez et al. [2020] another extension to Doshi-Velez and Konidaris [2016] is proposed,
which accounts for multiple variation factors that potentially also come from the reward
function. A more general and efficient approach is instead developed in Tirinzoni et al.
[2018a], which iteratively refines the distribution over optimal value functions by means
of a variational procedure as more experience from the target task is collected.

Leveraging the available historical knowledge when it exposes an intrinsic time-variant
structure is never considered in the related TL literature and it is the objective of this
Chapter. Therefore, inspired by the work of Tirinzoni et al. [2018a], we will present a
TL algorithm for RL able to model time variations in the distribution inherent to the task
generating process. In addition, we will provide a theoretical comparison between our so-
lution and the time-invariant approach of Tirinzoni et al. [2018a] promising a performance
improvement in our favor. Finally, we will provide an experimental comparison of the two
approaches in three different RL environments with three distinct temporal dynamics and
in a real-world scenario represented by a water reservoir system.

All the work herein presented is taken from Canonaco et al. [2021d], where I am the
main researcher.

7.1 Preliminaries

In this section, we extend the setting introduced in Tirinzoni et al. [2018a] by adding a
time-variant distribution over the tasks. We introduce basic RL concepts and some notation
in Section 7.1.1, and we describe the variational approach to transfer in Section 7.1.2.

68

7.1. Preliminaries

7.1.1 Reinforcement Learning Background

Let us consider a time-variant distribution Dt over tasks. We model each taskMt com-
ing from Dt as a discounted MDP [Puterman, 2014], which is defined as a tuple Mt =
{S,A,Pt,Rt, p0, γ}, where S and A represent the state space and the action space, re-
spectively, Pt is the Markovian transition function with Pt(s′|s, a) being the transition
density from state s to state s′ given that the action a is executed on the environment.
The reward function is defined as Rt : S × A → R, assumed to be uniformly bounded
by a constant Rmax > 0. Finally, p0 and γ ∈ [0, 1) are the initial state distribution and
the discount factor, respectively. Therefore, for each task t our goal is to find a deter-
ministic policy, πt : S → A, maximizing the long-term return over a possibly infi-
nite horizon. In other words, this means being able to get π∗t ∈ arg maxπ Jt(π), where
Jt(π) = EMt,π[

∑∞
h=0 γ

hRt(sh, ah)]. The optimal policy π∗t is a greedy policy w.r.t. the
optimal value function, i.e., π∗t (s) = arg maxaQ

∗
t (s, a) for all s, where Q∗t (s, a) is defined

as the expected return obtained by taking action a in state s and then following the optimal
policy afterward. From now on, for the sake of readability, we will drop t whenever this
does not imply ambiguity.

In this context, we focus on a set of parametrized value functions, Q = {Qθ : S ×
A → R|θ ∈ Rp}, also called Q-functions. We assume that each Qθ ∈ Q is uniformly
bounded by Rmax

1−γ . An optimal Q-function is also the fixed point of the optimal Bell-
man operator [Puterman, 2014], which is defined as follows: TQθ(s, a) = R(s, a) +
γEs′∼P [maxa′ Qθ(s

′, a′)]. Therefore, a measure of optimality for a value function dur-
ing learning is its Bellman error, defined as Bθ = TQθ − Qθ. Of course, if Bθ(s, a) =
0 ∀(s, a) ∈ S × A, then Qθ is optimal, which implies that minimizing the squared Bell-
man error, ||Bθ||2ν , is a good objective for learning (where ν is the distribution over S ×A,
assumed to exist). In practice, the Bellman error is not used, since it requires two inde-
pendent samples of the next state s′ for each couple (s, a) [Maillard et al., 2010, Sutton
and Barto, 2011]. For this reason, usually, the Bellman error is replaced by the Tem-
poral Difference (TD) error b(θ), which corresponds to an approximation of the former
using one sample 〈sh, ah, rh, sh+1〉, so bh(θ) = rh + γmaxa′ Qθ(sh+1, a

′) − Qθ(sh, ah).
Therefore, given a set D = 〈sh, ah, rh, sh+1〉Nh=1, the squared TD error on D is ||Bθ||2D =
1
N

∑N
h=1 bh(θ)

2 (with a little abuse of notation w.r.t. the definition of the Bellman error).

7.1.2 Variational Transfer of Value Functions

In the context described above, an optimal solution to an RL problem is a greedy policy
w.r.t. an optimal value function that is parameterized by a vector of weights θ. Therefore,
we can safely consider a distribution over optimal weights p(θ) instead of the distribution
D over tasks since the latter induces a distribution over optimal Q-functions [Tirinzoni
et al., 2018a]. Now, given a prior on the weights p(θ) and a data setD = 〈sh, ah, rh, sh+1〉Nh=1,

69

Chapter 7. Time-Variant Variational Transfer for Value Functions

the optimal Gibbs posterior that minimizes an oracle upper bound on the expected loss is
defined as [Catoni, 2007]:

q(θ) =
e−Ψ||Bθ||2Dp(θ)∫
e−Ψ||Bθ′ ||2Dp(θ′)dθ′

, (7.1)

where Ψ > 0, which will be set to ψ−1N , for some constant ψ > 0 as in Tirinzoni et al.
[2018a]. It is worth noting that q becomes a Bayesian posterior every time e−Ψ||Bθ||2D can be
interpreted as the likelihood of D. Since the integral at the denominator of Equation (7.1)
is intractable, a variational approximation through a parametrized family of posteriors qξ,
such that ξ ∈ Ξ, is proposed. In this way, it is sufficient to find ξ∗ such that qξ∗ minimizes
the Kullback-Leibler (KL) divergence [Kullback and Leibler, 1951] w.r.t. the Gibbs poste-
rior q, which is equivalent to minimizing the (negative) Evidence Lower BOund (ELBO)
defined as [Blei et al., 2017]:

min
ξ∈Ξ
L(ξ) = min

ξ∈Ξ

{
Eθ∼qξ

[
||Bθ||2D

]
+
ψ

N
DKL(qξ(θ)||p(θ))

}
. (7.2)

Therefore, the idea behind the variational transfer of value functions (as shown in Algo-
rithm 7) is to alternate a sampling from the posterior on the optimal value function with the
optimization of the posterior via∇ξL(ξ), assuming to have already solved a finite number
of source tasksM1 . . .Mn, which, in turn, implies having the set of their approximate so-
lutions Θs = {θ1, . . . , θn}.2 The weight resampling in line 8 can be interpreted as a guess
on the task that we need to solve based on the current belief. After sampling, the algorithm
acts on the RL problem as if such guess was correct (line 9) and then will adjust the belief
based on the new experience through the optimization of the variational parameters ξ (lines
12 and 13). Notice that, as long as∇ξL(ξ) can be efficiently computed, any approximator
for the Q-functions and any prior/posterior distributions can be used. To this end, since
the max operator in the temporal difference error of Equation (7.2) is not differentiable,
the mellowmax is used instead, which is differentiable and was proven to converge to the
same fixed point of the optimal Bellman operator in Tirinzoni et al. [2018a]. From now
on, we will denote the mellow Bellman error by B̃θ.

7.2 Time-Variant Kernel Density Estimation for Variational Transfer

In the context of this work, we will model the evolution of time over a discrete grid of
asymptotically dense time instants. Let {θij}Mi

j=1 be a set of independent solutions for the
ith family of tasks, observed at time ti = i

n
, 1 ≤ i ≤ n, with θij ∈ Rp and θij ∼ P (·, ti).

Notice that, for the sake of generality, at time ti, we allow to tackle Mi times the ith

2Notice that, in the context of this work,M1 . . .Mn are samples coming from a time-variant distribution, hence independent but
not identically distributed.

70

7.2. Time-Variant Kernel Density Estimation for Variational Transfer

Algorithm 7 Variational Transfer

1: Input: Target taskMt, source weights Θs

2: Estimate prior p(θ) from Θs

3: Initialize parameters: ξ ← arg minξ∈ΞDKL(qξ||p)
4: Initialize data set D = ∅
5: while True do
6: Sample initial state s0 ∼ p0

7: while sh is not terminal do
8: Sample weights θ ∼ qξ(θ)
9: Take action ah = arg maxaQθ(sh, a)

10: sh+1 ∼ Pt(·|sh, ah), rh+1 = Rt(sh, ah)
11: D ← D ∪ 〈sh, ah, rh+1, sh+1〉
12: Estimate∇ξL(ξ) using D′ ⊆ D
13: Update ξ with∇ξL(ξ) using any optimizer (e.g., Kingma and Ba [2014])
14: end while
15: end while

family of tasks represented by the distribution P (·, ti) with associated probability density
function p(θ, ti). Furthemore, let Mi be a discrete random variable for each i. Finally, let
us introduce a Time-Variant Kernel Density Estimator defined as follows:

p̂(θ, t) =
1

a0(−ρ)N̄λ|H| 12

n∑
i=1

KT

(
t− ti
λ

) Mi∑
j=1

KS(H−
1
2 (θ − θij)), (7.3)

which is based on Hall et al. [2006] and will be used as a prior to model a time-variant
distribution on the solved tasks. The factor a0(−ρ) =

∫ 1

−ρKT (t)dt is used to recover
consistency at the boundaries [Jones, 1993], therefore also in t = 1, which represents
the time instant that will be used in Algorithm 7 to produce a prior for the current family
of tasks. KT is the temporal kernel, whereas KS is the multivariate non-negative spatial
kernel. Furthermore, H is the spatial kernel bandwidth matrix, λ ∈ [0, 1] is the temporal
kernel bandwidth, and N̄ =

∑n
i=1Mi.

Given the following assumptions, also stated in Hall et al. [2006]:

Assumption 7.2.1 (Task independence). For 1 ≤ i 6= i′ ≤ n,1 ≤ j ≤ Mi, and 1 ≤ j′ ≤
Mi′ , θij and θi′j′ are independent;

Assumption 7.2.2 (Differentiable density function). p(θ, t) : Rp × (0, 1] → R is twice
differentiable for every t, θ;

Assumption 7.2.3 (Bounded derivatives). p(θ, t) : Rp × (0, 1] → R has two bounded
derivatives;

71

Chapter 7. Time-Variant Variational Transfer for Value Functions

Assumption 7.2.4 (On the spatial kernel). Let α = (α1, . . . , αp) be a multi-index, with
αi ≥ 0 for i = 1, . . . , p, θα =

∏p
i=1 θ

αi
i for each θ ∈ Rp, and N0 is an index set where all

p components of each member are either 0 or even integers.∫
Rp
KS(θ)dθ = 1, lim

||θ||→∞
||θ||pKS(θ) = 0,∫

Rp
θαKS(θ)dθ = µα ≤ ∞, α ∈ N0,∫

Rp
θαKS(θ)dθ = 0, α /∈ N0;

Assumption 7.2.5 (On the temporal kernel).∫ c

−c
KT (t)dt = 1,

∫ c

−c
tKT (t)dt = 0,∫ c

−c
t2KT (t)dt = σT ≤ ∞;

the following theorem holds:

Theorem 7.2.6 (Uniform consistency of the density estimator). Assume 7.2.1 - 7.2.5.
Moreover, assume that KS is spherically symmetric, with a bounded, Hölder-continuous
derivative, that KT is a compactly supported kernel on a subset of R, that all the Mis
are independent and identically distributed random variables with mean m > 0 and all
moments finite, independent of the θijs. Take H and λ such that |H| 12 (n) → 0, λ(n) → 0

and n1−ε|H| 12λ→∞ for some ε > 0 as n→∞, then

p̂(θ, t) = p(θ, t) +O
[
(N̄ |H| 12λ)−

1
2 (log n)

1
2 + tr(H) + λ

]
uniformly in (θ, t) ∈ K × I, with probability 1, where K is a compact subset of Rp and I
is a compact subset of (0, 1].

A proof of the above theorem is shown in Appendix B.1 and leverages the same ap-
proach as in Hall et al. [2006] being a weaker version, in terms of convergence rate, of
their Theorem 1. This weakening was necessary to obtain an upper bound in closed-form
expression of the KL-divergence between the prior and the posterior in Equation (7.2).
3 Indeed, if we choose qξ(θ) = 1

K

∑K
k=1N (θ|µk,Σk), with variational parameter ξ =

(µ1, . . . , µK ,Σ1, . . . ,ΣK), and we choose KS as a Gaussian kernel, then for a fixed time
instant t our prior is a mixture of Gaussians with non-uniform weights. Therefore, through

3This upper bound cannot be obtained by directly using the estimator proposed in Hall et al. [2006] because of the negative weights
associated with the spatial kernel.

72

7.3. Finite-Sample Analysis

the upper bound on the KL-divergence shown in Appendix B.2 which leverages Hershey
and Olsen [2007], we have that the ELBO upper bounds the KL-divergence between the
approximate and the exact posterior. Since the covariance matrices of the posterior must be
positive definite, we will learn the factor L of their Cholesky decomposition as in Tirinzoni
et al. [2018a].

Let us comment on the previous assumptions and their limiting effects on applications.
For what concerns Assumptions 7.2.4 and 7.2.5, they do not pose any limit, since, as we
know from kernel density estimation theory [Wand and Jones, 1994], the kernel type is
not relevant for a good estimate of the density. Assumptions 7.2.2 and 7.2.3, instead,
are necessary to have some regularity allowing the time-variant distribution to be learned
(without those assumptions the kernel density estimator would not be consistent). The
range of time-variant distributions where our approach will be theoretically effective is
reduced due to Assumptions 7.2.2 and 7.2.3, but remains still relevant from an application
perspective since it allows to solve real problems such as controlling the lake Como water
system as shown in Section 7.5.6.

7.3 Finite-Sample Analysis

In order to provide a finite sample analysis of Algorithm 7 based on the prior of Sec-
tion 7.2, we extend Theorem 2 of Tirinzoni et al. [2018a] to deal with time-variant con-
texts, enabling also a theoretical comparison between the two respective versions of Al-
gorithm 7. Therefore, considering the family of linearly parametrized value functions,
Qθ(s, a) = θTφ(s, a), having bounded weights ||θ||2 ≤ θmax and uniformly bounded fea-
tures ||φ(s, a)||2 ≤ φmax, and assuming that only finite data are available, we can bound
the expected mellow Bellman error under the variational distribution minimizing Equa-
tion (7.2) for any fixed target taskMt through the following theorem.

Theorem 7.3.1 (Bound on the expected mellow Bellman error). Let ξ̂ be the variational
parameter minimizing Equation (7.2) on a data set D of N i.i.d. samples distributed ac-
cording toMt and ν. Moreover, let θ∗ = arg infθ ||B̃θ||2ν and define v(θ∗) = EN (θ∗, 1

N
I)[v(θ)],

with v(θ) = Eν [VarPt [b̃(θ)]], where b̃(θ) = r + γmellow-maxa′Qθ(s
′, a′) − Qθ(s, a).

Then, there exist constants c1, c2, c3 such that with probability at least 1 − δ over the
choice of D:

Eqξ̂

[∣∣∣∣∣∣B̃θ

∣∣∣∣∣∣2
ν

]
≤ 2

∣∣∣∣∣∣B̃θ∗

∣∣∣∣∣∣2
ν

+ v(θ∗) + c1

√
log 2

δ

N
+

c2 + ψp logN + ψϕ(Θs)

N
+

c3

N2
,

where

ϕ(Θs) =
1

σ2

∑
j:θj∈Θs

ζ(j) with (7.4)

73

Chapter 7. Time-Variant Variational Transfer for Value Functions

ζ(j) =
cp̂je
−β||θ∗−θj ||∑

j′:θj′∈Θs
cp̂j′e

−β||θ∗−θj′ ||
||θ∗ − θj||,

assuming the matrix H of Equation (7.3) to be an isotropic covariance matrix with vari-
ance σ2, β = 1

2σ2 and cp̂j the weight assigned to the jth prior component. Furthermore, we
are assuming Mi = 1 for each i in our estimator.

The above theorem shows the difference between the plain mixture version of Algo-
rithm 7 [Tirinzoni et al., 2018a] and our solution which lies in the constant c2 and in the
term ϕ(Θs). Looking at ϕ(Θs), we can shed some light on the different theoretical prop-
erties of the two versions. More specifically, in the plain mixture version, the factor cp̂j
does not appear, which implies uniform importance of the source solutions Θs w.r.t. the
target task. On the other hand, in our version of the algorithm, we can give different im-
portance to each source solution through cp̂j . Increasing the weight of sources similar to
the target will reduce ϕ(Θs) implying a faster convergence to the optimal solution. In our
time-variant scenario, this weight will be greater on more recent solutions than older ones,
potentially enabling a reduction of the term ϕ(Θs) w.r.t. the time-invariant version (shown
experimentally in Section 7.5). For what concern c2, the main difference is due to a differ-
ent expression of the KL-divergence upper bound, and the usage of non-uniform weights.
A proof for the above theorem together with the definition of all the constants is provided
in Appendix B.3.

7.4 Related Works

The work presented in this Chapter is inspired by Tirinzoni et al. [2018a]. Differently
from them, we leverage a time-variant structure underlying the task generating process,
which lets us cope with time-variant scenarios. A theoretical comparison between the
two solutions is available in Section 7.3 through Theorem 7.3.1, whereas the experimental
comparison is in Section 7.5. Furthermore, our work relates both to Wilson et al. [2007],
which deals with finite MDPs, and to Lazaric and Ghavamzadeh [2010], which leverages
the commonalities in the value function structure, but, in contrast to our work, they do
not account for a time-variant distribution. The work done in Doshi-Velez and Konidaris
[2016], Killian et al. [2017], Perez et al. [2020] leverage latent embeddings in order to
model variations between tasks, which eventually are solved through a model-based RL
algorithm, while we propose a model-free approach.

Another related work is Hall and Willett [2015], in which the authors develop a theo-
retical low-regret algorithm accounting for potential underlying dynamics. However, they
use the online learning framework, whereas we are working in a transfer learning setting.
Furthermore, in Du and Narasimhan [2019], videos are used to learn a prior (mainly to
model the physical dynamics) which is incorporated into a model-based RL algorithm.

74

7.5. Experiments

In Yang et al. [2020], a single-episode policy-transfer methodology was developed lever-
aging variational inference, but for contexts in which the differences in dynamics can be
identified in the early steps of an episode. In the context of supervised learning, our work
relates also to Minku and Yao [2014], which proposes a transfer learning mechanism in the
context of a possibly non-stationary environment through a weighting approach, and Du
et al. [2019], which, instead, do transfer in non-stationary environments through ensem-
bles. Finally, in the meta-learning framework, Khodak et al. [2019] is able to consider
optimal initializations varying through time, Mendonca et al. [2020] provide robustness
to distributional shifts during meta-testing through an experience relabeling mechanism,
and Fu et al. [2020] develop a Context-based Meta-RL algorithm which leverages con-
trastive learning and an information-gain-based exploration strategy showing good perfor-
mances in out-of-distribution tasks. These last three approaches are meta-learning based,
while the approach proposed in this Chapter considers a transfer learning setting.

7.5 Experiments

In this section, we compare our time-variant solution for transfer learning with the associ-
ated non-time-variant solution of Tirinzoni et al. [2018a] in three different domains with
three different temporal dynamics and a real-world scenario.4 The first three domains were
chosen from Tirinzoni et al. [2018a] (adding the temporal dynamics) in order to enable a
faithful comparison. The real-world problem consists in controlling a water reservoir sys-
tem, where the temporal dynamic is due to the climate change across the decades. A
detailed description of the used parameters together with the analytical expression of the
employed temporal dynamics are provided in Appendix B.4.

Start

Goal

Figure 7.1: 2-Rooms Environment.

7.5.1 Temporal Dynamics

The distribution over the tasks is usually a given distribution over one or more parameters
defining the task itself. Therefore, in order to obtain time variance in such distribution,

4Code at https://github.com/AndreaSoprani/T2VT-RL.

75

https://github.com/AndreaSoprani/T2VT-RL

Chapter 7. Time-Variant Variational Transfer for Value Functions

1-T2VT 1-MGVT 3-T2VT 3-MGVT

0.5 1 1.5 2 2.5

·103

0

0.2

0.4

0.6

0.8

Iterations

A
ve

ra
ge

R
et

ur
n

(a) Polynomial dynamic.

0.5 1 1.5 2 2.5

·103

0

0.2

0.4

0.6

0.8

Iterations

A
ve

ra
ge

R
et

ur
n

(b) Linear dynamic.

0.5 1 1.5 2 2.5

·103

0

0.2

0.4

0.6

0.8

Iterations

A
ve

ra
ge

R
et

ur
n

(c) sin dynamic.

Figure 7.2: Average return achived by the algorithms with 95% confidence intervals computed using 50
independent runs in the 2-rooms environment.

we will change its mean over time according to a certain dynamic. These dynamics are
linear, polynomial, and sinusoidal. In the context of these experiments, we will use a
time-variant Gaussian distribution, clipping its realizations within the domain of the task-
defining parameters (for further details see Appendix B.4). Instead, in the water reservoir
system, the temporal dynamic is inherent to the data and, as already mentioned, due to
climate change.

7.5.2 Two-Rooms Environment

In this setting, we have an agent navigating two rooms separated by a wall (see Figure
7.1). The agent starts from the bottom-left corner and must reach the opposite one. The
only way to reach this goal is to pass through the door whose position is unknown to the
agent. The actions available to the agent are up, down, left, and right, which let the agent
to move in the respective directions by one position, unless he/she hits a wall (in this last
case the position remains unchanged). Furthermore, the final position of the agent after
a movement action is altered by a Gaussian noise N (0, 0.2). The state space is modeled
through a 10 × 10 continuous grid. Finally, the reward function is 0 everywhere except
in the goal state, where it is 1. The discount factor γ = 0.99. For this setting, we used
linearly parametrized Q-functions with 121 evenly-spaced radial basis features.

We considered source tasks taken at ten different time instants to learn the target, cor-
responding to the eleventh instant of time. We sampled five tasks from the time-variant
distribution for each i = 1, . . . , 11. The parameter that defines the task is the door loca-
tion, hence the time-variant distribution is over that parameter, as we mentioned above.
We solve all the source tasks by directly minimizing the TD error, then we exploit the
learned solutions to perform the transfer over the target. We compare our time-variant
variational transfer algorithm leveraging a c-components posterior (c-T2VT) with the mix-
ture of Gaussian variational transfer using still c-components (c-MGVT) [Tirinzoni et al.,

76

7.5. Experiments

1-T2VT 1-MGVT 3-T2VT 3-MGVT

3 6 9 12

·103

0

0.2

0.4

0.6

Iterations

A
ve

ra
ge

R
et

ur
n

(a) Polynomial dynamic.

