
politecnico di milano

Facoltà di Ingegneria

Scuola di Ingegneria Industriale e dell’Informazione

Dipartimento di Elettronica, Informazione e Bioingegneria

Master of Science in

Computer Science and Engineering

Feasibility Study of a
Blockchain-based Framework for
decentralized Traffic Monitoring

Advisor:

prof . stefano zanero

Co-advisor:

stefano longari

Master Graduation Thesis by:

davide maffiola

Student Id n. 913722

Academic Year 2020-2021

C O N T E N T S

Abstract ix
1 introduction 1

2 background 5

2.1 The need for real-time traffic information 5

2.2 State of the Art 6

2.2.1 Traffic Information Collection 6

2.2.2 Blockchain and Blockchain-based Systems 7

2.2.3 Consensus Mechanisms in Blockchains 10

2.2.4 Automotive Industry 13

2.3 Objectives 14

3 framework design 17

3.1 Overview 17

3.2 The Blockchain Data Structure 18

3.3 Threat Model 21

3.4 Consensus 22

3.4.1 Consensus Algorithm 24

3.4.2 Leader election 26

3.4.3 Characterization of the Consensus Algorithm 28

3.5 Validation Algorithm 30

3.5.1 Illegal Transactions Filtering 33

3.5.2 Transaction Validation 33

3.5.3 Misbehaviour Penalization 36

3.5.4 Reputation Update 40

3.6 Other Components 43

3.6.1 Initial State 43

3.6.2 Reward System 44

3.6.3 Transaction Filtering 44

4 implementation details 47

4.1 Simulator Architecture 47

4.2 Consensus Algorithm 51

4.3 DSRC Module 53

4.4 Blockchain 53

4.4.1 Transaction Broadcast 53

4.4.2 Blockchain Management 54

4.5 Validation 55

5 experimental parameter configuration and val-
idation 59

5.1 Goals 59

5.2 Traffic Scenario 60

5.3 Experimental Setup 60

5.4 Base Configuration 61

5.5 Reward System Configuration 63

iii

5.5.1 Penalty 63

5.5.2 Initial Reputation 63

5.6 Transaction Validation Configuration 66

5.6.1 Number of previous blocks 66

5.6.2 Threshold 68

5.7 Misbehaviour Penalization Configuration 70

5.7.1 Detection Variance Weight 70

5.7.2 Maximum Tolerable Conflicts 72

5.8 Attack Scenarios 74

5.8.1 Random Transactions Generation 74

5.8.2 Fake Position Advertisement 76

5.8.3 Teleport Attack 78

5.8.4 Copycat Attack 78

5.8.5 Self-sustaining Malicious Groups 81

6 conclusions 85

6.1 Limitations and Future Work 85

6.2 Summary 86

bibliography 89

iv

L I S T O F F I G U R E S

Figure 2.1 The internal structure of a generic blockchain. 8

Figure 2.2 The normal functioning of the Practical Byzan-
tine Fault Tolerance (PBFT) algorithm. 12

Figure 3.1 The logical units in which the framework de-
sign process is divided and their interactions.
18

Figure 3.2 The structure of the blockchain used in the pro-
posed framework and the information content
of blocks. 20

Figure 3.3 Resilience to Sybil attacks under different fault
tolerance parameter values. 31

Figure 3.4 Resilience to Sybil attacks depending on the
amount of reputation owned by attackers. 32

Figure 3.5 Two transactions and the meaningful distances
between nodes. 35

Figure 3.6 Group level misbehaviour detection workaround. 39

Figure 4.1 The interactions between the various frame-
works. 48

Figure 4.2 Class diagram representing the components of
the simulator at network level. 49

Figure 4.3 Class diagram representing the components of
the simulator at blockchain level. 50

Figure 4.4 The workflow of the implemented consensus
algorithm. 52

Figure 4.5 The exchanged messages in the slightly modi-
fied version of Practical Byzantine Fault Toler-
ance (PBFT) used in the framework. 52

Figure 5.1 The average reputation of active nodes over
time (1) and the number of accepted trans-
actions in each block (2) with different base
penalty values. 64

Figure 5.2 The average reputation of active nodes over
time (1) and the number of accepted transac-
tions in each block (2) with different amounts
of initial reputation. 65

Figure 5.3 The average reputation of active nodes over
time (1) and the number of accepted transac-
tions in each block (2) with different numbers of
blocks considered in the transaction validation
heuristic. 67

v

Figure 5.4 The number of transactions in each block that
cannot be labeled as acceptable or implausible
with different numbers of blocks considered in
the transaction validation heuristic. 68

Figure 5.5 The average reputation of active nodes over
time (1) and the number of accepted transac-
tions in each block (2) with different thresh-
olds. 69

Figure 5.6 The average reputation of active nodes over
time (1) and the number of accepted transac-
tions in each block (2) with different detection
variance weights used in the scale factor com-
putation. 71

Figure 5.7 The average reputation of active nodes over
time (1) and the number of accepted trans-
actions in each block (2) with different up-
per bounds for the number of tolerable con-
flicts. 73

Figure 5.8 The outcome of a random transaction gener-
ation attack where 5% of the total nodes are
malicious. 75

Figure 5.9 The outcome of a fake position advertisement
attack where 5% of the total nodes are mali-
cious. 77

Figure 5.10 The outcome of a teleport attack where 5% of
the total nodes are malicious. 79

Figure 5.11 The outcome of a copycat attack where 5% of
the total nodes are malicious. 80

Figure 5.12 The outcome of an attack generated by a self-
sustaining malicious group with 5 members. 82

Figure 5.13 The outcome of an attack generated by a self-
sustaining malicious group with 20 members. 83

L I S T O F TA B L E S

Table 2.1 Comparison of features of the main types of
blockchain systems. 10

Table 2.2 Comparison between deterministic and proba-
bilistic harvesting methods. 13

Table 2.3 Comparison of Exynos Auto 8890 and Exynos
7884. 14

Table 3.1 Description of the possible attacks and risk
analysis for the threat model. 23

vi

Table 3.2 Comparison of the main consensus algorithm
categories. 26

Table 5.1 Setup of the machine used to run the experi-
ments. 61

Table 5.2 Base configuration used in the experiments. 62

L I S T I N G S

Listing 4.1 Code optimization by replacing tree-based as-
sociative containers with hash tables. 56

Listing 4.2 Code optimization by parallelizing critical loops. 57

A C R O N Y M S

FCD Floating Car Data

DSRC Dedicated Short Range Communication

C-ITS Cooperative Intelligent Transport Systems

C-V2X Cellular Vehicle To Everything

V2X Vehicle To Everything

PBFT Practical Byzantine Fault Tolerance

RSU Roadside Unit

GPS Global Positioning System

FCC Federal Communication Commission

IVI In-Vehicle Infotainment

(D)DoS (Distributed) Denial of Service

vii

A B S T R A C T

This thesis summarizes the research that we carried out on the feasi-
bility study of a novel decentralized and blockchain based framework
that can be sued to collect real-time traffic information.

We present and analyze the state-of-the-art methods and currently
used services for traffic information gathering, and we characterize
the advantages and the disadvantages that they offer. The centralized
nature of commonly used traffic information gathering services like
Google Maps, Waze or those offered by local authorities, leads to the
possibility for the service provider of arbitrarily restricting the access
to the traffic information.

The proposed framework aims at offering a decentralized alternative
to centralized traffic information gathering services. For this reason,
we defined a reasonable threat model and based the definition of
non-functional security requirements on it.

We illustrate how we designed the consensus mechanism that regu-
lates the blockchain data structure by defining how distributed consen-
sus is reached and the rules to enforce the validity of the information
content of the blocks that form the blockchain. Through a mathemati-
cal approach we show the security properties of the adopted consensus
algorithm.

We describe and implement a new simulator based on OMNeT++,
Veins and SUMO to test the proposed framework and study its feasi-
bility in a realistic scenario.

We show the experiments that we conducted on the proposed frame-
work in order to study how its main parameters affect the performance
and to determine if it can actually resist the attacks defined in the
threat model.

Finally, we discuss the results of the experiments and comment why
the obtained behaviour is consistent with the intentions that drove the
design phase.

ix

S O M M A R I O

Questa tesi riassume il lavoro di ricerca effettuato sullo studio di
fattibilità relativo ad un nuovo framework decentralizzato basato sulla
blockchain che sia in grado di raccogliere informazioni sul traffico in
tempo reale.

Vengono presentati ed analizzati i metodi più avanzati e i servizi
attualmente utilizzati per il raccoglimento delle informazioni sul traf-
fico e discutiamo i vantaggi e gli svantaggi che essi offrono. La natura
centralizzata dei servizi più comunemente usati per il raccoglimento
delle informazioni sul traffico, come Google Maps, Waze e i servizi
offerti dalle autorità locali, porta alla possibilità da parte del fornitore
del servizio di limitare l’accesso ai dati raccolti in maniera arbitraria.

Il framework proposto punta ad offrire un’alternativa decentraliz-
zata ai servizi centralizzati per il raccoglimento delle informazioni sul
traffico. Per questo motivo, è stato definito un threat model coerente
con il contesto del framework su cui è stata basata la definizione dei
requisiti non funzionali relativi alla sicurezza.

Viene illustrato come è stato progettato il meccanismo di consenso
che regola la blockchain attraverso la definizione di come viene rag-
giunto il consenso distribuito e delle regole che impongono la validità
del contenuto Informativo dei blocchi che compongono la blockchain.
Le prorietà relative alla sicurezza dell’algoritmo di consenso vengono
dimostrate con un approccio matematico.

Un nuovo simulatore basato su OMNeT++, Veins e SUMO viene
descritto ed implementato al fine di testare il framework proposto e
di studiare la sua fattibilità in uno scenario realistico.

Vengono presentati gli esperimenti che sono stati condotti sul frame-
work per studiare come i suoi parametri principali influiscono sulla
sua resa e per determinare se il framework è effettivamente in grado
di resistere agli attacchi descritti nel threat model.

Infine vengono discussi i risultati ottenuti tramite gli esperimenti, e
vengono anche commentate le ragioni per le quali il comportamento
del framework proposto ottenuto negli esperimenti è coerente con le
intenzioni che hanno guidato la fase di progettazione.

x

1
I N T R O D U C T I O N

Road traffic management is a fundamental service for mobility and
transport and it can affect both individuals and companies especially
in urban environments. Modern navigation systems are a prime exam-
ple of this, as they also take into account traffic congestion for route
planning and can select the best route dynamically. However, in order
to provide high quality traffic management services it is necessary to
have a reliable source of real-time road traffic information. Unfortu-
nately, precise traffic information is difficult to measure and estimate
and the available sources are often partial or not easily accessible.

The systems that are typically used to collect traffic information rely
on onsite sensors like cameras or magnetic loops or on the floating
car data approach, where onsite sensors are substituted by the Global
Positioning System (GPS) modules on connected devices, which are
usually smartphones [4]. Popular traffic management services such as
Google Maps and Waze primarily use floating car data to gather the
traffic information they need for their services.

Google Maps and Waze use a centralized approach where users send
traffic information to a server, which then processes the information,
adds it to its database and eventually redistribute it upon request.
These systems have thus a centralized structure and so the entity
that owns the servers has full control over the traffic information.
Centralization also implies that there is a single point of failure and
that the access to data is bound to the policy regulations of the service
provider, who can restrict access at their discretion.

Vehicles are now equipped with fairly computationally powerful
processors (e.g., Samsung’s Exynos 8890 Auto on Audi A4 models [7])
and vehicle manufacturers are investing on vehicle-to-everything com-
munication, either based on cellular network [29] or on short range
communication technologies [31]. Because of this, vehicles can perform
complex operations and participate in a network, so it is now possible
to have a distributed system that runs on vehicles.

In this work, we propose a new framework that can be used to
collect real-time traffic information in a decentralized fashion. Vehicles
generate the traffic information through short range communication
and the Global Positioning System (GPS) by stating that another vehicle
is close to their position. The traffic information is then collected in a
blockchain, which is entirely managed by the participant vehicles and
possibly some support Roadside Units (RSUs). To be able to work in
a trustless environment, where malicious entities may try to tamper
with the traffic information, the blocks contained in the blockchain are

1

2 introduction

validated and possibly accepted through a consensus mechanism. The
algorithms and the concepts used in the consensus mechanism have
been inspired by other widely used consensus mechanisms, which they
have been tailored for the specific use in the context of the proposed
framework.

To validate the proposed framework, we implemented a network
simulator based on OMNet++ [23] and Veins [30] that relies on
SUMO [28] for realistic traffic simulation. The results obtained through
the simulations show that the framework can function in a stable way
in realistic scenarios, while also being capable of maintaining a high
quality of traffic information even in presence of various malicious
entities.

The contributions of this work are so summarized:

• A new decentralized framework that is capable of collecting
real-time traffic information in a large area and investigate how
to mitigate possible attacks that aim to degrade the validity of
traffic information.

• An efficient and flexible simulation tool that can be used to
simulate the proposed framework and its possible variations.
The simulations then allow to study the behaviour of framework
though the analysis of the generated result files and the log file
containing the full blockchain.

• An evaluation of the feasibility of the proposed framework, its
performance and its stability in case of normal functioning and
in case of specific attacks.

The rest of the thesis is structured as follows:

• Chapter 2 explains the problem statement and presents a brief
overview of the state of the art of the technologies used or
addressed through this work. The overview includes the descrip-
tion of commonly used traffic information gathering methods,
how traffic management services are provided and the descrip-
tion of the blockchain data structure together with distributed
consensus protocols that are widely used in blockchain based
systems.

• Chapter 3 describes what has been done in this work while pro-
viding justification for the choices that were made. The proposed
framework is broken down into simpler, loosely-coupled logical
units in order to manage the complexity of the framework and to
replicate how the research was actually carried out. This chapter
contains the specification of the blockchain data structure and
the threat model and the algorithms that we choose to adopt in
the proposed framework, namely the consensus algorithm and
the validation algorithm.

introduction 3

• In Chapter 4, we describe the architecture of the simulator that
was used to validate the proposed framework. The simulator
architecture is presented at both high level and component level,
together with the description of the implementation of the most
important components and the optimizations required to have
an acceptable performance.

• Chapter 5 contains the description and the results of the exper-
iments performed on the framework with the simulator. The
validation tests include parameter studies in scenarios without
attacks, unorganized attack scenarios and organized attack sce-
narios. The results of the experiments are then discussed in order
to assess the feasibility of the proposed framework.

• Finally, Chapter 6 presents the limitations of this work and the
challenges encountered while carrying out the research. Also,
it gives some proposals and hints about how to cope with the
limitations and it summarizes the goals, the approach and the
achievements of this work.

2
B A C K G R O U N D

2.1 the need for real-time traffic information

Traffic information are a valuable asset in the context of mobility
and transport and both privates and companies can benefit from
traffic management services the use traffic information. A very trivial
example is the dynamic route planing performed by most of the
modern navigation systems. Also, local authorities can take advantage
of traffic information, for instance they can decide to temporarily
modify the viability without creating too much traffic congestion.
To have the best benefits, all these applications require that traffic
information is always fresh and up-to-date and that users have access
to it, but traffic management applications also demand that the traffic
information source is reliable and has a good coverage of the territory
(for example, knowing the traffic situation of very few streets in a city
is almost useless in order to plan the fastest route). Because of all these
reasons, it’s important that systems that gather traffic information can
operate in a real-time fashion and can cover large areas.

Collecting traffic information involves either the use of infrastruc-
tures with high installation and maintenance costs that count the
number of vehicles in a certain location or the use of devices like
smartphones to obtain the approximate positions of vehicles through
the Global Positioning System (GPS) and the cellular network. The data
are then sent to the traffic information server and then distributed
to the users when requested. Two popular services that also collect
traffic information are Google Maps and Waze. These services rely
on a centralized model where only the service provider has access
to all the information, while users only know the information they
generated and the aggregate information retrieved from the server.
This means that only the service provider has full control over the
collected information and can arbitrarily apply access regulation poli-
cies, enforce access fees or shutdown the service altogether. Moreover,
because these services are based on a centralized model they suffer
from known centralization issues, the most relevant being that they
have a single point of failure, that they can violate the user’s privacy
and that they can become the target of cybercrime.

The research carried out in this thesis aims to explore the feasibil-
ity of a fully decentralized framework for traffic information collec-
tion based on a blockchain data structure. The main objective of the
framework is to provide reliable real-time traffic information with a
high coverage using on-vehicle resources. In fact, vehicles are now

5

6 background

equipped with fairly powerful processors [7] and can participate in a
network [29, 31], so they can perform the basic set of activities required
in a blockchain, i.e., broadcasting messages and performing fairly com-
plex data validation operations. Yet, decentralization raises a lot of
new issues as it has to operate in a trustless environment and presents
a larger surface that can be attacked by malicious users. Those new
issues are further examined and analyzed in the next chapter. To the
best of our knowledge, there is no prior work on a fully decentralized
framework like the one that is proposed.

2.2 state of the art

In the following sections, the state of the art of the researches and
technologies that are relevant for this work are briefly presented and
discussed. The choices that has been made during the research have
been considerably affected by the current state of the art, as it has
given context to the proposed framework and it has provided a starting
ground for the design of the proposed framework. The goals of this
work have been defined also by keeping into account to the state of the
art. This work is based on the idea proposed by Legler in his master’s
thesis [18], although the approach adopted in this work is radically
different. Legler’s thesis used a more qualitative approach to design
and evaluate his framework, while this thesis aims at using a realistic
context to first design and then evaluate the proposed framework
and at assessing the performance of the proposed framework though
quantitative analysis.

2.2.1 Traffic Information Collection

Collecting real-time traffic information is not an easy task due to the
large number of vehicles and the vast area over which they span. The
most commonly employed methods are either to estimate the traffic
condition with onsite stationary sensors like traffic cameras or induc-
tion loops or to collect the information through Global Positioning
System (GPS) equipped devices connected to the cellular network like
smartphones [4]. The first method works by estimating useful traffic
properties, such as the number and the speed of vehicles, by means of
one or more sensors. Clearly, this method is limited by the operating
range of the onsite stationary sensors. For example, an ultrasonic
sensor would measure the number and the speed of vehicles passing
close to it, while an induction loop would only be able to count the
number of vehicles passing on it. Onsite sensors have been used for a
long time, but they present some issues nevertheless, in fact they can
be damaged, their measurements can be affected by meteorological
conditions like poor visibility or heavy rains and their coverage is lim-
ited by their operating range. The problem of having a limited range

2.2 state of the art 7

is further worsened by the cost of the infrastructure since every onsite
sensor has installation, maintenance and repair costs. This method is
often used by local authorities for traffic control.

