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Abstract 

Anatomical tracts build structural associations connecting brain areas into networks that 

constitute brain connectivity datasets and may be non-invasively explored via diffusion tensor 

imaging (DTI). In parallel, functional MRI (fMRI) correlations among brain areas permit to quantify 

the behavior of the brain network. Nonetheless, both the salient features of either information 

and their relationship is still an open research question. Complex network analysis, a novel 

multidisciplinary approach that stems from graph theory, provides an important framework and 

valuable insights in studying these datasets. As such, it aims to represent brain networks using a 

small number of topological indices, which are studied as potential neurological markers. It is 

common knowledge that connectivity abnormalities due to injuries and neurological disorders 

lead to a disruption of the regular brain connectivity pattern. Hereby, network metrics are 

employed to characterize network components, and compare networks between groups of 

subjects: e.g., patients and controls in clinical investigations. 

This work is centered on the possible improvement in brain connectivity analysis by validating a 

novel software tool used for focused analysis on subgraphs of interest, we called SPIDER-Net tool 

(SNT), and also on the validation of the graph indexes in whole networks or in subnetworks 

extracted by SNT. In fact, this tool permits selecting specific subsets of brain parcels, seen as 

graph nodes, and compute network metrics with subsequent visualization of both intra-areal and 

inter-areal brain connections in a preselected region. The software was tested in a case study of 

stroke. A case presented with disruptions of connectivity in the frontal, temporal, and parietal 

regions of the right hemisphere, which was confirmed by employing the new software.  

The present work addressed structural connectivity only, while a validation on functional 

connectivity data and structural to functional integration is left to future developments. Focusing 

on structural connectivity from DTI tractography, the present work addressed the analysis of 

uncertainties depending on the kind of chosen metrics, whether fractional anisotropy (FA) or the 

streamline number (SN), showing that a proper use of SNT, with its flexibility in comparing 

thresholding approaches and levels and with the immediate availability of graph indexes, is a 

valid mean to disentangle metrics dependent artifactual features from the real patho-

physiological ones. 

Furthermore, this work includes consideration about the utility of weights extracted from 

standard MRI methodologies, with particular attention to weak connections in the weighted 

graphs. The conducted analysis is based on a clinical study of early life adversity as a major risk 

factor for borderline intellectual functioning in children. A major finding was the relevance of 
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weighted graph analysis compared to the binarized one, which requires thresholding. 

Considering that DTI tractography is an inherently noisy technique, the usual pipeline in 

connectivity studies involves thresholding of low weight connections which are considered 

spurious. Conversely, the present work includes analysis on whether weak connections are 

valuable in connectivity studies. Significative difference was found between patients and 

controls, only if keeping the weak connections only. However, further tests are necessary for 

confirming these results.    
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Sommario  

 

I tratti anatomici connettono aree cerebrali in reti che costituiscono dataset di connettività 

cerebrale e possono essere esploarate in modo non invasivo mediante le immagini del tensore 

di diffusione (DTi). In parallelo, le correlazioni fra aree cerebrali della MRI funzionale (fMRI) 

permettono di quantificare il comportamento della rete cerebrale. L'analisi delle reti complesse 

fornisce preziose informazioni nello studio di questi dataset. Inoltre è possibile rappresentare le 

reti tramite un piccolo numero di metriche topologiche e neurobiologicamente rilevanti che le 

descrivono e che sono, facilmente calcolabili. È risaputo lesioni dovute a disturbi neurologici 

portano a anomalie del normale modello di connettività cerebrale. Pertanto, le metriche delle 

reti vengono impiegate per caratterizzarne lecomponenti o confrontare  gruppi di soggetti, e.g. 

pazienti e gruppo di controllo nelle indagini cliniche.  

Questo lavoro è incentrato su un possibile miglioramento nell'analisi della connettività cerebrale 

mediante un nuovo software utilizzato per l'analisi su sottografi di interesse, SPIDER-Net tool 

(SNT), e pure una validazione degli indici dei grafi in reti complete o in sotto-reti estratte da SNT. 

Infatti, tale strumento consente di selezionare specifici sottoinsiemi delle aree cerebrali, viste 

come nodi del grafo, e di calcolare le metriche caratteristiche delle reti con successiva 

visualizzazione delle connessioni cerebrali sia intra-area che inter-area. Il software è stato testato 

in un caso di studio di ictus cerebrale. Il paziente presentava interruzioni della connettività nelle 

regioni frontale, temporale e parietale dell'emisfero destro, le quali sono state visualizzate e 

confermate tramite il software.  

Il presente lavoro si è rivolto alla sola connettività strutturale, mentre una validazine relativa a 

quella funzionale e una integrazione strutturale-funzionale è lasciata a sviluppi futuri. 