3 6 9 12

·103

0.1

0.3

0.5

0.7

Iterations

A
ve

ra
ge

R
et

ur
n

(b) Linear dynamic.

3 6 9 12

·103

0

0.2

0.4

0.6

0.8

Iterations

A
ve

ra
ge

R
et

ur
n

(c) sin dynamic.

Figure 7.3: Average return achived by the algorithms with 95% confidence intervals computed using 50
independent runs in the 3-rooms environment.

2018a]. More specifically, our time-variant prior will consider the source task solutions as
equally spaced samples in the time interval [0, 1], moreover, in order to perform transfer to
the eleventh task, we will use the distribution provided by our estimator for t = 1. Finally,
the temporal kernel will be Epanechnikov [Epanechnikov, 1969, Wand and Jones, 1994]
in the context of all the experiments.

The average return over the last 50 learning episodes as a function of the number
of training iterations is shown in Figure 7.2, for the time dynamics mentioned in Sec-
tion 7.5.1. Each learning curve is computed using 50 independent runs, each of which
resamples both the source and target tasks, with 95% confidence intervals. For polynomial
and linear dynamics, we can see an advantage of our technique in the early learning iter-
ations. The sinusoidal dynamic is designed to disadvantage our technique w.r.t. c-MGVT,
indeed, it makes the target task appear twice in the sources. This fact inevitably favors c-
MGVT, which will give a higher weight to those source tasks being sampled from the same
distribution of the target. Observe that c-MGVT gives uniform weights to all the source
tasks, hence increasing the replicas importance within the sources, whereas c-T2VT gives
increasing weights the more recent the source solution.

7.5.3 Three-Rooms Environment

This scenario is an extension of the previous one, hence the environmental settings remain
the same, the agent has just an additional wall to traverse in order to reach his/her goal. Of
course, the position of the door for this additional wall is still unknown to the agent. To
increase the complexity of the dynamics, we let the two doors move in opposite directions
starting at the two far ends of the room, each door with the same dynamic. In Figure 7.3,
we compare c-T2VT with c-MGVT using still 95% confidence intervals. As for the poly-
nomial dynamics, we observe a better performance of c-T2VT w.r.t. c-MGVT, whereas,
for the sinusoidal dynamics, we have essentially the same behavior as in the two rooms en-

77

Chapter 7. Time-Variant Variational Transfer for Value Functions

1-T2VT 1-MGVT 3-T2VT 3-MGVT

20 40 60

·103

−75

−70

−65

−60

−55

−50

−45

Iterations

A
ve

ra
ge

R
et

ur
n

(a) Polynomial dynamic.

2 4 6

·104

−80

−70

−60

−50

−40

Iterations

A
ve

ra
ge

R
et

ur
n

(b) Linear dynamic.

20 40 60

·103

−85

−80

−75

−70

−65

−60

Iterations

A
ve

ra
ge

R
et

ur
n

(c) sin dynamic.

Figure 7.4: Average return achived by the algorithms with 95% confidence intervals computed using 50
independent runs in the Mountain Car environment.

vironment. Finally, in the linear dynamics, we observe that the difference in performance
between the two algorithms is not statistically significant.

7.5.4 Mountain Car

In this section, we consider a classic control problem known as Mountain Car [Sutton and
Barto, 2011]. In Mountain Car, the agent is an underpowered car whose goal is to escape
a valley. Due to the limitation to its engine, the car has to drive up along the two slopes
of the valley in order to gain sufficient momentum to overcome gravity (further details in
Appendix B.4.4). In Figure 7.4, we have a comparison between c-T2VT and c-MGVT
on the three proposed dynamics. We observe a statistically significant improvement in the
polynomial dynamics across the whole learning process for c-T2VT, which also extends to
the sinusoidal dynamic case. We would like to highlight the differences between the sinu-
soidal dynamic in Mountain Car w.r.t. the previous two environments. Here our algorithm
is able to perform better due to a bias-variance trade-off in its favor. More specifically, the
value functions vary more rapidly in Mountain Car than in the room environments w.r.t. a
change in the task-defining parameters. Therefore, our prior estimator has less variance,
since it considers only the latest sources, at the cost of a bias increase, because it discards
the first task, which has the same parametrization as the target (due to the periodicity of
the sin function). c-MGVT considers all the source tasks with the same weight, hence it
is able to consider the tasks that have an equivalent parametrization to the target, but are
farther behind in the sources’ history. This fact decreases the bias at the cost of accept-
ing a greater variance in the prior estimation. In Mountain Car, the trade-off proposed by
our algorithm is more advantageous than the one proposed by c-MGVT due to the more
rapidly changing behavior of the value functions. As for the linear dynamics, we do not
observe a statistically significant difference in performance between the two algorithms,
even though the average of 1-T2VT is the best one.

78

7.5. Experiments

7.5.5 Choosing λ through Maximum-Likelihood

Up to now, we have kept λ and H at given constant values in order to provide a more
faithful comparison between c-T2VT and c-MGVT (H was the same in the two algorithms
whereas λ was set to 0.3333 leveraging the intuition that the more recent tasks were more
important than the older ones). Of course, from the theory of Kernel Density Estimation
[Wand and Jones, 1994], we know that appropriately setting these parameters is crucial to
get a good estimate of the density. Therefore, an automatic data-driven approach would
be desirable. In the context of this work, we propose a maximum likelihood scheme
(assuming Mi = 1 ∀ i):

arg max
λ

Lλ =
n∏
h=1

p̂−h(θh, th)

p̂−h(th)
, where (7.5)

p̂−h(θh, th) =
1

a0(−ρ)(N̄ − 1)λ|H| 12
∑
i 6=h

KT

(
th − ti
λ

)
KS(H−

1
2 (θh − θi))

p̂−h(th) =

∫
p̂−h(θh, th)dθh =

1

a0(−ρ)(N̄ − 1)λ

∑
i 6=h

KT

(
th − ti
λ

)
.

In Appendix B.4.3, we report the performance achievable with this approach together
with a sensitivity analysis w.r.t. the parameter λ for every environment discussed so far.
Furthermore, still in Appendix B.4.3, we include some implementation details related to
the optimization of the likelihood function in Equation (7.5). Note that, in accordance with
what has been done in Tirinzoni et al. [2018a], the spatial bandwidth is set to 10−5I which
would prevent us from successfully optimizing Equation (7.5) due to numerical issues,
hence we set it to I in order to select the best lambda.

7.5.6 Real-World Scenario: Controlling the Lake Como Water System

Lake Como is the third largest lake in Italy thanks to its surface area of 146 km2 and the
fifth deepest in Europe with its maximum depth at 425 meters. It is a lake of glacial origin
which has been regulated since 1946 by a human operator to prevent flooding along the
lake shores and supply water to the downstream users, which are composed of 4 irrigation
districts (total irrigated area of 1400 km2) and 9 run-of-river power plants (total capacity
of 92 MW).

To design the optimal lake operation, we can leverage RL to find an optimal control
policy π∗ for the water reservoir system of lake Como [Castelletti et al., 2010]. For this
setting, the state space includes the day of the year and lake storage volume. The first
is encoded as sine and cosine functions of 2π t

period
, where t is the day and period is the

year’s length, which enables accounting for the time-dependency and cyclostationarity of
the system, and, consequently, of the operating policy. The second one is governed by the

79

Chapter 7. Time-Variant Variational Transfer for Value Functions

3-T2VT 3-MGVT

5 10

·103

−50

−40

−30

−20

−10

Iterations
A

ve
ra

ge
R

et
ur

n

Figure 7.5: Average return achived by the algorithms with 95% confidence intervals computed using 100
independent runs on the lake Como environment.

mass conservation equation vt+1 = vt + it+1 − %t+1, where it+1 is the net inflow volume
in the time interval [t, t + 1) and %t+1 = ft(vt, at, it+1) is the actual release accomplished
by the system. The release function ft(·) accounts for physical and normative constraints
on the storage and release [Soncini-Sessa et al., 2007]. Observe that, the actual release de-
pends on the previous storage volume, the policy’s decision (corresponding to the amount
of water the agent would like the system to release), and the inflow it+1, which is influ-
encing the system throughout the whole time period [t, t + 1). The reward function is
composed of three main costs related to water demand, flooding events, and actions fea-
sibility. It is noteworthy to point out the fact that, being the net inflow volume composed
of historical data, this setting constitutes an environment incredibly close to the real-world
system. Further details are in Appendix B.4.4.

In order to successfully apply RL onto the lake Como water system, we need to care-
fully take into account the time-variant nature of the net inflow volume, which has changed
much since the mid 40s due to the climate change our planet is currently undergoing [Giu-
liani et al., 2016]. Furthermore, if we were to leverage an RL algorithm to control the water
reservoir system, TL would be a must to reduce the amount of data needed to reach an op-
timal behavior and to mitigate the usage of sub-optimal policies onto the system. Since we
do not have another time-variant transfer algorithm for RL in the literature, we will again
compare T2VT with MGVT to analyze the benefit of accounting for time variance.

Historical data span from 1946 to 2006 and will be split into 12 years chunks, each one
representing a task. Hence, the sources will consist of the tasks [1946, 1957], [1958, 1969],
[1970, 1981], [1982, 1993], whereas the target is represented by the task [1994, 2006]. Re-
sults are reported in Figure 7.5, where we compare 3-T2VT coupled with the maximum-
likelihood approach of Section 7.5.5 against 3-MGVT. As we can see, there is a ben-
eficial effect on the optimization process by accounting for time-variance in the source

80

7.6. Discussion and Conclusions

solutions. Indeed, our algorithm performs better than 3-MGVT especially in the early
iterations where the performance difference is statistically significant.

7.6 Discussion and Conclusions

In this Chapter, we presented a time-variant approach for transferring value functions
through a variational scheme, which, together with the work presented in Chapter 6, con-
cludes the presentation of our second contribution (see Section 1.1).

In order to deal with a time-variant distribution of the tasks, we have devised a suitable
estimator for the prior to be used in the variational scheme providing its uniform consis-
tency over a compact subset of Rp×(0, 1]. We have, then, provided a finite sample analysis
on the performance of the variational transfer algorithm based on our estimator, enabling a
theoretical comparison with the time-invariant version of Tirinzoni et al. [2018a]. Finally,
we have experimentally proved our algorithm abilities to deal with time-variant distribu-
tions even in a real-world scenario represented by the lake Como water system.

Notice that discriminating the source tasks w.r.t. time is an additional step that brings
transfer learning approaches and learning in non-stationary environments a bit closer to-
gether [Minku, 2019]. It is also important to highlight the fact that, instead of considering
time, we could switch to any other variable (e.g., the task-defining parameter) as long as
it is available together with each source solution and we can properly remap it into (0, 1].
This could enable us to leverage completely different structures in order to perform trans-
fer to the target task. Finally, we would also like to highlight the possibility of using this
time-variant transfer paradigm in lifelong learning scenarios [Chen and Liu, 2018] as a
potential future direction.

81

Part III

Non-Stationary Federated Learning and
Pervasive Systems

83

CHAPTER8
Introduction

In the previous Part of this dissertation, we have weakened the stationarity assumption
in some contexts of RL. Specifically, in Chapter 6, we have dealt with non-stationarities
associated with the current task the RL agent is trying to solve, and, in Chapter 7, we
considered a TL setting with a non-stationary distribution underlying the task generating
process. Now, as mentioned in Section 1.1, we will try to relax the stationarity assumption
in the context of FL, which is a promising research area in the ML field. Techniques and
solutions belonging to this area operate in distributed scenarios, comprising a server and
pervasively distributed clients, aiming at learning a single central model without sending
(possibly sensitive) data from the clients to the server. Such a framework allows mit-
igating the privacy concerns that are nowadays perceived as relevant in distributed ML
solutions leveraging data belonging to different users or companies. In the FL field many
state-of-the-art solutions are available. Unfortunately, all these solutions assume (implic-
itly or explicitly) that the data generating process is stationary (hence not changing its
statistical behavior over time); an assumption that rarely holds in real-world conditions
where concept drifts occur due to, e.g., seasonality or periodicity effects, faults in sensors
or actuators, or changes in the users’ behavior. Therefore, in Chapter 9, we will present
an FL algorithm, called Adaptive-FedAVG, able to operate with data generating processes
affected by concept drifts. Following a passive approach, Adaptive-FedAVG, which we in-

85

Chapter 8. Introduction

troduced in Canonaco et al. [2021a], is able to promptly react to concept drifts by adapting
the learning rate in order to increase the plasticity of the learning phase itself. This allows
our proposed solution to compensate the loss in performance induced by the concept drift
resulting in faster-to-converge learning curves.

However, when dealing with pervasive systems, in addition to privacy constraints and
non-stationarity, it may happen that we need to deal with computational or memory con-
straints on the edge devices. This last characteristic, being very stringent, must be taken
into account while designing ML-based solutions for such contexts and it is the objective
of Chapter 10, where we tackle a very specific application in the pervasive systems’ world:
that one of birdsong detection.

Understanding the distribution of bird species and populations and learning how birds
behave and communicate are of great importance in wildlife biology, animal ecology, con-
servation of ecosystems, and assessing the effects of climate change and urbanization. The
temporal and spatial limitations of human observation have motivated significant efforts
to develop technology for bird song and vocalization detection and classification. While
solutions based on signal processing and machine learning are extant, they are limited in
various combinations of speed, computational complexity, and memory use, as well as in
detection/classification capability in real-world conditions. Therefore, in Chapter 10, we
introduce ToucaNet, a deep neural network for birdsong detection based on TL: this en-
ables us to speed up training and shows improved detection accuracy. ToucaNet provides
birdsong detection accuracy in line with the best solutions in the literature but with much
less computational complexity and memory demand. We also introduce BarbNet, an ap-
proximated version of ToucaNet tailored for IoT units. We show the proposed solution’s
effectiveness and efficiency in terms of detection accuracy and the implementation fea-
sibility in real-world IoT devices, with specific results for the STM32 Nucleo H7 board,
which is based on an ARM Cortex-M7 processor. To our best knowledge, this is the first
birdsong detection algorithm designed to take into account constraints on memory, com-
putational speed, and power usage of embedded devices pointing the way to cost-effective
IoT technology for at-scale intelligent birdsong data collection and analysis in the field
[Disabato et al., 2021].

86

CHAPTER9
Adaptive Federated Learning in Presence of

Concept Drift

Recent years showed a technological and scientific trend aiming at moving the compu-
tation (and in particular the intelligent computation) as close as possible to where data
are generated. On one hand, this trend is supported by the groundbreaking technological
evolution leading to a widespread diffusion of pervasive devices comprising distributed
embedded systems, Internet-of-Things, and mobile devices. On the other hand, novel ML
solutions able to operate in a distributed way on such pervasive devices have been recently
introduced in the literature. This is where FL [Verbraeken et al., 2020] comes into play by
training, in a federated way, a global model leveraging data distributed across different de-
vices. To achieve this goal FL algorithms [Konečnỳ et al., 2015, Yang et al., 2019], rely on
a server, orchestrating the global learning phase, and pervasive devices that allow a local
learning phase operating on (possibly sensitive) data that are not required to be transmitted
to the server. In such a pervasive scenario, FL can provide several advantages:

• Privacy by Default: On-Device Data Set. Each device keeps the raw data locally and
these data are never shared with the server.

• Improved Latency: The connection between devices and server is only used to send
model updates. In this way, the devices can reduce required network bandwidth and

87

Chapter 9. Adaptive Federated Learning in Presence of Concept Drift

energy consumption.

• Training Data: FL architectures usually include a large number of participant de-
vices, and each of them contains a different amount and type of samples.

• Massively Distributed: The number of devices can be much bigger than the number
of training samples on each device, which allows to have a much larger sample size
during the training phase.

• Non-independent and identically distributed (iid): The data on each individual de-
vice can belong to different distributions, so the centralized model can perform the
training phase on a wider variety of data. We emphasize that this point is not related
to variations in the data generating process over time.

The learning models that have been considered in the FL literature mainly comprise
Neural Networks [Kairouz et al., 2019], decision trees [Cheng et al., 2019], linear and
logistic regression [Hardy et al., 2017], while the learning algorithms implementing the
FL paradigm are detailed in Section 9.1.

Interestingly, both the learning models and the learning algorithms in the field of FL
share a common underlying assumption about the stationarity of the data generating pro-
cess. This assumption, which is often made (implicitly or explicitly in most machine learn-
ing algorithms), guarantees that the data generating process does not change its statistical
behavior over time. Unfortunately, as described in Ditzler et al. [2015], this assumption
rarely holds in real-world scenarios where data coming from the field may be strongly
affected by non-stationary phenomena caused, e.g., by seasonality effects, environmental
evolution, or changes in the user’s habits. The occurrence of such changes in the data
generating process, which are also called concept drifts, make previously learned models
obsolete, hence having potentially catastrophic effects on the accuracy and trust for the en-
visaged ML application. We emphasize that, currently, the FL literature does not provide
algorithms or models meant to operate in data-generating processes affected by concept
drift.

The aim of this Chapter is to address this open challenge by introducing Adaptive-
FedAVG, a Federated Learning algorithm endowed with an adaptive step size to deal with
concept drifts affecting the data-generating process. More specifically, this adaptive step
size allows the proposed algorithm to promptly react to concept drifts by means of a pas-
sive adaptation mechanism [Ditzler et al., 2015] of the model parameters over the compu-
tational rounds of the FL paradigm.

A wide experimental campaign has been carried out in the field of image classification
by considering two benchmark data sets, two learning models (a multi-layer perceptron
and a Convolutional Neural Network (CNN)), and two different types of drift. Results
have been contrasted with Federated Averaging (Fed-AVG) [McMahan et al., 2017, Li
et al., 2019], a baseline FL algorithm.

88

9.1. Related Works

The content of this Chapter is taken from Canonaco et al. [2021a], where I am the main
researcher, and is organized as follows. In Section 9.1, the related literature is reviewed. In
Section 9.2 the proposed Adaptive-FedAVG is introduced and discussed. Section 9.3 de-
scribes the experimental campaign, showing that our method performs well under station-
ary conditions, while it outperforms Fed-AVG in non-stationary settings. Finally, Section
9.4 draws the conclusions.

9.1 Related Works

9.1.1 Federated Learning

In the FL paradigm, each learning round relies on a server that receives local model pa-
rameters from a set of clients and aggregates them into a federated model, representing the
starting point for the local models of the clients in the next learning round. The basis of FL
is that aggregation of different models coming from a heterogeneous setting can strongly
improve generalization on unseen data [Verbraeken et al., 2020].

FedAVG [McMahan et al., 2017] is one of the most popular FL algorithms present
in literature. The core of FedAVG is to perform the server aggregation by computing a
weighted average of the local model parameters. This algorithm is robust to unbalanced
and non-iid data, which generally characterize FL settings. We emphasize that, here, non-
iid data refer to data that are not iid among the clients, while they are assumed to be iid
over time (hence the stationarity of the data generating process is still assumed). More
precisely, at each round the algorithm selects a subset of clients that will take part in the
current learning phase. Considering a single local epoch performed by each client, and
a full batch approach, the algorithm behaves like a federated version of stochastic gradi-
ent descent. However, Fed-AVG allows more than one local epoch in the clients’ training
phase with the possibility to leverage a mini-batch approach. After the clients complete
their local learning phase, the parameters of these locally-learned models are sent back to
the server, which aggregates them through a weighted average of the associated param-
eters. Finally, the server sends the aggregated model to all the clients and the learning
phase moves to the next round. A convergence analysis for this algorithm is provided
in Li et al. [2019], considering full device participation, partial device participation, and
the non-iid setting. Being F1, ..., FK the objective functions of the K clients, respectively,
the following conditions are required to guarantee the convergence of FedAVG:

• F1, ..., FK are L-smooth;

• F1, ..., FK are all µ-strongly convex;

• The variance of stochastic gradients in each device is bounded;

• The expected squared norm of stochastic gradients is uniformly bounded;

89

Chapter 9. Adaptive Federated Learning in Presence of Concept Drift

• The learning rate is adjusted with a time-based decay (i.e., ηt = η0
1+γt

).

The last condition turns out to be a significant limitation in the implementation of adap-
tive solutions, as a small learning rate does not allow plasticity when a concept drift occurs.

In the context of highly heterogeneous networks, an improved version of FedAVG,
called FedProx [Li et al., 2018], is proposed to deal with system and statistical hetero-
geneity (i.e., the variability in the characteristics of the clients and in their data distri-
bution, respectively). Finally, another type of algorithm in the FL context is One-Shot
Federated Learning [Guha et al., 2019], whose goal is restricted to training a global model
by aggregating the local models in a single round of communication.

9.1.2 Learning in presence of concept drift

The literature of learning algorithms and solutions meant to operate in presence of concept
drift is wide and many approaches differing in assumptions, mechanisms, performance,
and considered learning models are available [Tsymbal, 2004, Gama et al., 2014]. We
emphasize that the goal of these approaches is to define, develop and evaluate adaptive
learning models able to react and adapt to concept drift affecting data generating processes.
More specifically, as detailed in Ditzler et al. [2015], two approaches for the learning in
presence of concept drift are available in the literature: Active and Passive.

The former, also called "detect and react" approach [Alippi, 2014], aims at explic-
itly detecting the occurrence of a concept drift through Hypothesis Tests [Patist, 2007],
Change-Point Methods [Hawkins et al., 2003], or Sequential Hypothesis Tests [Wald,
1945]. Once a concept drift is detected, adaptation mechanisms such as windowing,
weighting, and random sampling can be considered [Ditzler et al., 2015].

The latter relies on a continuous model update every time new data arrive, regardless of
the occurrence of concept drifts. This continuous update can be performed over a single
model (e.g., concept drift very-fast decision trees [Hulten et al., 2001], and online informa-
tion networks [Cohen et al., 2008]), or by also adding/removing/modifying models from
an ensemble (e.g., Streaming Ensemble Algorithms [Street and Kim, 2001]).

9.1.3 Adaptive Optimizers

Adaptive optimizers are suitable tools for efficient stochastic optimization allowing to
compute adaptive learning rates during the training phase. Adaptive-FedAVG is based
on the concepts behind adaptive optimization algorithms such as AdaGrad [Duchi et al.,
2011], RMSProp [Tieleman and Hinton, 2012], and Adam [Kingma and Ba, 2014]. In
particular, Adam leverages two different Exponential Moving Averages (EMAs) in order
to estimate the first and second moments of the gradient. These two estimates are used
to update the model and properly adapt the effective step-size at each optimization step,
starting from the ratio between the estimate of the first moment and that of the second mo-

90

9.2. The Proposed Algorithm

ment. Empirically, it is shown that Adam outperforms several other methods on a variety
of different tasks and data sets. Moreover, it is appropriate for non-stationary objectives
and very noisy and/or sparse gradient problems.