The second method used to collect traffic information is Floating Car
Data (FCD) and instead of using expensive stationary onsite sensors,
it exploits Global Positioning System (GPS) equipped devices present
on the vehicle or owned by the driver. The way this method works is
by periodically collecting the position and other relevant information
like the current speed to a central server. To obtain their position,
the devices primarily use the Global Positioning System (GPS) or in
case it is not available it’s possible to use triangulation, although its
precision is lower. The strength of this method is that its costs are
drastically reduced, as it does not require expensive onsite sensors
and the devices that produce the traffic information are not owned by
the entity that collects traffic information. Well-known services like
Google Maps and Waze have adopted this method. The success of
these traffic management services is due to their vast user base which
continuously provide them with massive amounts of real-time data [3].
Because of how these services work, users only know their data and
the aggregated information provided by the service provider.

The systems that implement these methods use a trusted central
server that collects, processes and stores the gathered traffic informa-
tion, meaning that they follow a centralized model. While centraliza-
tion greatly simplifies data management, the decision processes and
trust management, it also gives complete control over the data to the
service provider, since the full database is stored only on the servers
owned by the service provider. The provider can then arbitrarily en-
force or change data access policies or restrict the access to certain
groups of people or categories. Furthermore, it was shown that it is
inexpensive for a single attacker to produce false traffic information on
Google Maps and generate a fake traffic congestion [32]. The success of
the attack is due to the fact that the devices that send the information
to the server (in this case the smartphones) are not bound to vehicles
and can be purchased or rented for a cost that is affordable even to
individuals.

2.2.2 Blockchain and Blockchain-based Systems

Decentralized systems, as opposed to centralized ones, don’t have a
trusted intermediary that can guarantee the immutability of past data
and decide who is a trusted entity and who is not. In fact decentral-
ized systems operate in peer-to-peer (P2P) networks, where no node
has complete control over the network and the decision process. To
cope with these issues, Nakamoto [19] proposed the adoption of the
blockchain data structure together with a suitably designed consensus
mechanism.

8 background

Figure 2.1: The internal structure of a generic blockchain.

The blockchain itself is not a technology, but rather a data structure
usually employed in distributed systems to obtain an immutable and
verifiable list of blocks. The basic idea behind the blockchain data
structure is to collect the transactions generated by the participant enti-
ties into a unit of data called block and then chain the blocks together
through their hash value so that it’s possible to determine if a block
hash been tampered with. To grant data authenticity, transactions, as
well as blocks are digitally signed. Figure 2.1 shows graphically how
the blockchain data structure is built.

The blockchain data structure is not actually bound to a central-
ized or decentralized network model, but it had significant success
in decentralized models, as it is made clear by the vast number of
proposed blockchain-based systems [12, 33, 13]. The core components
of a blockchain-based system are:

• Nodes: are the participants of the network and the only entities
that contributes to the growth of the blockchain data structure.

• Transactions: are the representation of the interactions between
the nodes. For example, in blockchain-based cryptocurrencies
transactions represent monetary transactions among partici-
pants.

• Blocks: are a collection of transactions collected over a certain
period of time together with the metadata required for the func-
tioning of the system. A block is linked with the previous block
in the blockchain through the hash value of the previous block,
creating a structure similar to a forward list.

• The consensus mechanism: is the component that builds trust
over a trustless network and enforces the validity of the data.
It’s possible to further divide this component in the consensus
algorithm and the validation algorithm. The former is used to
achieve distributed consensus, while the latter is the algorithm
that checks if the content of a block is consistent with the domain-
specific rules.

2.2 state of the art 9

• The signature scheme: grants the integrity and authenticity of
transactions and blocks.

The key component that allows the blockchain data structure to suc-
cessfully operate in decentralized networks is the consensus mecha-
nism, which effectively defines the characteristics of the blockchain-
based system. While the validation algorithm in the consensus mecha-
nism is domain-specific, the consensus algorithm is not so it can be
reused in other consensus mechanism with minimal modifications.
The consensus algorithms commonly used in blockchain-based sys-
tems are described in the next section.

The advantages that blockchain-based systems provide include
transparency, immutability, anonymity, decentralization, persistence
and the possibility to remove intermediaries [21]. Although these fea-
tures are desirable, blockchain-based systems have also significant
drawbacks. In fact, blockchain-based systems are highly redundant,
as every participant must have a copy of the entire blockchain, mean-
ing that there is also a significant memory consumption. Moreover,
blockchain-based systems require significant computational power
to carry out the validation of the block and the consensus algorithm
introduces a significant overhead in terms of exchanged messages and
latency.

Blockchain-based systems can be classified according to the policies
they enforce to join the P2P network and access the data contained in
the blockchain [25]. In a public blockchain system there is no restric-
tion on what node gets to join the network and on what operations
nodes can perform. Consequently, nodes have full read and write
permissions on the blockchain, meaning that they can read the content
of the blockchain and produce new blocks. This kind of blockchain-
based system allows for full decentralization, as all nodes are equal
and can give equal contribution to the growth of the blockchain. On
the other hand, private blockchain systems are owned by organiza-
tions or groups of individuals and require the users to have their
permission to join the network. Also, nodes do not have the same
permissions, meaning that the content of the blockchain is available
only to selected entities and only selected nodes can create new blocks.
Because of these reasons, this model leans more toward centralization.
Finally, consortium blockchains delegates join invitations distribution
and permission management to a certain set of nodes. In this way the
system is more decentralized than private blockchain systems, as se-
lected nodes can operate freely and independently, while maintaining
more control than public blockchain systems over what node is trusted
and what node gets read and write permissions. Table 2.1 summarizes
the characteristics of the blockchain systems.

10 background

public

blockchains

consortium

blockchains

private

blockchains

Consensus
participation

Any participant
A set of trusted

nodes
The service

owner(s)

Consensus
efficiency

Low High High

Join invitation Not required Depends Required

Decentralization Full Partial Centralized

Access to data Open Open or restricted
Typically
restricted

Table 2.1: Comparison of features of the main types of blockchain systems.

2.2.3 Consensus Mechanisms in Blockchains

The consensus mechanism is a crucial component of blockchain-based
systems and it characterizes the properties of the system. The tasks
of the consensus mechanism are to ensure that all nodes, or at least
the majority of them, agree on the blocks to insert in the blockchain
through a consensus algorithm and to establish the rules needed to
validate the content of the blocks through the validation algorithm.
While the validation algorithm is domain-specific and cannot be easily
generalized, the consensus algorithms can be categorized depending
on how they operate. In fact, since the initial proposal of a blockchain-
based system [19] that introduced the proof-of-work (PoW) consensus
algorithm, there has been many proposals for alternative consensus
algorithms that tried to overcome the limitations of PoW and to opti-
mize the consensus process for different applications [2]. The number
of variants of consensus algorithms is large, as most systems adopt
their own variant. In the rest of this section, the consensus algorithms
that are most used or that are relevant for this thesis are discussed.

The very first consensus algorithm to be proposed for a blockchain-
based system is PoW, which is used in Bitcoin. Its main characteristic
is that it uses a computationally hard problem that has a solution that
can be easily verified. Specifically for Bitcoin, the problem is to find a
nonce so that when the hash value of the block is computed, it has a
certain number of zeroes, which is defined through a parameter, to
prove that the node that harvested the block has spent time in finding
a solution. When a solution is found, the block and the nonce are
broadcasted and the rest of the nodes check that the nonce is correct
and the content of the block is valid. If so, the block is added to the top
of the blockchain and the harvester is rewarded with some bitcoins,
otherwise it is discarded. In this way, an attacker that wants to insert
an invalid block would require 51% of the total computational power

2.2 state of the art 11

of the participant nodes in order to succeed eventually. This algorithm
is very stable, but it is so slow and computationally intensive that the
cost of finding the correct nonce is higher than the reward [22].

To reduce the impact on the computational resources, the proof-
of-stake (PoS) consensus algorithm was proposed [15]. In PoS the
computational power is substituted with an abstract resource which is
chosen depending on the actual variant of PoS, although it is often an
amount of money or a score derived form the contribution of the node
to the blockchain. For instance, Peercoin, the first system to adopt PoS,
uses its own cryptocurrencies as a resource for the PoS algorithm. A
participant that wants to harvest the next block puts a certain amount
of its resources at stake that can be lost if the block that the node
proposed gets rejected. The more the resources the node puts at stake
are, the higher the probability that it gets the right to harvest a block
is. Contrary to PoW, the PoS consensus algorithm can suffer from
the nothing-at-stake problem when they are not designed properly,
because of which the nodes have nothing to lose if they accept multiple
block candidates [2].

Two interesting PoS variants are proof-of-importance (PoI) used by
the NEM blockchain [20] and the proof-of-believability (PoB) used in
IOST [27]. In PoI an importance score is calculated taking into account
both the amount of resources that the node invests and its contribution
in the network, and each node has a probability equal to the ratio
of its importance over the total to be selected as the next harvester.
This approach forces potential attackers to positively contribute to the
growth of the blockchain before they are even able to try to attack
the blockchain. On the other hand, if the attackers manage to gather
enough importance, they can easily carry out an attack. PoB, instead,
uses the believability score, which is non-tradable, is destroyed after
each validation and is distributed automatically depending on the
node contributions, to randomly elect a believable subnet. The nodes
in the believable subnet then produce an optimistically validated block,
while the rest of the network uses an optimized voting scheme to agree
on the validity of the new block.

Voting-based consensus algorithms are the last category that was
considered. They are variants of the Practical Byzantine Fault Toler-
ance (PBFT) algorithm [6], which is a three-phase commit protocol
originally designed to handle Byzantine faults, but it is also suitable
to counter malicious nodes in a distributed system. The three phases
used in the algorithm are pre-prepare, prepare and commit, which make
Practical Byzantine Fault Tolerance (PBFT) capable of handling up to
f = bn−1

3 c malicious users, where n is the number of nodes that
take part in the voting. Figure 2.2 shows the normal functioning of
the Practical Byzantine Fault Tolerance (PBFT) consensus algorithm.
Practical Byzantine Fault Tolerance (PBFT) and its variants offer more
scalability and higher throughput than PoW and PoS, but requires

12 background

Figure 2.2: The normal functioning of the Practical Byzantine Fault Tolerance
(PBFT) algorithm. The nodes are allowed to enter the commit
phase and to generate the response when they have received
2f+ 1 messages from other nodes that are in the same phase.

a careful choice of the nodes that take part in the Practical Byzan-
tine Fault Tolerance (PBFT) vote, making this category of algorithms
more suitable for private and confederated blockchain systems. Hy-
perledger [13] is a popular system that is based on Practical Byzantine
Fault Tolerance (PBFT), but it also allows selecting different variants of
Practical Byzantine Fault Tolerance (PBFT) depending on the desired
properties of the blockchain-based system.

Another important part of the consensus algorithm is the selection
of the node that will be the next harvester. Block harvesting (or mining)
is the process of creating and validating a candidate block that will
be then verified by the other participant nodes and inserted on top of
their blockchain if it is considered valid. It is important to introduce a
set of rules so that nodes can agree whether to accept a candidate block
from a certain node at a certain time or not. If no harvesting rules are
enforces, any node can harvest a new block, but this situation is likely
to cause the desynchronization of the replicas of the blockchain among
the participants, thus causing a fork in the blockchain. Temporary and
infrequent forks are tolerable, but they need to be solved by applying
some policy, which is usually to keep only the longest blockchain. In
the case in which there are no harvesting rules, forks are arbitrarily
frequent and are created continuously, making the system utterly
unusable.

In common blockchain systems two main methods for harvester
selection are used, which are respectively based on a probabilistic
approach, like the one used in the NEM blockchain [20] and in Bit-
coin [19], and a deterministic approach, like the one proposed for the
ByzCoin blockchain [16]. In the first approach, after a new block is
added to the blockchain, each node computes a random value through
a certain function and compares it with a threshold. In the case of
Bitcoin the random value if the block and nonce hash value, while in
the case of NEM, the function uses the node id, the importance score
and the time as inputs. When the condition is met, the node gains the
right to harvest the block. Since several nodes may simultaneously
harvest a block, it is possible that the blockchain forks temporarily.

2.2 state of the art 13

deterministic

harvesting

probabilistic

harvesting

Description

Harvester is
globally selected

based on a shared
value

Harvester is locally
selected based on a

random variable

Harvest condition

#transaction >
BLOCKSIZE or
elapsed_time >
blocktime

H 6 f(∆t) where H
is a random

variable and f(∆t)
is a function

depending on the
elapsed time

Harvester
uniqueness

Can be guaranteed,
thus avoiding forks

Cannot be
guaranteed, so

forks can happen

Synchronization Required Not required

Guarantees
Block is always

harvested
Block is eventually

harvested

Table 2.2: Comparison between deterministic and probabilistic harvesting
methods.

The deterministic approach instead uses a synchronized object to elect
one or more leaders that harvest the block when it’s full or after a
certain amount of time. Because there is some form of synchronization
to elect the leaders, forks can be prevented from happening. Table 2.2
shows a comparison of these two methods.

2.2.4 Automotive Industry

Vehicles are becoming more and more sophisticated and offer a vast
range of services to their users. Two examples are the proximity
sensors used when performing parking maneuvers and the integrated
navigation systems. Another component present on modern cars is the
In-Vehicle Infotainment (IVI) system which handles video and audio
entertainment as well as in-car connectivity and the navigation system.
In-Vehicle Infotainment (IVI) systems are powered by processors that
are quite computationally powerful, like the Samsung’s Exynos Auto
8890 processor that powers the In-Vehicle Infotainment (IVI) system
of Audi A4 models [7]. These processors are comparable in terms of
features and performances with mid-range smartphone processors,
as it is shown in Table 2.3 where the Exynos Auto 8890 and Exynos
7884 processors are compared. The latter can be found in mid-range
smartphones. The processors in In-Vehicle Infotainment (IVI) system
have thus enough computational capabilities to allow a vehicle to
execute the validation algorithm in a blockchain-based system.

14 background

exynos auto

8890

exynos 7884

Cores
x4 Exynos M1

(Mongoose), x4

Cortex-A53

x2 Cortex-A73,
x6 Cortex-A53

Frequency 2.3 GHz 1.56 GHz

Process 14 nm 14 nm

GPU Mali-T880 Mali-G71 MP2

Memory LPDDR4 LPDDR4

Table 2.3: Comparison of Exynos Auto 8890 and Exynos 7884.

Vehicle To Everything (V2X) is another technology that is increas-
ing in popularity in the automotive industry. There are two main
leading technologies: Cellular Vehicle To Everything (C-V2X) based on
the 5G cellular network and short range communication technologies
like Dedicated Short Range Communication (DSRC) in the USA or
Cooperative Intelligent Transport Systems (C-ITS) in Europe. Although
these technologies are still being developed and tested, many automo-
tive companies are investing in them and exploring their usage [29, 31].
Short range communication, when paired with a Global Positioning
System (GPS), enables vehicles to generate evidence of the closeness
of another vehicle is close to their position. Moreover, both cellular
networks and short range communication allows vehicles to join a
network and thus broadcasting blocks and transactions, as well as
consensus messages. Since vehicles are capable of carrying out the
validation algorithm and consensus-related operation, it is possible
for vehicles to actively take part in a blockchain-based system.

2.3 objectives

The goal of this work is to propose and evaluate the feasibility of a
new framework that exploits the computational capabilities and con-
nectivity offered by vehicles to collect real-time traffic information into
a blockchain. The proposed framework aims at begin able to provide
a service at least comparable with popular and widespread services,
but contrary to them it adopts decentralization and data availabil-
ity policies. Another important issue that the proposed framework
addresses and tries to mitigate is the possibility for an attacker to
alter the quality of the traffic information and to create a fake traffic
congestion. To assess the feasibility of this framework, we performed
a study on the security guarantees it can offer.

2.3 objectives 15

As the proposed framework is supposed to be executed on the
In-Vehicle Infotainment (IVI) systems in vehicles, the fact that the avail-
able resources are limited is taken into account for the design of the
components of the framework. This implies that the validation algo-
rithm should be as lightweight as possible and the number of times
it is required to be executed should be minimized. Because of this,
in many cases a faster heuristic is preferable over a computationally
complex optimal algorithm even at the cost of generating a reasonable
amount of false positives and false negatives.

Finally, this research can lay the foundations for further investigation
toward decentralized blockchain-based vehicular systems, since to the
best of our knowledge, there is no proposal for a decentralized traffic
monitoring framework that can be used in a real environment. This
fact has created difficulties during the research and hopefully this
work will be used as a starting point for further research.

3
F R A M E W O R K D E S I G N

3.1 overview

The framework proposed in this work is a complex system and in
order to be able to better design and analyze it, the research was
divided into loosely coupled logical units, which are described in
better detail in the following sections. The logical units in which the
framework was divided and their interactions and dependencies are
shown in Figure 3.1. The order in which the logical units are presented
in this chapter follows the dependencies among the logical units. This
allows to have a clear understanding of the proposed framework, since
the topics are presented in a more linear way.

The definition of blockchain data structure, its information content
and how transactions are created directly or indirectly influences all
the other logical units, so these concepts are presented first. This
allows to give precise and concrete definitions that are then used
in other components. The second logical unit, according to the de-
pendencies, involves the definition of a semi-formal and reasonable
threat model for the framework, so that the security requirements are
clearly stated and can be referenced during the design phase of the
algorithms used in the consensus mechanism, as well as during the
planning of the experiments (see Chapter 5 for more details on the
experiments). After defining a suitable threat model, we present how
the consensus mechanism that powers the framework is designed. The
consensus mechanism is further divided into the consensus algorithm
and the validation algorithm. The reason behind this division is that
the consensus algorithm has to be executed on a distributed system,
thus requiring special care for network-related problems, while the
validation algorithm is executed entirely on a single node and it has
to deal with completely different issues, namely the local resource
consumption and how to enforce a certain degree of consistency in
the information content of blocks.

Finally, we discuss the remaining crucial parts of the proposed
framework that have an impact on its functioning. More specifically, we
deal with the problem of starting the blockchain, which is a common
issue among all blockchain-based systems, and the reward system,
which affects the evolution of the state of the proposed framework
and can lead to the collapse of the framework when not configured
properly. We also discuss the strategy used to decide whether to keep
or drop a transaction, as its interactions with the consensus mechanism
are quite complex.