Focalizzando la connettività funzionale, derivata dalla trattografia DTI, il presente lavoro ha 

considerato l’analisi dell’incertezza dipendente dalla metrica scelta, che può essere l’anisotropia 

frazionaria (FA) oppure il numero di fibre virtuali (streamlines, SN), mostrando che l’applicazione 

appropriata di SNT, con la sua flessibilità nella comparazione di metodi e livelli di sogliatura e con 

la disponibilità immediata degli indici di grafo, è un mezzo atto a separare le caratteristiche 

artefatti dipendenti dalla metrica da quelle pato-fisiologiche reali. 

Inoltre, questo lavoro include considerazioni sulla utilità dei pesi estratti dalle metodologie MRI 

standard, con paricolare attenzione alla connessioni deboli nei grafici pesati. L'analisi condotta si 

basa su uno studio clinico sulle avversità precoci della vita come un importante fattore di rischio 

per il funzionamento intellettivo borderline nei bambini. Una scoperta importante è stata la 

rilevanza dell'analisi del grafico ponderato rispetto a quella binarizzata, dopo la sogliatura. 

Considerando che la trattografia DTI è una tecnica intrinsecamente rumorosa, la consueta 
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pipeline negli studi di connettività prevede il thresholding di connessioni a basso peso che sono 

considerate spurie. Al contrario, il presente lavoro include un'analisi sulla validità delle 

connessioni deboli negli studi sulla connettività. Una differenza significativa è stata trovata tra i 

pazienti e i controlli basandosi solo se le connessioni deboli erano mantenute. Tuttavia, sono 

necessari ulteriori test per confermare questi risultati.  
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1 Introduction 

 

1.1 Aims of the thesis work 
 

Brain networks have been a long-standing intellectual current in theoretical neuroscience. 

Nonetheless, it was difficult, if not impossible, to directly examine and analyze the anatomical 

and functional networks of the brain until recently. The advanced techniques required for 

mapping extensive anatomical networks and recording functional brain activity across vast 

neuronal populations, or even the entire brain, took a long time to evolve. All of this has changed 

in the recent years. New tools for mapping and recording large-scale neuronal networks were 

introduced, yielding a wealth of data on neural system anatomical layout and functional 

dynamics.  

Graph theory has the potential to give a relatively simple but strong quantitative framework for 

defining and comparing complete human brain structural and functional networks under a 

variety of experimental and clinical conditions. Hence, it is increasingly being used in analyzing 

neuroimaging data. 

This thesis starts with describing the basic concepts of brain connectivity and graph theoretical 

methods. Next, focus is brought to the case study of stroke. With the goal of visualization and 

analysis of connectivity, a new approach is introduced.  

This approach utilizes a novel software we called SPIDER-Net (Software Package for Insight and 

Enhanced Representation of a Net) for studying brain connectivity developed as a result of 

collaboration between Politecnico di Milano, Milano (IT) and CADiTeR, MRI Laboratory of 

Fondazione Don Carlo Gnocchi, Milano (IT). The main motivation for the overall project was to 

design a tool which will provide more convenient and advantageous mean for exploring brain 

connectivity, permitting to focus connection subsets, thus facilitating a systematic exploration of 

target networks, which was increasingly manually applied by the biomedical counterpart. 

Moreover, the requirement for this tool was to provide both structural and functional 

connectivity study, with computation of network topological properties and visualization of brain 

connectivity.  

Accent is put on enhancing the visualization of brain networks. Taking into the consideration that 

brain consists of overwhelming number of intricate connections, cortical networks remain 

difficult to comprehend when visualized or assessed all together. 
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The massive quantity of data describing the connectedness of neural elements results in 

difficulties to meaningfully display or successfully perform visual inquiry. A major leap was made 

by the authors of the study [1] who introduced a new method for visualization of brain 

connectivity. In this work they introduced the term “connectogram” - circular representation of 

human cortical networks. Still, due to the high density of connectivity matrices stemming from 

the developed imaging modalities, connectograms may be “overcrowded” with connections 

making visual inquiry hard, or often impossible.  

Our tool provides more efficient way of connectivity exploration by allowing the user to select 

hemispheric partitions of interest, and following, extracting a subgraph of selected region. In this 

way visualization can be focused, instead of being hindered by rest of the network connections.  

Following this, study on weak connections is made. Common trend in connectivity study in past 

considered discarding weight information from connectivity matrices by binarizing them, which 

was supported by considering as spurious weak connections, compared to the noise of weights 

due to inherent limitations in both the MRI and the connection assessment technniques. 