9.2 The Proposed Algorithm

9.2.1 Problem Formulation

As previously commented, the FL paradigm aims at learning a single global model by
using data stored on a set of pervasive local devices, called clients (or workers). Being
K the total number of clients and Fk the function that the kth-client has to minimize, the
global objective function of the FL setting becomes

min
θ
F (θ), where F (θ) :=

K∑
k=1

pkFk(θ), (9.1)

where pk is a weight coefficient accounting for the client "importance" and
∑

k pk = 1.
This implies that, in principle, clients with larger weights will be considered more during
the aggregation phase performed by the server. When clients are equally important, the
weights pks are set equal to 1

K
where K is the total number of clients. This is the typical

setting in FL and it is the one considered throughout this Chapter.
Supposing that nk training samples are available, at each round, at the k-th client, the

local objective function Fk(·) is defined as

Fk(θ) :=
1

nk

nk∑
j=1

`(θ;xk,j), (9.2)

where l is an appropriate loss function to be minimized.
In general, Fk(θ) is considered to be a non-convex function.
In the context of this work, we will consider a test-then-train scenario [Ditzler et al.,

2015] for both the global and local objective functions, where the training set of client
k at round t is Dt

k = {(xtk,i, ytk,i)}nki=1, possibly comprising a single instance nk = 1 or
a batch of samples nk > 1. In real-world scenarios, the data generating processes that
are observed by the clients might have a non-stationary behavior, e.g., due to space-time-
dependent data, user behavior, or evolving phenomena. For this reason, local data setsDt

ks
might be characterized by different behaviors at different rounds ts. In other words, in non-
stationary environments, data generating processes might have a time-varying nature, and
the probability distribution from which the data sets Dt

ks are sampled may evolve over
time.

91

Chapter 9. Adaptive Federated Learning in Presence of Concept Drift

9.2.2 The proposed Adaptive-FedAVG algorithm

We here introduce the proposed Adaptive-FedAVG algorithm for FL in presence of con-
cept drift. The core of the proposed algorithm resides in an adaptive learning rate to be
used by the clients in their local epochs. Indeed, by means of such an adaptive learning
rate, the proposed method, which is detailed in Algorithm 8 and 9, shows large plasticity
in presence of concept drifts, while guaranteeing the accuracy of FedAVG in the stationary
case. This aspect will be detailed in Section 9.3.

More specifically, Adaptive-FedAVG implements a server-side passive approach, in
which the server increases the step-size to be used by the clients whenever there is a vari-
ability increment in the average model estimate between two consecutive rounds1. For this
purpose, we estimate the variance of the aggregated-model parameters through an EMA.
Then, the effective step-size to be used is computed as an EMA of the estimated-variance
ratio between two consecutive computational rounds. This procedure is detailed in what
follows by describing the Server-Side and the Client-Side behavior of Adaptive-FedAVG.
We emphasize that, thanks to the adaptive learning rate, Adaptive-FedAVG is meant to
guarantee the decaying property required for convergence while providing a more reactive
behavior in presence of concept drifts.

9.2.3 Adaptive-FedAVG: the Server-Side

The Server-Side behavior of Adaptive-FedAVG is detailed in Algorithm 8. More specifi-
cally, at round t, the server receives clients’ parameters θt,k (Line 8) and aggregates them
into θ̂t via a weighted average (Line 10). The core of our proposed solution resides in the
ability of the learning-rate scheduler to properly set the step-size ηt at each learning round
t. In order to implement the adaptive learning rate ηt, we leverage three different EMA
estimators:

• (Line 11) The average µt of the aggregated parameters (being β1 the EMA decay
rate)

µt ← β1µt−1 + (1− β1)θ̂t.

• (Line 13) The variability St of the aggregated parameters (being β2 the EMA decay
rate):

St ← β2St−1 + (1− β2)(θ̂t − µ̂t−1)(θ̂t − µ̂t−1).

1An alternative could be a Client-Side passive/active approach through which clients can adapt their learning rates to react and
mitigate changes in the data. This could be done by studying the local losses, and consequently adjusting the effective step-size.

92

9.2. The Proposed Algorithm

• (Line 15) The ratio between variances across two consecutive rounds γt (being β3 the
EMA decay rate):

γt ← β3γt−1 + (1− β3)
Ŝt

Ŝt−1

.

By properly tuning the exponential decay rates, β1, β2, β3, the algorithm supports dif-
ferent trade-offs between stability and plasticity [Grossberg, 1988] to adequately cope with
concept drifts. More precisely, β1 influences the stability/plasticity of the average aggre-
gated model across the various rounds. β2 affects the way spikes in the aggregated-model
variability are captured. Finally, β3 influences how long the spikes affecting the variance
ratio persist in the computation of the step-size ηt.

Algorithm 8 Adaptive-FedAVG: Server

1: Input: the number of workers K; the EMA parameters [β1, β2, β3]; The initial step-size η0.
2: initialize θ̂0

3: µ0 ← 0
4: S0 ← 0
5: γ0 ← 0
6: for each round t = 1, 2, ... do
7: for each client k in parallel do
8: θt,k ← ClientUpdate(k, ˆθt−1, ηt−1)
9: end for

10: θ̂t ← 1
K

∑K
k=1 θt,k

11: µt ← β1µt−1 + (1− β1)θ̂t
12: µ̂t ← µt

(1−βt1)

13: St ← β2St−1 + (1− β2)(θ̂t − µ̂t−1)(θ̂t − µ̂t−1)
14: Ŝt ← St

(1−βt2)

15: γt ← β3γt−1 + (1− β3) Ŝt
Ŝt−1

16: γ̂t ← γt
(1−βt3)

17: ηt ← min(η0,
η0
t γ̂)

18: end for

After updating the moving averages, we can appropriately set the step-size ηt for the
next round (Line 17). The min function between η0 and η0

t
γ̂ in Line 17 is used to avoid

inappropriately big step-sizes when a concept drift occurs. Indeed, since the variance esti-
mate St should go to zero in a stationary optimization process, we could have a potentially
unbounded spike into the variance ratio γt, whenever the concept drift occurs (computed
by the EMA in Line 15). Therefore, the role of the min function is to clamp this spike in
order to increase the step-size to be used by the clients at most to a maximum value repre-
sented by the learning rate at the beginning of the optimization process. Finally, in Lines
12, 14, and 16, the bias due to the initialization of the EMAs to 0 is corrected. This bias

93

Chapter 9. Adaptive Federated Learning in Presence of Concept Drift

Algorithm 9 Adaptive-FedAVG: ClientUpdate

1: Input: the train set, Dt
k, of worker k at round t; the step-size ηt at round t; the aggregated parameters

θ̂.
2: B ← (split Dt

k into batches of size B)
3: for each local epoch i from 1 to E do
4: for batch b ∈ B do
5: θt,k ← θ̂ − ηt∇`(θ̂; b)
6: end for
7: end for
8: return θt,k to server

correction is particularly important in the initial rounds, when initialization has a stronger
impact on the estimates [Kingma and Ba, 2014].

At the end of the server-side algorithm, the aggregated model θ̂t and the step-size ηt are
sent to the clients to allow them the next local learning phase.

9.2.4 Adaptive-FedAVG: the Client-Side

The Client-Side behavior of Adaptive-FedAVG is detailed in Algorithm 9. More specifi-
cally, at each round, the clients that take part in the learning process receive the aggregated
parameters θ̂t and the current learning rate ηt, along with their next training data set Dt

k

(sampled from the field). Then, each client locally performs multiple steps of gradient
descent (Line 5) by using Dt

k as training data and iterates the process for multiple local
epochs. The choice of the batch-size B and the number of local epochs E is dependent
on the specific task to be solved. Finally, once the local epochs are completed, each client
sends back the refined model parameters θt+1,k to the server.

9.3 Experimental Results

This section aims to describe the experimental campaign that has been carried out to evalu-
ate the effectiveness of Adaptive-FedAVG both in stationary conditions and in presence of
concept drifts2. For this purpose, we considered image classification as the application sce-
nario and we leveraged two benchmark data sets: MNIST handwritten digits database [Le-
Cun and Cortes, 2010] and CIFAR-10 image classification database [Krizhevsky et al.,
2009]. These data sets are commonly used in FL scenarios and they are easy to adapt in
order to introduce concept drifts. Moreover, the image classification task is a widely used
application scenario in the related FL literature.

2The code for the experimental campaign is available at https://github.com/alexbergamasco96/NS_
FederatedLearning

94

https://github.com/alexbergamasco96/NS_FederatedLearning
https://github.com/alexbergamasco96/NS_FederatedLearning

9.3. Experimental Results

0 10 20 30 40

0.5

1

Rounds

L
os

s

FedAV G

Adapt-FedAVG

(a) Loss.

0 10 20 30 40
0.6

0.7

0.8

0.9

1

Rounds

A
cc

ur
ac

y

FedAV G

Adapt-FedAVG

(b) Accuracy.

Figure 9.1: MNIST-MLP: Comparison between FedAVG and Adaptive-FedAVG on MNIST
with the class-introduction concept drift at round 20. [β1;β2;β3] = [0.5; 0.5; 0.5], E = 5,

B = 10, Number of clients: 32.

0 10 20 30 40

0

0.5

1

Rounds

L
os

s

FedAV G

Adapt-FedAVG

(a) Loss.

0 10 20 30 40

0.8

0.9

1

Rounds

A
cc

ur
ac

y

FedAV G

Adapt-FedAVG

(b) Accuracy.

Figure 9.2: MNIST-CNN: Comparison between FedAVG and Adaptive-FedAVG on MNIST
with the class-introduction concept drift at round 20. [β1;β2;β3] = [0.5; 0.5; 0.5], E = 5,

B = 10, Number of clients: 100.

The numberK of clients considered in the experimental section ranges in the following
set {32, 64, 100}.

MNIST and CIFAR-10 comprise 60000 and 50000 training samples, respectively, be-
longing to 10 different classes. The training samples are equally partitioned among the
clients, both in terms of the number of samples and in terms of class distribution. After
each round, the available training data are shuffled and redistributed among all the clients,
maintaining the previously mentioned characteristics, but changing the local data sets.

Throughout all the experiments, we use two different types of concept drift that are ap-
plied at a fixed round of the optimization process in order to compare Adaptive-FedAVG
and FedAVG both before and after the concept drift. The first type of concept drift, i.e.,
class-introduction concept drift, consists in introducing new classes during the operational
life of the image classification application. Therefore, the optimization process starts op-
erating with a data set where only M < N classes are present. Then, after the concept

95

Chapter 9. Adaptive Federated Learning in Presence of Concept Drift

0 10 20 30 40

0

0.5

1

1.5

Rounds

L
os

s

FedAV G

Adapt-FedAVG

(a) Loss.

0 10 20 30 40

0.8

0.9

1

Rounds

A
cc

ur
ac

y

FedAV G

Adapt-FedAVG

(b) Accuracy.

Figure 9.3: MNIST-CNN: Comparison between FedAVG and Adaptive-FedAVG on MNIST
with the class-swap concept drift at round 20. [β1;β2;β3] = [0.5; 0.5; 0.5], E = 5,

B = 10, Number of clients: 100.

0 10 20 30 40

1

1.5

2

Rounds

L
os

s

FedAV G

Adapt-FedAVG

(a) Loss.

0 10 20 30 40

0.2

0.4

0.6

Rounds

A
cc

ur
ac

y

FedAV G

Adapt-FedAVG

(b) Accuracy.

Figure 9.4: CIFAR-CNN: Comparison between FedAVG and Adaptive-FedAVG on CIFAR-10
with the class-introduction concept drift at round 25. [β1;β2;β3] = [0.7; 0.3; 0.7], E = 5,

B = 32, Number of clients: 64.

0 10 20 30 40

1

1.5

2

Rounds

L
os

s

FedAV G

Adapt-FedAVG

(a) Loss.

0 10 20 30 40

0.2

0.4

0.6

Rounds

A
cc

ur
ac

y

FedAV G

Adapt-FedAVG

(b) Accuracy.

Figure 9.5: CIFAR-CNN: Comparison between FedAVG and Adaptive-FedAVG on CIFAR-10
with the class-swap concept drift at round 20. [β1;β2;β3] = [0.7; 0.3; 0.7], E = 5,

B = 32, Number of clients: 64.

96

9.3. Experimental Results

drift, samples belonging to the remaining N−M classes start to appear as well. In our ex-
periments, since both MNIST and CIFAR-10 contain 10 different classes, we set M = 7.
The second type of concept drift, i.e., class-swap concept drift, consists in swapping the
label associated to two classes out of the available ten. In our experiment, after the con-
cept drift occurs, the labels of the first and second classes are swapped. This setting allows
us to compare the performance of both algorithms also in a stationary context, which is
associated with the first part of the optimization process before the concept drift occurs.

A summary of the different types of experiments is given in Table 9.1, while the number
of clients K, the values of β1, β2, β3, the round at which the concept drift is inserted
are specified in the figure caption for each experiment. The number of runs for each
experiment is 40. In each figure, we report mean and standard deviation.

Table 9.1: A summary of the different types of experiments described in Section 9.3.

Data sets

MNIST CIFAR-10

D
ri

ft Class Introduction
MNIST-MLP (Fig 1)

MNIST-CNN (Fig. 2)
CIFAR-CNN (Fig. 4)

Class Swap MNIST-CNN (Fig. 3) CIFAR-CNN (Fig. 5)

Full device participation and iid-partition of data characterize our experiments, while
the number of local epochs E, batch-size B, number of clients K and decay parameters of
the moving averages β1, β2, β3 are task-specific. EMA decay parameters β1, β2, β3 are ap-
propriately tuned in order to give good performance both in stationary and non-stationary
conditions. Finally, the learning rate is set initially equal for both FedAVG and Adaptive-
FedAVG and it has been selected to be optimal for Fed-AVG.

9.3.1 Experiment: MNIST digit recognition

The MNIST digit recognition task is addressed by using two different neural network
architectures. The former, called MNIST-MLP, is a multi-layer perceptron with two hid-
den layers, each of them with a ReLU activation function (the total number of parame-
ters is 197602). The latter, called MNIST-CNN, is a CNN with two convolutional layers
(kernel − size = 5, the first layer with 32 channels, the second with 64 channels) and
a single fully-connected layer (512 neurons) with a ReLU activation function (the total
number of parameters is 577922).

The partition of the data is performed in an iid fashion: each local data set contains the
same number of samples and has the same distribution of the classes.

Figure 9.1 and 9.2 show how MNIST-MLP and MNIST-CNN react to the first concept
drift, i.e., class-introduction concept drift, respectively. Several comments arise. First,

97

Chapter 9. Adaptive Federated Learning in Presence of Concept Drift

as we can see from both figures, Adaptive-FedAVG promptly reacts to the concept drift
thanks to the adaptive learning rate and this results in a greater accuracy (and smaller loss)
w.r.t. FedAVG after the concept drift. This is due to the fact that Fed-AVG suffers the
static learning rate decay, while Adaptive-FedAVG mitigates this problem by passively
increasing the step size in response to changes in the data generating process. Second,
Adaptive-FedAVG and FedAVG provided similar accuracies before the concept drift (a
slightly better performance in the stationary part is achieved by our solution in Figure
9.1). Finally, Figure 9.3 shows the comparison between Adaptive-FedAVG and Fed-AVG
in the context of the second concept drift, i.e., the class-swap.

Results are similar in the second type of concept drift, i.e., class-swap concept drift,
where the proposed Adaptive-FedAVG provides, in average, a larger accuracy and a smaller
standard deviation both in the stationary part and after the concept drift.

9.3.2 Experiment: CIFAR-10 image classification

The CIFAR-10 image-classification task is addressed by considering a CNN, called CIFAR-
CNN, for both types of drift. The considered CNN is characterized by three convolutional
layers (the first with 32 channels, the second and third with 64 channels, kernel−size = 3)
and a fully-connected layer at the end with 512 units and ReLU activation function (total
number of parameters 122050). The partition of the samples among the clients is per-
formed in the same way as in the MNIST experiments, following an iid fashion.

Similarly to the experiment of the MNIST, for the CIFAR-10 image classification task,
we compare our algorithm with FedAVG on both the concept drifts previously defined.

In Figure 9.4 and 9.5, we can see how the proposed algorithm outperforms Fed-AVG
both in the stationary conditions and after the concept drift in both class-introduction con-
cept drift and class-swap concept drift. Even in this case, Adaptive-FedAVG outperforms
FedAVG both before and after the concept drift, making the proposed algorithm suitable
for both stationary and non-stationary environments.

9.4 Conclusions

In this Chapter, we presented Adaptive-FedAVG, a novel FL algorithm able to deal with
data-generating processes affected by concept drifts. To achieve this goal the proposed so-
lution introduces an adaptive learning rate able to support stability in stationary conditions
and plasticity when the process generating the data is affected by concept drifts. The exper-
imental results carried out on two image classification benchmarks show an improvement
in both non-stationary conditions and results in line with the literature in stationary ones,
thus making our algorithm an appealing choice in real-world FL scenarios. For what con-
cerns future directions a detailed theoretical analysis of the algorithm is of great interest
to see if the convergence properties, which have been experimentally shown in this work,

98

9.4. Conclusions

can be recovered from a theoretical standpoint, at least under stationarity assumptions.

99

CHAPTER10
Birdsong Detection at the Edge with Deep Learning

In the previous Chapter, we focused on a methodological approach to deal with non-
stationarities affecting the data generating process of a set of pervasively distributed de-
vices. When dealing with these pervasive systems, as we have already mentioned in Chap-
ter 8, we cannot always assume to have enough computational or memory resources on
the edge devices, necessitating our algorithmic solutions to satisfy stricter constraints on
memory and computational demand. One particular application that falls within the above
mentioned highly-constrained scenario is birdsong detection/recognition for in-the-field
bird population monitoring.

Bird populations have decreased significantly in many areas of the world in recent
decades [Rosenberg et al., 2019]. Furthermore, there is growing evidence that the environ-
mental effects of urban growth and human activities, e.g., increasing noise and night-time
light, are at least a partial cause [Injaian et al., 2018, Senzaki et al., 2020]. Therefore, it
is essential to accurately survey bird activity to better understand the behavior of species
and individuals in a variety of habitats, from urban to wildland. While there has been
much progress in the detection and classification of bird vocalizations [Priyadarshani et al.,
2018], two primary challenges remain. First, discrimination of bird vocalizations from
other sounds—especially challenging in suburban/urban environments and near roads—
remains a technological challenge. Recently, this has been addressed with sophisticated

101

Chapter 10. Birdsong Detection at the Edge with Deep Learning

signal processing and machine learning algorithms. Secondly, improved algorithms often
require more memory and greater computational load, making it more challenging to de-
ploy cost-effective IoT systems for vocalization sensing in the field at scales supporting
comprehensive surveys and more accurate assessment of the distribution of bird species.

There are several excellent algorithmic solutions for birdsong detection and classifica-
tion, especially those based on Deep Learning (DL); however, they do not take into account
the technological constraints of IoT systems. The overarching goal of this Chapter is to
bridge this gap by introducing a novel algorithmic solution for birdsong detection based
on Machine Learning that can be executed on off-the-shelf IoT devices. In more details,
the main contributions of this Chapter are:

• a ToucaNet birdsong detection neural network providing detection accuracy in line
with the state-of-the-art, but halving the memory footprint and reducing computa-
tional demand;

• a ToucaNet approximation, the BarbNet, able to be executed on a real-world IoT unit,
i.e., the STM32H743ZI Nucleo board.

The content of this Chapter is taken from Disabato et al. [2021], where I am one of the
two main researchers, and is organized as follows. Section 10.1 investigates the related
literature. Section 10.2 proposes the ToucaNet pipeline to detect birdsongs. Section 10.3
instead describes how to approximate the ToucaNet to take into account IoT technologi-
cal constraints and presents the BarbNet implementation on an STM32H743ZI microcon-
troller. Finally, Section 10.4 details the experimental results and Section 10.5 draws the
conclusions.

10.1 Related Works

The extensive birdsong detection literature has developed solutions that can be grouped
into two main families according to the processing stage in which they operate: prepro-
cessing techniques and detection/recognition techniques.

One of the most used preprocessing approaches consists of transforming the acquired
waveforms into spectrograms computed through a complex Short Time Fourier Transform
(STFT), often rescaled to the Mel-Scale [Frommolt and Tauchert, 2014, Lasseck, 2013,
Neal et al., 2011, Potamitis, 2014, Towsey et al., 2012]. Other approaches rely on the ex-
traction of the Mel Frequency Cepstral Coefficients (MFCCs) [Briggs et al., 2009, Dufour
et al., 2013, Graciarena et al., 2010, Kogan and Margoliash, 1998, Murcia and Paniagua,
2013], or Discrete Wavelet Transform (DWT)–based features [Bastas et al., 2012]. Ap-
proaches aiming at directly processing the waveforms are also emerging [Priyadarshani
et al., 2020]. Several works also bring into play noise reduction techniques to mitigate
or remove environmental or anthropogenic noise. These techniques can be applied on the

102

10.1. Related Works

waveform [Priyadarshani et al., 2016] or spectrogram [Lasseck, 2013, Potamitis, 2014].
However, the most common noise sources overlap with low-frequency bird calls (poten-
tially masking them) [Potamitis, 2014], hence reducing the effectiveness of subsequent
detection techniques [Aide et al., 2013, Fox et al., 2006].

In the field of birdsong detection/recognition, available techniques can be grouped ac-
cording to the type of approach: signal processing or Machine/Deep Learning.

Techniques following the first approach are, e.g., Lasseck [2013] and Potamitis [2014],
where segmentation of spectrograms for birdsong detection is proposed, achieving promis-
ing results on clear noise-free calls but having reduced performance when the signal is
weak compared with interference and noise. Similarly, Neal et al. [2011] and Towsey
et al. [2012] attempted to detect time/frequency boxes in spectrograms representing the
bird calls. Finally, Frommolt and Tauchert [2014] proposed template matching to detect
and isolate calls within spectrograms, whereas Anderson et al. [1996] used dynamic time
warping directly on the input waveform.