17

18 framework design

Figure 3.1: The logical units in which the framework design process is
divided and their interactions.

The base ideas that led to the definition of the proposed frame-
work were described in a previous thesis [18], where a basic and
simple decentralized blockchain-based framework similar to the one
proposed in this work was proposed. With respect to the previous
thesis, this work delves more deeply into the question of the consen-
sus mechanism and uses a more analytical approach to design the
framework.

3.2 the blockchain data structure

Regarding the blockchain data structure, the elements that are neces-
sary to describe are the information content of the transactions and
the blocks, how node identities and cryptographic keys are managed
and how the main memory is used to store the blockchain. The most
basic element in the blockchain is the transaction, which represents an
interaction between two participants. In the context of this framework,
two nodes interact with each other when they are close enough so
that they can receive a probe message and send a reply through Dedi-
cated Short Range Communication (DSRC) or Cooperative Intelligent
Transport Systems (C-ITS), thus becoming aware that the other vehicle
is close by. The probe message is generated and broadcast by each
participant periodically. They will then generate and broadcast to all
the other participants a transaction containing:

• The identity of the node that originated the transaction, which
is referred as the sender throughout the rest of this work.

• The identity of the discovered node, which is referred as the
target throughout the rest of this work.

• The sender position obtained though Global Positioning System
(GPS).

• A timestamp indicating the moment in which the interaction
has happened.

• The digital signature of the node that originated the transaction.

3.2 the blockchain data structure 19

It’s important to notice that the transactions don’t contain an estima-
tion or an upper bound for distance between the vehicles. Despite
distance bounding protocols does exist and have been studied for a
long time [5], the communication overhead they introduce does not
justify the possible benefits. In fact, although a stricter bound can
potentially improve the precision and the accuracy of the validation
process, if the maximum detection range is small the performance loss
is not significant. According to US Federal Communication Commis-
sion (FCC) classification, a low-power class A Dedicated Short Range
Communication (DSRC) device has a communication range of 15 me-
ters [14], meaning that stricter bounds on the detection range are not
required.

The second element that composes the blockchain is the block,
which has to contain all the pieces of information that define the
current state of the blockchain system. In the context of the proposed
framework, a block includes:

• The transactions generated during this blocktime, which is the
interval of time between the insertion of the previous block and
the creation of the current one. The number of transactions is
limited to a maximum value called blocksize and because of this
reason some of the oldest ones may be dropped.

• A flag for each transaction that indicates its validity.

• The identity and the reputation score of all the participants. The
reputation score is a measure of how trustworthy the node has
proven itself to be.

• A flag for each participant indicating if it was active during
this blocktime. A node is considered active if at least one of its
transactions is evaluated as valid.

• The hash value of the previous block.

• The attempt number (see Section 3.4.2 for more details).

• A timestamp indicating when the block was created.

• The block height, which is calculated as the number of blocks
between the current one and the genesis block. This value acts as
a sequence number and paired with the hash value of the block,
uniquely identifies it.

• The digital signature of the node that harvested the block.

Figure 3.2 graphically summarizes the structure of the blocks and the
transactions.

The amount of memory required to store the whole blockchain is
large and grows constantly. This represents a critical issue for embed-
ded systems, such as In-Vehicle Infotainment (IVI) systems, where the

20 framework design

Figure 3.2: The structure of the blockchain used in the proposed framework
and the information content of blocks.

amount of memory is strongly limited. A solution to this problem is
to introduce the concept of state blocks [17, 27], which summarize
the content of one or more blocks to significantly reduce the storage
requirements, and they fundamentally act similar to checkpoints. State
blocks only have to contain the state of the participant nodes and it
is possible to use the same consensus algorithm as regular blocks to
achieve consensus on state blocks. Using the state block optimization,
a node has to keep in memory only the most recent blocks and the par-
allel blockchain defined by the state blocks. Also, new nodes that want
to join the blockchain have to download and verify less data, granting
a faster join procedure and only the nodes with more resources, like
roadside units, have to store the full blockchain.

The problem of key distribution is a delicate question, because if
cryptographic keys are not bounded to the ownership of a vehicle,
attacker can generate an arbitrary number of keys and perform a
similar attack to the one done against Google Maps [32]. On the
other hand, binding keys to vehicles and delegating this task can
make the proposed framework shift to a permissioned or even private
blockchain model. An acceptable trade-off between openness and
security is to give the task of binding asymmetric keys to identities
to car dealers or vehicle manufacturers. In this way, it is possible to
guarantee that each vehicle is associated with only one key. Another
feasible solution is to let the departments of motor vehicles perform
this task. In both cases the user privacy would be preserved through
pseudonymity [24], as it is not possible to directly associate the vehicle

3.3 threat model 21

positions to the user identity, but only with their public key. However,
it is not among the objectives of this thesis to tackle or delve into this
topic.

3.3 threat model

The threat model is defined by the assets that are valuable to the
framework and the stakeholders, the attack surface that can expose
vulnerabilities and the threat agents that have interests in attacking
the proposed framework. With this information, we present a list of
meaningful attacks that the framework may undergo and state what
is the impact of the attacks on the framework, as well as the risk that
they represent for the assets.

The most important assets of the framework that we identified
are the validity and the real-timeness of traffic information. They
represent indeed the properties of the service that the framework is
supposed to offer, so their importance is trivial. It is acceptable to
have a reasonably small amount of invalid traffic information as long
as the data provided by the framework have a sufficient quality to
be usable. Another critical asset is the local resource consumption,
since the framework is supposed to be executed in the In-Vehicle
Infotainment (IVI) systems, which are actually embedded systems
and, as such, they have limited resources in terms of memory and
computational power as well as energy consumption. This means that
if the proposed framework is too resource intensive or offers an easily
exploitable amplification factor to attackers, the system can become
unusable. Finally, the last valuable asset in the list is the reputation of
the framework itself, since like other Floating Car Data (FCD) systems
and blockchain based systems it requires a large user base to be
effective. In fact, if the framework proves itself to be too unreliable or
too weak against attacks, the user base is likely to move to another
traffic management service.

The next step is to identify the attack surfaces that the proposed
framework has. To be implementation-independent, the consensus
mechanism is considered as a black-box that can perform two oper-
ations, which are to validate the content of a block and to achieve
agreement on a block, while its white-box analysis is left for Sec-
tions 3.4 and 3.5. The attack surface was divided depending on what
level in the blockchain the vulnerability is located:

• Transaction level: the nodes are responsible for the generation
of transactions, so they can decide to forge them or to lie about
some fields as they like. Because the transactions are signed, the
identity of the sender is the only field that cannot be altered
in any way unless private keys are not compromised. For the
same reason, it is not possible for the nodes to tamper with
someone else’s transactions. The content of the transactions is

22 framework design

not encrypted in order to guarantee the possibility to access to
the traffic information to anyone, but in this way attackers have
the chance to read the content of transactions before the block is
harvested. Moreover, as the process of generating a transaction
is delegated to nodes and therefore not controllable, nodes may
decide to selectively generate transactions only toward specific
nodes.

• Block level: blocks are harvested locally, meaning that the har-
vester node can attempt to insert wrong validity flags, passing
invalid transactions off as valid ones or the other way around.
Also, they may try to alter the statuses of the nodes or the block
metadata.

• Blockchain level: this level mainly concerns the consensus algo-
rithm used in the consensus mechanism. Attacker can in fact try
to tamper with the blockchain by gaining the majority during the
phase in which consensus is achieved or by deceive the harvester
selection phase to candidate forged blocks.

Before considering the possible attacks that the system may undergo
and completing the threat model, it is important to identify the fea-
sible threat agents and the purposes of their attacks. The malicious
entities that can have interest in attacking the proposed framework
are single attackers, groups of attackers and competitors who offer a
similar traffic management service and want to damage the framework
reputation. It is reasonable to assume that individuals own exactly
one vehicle, while corporations are able to gather few tens of vehicles.
Attackers may want to lower the quality of the transactions in the
blockchain by producing invalid transactions, try to spoof their real
position, fake a traffic congestion or gain control over the blockchain
by inserting a forged block into it. Table 3.1 shows the possible attacks
and gives a risk level according to the threat model.

3.4 consensus

In this section, we present the analysis of the portion of the consensus
mechanism relative exclusively to the consensus algorithm. The analy-
sis of the other part of the consensus mechanism, i.e., the validation
algorithm, is described in Section 3.5. The problem of selecting the
harvester node or, more in general, leader election is strongly related
to the consensus algorithm, so it is also described in this section. The
two topics are analyzed independently so that their properties and
behaviour could be studied more precisely.

3.4 consensus 23

attack description risk comments

Forged block
insertion

Attackers insert a
maliciously crafted

block in the
blockchain by

gaining majority.

H

If the attack succeeds,
the attackers gain
full control of the
framework. It’s a

type of Sybil
attack [11].

Valid block
rejection

Attackers prevent a
valid block to be

approved by making
consensus fail.

M
It’s a type of Sybil

attack.

Fake traffic
congestion
generation

Attackers generate a
fictitious traffic

congestion.
M/H

If the attack succeeds
in high-density areas
often, the framework
becomes unusable.

Fake position
advertisement

Attackers try to
spoof their own

position.
M

Teleportation

Attackers try to
suddenly change

their position so that
they appear to be in

an incompatible
place.

M

Copycatting

Attackers generate
transactions by

copying the content
of someone else’s

transactions.

M

Blockchain forking

Attackers force the
blockchain to fork by
tampering with the

consensus
mechanism.

M

Forking implies that
the full validation

algorithm is executed
on more nodes.

Transaction
spamming

Attackers produce an
abnormally large

amount of
transaction.

L

This is basically a
(D)DoS attack. The
framework should

not give an
amplification factor

to attackers.

Table 3.1: Description of the possible attacks and risk analysis for the threat
model. Higher risk levels means that the problem is critical to
the system, while lower risk means that it is tolerable to a certain
extent.

24 framework design

3.4.1 Consensus Algorithm

For this work, we studied and analyzed several existing widespread
consensus algorithms [19, 33, 16, 15, 27, 20, 13]. This operation led
to the identification of three main categories of consensus algorithms
used in blockchain systems:

• Election based: election based algorithms rely on a computa-
tionally difficult problem or on the amount of resources required
to gain the right to harvest a new block. This category of algo-
rithms is very popular in public blockchains as it scales well
on networks with many nodes, even though its throughput
is typically low. After being selected, the harvester executes
the validation algorithm, cryptographically signs the block and
broadcasts it, while the rest of the network only checks if the
harvester is eligible to create the new block. In this way, only the
harvester has to run the full validation algorithm to completion.
The consensus mechanisms of Bitcoin (proof-of-work) and Peer-
coin (proof-of-stake) fall under this category. Sybil attacks can
succeed on election based networks if the attackers own 51% of
the resources used in the algorithm.

• Voting based: the consensus algorithms in this category are
based on the Practical Byzantine Fault Tolerance (PBFT) consen-
sus protocol [6] or one of its variants. A set of nodes, that can
even be the whole network, takes part in the voting process,
meaning that each node in the set has to run the validation
algorithm at least once. Because of this, voting based algorithms
don’t scale well in large networks, but they have a high through-
put and they outperform election based algorithms in small
networks. Thanks to these features, voting based algorithm are
frequently used in private and consortium blockchains, like Hy-
perledger. If the attackers own at least 34% of the resources, they
can successfully perform a Sybil attack.

• Hybrid: this category of algorithms combine an election pro-
cess with a voting scheme in order to improve the efficiency of
voting by reducing the number of nodes that take part in the
voting process. An example of a hybrid consensus mechanism
is IOST, in which a part of the network is elected to create an
optimistically validated block, while the rest of the network uses
a voting scheme to reach consensus. The resistance of an hy-
brid algorithm against Sybil attacks depends mostly on how the
underlying methods are hybridized.

Each category of consensus algorithms has some specific proper-
ties, advantages and drawbacks which may not be compatible with
the requirements of the proposed framework. Ideally, the consensus

3.4 consensus 25

algorithm should have a simple leader selection procedure and should
require only few complete executions of the validation algorithm to
achieve consensus, so that the framework can reach consensus with
little effort per node on average. Election based algorithms only re-
quire one complete execution of the algorithm, making them the most
resource efficient when the all the participants are considered, but
they present important issues which are incompatible with the design
goals of the proposed framework. The first problem is that adopting
an approach similar to PoW would be unacceptable in an embedded
system as it would simply require too much energy. PoS algorithms
instead are more lightweight, but can lead to centralization when few
nodes gain too many resources. More importantly, they have provable
guarantees only in the case the stake does not change too often [10],
which is almost impossible to achieve in a vehicular network where
nodes join and leave frequently.

The voting based algorithms in which the full network participate
in the voting scheme are utterly unsuitable due to the fact that every
node must run the full version of the validation algorithm, and they
also have a higher latency and huge network overhead because of the
three phases commit. This method is also likely to consume the whole
bandwidth of the channels used by the In-Vehicle Infotainment (IVI)
systems as each block needs to be broadcast from every node to all
the other ones at least once. A more centralized solution would be to
restrict the voting process only to trusted entities like roadside units,
but in this way the framework would fail to satisfy the decentralization
requirement.

The hybrid algorithm that was used to perform the comparison is
based on the ideas proposed by proof-of-importance (PoI) used in
the NEM blockchain and proof-of-believability (PoB) used in IOST. A
reputation score that is derived from their behaviour is assigned to
each node and it is used to elect an harvester and a subnet of support-
ers. The harvester then creates the new block, while the supporters
use Practical Byzantine Fault Tolerance (PBFT) to agree on the validity
of the candidate block and each supporter broadcasts an approval
signature to state that the block is valid according to them. Finally, the
rest of the nodes checks the eligibility of the harvester and if there are
enough eligible approval signatures before inserting the new block in
their local blockchains. Including both the harvester and the support-
ers, n = 3f+ 2 nodes have to be elected in total, where f is the fault
tolerance parameter of the voting scheme as well as the number of re-
quired eligible approval signatures for each block. Because of how the
consensus algorithm works, the validation algorithm is only executed
by the harvester and the supporters, which are only a small portion
of the whole network, while still guaranteeing full decentralization,
provided that the election process is fair. All these features make this
hybrid algorithm suitable for the proposed framework. Table 3.2 sum-

26 framework design

voting election hybrid

Number of
exchanged
messages

O(n2) O(n)
O(f2 +n),
f << n

Number of
validations per

block
n 1 3f+ 2

Malicious
block insertion

success rate

0 if malicious
resources <
34% else 1

0 if malicious
resources <
51% else 1

(eventually)

fails with high
probability if if

malicious
resources <

34%

Valid block
rejection rate

0 if malicious
resources <
34% else 1

0 if malicious
resources <
51% else 1

(eventually)

almost linear
w.r.t. malicious

resources in
interval [0; 15%]

Table 3.2: Comparison of the main consensus algorithm categories. The hy-
brid algorithm that was considered is described in Section 3.4.1.
Election based algorithms only guarantee that the attacks eventu-
ally fail, while voting based ones can stop them immediately.

marizes the characteristics of all the considered types of consensus
algorithms.

3.4.2 Leader election

Instead of inventing a brand-new harvester selection method that
has to be evaluated and is likely to bring new issues which have not
been explored yet, it was preferred to use one of the two widespread
methods described in Section 2.2.3. The main driver for the choice was
resource efficiency rather than complexity. Because of this a determin-
istic harvester selection method was preferred over a probabilistic one,
as it can effectively prevent forking from happening provided that
nodes are synchronized correctly.

The adoption of a deterministic harvesting method required a way
to synchronize the participants and make them agree on a view num-
ber. This issue was solved by relying on the previous block (on which
there is already agreement) and the assumption that the clock drift
among the clocks on the In-Vehicle Infotainment (IVI) system of the
participants is much smaller than the time between the harvesting of
two subsequent block. This assumption is indeed reasonable because
vehicles could keep their clocks synchronized through the Global
Positioning System (GPS), which is anyway required to produce trans-
actions. The view number v is thus defined by combining the hash
value of the previous block with the attempt number, which is de-

3.4 consensus 27

rived from the time elapsed since the creation of the last block though
the formula a = bnow−last-block-timestamp

blocktime c. The leaders are then
elected using the view number, their position in the list of elected
nodes and their reputation score. The image set of the hash function is
partitioned into non-overlapping sets and the partitions are assigned
to each node. The rules for creating partitions are that the probability
of obtaining a hash value in that range is equal to the ratio of the rep-
utation of the node the partition is assigned to over the total amount
of reputation or more formally:

Pr(hash(v||i) ∈ Partition(n)) = |Partition(n)|

2hash-size =

=
reputationn∑

j∈Nodes

reputationj

(3.1)

Then the hash function is used as a uniform pseudo-random number
generator by feeding it the view number and the position of the entity
in the election list. Algorithm 1 formalizes the election procedure
through the definition of its pseudocode.

The element of randomness is introduced in the leader election
process by the hash value of the last block. In fact, if a strong hash
function is used, it is impossible for an attacker to know the hash
value of a block until its content is broadcast. Even if the previous
block is harvested by an attacker, it is computationally impossible
to obtain the desired hash value [26], as it would require to find a
valid preimage of a hash value. The hash function that was chosen for
the leader election process is SHA-256 as it is recognized as a strong
enough hash function and for the rest of the work, when referring to
the hash function, the SHA-256 function is implied.

It is worth to note that, according to the pseudocode, a node is
allowed to be elected more than once during the same election. This
does not represent a problem as long as the probability of that node
being elected enough times to gain majority by itself is low enough,
that is, if the number of times a node gets elected is not greater than
f over a total of 3f+ 1 trials. This probability can be calculated by
modeling the number of times a node is elected during the election
process with a binomial distribution, where the number of trials is 3f+
1 and the probability of a success is computed through Equation 3.1.
Assuming that f = 10, which is a realistic value, and the percentage
p of the total reputation owned by the node is 10%, the chance of
the node gaining control by itself are approximately 0.13%, that is
tolerable. If the value of p is reduced to a more realistic value like 2%,
the probability drops to the order of one part-per-billion. Equation 3.2
shows how these results are derived.