However, in recent years weighted network analysis is gaining attention, advocating that broad 

range of weights in connectivity matrix is providing biological relevance, which might be obscured 

by arbitrary thresholding and binarization.  

A major aim of this thesis was to keep the weak connections instead of thresholding them, and 

test their utility. This was motivated by many recent studies confirming that the weak 

connections possibly comprise valuable information. Analyses on binary networks performed by 

Basi et al. [Basi et al., 2020] were extended to weighted cases. Herby, network metrics calculated 

on the basis of weighted weak connections were used to compare a group of 32 children with 

borderline intellectual functioning disorder and 14 typical development children.  

 

 

1.2 Brain connectivity 
 

Human brain has a dense neuronal architecture forming one of the most complex network 

systems found in nature. It consists of billions of neurons linked by fibers and synapses organized 

over multiple scales of space and functionally interact over multiple scales of time. Units of 

nervous system can be represented by individual neurons, groups of neurons or brain regions 

segregated anatomically. The pattern of connectivity can be formed by structural connections 

(fiber pathways, synapses) or functional connections representing statistical or causal 

relationships measured as cross-correlations, coherence, or information flow. Brain connectivity 
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limits neural activity, and thus it is crucial in understanding how neural networks and neurons 

process information [2]. 

According to a key paradigm in modern neuroscience, anatomical and functional relations 

between brain regions are arranged in such a way that information processing is near optimal. 

However, obtaining brain connectivity patterns in vivo, with the elements and connections in 

different levels remains as outstanding challenge.  

Development of imaging techniques made it possible to record neural activity dynamics across 

the whole brain, and to map entire nervous system anatomical connections. This resulted in the 

large amount of data on functional dynamic and anatomical organization. Simultaneously, 

statistical physics development resulted in emerging of interdisciplinary field of “complex 

network science” which provide conceptual and mathematical tools used for understanding 

structure and behavior of range of distinct networks [3]. This approach has its origin in the 

mathematical branch of graph theory, for the study of networks. Complex network science 

mainly focuses on real-life networks that are large and complex. Moreover, this network display 

properties that are neither random, nor regular [4]. These two factors together were the driving 

forces for the scientific research of connectomics. Connectome is a central concept in 

neuroscience. Importantly, the actual interest in connections, which aims at gaining insight in the 

whole brain coordination and, ultimately, in cognitive processes, relies on the centennial 

“structure-function” paradigm, i.e., the ubiquitous correspondence between functional and 

anatomical features. This concept, started by Brodmanns’ [5] classification of cortical areas, 

permits to consider cortical parcells defined by atlases [6] as nodes of a network. Henceon, the 

new methods to assess functional and anatomical connectivity can be translated into a 

connectiivity matrix of connection weights between each parcel pair. However, this definition, 

which will be followed in this work, attains to the macroscale of brain description, which (with 

some differences from atlas to atlas) addresses order of 100 areas and connectivity nodes. A 

more general concept of connectome should consider the whole scales from brain areas down 

to single neurons (see Par. 1.2), which well sizes the enormous challenge to be faced by 

neurosciences in the decades or centuries to come [7]. 

 

 

1.1.1. Graph theoretical concepts for network analysis 

 

Graph theory is used for modeling, estimation, and simulation of brain networks topology 

and dynamics. One of the benefits in using network analysis on neuroimaging data is the 

abstraction from local to global features and the availability of quantitative indexes despite the 
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complexity of neural networks. Brains show great variability (in size or shape of surface), hence, 

by masking these differences, network analysis helps in identifying general properties of neural 

organization. [Van Essen and Drury, 1997]. As previously introduced, a graph is a graphical 

representation of a connectivity matrix and is composed by a set of nodes (i.e., brain areas or 

parcels) connected by weighted edges representing the measured functional or structural 

connectivity.  

 

1.3 Levels of brain networks 

 

Brain connectivity can be described at different levels of scale: 

1. Microscale brain connectivity is based on neuron theory [8] whereby neurons 

interconnected by synapses are represented as nodes of the graph and axonal projections 

and synapses are represented by edges.  

2. Mesoscale networks are connecting neuronal populations organized into networks of 

columns and minicolumns [2]. 

3. Macroscale brain connectivity summarizes white matter connections between cortical 

areas. Diagrams of large-scale brain network organization consist of limited areas (nodes) 

that are spatially limited and interconnected by white matter tracts (edges). 

This multiscale organization shows that there is no preferred scale for brain network analysis. 