Machine learning techniques for birdsong detection and recognition have mainly fo-
cused on CNNs [Berger et al., 2018, Grill and Schlüter, 2017, Lasseck, 2018, Mukher-
jee et al., 2018, Ruff et al., 2019], a DL architecture extensively used in image classi-
fication tasks. In this setting, Grill and Schlüter [2017] suggested two different types
of CNN: working on the spectrogram of the whole audio input and processing spectro-
grams computed on shorter audio subsequences and then merging the predictions. Lasseck
[2018] started from a pretrained CNN, either an Inception v3 [Szegedy et al., 2016] or a
ResNet [He et al., 2016], and fine-tuned it to the bird detection problem in a TL fash-
ion [Yosinski et al., 2014]. Vesperini et al. [2018] proposed a capsule-based DL archi-
tecture that organizes the convolutional layers in capsules whose outputs are “shared”
in such a way that the knowledge acquired in one portion of the spectrogram can be
leveraged by other spectrogram locations. Finally, Himawan et al. [2018] and Mukher-
jee et al. [2018] proposed two recurrent DL architectures to detect bird calls in audio
signals. These DL-based approaches usually outperform the traditional signal processing
techniques [Lasseck, 2018, Ruff et al., 2019]. For the recognition task, a few techniques
focusing on particular groups of bird species are emerging [Brooker et al., 2020, Ferreira
et al., 2020, Koh et al., 2019]. Ruff et al. [2019] proposed a CNN-based architecture to de-
tect and recognize six nocturnal owl species, whereas Lee et al. [2012] proposed a classi-
fication algorithm for 28 bird species based on Gaussian Mixture Models (GMMs). More
specifically, this solution models the likelihood of the considered bird species through
GMMs, with classification according to the highest likelihood.

All in all, several solutions for birdsong detection are available in the literature, but
none of them focus on implementing such techniques on real-world IoT devices. Interest-
ingly, there are DL techniques for audio sources on microcontrollers [Banbury et al., 2020,
Disabato and Roveri, 2020], though not for the considered application scenario.

103

Chapter 10. Birdsong Detection at the Edge with Deep Learning

Input x
3

43
1

257

Spectrogram x̂

64
21

6129

conv1

pool_1

64
10

865

conv2_0

64

conv2_1

128 5433

conv3_0

128

conv3_1

256 2717

conv4_0

256

conv4_1

512 149

conv5_0

512

conv5_1

51
2

Average Pooling

2

FC

y

(a) The architecture of the ToucaNet Bird Detector ψ, that receives the spectrogram x̂ (computed with nfft = 512,
hl = 512) of a waveform x sampled at fa = 22050 Hz for ta = 10s, and provides its output classification y.

Acquisition
fa: Acquisition Frequency (Hz)

ta: Acquisition time (s)

x ∈ Rd d = ta · fa

Preprocessing
nfft: Bins and Window Length of STFT

hl: Distance between STFT Windows

x̂ ∈ Rx̄r×x̄c×3 x̄r = 1 + nfft/2, x̄c = 1 + d/hl

Bird Detector ψ
l: Number of ToucaNet Layers

ap: Average Pooling Size and Stride

y = ψ (x̂) ∈ {0, 1} 1 if there is a bird call within x

(b) A scheme of the pipeline with
the approximable parameters.

Input x

3

34
5

33

Spectrogram x̂

64
17

3
17

conv1

pool_1

64

879

conv2_0

10
88

Average Pooling

2

FC

y

(c) The BarbNet Bird Detector ψ architecture, that receives
the spectrogram x̂ (nfft = 64 and hl = 64) of a

waveform x sampled at fa = 2205 Hz for ta = 10s,
and provides its output classification y on a

STM32H743ZI IoT device.

Figure 10.1: Comprehensive scheme of the proposed solution to detect bird calls in audio acquired on the
field.

10.2 The Proposed ToucaNet Bird Detector

The architecture of the proposed ToucaNet bird detector, which is depicted in Figure 10.1b,
comprises two main steps. The rest of the section describes both steps in detail.

10.2.1 Acquisition and Preprocessing

Let fa be the microphone’s sampling frequency (in Hertz) and ta be the acquisition time
window (in seconds). Let x ∈ Rd, with d = fa × ta, be the d-dimensional vector acquired
by the microphone, representing the waveform to be preprocessed and subsequently pro-

104

10.2. The Proposed ToucaNet Bird Detector

cessed by DL-based birdsong detector.
Once the microphone acquires the waveform x, the preprocessing phase converts it

into the corresponding spectrogram x̄ computed via the (absolute value of the complex)
STFT with nfft bins over constant-length windows spaced by hl samples, with both nfft
and hl constrained to be powers of two.1 The outcome of the STFT is a two-dimensional
matrix with x̄r = 1 + nfft/2 rows and x̄c = 1 + d/hl columns, which is converted into a
three-dimensional image by means of a color-map, i.e., x̂ ∈ Rx̄r×x̄c×3, to enable transfer
learning (see below). In the following, x̂ will be called a spectrogram.

10.2.2 The DL-based Birdsong Detector

The DL-based bird detector ψ (x̂, θ) with parameters θ of the ToucaNet receives as input
the spectrogram x̂ and produces as output its binary classification y ∈ {0, 1}, where y = 1
if a bird call is present within the waveform, and y = 0 otherwise. This formalization
can be extended easily to the case of birdsong recognition by simply considering the su-
pervised information y to belong to a discrete set of classes representing the various bird
species. In what follows, to simplify the notation, θ will be omitted from ψ (x, θ).

Since the spectrogram is interpreted as a colored image x̂, it is possible to leverage
approaches from the image classification field. More precisely, in the context of this work,
the ToucaNet birdsong detector ψ is built upon a ResNet-18 [He et al., 2016], leveraging all
its convolutional layers (namely, up to layer conv5_1). A 9×14 average pooling filter (with
stride 1 and no padding) follows the convolutional structure. Finally, a fully-connected
classifier labels the 512 extracted features into the desired two classes (Figure 10.1a depicts
the ToucaNet architecture in detail).

The convolutional structure of the ToucaNet is initialized with the weights associated to
the optimal solution of Resnet-18 on the ImageNet classification task [Deng et al., 2009],
hence relying on a TL approach [Yosinski et al., 2014] to speed up the training phase.
The fully-connected layer is instead initialized with a uniform distribution in the interval(
−1/
√
fcin, 1/

√
fcin

)
, where fcin is the input size of the layer itself, i.e., 512.

To train ψ, an n-dimensional data set D = {(xi, yi)}ni=1 is used and the parameters θ
are optimized as

arg min
θ

1

n

n∑
i=1

l (x̂i, yi, θ) , (10.1)

where l(·) is a classification loss function and x̂i is the spectrogram of the waveform xi.
ψ is trained for 14 epochs with stochastic gradient descent, momentum 0.9, and learning
rate of 5 · 10−2, decreased by a factor of 10 after the eighth and the twelfth epochs.

Since our final goal is to move our solution to an IoT unit, the memory footprint mψ

and the computational load cψ of ψ have been carefully evaluated. By extending the for-
1The Mel-spectrogram is not considered, since it uses a human-based frequency scale.

105

Chapter 10. Birdsong Detection at the Edge with Deep Learning

malization introduced by Alippi et al. [2018], mψ and cψ are defined as

mψ = |θ| ·mp +min, (10.2)
cψ = nmul, (10.3)

where |θ| is the cardinality of θ, nmul is the number of multiplications required to compute
the output, min is the memory needed to store the input x (and all its transformations), and
mp is the memory required to store a single parameter (typically a 32-bit floating-point
data type).2

As shown in Table 10.3 of Section 10.4 and Figure 10.3, the ToucaNet has detection
capabilities in line with the best solution available in the related literature given the same
acquisition frequency (fa = 22050 Hz) but half its memory footprint (mψ = 44.714 MB)
and about 80% of its computational demand (cψ = 4.255 billion multiplications).

These computational demand and memory footprint improvements provide a more ef-
ficient but not less effective birdsong detection solution. However, these requirements are
still too demanding to allow deployment on IoT units. Therefore, in Section 10.3, the pro-
posed ToucaNet is approximated to enable its deployment on off-the-shelf IoT systems.

10.3 BarbNet: the Approximated ToucaNet for IoT Units

To deploy a bird song detector at the IoT edge, its memory and computational requirements
must meet the constraints (m̄ and c̄) of the selected IoT node. To achieve this, ToucaNet
has been revised by introducing approximations both at the acquisition-preprocessing and
birdsong detection layers, as described respectively in Sections 10.3.1 and Section 10.3.2.
We note that reducing the computational demand as much as possible also saves energy
and prolongs the IoT device activity in the field. Figure 10.1b depicts the approxima-
tion parameters. Finally, Section 10.3.3 introduces BarbNet, the approximated version
of ToucaNet that can satisfy the memory and computational constraints of a typical IoT
prototyping platform, the STM32H743ZI board by STMicroelectronics.

10.3.1 Approximating the Input

The Acquisition and Preprocessing step of the ToucaNet comprises the STFT to compute
the spectrogram x̂, whose computational complexity is O (d · nfft · log (nfft)), which is
negligible compared to the one required by the DL bird detector. However, the total mem-
ory footprint min of the Acquisition and Preprocessing step is non-negligible and com-
prises the memory footprint mx of the input signal x and the memory footprint mx̂ of the

2The computational complexity is defined in terms of the number of multiplications, the slowest operation, since it is not straight-
forward to define the concept of computation time. Nevertheless, the time needed to execute a given number of operations can be
estimated with a further hyper-parameter modeling the (mean) number of operations carried out per second.

106

10.3. BarbNet: the Approximated ToucaNet for IoT Units

spectrogram x̂, i.e.,

min = (mx +mx̂) ·mp = (d+ x̄r · x̄c · 3) ·mp. (10.4)

Therefore, the memory footprint min of the Acquisition and Preprocessing step depends
on the sampling frequency fa, the acquisition time ta, and the STFT parameters nfft and
hl. Consequently, although fa is application-dependent and, in principle, must be set
two times larger than the maximum frequency in the waveforms (following the Nyquist-
Shannon sampling theorem), in this context, it needs to be considered as an approximation
parameter. Moreover, reducing fa will also reduce the computational demand cψ of the
bird detector since the spectrogram will be smaller. Since reducing fa might introduce
aliasing, an anti-aliasing filter (tailored to fa) is advised before the ADC to limit the input
signal bandwidth.

For the other three parameters, ta, nfft, and hl, the former is set according to the
available data sets (i.e., fixed to ta = 10s), and the latter two are set such that each window
of the spectrogram is 30ms and non-overlapping (refer to Section 10.4–Table 10.2 for
details) to cover approximately one syllable of a bird call [Hart et al., 2018, Marler and
Isaac, 1960, Paliwal et al., 2010].

10.3.2 Approximating the DL-Based Birdsong Detector

The memory footprint and computational demand of the ToucaNet birdsong detector are
controlled by reducing the number of parameters θ and the number of features in the
input to the ToucaNet fully-connected layer. In the former approach, the ToucaNet bird-
song detector is approximated by removing layers from the ResNet-18-based part of the
pipeline. The higher the number of layers l kept in the approximated ToucaNet, the higher
the detection capability at the expense of a larger memory footprint and more significant
computational load. Section 10.4.2 analyses all the configurations using the first five con-
volutional blocks, i.e., l ∈ {pool1, conv2_0, conv2_1, conv3_0, conv3_1}. The choice of
l strictly depends on the IoT unit constraints m̄ and c̄. For instance, the memory constraint
m̄ of the STM32H743ZI unit requires the BarbNet (Figure 10.1c) to have l = conv2_0.

To reduce the number of features in input to the final classifier, a dimensionality reduc-
tion operator consisting of an ap · ap average pooling layer (stride ap and no padding) is
introduced, where ap is an additional hyper-parameter of the model ψ.3 Although other
dimensionality reduction operators, such as PCA [Pearson, 1901] or auto-encoders, could
have been considered, the average pooling operator has the advantage of having negligible
computational demand and no memory footprint, making it a very appealing choice in this
setting.

107

Chapter 10. Birdsong Detection at the Edge with Deep Learning

Table 10.1: The detailed memory footprint (with a 32-bit data type) and the computational requirements of
the BarbNet implemented on the STM32H743ZI. To optimize the memory, two arrays only are used to
store the activations (an asterisk marks the activations re-using such arrays).

Memory Footprint (KB) 106 operations

Audio (ta = 10 s, fa = 2205 Hz) *172.76 -
Spectrogram (nfft = 64, hl = 64) *133.42 -

Conv1 (Weights) 37.75 -
Pool1 (Weights) - -
Conv1–Pool1 (Activations) 195.75 28.120

Conv2_00 (Weights) 144.00 -
Conv2_00 (Activations) 195.75 28.865

Conv2_01 (Weights) 144.00 -
Conv2_01 (Activations) *195.75 28.865

Avg Pool with ap = 5 (Weights) - -
Avg Pool with ap = 5 (Activations) *4.25 0.010

Fully-Connected Classifier (Weights) 8.5 0.002
Fully-Connected Classifier (Activations) 0.008 -

Convolutions Auxiliary Memory 28.50 -

Total 754.26 85.878

10.3.3 A Bird Song Detector on an ARM Cortex-M7: BarbNet

In this work, the target IoT device is the STM32 Nucleo H743ZI2 MCU endowed with
a 480 MHz ARM Cortex-M7 processor, 1024 KB of RAM, 2 MB of Flash, and no Op-
erating System. The memory constraint m̄ is set to the RAM size, i.e., m̄ = 1024 KB.
The BarbNet (Figure 10.1c) is the approximated version of the ToucaNet satisfying these
constraints.4

Table 10.1 details the memory and computational demand of BarbNet, assuming a 32-
bit floating-point representation for all the weights and activations. More specifically, the
BarbNet samples at fa = 2205 Hz and generates spectrograms x̂ with nfft = 64 and
hl = 64. In principle, this small value for fa might prevent the detection of higher-
frequency birdsongs but Section 10.4–Figures 10.2 and 10.3 show that the figures of merit
are still good on real benchmarks.

The required memory footprint for both the signal of size d = 22050 and the result-
ing spectrogram (x̄r = 33, x̄c = 345) is 306.18 KB. The first convolutional layer of
the ResNet-18, characterized by 64 7×7 filters with stride 2 and padding 3, processes

3Please note that setting ap = 1 skips this operator.
4Please refer to Section 10.4.2 for discussion of other feasible configurations.

108

10.3. BarbNet: the Approximated ToucaNet for IoT Units

Table 10.2: A summary of the considered acquisition frequencies ta, along with the details of the resulting
spectograms, and its memory occupation Mx̂, assuming a 32-bit data type.

fa (Hz) nfft hl x̄r x̄c Mx̂ (KB)

1100 32 32 17 344 68.53
2205 64 64 33 345 133.42
4410 128 128 65 345 262.79
8820 256 256 129 345 521.54
17640 512 512 257 345 1039.04
22050 512 512 257 431 1298.05

the computed spectrogram x̂. A batch-normalization layer and a 3×3 maximum pooling
with stride 2 follow. This block accounts for 28 million operations, requires 37.75 KB of
memory to store the weights, and generates 9 · 87 · 64 activations, requiring 195.75KB of
memory. Two 3×3 convolutions compose the second convolutional block (conv_0) with
64 filters with stride 1 and padding 1, each followed by a batch normalization. This block
does not change the activation size, has a memory footprint of 288KB, and requires nearly
58 million operations. Finally, the average pooling layer has (size and stride) ap = 5 and
requires 10000 multiplications. The pooling generates, after flattening, 1088 activations
that are provided to the fully-connected classifier, which in 2176 operations yields the fi-
nal classification label, requiring 8.5KB of memory. Consequently, the total number of
BarbNet multiplications is 84 million, and its total memory footprint is 755KB.5 Note that
two arrays are used alternatively to store all the inputs and intermediate representations,
saving 506.18KB of memory.

To further reduce the computational demand, a few device-dependent optimizations
have been implemented in the BarbNet deployed version on the STM32H743ZI unit, re-
lying on the CMSIS-DSP Cortex-M7 processor’s instruction set:

• As in the most prominent DL libraries (e.g., Chetlur et al. [2014]), the convolu-
tion layer has been converted into a matrix multiplication. The convolutional input
patches (i.e., all the activation pieces the convolutional filters are multiplied by) are
unrolled and organized as rows in the first matrix of shape (npatches, fs), with npatches
the number of patches and fs the dimension of each (unrolled) filter. The nfft convo-
lutional filters (of size fs) are instead rolled out and arranged as columns in the second
matrix of shape (fs, nfft). Finally, the multiplication result of size (npatches, nfft) be-
tween the patches and filter matrices is reshaped to match the convolutional output;

• Since the convolutional filters embrace overlapping patches, the previously described
creation of the patches matrix will result in a non-negligible increment of the memory
footprint. To balance this increment, the maximum number of patches multiplied at

5The total number of multiplications is an upper bound since it does not consider all the optimizations.

109

Chapter 10. Birdsong Detection at the Edge with Deep Learning

any given time, n̂patches, is defined as an additional parameter of the problem. In our
implementation, n̂patches is fixed to the number of columns, which means that to carry
out a convolution, the number of employed matrix multiplications equals the number
of convolutional input rows;

• Batch normalization and maximum pooling operations are computed simultaneously
with the previous convolutional layer;

• The zero-padding (to be done in all the convolutional and pooling layers) is imple-
mented without explicitly instantiating the “padded” array;

• The fully-connected layer is carried out as a matrix multiplication via CMSIS-DSP
instructions.

10.4 Experimental Results

This section details the experimental results. Section 10.4.1 describes the employed data
sets and figures of merit. Section 10.4.2 evaluates the detection capabilities along with
memory and computational demands of the ToucaNet and several approximations (in-
cluding the BarbNet), whereas Section 10.4.3 compares ToucaNet and BarbNet with the
solutions in the literature. Finally, Section 10.4.4 reports the execution time and power
consumption of the BarbNet implementation on the STM32H7 IoT device.

10.4.1 Data Sets and Figures of Merit

The experimental results have been collected on three different data sets [Stowell et al.,
2019]: Warblbr, composed of approximately 8000 10s recordings from smartphones (in
UK); Free-Field, ccontaining 7690 10s recordings from a research project; and BirdVox-
DCASE-20k, namely the remote monitoring flight calls data set, that contains 20000 10s
audio clips recorded remotely near Ithaca, NY, USA, during autumn 2015. The acquisi-
tion time is fixed to ta = 10s to use the available supervised information and compare it
with the related literature on the same data sets. Other data sets in the field, such as the
Chernobyl Exclusion Zone (CEZ) or the Remote monitoring night-flight calls in Poland,
have not been considered since the labels are not publicly available.

In the comparison of the birdsong detection solutions, the following two figures of
merit are employed: the birdsong detection accuracy accψ and the Area Under Curve
(AUC) aucψ of the Receiver Operating Characteristic (ROC) on the class bird. In the
experimental results, such figures of merit have been computed through 10-fold CV.

10.4.2 Pareto Frontiers of the ToucaNet and its Approximations

As mentioned in Sections 10.3.1 and 10.3.2, both the sampling frequency fa and the DL-
based detector ψ need to be tailored to the target IoT device. Therefore, in this section, the

110

10.4. Experimental Results

Acquisition Frequency fa 1100 2205 4410 8820 17640 22050

10−1 100 101

0.75

0.8

0.85

0.9

0.95

1

BarbNet
conv1

conv2_0

conv2_1

conv3_0

conv3_1

ToucaNet

Memory (MB)

A
re

a
U

nd
er

R
O

C
C

ur
ve

(a) aucψ vs memory footprint mψ .

101 102 103

0.75

0.8

0.85

0.9

0.95

1

BarbNet
conv1

conv2_0

conv2_1

conv3_0

conv3_1

ToucaNet

106 multiplications

A
re

a
U

nd
er

R
O

C
C

ur
ve

(b) aucψ vs computational demand cψ .

10−1 100 101
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

BarbNet
conv1

conv2_0

conv2_1

conv3_0

conv3_1

ToucaNet

Memory (MB)

A
cc

ur
ac

y

(c) accψ vs memory footprint mψ .

101 102 103
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

BarbNet
conv1

conv2_0

conv2_1

conv3_0

conv3_1

ToucaNet

106 multiplications

A
cc

ur
ac

y

(d) accψ vs computational demand cψ .

Figure 10.2: Outcomes in terms of AUC (a,b) and accuracy (c,d) against the memory footprint and com-
putational demand by the ToucaNet and its approximations A (in terms of acquisition frequency fa and
layer l, annotated for one plot only).

ToucaNet and a set of its approximations are analyzed in terms of accψ, aucψ, mψ, and cψ.
The considered set of approximations is:

A = {(fa, l) : fa ∈ {1100, 2205, 4410, 8820, 17640, 22050} Hz,
and l ∈ {conv1, conv2_0, conv2_1, conv3_0, conv3_1}}.

Notice that l defines the ResNet block’s considered number of convolutional layers within
the ToucaNet (see Figure 10.1a), so if l is conv2_1 then the ResNet block is approximated
by considering all the layers up to conv2_1. The BarbNet belongs to the set A since it has
fa = 2205 Hz and l = conv2_0.

All the ToucaNet approximations are trained similarly to what is described in Sec-
tion 10.2.2. The initialization of layers follows the description for the ToucaNet, the train-

111

Chapter 10. Birdsong Detection at the Edge with Deep Learning

Table 10.3: A comparison of the ToucaNet and BarbNet with the related literature. The complexities are
computed according to the description of the proposed solution, whereas the figure of merit is taken as it
is since the adopted datasets are the same.

Solution Input Details Memory Footprintmψ (MB) cψ aucψ

fa (Hz) ta (s) Dimensions Input Parameters 109 operations

BarbNet 2205 10 33x345x3 0.215 0.383 0.086 0.778± 0.006
BarbNet (2) 17640 10 257x345x3 1.941 0.383 0.631 0.853± 0.018
ToucaNet 22050 10 257x431x3 2.108 42.606 4.255 0.925 ± 0.008

Lasseck [2018] 22050 10 299x299x3 1.864 ≈ 92 ≈ 5 0.932

CRNN in Mukherjee et al. [2018] 44100 10 128x768 2.057 4.452 > 6.460 0.855
CNN in Mukherjee et al. [2018] 44100 10 128x768 2.057 1.127 6.460 0.842

Berger et al. [2018] 44100 10 80x1000 1.897 ≈ 4.270 ≈ 0.162 0.817
Berger et al. [2018] 44100 10 80x1000 1.897 1.423 0.054 0.803

CapsNet1 Vesperini et al. [2018] 16000 10 501x40 0.687 0.431 - 0.784
CapsNet2 Vesperini et al. [2018] 16000 10 501x40 0.687 1.076 - 0.827
CapsNet3 Vesperini et al. [2018] 16000 10 501x40 0.687 1.617 - 0.837
CapsNetEnsemble Vesperini et al. [2018] 16000 10 501x40 0.687 3.124 - 0.851

ing epochs are 14, the momentum is 0.9, and the learning rate is 5 · 10−3 decreased by a
factor of 10 after the sixth and the tenth epoch.