28 framework design

Algorithm 1 Leader election algorithm.
1: function elect(active-nodes, reputations, previous-hash, attempt,

n)
2: seed = previous-hash || attempt
3: intervals = empty list
4: total = 0

5: for all node ∈ active-nodes do
6: total += reputation[node]
7: intervals.add(total)
8: end for
9: elected = empty list

10: for all 0 6 i < n do
11: hash-value = hash(seed || i)
12: index = find-lower-bound(intervals, hash-value)
13: elected.add(active-nodes[index])
14: end for
15: return elected
16: end function

Xi = “Number of times node i is elected as supporter.”

Xi ∼ Binomial(3f+ 1, pi)

Pr(Xi > f+ 1) = 1− Pr(Xi 6 f) =

= 1−

f∑
k=0

(
3f+ 1

k

)
pki (1− pi)

3f+1−k
(3.2)

3.4.3 Characterization of the Consensus Algorithm

It is important to consider also the resistance to attacks of the chosen
hybrid consensus algorithm before adopting it in the framework. The
assumption for the analysis that is carried out in this section is that
the application of the hash function behaves like a perfect uniform
pseudo-random generator, making the election process is completely
fair, that is, the probability that each node is elected is exactly the one
shown in Equation 3.1. The number of elected nodes is n = 3f+ 2

where f is the fault tolerance parameter of Practical Byzantine Fault
Tolerance (PBFT). The properties that we analyzed are the probability
of a successful malicious block insertion and the probability of the
failure of the consensus algorithm in the case of a Sybil attack.

To perform the analysis, two random variables, H and M were
introduced. The former indicates whether an attacker has been elected
as block harvester and it is a Bernoulli random variable with success
probability p, where p is the ratio of the total reputation owned by
the attackers. The variable M instead represents the number of nodes

3.4 consensus 29

controlled by attackers that are elected as supporters and will then
participate in the voting process. M is therefore modeled as a binomial
random variable with 3f+ 1 trials, each having a success probability
p, that is the same as in H. A malicious block insertion is successful if
the harvester node is malicious and the attackers own at least 34% of
the supporters nodes, while a valid block rejection happens whenever
the harvester is a malicious node or the attackers own at least 34% of
the supporters nodes. Equations 3.3 and 3.4 show how the formulas
for the two target probabilities are derived.

H ∼ Bernoulli(p)

M ∼ Binomial(3f+ 1, p)

Pr(“A malicious block is inserted”) =

=Pr(H = 1∧M > f+ 1) =

=Pr(H = 1)(1− Pr(M 6 f)) =

=p

(
1−

f∑
k=0

(
3f+ 1

k

)
pk(1− p)3f+1−k

) (3.3)

Pr(“A valid block is maliciously rejected”) =

=Pr(H = 1∨M > f+ 1) =

=Pr(H = 1) + 1− Pr(M 6 f) − Pr(H = 1∧M 6 f) =

=p+ (1− p)(1− Pr(M 6 f)) =

=1− (1− p)

f∑
k=0

(
3f+ 1

k

)
pk(1− p)3f+1−k

(3.4)

Figure 3.3 and 3.4 show the plots of the Equations 3.3 and 3.4 for
different configurations and under different points of view. The first
graphic in Figure 3.3 shows the probability of a successful malicious
block insertion as the amount of reputation owned by attackers grows.
In the graphic, it is possible to see how a larger value of the fault toler-
ance parameter makes the chance of a successful attack smaller in the
interval [0; 33%]. The second graphic, instead, displays the probability
of a successful valid block rejection attack as the amount of reputa-
tion owned by attackers grows. The consensus algorithm exhibits the
undesirable property of having a relatively high chance of rejecting a
valid block. This is tolerable though, as the probability becomes almost
identical to the ratio of malicious nodes’ reputation when approaching
0% (which is the condition in which the algorithm is supposed to
be executed according to the threat model). Finally, the graphics in
Figure 3.4 shows the same functions as in Figure 3.3, but in relation
with the fault tolerance parameter. The graphics highlight the same
properties as the first two graphics, but under a different perspective.
In particular, it’s possible to see that the effect of increasing the fault
tolerance parameter has diminishing returns in any configuration.

30 framework design

Another interesting observation is that when the attackers own more
than the 34% of the total reputation, the consensus algorithm per-
forms worse with a higher number of supporters, but this case is not
compatible with the threat model.

3.5 validation algorithm

The validation algorithm is the component of the consensus mecha-
nism that enforces the consistency of the transactions contained in
the blocks and it directly affects the quality of the collected traffic
information. A validation algorithm that performs an analysis of the
traffic stream as a whole would be ideal, since it would be able to gain
more knowledge about the traffic state and consequently detect out-
liers and anomalies more easily, thus preventing or mitigating attacks
more effectively. An algorithm of this kind would be way too com-
putationally intensive to be run on the In-Vehicle Infotainment (IVI)
systems, though. It is for this reason that a set of heuristics was used in
place of an optimal algorithm, implying that the validation algorithm
generates a certain amount of false positives and false negatives. This
does not necessarily make the proposed framework unusable as long
as the quantities of wrongly classified transaction remains acceptable.
An important concept about the validation algorithm to remark is that
its objective is not to detect malicious behaviour, but rather to prevent
it from taking happening or to mitigate its effects by accepting and
rejecting transaction and through meaningful reputation updates.

The validation algorithm is composed by four heuristics:

• Illegal transactions filtering: this component blacklists all trans-
actions that are considered illegal and therefore should not be
considered by the other heuristics.

• Transaction validation: this heuristic evaluates the believability
of the transactions and categorize them as acceptable, unacceptable
or implausible, while blacklisted transactions are always consid-
ered as implausible. It also counts the number of rewards and
penalties to give to each node.

• Misbehaviour penalization: this step further analyzes the trans-
action to search for misbehaviour such as selective transaction
generation.

• Reputation update: this last component uses the results ob-
tained in the previous steps to compute the variation of reputa-
tion to apply to each node.

In the following section, we explain and discuss the choices made for
each heuristic that composes the validation algorithm, together with
the pseudocode of each heuristic.

3.5 validation algorithm 31

Figure 3.3: Resilience to Sybil attacks under different fault tolerance param-
eter values. (1) The probability of a successful malicious block
insertion attack in relation with the amount of reputation owned
by attackers. (2) The probability of a successful valid block rejec-
tion attack in relation with the amount of reputation owned by
attackers.

32 framework design

Figure 3.4: Resilience to Sybil attacks depending on the amount of repu-
tation owned by attackers. (1) The probability of a successful
malicious block insertion attack in relation with the fault toler-
ance parameter. (2) The probability of a successful valid block
rejection attack in relation with the fault tolerance parameter.

3.5 validation algorithm 33

3.5.1 Illegal Transactions Filtering

The first operation that is performed on the transactions is filtering.
During this step the transactions that are deemed illegal are blacklisted
and the senders gain one penalty for each blacklisted transaction they
have generated. A first version of the filtering heuristic only consid-
ered the case in which a node generates a transaction that targets
itself. The advantage of this approach is that no valid transaction is
affected and that it successfully prevents nodes from self-boosting
their own reputation score. Unfortunately, the other heuristics are
unable to deal with attackers that perform a copycat attack (see Ta-
ble 3.1), so, in order to mitigate this type of attack, we decided to
consider as illegal any transaction that is not confirmed by the target.
A transaction is considered confirmed if in the same block there exists
at least another transaction that has the same sender and target of the
transaction under examination, but with the roles inverted. This mean
that transaction A→ B is considered illegal unless the same block also
contains transaction B → A. The final heuristic has a complexity of
O(blocksize2) and its pseudocode is shown in Heuristic 2.

Heuristic 2 Invalid Transaction Filtering
1: function filter(transactions)
2: blacklist = empty list
3: for all t ∈ transactions do
4: if t.sender = t.target then
5: blacklist.add(t)
6: else
7: confirmed = false
8: for all t2 ∈ transactions, t2 6= t do
9: if t.sender = t2.target ∧ t.target = t2.sender then

10: confirmed = true
11: end if
12: end for
13: if ¬confirmed then
14: blacklist.add(t)
15: end if
16: end if
17: end for
18: return blacklist
19: end function

3.5.2 Transaction Validation

The purpose of the transaction validation heuristic is to identify which
transaction can be considered reliable and which cannot. The basic

34 framework design

idea, which was originally proposed in Legler’s thesis [18], is to
compare new transactions with the ones in past blocks and to check
if some upper bounds related to the travel distance are satisfied. The
results obtained by checking the validity of these bounds are then
used to compute a reliability score and if the score is higher than a
threshold, the transaction can be accepted.

To derive suitable bounds, we considered the geometry of the prob-
lem, the physical limit of how far can a vehicle travel in a certain
amount of time and the implications of each type of condition. Each
transaction is modeled as circle in a plane with the center placed at the
sender position and the range equal to the maximum allowed detec-
tion range. The real position of the detected vehicle can be anywhere
within the circle. While it is impossible to know the real average speed
of the vehicles, it is reasonable to assume that there is a maximum
speed that is very rarely exceeded. This means that the maximum
distance a vehicle can travel has to be lower than bound = vmax · δt,
where vmax is the maximum feasible speed of a vehicle and δt is
the interval of time between two measurements. Figure 3.5 shows
two transactions and the distances that can be estimated that are rele-
vant for transaction validation. It is possible to identify four different
cases in which a bound can be applied, which are id(A) = id(C),
id(A) = id(D), id(B) = id(C) and id(B) = id(D), where id(X) is the
identity of node X. The only distance that can be directly measured
is AC, which is equal to the euclidean distance between the two po-
sitions of the senders. The other three cases, instead, require some
computations in order to derive a usable bound. Since the derivation
is similar for all the cases, only the one relative to the case in which
id(A) = id(D) is shown in detail:

AD 6 vmax ·∆t
DC 6 rangemax

−→
AC =

−−→
AD+

−→
DC

By applying the triangle inequality and applying the bounds:

AC 6 AD+DC 6 vmax ·∆t+ rangemax

The conditions of the four cases can thus be defined in terms of
measurable quantities in the following way:

id(A) = id(C) =⇒ AC 6 vmax ·∆t (3.5)

id(A) = id(D) =⇒ AC 6 vmax ·∆t+ rangemax (3.6)

id(B) = id(C) =⇒ AC 6 vmax ·∆t+ rangemax (3.7)

id(B) = id(D) =⇒ AC 6 vmax ·∆t+ 2 · rangemax (3.8)

Ideally, all the four conditions should be enforced on any pair of
transactions, but in a realistic scenario, this is not possible. The reason

3.5 validation algorithm 35

Figure 3.5: Two transactions and the meaningful distances between nodes.

is that a certain number of invalid transactions can be erroneously
evaluated as valid, since the validation algorithm contains heuristics.
This fact has no relevance on Condition 3.5, because the two transac-
tions have the same sender, so no other node can affect the evaluation
of the condition. This is not true for the other three conditions. In fact,
if a transaction with a fake position sent by an attacker is wrongly
classified as valid, all the legit nodes that detect the attacker at the
real position will fail to satisfy Condition 3.7. In this way the attacker
gains an amplification factor for which with only one transaction, it is
able to affect the evaluation of several other transactions. For this very
reason, Condition 3.7 is excluded from the heuristic. The remaining
conditions are also affected by wrongly classified transactions, but they
cannot be easily exploited to gain an amplification factor, so instead of
being strictly enforced, Conditions 3.6 and 3.8 are evaluated though a
score. To calculate the value of the score, the lists of concordant and
discordant nodes (IC and ID respectively) are computed first. The lists
are populated by comparing the new transaction with the transaction
in a certain number of previous blocks. For each previous transaction
that satisfies the one of the two preconditions, the sender is added
to IC when the respective postcondition is also true, otherwise it in
added to ID. The score is then calculated as follows:

score =

∑
i∈IC

reputationi −
∑
j∈ID

reputationj

|IC|+ |ID|

If the score is above a certain threshold, the transaction is considered
as acceptable and the sender is rewarded, otherwise it is marked as im-
plausible and the sender is penalized. In this way nodes that behaved
properly for a long time have a higher weight in the evaluation of
the score because it is assumed that they are more likely to advertise

36 framework design

correct information. To prevent the framework to collapse in case of
low traffic density, the evaluation of a transaction is suspended if
|IC|+ |ID| = 0 and no reward or penalty is given to the sender. In
this case the transaction is marked as unacceptable rather than as
implausible. The complete reward scheme is thus the following:

¬coherent =⇒ implausible, penalize sender

|IC|+ |ID| = 0 =⇒ unacceptable, do not penalize sender

score =

∑
i∈IC

reputationi −
∑
j∈ID

reputationj

|IC|+ |ID|

score > threshold =⇒ acceptable, reward sender

else =⇒ implausible, penalize sender

An early version of the heuristic only used Condition 3.8 to reduce
the number of checks and so to improve the performance, but in this
way, the sender position is never validated. This allowed attackers to
exploit legit nodes to teleport around by simply generating a transac-
tion targeting a legit node in which the attacker advertises a position
compatible with the one of the target node. The lack of checks on
the position of the sender caused this kind of transactions to pass
unnoticed and so to be accepted. The final version of the heuristic,
instead, performs all checks but Condition 3.7 and has a complexity
of O(N · blocksize2), where N is the number of previous blocks. The
pseudocode of the final version is presented in Heuristic 3.

3.5.3 Misbehaviour Penalization

The main objective of this heuristic is to penalize and mitigate the
suspect behaviours that is not dealt with in the transaction validation
step, which mainly involves selective transaction generation and self-
sustaining malicious groups. The reason why these cases are not
handled during transaction validation is because these misbehaviours
rely on the absence of transactions, while the transaction validation
heuristic can only deal with the transactions that are in the block.
Since no node has knowledge of the traffic stream, it is difficult to
reliably understand what node is misbehaving. The problem is further
worsened by the presence of false positives and false negatives and
the fact that some transactions can be dropped or lost. Because of
the difficulty of this problem, we had to consider and discard several
methods before identifying a usable mitigation.

One of the two approaches used to tackle this problem is to identify
suspect behaviour at group level. We considered three different:

1. Nodes are treated as vertices and transactions as edges in an
undirected graph and the connected subgraphs are identified.
After this operation, the relevant properties of the subgraphs

3.5 validation algorithm 37

Heuristic 3 Transaction validation algorithm
1: function validate-block-data(new-trans, old-blocks, reputa-

tions)
2: count = 0

3: score = 0

4: coherent = true
5: for all b ∈ old-blocks do
6: for all old-trans ∈ b.transactions do
7: distance = euclidean-distance(new-trans, old-trans)
8: ∆time = |new-trans.timestamp - old-trans.timestamp|
9: bound = MAX-SPEED * ∆time

10: check-bound = false
11: if new-trans.sender = old-trans.sender then
12: coherent = coherent ∧ distance 6 bound
13: else if new-trans.sender = old-trans.target then
14: bound += old-trans.range
15: check-bound = true
16: else if new-trans.target = old-trans.target then
17: bound += old-trans.range + new-trans.range
18: check-bound = true
19: end if
20: if check-bound then
21: count += 1

22: if distance < bound then
23: score += reputations[old-trans.sender]
24: else
25: score -= reputations[old-trans.sender]
26: end if
27: end if
28: end for
29: end for
30: if coherent ∧ count = 0 then
31: return Unacceptable
32: end if
33: if coherent ∧ score/count > THRESHOLD then
34: return Acceptable
35: end if
36: return Implausible
37: end function

38 framework design

like the number of vertices, the total reputation and the average
reputation are computed. Then all the nodes that belong to a
subgraph that does not satisfy a certain predicate are blacklisted
and their transactions become implausible.

2. Similarly to the previous method, the connected subgraphs are
computed first. This time, the conflicts between subgraphs are
used to determine if the nodes are misbehaving. A subgraph has
a conflict whenever there is a missing transaction between a node
contained in it and another one contained in a different subgraph.
Missing transactions are detected every time two nodes are close
enough in space and time to generate a transaction, but the
block does not contain it. Like in the previous method, the nodes
contained in subgraphs with too many conflicts are penalized.

3. This method attempts to approximate the shape of the connected
subgraphs by finding the optimal parameters that make a para-
metric model fit best. Subgraphs are then penalized when there
is an overlap with the shape of another subgraph, and they have
less total reputation.

Each method has some issues that made them unsuitable to be used in
the framework. Method 1 is not able to give consistent results because
neither legit subgraphs nor malicious subgraphs have characterizing
properties, but rather the range of possible values for the measured
properties is very similar for both types of subgraphs, allowing ma-
licious groups to easily blend in. This means that even if a predicate
that is so strict that it becomes unfeasible to perform an attack is used,
the number of wrongly classified legit subgraphs would grow to the
point that the system collapses to a state were almost all nodes have
zero reputation. Method 3 instead gives inconsistent results whenever
the shape of the subgraph did not belong to the family of shapes
that the parametric model can describe. A simple model with few
parameters incapable of describing the different shapes a group can
take, especially in presence of crossroads and turnings. More complex
models could solved this issue, but the number of parameters and the
overhead required to find the optimal values of the parameters would
become too high. Finally, Method 2 is too fragile against malicious
insiders. A group of attackers can in fact decide to selectively generate
transactions in such a way that the subgraph they belong to have a lot
of conflicts even if the majority of nodes behaves properly. Another
vulnerability that is common to all these methods that operate at
group level is depicted in Figure 3.6. The attack consists in having
one malicious node to properly that correctly generates transactions
toward at least one legit node, while the rest of the attackers only
generate transactions among themselves. In this way, the effectiveness
of group detection is compromised, while only one malicious vehicle

3.5 validation algorithm 39

Figure 3.6: On the left, the ideal situation in which legit nodes do not interact
with the attackers (A1, A2 and A3). On the right, the simple
workaround to decrease the chance to be detected with a single
interaction between legit nodes and attackers.

is required to be close to legit nodes, while the others do not even
need to be on the road to carry out the attack.

The second type of approaches that we considered operates at node
level instead, meaning that the behaviour of each node is evaluated in-
dividually, instead of considering the whole group. This approach can
lead to situations where only a portion of the attackers are penalized,
so the attack can still proceed, at least partially, but this does not rep-
resent a problem as long as the remaining attackers are in an isolated
area. A first definition of the heuristic used the number of missing
transactions to decide whether to blacklist a node, and consequently
all its transactions, or not. This method proved itself to be ineffective,
as attackers could produce enough acceptable transactions among
themselves to compensate for the penalty and lose reputation slower
than legit nodes. When legit nodes approach a reputation score of zero,
their transactions are rejected more often and attackers eventually take
over and start gaining reputation again.