Since the network is abstractly depicted as a set of nodes and edges, graph theory provides a 

unified vocabulary for understanding brain network topology, independent of scale or measuring 

technique. However, it is crucial to understand how nodes and edges are defined at each scale, 

because the definition is very reliant on the measurement methods used [7].  
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1.4 Classes of brain connectivity 

 

There are three classes of brain connectivity: 

1. Structural connectivity refers to the anatomical associations between neural elements or 

brain regions — the brain's actual (axonal and dendritic) wiring. Hence, white matter 

tracts between pairs of brain regions are forming structural network upon which neural 

activity unfolds. It is measured using different techniques (depending on the scale of 

measurement): electron microscopy, tract tracing and diffusion MRI.  

2. Functional connectivity may occur between anatomically distant regions, and it 

correspond to magnitudes of temporal correlations. These correlations can be quantified 

by measures in time, frequency, or wavelet domain. Dynamical coupling between cortical 

regions brings up functional networks related to cognition, action, perception and 

spontaneous activity in resting state [4], [7], [9]. Workflow for construction of structural 

and functional networks is displayed in Figure 1. 

3. Effective connectivity is defined at neuronal level and represents causal influences, direct 

or indirect, that neural elements exert over each other’s activity [10]. Effective 

connectivity necessarily involves a model of how the measured signal is generated by 

neuronal dynamics. Effective connectivity may be inferred experimentally by 

perturbations or observation of the temporal ordering of neural events [11].  

 

Functional and effective connectivity are time-dependent. Rapid changes occur in interactions 

between brain regions, depicting involvement of subsets of brain regions and pathways during 

different cognitive tasks and attention states. These three types of brain connectivity are 

interrelated by the fact that structural connectivity is a major constraint on the possible patterns 

of functional and effective connectivity that can arise in a network. On the other hand, functional 

relations are contributing to the shaping of the anatomical substrate [11]. The importance of 

directionality in structural, functional, and efficient connectivity cannot be overstated. Since 

every axon has a source and a target, structural connectivity should be directed. However, some 

techniques used for structural connectivity measurements, such as diffusion MRI, are limited in 

terms of directionality. Functional connectivity can be either directed or undirected, which is 

dependent to the method used for measurements. However, so far, fMRI is largely undirected 

since it relies on the correlation or the mutual information of the hemodynamic responses, which 

are in the orders of seconds, i.e. orders of magnitude slower than the underlying neural 

processes, known to be directed. For the above reasons, this work will be limited to undirected 

graphs. 
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Conversely, effective connectivity, out of our scope, is always directed, because it is based on a 

model of causal interactions among neural systems. These distinct types of connectivity are used 

to define edges that can be directed, weighted and dynamic, representing the heterogeneity in 

the type of connection that is made [7].  

 

 

 

 

Figure 1. Workflow in construction of structural and functional networks. 

1) define the network nodes; 2) estimate a continuous measure of association between nodes; 3) generate 
connectivity matrix by compiling all pairwise associations between the nodes; 4) calculate the network parameters of 
interest in current graphical model [3] 
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1.5 Defining nodes at macroscale 

 

For networks constructed at microscale, neurons are represented by nodes, while axonal 

projections and synaptic junctions are represented by edges. However, there is no widely 

accepted means for defining nodes for connectomics analysis at macroscale. Indeed, the general 

structure-function paradigm may be conjugated in different degrees of segregation and suffers 

of many uncertainties, which explains the existence of various parcellation atlases. 

A data-driven approach would be that each individual node corresponds to one measurement 

point. Thus, different nodes can be related to individual voxels in MRI dataset or different 

electrodes used in EEG, or sensors in MEG. Even though this approach does not require any 

additional processing, it cannot be guaranteed that measurement points coincide with borders 

of cell populations that are functionally specialized [7]. 

Other approaches include anatomical parcellation, where nodes are defined based on a priori 

anatomical information, however this parcellation results in low resolution and large variations 

in terms of node size. The problem of node size is solved in random parcellation, where brain is 

parceled into discrete nodes of similar size, but reliability of this method is in question. Another 

type of parcellation is functional, which relies on a priori functional information, but it is difficult 

to be applied on diffusion data [7], [12]. Parcellation schemes can be defined based on diverse 

criteria, but all of them should maintain key properties. Namely, parceled regions should not 

overlap, so that one location belongs to one region exclusively. Networks can be compared 

between each other only if they use the same parcellation scheme [13]. 

Since imaging methods have limited capacity in delineating homogenous cell populations, 

methods for defining nodes use heuristics. The heuristic nature of these approaches ultimately 

reflects the lack of gold standard for brain parcellation at the macroscale. However, gross 

topological properties such as small-worldness are maintained across different parcellations 

used, while that may not be the case for other topological parameters [7]. 