For each configuration in A, Figure 10.2 reports aucψ vs. mψ, aucψ vs. cψ, accψ vs.
mψ, and accψ vs. cψ. In particular, in Figures 10.2a and 10.2b it is possible to observe the
Pareto Frontier generated by the considered ToucaNet approximations. This frontier can
be leveraged as a criterion to choose the architecture to deploy according to the constraints
imposed by a given IoT device. More specifically, in our case, given the memory constraint
m̄ = 1024 KB of the STM32H743ZI unit, there are five solutions on the Pareto Frontier
that are suitable for the deployment. The BarbNet is the fourth one with the highest AUC.6

Finally, as expected, the ToucaNet is the solution achieving the highest accuracy and AUC.

10.4.3 Comparing ToucaNet and BarbNet with the State-of-the-Art Solutions

Table 10.3 and Figure 10.3 compare both the ToucaNet and the BarbNet with state-of-the-
art solutions in the birdsong detection literature [Lasseck, 2018, Mukherjee et al., 2018,
Berger et al., 2018, Vesperini et al., 2018]. Two main comments arise. First, ToucaNet has
detection capabilities in line with the best solution in the literature, i.e., Lasseck [2018],
but with half its memory footprint and about 80% of its computational demand. Second,
BarbNet is the only solution satisfying the requirements of the STM32H743ZI unit and,
when it samples the input signal x at fa = 17640 Hz, equals or exceeds the accuracy and
AUC of all the other solutions with similar memory footprint (Figure 10.3).

6The fifth and best one is unfeasible when also considering the intermediate activations of the convolutional layers.

112

10.4. Experimental Results

100 101 102
0.7

0.75

0.8

0.85

0.9

0.95

1

La
ss

ec
k

[2
01

8]

Pu
ffi

n
Be

rg
er

et
al

. [
20

18
]

Bu
lb

ul
Be

rg
er

et
al

. [
20

18
]

CR
N

N
in

M
uk

he
rje

e e
t a

l.
[2

01
8]

CN
N

in
M

uk
he

rje
e e

t a
l.

[2
01

8]
Ca

ps
N

et
3

Ve
sp

er
in

i e
t a

l.
[2

01
8]

Ca
ps

N
et

En
se

m
bl

e V
es

pe
rin

i e
t a

l.
[2

01
8]

Ca
ps

N
et

1
Ve

sp
er

in
i e

t a
l.

[2
01

8]

Ca
ps

N
et

2
Ve

sp
er

in
i e

t a
l.

[2
01

8]

Ba
rb

N
et

@
22

05
H

z

Ba
rb

N
et

@
17

64
0H

z

To
uc

aN
et

Memory (MB)

A
re

a
U

nd
er

R
O

C
C

ur
ve

Figure 10.3: aucψ vs memory footprint mψ outcomes obtained by the proposed solution working on an
STM32H743ZI and other solutions available in the related literature.

10.4.4 BarbNet on the STM32H7: Execution Time, Energy Consumption, and Life-
time.

A detailed experimental analysis to quantitatively measure the execution time, the energy
consumption, and the expected lifetime of the BarbNet running on STM32H7 has been
conducted, as detailed in the sequel.

Table 10.4 details the execution time results from audio acquisition to the last layer
of BarbNet and shows that BarbNet requires 3.285s to compute the classification y, well
below the time needed to acquire the audio signal (10s). Hence, embedded systems en-
dowed with multi-cores or Dynamic Memory Allocation (DMA) mechanisms enable par-
allel classification and waveform acquisition. In the technological scenario with a single
core and DMA not considered, we suggest two STM32H7 running in opposite modes.
While the former is acquiring the waveform, the latter predicts (with the BarbNet) on the
previously acquired waveform and then sleeps up to the next acquisition step. The lifetime
evaluation is based on this “acquire-classify-sleep” approach.

In more detail, table 10.5(a) reports the energy required by each step, showing that
the most expensive one is the DL-Based Birdsong Detector computation step. Given the
energy consumptions detailed in Table 10.5(a), Table 10.5(b) analyses the lifetime of the
proposed solution on the STM32H743ZI microcontroller with several real Li-Ion batteries.

113

Chapter 10. Birdsong Detection at the Edge with Deep Learning

Table 10.4: The BarbNet experimental execution timings on the STM32H743ZI, measured with an oscillo-
scope.

Time (ms)

Audio (ta = 10 s, fa = 2205 Hz) 10 000.00
Spectrogram (nfft = 64, hl = 64) 22.80

Conv1–Pool1 432.00

Conv2_00 1 360.00
Conv2_01 1 470.00

Avg Pool (ap = 5) � 1.00
Fully-Connected Classifier � 1.00

Total 3 284.80

Table 10.5: The energy analysis of the BarbNet deployment on the STM32H743ZI, when considering a 3.3V
power supply.

(a) Energy Consumption.

t (s) i (µA) P (mW) E (J)

Acquisition 10.000 721.95 2.38 0.000052

Computation 3.285 55 000.00 181.50 0.596228

Sleep 6.715 1.95 0.006 0.000043
(b) System Lifetime with different Li-Ion batteries. The reported battery energy is 75% of its nominal capacity.

Battery Capacity Battery Energy Lifetime

mAh J Hours Days

100 1 332 9.31 0.39
250 3 330 23.27 0.97
500 6 660 46.54 1.94
1 000 13 320 93.07 3.88
1 200 15 984 111.68 4.65
1 500 19 980 139.61 5.82
2 000 26 640 186.14 7.76
2 500 33 300 232.68 9.69
3 200 42 624 297.83 12.41

To account for battery non-idealities and degradation over time, only 75% of the nominal
battery capacity is considered. Interestingly, the considered IoT unit running the BarbNet
provides a 7 and 12.4 day lifetime when using a 2000 mAh and 3200 mAh capacity Li-ion
battery, respectively.

114

10.5. Conclusion and Future Work

10.5 Conclusion and Future Work

While the literature on birdsong detection (and recognition) is extensive, none of the pro-
posed algorithms considers the technological constraints imposed by IoT units at the edge
of a pervasive system. The ToucaNet solution proposed here performs with accuracy com-
parable to state-of-the-art but with lower memory footprint and computational demand.
Furthermore, the BarbNet, an approximated version of ToucaNet, can be deployed on an
actual IoT device.

Potential future work encompasses: the approximation of ToucaNet parameters with
fixed-point representations or 16-bit floating-point data; introducing the recognition task
(directly on the IoT unit or on a second IoT device in a hierarchical classification ap-
proach); and tailoring of the proposed solution to local populations and environmental
conditions.

115

CHAPTER11
Final Remarks

Machine Learning tools and techniques are often equipped with a set of assumptions that
may or may not be satisfied in practical applications. Whenever these assumptions do not
hold, we have a gap to bridge between theory and practice in order for ML-based tools to
be appropriately leveraged in the real world. In the context of this dissertation, starting
from the needs of a very specific application, that one of corrosion prediction in pipeline
infrastructures, we softened some of those assumptions. Specifically, we have built learn-
ing algorithms for corrosion prediction with the final aim to circumvent the need for su-
pervised information coming from the pipeline of interest. While the lack of supervised
information is a widely recognized and researched problem, it is currently overlooked in
the field of corrosion prediction for pipeline infrastructures. Furthermore, motivated by
the time-variability of the corrosion phenomenon, we investigated, in different ML fields,
solutions able to weaken the stationarity assumption on data-generating processes. More
precisely, in the Reinforcement Learning framework, we proposed solutions able to deal
with non-stationarities at two different levels: one in the context of the current task and
the other in the context of the distribution underlying the task generating process. In the
context of pervasive systems, instead, we proposed a passive-adaptive approach to deal
with non-stationary data-generating processes for the Federated Learning framework, and,
we concluded with an application of ML-based tools that can be deployed in highly con-

117

Chapter 11. Final Remarks

strained devices for in-the-field bird population monitoring.
The interconnections among all the topics we treated in the context of this dissertation

are countless and far from being herein exhausted. For instance, being able to take into
account time variations in the available historical knowledge of a Transfer Learning (TL)
algorithm is not relevant only for the RL framework, but it is a concept that could be ex-
ported also in the context of SL algorithms to build better active-adaptive approaches for
learning in non-stationary environments. Furthermore, RL techniques could be used in the
context of corrosion prediction in order to obtain maintenance policies for the infrastruc-
tures of interest given that we manage to learn a model for the evolution of the corrosion
phenomenon through time. Finally, the FL paradigm could be used in the context of bird-
song detection/recognition to learn a global federated model using data directly sampled
from different regions of a given country. All of the above-mentioned connections repre-
sent interesting and broad spectrum future perspectives for this dissertation.

118

APPENDIXA
Corrosion Detection Experimental Results

In this section are reported all the binarized versions of the confusion matrices presented
in Section 4.3. This is done to check the detection capabilities of the various models.

119

Appendix A. Corrosion Detection Experimental Results

Absent Present

G
ro

un
d

Tr
ut

h

Absent 0.53 0.47

Present 0.59 0.41

Predicted
(a) Confusion Matrix without transfer on

P1 using all the sources.

Absent Present

G
ro

un
d

Tr
ut

h

Absent 0.74 0.26

Present 0.7 0.3

Predicted
(b) Confusion Matrix without transfer on

P1 using the first two sources
according to the IWCV metric.

Absent Present

G
ro

un
d

Tr
ut

h

Absent 0.44 0.56

Present 0.84 0.16

Predicted
(c) Confusion Matrix without transfer on

P1 using solely the best source
according to the IWCV metric.

Absent Present

G
ro

un
d

Tr
ut

h

Absent 0.56 0.44

Present 0.73 0.27

Predicted
(d) Confusion Matrix with transfer on P1

using all the sources.

Absent Present
G

ro
un

d
Tr

ut
h

Absent 0.77 0.23

Present 0.66 0.34

Predicted
(e) Confusion Matrix with transfer on P1

using the first two sources according
to the IWCV metric.

Absent Present

G
ro

un
d

Tr
ut

h

Absent 0.82 0.18

Present 0.93 0.069

Predicted
(f) Confusion Matrix with transfer on P1

using solely the best source
according to the IWCV metric.

Figure A.1: Binarized Confusion Matrices on P1.

Absent Present

G
ro

un
d

Tr
ut

h

Absent 0.35 0.65

Present 0.46 0.54

Predicted
(a) Confusion Matrix without transfer on

P2 using all the sources.

Absent Present

G
ro

un
d

Tr
ut

h

Absent 0.65 0.35

Present 0.7 0.3

Predicted
(b) Confusion Matrix without transfer on

P2 using the first two sources
according to the IWCV metric.

Absent Present
G

ro
un

d
Tr

ut
h

Absent 0.87 0.13

Present 0.68 0.32

Predicted
(c) Confusion Matrix without transfer on

P2 using solely the best source
according to the IWCV metric.

Absent Present

G
ro

un
d

Tr
ut

h

Absent 0.47 0.53

Present 0.58 0.42

Predicted
(d) Confusion Matrix with transfer on P2

using all the sources.

Absent Present

G
ro

un
d

Tr
ut

h

Absent 0.71 0.29

Present 0.73 0.27

Predicted
(e) Confusion Matrix with transfer on P2

using the first two sources according
to the IWCV metric.

Absent Present

G
ro

un
d

Tr
ut

h

Absent 0.78 0.22

Present 0.56 0.44

Predicted
(f) Confusion Matrix with transfer on P2

using solely the best source
according to the IWCV metric.

Figure A.2: Binarized Confusion Matrices on P2.

120

Absent Present

G
ro

un
d

Tr
ut

h

Absent 0.49 0.51

Present 0.29 0.71

Predicted
(a) Confusion Matrix without transfer on

P3 using all the sources.

Absent Present

G
ro

un
d

Tr
ut

h

Absent 0.24 0.76

Present 0.21 0.79

Predicted
(b) Confusion Matrix without transfer on

P3 using the first two sources
according to the IWCV metric.

Absent Present

G
ro

un
d

Tr
ut

h

Absent 0.59 0.41

Present 0.61 0.39

Predicted
(c) Confusion Matrix without transfer on

P3 using solely the best source
according to the IWCV metric.

Absent Present

G
ro

un
d

Tr
ut

h

Absent 0.59 0.41

Present 0.65 0.35

Predicted
(d) Confusion Matrix with transfer on P3

using all the sources.

Absent Present
G

ro
un

d
Tr

ut
h

Absent 0.53 0.47

Present 0.5 0.5

Predicted
(e) Confusion Matrix with transfer on P3

using the first two sources according
to the IWCV metric.

Absent Present

G
ro

un
d

Tr
ut

h

Absent 0.58 0.42

Present 0.48 0.52

Predicted
(f) Confusion Matrix with transfer on P3

using solely the best source
according to the IWCV metric.

Figure A.3: Binarized Confusion Matrices on P3.

Absent Present

G
ro

un
d

Tr
ut

h Absent 0.52 0.48

Present 0.46 0.54

Predicted
(a) Confusion Matrix without transfer on

P4 using all the sources.

Absent Present

G
ro

un
d

Tr
ut

h Absent 0.25 0.75

Present 0.23 0.77

Predicted
(b) Confusion Matrix without transfer on

P4 using the first two sources
according to the IWCV metric.

Absent Present

G
ro

un
d

Tr
ut

h Absent 0.75 0.25

Present 0.65 0.35

Predicted
(c) Confusion Matrix without transfer on

P4 using solely the best source
according to the IWCV metric.

Absent Present

G
ro

un
d

Tr
ut

h Absent 0.55 0.45

Present 0.49 0.51

Predicted
(d) Confusion Matrix with transfer on P4

using all the sources.

Absent Present

G
ro

un
d

Tr
ut

h Absent 0.53 0.47

Present 0.52 0.48

Predicted
(e) Confusion Matrix with transfer on P4

using the first two sources according
to the IWCV metric.

Absent Present

G
ro

un
d

Tr
ut

h Absent 0.75 0.25

Present 0.79 0.21

Predicted
(f) Confusion Matrix with transfer on P4

using solely the best source
according to the IWCV metric.

Figure A.4: Binarized Confusion Matrices on P4.

121

APPENDIXB
Time-Variant Variational Transfer for Value

Functions: Proofs

B.1 Proof of Theorem 7.2.6

Definition B.1.1. For a spatial kernel KS: µl(KS) =
∫
θlKS(θ)dθ

Definition B.1.2. For a temporal kernel KT : al(−ρ) =
∫ 1

−ρ t
lKT (t)dt

Lemma B.1.1 (Estimator consistency on the right boundary). Let t ∈ Br = {τ : 1− λ ≤ τ ≤ 1}
then under assumptions of Theorem 7.2.6:

E[p̂(θ, t)|M] = p(θ, t) +O(λ) +O(tr(H)),

whereM represents all the discrete random variables Mi for i = 1 . . . n.

Proof.

E[p̂(θ, t)|M] =

=
1

N̄λ|H| 12a0(−ρ)

n∑
i=1

∫
KT

(
t− τ
λ

) Mi∑
j=1

∫ +∞

−∞
KS

(
H−

1
2 (θ − x)

)
p(x, τ)dxdτ

(B.1)

123

Appendix B. Time-Variant Variational Transfer for Value Functions: Proofs

=
1

N̄λ
�
��|H| 12 a0(−ρ)

n∑
i=1

∫
KT

(
t− τ
λ

) Mi∑
j=1

∫ −∞
+∞
−KS(y)p(θ −H 1

2y, τ)
�
��|H| 12 dydτ

(B.2)

=
1

N̄λa0(−ρ)

n∑
i=1

∫
KT

(
t− τ
λ

) Mi∑
j=1

∫ +∞

−∞
KS(y)

(
p(θ, τ)− (H

1
2y)T∇Sp(θ, τ)+

1

2
(H

1
2y)THSp(θ, τ)(H

1
2y) + o(tr(H))

)
dydτ (B.3)

=
1

N̄λa0(−ρ)

n∑
i=1

∫
KT

(
t− τ
λ

)
Mi

(∫ +∞

−∞
KS(y)p(θ, τ)dy

((((
((((

((((
(((

(((

−
∫ +∞

−∞
KS(y)(H

1
2y)T∇Sp(θ, τ)dy+∫ +∞

−∞

1

2
KS(y)(H

1
2y)THSp(θ, τ)(H

1
2y)dy + o(tr(H))

)
dτ (B.4)

=
1

N̄λa0(−ρ)

n∑
i=1

∫
KT

(
t− τ
λ

)
Mi

(
p(θ, τ)+

1

2
µ2(KS)tr(HHsp(θ, τ)) + o(tr(H))

)
dτ (B.5)

=
1

λa0(−ρ)

∫ t
λ

t−1
λ

KT

(
t− τ
λ

)(
p(θ, τ) +O(tr(H))

)
dτ (B.6)

=
1

λa0(−ρ)

(∫ 1

−ρ
KT

(
t− τ
λ

)
p(θ, τ)dτ +O(tr(H))

∫ 1

−ρ
KT

(
t− τ
λ

)
dτ

)
(B.7)

=
��λ

��λa0(−ρ)

(
−
∫ −ρ

1

KT (v)p(θ, t− λv)dv −O(tr(H))

∫ −ρ
1

KT (v)dv

)
(B.8)

=
1

a0(−ρ)

(∫ 1

−ρ
KT (v)

(
p(θ, t)− λvp′(θ, t)+

1

2
λ2v2p′′(θ, t) + o(λ2)

)
dv +O(tr(H))

)
(B.9)

= p(θ, t)− λp′(θ, t)a1(−ρ)

a0(−ρ)
+O(λ2) +O(tr(H)) (B.10)

= p(θ, t) +O(λ) +O(tr(H)), (B.11)

124

B.1. Proof of Theorem 7.2.6

where in (B.2) we performed a change of variable, y = H−
1
2 (θ − x), in (B.3) we used the

following Taylor expansion:

p(θ −H 1
2y, τ) = p(θ, τ)− (H

1
2y)T∇Sp(θ, τ) +

1

2
(H

1
2y)THSp(θ, τ)(H

1
2y) + o(tr(H)),

in (B.4) we used Assumption 7.2.4,in (B.5) we used Definition B.1.1, in (B.6) we used
t−τ
λ
∈ [t−1

λ
, t
λ
), in (B.7) we set t = 1− ρλ, which implies t−τ

λ
∈ [−ρ, 1

λ
− ρ), then we used

the support of KT (assumed to be [−1, 1] without loss of generality) since λ→ 0. Finally,
in (B.8) we used a change of variable, t−τ

λ
= v, and in (B.9) we used the following Taylor

expansion:

p(θ, t− λv) = p(θ, t)− λvp′(θ, t) +
1

2
λ2v2p′′(θ, v) + o(λ2).

Notice that we reported the consistency proof only on the right boundary because is the
one we use in the context of our algorithm. The above procedure can be easily adjusted to
prove consistency of the estimator on the left boundary getting the same convergence rate.
Moreover, analogously, we can obtain consistency away from the two boundaries with a
convergence rate squared w.r.t. λ.

Definition B.1.3. For a spatial kernel KS: R(KS) =
∫
K2
S(θ)dθ

Definition B.1.4. For a temporal kernel KT : bKT (−ρ) =
∫ 1

−ρK
2
T (t)dt

Lemma B.1.2 (Variance of the estimator on the right boundary). Let t ∈ Br = {τ : 1− λ ≤ τ ≤ 1}
then under assumptions of Theorem 7.2.6:

Var[p̂(θ, t)|M] ≤ C1

N̄ |H| 12λ
,

whereM represents all the discrete random variables Mi for i = 1 . . . n.

Proof.

Var[p̂(θ, t)|M] =
1

N̄a2
0(−ρ)

Var

[
1

|H| 12λ
KT

(
t− ti
λ

)
KS

(
H−

1
2 (θ − xij)

)]
(B.12)

=
1

N̄a2
0(−ρ)

(
E
[

1

|H|λ2
K2
T

(
t− ti
λ

)
K2
S

(
H−

1
2 (θ − xij)

)]
−

E2

[
1

|H| 12λ
KT

(
t− ti
λ

)
KS

(
H−

1
2 (θ − xij)

)])
(B.13)

125

Appendix B. Time-Variant Variational Transfer for Value Functions: Proofs

=
1

N̄a2
0(−ρ)

(∫
1

|H|λ2
K2
T

(
t− τ
λ

)∫ −∞
+∞
−|H| 12K2

S(y)p(θ −H 1
2y, τ)dydτ−(∫

1

|H| 12λ
KT

(
t− τ
λ

)∫ −∞
+∞
−|H| 12KS(y)p(θ −H 1

2y, τ)dydτ

)2)
(B.14)

=
1

N̄a2
0(−ρ)

(∫
1

|H| 12λ2
K2
T

(
t− τ
λ

)∫ +∞

−∞
K2
S(y) (p(θ, τ) + o(1)) dydτ−(∫

1

λ
KT

(
t− τ
λ

)∫ +∞

−∞
KS(y) (p(θ, τ) + o(1)) dydτ

)2)
(B.15)

=
1

N̄a2
0(−ρ)

(∫
1

|H| 12λ2
K2
T

(
t− τ
λ

)
(p(θ, τ) + o(1))R(KS)dτ−(∫

1

λ
KT

(
t− τ
λ

)
(p(θ, τ) + o(1)) dτ

)2)
(B.16)

=
1

N̄a2
0(−ρ)

(∫ 1

−ρ

1

|H| 12λ2
K2
T

(
t− τ
λ

)
(p(θ, τ) + o(1))R(KS)dτ−(∫ 1

−ρ

1

λ
KT

(
t− τ
λ

)
(p(θ, τ) + o(1)) dτ

)2)
(B.17)

=
1

N̄a2
0(−ρ)

(∫ −ρ
1

− 1

|H| 12λ
K2
T (v) (p(θ, t− λv) + o(1))R(KS)dv−(∫ −ρ

1

−KT (v) (p(θ, t− λv) + o(1)) dv

)2)
(B.18)

=
1

N̄a2
0(−ρ)

(∫ 1

−ρ

1

|H| 12λ
K2
T (v) (p(θ, t) + o(1))R(KS)dv−(∫ 1

−ρ
KT (v) (p(θ, t) + o(1)) dv

)2)
(B.19)

=
1

N̄a2
0(−ρ)

(
p(θ, t) + o(1)

|H| 12λ
R(KS)bKT (−ρ)−

(
a0(−ρ)(p(θ, t) + o(1))

)2

)
(B.20)

=
p(θ, t)R(KS)bKT (−ρ)

N̄ |H| 12λa2
0(−ρ)

+O

(
1

N̄ |H| 12λ

)
(B.21)

126

B.1. Proof of Theorem 7.2.6

= O

(
1

N̄ |H| 12λ

)
→ ∃ C1 : Var[p̂(θ, t)|M] ≤ C1

N̄ |H| 12λ
, (B.22)

where in (B.14) we performed a change of variable, y = H−
1
2 (θ − x), in (B.15) we used

the following Taylor expansion:

p(θ −H 1
2y, τ) = p(θ, τ) + o(1),

in (B.16) we used Definition B.1.3, in (B.17) we considered the fact that t ∈ Br as we
have done in (B.6) and (B.7) of the proof of B.1.1, in (B.18) we performed a change of
variable, t−τ

λ
= v, in (B.19) we used the following Taylor expansion:

p(θ, t− λv) = p(θ, t) + o(1),

whereas in (B.20) we have used Definition B.1.4. Finally, in (B.22) we have used the fact
that p(θ, t) has bounded derivatives and is a pdf, therefore it has finite supremum.