To prevent malicious nodes to take over, we modified the initial
heuristic to introduce two modifications. The first one is that when
a missing transaction is detected, only the node with less reputa-
tion loses the conflict and gains one additional penalty. The second
one, instead, is that only lost conflicts count toward the blacklisting
phase. Heuristic 4 shows the pseudocode of the final version of the
misbehaviour penalization heuristic. Since finding missing transac-
tions requires to compare every transaction, to all the other ones, the
computational complexity of the heuristic is O(blocksize2).

The assumption used in the design of the misbehaviour penalization
heuristic is that misbehaving nodes, on average, have to struggle more
than legit nodes to gain reputation, so they are more likely to lose

40 framework design

the conflict. This is further enforced by Heuristic 5 that computes
a scaling factor for the reputation variation so that nodes that have
detected the same targets during the last M blocks are rewarded
less. The lack of variance in the detected nodes is a characteristic of
malicious groups that selectively generate transactions, as they are
much fewer than legit nodes. The complexity of Heuristic 5 depends
on what data structure is used to store the adjacency relation. If
using a sorted array or a tree structure, the complexity becomes
O(M · blocksize · log(blocksize)) since the union operation would
have a complexity ofO(blocksize · log(blocksize)). On the other hand,
if an hash table is used, the complexity becomes O(M · blocksize) in
the average case. In both cases the complexity of this heuristic is lower
than the one of the other heuristics.

Heuristic 4 Conflict-driven misbehaviour penaization.
1: function detect-misbehaviour(reputations, transactions, out-

comes)
2: conflicts = conflicting-pairs(transactions, outcomes)
3: lost-conflicts = empty dictionary
4: blacklist = empty list
5: for all n1, n2 ∈ conflicts do
6: reputation1 = reputations[n1]
7: reputation2 = reputations[n2]
8: loser = (reputation1 < reputation2) ? n1 : n2

9: lost-conflicts[loser] += 1

10: end for
11: for all node, conflicts ∈ lost-conflicts do
12: if conflicts > MAX-CONFLICTS then
13: blacklist.add(node)
14: end if
15: end for
16: return lost-conflicts, blacklist
17: end function

3.5.4 Reputation Update

In the reputation update phase, the variation of reputation of each
node is computed and it is added to the current reputation score that
is retrieved from the previous block. Also, the flags that indicate what
nodes have at least one acceptable transaction in the block are set.
Thanks to the reputation update phase, the behaviour of a node and
its contribution to the blockchain are bound to the reputation score.
A node that behaves properly and thus generates more acceptable
transactions will have higher reputation and so it is going to be con-
sidered more trustworthy. On the other hand, a node that misbehaves,

3.5 validation algorithm 41

Heuristic 5 Scale factors computation based on detection variance.
1: function adjacency-relation(transactions, outcomes)
2: relation = empty set
3: for all t ∈ transactions do
4: if outcomes[t] = Acceptable then
5: relation.add((t.sender, t.target))
6: end if
7: end for
8: return relation
9: end function

10:

11: function scale-factors(active-nodes, transactions, outcomes)
12: old-blocks = M most recent blocks
13: old-relation = empty set
14: for all b ∈ old-blocks do
15: relation = adjacency-relation(b.trasactions, b.outcomes)
16: old-relation.union(relation)
17: end for
18: new-relation = adjacency-relation(transactions, outcomes)
19: intersection = old-relation ∩ new-relation
20: scale-factors = empty dictionary
21: for all n ∈ active-nodes do
22: count = count pairs like (n, _) in intercesction
23: total = count pairs like (n, _) in new-relation
24: scale-factors[n] = 1 - count/total * WHEIGHT
25: end for
26: return scale-factors
27: end function

42 framework design

generates more implausible transactions, so it is going to have a low
reputation score. Initially, this part of the validation algorithm was
very simple and just computed the activity flags and the reputation
variation. The latter was calculated through the following formula:

variationi = reward ·num-rewardsi−penalty ·num-penaltiesi
(3.9)

In the formula, num-rewardsi and num-penaltiesi are respectively
the number of rewards and the number of penalties for node i that
were computed in the previous steps, while reward and penalty

are parameters representing the base amount of reward and penalty.
After applying the reputation score variation, the final reputation
is corrected so that it is always in the interval [0;max-reputation],
where max-reputation is another parameter representing the high-
est allowed reputation score. The reputation is thus updated in the
following way:

tempi = reputationi + variationi

reputation ′
i =

0 if tempi < 0

max-reputation if tempi > max-reputation

tempi otherwise

While this update strategy is simple and has a complexity of
0(#nodes), it has two major drawbacks. The first is that inactive nodes,
since they don’t generate any transaction, will always have a repu-
tation variation equal to zero. This is undesirable because it allows
attackers to gain a large amount of reputation by behaving properly,
stop generating transaction for possibly a long period of time and
join again when there is a more favorable situation to carry out the
attack. Since they have with a high reputation, the attack has a higher
chance to succeed. The second issue is that this method is based on
the assumption that all transactions should be equally rewarded and
penalized. This means that a node that detects the very same target
over and over again, will receive the same reward as a node that has a
great diversity in the detected nodes. This situation encourages attack-
ers to prefer to selectively generate transactions among themselves, as
they can operate in a more controlled way and thus gain reputation
faster, while having no repercussions.

The second design of the reputation update step solves both of these
problems by introducing the concepts of reputation decay and detec-
tion variance. The latter has already been discussed in the previous
section and led to the introduction of Heuristic 5 to compute a scale
factor for all the active nodes. Reputation decay, on the other hand,
implies that a node that is inactive will not have a null reputation
variation, but instead, a portion of its reputation score is destroyed,

3.6 other components 43

depending on the parameter reputation-decay-rate. The updated
reputation variation computation is the following:

real-variationi =scale-factori · reward ·num-rewardsi+

−penalty ·num-penaltiesi
reputation-decayi = −reputation-decay-rate · reputationi

variationi =

real-variationi if i is active

reputation-decayi otherwise

Since the detection variance has to be computed for each node during
the reputation update phase in order to compute the reputation vari-
ation, the overall complexity of this step becomes O(M · blocksize ·
log(blocksize)).

3.6 other components

This section deals with the setup and the configuration of the frame-
work accordingly to what was done up to this point. In particular, the
topics that are discussed are the initial state of the blockchain and the
reward system, since they have a major impact on the functioning of
the proposed framework.

3.6.1 Initial State

The initial state of the blockchain plays a crucial role in blockchain
based systems [19, 15]. The very first block in the blockchain is called
genesis block and it is created ad-hoc for each blockchain system
depending on how the consensus mechanism works. The purpose of
the genesis block is to put the blockchain in a valid state even at the
very beginning, so that the consensus mechanism can operate under
the correct assumptions when dealing with the first blocks. As an
example, the genesis block in Bitcoin contains made-up transactions
that create the initial public offer of bitcoins.

In the specific context of the proposed framework, to allow the
framework to function properly, the initial state requires a set of
elements that have a known position and are trusted. RSUs are a good
candidate for this starting phase as they fulfill both these requirements,
or anyway it’s possible to ensure that RSUs behave correctly at least
temporarily. This is the only phase in which a certain amount of trust
is required, as once the framework is started, these elements will
be treated just like the other regular nodes and will not have any
particular advantage or additional permissions. The genesis block
contains made-up transactions between the initially trusted nodes and
each node will start with a certain reputation. The transactions in the
genesis block have a higher range than the regular ones on average

44 framework design

because the trusted entities are not likely to be close to each other as it
would happen during the normal functioning of the framework. This
is not a problem because the transactions in the genesis block are not
going to be validated. Also, the initial reputation of trusted nodes is
not particularly critical, but it should be high enough to grant that the
system does not collapse during the startup phase.

3.6.2 Reward System

The reward system is a crucial part of the proposed framework because
when it is not configured correctly it can easily lead to the collapse
of the framework or to a situation in which misbehaviour is not
discouraged. Throughout the research, we considered three reward
systems, which differ in how the base reward and penalty are assigned
to each node. The three reward systems are:

1. Constant reward and penalty: nodes have fixed amounts of base
reward and penalty which are defined through some parameters
and don’t change during the life of the framework.

2. Constant reward, distrust on mistake: it is similar to the first
reward system, but the reputation is reset to zero if there is even
just one penalty.

3. Constant reward, dynamic penalty: the reward is treated as in
the previous reward systems, but the penalty is computed in-
dependently for each node by considering a base value and
the trend of the node’s reputation in the last blocks. For exam-
ple, an exponential penalty can be assigned through the for-
mula penaltyi = base_penalty · 2#negative_variationsi where
#negative_variationsi is the number of times the reputation of
node i has decreased in the last blocks and base_penalty is a
parameter.

The last two reward systems would ideally be more effective in prevent-
ing malicious behaviour, but the amount of penalty that is assigned
is not fully controllable, making the proposed framework likely to
collapse to a state where the total reputation is zero or close to zero.
The problem is further worsened by the fact that the validation algo-
rithm can produce false positives and false negatives. For this reason
we decided to adopt the reward system with constant base reward
and penalty, which allows for full control over the penalty, making the
framework more controllable and less likely to collapse.

3.6.3 Transaction Filtering

Transaction filtering is an important question, especially when con-
sidering the fact that the number of transactions that can fit into a

3.6 other components 45

block is limited. An unsuitable strategy can easily lead to a significant
slowdown of the framework up to the point that it becomes unusable.
Also, the transaction filtering strategy interacts with the consensus
mechanism in a complex way, as it decides what transactions are going
to end up in the block, and thus in the validation algorithm. In fact, if
the filtering strategy creates a too big imbalance in the distribution of
the transactions, the assumptions required for the heuristics used in
the validation algorithm can become too fragile or even incorrect.

A first idea for the design of a transaction filtering strategy is to
discard the oldest transaction in the block to make place for the new
one. This gives very negative results when attackers spam a lot of
made-up transactions. By simply increasing the timestamp by an
amount of time that was small so that the made-up transaction is
not discarded because it has arrived too early, it is possible for an
attacker to produce transactions that are more recent than the others
on average. Then, because of the filtering strategy, legit transactions
get discarded and legit nodes do not have enough time before block
harvesting to produce new transactions to repopulate the block.

A second design relies on statistics computed with transactions
as they arrive. In this way, it is possible to decide more carefully
what transaction to drop to make place for a new one. For example,
a new transaction can only overwrite a transaction from the same
sender or from another sender only if the sender of the transaction
has too few transactions in the block. Although this strategy seems
feasible, the overhead required to update the statistics and to check
what transaction to drop is significant and is not responsive enough
for the large amount of transactions that each node has to process.

The third strategy is to randomly select a transaction from the block
and replace it only if the new transaction is more recent than it. This
strategy clearly cannot give the same guarantees as the second one, as
it can only provide probabilistic guarantees. However, it is hard for
attackers to completely fill up the block with made-up transactions
because they would end up overwriting their own transaction with
higher probability as more of their transactions are inserted in the
block. Moreover, just like attackers, also legit nodes have a higher
chance of overwriting made-up transactions when they are already
numerous. Another advantage is that this strategy is very fast and
only requires very few operations to be completed. In this way, a
reasonable trade-off between (D)DoS attack resistance and usability is
achieved.

4
I M P L E M E N TAT I O N D E TA I L S

In order to validate and to perform a parameter study on the proposed
framework, we developed a simulator. The main requirements that
were considered during the design and the implementation of the sim-
ulator are simulation realism and simulation efficiency. Since the two
requirements are incompatible with each other, in the cases in which
they collided we had to evaluate a trade-off. The whole simulator was
implemented in C++ 11 and besides the simulation libraries specified
in the next section and the standard library, no other external library
was used. In the rest of the chapter we present and examine the archi-
tecture on which the simulator is based and the main optimizations
that we adopted to get an acceptable performance.

4.1 simulator architecture

It is difficult to achieve a high degree of realism in the simulation
of the framework because of the many details to take care of and
the overhead they introduce. Traffic mobility simulation is especially
important, because it directly affects the nature and the frequency
of the interactions between vehicles. For example, a model based on
vehicles randomly moving around would be unacceptable, as it is not
able to produce realistic mobility and interactions. For this reason, the
simulation of traffic mobility is delegated to SUMO [28], that is a mi-
croscopic traffic simulator, meaning that it simulates the full behaviour
of every vehicle. The network side of the framework is instead simu-
lated with the help of the OMNeT++ [23] library and the Veins [30]
framework. The former is a component-based C++ simulation library,
that is widely use to simulate distributed systems, while the latter is
an inter-vehicular communication simulation framework that relies on
OMNeT++ for network simulation and on SUMO for road traffic sim-
ulation. The way all these components and the framework simulator
interact with each other is shown in Figure 4.1.

The proposed framework is a complex system and the consensus
mechanism had to be modified several times as the research went
on. Because of this reason, modularity was an important feature of
the simulator, and led to a modular component-oriented architecture.
Figures 4.2 and 4.3 show the main components in which the frame-
work simulator is divided and their interactions. The design choice
to enforce a high degree of modularity and parametrization had a
positive impacted on the experiments which the system underwent

47

48 implementation details

Figure 4.1: The interactions between the various frameworks.

since it allowed to quickly and efficiently try different combinations
and configurations without the need to refactor the existing code.

Here is a brief description of the major and most significant compo-
nents in the framework:

• RSUPlacer and StaticNodePlacer place RSUs and non-moving
nodes at the very beginning of the simulation. RSUPlacer also
creates the genesis block.

• AddressTable assigns a unique address to each node and can
be queried to retrieve all identities and addresses.

• PositionTable stores the most recent position of each vehicle.

• BlockLogger performs two important operations, which are to
log the full blockchain to a log file and to produce the result files
containing the statistics about the state and the behaviour of the
framework.

• ValidationOptimizer caches the most recent validation result.
See Section 4.5 for more details.

• TraCIScenarioManagerLaunchd is a Veins class that manages
vehicle mobility and the communication with SUMO through
SUMO’s TraCI interface. This class can be specialized to enforce
different mobility policies.

• BuilderAllocator is an optimization for block creation. See Sec-
tion 4.4.2 for more details.

• IMobility is another Veins class. Its task is to help TraCIScenari-
oManagerLaunchd to simulate vehicle movement.

• TransactionGenerator defines how a node generates the trans-
actions. It can be specialized to simulate different behaviours.

• Blockchain contains the logic to handle the blockchain data
structure.

4.1 simulator architecture 49

F
ig
u
re

4
.2
:

C
la

ss
di

ag
ra

m
re

pr
es

en
ti

ng
th

e
co

m
po

ne
nt

s
of

th
e

si
m

ul
at

or
at

ne
tw

or
k

le
ve

l.

50 implementation details

F
ig
u
re

4
.3
:

C
lass

diagram
representing

the
com

ponents
of

the
sim

ulator
at

blockchain
level.

4.2 consensus algorithm 51

• BlockHarvester contains the block harvesting strategy.

• TransactionFilter contains the rule to select what transaction to
insert and drop.

• BlockValidator contains the validation algorithm.

• ConsensusModel defines the consensus algorithm.

• RewardSystem defines the base values of reward and penalty.

4.2 consensus algorithm

Practical Byzantine Fault Tolerance (PBFT) is a complex algorithm that
requires that the participants update their internal states, exchange
messages and manage timeouts in a precise way. The implementation
of the Practical Byzantine Fault Tolerance (PBFT) consensus algorithm
is based on the specifications given in the paper that first proposed
Practical Byzantine Fault Tolerance (PBFT) [6], with some adjustments
to integrate it in the framework.

When a new block is broadcast, all nodes check its eligibility by
controlling that the harvester has the right to create the block and if the
block is eligible, it is stored locally. After this operation the nodes start
a timeout and wait for approval signatures from the supporters. Every
time an approval signature is received, the nodes check if the sender
is among the supporters and if the signature was already received.
When there are enough valid signatures bound to the new block, the
block is added to the local blockchain and the local state of the node
and the timeout are reset.

Supporters have to execute also Practical Byzantine Fault Toler-
ance (PBFT) alongside the previously defined procedure. The pre-
prepare phase begins after the supporters have received the new block
and they have checked that the metadata of the new block are correct
and that the harvester is eligible. After this, the Practical Byzantine
Fault Tolerance (PBFT) algorithm unfolds as it is specified in its paper.
The validation algorithm is executed during the commit phase and
the approval signature is broadcast only if the block is valid. Because
OMNeT++ does not allow time to progress during code execution if
not manually managed, the optimization of starting the validation
asynchronously during the prepare phase was redundant and would
have only generated more complexity. During each phase a timeout
is started to avoid deadlocks in case too many nodes stop executing
the Practical Byzantine Fault Tolerance (PBFT) algorithm either be-
cause they have left the network or because they are misbehaving. The
full procedure is shown in the activity diagram in Figure 4.4, while
Figure 4.5 highlights how messages are exchanged in the slightly mod-
ified Practical Byzantine Fault Tolerance (PBFT) consensus algorithm
used in the framework.

52 implementation details

Figure 4.4: The workflow of the implemented consensus algorithm.

Figure 4.5: The exchanged messages in the slightly modified version of
Practical Byzantine Fault Tolerance (PBFT) used in the framework.

4.3 dsrc module 53

4.3 dsrc module

In a real scenario, transactions would be generated through the Dedi-
cated Short Range Communication (DSRC) module or the Cooperative
Intelligent Transport Systems (C-ITS) module installed on the vehicle
and the weakening of the signal would limit the range of the detection
to a certain area. The Veins framework offers a Dedicated Short Range
Communication (DSRC) radio module that simulates this situation with
realistic signal propagation, but this method does not scale well with
the number of Dedicated Short Range Communication (DSRC) mod-
ules. For each Dedicated Short Range Communication (DSRC) module,
Veins creates an OMNeT++ message and, upon arrival, computes the
strength of the signal through a complex procedure. Depending on
the receiving antenna and the signal strength, Veins then decides if
the receiver module can receive the message and if so, it also decides
how many transmission errors to introduce. This is a very realistic
approach, but the introduced overhead is significant and causes the
simulation to be unacceptably slow when there are over a hundred
nodes.

For this reason, the transactions are generated through a custom
Dedicated Short Range Communication (DSRC) module. The strategy
is to store the positions of all nodes in the position table and to
use this information to decide what node is close enough to receive
the message before sending it. In this way, the overhead caused by
the large number of OMNeT++ messages is drastically reduced, and
the complex, yet realistic, procedure to determine signal strength
is replaced with a simple condition checking if the received is in
transmission range. In this way, realism is partially sacrificed in spite of
efficiency, but the approximation that is introduced is good enough for
the purpose of evaluating the feasibility of the proposed framework.