 

 

1.6 Brain connectivity in disease 

 

Intra-brain connectivity is essential for the attainment and maintenance of life. Genes, 

proteins, neurons, cell assemblies, and gross brain regions are continually interacting to regulate 

the brain activities that support sensorimotor and cognitive processing. This delicate system, 

however, may be disrupted, particularly in the context of neurological and psychiatric diseases, 
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in which abnormal pathologic factors provoke massive changes in connectivity at all levels of the 

brain [14]. According to findings from structural and functional network research, network 

measures are heritable, they alter in the context of normal aging, and show abnormalities in 

clinical disorders. Thus, it can be concluded that these metrics reflect the brain organization and 

are hence investigated for their neurobiological importance [3]. 

Cognitive processes are dependent on interactions among distributed brain regions [15]. Modern 

imaging techniques have provided efficient way of investigating the functional and anatomical 

relationships between human brain regions, allowing for a better knowledge of the pathological 

foundations of neurological illnesses [16]. Different neurodegenerative illnesses are known to 

cause both abnormal (hyper-connections) and disturbed cerebral connections. It remains unclear 

how these connections form and coexist throughout illness progression. Damaged connections 

are frequently thought to be a direct result of neurodegeneration and demyelination, while 

hyper-connections are thought to represent compensatory mechanisms or spatiotemporal 

correlation [14]. 

Having regard to these facts, one application of complex network theory is to develop novel 

metrics able to quantify disparities between patient groups and suitable control groups [17]. 

Neuropsychiatric disorders such as schizophrenia and autism, for example, have been linked to a 

disruption and overall reduction in functional and structural connection [18]. Several studies have 

found that in individuals with schizophrenia or Alzheimer disease (AD), the characteristics of 

brain networks generated from fMRI, EEG, or structural MRI data, are disrupted. In an fMRI study 

of AD, it was noticed that clustering coefficient was significantly lower, at both local and global 

level, and furthermore able to discriminate AD patients from matching-age controls, providing 

high sensitivity and specificity. Hence, loss of small-world network properties potentially can 

provide clinically valuable diagnostic marker [19]. Similarly, an EEG study showed that path length 

in beta band functional networks is significantly higher in AD [20]. Another MEG investigation of 

resting-state functional networks corroborated a decline in small-world features in patients with 

Alzheimer's disease, and showed that this impact is caused by disease-related alterations in 

highly linked network hubs [21]. Konrad and Eickhoff [22] confirmed that white matter pathology 

and disrupted anatomical connectivity have both been linked to attention deficit hyperactivity 

disorder (ADHD). Furthermore, dysfunctional connectivity has been observed during rest and 

during cognitive tasks. Another study [23] suggests that mild cognitive impairment in Parkinson’s 

disease is characterized by increase in network modularity and small-world coefficients, as well 

as alterations in network hub regions. In addition, network disruptions accompany cognitive 

impairment in Parkinson's disease, represented by a weakening of long-range connections and 

an increase in local interconnectivity.  
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1.7 Magnetic resonance imaging 
 

Brain activity can be recorded using different methods, which typically show a trade-off 

between spatial and temporal resolution, and the scalability and invasiveness of the technique 

used [7]. Attention will be brought to magnetic resonance imaging basic principles, with 

subsequent description of variants of this technique used in both structural and functional 

connectivity study.   

Magnetic Resonance Imaging (MRI) is a non-invasive imaging technique that provides detailed 

three-dimensional anatomical images. It is frequently used in the detection, diagnosis, and 

monitoring of diseases. MRI is based on the interaction between a magnetic field and a spin-

containing particle. For several reasons, the 1H nucleus, which consists of a single proton, is a 

natural choice for probing the body using MR techniques [24]. It is the most abundant hydrogen 

isotope, with a nuclear spin quantum number of 
1

2
. Additionally, it has one of the largest 

responses to a magnetic field discovered in nature. Normal tissues will naturally generate a large 

MR signal because the body is made up of tissues that contain primary water and fat, both of 

which contain hydrogen [24]. Due to the nuclear spin, the 1H nucleus rotates, producing a local 

magnetic field or magnetic moment oriented parallel to the rotation axis. Since the nuclear spin 

is constant in magnitude and orientation, the magnetic moment associated with will follow the 

same trend. This is analogous to bar magnet, with north and south pole aligning along rotation 

axis.  

In general, MR measurements are performed on collections of spins that are similar. If arbitrary 

volume of tissue containing hydrogen atoms (protons) is considered, spin vectors of each proton 

composing the entire collection are oriented randomly in all directions. In this condition, there is 

no net magnetization in the tissue. When a strong external magnetic field (B0) is applied, the 

property of nuclei to have a spin causes them to align to it, producing net magnetization directed 

as B0. The spin vectors are slightly angled away from the magnetic field axis, but their precession 

axis is parallel to B0. Larmor frequency is the rotational velocity along the filed direction applied, 

proportional to the field strength and given by following equation: 

𝑤0 =
𝛾𝐵0

2𝜋
 

where γ is physical constant called gyromagnetic ratio. 