Lemma B.1.3 (Bound on the absolute values). Let t ∈ Br = {τ : 1− λ ≤ τ ≤ 1} then
under assumptions of Theorem 7.2.6: p̂(θ, t)− E[p̂(θ, t)|M] is the sum of N̄ independent
random variables, denoted as vi, with zero mean and absolute values bounded by C2

N̄ |H|
1
2 λ

.

M represents all the discrete random variables Mi for i = 1 . . . n.

Proof.

|vi| =
∣∣∣∣ 1

N̄λ|H| 12a0(−ρ)
KT

(
t− ti
λ

)
KS(H−

1
2 (θ − xij))−

p(θ, t) +O(λ) +O(tr(H))

N̄

∣∣∣∣ (B.23)

≤
∣∣∣∣∣ MTMS

N̄λ|H| 12a0(−ρ)
− p(θ, t) +O(λ) +O(tr(H))

N̄

∣∣∣∣∣ (B.24)

= O

(
1

N̄λ|H| 12

)
→ ∃C2 : |vi| ≤

C2

N̄ |H| 12λ
, (B.25)

where in (B.23) we used lemma B.1.1 and in (B.24) we used the fact thatKT has a compact
support on R and KS has a supremum.

Now the proof of Theorem 7.2.6 can follow.

127

Appendix B. Time-Variant Variational Transfer for Value Functions: Proofs

Proof. Let ξ = C

(
logn

N̄ |H|
1
2 λ

) 1
2

and C3 = 1

max(C1,
C2
3)

, using Bernstein’s inequality we can

write:

P (|p̂(θ, t)− E[p̂(θ, t)|M]| > ξ|M) ≤ 2 exp

− 1
2
ξ2

C1

N̄ |H|
1
2 λ

+ 1
3

C2ξ

N̄ |H|
1
2 λ

 (B.26)

= 2 exp

(
−

1
2
C2 log n

C1 + 1
3
C2ξ

)
≤ 2 exp

(
−C3C

2 log n

1 + ξ

)
,∀(θ, t). (B.27)

Therefore, if C4 > 0 is given, and we choose C2 > 3C4

C3
, then we can write:

sup
(θ,t) ∈ Rp×I

P

|p̂(θ, t)− E[p̂(θ, t)|M]| > C

(
log n

N̄ |H| 12λ

) 1
2

 ≤ 2 exp

(
−3C4 log n

1 + ξ

)
(B.28)

= 2n−
3C4
1+ξ . (B.29)

Now restricting to finite subsets Kn ⊂ K ⊂ Rp and In ⊂ I where Kn × In has at most
bn

2C4
1+ξ c elements, we have:

P

 sup
(θ,t) ∈ Kn×In

|p̂(θ, t)− E[p̂(θ, t)|M]| > C

(
log n

N̄ |H| 12λ

) 1
2

 ≤ 2n
−C4
1+ξ . (B.30)

From the Hölder-continuity of the estimator (since the two kernels have bounded first
derivative):

sup
(θ,t) ∈ K×I

{|p̂(θ, t)− E[p̂(θ, t)|M]|} − sup
(θ,t) ∈ Kn×In

{|p̂(θ, t)− E[p̂(θ, t)|M]|} =∣∣∣∣∣ sup
(θ,t) ∈ K×I

{|p̂(θ, t)− E[p̂(θ, t)|M]|} − sup
(θ,t) ∈ Kn×In

{|p̂(θ, t)− E[p̂(θ, t)|M]|}
∣∣∣∣∣ ≤∣∣∣∣∣ sup

(θ,t) ∈ K×I
{p̂(θ, t)− E[p̂(θ, t)|M]} − sup

(θ,t) ∈ Kn×In
{p̂(θ, t)− E[p̂(θ, t)|M]}

∣∣∣∣∣ ≤
D||v∗ − v∗n||α, (B.31)

where

v∗ = arg sup
(θ,t) ∈ K×I

{p̂(θ, t)− E[p̂(θ, t)|M]}

128

B.1. Proof of Theorem 7.2.6

v∗n = arg sup
(θ,t) ∈ Kn×In

{p̂(θ, t)− E[p̂(θ, t)|M]} ,

therefore:

P

 sup
(θ,t) ∈ K×I

|p̂(θ, t)− E[p̂(θ, t)|M]| > C

(
log n

N̄ |H| 12λ

) 1
2

+D||v∗ − v∗n||α
 ≤

P

 sup
(θ,t) ∈ Kn×In

|p̂(θ, t)− E[p̂(θ, t)|M]| > C

(
log n

N̄ |H| 12λ

) 1
2

 (B.32)

now, for sufficiently large C4, ||v∗ − v∗n|| ≤
√
p+1
2 p+1

√
(Kmax−Kmin)p(Imax−Imin)⌊

n
2C4
1+ξ

⌋ and

D

√p+1
2 p+1

√
(Kmax−Kmin)p(Imax−Imin)⌊

n
2C4
1+ξ

⌋

α

is negligible w.r.t. ξ as n tends to infinity, where

Kmax e Kmin are the endpoints for each dimension of K (we assume them to be the same
in each dimension for the sake of simplicity). Analogously for Imax and Imin (notice that
I is mono-dimensional). Therefore:

P
(

sup
(θ,t) ∈ K×I

|p̂(θ, t)− E[p̂(θ, t)|M]| > C

(
log n

N̄ |H| 12λ

) 1
2

+

D

(
p+ 1

4

)α
2

(Kmax −Kmin)p(Imax − Imin)⌊
n

2C4
1+ξ

⌋
 α

p+1)
≤

P

 sup
(θ,t) ∈ Kn×In

|p̂(θ, t)− E[p̂(θ, t)|M]| > C

(
log n

N̄ |H| 12λ

) 1
2

 . (B.33)

From (B.30) and (B.33), we can write:

P
(

sup
(θ,t) ∈ K×I

|p̂(θ, t)− E[p̂(θ, t)|M]| < C

(
log n

N̄ |H| 12λ

) 1
2

+

D

(
p+ 1

4

)α
2

(Kmax −Kmin)p(Imax − Imin)⌊
n

2C4
1+ξ

⌋
 α

p+1)
≥ 1− 2n

−C4
1+ξ (B.34)

129

Appendix B. Time-Variant Variational Transfer for Value Functions: Proofs

Therefore, as n→∞ with probability 1:

|p̂(θ, t)− p(θ, t)−O(λ)−O(tr(|H|))| = O

[
C

(
log n

N̄ |H| 12λ

) 1
2

+

D

(
p+ 1

4

)α
2

(Kmax −Kmin)p(Imax − Imin)⌊
n

2C4
1+ξ

⌋
 α

p+1]
,∀ (θ, t) ∈ K × I

(B.35)

Finally, we get:

p̂(θ, t) = p(θ, t) +O

(log n

N̄ |H| 12λ

) 1
2

+ λ+ tr(H)

 ,∀ (θ, t) ∈ K × I (B.36)

B.2 Upper Bound on the KL-Divergence Between the Prior and the Poste-
rior

In this section, we report the steps needed to get an upper bound on the KL-Divergence
between the posterior q our prior p̂. Let us define S = 1

a0(−ρ)N̄λ

∑n
i=1

∑Mi

j=1KT (t−ti
λ

),
hence:

DKL(q||p̂(·, t)) =

∫
q(θ)log

q(θ)

p̂(θ, t)
dθ =

∫
q(θ)log

q(θ)
S
S
p̂(θ, t)

dθ (B.37)

=

∫
q(θ)log

q(θ)
1

Sa0(−ρ)N̄ |H|
1
2 λ

∑n
i=1KT (t−ti

λ
)
∑Mi

j=1KS(H−
1
2 (θ − θij))

dθ+

∫
q(θ) log

1

S
dθ (B.38)

Now the first term in Equation (B.38) is the KL-Divergence between two Mixture of Gaus-
sians, which can be upper bounded using the same procedure as in Hershey and Olsen
[2007], and the second term is a constant in the ELBO optimization. Therefore:

DKL(q||p̂(·, t)) ≤ DKL(χ(2)||χ(1)) + log
1

S
+
∑
i,j

χ
(2)
j,iDKL(f qi ||f p̂j), (B.39)

where we are rewriting q =
∑

i c
q
if

q
i and p̂ =

∑
j c

p̂
jf

p̂
j with cyx being a generic weight and

f yx = N (µyx,Σ
y
x) being a generic component, (x, y) ∈ {(i, q), (j, p̂)}. Furthermore, we

130

B.3. Proof of Theorem 7.3.1

have:

χ
(1)
i,j =

cp̂jχ
(2)
j,i∑

i′ χ
(2)
j,i′

, χ
(2)
j,i =

c
(q)
i χ

(1)
i,j e
−DKL(fqi ||f

p̂
j)∑

j′ χ
(1)
i,j′e

−DKL(fqi ||f
p̂

j′)
. (B.40)

Finally, notice that cqi = 1
C

for each i, where C is the number of components for the
posterior, whereas cp̂j = 1

Sa0(−ρ)N̄λ
KT (t−ti

λ
), with a little abuse of notation over the index i

and j.

B.3 Proof of Theorem 7.3.1

The proof of Theorem 7.3.1 is straightforward, we just need to follow the same procedure
of Tirinzoni et al. [2018a] plugging in the bound on the KL-Divergence of Equation (B.39).
In the following we report the proof for completeness.

Proof. We start from Lemma 2 of Tirinzoni et al. [2018a] with variational parameter ξ̂ =
(µ̂1, . . . , µ̂C , Σ̂1, . . . , Σ̂C), whereas, for the right-hand side, we set µi = θ∗ and Σi = cI
for each i = 1, . . . , C, for some c > 0:

Eqξ̂

[∣∣∣∣∣∣B̃θ

∣∣∣∣∣∣2
ν

]
≤ inf

ξ∈Ξ

{
Eqξ

[∣∣∣∣∣∣B̃θ

∣∣∣∣∣∣2
ν

]
+ Eqξ̂ [v(θ)] + 2

ψ

N
DKL(qξ||p̂)

}
+ 8

R2
max

(1− γ)2

√
log 2

δ

2N

≤ EN (θ∗,cI)

[∣∣∣∣∣∣B̃θ

∣∣∣∣∣∣2
ν

]
+ EN (θ∗,cI) [v(θ)] + 2

ψ

N
DKL(N (θ∗, cI)||p̂)+

8
R2
max

(1− γ)2

√
log 2

δ

2N
. (B.41)

From Appendix B.2 we have:

DKL(N (θ∗, cI)||p̂) ≤

DKL(χ(2)||χ(1)) + log
1

S
+
∑
j

χ
(2)
j DKL(N (θ∗, cI)||N (θj, σ

2I)), (B.42)

where

χ
(1)
j = cp̂j , χ

(2)
j =

cp̂je
−DKL(N (θ∗,cI)||N (θj ,σ

2I))∑
j′ c

p̂
j′e
−DKL(N (θ∗,cI)||N (θj′ ,σ

2I))
(B.43)

131

Appendix B. Time-Variant Variational Transfer for Value Functions: Proofs

obtained noticing that we can remove the index i because we have reduced the posterior
to one component. χ(2)

j can be rewritten:

χ
(2)
j =

cp̂je
− 1

2σ2
||θ∗−θj ||∑

j′ c
p̂
j′e
− 1

2σ2
||θ∗−θj′ ||

(B.44)

if we plug in the closed form expression of the KL-Divergence (B.45) into its definition.

DKL(N (θ∗, cI)||N (θj, σ
2I)) =

1

2

(
p log

σ2

c
+ p

c

σ2
+
||θ∗ − θj||

σ2
− p
)
. (B.45)

Now we proceed upper bounding the first and then the third term of (B.42):

DKL(χ(2)||χ(1)) =
∑
j

χ
(2)
j log

χ
(2)
j

χ
(1)
j

(B.46)

=
∑
j

χ
(2)
j logχ

(2)
j −

∑
j

χ
(2)
j logχ

(1)
j (B.47)

≤
∑
j

χ
(2)
j log

1

cp̂j
(B.48)

where we got (B.48) just noticing in (B.47) that the first term is negative. Considering the
third term, we have:∑
j

χ
(2)
j DKL(N (θ∗, cI)||N (θj, σ

2I)) =
1

2

∑
j

χ
(2)
j

(
p log

σ2

c
+ p

c

σ2
+
||θ∗ − θj||

σ2
− p
)

≤ 1

2
p log

σ2

c
+

1

2
p
c

σ2
+
∑
j

χ
(2)
j

||θ∗ − θj||
2σ2

.

(B.49)

Therefore:

DKL(N (θ∗, cI)||p̂) ≤∑
j

χ
(2)
j log

1

cp̂j
+ log

1

S
+

1

2
p log

σ2

c
+

1

2
p
c

σ2
+
∑
j

χ
(2)
j

||θ∗ − θj||
2σ2

. (B.50)

Now leveraging the above equation, the following upper bound obtained in the proof of
Theorem 3 in Tirinzoni et al. [2018a]:

EN (θ∗,cI)

[∣∣∣∣∣∣B̃θ

∣∣∣∣∣∣2
ν

]
≤ 2

∣∣∣∣∣∣B̃θ∗

∣∣∣∣∣∣2
ν

+
1

2
γ2κ2c2φ4

max + c(θmaxφmax(1 + γ))2, (B.51)

132

B.4. Experimental Details

and setting c= 1
N

(since the bound hold for any constant parameter c > 0), c1 = 8R2
max√

2(1−γ)2
,

c2 = θ2
maxφ

2
max(1−γ)2 +ψp log σ2 + 2ψ

∑
j χ

(2)
j log 1

cp̂j
+ 2ψ log 1

S
, c3 = 1

2
γ2κ2φ4

max + ψp
σ2

and ϕ(Θs) = 1
σ2

∑
j χ

(2)
j ||θ∗ − θj||, we can rewrite Equation (B.41) in the following way:

Eqξ̂

[∣∣∣∣∣∣B̃θ

∣∣∣∣∣∣2
ν

]
≤ 2

∣∣∣∣∣∣B̃θ∗

∣∣∣∣∣∣2
ν

+ v(θ∗) + c1

√
log 2

δ

N
+
c2 + ψp logN + ψϕ(Θs)

N
+
c3

N
(B.52)

B.4 Experimental Details

In this section, we provide some additional experimental details together with further re-
sults.

B.4.1 Parametrization

ADAM [Kingma and Ba, 2014] is used in every experiment as optimizer. The source tasks
are solved by a direct minimization of the TD error as described in section 3.4 of Tirinzoni
et al. [2018a], using a batch size of 50 for the rooms environments and of 32 for Mountain
Car and the lake Como water system, a buffer size of 50000, the projection parameter of
the mellow-max TD error gradient set to 0.5, the learning rate α = 10−3. The exploration
is ε-greedy with ε linearly decaying from 1 to 0.01 for Mountain Car and to 0.02 for
the rooms environments. Both decays happen within 50% of the maximum number of
learning iterations. In the lake Como environment we used a soft-max (Gibbs) policy with
parameter β linearly increasing from 0.5 to 9.275 through the learning iterations.

In the rooms environments, for what concern the two transfer algorithms, c-T2VT, and
c-MGVT, we have the following parametrization: batch size of 50, buffer size of 50000,
projection parameter of the mellow-max TD error gradient set to 0.5 (see section 3.4 of
Tirinzoni et al. [2018a]), the parameter of Equation (7.2) ψ = 10−6, 10 weights to estimate
the expected TD error, the learning rates are set to αµ = 10−3 and αL = 0.1 for the mean
and the Cholesky factor L of the posterior (moreover, the minimum eigenvalue reachable
by L is set to σ2

min = 10−4). Finally, for the prior, we use a diagonal isotropic matrix
H = 10−5I and λ = 0.3333 in the context of c-T2VT, furthermore, we have Σ = 10−5I
for the prior in the context of c-MGVT.

In the Mountain Car environment, c-T2VT and c-MGVT are parametrized in the fol-
lowing way: batch size of 500, buffer size of 10000, projection parameter of the mellow-
max TD error gradient set to 0.5, the parameter of Equation (7.2) ψ = 10−4, 10 weights
to estimate the expected TD error, the learning rates are set to αµ = 10−3 and αL = 10−4

133

Appendix B. Time-Variant Variational Transfer for Value Functions: Proofs

for the mean and the Cholesky factor L of the posterior (moreover, the minimum eigen-
value reachable by L is set to σ2

min = 10−4). Finally, for the prior, we use a diagonal
isotropic matrix H = 10−5I and λ = 0.3333 in the context of c-T2VT, furthermore, we
have Σ = 10−5I for the prior in the context of c-MGVT.

In the lake Como water system, 3-T2VT and 3-MGVT are parametrized in the follow-
ing way: batch size of 32, buffer size of 10000, projection parameter of the mellow-max
TD error gradient set to 0.5, the parameter of Equation (7.2) ψ = 10−4, 4 weights to es-
timate the expected TD error, the learning rates are set to αµ = 10−3 and αL = 10−4 for
the mean and the Cholesky factor L of the posterior (moreover, the minimum eigenvalue
reachable by L is set to σ2

min = 10−4). Finally, for the prior, we use a diagonal isotropic
matrix H = 10−5I and λ was chosen through the maximum-likelihood approach of Sec-
tion 7.5.5 in the context of 3-T2VT, furthermore, we have Σ = 10−5I for the prior in the
context of 3-MGVT.

B.4.2 Temporal Dynamics

In this section, we provide the analytical form of the different dynamics employed in
our experiments. Notice that these dynamics need to be plugged into the mean of our
Gaussian distribution from where we sample the parametrization defining the task (for the
rooms environment we will sample the positions of the doors, whereas, for the Mountain
Car environment, we will sample the base speed).

• Linear: 2t− 1, t ∈ [0, 1];

• Polynomial: at4 + bt3 + ct2 + dt + e, t ∈ [0, 1] and a = −15.625, b = 39.5833,
c = −31.875, d = 9.91667 and e = −1;

Linear Polynomial Sin

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

t

d(
t)

Figure B.1: Temporal dynamics.

134

B.4. Experimental Details

• Sinusoidal: sin(2πt), t ∈ [0, 1].

In Figure B.1, we report the graphical representation of the above analytical functions.
Now, given the range for a parameter [kmin, kmax], a given dynamic will span over

this interval in the following way: d(t) (kmax−kmin)
2

+ (kmax+kmin)
2

. Finally, notice that,
[kmin, kmax] = [0.001, 0.0015] for Mountain Car, whereas [kmin, kmax] = [0.7+padding, 9.3−
padding] for the parameters of the rooms environments. The padding variable is 0 for the
2-rooms, whereas is 2 for the 3-rooms environments. This padding variable was necessary
in the 3-rooms environments in order for the TD gradient algorithm to be able to solve the
source tasks in every configuration of the two doors.

B.4.3 λ-Sensitivity Results

In Figures B.2 and B.3, we report a sensitivity analysis of our algorithm w.r.t. λ in the 2-
rooms environment. This analysis is carried out computing the performance of the learning
algorithm w.r.t. different values of the previously mentioned parameter (whereas H =
10−5I for every λ). These results are also compared with the performance of the algorithm
when λ is chosen according to the likelihood optimization described in Section 7.5.5. In
Figures B.4 and B.5, we report the above-described analysis in the context of the 3-rooms
environment, whereas, in Figures B.6 and B.7, we have the Mountain Car environment.

In the context of both rooms environments, the performance of the likelihood approach
is satisfying, for both 1-T2VT and 3-T2VT, even though in some cases it is not optimal.
For what concern, the polynomial dynamic this may be due to its plateau (see Figure B.1)
which bias the choice for λ toward bigger values since the likelihood is evaluated in a
cross-validation manner. For the same reason, in the sin dynamic case, the likelihood-
based approach tends to select an average λ. Finally, the linear case in the 2-rooms is
almost optimal, whereas, in the 3-rooms, the performance decreases. This is due to the
fact that, in the 3-rooms environment, we have 2 parameters governing the dynamics (the
two doors positions) making the choice of λ harder to make in this setting.

In the context of the Mountain Car environment the likelihood approach always choose
the best λ as shown in Figures B.6 and B.7.

Implementation Details: since the λ ∈ [0, 1], we performed a grid search in order to
optimize Equation (7.5) .

B.4.4 Further Environmental Settings: Mountain Car and Lake Como Water Sys-
tem

Mountain Car

The state space consists in the position and velocity of the car. The reward function is
always −1 so the agent must reach the goal as soon as possible. The available actions are
backward full throttle, zero throttle and forward full throttle encoded as [−1, 0, 1]. The

135

Appendix B. Time-Variant Variational Transfer for Value Functions: Proofs

discount factor is γ = 0.99. The goal position is 0.5. Finally, the transition function is
positiont+1 = positiont + velocityt+1, velocityt+1 = velocityt + at ∗ 0.001 − 0.0025 ∗
cos(3 ∗ positiont). The velocity is clipped whenever exits the range [−0.07, 0.07] the
position is bound to lie in [−1.2, 0.6].

Lake Como

The reward function in the lake Como water system is composed of three main costs. The
demand cost is a squared function of the discrepancy between actual release and water
demand: −4(%t+1 − demandt)

2 if t is between may and august, otherwise −(%t+1 −
demandt)

2. The flooding cost is a constant penalty inflicted to the agent whenever a
water level flooding threshold is broken: −1 if water level > 1.24 else 0. Finally, the
unfeasibility penalty is just a discrepancy between the action requested by the agent and
the actual release the system was able to accomplish: −|at − %t+1|. Each component is
rescaled in [−1, 0] and contribute uniformly for 1

3
to the reward function. The actions

available to the agent are 8 different amount of water to be released: [0, 79.39, 88.10,
110.39, 148.39, 200.13, 225.25, 491.61]. The discount factor is γ = 0.9999.

λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6

λ = 0.7 λ = 0.8 λ = 0.9 λ = 1 likelihood

0.5 1 1.5 2 2.5

·103

0

0.2

0.4

0.6

0.8

Iterations

A
ve

ra
ge

R
et

ur
n

(a) 2-rooms polynomial dynamic.