4.4 blockchain

4.4.1 Transaction Broadcast

The major issue with transactions is the large number of them that is
generated during runtime. In fact, every node generates a transaction
that has to be broadcast to all other nodes every time there is a reply to
its Dedicated Short Range Communication (DSRC) probe message. This
causes the number of transactions to be in the order of O(#nodes2),
but with a large coefficient that represents the average number of
interactions between vehicles. Moreover, the overhead introduced by
the allocation of an OMNeT++ message was about 360% the size of a
transaction (64B). In such a situation, during peaks, the consumption of
main memory could exceed 8 GB even with just about 1,500 participant
nodes (this number is just the limit of participant nodes, not the actual

54 implementation details

number of active nodes). The number of nodes that can take part in
the simulation is thus strongly limited by the amount of available
main memory. Also the amount of time required to process every
message would take most of the simulation time.

After considering this problem, we decided to emulate transaction
broadcast using shared memory. This choice has two major implica-
tions, the first being that transaction broadcast is no longer realistic
because the transmission time, the propagation time and message
omissions are not considered in the simulation anymore. The second
implication is that every node, or at least legit nodes, have a perfectly
synchronized set of transactions, which is far from realistic. This was
though a necessary simplification, so that the simulations can be ex-
ecuted in a reasonable amount of time and main memory. Since the
amount of time required to populate, generate and agree on a block is
much larger than transmission and propagation latency, this optimiza-
tion was deemed acceptable nevertheless. In order to implement this
optimization, block builders are created though a factory object, the
builder allocator, that has the task to manage the shared states. The
factory pattern also allows to deactivate this optimization when it is
undesired.

4.4.2 Blockchain Management

Another memory issue is the management of the blockchain itself. In
fact, blockchains require a significant amount of memory to be stored
and replicating them for each participant would scale very poorly,
even to the point to be simply unfeasible to do so on a single computer.
For this reason two optimizations were introduced. The first one is to
use read-only shared memory after a block has passed through the
consensus mechanism. In this way, only a single copy of the block
is kept in main memory and any other copy can simply be dropped.
This optimization has no impact on the behaviour and the realism of
the simulation because the block has already been digitally signed
by the time that the optimization is applied, so even in a real case it
would have been impossible for the nodes to alter its content.

The second optimization is block logging. Under the assumption
that the framework will not undergo an attack where an attacker tries
to fork the blockchain or tries to alter old blocks, only the last few
blocks are actually required for the functioning of the framework.
The optimization exploit this fact to reduce the amount of blocks to
keep in main memory by logging them in the secondary memory
and dropping the ones that are older than a certain parameter. Block
logging is also important because it allows to analyze the behaviour
of the framework after the experiment.

4.5 validation 55

4.5 validation

The validation algorithm, as explained in Section 3.5, is the most com-
putationally intensive component as it has a quadratic complexity with
respect to the number of transactions in a block. Because of this reason,
the validation algorithm required special care and had to be optimized
significantly in order to allow for a reasonably fast simulation. The
algorithm was optimized primarily in two different ways. The first
optimization is to reduce the access time and reallocation overhead of
the data structure that the algorithm used. The second optimization,
instead, relied on the fact that the validation algorithm contains several
parts that can be modeled as a computationally intensive reduction
operation, meaning that they can be parallelized quite easily.

The data structures used in the implementation of the validation
algorithm come from the C++ 11 Standard Template Library (STL), so
there are some complexity guarantees for the underlying algorithms
as specified by the C++ 11 standard. Because of this, the performance
is mainly defined by the choice of the data structure. The factors
that affected the choice of a data structure over another one are the
data access time and memory reallocation overhead. Because of the
optimization of the blockchain that have been previously described,
the validation algorithm has plenty of main memory that can be
used, so the main concern is about time efficiency. In the original
implementation, we used the associative containers std::map and
std::set from STL, which guarantee a logarithmic complexity for
both insertion and lookup with no memory reallocation. After some
tests, we decided to switch to the use of hash tables under the form of
std::unordered_map and std::unordered_set, as they provided an
average speedup of about 200% when enough memory was preallo-
cated. Listing 4.1 shows this optimization on a snippet of the algorithm
used to validate transactions and gather statistics about them.

The parallelizable parts followed a simple parallel reduction pattern,
so OpenMP was deemed suitable for the task, also because it required
minimal code editing. The parallelization process followed an incre-
mental approach, so that it was possible to see where parallelism was
best suited and where the introduced overhead countered the benefits.
This approach led to the successful parallelization of the most criti-
cal loops, namely those that required O(blocksize2) iterations, thus
achieving a significant speedup. Because the reduction operation in
many cases required to work with STL containers, it was necessary
to define custom reduction operation, making the implementation
incompatible with OpenMP versions prior to 4.0. Listing 4.2 shows a
snippet of the procedure used to validate all transactions.

A final optimization which is not related to the implementation
of the algorithm itself is validation result caching. In this way, it is
possible to avoid executing the validation algorithm once for each

56 implementation details

1 ValidationResult validateBlockDataV1(/*...*/) {

2 std::map<Address, int> sentTransactions;

3 //declarations...

4 for(int i = 0; i < transactions.size(); ++i) {

5 outcome = validateTransaction(transactions[i], old_blocks);

6

7 sentTransactions.insert({transactions[i]->getSender(), 0});

8 //...

9

10 if(outcome.acceptable()) {

11 sentTansactions[transactions[i]->getSender()] += 1;

12 //...

13 }

14 //rest of loop body...

15 }

16 //rest of the function...

17 }

18

19 ValidationResult validateBlockDataV2(/*...*/) {

20 std::unordered_map<Address, int> sentTransactions;

21 sentTransactions.max_load_factor(0.7);

22 sentTransactions.reserve(maxExpectedNumberOfNodes);

23 //declarations...

24 for(int i = 0; i < transactions.size(); ++i) {

25 outcome = validateTransaction(transactions[i], old_blocks);

26

27 sentTransactions.insert({transactions[i]->getSender(), 0});

28 //...

29

30 if(outcome.acceptable()) {

31 sentTransactions[transactions[i]->getSender()] += 1;

32 //...

33 }

34 //rest of loop body...

35 }

36 //rest of the function...

37 }

Listing 4.1: Code optimization by replacing tree-based associative containers
with hash tables.

4.5 validation 57

1

2 TransactionInfo validateTransaction(/*parameters...*/) {

3

4 int score = 0;

5 int count = 0;

6 bool coherent = true;

7

8 for(auto& block: old_blocks) {

9 #pragma omp parallel for reduction(+:score, count) reduction(&&:coherent)

10 for(int i = 0; i < block.transactions().size(); ++i) {

11 //loop body...

12 }

13 }

14 //rest of the function...

15 }

16

17 #pragma omp declare reduction(merge: std::unordered_map</*...*/>:/*...*/)

18

19 ValidationResult validateBlockData(/*parameteres...*/) {

20 //declare containers...

21 #pragma omp parallel

22 {

23 //containers memory pre-allocation...

24 #pragma omp for reduction(merge: /*containers...*/)

25 for(int i = 0; i < transactions.size(); ++i) {

26 auto outcome = valdateTransaction(/*...*/);

27 //rest of loop body...

28 }

29 }

30 //rest of function...

31 }

Listing 4.2: Code optimization by parallelizing critical loops.

58 implementation details

supporter node, provided that the input to the validation algorithm
is the same, including the locally stored blockchain replica, and the
nodes have the same behaviour. This is indeed the case for legit nodes,
so the first legit node that executes the validation algorithm, caches the
result and the block metadata in the ValidationOptimizer component,
while the other nodes have to check if the cached metadata match and
if so, simply read the cache. This optimization can also be used by
malicious nodes provided that they are not trying to forge a block or
perform a Sybil attack, since they still behave properly from the point
of view of the consensus mechanism.

5
E X P E R I M E N TA L PA R A M E T E R C O N F I G U R AT I O N
A N D VA L I D AT I O N

In this chapter we present the objectives of the experimental validation,
together with the experimental setup and the traffic scenario that was
used to simulate the framework. We then presents the configurations
and the results of the experiments we performed on the framework,
which include parameter studies in scenarios without attacks and ver-
ification of the resilience of the proposed framework against different
types of attacks, as specified in the threat model.

5.1 goals

The main goal of the experiments is to perform a feasibility study
of the proposed framework. To be feasible, the framework has to be
able to function correctly and be usable at least under ideal conditions
and under the attack scenarios that have been deemed possible in the
threat model in Section 3.3. For this reason, the feasibility study is
divided into two main parts:

• Parameter study: to be usable, the framework needs to have a
stable configuration that allows it to function properly and not
to collapse at least in the average case, while still providing some
margin on the values of the parameters. The most important
parameters are analyzed in order to experimentally find optimal
values and estimate their sensitivity. For the experiments relative
to the parameter study, we consider the framework as collapsed
when the average reputation of nodes gets too close to zero or
almost the entirety of the transactions generated by legit nodes
are rejected, as in both these situations the proposed framework
is incapable of meeting its requirements.

• Attack resistance: the other crucial requirement for the feasibil-
ity of the proposed framework is the resistance against attacks.
The experiments for this part are modeled after the threat model
described in Section 3.3. We consider an attack as failed when
the average reputation of attackers is significantly lower that the
average reputation of legit active nodes and only few malicious
transactions are accepted.

The experiments are simulated using the simulator described in Chap-
ter 4 and the base configurations of the test are described in Section 5.4,
while the values are changed for the experiments are made clear in
each section.

59

60 experimental parameter configuration and validation

5.2 traffic scenario

The traffic scenario is the key component to obtain a realistic simu-
lation. In fact, if the vehicles move in an unrealistic way and in an
unrealistic road layout, they will generate unrealistic interactions. This
prevented to use small and simple traffic scenarios, such as vehicles
randomly moving in a square or in grid topologies. Modeling a traffic
scenario from scratch requires a large amount of time and effort, as
well as the knowledge of the mobility patterns, which requires study-
ing traffic information. Because of this reason, we decided to adopt
pre-built SUMO scenarios.

Just like openly available traffic information, also openly available
realistic traffic scenarios are scarce and many of them also present
substantial simulation issues and simplifications. We considered three
real-world scenarios based on actual cities, namely TAPASCologne [1],
LuST [8] and MoST [9]. The first one is modeled after the city of
Cologne, but it presents so many simulation problems that it is stable
enough for tests only when the number of vehicles is limited to the
30% of the total, which is utterly unrealistic. The choice of whether to
use LuST, based on the city of Luxembourg, or MoST, based on the
Principality of Monaco, was primarily driven by the fact that the latter
is more recent and, according to the authors, provides more realistic
results.

The MoST traffic scenario spans over a simulated time period of
ten hours, during which approximately 46 thousands vehicles are
spawned, while about 700 vehicles have to be repositioned during run
time because of simulation errors. In the experiments, the number of
participants is further restricted to a maximum value and the duration
is reduced, so that the experiments remain manageable. Also, public
transport, motorcycles and bikes have been excluded as they are not
the target of the proposed framework. The RSUs instead are placed so
that they lay on the intersections of a fictitious grid over the scenario
map.

5.3 experimental setup

In this section, we present the characteristics of the environment which
the experiments were performed. The features of the machine used
for the experiments are reported in Table 5.1. All the experiments
described in this chapter were executed on the very same machine,
with no other user application running.

Regarding the traffic scenario simulation, we used the latest avail-
able version of MoST (commit 7cee150), together with SUMO version
1.3.1, as suggested by the authors of the MoST scenario. In the network
simulation, instead, we used Veins version 5.0 with OMNeT++ version
5.6.1.

5.4 base configuration 61

component description

Processor
Intel ®Core ™i7 870 @ 2.93

GHz x8

Main memory 8 GB

Secondary memory 120 GB SSD and 512 GB HDD

Operative system 64-bit Ubuntu 18.04.4 LTS

Virtual machine No

Table 5.1: Setup of the machine used to run the experiments.

5.4 base configuration

The simulations required for the experiments need to have a func-
tioning base configuration in order to be meaningful for a parameter
study or to confirm that the framework is resistant to certain attacks.
To find a suitable base configuration was not an easy task, primar-
ily because there are a lot of parameters which interact with each
other in a complex and not easily predictable way. For this reason, the
base configuration was found with a trial and error approach, then
it was refined by analyzing the effects of the parameters. The final
configuration is described in Table 5.2.

The approach adopted to find a functioning base configuration
clearly cannot guarantee that the obtained result is a global optimum,
but no other suitable configuration was found nevertheless. The high
number of RSUs that are inserted in the scenario is needed because the
RSUs are not placed according to the road layout, so most of them got
placed in unreachable areas. In any case, in all the experiments the
total number of RSUs that were actually required never exceeded 30,
which means that in the experiments less than the 2% of the nodes are
RSUs. The choice of the fault tolerance parameter, instead, is given by
the analysis of the consensus algorithm carried out in Section 3.4, and
a value of 6 was considered sufficient for the type of experiments that
are performed in this chapter.

In the simulations performed for the parameter studies, the frame-
work is always simulated in a trusted environment, that is, in a sce-
nario where there are no malicious nodes and no attack takes place.
This means that the simulation is performed under the conditions of
normal functioning, so if the framework collapses in such a situation,
it is reasonable to assume that it cannot work properly in case of
more realistic scenarios where nodes can misbehave. The fact that
in the parameters studies there are no attacks also means that all
the transactions that are not considered as acceptable are wrongly
classified.

62 experimental parameter configuration and validation

component parameter value(s)

Scenario Number of vehicles 1500

Number of RSUs 400

Blockchain
Maximum number of
transactions per block

50000

Time before
harvesting a new

block
60 s

Transaction
validation

Number of previous
blocks

3

Threshold 0.1

Misbehaviour
penalization

Detection variance
weight

0.67

Maximum number of
tolerable conflicts
before blacklisting

2

Consensus algorithm Fault tolerance 6

Reward system Maximum reputation 4096

Initial reputation 64

Base reward 256

Base penalty 512

Table 5.2: Base configuration used in the experiments.

5.5 reward system configuration 63

5.5 reward system configuration

The reward system has a direct impact on the functioning of the
proposed framework and when wrongly configured, it can lead to the
collapse of the framework or to a state where even malicious nodes do
not lose reputation. In this section, we test different configurations of
the reward system to experimentally find bounds and characteristics
of the parameters of the reward system. In particular, we analyze how
the base amount of penalty and the amount of reputation assigned to
newly joined nodes affect the proposed framework.

5.5.1 Penalty

This experiment is meant to show how the base amount of penalty that
is given for each implausible transaction affects the system. Intuitively,
a penalty that is too harsh can easily lead to a collapsed state in which
nodes do not have enough reputation to allow legit transactions to
be accepted. On the other hand, the penalty should not be too low,
because otherwise malicious entities would not be discouraged from
carrying out their attack. For these reasons, the penalty should be
chosen to be the maximum value that does not lead to a collapse.

Figure 5.1 shows the outcome of the experiment. The first of the
two graphics shows the evolution of the average reputation of active
nodes as the blockchain used in the framework grows. The results
meet the expectations, in fact, harsher reward system lead to a lower
average rep, while more bland penalties lead to a higher average
reputation. The spike of average reputation at the very beginning is
caused by the reputation that is dealt to initially trusted entities in the
genesis block. After an initial transient, in all the configurations the
average reputation stabilizes and remains constant for the rest of the
simulation, although with small fluctuations. The transient is caused
by the fact that vehicles are not added all at once, and they also need
some time to start generating interactions and to gain reputation. The
reward system in which nodes are distrusted after a single implausible
transaction, i.e., the configuration with penalty = ∞, eventually leads
to a collapse and thus is unusable. The second graphic follows a
similar trend, with harsh penalties that lead to a situation where
almost all transactions are discarded. It is noteworthy the fact that
bland penalties result in a similar number of accepted transactions,
implying that a portion of the rejected transactions does not depend
on the reputation of the nodes, but it is caused by misclassification.

5.5.2 Initial Reputation

The purpose of the experiment is to determine the effects of the initial
reputation that is assigned to nodes when they join for the first time

64 experimental parameter configuration and validation

Figure 5.1: The average reputation of active nodes over time (1) and the
number of accepted transactions in each block (2) with different
base penalty values.

5.5 reward system configuration 65

Figure 5.2: The average reputation of active nodes over time (1) and the
number of accepted transactions in each block (2) with different
amounts of initial reputation.

the blockchain. It is important to notice that the RSUs and the nodes
that start as trusted entities are not affected by the choice of the
initial reputation, as their reputation is statically assigned before the
blockchain is started. Ideally, the framework should be able to work
correctly even if the initial reputation is very low, as this situation
prevents attackers to join all at once to perform an attack.

From Figure 5.2, it is possible to see that the amount of reputation
given to newly joined vehicles does not affect significantly the average
reputation of active nodes and the number of accepted transactions
when the framework is full operational. The only moment that is
affected is the initial transient for the average reputation, but only at
the beginning of the simulation. In fact, in all cases the transient has
the same duration, while the number of accepted transactions is not
significantly affected. The only configuration that performs slightly

66 experimental parameter configuration and validation

worse than the other is the one in which the initial reputation is zero.
This is caused by the fact that it is slightly harder to have accepted
transactions at the very beginning due to having no reputation and
the threshold in the transaction validation heuristic, so when vehi-
cles detach from the original group and try to start a new one, it is
more likely that they do not have enough reputation to start a new
group. These observations, combined with the concept that the initial
reputation should be small, lead to the conclusion that a small, but
strictly grater than zero initial reputation is the best choice to have a
functioning framework that is more resistant to attacks.

5.6 transaction validation configuration

The transaction validation heuristic has two main parameters, which
are the number of previous blocks to consider and the threshold used
to determine if a transaction is acceptable. In this section, the two
parameters are analyzed independently to experimentally determine
their effects on the framework.

5.6.1 Number of previous blocks

The transaction validation heuristic uses the transactions contained
in previous blocks in order to check the new ones. The number of
previous blocks can thus influence the number of new transactions
that are labeled as acceptable, meaning that unsuitable values can
lead to low acceptance rates even to the point that the framework is
unusable. However, if this parameter is allowed to have a too large
value, the complexity of the transaction validation heuristic grows,
in fact, there is a linear dependency between the complexity and the
number of previous blocks, as explained in Section 3.5.2. Consequently,
the purpose of this experiment is to study how different values of this
parameter influence the performance of the framework and which
ones allow the framework to function properly, while being small
enough to avoid unnecessary complexity.