Within the static magnetic field, B0 nuclei with spin can be excited by applying a second 

radiofrequency (RF) magnetic field B1 that is perpendicular to B0. Short pulses of RF energy are 

normally used, each lasting a few microseconds. These pulses are called excitation pulses, 
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spanning narrow interval of frequencies [25]. When a proton is irradiated with energy of correct 

frequency 𝑤0, it is excited from lower-energy state (spin-up) to a higher energy state (spin-down).  

Without entering the details of MR signal generation and MRI reconstruction, it is important to 

recall that contrast in MR images is caused not only by differences in water density, but also by 

differences in basic nuclear magnetic processes known as relaxation. This is the process by which 

the protons release the energy absorbed from the RF pulse. Relaxation is characterized by 

different rates or relaxation times. 𝑇1, 𝑇2 and 𝑇2
∗ are the three relaxation periods that are of main 

concern in MRI. These are the time constants for the magnetization to return to its equilibrium 

position aligned along the scanners’ static magnetic field when it is disturbed (𝑇1 relaxation), as 

well as the time constants for signal loss once the magnetization has been sampled (𝑇2 and 𝑇2
∗ 

relaxation) [26]. ]. Namely the blood oxygen level dependent (BOLD) signal component exploited 

in fMRI is due to 𝑇2
∗ changes related to an increased oxygenation and washout of venous blood 

from activated gray matter areas. See a brief illustration of functional connectivity methods in 

Par. 1.7.2. 

DTI imaging, conversely, is based on the diffusion weighted contrast, which is enhanced by 

bipolar gradient pulses. Thanks to the directionality of the gradient field a specific direction in 

space at a time can be sensed, thus inferring the anisotropic structure of the white matter and 

ultimately estimating the pathways of virtual neural fibers, called “streamlines”. This technique 

is explained in detail in Par. 1.7.1.3, since the data considered in this thesis refer to DTI, 

tractography, and the consequent structural connectivity. 

 

 

1.7.1 Methods for studying structural connectivity at the macroscale  

 

Primary method for studying structural connectivity of the brain is diffusion MRI. First, 

attention is pointed out to the diffusion process itself, then to Diffusion Weighted MRI, Diffusion 

Tensor Imaging and Tractography.  
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1.7.1.1 Diffusion  
 

Diffusion, also known as “Brownian motion”, refers to the constant random movement of 

molecules due to heat which leads to irreversible transport of matter. The molecular motion is 

related to thermal kinetic energy of the molecules, proportional to the temperature: 

𝐸𝑘𝑖𝑛 =
3

2𝑘𝑏𝑇
 

where  𝑘𝑏 = 1.3810−23 𝐾

𝐽
 is the Boltzman constant. Higher 𝐸𝑘𝑖𝑛 is corresponding to faster 

molecular motion. This motion is completely stochastic. The relative amount of diffusion, or the 

mobility of the molecules is expressed by physical constant called the diffusion coefficient D, 

which is frequently given in units of 
𝑚𝑚2

𝑠
. This constant describes mean displacement d, the 

stochastic motion within time τ (diffusion time). Thus, d is the mean diameter of the three-

dimensional extension of molecular motion (or more exactly, the standard deviation of the 

position (√〈𝑥2〉) [27]:  

𝑑 =  √〈𝑥2〉 =  √6𝐷𝜏. 

The molecular weight, intramolecular interactions (viscosity), and temperature are all factors 

that affect diffusion. In a homogeneous liquid such as water, the diffusion coefficient is the same 

in every direction, called isotropic [28]. On the other hand, cellular microstructure of tissue 

influences mobility of the molecules that diffuse across it, by creating number of strongly 

oriented barriers and compartments. In this case diffusion depends on direction and it is called 

anisotropic. This type of diffusion is of great interest because it carries much information about 

underlying anatomical architecture of living tissues. As a matter of fact, living tissues are 

composed of organized structures that guide water movement, which hence does not occur 

freely.  