0.5 1 1.5 2 2.5

·103

0

0.2

0.4

0.6

0.8

Iterations

A
ve

ra
ge

R
et

ur
n

(b) 2-rooms linear dynamic.

0.5 1 1.5 2 2.5

·103

0

0.2

0.4

0.6

0.8

Iterations

A
ve

ra
ge

R
et

ur
n

(c) 2-rooms sin dynamic.

Figure B.2: Average return achieved by 1-T2VT w.r.t. different choices of λ with 95% confidence intervals
computed using 50 independent runs.

136

B.4. Experimental Details

λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6

λ = 0.7 λ = 0.8 λ = 0.9 λ = 1 likelihood

0.5 1 1.5 2 2.5

·103

0

0.2

0.4

0.6

0.8

Iterations

A
ve

ra
ge

R
et

ur
n

(a) 2-rooms polynomial dynamic.

0.5 1 1.5 2 2.5

·103

0

0.2

0.4

0.6

0.8

Iterations

A
ve

ra
ge

R
et

ur
n

(b) 2-rooms linear dynamic.

0.5 1 1.5 2 2.5

·103

0

0.2

0.4

0.6

0.8

Iterations

A
ve

ra
ge

R
et

ur
n

(c) 2-rooms sin dynamic.

Figure B.3: Average return achieved by 3-T2VT w.r.t. different choices of λ with 95% confidence intervals
computed using 50 independent runs.

λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6

λ = 0.7 λ = 0.8 λ = 0.9 λ = 1 likelihood

3 6 9 12

·103

0.1

0.3

0.5

0.7

Iterations

A
ve

ra
ge

R
et

ur
n

(a) 3-rooms polynomial dynamic.

3 6 9 12

·103

0.1

0.3

0.5

0.7

Iterations

A
ve

ra
ge

R
et

ur
n

(b) 3-rooms linear dynamic.

3 6 9 12

·103

0

0.2

0.4

0.6

0.8

Iterations

A
ve

ra
ge

R
et

ur
n

(c) 3-rooms sin dynamic.

Figure B.4: Average return achieved by 1-T2VT w.r.t. different choices of λ with 95% confidence intervals
computed using 50 independent runs.

137

Appendix B. Time-Variant Variational Transfer for Value Functions: Proofs

λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6

λ = 0.7 λ = 0.8 λ = 0.9 λ = 1 likelihood

3 6 9 12

·103

0.1

0.3

0.5

0.7

Iterations

A
ve

ra
ge

R
et

ur
n

(a) 3-rooms polynomial dynamic.

3 6 9 12

·103

0.1

0.3

0.5

0.7

Iterations

A
ve

ra
ge

R
et

ur
n

(b) 3-rooms linear dynamic.

3 6 9 12

·103

0

0.2

0.4

0.6

0.8

Iterations

A
ve

ra
ge

R
et

ur
n

(c) 3-rooms sin dynamic.

Figure B.5: Average return achieved by 3-T2VT w.r.t. different choices of λ with 95% confidence intervals
computed using 50 independent runs.

λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6

λ = 0.7 λ = 0.8 λ = 0.9 λ = 1 likelihood

20 40 60

·103

−75

−70

−65

−60

−55

−50

−45

Iterations

A
ve

ra
ge

R
et

ur
n

(a) Mountain Car polynomial dynamic.

20 40 60

·103

−80

−70

−60

−50

−40

Iterations

A
ve

ra
ge

R
et

ur
n

(b) Mountain Car linear dynamic.

20 40 60

·103

−85

−75

−65

−55

Iterations

A
ve

ra
ge

R
et

ur
n

(c) Mountain Car sin dynamic.

Figure B.6: Average return achieved by 1-T2VT w.r.t. different choices of λ with 95% confidence intervals
computed using 50 independent runs.

138

B.4. Experimental Details

λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6

λ = 0.7 λ = 0.8 λ = 0.9 λ = 1 likelihood

20 40 60

·103

−75

−70

−65

−60

−55

−50

−45

Iterations

A
ve

ra
ge

R
et

ur
n

(a) Mountain Car polynomial dynamic.

20 40 60

·103

−80

−70

−60

−50

−40

Iterations

A
ve

ra
ge

R
et

ur
n

(b) Mountain Car linear dynamic.

20 40 60

·103

−85

−75

−65

−55

Iterations

A
ve

ra
ge

R
et

ur
n

(c) Mountain Car sin dynamic.

Figure B.7: Average return achieved by 3-T2VT w.r.t. different choices of λ with 95% confidence intervals
computed using 50 independent runs.

139

Bibliography

Sherief Abdallah and Michael Kaisers. Addressing environment non-stationarity by repeating q-learning updates. The
Journal of Machine Learning Research, 17(1):1582–1612, 2016.

T Mitchell Aide, Carlos Corrada-Bravo, Marconi Campos-Cerqueira, Carlos Milan, Giovany Vega, and Rafael Alvarez.
Real-time bioacoustics monitoring and automated species identification. PeerJ, 1:e103, 2013.

Maruan Al-Shedivat, Trapit Bansal, Yuri Burda, Ilya Sutskever, Igor Mordatch, and Pieter Abbeel. Continuous adapta-
tion via meta-learning in nonstationary and competitive environments. arXiv preprint arXiv:1710.03641, 2017.

Lucas N Alegre, Ana LC Bazzan, and Bruno C da Silva. Minimum-delay adaptation in non-stationary reinforcement
learning via online high-confidence change-point detection. In Proceedings of the 20th International Conference on
Autonomous Agents and MultiAgent Systems, pages 97–105, 2021.

Cesare Alippi. Intelligence for embedded systems. Springer, 2014.

Cesare Alippi, Pietro Braione, Vincenzo Piuri, and Fabio Scotti. A methodological approach to multisensor classification
for innovative laser material processing units. In IMTC 2001. Proceedings of the 18th IEEE Instrumentation and
Measurement Technology Conference. Rediscovering Measurement in the Age of Informatics (Cat. No. 01CH 37188),
volume 3, pages 1762–1767. IEEE, 2001.

Cesare Alippi, Stavros Ntalampiras, and Manuel Roveri. A cognitive fault diagnosis system for distributed sensor
networks. IEEE transactions on neural networks and learning systems, 24(8):1213–1226, 2013.

Cesare Alippi, Simone Disabato, and Manuel Roveri. Moving Convolutional Neural Networks to Embedded Systems:
The AlexNet and VGG-16 Case. In 2018 17th ACM/IEEE International Conference on Information Processing in
Sensor Networks (IPSN), pages 212–223, Porto, apr 2018. IEEE. ISBN 978-1-5386-5298-5.

Sven E Anderson, Amish S Dave, and Daniel Margoliash. Template-based automatic recognition of birdsong syllables
from continuous recordings. The Journal of the Acoustical Society of America, 100(2):1209–1219, 1996.

Andreas Argyriou, Theodoros Evgeniou, and Massimiliano Pontil. Multi-task feature learning. Advances in neural
information processing systems, 19:41–48, 2006.

141

Bibliography

Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas Navarro, Urmish Thakkar, Dibakar Gope, Vijay Janapa
Reddi, Matthew Mattina, and Paul N Whatmough. Micronets: Neural network architectures for deploying tinyml
applications on commodity microcontrollers. arXiv preprint arXiv:2010.11267, 2020.

André Barreto, Will Dabney, Rémi Munos, Jonathan J Hunt, Tom Schaul, Hado P van Hasselt, and David Silver. Suc-
cessor features for transfer in reinforcement learning. In Advances in neural information processing systems, pages
4055–4065, 2017.

Michèle Basseville, Igor V Nikiforov, et al. Detection of abrupt changes: theory and application, volume 104. Prentice
Hall Englewood Cliffs, 1993.

Selin Bastas, Mohammad Wadood Majid, Golrokh Mirzaei, Jeremy Ross, Mohsin M Jamali, Peter V Gorsevski, Joseph
Frizado, and Verner P Bingman. A novel feature extraction algorithm for classification of bird flight calls. In 2012
IEEE International Symposium on Circuits and Systems (ISCAS), pages 1676–1679. IEEE, 2012.

Jonathan Baxter and Peter L Bartlett. Infinite-horizon policy-gradient estimation. Journal of Artificial Intelligence
Research, 15:319–350, 2001.

Franz Berger, William Freillinger, Paul Primus, and Wolfgang Reisinger. Bird audio detection - dcase 2018. Technical
report, DCASE2018 Challenge, September 2018.

Christopher M Bishop. Pattern recognition and machine learning. springer, 2006.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians. Journal of the
American statistical Association, 112(518):859–877, 2017.

Forrest Briggs, Raviv Raich, and Xiaoli Z Fern. Audio classification of bird species: A statistical manifold approach. In
2009 Ninth IEEE International Conference on Data Mining, pages 51–60. IEEE, 2009.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John Schulman, Jie Tang, and Wojciech Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

Stuart A Brooker, Philip A Stephens, Mark J Whittingham, and Stephen G Willis. Automated detection and classification
of birdsong: An ensemble approach. Ecological Indicators, 117:106609, 2020.

Jacob Burbea. The convexity with respect to gaussian distributions of divergences of order α. Utilitas Mathematica, 26:
171–192, 1984.

Giuseppe Canonaco, Marcello Restelli, and Manuel Roveri. Model-free non-stationarity detection and adaptation in
reinforcement learning. In European Conference on Artificial Intelligence, pages 1047–1054. IOS Press, 2020a.

Giuseppe Canonaco, Manuel Roveri, Cesare Alippi, Fabrizio Podenzani, Antonio Bennardo, Marco Conti, and Nicola
Mancini. Corrosion prediction in oil and gas pipelines: a machine learning approach. In 2020 IEEE International
Instrumentation and Measurement Technology Conference (I2MTC), pages 1–6. IEEE, 2020b.

Giuseppe Canonaco, Alex Bergamasco, Alessio Mongelluzzo, and Manuel Roveri. Adaptive federated learning in
presence of concept drift. In 2021 International Joint Conference on Neural Networks (IJCNN), pages 1–7. IEEE,
2021a.

Giuseppe Canonaco, Manuel Roveri, Cesare Alippi, Fabrizio Podenzani, Antonio Bennardo, Marco Conti, and Nicola
Mancini. A machine-learning approach for the prediction of internal corrosion in pipeline infrastructures. In 2021
IEEE International Instrumentation and Measurement Technology Conference (I2MTC), pages 1–6. IEEE, 2021b.

Giuseppe Canonaco, Manuel Roveri, Cesare Alippi, Fabrizio Podenzani, Antonio Bennardo, Marco Conti, and Nicola
Mancini. A transfer-learning approach for corrosion prediction in pipeline infrastructures. Applied Intelligence, pages
1–16, 2021c.

142

Bibliography

Giuseppe Canonaco, Andrea Soprani, Matteo Giuliani, Andrea Castelletti, Manuel Roveri, and Marcello Restelli. Time-
variant variational transfer for value functions. In Uncertainty in Artificial Intelligence, pages 876–886. PMLR,
2021d.

A Castelletti, Stefano Galelli, Marcello Restelli, and Rodolfo Soncini-Sessa. Tree-based reinforcement learning for
optimal water reservoir operation. Water Resources Research, 46(9), 2010.

Olivier Catoni. Pac-bayesian supervised classification: the thermodynamics of statistical learning. arXiv preprint
arXiv:0712.0248, 2007.

Yash Chandak, Scott Jordan, Georgios Theocharous, Martha White, and Philip S Thomas. Towards safe policy improve-
ment for non-stationary mdps. Advances in Neural Information Processing Systems, 33, 2020a.

Yash Chandak, Georgios Theocharous, Shiv Shankar, Sridhar Mahadevan, Martha White, and Philip S Thomas. Opti-
mizing for the future in non-stationary mdps. arXiv preprint arXiv:2005.08158, 2020b.

Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd acm sigkdd
international conference on knowledge discovery and data mining, pages 785–794, 2016.

Zhiyuan Chen and Bing Liu. Lifelong machine learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning, 12(3):1–207, 2018.

Kewei Cheng, Tao Fan, Yilun Jin, Yang Liu, Tianjian Chen, and Qiang Yang. Secureboost: A lossless federated learning
framework. arXiv preprint arXiv:1901.08755, 2019.

Sharan Chetlur, Cliff Woolley, Philippe Vandermersch, Jonathan Cohen, John Tran, Bryan Catanzaro, and Evan Shel-
hamer. cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759, 2014.

Wang Chi Cheung, David Simchi-Levi, and Ruihao Zhu. Reinforcement learning for non-stationary markov decision
processes: The blessing of (more) optimism. In International Conference on Machine Learning, pages 1843–1854.
PMLR, 2020.

Samuel PM Choi, Dit-Yan Yeung, and Nevin Lianwen Zhang. An environment model for nonstationary reinforcement
learning. In Advances in neural information processing systems, pages 987–993, 2000.

Lior Cohen, Gil Avrahami, Mark Last, and Abraham Kandel. Info-fuzzy algorithms for mining dynamic data streams.
Applied Soft Computing, 8(4):1283–1294, 2008.

Bruno C Da Silva, Eduardo W Basso, Ana LC Bazzan, and Paulo M Engel. Dealing with non-stationary environments
using context detection. In Proceedings of the 23rd international conference on Machine learning, pages 217–224.
ACM, 2006.

Wenyuan Dai, Qiang Yang, Gui-Rong Xue, and Yong Yu. Boosting for transfer learning. In Proceedings of the 24th
international conference on Machine learning, pages 193–200, 2007.

G De Masi, M Gentile, R Vichi, R Bruschi, and G Gabetta. Multiscale processing of loss of metal: a machine learning
approach. In Journal of Physics: Conference Series, volume 869, page 012023. IOP Publishing, 2017.

Giulia De Masi, Roberta Vichi, Manuela Gentile, Roberto Bruschi, and Giovanna Gabetta. A neural network predictive
model of pipeline internal corrosion profile. In Proceeding of First International Conference on Systems Informatics,
Modeling and Simulation. IEEE Computer Society Washington. DC, USA, volume 29, pages 01–05, 2014.

C De Waard and U_ Lotz. Prediction of co˜ 2 corrosion of carbon steel. In CORROSION-NATIONAL ASSOCIATION
OF CORROSION ENGINEERS ANNUAL CONFERENCE-. NACE, 1993.

143

Bibliography

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and pattern recognition, pages 248–255. Ieee, 2009.

Simone Disabato and Manuel Roveri. Incremental on-device tiny machine learning. In Proceedings of the 2nd Interna-
tional Workshop on Challenges in Artificial Intelligence and Machine Learning for Internet of Things, pages 7–13,
2020.

Simone Disabato, Giuseppe Canonaco, Paul G Flikkema, Manuel Roveri, and Cesare Alippi. Birdsong detection at the
edge with deep learning. In 2021 IEEE International Conference on Smart Computing (SMARTCOMP), pages 9–16.
IEEE, 2021.

Gregory Ditzler, Manuel Roveri, Cesare Alippi, and Robi Polikar. Learning in nonstationary environments: A survey.
IEEE Computational Intelligence Magazine, 10(4):12–25, 2015.

Omar Darwiche Domingues, Pierre Ménard, Matteo Pirotta, Emilie Kaufmann, and Michal Valko. A kernel-based
approach to non-stationary reinforcement learning in metric spaces. In International Conference on Artificial Intelli-
gence and Statistics, pages 3538–3546. PMLR, 2021.

Finale Doshi-Velez and George Konidaris. Hidden parameter markov decision processes: A semiparametric regression
approach for discovering latent task parametrizations. In IJCAI: proceedings of the conference, volume 2016, page
1432. NIH Public Access, 2016.

Honghui Du, Leandro L Minku, and Huiyu Zhou. Multi-source transfer learning for non-stationary environments. In
2019 International Joint Conference on Neural Networks (IJCNN), pages 1–8. IEEE, 2019.

Yilun Du and Karthic Narasimhan. Task-agnostic dynamics priors for deep reinforcement learning. In International
Conference on Machine Learning, pages 1696–1705, 2019.

Lixin Duan, Dong Xu, and Shih-Fu Chang. Exploiting web images for event recognition in consumer videos: A multiple
source domain adaptation approach. In 2012 IEEE Conference on Computer Vision and Pattern Recognition, pages
1338–1345. IEEE, 2012.

Yan Duan, Xi Chen, Rein Houthooft, John Schulman, and Pieter Abbeel. Benchmarking deep reinforcement learning
for continuous control. In International Conference on Machine Learning, pages 1329–1338, 2016.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and stochastic optimiza-
tion. Journal of machine learning research, 12(7), 2011.

Olivier Dufour, Thierry Artieres, Hervé Glotin, and Pascale Giraudet. Clusterized mel filter cepstral coefficients and
support vector machines for bird song identification. Proceedings of the 1st workshop on Machine Learning for
Bioacoustics joint to the 30th ICML, pages 89–93, 2013.

Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap, volume 57 of. Monographs on Statistics and
applied probability, page 17, 1993.

Vassiliy A Epanechnikov. Non-parametric estimation of a multivariate probability density. Theory of Probability & Its
Applications, 14(1):153–158, 1969.

Theodoros Evgeniou and Massimiliano Pontil. Regularized multi–task learning. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 109–117, 2004.

Fernando Fernández and Manuela Veloso. Probabilistic policy reuse in a reinforcement learning agent. In Proceedings
of the fifth international joint conference on Autonomous agents and multiagent systems, pages 720–727, 2006.

144

Bibliography

André C Ferreira, Liliana R Silva, Francesco Renna, Hanja B Brandl, Julien P Renoult, Damien R Farine, Rita Covas,
and Claire Doutrelant. Deep learning-based methods for individual recognition in small birds. Methods in Ecology
and Evolution, 11(9):1072–1085, 2020.

George Fishman. Monte Carlo: concepts, algorithms, and applications. Springer Science & Business Media, 2013.

Elizabeth JS Fox, J Dale Roberts, and Mohammed Bennamoun. Text-independent speaker identification in birds. In
Ninth International Conference on Spoken Language Processing, 2006.

Karl-Heinz Frommolt and Klaus-Henry Tauchert. Applying bioacoustic methods for long-term monitoring of a nocturnal
wetland bird. Ecological Informatics, 21:4–12, 2014.

Haotian Fu, Hongyao Tang, Jianye Hao, Chen Chen, Xidong Feng, Dong Li, and Wulong Liu. Towards effective context
for meta-reinforcement learning: an approach based on contrastive learning. arXiv preprint arXiv:2009.13891, 2020.

Pratik Gajane, Ronald Ortner, and Peter Auer. A sliding-window algorithm for markov decision processes with arbitrar-
ily changing rewards and transitions. arXiv preprint arXiv:1805.10066, 2018.

João Gama, Indrė Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. A survey on concept drift
adaptation. ACM computing surveys (CSUR), 46(4):1–37, 2014.

Matteo Giuliani, Yu Li, Andrea Castelletti, and C Gandolfi. A coupled human-natural systems analysis of irrigated
agriculture under changing climate. Water Resources Research, 52(9):6928–6947, 2016.

Martin Graciarena, Michelle Delplanche, Elizabeth Shriberg, Andreas Stolcke, and Luciana Ferrer. Acoustic front-end
optimization for bird species recognition. In 2010 IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 293–296. IEEE, 2010.

Thomas Grill and Jan Schlüter. Two convolutional neural networks for bird detection in audio signals. In 2017 25th
European Signal Processing Conference (EUSIPCO), pages 1764–1768. IEEE, 2017.

Stephen Grossberg. Nonlinear neural networks: Principles, mechanisms, and architectures. Neural networks, 1(1):
17–61, 1988.

Neel Guha, Ameet Talwalkar, and Virginia Smith. One-shot federated learning. arXiv preprint arXiv:1902.11175, 2019.

Emmanuel Hadoux, Aurélie Beynier, and Paul Weng. Sequential decision-making under non-stationary environments
via sequential change-point detection. In Learning over Multiple Contexts (LMCE), 2014.

Eric C Hall and Rebecca M Willett. Online convex optimization in dynamic environments. IEEE Journal of Selected
Topics in Signal Processing, 9(4):647–662, 2015.

Peter Hall, Hans-Georg Müller, and Ping-Shi Wu. Real-time density and mode estimation with application to time-
dynamic mode tracking. Journal of Computational and Graphical Statistics, 15(1):82–100, 2006.

Stephen Hardy, Wilko Henecka, Hamish Ivey-Law, Richard Nock, Giorgio Patrini, Guillaume Smith, and Brian Thorne.
Private federated learning on vertically partitioned data via entity resolution and additively homomorphic encryption.
arXiv preprint arXiv:1711.10677, 2017.

Patrick J Hart, Esther Sebastián-González, Ann Tanimoto, Alia Thompson, Tawn Speetjens, Madolyn Hopkins, and
Michael Atencio-Picado. Birdsong characteristics are related to fragment size in a neotropical forest. Animal Be-
haviour, 137:45–52, 2018.

Douglas M Hawkins, Peihua Qiu, and Chang Wook Kang. The changepoint model for statistical process control. Journal
of quality technology, 35(4):355–366, 2003.

145

Bibliography

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In The IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

John R Hershey and Peder A Olsen. Approximating the kullback leibler divergence between gaussian mixture models.
In 2007 IEEE International Conference on Acoustics, Speech and Signal Processing-ICASSP’07, volume 4, pages
IV–317. IEEE, 2007.

Timothy Classen Hesterberg. Advances in importance sampling. PhD thesis, Stanford University, 1988.

Ivan Himawan, Michael Towsey, and Paul Roe. 3d convolution recurrent neural networks for bird sound detection. In
Proceedings of the 3rd Workshop on Detection and Classification of Acoustic Scenes and Events, pages 1–4, 2018.

Jiayuan Huang, Arthur Gretton, Karsten Borgwardt, Bernhard Schölkopf, and Alex Smola. Correcting sample selection
bias by unlabeled data. Advances in neural information processing systems, 19:601–608, 2006.

Geoff Hulten, Laurie Spencer, and Pedro Domingos. Mining time-changing data streams. In Proceedings of the seventh
ACM SIGKDD international conference on Knowledge discovery and data mining, pages 97–106, 2001.

Allison S Injaian, Lauren Y Poon, and Gail L Patricelli. Effects of experimental anthropogenic noise on avian settlement
patterns and reproductive success. Behavioral Ecology, 29(5):1181–1189, 2018.

M Chris Jones. Simple boundary correction for kernel density estimation. Statistics and computing, 3(3):135–146, 1993.

Peter Kairouz, H Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin Bhagoji, Keith
Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, et al. Advances and open problems in federated
learning. arXiv preprint arXiv:1912.04977, 2019.