The results of this experiment are shown in Figure 5.3. From the
graphics, it is possible to notice that, except for the cases in which
the number of blocks used in the transaction validation heuristic is 1

and 2, all configurations perform similarly, both in terms of average
reputation and number of accepted transactions. This is caused by
the fact that the transactions contained in blocks that are too old
create very loose bounds, since the interval of time between them
and new transactions is large. Because of this reason, the parameter
that indicates how many blocks to use in transaction validation has
diminishing returns, while its impact on the processor time required
to carry out the execution of the transaction validation heuristic is
linear.

5.6 transaction validation configuration 67

Figure 5.3: The average reputation of active nodes over time (1) and the
number of accepted transactions in each block (2) with differ-
ent numbers of blocks considered in the transaction validation
heuristic.

68 experimental parameter configuration and validation

Figure 5.4: The number of transactions in each block that cannot be labeled
as acceptable or implausible with different numbers of blocks
considered in the transaction validation heuristic.

The cases where #blocks = 1 and #blocks = 2, instead, perform sig-
nificantly worse than the other ones, with the first configuration of the
two that is even close to collapsing. The reason behind this behaviour
is that the transaction validation heuristic does not have enough in-
formation to decide whether to accept or reject transactions in more
situations, so the number of times the validation of a transaction has
to be suspended increases, as it is shown in Figure 5.4.

5.6.2 Threshold

With this experiment, we want to assess if and how the threshold
against which the score obtained in the transaction validation heuristic
by new transactions is compared affects the stability and the perfor-
mance of the proposed framework. Ideally, the value of this threshold
could be used to tune the flexibility of the framework so that it could
become more or less restrictive against fake or imprecise position
advertising.

The possible values of the threshold are the same as the possi-
ble values of the transaction score, which span over the interval
[−max-reputation;max-reputation]. However, this interval is too
wide for the threshold and some values are rarely reached or mean-
ingless. For example, if a threshold of max-reputation was used,
then the score would have to be the maximum possible. In such a
situation, the reputation of all the nodes in the concordant set would
have to be the maximum, while the discordant set should be empty

5.6 transaction validation configuration 69

Figure 5.5: The average reputation of active nodes over time (1) and the
number of accepted transactions in each block (2) with different
thresholds.

or have a total reputation of zero. This in a very unlikely case, so
too little transactions would be accepted and the framework would
collapse. Negative values, instead, are meaningless, as they imply that
the framework would have to accept transactions that are not trusted.
For these reasons, the interval of values of the threshold is further
restricted to small, non-negative values.

The results of the experiment are shown in Figure 5.5. It is possible to
notice that small values for the threshold have a very similar behaviour,
except for the case in which the threshold is zero, in which both the
average reputation and the number of accepted transactions is higher.
Although it may seem that the performance is better with a null
threshold, this configuration leads to the undesirable situation in
which nodes with zero reputation can make a transaction be accepted.
This situation is optimal for attackers, as they would be able to support

70 experimental parameter configuration and validation

transactions generated by accomplices even after they have depleted
their reputation. Because of this reason, a null threshold should not
be used, even though it gives slightly higher performance.

As predicted, large values for the threshold lead to a collapsed state,
as it is the case for the configuration in which threshold = 2048. In
this configuration the framework utterly fails after little time and it
becomes unable to provide its services since no transaction can be
accepted anymore. When the threshold is 512, instead, the framework
is still able to provide its functions, but it does so in a sub-optimal way,
where the overall performance, both in terms of average reputation
and accepted transactions, is almost halved when the framework
reaches a steady state.

5.7 misbehaviour penalization configuration

Misbehaviour penalization is the most critical heuristic in the valida-
tion algorithm, as it relies on a lot of assumptions and approximations.
Its functioning is driven mainly by the weight that is given to the detec-
tion variance when computing the scaling factors and the maximum
number of tolerable conflicts before blacklisting a node. In the rest of
the section, the effects of these two parameters on the performance of
the framework are experimentally evaluated.

5.7.1 Detection Variance Weight

The weight given to detection variance directly affects the reputation
variation, so it is important to understand its effects and what values
allow the framework to work as it is supposed to. While it is true that
low detection variance is typical of small-sized malicious groups of
nodes, legit nodes may detect the same vehicles more than once as
well, for example, when they are going the same direction or when
they are stuck in a traffic congestion. This means that if the reward
is scaled too much because of the detection variance, legit nodes may
get a reputation of zero. In fact, if some transactions of a legit node
are wrongly classified and the reputation increment generated by
correctly classified transactions is nullified or scaled too much, the
final reputation variation can be negative. Because of this, the weight
given to the detection variance should be the highest value that still
allows legit nodes to gain reputation even in the presence of wrongly
classified transactions.

The results displayed in Figure 5.6 suggest the fact that the value
of weight of the detection variance used in the computation of the
scaling factors is not significantly involved in the transaction accep-
tance process. This is indeed a desirable property because according to
the design intentions, the detection variance weight should only scale
the reward of suspicious nodes. The effects of the detection variance

5.7 misbehaviour penalization configuration 71

Figure 5.6: The average reputation of active nodes over time (1) and the
number of accepted transactions in each block (2) with different
detection variance weights used in the scale factor computation.

72 experimental parameter configuration and validation

weight is much more clear in the second graphic, which shows the
average reputation of active nodes.

Predictably, higher weights lead to a lower average reputation even
if all nodes are behaving properly and there is no malicious node
that selectively generates transactions. The variations in the average
reputation does not seem to be linearly dependent on the value of
the weight. In fact, the same variation of one third has much more
effect on the average reputation when it is applied to higher weights.
This is likely caused by the fact that the validation algorithm and
the interactions between its components are complex, so it is not
easy to predict the response to different parameter values. The effects
on the average reputation in the case where weight = 1.0 are so
heavy that the framework is likely to become unstable, since the
assumption that legit nodes have higher reputation than misbehaving
nodes becomes too fragile. This can easily be exploited by attackers
to avoid misbehaviour penalization by gaining just slightly more
reputation than the average so that they are rarely or never penalized.

5.7.2 Maximum Tolerable Conflicts

The maximum number of tolerable conflicts is the main parameter
that drives the misbehaviour penalization heuristic, as it allows to set
a bound that separates suspicious behaviour from tolerable behaviour.
Since some transactions can be dropped because they are discarded
or did not fit in the block, the behaviour of legit nodes may become
wrongly considered as suspicious, so this parameter requires to be
configured carefully. In fact, too loose values would allow malicious
behaviour to simply pass unnoticed, while too strict values would
make the framework collapse by penalizing legit nodes too much. The
purpose of this experiment is to experimentally find what is the impact
of the maximum number of tolerable conflicts on the framework and
which values allow the framework to do its operations correctly in a
scenario without attacks.

The results of this experiment are displayed in Figure 5.7. The bound
determined by the maximum number of tolerable conflicts becomes
more bland as the value of the parameter increases, meaning that
fewer nodes are blacklisted because of their suspicious behaviour. It is
important to remember that the parameter indicating the maximum
number of tolerable conflicts is not used to deal the additional penal-
ties since they are given when a conflict is lost, but rather it is used
to decide when a node is behaving suspiciously and so has to be
blacklisted, thus rejecting all its transactions.

The outcome of this experiment is more difficult to interpret than
the previous ones, mainly due to the fact that the misbehaviour pe-
nalization heuristic heavily relies on assumptions and simplifications.
The first aspect that can be notices is that the framework behaves

5.7 misbehaviour penalization configuration 73

Figure 5.7: The average reputation of active nodes over time (1) and the
number of accepted transactions in each block (2) with different
upper bounds for the number of tolerable conflicts.

74 experimental parameter configuration and validation

in a counterintuitive way, where the blandest bound produces the
lowest average reputation, while stricter bounds have a higher average
reputation and behave similarly in all configurations. This behaviour
is caused by the fact that when enough nodes are blacklisted, during
the validation of the next block more transactions are rejected, caus-
ing fewer conflicts to be detected, so the misbehaviour penalization
heuristic deals less penalty overall. This is more evident if the second
graphic is taken into account. In fact, the second graphic shows that
blandest bound produces the highest number of accepted transactions.

5.8 attack scenarios

All the experiments carried out up to this point only considered a
trusted environment with no malicious entities or attackers, but in
order to satisfy all the objectives that we set for the experimental part
of this work, it is important also to consider the cases in which the
framework undergoes an attack. Since the security guarantees of the
consensus algorithm have already been discussed and characterized
in Section 3.4, they are not examined any further.

The attack scenarios considered in this set of experiments are mod-
eled after the threat model presented in Section 3.3. Because the attacks
do not interfere with each other, we deemed unnecessary to test a
scenario where they all take place at the same time, so each attack
scenario only contains one type of attack. This choice also makes
possible to better understand the effects and the outcomes of each
attack independently. In the next sections, we present the experiments
based on attack scenarios and discuss the relationship between the
results and the choices made in Chapter 3.

5.8.1 Random Transactions Generation

This is a very simple attack where the attackers generate transactions
with a random position and a random target to add noise to the
transaction validation algorithm and to fill up the block. Although
this attack is simple, when this kind of transactions are wrongly
categorized as correct they can have and effect on the evaluation of
other legit transactions, especially in case the concordant nodes have
low total reputation. More importantly, this attack can cause a (D)DoS if
the content of the block is filled up by too many random transactions.
In this scenario, the attackers spam 8 random transactions per second
alongside correct transactions, for a total of 12 transactions per second
on average. For comparison, legit nodes generate 4 transactions per
second on average.

Figure 5.8 displays the outcome of the experiment. The malicious
nodes are 5% of the total nodes bound to vehicles, but they produce
approximately three times the normal amount of transactions, up

5.8 attack scenarios 75

Figure 5.8: The outcome of a random transaction generation attack where
5% of the total nodes are malicious. (1) The average reputation
of both attackers and legit nodes over time. (2) The number of
transactions that are generated by the attackers and that are
accepted by the framework over time. Attackers generate 3 times
the number of transaction of legit nodes.

76 experimental parameter configuration and validation

to the point where about 15% of the roughly 457,000 transactions
generated before the next block is harvested are from an attacker on
average.

The initial peak of malicious transactions in the block displayed
at the beginning of the second graphic is simply due to the fact
that the framework is still starting and the legit nodes are not yet
generating many interactions, meaning that the block gets filled up
mainly with spam transactions. As the framework reaches a steady
state, the number of spam transactions that are present in the block
diminishes, as many of them are dropped, and becomes constant. Both
the graphic showing the average reputations and the one comparing
the number of accepted malicious transactions with the total number
of malicious transactions in the block illustrate how the attack utterly
fails. The spam transactions are never accepted, except for a couple of
them once in a while, and the reputation of the attackers consistently
sticks to zero.

Another important aspect is that although malicious nodes pro-
duced about 15% of the total amount of transactions, from the second
graphic it is possible to see that only approximately 2,500 transac-
tions generated by malicious nodes ends up in the block when it is
harvested, meaning that they are only the 5% of the total number
of transactions in the block. This fact is determined by two factors,
namely the transaction filtering strategy and the large number of
nodes. The reasons why these factors effectively mitigate (Distributed)
Denial of Service ((D)DoS) attacks have already been discussed in Sec-
tion 3.6.3.

5.8.2 Fake Position Advertisement

The behaviour of the attackers in this attack scenario is very similar
to the behaviour of legit nodes, but when the attackers generate their
transaction, they add a large offset to their real position, meaning that
they try to appear to be in a different position on the map. Similarly
to random transactions, this kind of transactions can lower the overall
quality of the traffic information if too many of them are wrongly
classified as acceptable. Moreover, they can negatively contribute to
the evaluation of the plausibility of the transactions generated by the
nodes that have detected the attacker, as the legit nodes can appear to
be lying about the attacker’s position.

For this experiment, 5% of the total nodes are malicious and the
offset used to spoof their position is randomly picked from the range
[4km; 6km], meaning that they would appear in the other side of
a medium-sized city if it were a real scenario. Figure 5.9 shows the
outcome of the experiment. Even in this case the attack is unsuccessful,
as the average reputation of the attackers reaches zero almost at the
beginning and stays constant for the rest of the simulation, except for

5.8 attack scenarios 77

Figure 5.9: The outcome of a fake position advertisement attack where 5%
of the total nodes are malicious. (1) The average reputation
of both attackers and legit nodes over time. (2) The number
of transactions that are generated by the attackers and that are
accepted by the framework over time. The offset used by attackers
is randomly selected from the range [4km; 6km].

78 experimental parameter configuration and validation

some small spikes at about 600 seconds and 1,200 seconds since the
beginning of the simulation. Also, nearly all malicious transactions are
systematically rejected and only very few of the get wrongly classified
as acceptable. This pattern is due to the transaction validation heuristic,
where although the sender position is coherent with the previous
ones since the same offset is added, the score computed with the
concordant and the discordant nodes does not reach the threshold, so
the transactions are simply rejected.

5.8.3 Teleport Attack

This attack is very similar to fake position advertisement, but instead of
using a fixed offset, the attacker uses a new random position for each
transaction it generates. This means that fake position advertisement
is a special case of this attack, implying that all the considerations that
are valid for fake transaction advertisement are also true for teleport
attacks. In this specific scenario, the attackers generate a random offset
for each transaction and add it to their real position, in such a way that
they can hide their real position and appear to be in distant locations
after a very short amount of time.

In this experiment too, the percentage of malicious nodes is 5%
of the total. The results shown in Figure 5.10 are very similar to the
ones obtained in the attack scenario where attackers try to fake their
position by adding an offset to the real position. This is easily ex-
plained by the fact that the bounds used in transaction validation that
prevent fake position advertisement are closely related with the one
that requires nodes to advertise a new position that is coherent with
previous ones. This causes the malicious transactions to be rejected
according to a similar pattern.

5.8.4 Copycat Attack

In this attack scenario as well, the attackers act independently. The
attack is performed by selecting a random target and waiting that
it broadcasts the transactions it generates. At this point the attacker
reads them, copies their content into fake transactions where the
attacker itself is the sender and broadcasts the forged transactions. If
this attack succeeds, attackers can copycat the behaviour of legit nodes
and appear somewhere else in the map, thus successfully spoofing
their own position while seemingly behaving properly and gaining
reputation.

In this experiment, 5% of the total nodes are malicious and try
to carry out the attack. The results of this experiment are shown in
Figure 5.11. It is possible to observe that the attack is unsuccessful as
the average reputation of the attackers is very close to zero and only
a small amount of malicious transactions is accepted. The failure of

5.8 attack scenarios 79

Figure 5.10: The outcome of a teleport attack where 5% of the total nodes
are malicious. (1) The average reputation of both attackers
and legit nodes over time. (2) The number of transactions that
are generated by the attackers and that are accepted by the
framework over time. The teleportation distance is randomly
selected from the range [4km; 6km].

80 experimental parameter configuration and validation

Figure 5.11: The outcome of a copycat attack where 5% of the total nodes
are malicious. (1) The average reputation of both attackers
and legit nodes over time. (2) The number of transactions that
are generated by the attackers and that are accepted by the
framework over time.

5.8 attack scenarios 81

this attack is to be attributed to the fact that transactions have to be
confirmed with another transaction by the detected node. Since the
attacker are usually distant from the node they are copycatting, the
nodes specified as targets in the forged transactions will not generate
the confirmation. In this way, the transactions forged by the attackers
will be blacklisted and the attackers will lose reputation consistently.
The fact that some malicious transactions are accepted anyway is
caused by the fact that some attackers have selected a vehicle that is
very close to them as the one to copycat, meaning that the detected
nodes can actually detect the attacker, and thus confirm some forged
transactions.

5.8.5 Self-sustaining Malicious Groups

A self-sustaining group is a set of nodes that exchanges transactions
exclusively among themselves. This corresponds to a subgraph in the
detection graph generated when the transactions are considered as arcs
and nodes as vertices of a graph. A malicious self-sustaining group is
a particular type of self-sustaining group where the malicious nodes
selectively generates transactions so that legit nodes are excluded, or
the malicious nodes are elsewhere, possibly even not on road, and
they only fake the interactions with each other in order to lower the
quality of traffic information. Legit nodes cannot detect the nodes
that form the malicious group, but it is only when the malicious
nodes generate fake transactions that the self-sustaining malicious
group represents a threat for the framework. In fact, if the attackers
are on road and correctly generate transactions, it is not relevant if
they are generating transactions selectively, as they are giving valid
traffic information anyway. In the case they generate fake transactions,
instead, the attackers can, for example, fake a traffic congestion by
generating transactions among themselves, while gaining reputation
because their transactions seem to be correct as the attackers correctly
simulating the interactions. If this attack succeeds consistently, the
usability of the framework is compromised, as explained in the threat
model described in Section 3.3.

Figure 5.12 shows the attempt of a self-sustaining malicious group
of 5 vehicles to fake a traffic congestion. The attack starts after 840 s
since the beginning of the simulation with a malicious vehicle that
sends fake transactions for three minutes to the members of the group
after having behaved properly until that moment. In this way, the
vehicles in the malicious group can gain enough reputation to start
the attack. After an initial phase where almost all malicious transac-
tions are accepted, the attackers start to lose reputation drastically
mainly due to the detection variance based scaling factor and the
misbehaviour penalization heuristic, and their average reputation be-
comes significantly lower than then average reputation of legit nodes.

82 experimental parameter configuration and validation

Figure 5.12: The outcome of an attack generated by a self-sustaining ma-
licious group with 5 members that starts at time 840 s. (1)
The average reputation of both attackers and legit nodes over
time. (2) The number of transactions that are generated by the
attackers and that are accepted by the framework over time.

5.8 attack scenarios 83

Figure 5.13: The outcome of an attack generated by a self-sustaining ma-
licious group with 20 members that starts at time 840 s. (1)
The average reputation of both attackers and legit nodes over
time. (2) The number of transactions that are generated by the
attackers and that are accepted by the framework over time.

84 experimental parameter configuration and validation

This situation eventually leads to the complete failure of the attack
when the attackers lose all their reputation and are thus unable to
support each other’s’ transactions.