Diffusion Weighted Imagining ignores this complexity by reducing the diffusion coefficient to a 

single average value, the apparent diffusion coefficient. DTI, on the other hand, is a technique 

for measuring water molecule diffusion in distinct directions in each pixel of an MR image (and it 

involves DWI in at least six noncolinear directions) [28]. 
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1.7.1.2 Diffusion Weighted Magnetic Resonance Imaging 

 

Diffusion weighted imaging (DWI) uses magnetic resonance imaging to depict the diffusivity 

of water molecules in a defined voxel by applying motion-probing gradients. This method allows 

for a qualitative and quantitative evaluation of the diffusion process properties, as well as 

microstructural insights into the tissues state. Furthermore, DWI is unique method that gives 

different contrast mechanisms compared to conventional 𝑇1 and 𝑇2  weighted MR images.  Signal 

intensity at diffusion weighted imaging is inversely proportional to the magnitude of water 

diffusion, and this is in turn influenced by cellular structure of the tissue where diffusion occurs 

[29]. Thus, relation can be made between the signal and histological structure of the tissue. 

During the early 1990s diffusion MR imaging of the brain was starting to be used in clinical 

neuroradiology. Its utility was discovered immediately in evaluation of suspected ischemic 

stroke. Since then, major leaps forward in terms of technology of diffusion imaging had greatly 

improved quality of output images and enabled this technique to be used across various clinical 

applications. Main clinical application of diffusion weighted imaging remains in studying stroke, 

but it is also used in research of multiple sclerosis, dyslexia, schizophrenia and traumatic injuries. 

Changes in diffusion, which are an indicator of alterations in cellular homeostasis in acute 

ischemic stroke, can have a significant impact on treatment decisions and therapeutic outcomes 

for stroke victims if detected early. Various pathological processes affect tissue structural 

organization, causing destruction or regeneration of membranous components, as well as 

changes in cellularity. These changes induce variation in tissue permeability and osmolarity. 

Together, all these effects have impact on the extent of diffusion of water molecules which is 

captured by DWI. Anisotropic diffusion, on the other hand, is associated with fiber orientation 

explored with DTI, and can be used to better understand brain connectivity [30], [31]. 

A diffusion-weighted pulse sequence is made by adding a pair of diffusion-sensitizing gradients 

(motion-probing gradients) to a 𝑇2-weighted spin echo sequence. These gradients are applied 

along the same directional axis before and after 180 degrees refocusing pulse. This method was 

proposed by Stejskal and Tanner [32] with the goal of quantifying the diffusion coefficient. Most 

diffusion weighting sequences still use this technique, either in its original or slightly modified 

form. The result of employing diffusion gradients is attenuation of transverse magnetization (i.e. 

the received MR signal intensity, depending of molecular motion magnitude). Attenuation effect 

is given by relation between precession frequency (Larmor)  𝑤0, of a spin, and the external 

magnetic field B0:  𝑤0 =  𝛾𝐵0. A gradient pulse applied in x direction, with amplitude 𝑔𝐷 causes 

spatially linear magnetic field 𝛥𝐵(𝑥) = 𝑔𝐷𝑥. Corresponding spatially dependent variation of 

Larmor frequency is given by: 

𝛥𝑤0(𝑥) =  𝛾𝛥𝐵(𝑥) =  𝛾𝑔𝐷𝑥. 
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After this gradient pulse with duration delta, there is an extra phase angle: 

𝛥𝜑(𝑥) =  𝛥𝑤0(𝑥)𝛿 =  𝛾𝑔𝐷𝑥𝛿 

 

which depends linearly on position 𝑥. Thus, spins at different 𝑥 positions have different additional 

phase angles after gradient pulse is applied – they are not precessing with the same phase. This 

process is called dephasing, while the opposite process of spins returning into identical 

precession phase is called rephasing. Dephasing and rephasing processing are used in diffusion 

weighting. By applying first diffusion gradient, spins are dephased and they have additional phase 

angle 𝛥𝜑(𝑥). If spins do not move after applying the first gradient (those spins are called 

stationary spins), the additional phase angle is reverted by the second diffusion gradient. This 

means that the signal of transverse magnetization will remain the same, as if there was no 

diffusion sensitizing applied. On the other hand, if spins move between the two diffusion 

gradients, then each of them will be equipped with different phase angle after applying the first 

gradient pulse (dephasing). Hence, this effect cannot be compensated by applying second 

gradient pulse, since stochastically distributed phase angle remains. This random distribution of 

phase angles is observed as signal attenuation of magnetic resonance signal and represents a 

measure of diffusion. Faster molecule diffusion results in higher attenuation and weaker 

corresponding pixel signal intensity. This means that in regions where diffusion is limited, signal 

intensity will be greater than in regions where diffusion is rapid [29]. 