Mikhail Khodak, Maria-Florina F Balcan, and Ameet S Talwalkar. Adaptive gradient-based meta-learning methods. In
Advances in Neural Information Processing Systems, pages 5915–5926, 2019.

Taylor W Killian, Samuel Daulton, George Konidaris, and Finale Doshi-Velez. Robust and efficient transfer learning
with hidden parameter markov decision processes. In Advances in neural information processing systems, pages
6250–6261, 2017.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980,
2014.

Joseph A Kogan and Daniel Margoliash. Automated recognition of bird song elements from continuous recordings using
dynamic time warping and hidden markov models: A comparative study. The Journal of the Acoustical Society of
America, 103(4):2185–2196, 1998.

Chih-Yuan Koh, Jaw-Yuan Chang, Chiang-Lin Tai, Da-Yo Huang, Han-Hsing Hsieh, and Yi-Wen Liu. Bird sound
classification using convolutional neural networks. In CLEF (Working Notes), 2019.

Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. Federated optimization: Distributed optimization beyond the
datacenter. arXiv preprint arXiv:1511.03575, 2015.

George Konidaris and Andrew G Barto. Building portable options: Skill transfer in reinforcement learning. In IJCAI,
volume 7, pages 895–900, 2007.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Solomon Kullback and Richard A Leibler. On information and sufficiency. The annals of mathematical statistics, 22(1):
79–86, 1951.

146

Bibliography

Mario Lasseck. Bird song classification in field recordings: winning solution for nips4b 2013 competition. In Proc. of
int. symp. Neural Information Scaled for Bioacoustics, sabiod. org/nips4b, joint to NIPS, Nevada, pages 176–181,
2013.

Mario Lasseck. Acoustic bird detection with deep convolutional neural networks. In Proceedings of the Detection and
Classification of Acoustic Scenes and Events 2018 Workshop (DCASE2018), pages 143–147, 2018.

Alessandro Lazaric. Transfer in reinforcement learning: a framework and a survey. In Reinforcement Learning, pages
143–173. Springer, 2012.

Alessandro Lazaric and Mohammad Ghavamzadeh. Bayesian multi-task reinforcement learning. In Proceedings of the
27th International Conference on International Conference on Machine Learning, pages 599–606, 2010.

Alessandro Lazaric, Marcello Restelli, and Andrea Bonarini. Transfer of samples in batch reinforcement learning. In
Proceedings of the 25th international conference on Machine learning, pages 544–551, 2008.

Erwan Lecarpentier and Emmanuel Rachelson. Non-stationary markov decision processes, a worst-case approach using
model-based reinforcement learning. Advances in Neural Information Processing Systems, 32:7216–7225, 2019.

Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL http://yann.lecun.com/
exdb/mnist/.

Chang-Hsing Lee, Sheng-Bin Hsu, Jau-Ling Shih, and Chih-Hsun Chou. Continuous birdsong recognition using gaus-
sian mixture modeling of image shape features. IEEE Transactions on Multimedia, 15(2):454–464, 2012.

Lucas Lehnert and Michael L Littman. Transfer with model features in reinforcement learning. arXiv preprint
arXiv:1807.01736, 2018.

Fangtao Li, Sinno Jialin Pan, Ou Jin, Qiang Yang, and Xiaoyan Zhu. Cross-domain co-extraction of sentiment and topic
lexicons. In Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 410–419, 2012.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith. Federated optimization
in heterogeneous networks. arXiv preprint arXiv:1812.06127, 2018.

Xiang Li, Kaixuan Huang, Wenhao Yang, Shusen Wang, and Zhihua Zhang. On the convergence of fedavg on non-iid
data. arXiv preprint arXiv:1907.02189, 2019.

Xiaogang Li, Dawei Zhang, Zhiyong Liu, Zhong Li, Cuiwei Du, and Chaofang Dong. Materials science: Share corrosion
data. Nature News, 527(7579):441, 2015.

Kexi Liao, Quanke Yao, Xia Wu, and Wenlong Jia. A numerical corrosion rate prediction method for direct assessment
of wet gas gathering pipelines internal corrosion. Energies, 5(10):3892–3907, 2012.

Mingsheng Long, Jianmin Wang, Guiguang Ding, Sinno Jialin Pan, and S Yu Philip. Adaptation regularization: A
general framework for transfer learning. IEEE Transactions on Knowledge and Data Engineering, 26(5):1076–1089,
2013.

Odalric-Ambrym Maillard, Rémi Munos, Alessandro Lazaric, and Mohammad Ghavamzadeh. Finite-sample analysis
of bellman residual minimization. In Proceedings of 2nd Asian Conference on Machine Learning, pages 299–314,
2010.

Peter Marler and Donald Isaac. Physical analysis of a simple bird song as exemplified by the chipping sparrow. The
Condor, 62(2):124–135, 1960.

147

http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

Bibliography

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient
learning of deep networks from decentralized data. In Artificial Intelligence and Statistics, pages 1273–1282. PMLR,
2017.

Russell Mendonca, Xinyang Geng, Chelsea Finn, and Sergey Levine. Meta-reinforcement learning robust to distribu-
tional shift via model identification and experience relabeling. arXiv preprint arXiv:2006.07178, 2020.

Alberto Maria Metelli, Matteo Papini, Francesco Faccio, and Marcello Restelli. Policy optimization via importance
sampling. In Advances in Neural Information Processing Systems, pages 5442–5454, 2018.

Lilyana Mihalkova, Tuyen Huynh, and Raymond J Mooney. Mapping and revising markov logic networks for transfer
learning. In Aaai, volume 7, pages 608–614, 2007.

Leandro L Minku. Transfer learning in non-stationary environments. In Learning from Data Streams in Evolving
Environments, pages 13–37. Springer, 2019.

Leandro L Minku and Xin Yao. How to make best use of cross-company data in software effort estimation? In
Proceedings of the 36th International Conference on Software Engineering, pages 446–456, 2014.

Rajdeep Mukherjee, Dipyaman Banerjee, Kuntal Dey, and Niloy Ganguly. Convolutional recurrent neural network based
bird audio detection. Technical report, DCASE2018 Challenge, September 2018.

Rafael Hernández Murcia and Vıctor Suárez Paniagua. Bird identification from continuous audio recordings. Proceed-
ings of the 1st workshop on Machine Learning for Bioacoustics joint to the 30th ICML, pages 96–97, 2013.

Anusha Nagabandi, Ignasi Clavera, Simin Liu, Ronald S Fearing, Pieter Abbeel, Sergey Levine, and Chelsea Finn.
Learning to adapt in dynamic, real-world environments through meta-reinforcement learning. arXiv preprint
arXiv:1803.11347, 2018.

Lawrence Neal, Forrest Briggs, Raviv Raich, and Xiaoli Z Fern. Time-frequency segmentation of bird song in
noisy acoustic environments. In 2011 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 2012–2015. IEEE, 2011.

Srdjan Nešić. Key issues related to modelling of internal corrosion of oil and gas pipelines–a review. Corrosion science,
49(12):4308–4338, 2007.

OpenAI, Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Przemysław Dębiak, Christy Dennison,
David Farhi, Quirin Fischer, Shariq Hashme, Chris Hesse, Rafal Józefowicz, Scott Gray, Catherine Olsson, Jakub
Pachocki, Michael Petrov, Henrique Pondé de Oliveira Pinto, Jonathan Raiman, Tim Salimans, Jeremy Schlatter,
Jonas Schneider, Szymon Sidor, Ilya Sutskever, Jie Tang, Filip Wolski, and Susan Zhang. Dota 2 with large scale
deep reinforcement learning. 2019. URL https://arxiv.org/abs/1912.06680.

Ronald Ortner, Pratik Gajane, and Peter Auer. Variational regret bounds for reinforcement learning. In Proceedings of
the 35th Conference on Uncertainty in Artificial Intelligence, 2019.

Sindhu Padakandla. A survey of reinforcement learning algorithms for dynamically varying environments. ACM Com-
puting Surveys (CSUR), 54(6):1–25, 2021.

Sindhu Padakandla, KJ Prabuchandran, and Shalabh Bhatnagar. Reinforcement learning algorithm for non-stationary
environments. Applied Intelligence, 50(11):3590–3606, 2020.

Kuldip K Paliwal, James G Lyons, and Kamil K Wójcicki. Preference for 20-40 ms window duration in speech analysis.
In 2010 4th International Conference on Signal Processing and Communication Systems, pages 1–4. IEEE, 2010.

Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Transactions on knowledge and data engineering,
22(10):1345–1359, 2009.

148

https://arxiv.org/abs/1912.06680

Bibliography

Sinno Jialin Pan, James T Kwok, Qiang Yang, et al. Transfer learning via dimensionality reduction. In AAAI, volume 8,
pages 677–682, 2008.

Jan Peter Patist. Optimal window change detection. In Seventh IEEE International Conference on Data Mining Work-
shops (ICDMW 2007), pages 557–562. IEEE, 2007.

Karl Pearson. Liii. on lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science, 2(11):559–572, 1901.

Christian F Perez, Felipe Petroski Such, and Theofanis Karaletsos. Generalized hidden parameter mdps transferable
model-based rl in a handful of trials. arXiv preprint arXiv:2002.03072, 2020.

Jan Peters and Stefan Schaal. Reinforcement learning of motor skills with policy gradients. Neural networks, 21(4):
682–697, 2008.

John Platt et al. Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods.
Advances in large margin classifiers, 10(3):61–74, 1999.

Ilyas Potamitis. Automatic classification of a taxon-rich community recorded in the wild. PloS one, 9(5), 2014.

Doina Precup, Richard S. Sutton, and Satinder P. Singh. Eligibility traces for off-policy policy evaluation. In ICML,
2000.

Nirosha Priyadarshani, Stephen Marsland, Isabel Castro, and Amal Punchihewa. Birdsong denoising using wavelets.
PloS one, 11(1), 2016.

Nirosha Priyadarshani, Stephen Marsland, and Isabel Castro. Automated birdsong recognition in complex acoustic
environments: a review. Journal of Avian Biology, 49(5):jav–01447, 2018.

Nirosha Priyadarshani, Stephen Marsland, Julius Juodakis, Isabel Castro, and Virginia Listanti. Wavelet filters for
automated recognition of birdsong in long-time field recordings. Methods in Ecology and Evolution, 11(3):403–417,
2020.

Martin L Puterman. Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons, 2014.

Rajat Raina, Alexis Battle, Honglak Lee, Benjamin Packer, and Andrew Y Ng. Self-taught learning: transfer learning
from unlabeled data. In Proceedings of the 24th international conference on Machine learning, pages 759–766, 2007.

Alfréd Rényi. On measures of information and entropy. In Proceedings of the 4th Berkeley symposium on mathematics,
statistics and probability, volume 1, 1961.

Christian Robert and George Casella. Monte Carlo statistical methods. Springer Science & Business Media, 2013.

Kenneth V Rosenberg, Adriaan M Dokter, Peter J Blancher, John R Sauer, Adam C Smith, Paul A Smith, Jessica C
Stanton, Arvind Panjabi, Laura Helft, Michael Parr, et al. Decline of the north american avifauna. Science, 366
(6461):120–124, 2019.

Manuel Roveri. Learning discrete-time markov chains under concept drift. IEEE transactions on neural networks and
learning systems, 2019.

Zachary J Ruff, Damon B Lesmeister, Leila S Duchac, Bharath K Padmaraju, and Christopher M Sullivan. Automated
identification of avian vocalizations with deep convolutional neural networks. Remote Sensing in Ecology and Con-
servation, 2019.

Schlumberger. Olga dynamic multiphase flow simulator. URL https://www.software.slb.com/sitecore/
content/software/home/software/products/olga.

149

https://www.software.slb.com/sitecore/content/software/home/software/products/olga
https://www.software.slb.com/sitecore/content/software/home/software/products/olga

Bibliography

Bernhard Scholkopf and Alexander J Smola. Learning with kernels: support vector machines, regularization, optimiza-
tion, and beyond. Adaptive Computation and Machine Learning series, 2018.

Masayuki Senzaki, Jesse R Barber, Jennifer N Phillips, Neil H Carter, Caren B Cooper, Mark A Ditmer, Kurt M Fristrup,
Christopher JW McClure, Daniel J Mennitt, Luke P Tyrrell, et al. Sensory pollutants alter bird phenology and fitness
across a continent. Nature, 587(7835):605–609, 2020.

Hidetoshi Shimodaira. Improving predictive inference under covariate shift by weighting the log-likelihood function.
Journal of statistical planning and inference, 90(2):227–244, 2000.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur Guez, Marc Lanctot,
Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A general reinforcement learning algorithm that masters
chess, shogi, and go through self-play. Science, 362(6419):1140–1144, 2018.

R. Soncini-Sessa, A. Castelletti, and E. Weber. Integrated and participatory water resources management: Theory.
Elsevier, Amsterdam, NL, 2007.

Norsork Standard. Co2 corrosion rate calculation model. Majorstural, Norway: Norwegian Technological Standards
Institute Oscarsgt, 20, 2005.

Dan Stowell, Michael D Wood, Hanna Pamuła, Yannis Stylianou, and Hervé Glotin. Automatic acoustic detection
of birds through deep learning: the first bird audio detection challenge. Methods in Ecology and Evolution, 10(3):
368–380, 2019.

W Nick Street and YongSeog Kim. A streaming ensemble algorithm (sea) for large-scale classification. In Proceedings
of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pages 377–382,
2001.

Masashi Sugiyama, Matthias Krauledat, and Klaus-Robert MÃžller. Covariate shift adaptation by importance weighted
cross validation. Journal of Machine Learning Research, 8(May):985–1005, 2007.

Masashi Sugiyama, Taiji Suzuki, and Takafumi Kanamori. Density ratio estimation in machine learning. Cambridge
University Press, 2012.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction, volume 1. MIT press Cambridge,
1998.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. 2011.

Richard S Sutton, David A McAllester, Satinder P Singh, and Yishay Mansour. Policy gradient methods for reinforce-
ment learning with function approximation. In Advances in neural information processing systems, pages 1057–1063,
2000.

Richard S Sutton, Anna Koop, and David Silver. On the role of tracking in stationary environments. In Proceedings of
the 24th international conference on Machine learning, pages 871–878. ACM, 2007.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethinking the inception ar-
chitecture for computer vision. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 2818–2826, 2016.

Matthew E. Taylor and Peter Stone. Transfer learning for reinforcement learning domains: A survey. Journal of Machine
Learning Research, 10(56):1633–1685, 2009. URL http://jmlr.org/papers/v10/taylor09a.html.

Matthew E Taylor, Peter Stone, and Yaxin Liu. Transfer learning via inter-task mappings for temporal difference learn-
ing. Journal of Machine Learning Research, 8(Sep):2125–2167, 2007.

150

http://jmlr.org/papers/v10/taylor09a.html

Bibliography

Matthew E Taylor, Nicholas K Jong, and Peter Stone. Transferring instances for model-based reinforcement learning.
In Joint European conference on machine learning and knowledge discovery in databases, pages 488–505. Springer,
2008.

Philip Thomas and Emma Brunskill. Data-efficient off-policy policy evaluation for reinforcement learning. In Interna-
tional Conference on Machine Learning, pages 2139–2148, 2016.

Philip S Thomas, Georgios Theocharous, and Mohammad Ghavamzadeh. High-confidence off-policy evaluation. In
Twenty-Ninth AAAI Conference on Artificial Intelligence, 2015.

Tijmen Tieleman and Geoffrey Hinton. Lecture 6.5-rmsprop, coursera: Neural networks for machine learning. Univer-
sity of Toronto, Technical Report, 2012.

Andrea Tirinzoni, Rafael Rodriguez Sanchez, and Marcello Restelli. Transfer of value functions via variational methods.
Advances in Neural Information Processing Systems, 31:6179–6189, 2018a.

Andrea Tirinzoni, Andrea Sessa, Matteo Pirotta, and Marcello Restelli. Importance weighted transfer of samples in
reinforcement learning. In International Conference on Machine Learning, pages 4936–4945. PMLR, 2018b.

Andrea Tirinzoni, Mattia Salvini, and Marcello Restelli. Transfer of samples in policy search via multiple importance
sampling. In International Conference on Machine Learning, pages 6264–6274, 2019.

Michael Towsey, Birgit Planitz, Alfredo Nantes, Jason Wimmer, and Paul Roe. A toolbox for animal call recognition.
Bioacoustics, 21(2):107–125, 2012.

Alexey Tsymbal. The problem of concept drift: definitions and related work. Computer Science Department, Trinity
College Dublin, 106(2):58, 2004.

Joost Verbraeken, Matthijs Wolting, Jonathan Katzy, Jeroen Kloppenburg, Tim Verbelen, and Jan S Rellermeyer. A
survey on distributed machine learning. ACM Computing Surveys (CSUR), 53(2):1–33, 2020.

Fabio Vesperini, Leonardo Gabrielli, Emanuele Principi, and Stefano Squartini. A capsule neural networks based ap-
proach for bird audio detection. Technical report, DCASE2018 Challenge, September 2018.

Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik, Junyoung Chung, David H
Choi, Richard Powell, Timo Ewalds, Petko Georgiev, et al. Grandmaster level in starcraft ii using multi-agent rein-
forcement learning. Nature, 575(7782):350–354, 2019.

Abraham Wald. Sequential tests of statistical hypotheses. The annals of mathematical statistics, 16(2):117–186, 1945.

Matt P Wand and M Chris Jones. Kernel smoothing. CRC press, 1994.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292, 1992.

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A survey of transfer learning. Journal of Big data, 3(1):9,
2016.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist reinforcement learning. Machine
learning, 8(3-4):229–256, 1992.

Aaron Wilson, Alan Fern, Soumya Ray, and Prasad Tadepalli. Multi-task reinforcement learning: a hierarchical bayesian
approach. In Proceedings of the 24th international conference on Machine learning, pages 1015–1022, 2007.

Pengcheng Wu and Thomas G Dietterich. Improving svm accuracy by training on auxiliary data sources. In Proceedings
of the twenty-first international conference on Machine learning, page 110, 2004.

151

Bibliography

Ting-Fan Wu, Chih-Jen Lin, and Ruby C Weng. Probability estimates for multi-class classification by pairwise coupling.
Journal of Machine Learning Research, 5(Aug):975–1005, 2004.

Jiachen Yang, Brenden Petersen, Hongyuan Zha, and Daniel Faissol. Single episode policy transfer in reinforcement
learning. In International Conference on Learning Representations, 2020. URL https://openreview.net/
forum?id=rJeQoCNYDS.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Federated machine learning: Concept and applications. ACM
Transactions on Intelligent Systems and Technology (TIST), 10(2):1–19, 2019.

Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are features in deep neural networks? In
Advances in neural information processing systems, pages 3320–3328, 2014.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong, and Qing He. A
comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):43–76, 2020.

152

https://openreview.net/forum?id=rJeQoCNYDS
https://openreview.net/forum?id=rJeQoCNYDS

	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	Introduction
	Original Contributions and Outline
	Outline

	I Learning Techniques for Corrosion in Pipeline Infrastructures
	Introduction and Related Literature
	Introduction
	Related Literature

	A Machine Learning Approach for the Prediction of Internal Corrosion in Pipeline Infrastructures
	Data Set Creation
	Datasets Description
	Validation of the Integration: Cross-correlation Analysis
	Gaining Insights about Corrosion: Feature Selection
	Discussion
	Conclusion

	Corrosion Prediction
	Problem Formulation
	Experiments
	Results
	Discussion
	Conclusion

	Corrosion Prediction in Pipeline Infrastructures Leveraging Transfer Learning
	From supervised to transfer learning in corrosion prediction
	The proposed transfer-learning approach for corrosion prediction
	Transfer Learning from a source to a target pipeline
	Ranking the source pipelines

	Experiments
	Data Sets Description
	Results

	Discussion
	Conclusion

	II Reinforcement Learning in Non-Stationary Environments
	Introduction and Related Literature
	Introduction
	Related Literature

	Model-Free Non-Stationarity Detection and Adaptation in Reinforcement Learning
	Preliminaries and Problem Formulation
	Reinforcement Learning Background
	Importance Sampling
	Non-Stationarity in Reinforcement Learning: Problem Formulation

	Policy Selection to support Non-Stationarity Detection
	Renyi Divergence Optimization
	Optimization for Gaussian Policies
	Optimization for Gibbs Policies

	Change-Detection and Adaptation Mechanism for Reinforcement Learning
	Experiments
	Conclusions

	Time-Variant Variational Transfer for Value Functions
	Preliminaries
	Reinforcement Learning Background
	Variational Transfer of Value Functions

	Time-Variant Kernel Density Estimation for Variational Transfer
	Finite-Sample Analysis
	Related Works
	Experiments
	Temporal Dynamics
	Two-Rooms Environment
	Three-Rooms Environment
	Mountain Car
	Choosing through Maximum-Likelihood
	Real-World Scenario: Controlling the Lake Como Water System

	Discussion and Conclusions

	III Non-Stationary Federated Learning and Pervasive Systems
	Introduction
	Adaptive Federated Learning in Presence of Concept Drift
	Related Works
	Federated Learning
	Learning in presence of concept drift
	Adaptive Optimizers

	The Proposed Algorithm
	Problem Formulation
	The proposed Adaptive-FedAVG algorithm
	Adaptive-FedAVG: the Server-Side
	Adaptive-FedAVG: the Client-Side

	Experimental Results
	Experiment: MNIST digit recognition
	Experiment: CIFAR-10 image classification

	Conclusions

	Birdsong Detection at the Edge with Deep Learning
	Related Works
	The Proposed ToucaNet Bird Detector
	Acquisition and Preprocessing
	The DL-based Birdsong Detector

	BarbNet: the Approximated ToucaNet for IoT Units
	Approximating the Input
	Approximating the DL-Based Birdsong Detector
	A Bird Song Detector on an ARM Cortex-M7: BarbNet

	Experimental Results
	Data Sets and Figures of Merit
	Pareto Frontiers of the ToucaNet and its Approximations
	Comparing ToucaNet and BarbNet with the State-of-the-Art Solutions
	BarbNet on the STM32H7: Execution Time, Energy Consumption, and Lifetime.

	Conclusion and Future Work

	Final Remarks
	Corrosion Detection Experimental Results
	Time-Variant Variational Transfer for Value Functions: Proofs
	Proof of Theorem 7.2.6
	Upper Bound on the KL-Divergence Between the Prior and the Posterior
	Proof of Theorem 7.3.1
	Experimental Details
	Parametrization
	Temporal Dynamics
	-Sensitivity Results
	Further Environmental Settings: Mountain Car and Lake Como Water System

	Bibliography