A larger scale attack is shown in Figure 5.13, where the size of the
group is increased to 20 vehicles. The attack is performed in the same
way as in the attack with a group of only 5 vehicles, the only difference
being the size of the self-sustaining malicious group. The graphics
show a very similar pattern to the smaller scale attack. In fact, the
attackers initially gain a lot of reputation and have many transactions
that are categorized as acceptable, but as time passes, the attackers
lose almost all of their reputation, with moments where their average
reputation is almost zero, and the amount of accepted transactions is
reduced significantly. This time though, the attack does not completely
fail in the time window considered for the simulation, since the larger
number of vehicles allows the attackers to better support each other,
and thus to counter the mitigations more effectively. Another factor
is that the density of legit nodes varies over time and when there are
more attackers than legit vehicles in a certain area, the latter generate
more transactions and so are more likely to gain reputation and win
the conflicts in the misbehaviour penalization heuristic.

6
C O N C L U S I O N S

6.1 limitations and future work

A major problem encountered during the research carried out for
this thesis is the lack of suitable traffic scenarios for the SUMO traffic
simulator. Only the MoST scenario was deemed good enough for
the experiments, but although the authors set it up carefully, it is
not based on a real traffic stream, but it is modeled after mobility
data and realistic movement patterns. This fact, however, does not
completely invalidate the results obtained in the experiments, since
the traffic simulation is realistic anyway. A second and more important
limitation related to the traffic scenario is the fact that since only one
traffic scenario was available and usable, the configuration found
through the experiments may be overfitted. To lower the chance of
overfitting, the configuration was tested at different time windows
of the MoST scenario, but it is not possible to know how tied to the
MoST scenario the configuration is.

The bounds in the transaction validation heuristic used to create
the conditions that determine if a previous transaction is concordant
or discordant with a new one are rather loose. Because of this, the
reliability of the positions of the nodes in the framework is rather low.
This means that the sender can still lie about its position if the offset
between the advertised position and the real one is small enough. The
bounds we adopted in the proposed framework have been chosen
because they are intuitive and easy to checks, but it is possible that,
with deeper knowledge about transport engineering and the properties
of traffic streams, the bounds can be redesigned to give a better yield.

The computational complexity of the validation algorithm has a
quadratic dependency on the number of transactions stored in a block.
While this fact is not inherently positive or negative, it suggests that
the proposed framework may not scale well when the blocks are
too big, especially because the proposed framework is executed on
IVI systems. The quadratic dependency is determined by the fact
that every transaction in the new block has to be compared with all
the transactions contained in older blocks or the new blocks itself.
Although it is possible to parallelize the critical loops of the validation
algorithm, the computational complexity is still quadratic on the size
of the block and cannot be reduced without redesigning the validation
algorithm completely. An alternative approach for the design of the
validation algorithm could be to rely on a statistical approach, where a
node only has to check a smaller and fixed portion of the transactions.

85

86 conclusions

This approach could effectively reduce the computational complexity
to linear, but it would possibly require the redesign of most of the
consensus mechanism and it would also give probabilistic guarantees
that need to be carefully proved and enforced.

6.2 summary

The objective of this thesis was to design a new decentralized frame-
work based on the blockchain data structure that could be used to
collect real-time traffic information, and to perform a feasibility study
on it. The traffic information is collected in the form of transactions in
a blockchain which are generated by vehicles through a GPS module
and a short range communication module when they get close enough
to other vehicles to generate interactions. The proposed framework
aimed at providing a viable alternative to widely used centralized sys-
tems that offer similar services like Google Maps and Waze, so it had
to be designed considering a realistic environment where malicious
entities can try to attack the system to reduce its usability or to lower
the quality of the collected traffic information. Due to the impossi-
bility of testing the proposed framework in a real scenario, we also
developed a simulator based on OMNeT++, the Veins framework and
the SUMO microscopic traffic simulator where the main requirements
were to be as realistic as possible and efficient.

The design process of the framework was broken down into few
loosely-coupled logical units that were analyzed and modeled indi-
vidually, while the choices required in the design phase were justified
with mathematical arguments or with informal, but precise, expla-
nations. In addition to the trivial functional requirements, the main
drivers that regulated the choices made during the design phase were
derived from a threat model carefully defined for the specific context
of the proposed framework.

While designing the proposed framework, the consensus mechanism
was the main focus, as it is the component that directly characterizes
the properties of a blockchain based system. The part of the consen-
sus mechanism that defines how distributed consensus is achieved
was conceived starting from existing consensus algorithms used in
widespread blockchain based systems, while the part relative to the
validation algorithm, which enforces the consistency of the content
of the blocks, was designed ad-hoc for this application. In order to
achieve the desired security properties, we spent most of the effort
in analyzing and studying the behaviour of each component of the
consensus mechanism that regulates the growth of the blockchain,
paying particular attention to group of attackers that try to pass forged
blocks off for valid ones or that try to fake traffic congestion though
malicious behaviour.

6.2 summary 87

The experimental part of this thesis was further divided in a parame-
ter study and a series of attack scenarios, although all the experiments
that we performed relied on the MoST SUMO scenario to have a real-
istic traffic scenario and realistic interactions between vehicles, and on
a base configuration that was found with a trial and error approach.
In the parameter study we showed how the parameters affect the
performance of the proposed framework by letting one parameter at a
time change its value and comparing the results. We then discussed
the outcomes, while also comparing them to the expectations and
relating them with the components of the framework, and explained
why certain values can or cannot be used in the configuration of the
proposed framework. With this approach we studied the behaviour of
all the main parameters used in the validation algorithm.

Finally, we performed a set of experiments to show that the frame-
work can indeed provide the desired security properties and it can
resist to the attacks defined in the threat model. We excluded the
attacks for which a mathematical argument about the probability of
success was already provided, namely those related to the consensus
algorithm, since the feasibility of those attacks was already rigorously
discussed. Though the experiments, we showed that the framework is
resistant to attacks that try to lower the quality of the traffic informa-
tion or that try to spoof one’s real position, as well as to attacks that
try to fake a traffic congestion. We also explained the reasons why the
those attacks failed completely or at least partially. With this thesis,
we have thus showed that the proposed framework is feasible and
since companies are actively investing in the technologies required for
its functioning, in a near future it could be used in a real scenario to
collect traffic information.

B I B L I O G R A P H Y

[1] “TAPAS Cologne” Scenario. url: https://sumo.dlr.de/docs/
Data/Scenarios/TAPASCologne.html (visited on 10/09/2020)
(cit. on p. 60).

[2] Arati Baliga. “Understanding Blockchain Consensus Models.”
In: (2017) (cit. on pp. 10, 11).

[3] Dave Barth. The bright side of sitting in traffic: Crowdsourcing road
congestion data. 2009. url: https://googleblog.blogspot.com/
2009/08/bright-side-of-sitting-in-traffic.html (visited
on 10/09/2020) (cit. on p. 7).

[4] Marcin Bernas, Bartłomiej Płaczek, Wojciech Korski, Piotr Loska,
Jarosław Smyła, and Piotr Szymała. “A Survey and Comparison
of Low-Cost Sensing Technologies for Road Traffic Monitoring.”
In: Sensors 18.10 (Sept. 2018), p. 3243 (cit. on pp. 1, 6).

[5] Stefan Brands and David Chaum. “Distance-Bounding Proto-
cols.” In: Advances in Cryptology — EUROCRYPT ’93. Ed. by Tor
Helleseth. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994,
pp. 344–359 (cit. on p. 19).

[6] Miguel Castro and Barbara Liskov. “Practical Byzantine Fault
Tolerance.” In: Operating Systems Design and Implementation. 1999

(cit. on pp. 11, 24, 51).

[7] Samsung Electronics Co. Exynos Auto 8890 Powers IVI System
in the New Audi A4. 2019. url: https://www.samsung.com/
semiconductor / minisite / exynos / newsroom / pressrelease /

exynos-auto-8890-powers-ivi-system-in-the-new-audi-a4/

(visited on 10/09/2020) (cit. on pp. 1, 6, 13).

[8] L. Codeca, R. Frank, S. Faye, and T. Engel. “Luxembourg SUMO
Traffic (LuST) Scenario: Traffic Demand Evaluation.” In: IEEE
Intelligent Transportation Systems Magazine 9.2 (2017), pp. 52–63

(cit. on p. 60).

[9] L. Codecá and J. Härri. “Towards multimodal mobility simu-
lation of C-ITS: The Monaco SUMO traffic scenario.” In: 2017
IEEE Vehicular Networking Conference (VNC). 2017, pp. 97–100

(cit. on p. 60).

[10] Phil Daian, Rafael Pass, and Elaine Shi. “Snow White: Robustly
Reconfigurable Consensus and Applications to Provably Secure
Proof of Stake.” In: Financial Cryptography and Data Security. Ed.
by Ian Goldberg and Tyler Moore. Cham: Springer International
Publishing, 2019, pp. 23–41 (cit. on p. 25).

89

https://sumo.dlr.de/docs/Data/Scenarios/TAPASCologne.html
https://sumo.dlr.de/docs/Data/Scenarios/TAPASCologne.html
https://googleblog.blogspot.com/2009/08/bright-side-of-sitting-in-traffic.html
https://googleblog.blogspot.com/2009/08/bright-side-of-sitting-in-traffic.html
https://www.samsung.com/semiconductor/minisite/exynos/newsroom/pressrelease/exynos-auto-8890-powers-ivi-system-in-the-new-audi-a4/
https://www.samsung.com/semiconductor/minisite/exynos/newsroom/pressrelease/exynos-auto-8890-powers-ivi-system-in-the-new-audi-a4/
https://www.samsung.com/semiconductor/minisite/exynos/newsroom/pressrelease/exynos-auto-8890-powers-ivi-system-in-the-new-audi-a4/

90 bibliography

[11] John R. Douceur. “The Sybil Attack.” In: Peer-to-Peer Systems.
Ed. by Peter Druschel, Frans Kaashoek, and Antony Rowstron.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2002, pp. 251–
260 (cit. on p. 23).

[12] Ashutosh Dhar Dwivedi, Gautam Srivastava, Shalini Dhar 4, and
Rajani Singh. “A Decentralized Privacy-Preserving Healthcare
Blockchain for IoT.” In: Sensors 19.1 (Jan. 2019), p. 326 (cit. on
p. 8).

[13] Hyperledger Architecture, Volume 1 (cit. on pp. 8, 12, 24).

[14] J. B. Kenney. “Dedicated Short-Range Communications (DSRC)
Standards in the United States.” In: Proceedings of the IEEE 99.7
(2011), pp. 1162–1182 (cit. on p. 19).

[15] Sunny King and Scott Nadal. PPCoin: Peer-to-Peer Crypto-Currency
with Proof-of-Stake. 2012. url: https://www.peercoin.net/

whitepapers/peercoin-paper.pdf (visited on 10/09/2020) (cit.
on pp. 11, 24, 43).

[16] Eleftherios Kokoris Kogias, Philipp Jovanovic, Nicolas Gailly,
Ismail Khoffi, Linus Gasser, and Bryan Ford. “Enhancing Bitcoin
Security and Performance with Strong Consistency via Collec-
tive Signing.” In: 25th USENIX Security Symposium. 2016 (cit. on
pp. 12, 24).

[17] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser,
Nicolas Gailly, Ewa Syta, and Bryan Ford. “OmniLedger: A
Secure, Scale-Out, Decentralized Ledger via Sharding.” In: 2018
IEEE Symposium on Security and Privacy (SP). 2018 (cit. on p. 20).

[18] Renato Legler. “Analysis of a Distributed Ledger Framework for
Automotive Positioning Applications.” Master’s Degree Thesis.
Politecnico di Milano, 2019 (cit. on pp. 6, 18, 34).

[19] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
2009. url: https : / / bitcoin . org / bitcoin . pdf (visited on
10/09/2020) (cit. on pp. 7, 10, 12, 24, 43).

[20] NEM Technical Reference. Feb. 2018 (cit. on pp. 11, 12, 24).

[21] M. Niranjanamurthy1, B. N. Nithya1, and S. Jagannatha. “Analy-
sis of Blockchain technology: pros, cons and SWOT.” In: Cluster
Computing 22 (2019), pp. 14743–14757 (cit. on p. 9).

[22] Karl O’Dwyer and David Malone. “Bitcoin Mining and its En-
ergy Footprint.” In: Irish Signals & Systems Conference (ISSC).
2014 (cit. on p. 11).

[23] OMNeT++ (cit. on pp. 2, 47).

https://www.peercoin.net/whitepapers/peercoin-paper.pdf
https://www.peercoin.net/whitepapers/peercoin-paper.pdf
https://bitcoin.org/bitcoin.pdf

bibliography 91

[24] Andreas Pfitzmann and Marit Köhntopp. “Anonymity, Unob-
servability, and Pseudonymity — A Proposal for Terminology.”
In: Designing Privacy Enhancing Technologies: International Work-
shop on Design Issues in Anonymity and Unobservability Berkeley,
CA, USA, July 25–26, 2000 Proceedings. Ed. by Hannes Federrath.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2001, pp. 1–9

(cit. on p. 20).

[25] Deepak Puthal, Nisha Malik, Saraju P. Mohanty, Elias Kougianos,
and Gautam Das. “Everything You Wanted to Know About the
Blockchain.” In: IEEE Consumer Electronics Magazine 7.4 (2018)
(cit. on p. 9).

[26] Phillip Rogaway and Thomas Shrimpton. “Cryptographic Hash-
Function Basics: Definitions, Implications, and Separations for
Preimage Resistance, Second-Preimage Resistance, and Collision
Resistance.” In: Fast Software Encryption. Ed. by Bimal Roy and
Willi Meier. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004,
pp. 371–388 (cit. on p. 27).

[27] The Internet of Services Foundation. Internet of Services: The Next-
generation, Secure, Highly Scalable Ecosystem for Online Services.
2017. url: https://github.com/iost-official/Documents/
blob/master/Technical_White_Paper/EN/Tech_white_paper_

EN.md (visited on 10/09/2020) (cit. on pp. 11, 20, 24).

[28] SUMO (cit. on pp. 2, 47).

[29] Qualcomm Technologies. Audi of America, Virginia DOT and
Qualcomm Announce Initial C-V2X Deployment in Virginia. 2020.
url: https://www.qualcomm.com/news/releases/2020/01/
22/audi- america- virginia- dot- and- qualcomm- announce-

initial-c-v2x-deployment (visited on 10/09/2020) (cit. on
pp. 1, 6, 14).

[30] Veins (cit. on pp. 2, 47).

[31] Volkswagen. Car2X in the new Golf: A “technological milestone”.
2020. url: https://www.volkswagen-newsroom.com/en/stories/
car2x-in-the-new-golf-a-technological-milestone-5919

(visited on 10/09/2020) (cit. on pp. 1, 6, 14).

[32] Simon Weckert. Google Maps Hack. 2020. url: http : / / www .

simonweckert.com/googlemapshacks.html (visited on 10/09/2020)
(cit. on pp. 7, 20).

[33] Gavin Wood. Ethereum: a Secure Decentralized Generalized Trans-
action Ledger. 2020-09-05. url: https://ethereum.github.io/
yellowpaper/paper.pdf (visited on 10/09/2020) (cit. on pp. 8,
24).

https://github.com/iost-official/Documents/blob/master/Technical_White_Paper/EN/Tech_white_paper_EN.md
https://github.com/iost-official/Documents/blob/master/Technical_White_Paper/EN/Tech_white_paper_EN.md
https://github.com/iost-official/Documents/blob/master/Technical_White_Paper/EN/Tech_white_paper_EN.md
https://www.qualcomm.com/news/releases/2020/01/22/audi-america-virginia-dot-and-qualcomm-announce-initial-c-v2x-deployment
https://www.qualcomm.com/news/releases/2020/01/22/audi-america-virginia-dot-and-qualcomm-announce-initial-c-v2x-deployment
https://www.qualcomm.com/news/releases/2020/01/22/audi-america-virginia-dot-and-qualcomm-announce-initial-c-v2x-deployment
https://www.volkswagen-newsroom.com/en/stories/car2x-in-the-new-golf-a-technological-milestone-5919
https://www.volkswagen-newsroom.com/en/stories/car2x-in-the-new-golf-a-technological-milestone-5919
http://www.simonweckert.com/googlemapshacks.html
http://www.simonweckert.com/googlemapshacks.html
https://ethereum.github.io/yellowpaper/paper.pdf
https://ethereum.github.io/yellowpaper/paper.pdf

	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Abstract
	Abstract
	Sommario

	1 Introduction
	2 Background
	2.1 The need for real-time traffic information
	2.2 State of the Art
	2.2.1 Traffic Information Collection
	2.2.2 Blockchain and Blockchain-based Systems
	2.2.3 Consensus Mechanisms in Blockchains
	2.2.4 Automotive Industry

	2.3 Objectives

	3 Framework Design
	3.1 Overview
	3.2 The Blockchain Data Structure
	3.3 Threat Model
	3.4 Consensus
	3.4.1 Consensus Algorithm
	3.4.2 Leader election
	3.4.3 Characterization of the Consensus Algorithm

	3.5 Validation Algorithm
	3.5.1 Illegal Transactions Filtering
	3.5.2 Transaction Validation
	3.5.3 Misbehaviour Penalization
	3.5.4 Reputation Update

	3.6 Other Components
	3.6.1 Initial State
	3.6.2 Reward System
	3.6.3 Transaction Filtering

	4 Implementation Details
	4.1 Simulator Architecture
	4.2 Consensus Algorithm
	4.3 DSRC Module
	4.4 Blockchain
	4.4.1 Transaction Broadcast
	4.4.2 Blockchain Management

	4.5 Validation

	5 Experimental Parameter Configuration and Validation
	5.1 Goals
	5.2 Traffic Scenario
	5.3 Experimental Setup
	5.4 Base Configuration
	5.5 Reward System Configuration
	5.5.1 Penalty
	5.5.2 Initial Reputation

	5.6 Transaction Validation Configuration
	5.6.1 Number of previous blocks
	5.6.2 Threshold

	5.7 Misbehaviour Penalization Configuration
	5.7.1 Detection Variance Weight
	5.7.2 Maximum Tolerable Conflicts

	5.8 Attack Scenarios
	5.8.1 Random Transactions Generation
	5.8.2 Fake Position Advertisement
	5.8.3 Teleport Attack
	5.8.4 Copycat Attack
	5.8.5 Self-sustaining Malicious Groups

	6 Conclusions
	6.1 Limitations and Future Work
	6.2 Summary

	 Bibliography