Attenuation is expressed as the ratio of measured signal 𝑆(𝐷, 𝑏) and the original signal 𝑆0. It 

depends exponentially on diffusion coefficient and the properties of the diffusion gradients 

determined by 𝑏-value of pulse sequence, called diffusion weighting: 

𝑆(𝐷, 𝑏) = 𝑆0𝑒−𝑏𝐷, 

where 𝑏-value can be calculated using properties of diffusion gradients: amplitude 𝑔𝐷, duration 

δ, and the time interval between two diffusion gradients Δ [27]: 

𝑏 = (𝛾𝑔𝐷𝛿)2 (𝛥 −
𝛿

3
) 

By applying diffusion gradients in only one direction, only diffusion motion spanning parallel to 

this direction can be detected. This can be sufficient in isotropic liquids, however the biological 

tissues are much more complex and highly anisotropic. In this case diffusion is hindered by cell 

membranes in perpendicular direction to diffusion motion, which results in decreased apparent 

diffusion coefficient. In this case diffusion is no longer described with scalar but with diffusion 

tensor. 
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1.7.1.3 Diffusion Tensor MR Imaging 

 

The emergence of diffusion tensor imaging (DTI) and fiber tractography has created 

completely new non-invasive path of studying white matter connectivity of human brain. These 

techniques rapidly brought advancements in understanding of many neurological and psychiatric 

disorders and have been used clinically for mapping of the white matter tracts before intracranial 

mass resections. DTI imaging studies of nerves, spinal cord white matter and brain white matter 

are based on underlying phenomenon that water diffusion in nervous tissues is highly anisotropic 

[33]. Diffusion anisotropy measurements have been used to assess the structural integrity of 

white matter in the brain at various ages and in a variety of diseases [28]. Water tends to diffuse 

along axonal tracts in nervous tissues.  

1) Diffusion tensor 

A superior method to model diffusion in complex materials is to use the diffusion tensor which 

describes diffusion of water molecules using Gaussian model. It is proportional to the covariance 

matrix of three-dimensional Gaussian distribution which models molecular displacement [34]. 

Diffusion tensor is 3*3 symmetric, positive definite matrix: 

D = [

𝐷𝑥𝑥 𝐷𝑥𝑦 𝐷𝑥𝑧

𝐷𝑦𝑥 𝐷𝑦𝑦 𝐷𝑦𝑧

𝐷𝑧𝑥 𝐷𝑧𝑦 𝐷𝑧𝑧

] 

 

The three diagonal elements (Dxx, Dyy, Dzz) represent diffusion coefficients measured along each 

of the three main laboratory axes (x, y, and z). The six off-diagonal terms show the correlation of 

random motions between each pair of major directions. If the diffusion is isotropic, all off-

diagonal elements are zero. Optimal coordinate system for viewing diffusion tensor is based on 

diffusion ellipsoid. Axis of diffusion ellipsoid are defined by three orthogonal eigenvectors and 

three positive eigenvalues. In tensor model it is assumed that a water molecule undergoing 

diffusion for finite time is constrained to a volume of diffusion ellipsoid [35]. The major 

eigenvector is called primary eigenvector and it points the principal direction of diffusion within 

a voxel (direction of greatest diffusion). In anisotropic fibrous tissues the major eigenvector also 

defines the fiber tract axis of the tissue. Additionally, it is called longitudinal diffusivity because 

it specifies the rate of diffusion along the orientation of fibers. Three orthogonal eigenvectors 

together can be observed as a local fiber coordinate system [34]. Hence, second and third 

eigenvectors define diffusion along axis transverse to axonal fiber bundles. Three positive 

eigenvalues, λ1, λ2 and λ3, give the magnitude of diffusion along three axes defined by 

eigenvectors. When λ2 and λ3, are averaged, so called radial diffusivity is calculated.   
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2) DTI – derived metrics  

 

When diffusion tensor is obtained, three eigenvalues are used to calculate a number of 

diffusion metrics, which are then used to describe the microstructure in a specific voxel and 

produce grayscale and color maps. These measures are useful for describing the amount of tissue 

organization and for locating voxels likely to contain a single white matter tract (without crossing 

or fanning) [34]. 

a) Mean diffusivity and trace 

The mean diffusivity represents average of diffusion coefficient along three principal axes. Sum 

of diffusion coefficients along principal directions (diagonal matrix elements) is called trace. 

When trace is divided by three, mean diffusivity, or so-called apparent diffusion coefficient, is 

obtained [27]. The trace and mean diffusivity are related to total amount of diffusion in voxel, 

which is related to amount of water in extracellular space. Lower values mean low diffusivity. The 

trace is useful in early detection of stroke because it leads to cytotoxic edema (cellular swelling) 

which restricts diffusion.  

b) Fractional anisotropy 

The diffusion anisotropy describes how much diffusion deviates from isotropic diffusion (0 

corresponds to isotropic and 1 to anisotropic diffusion). The fractional anisotropy is most widely 

used anisotropy measure and can be thought of as the difference of the tensor ellipsoid’s shape 

from the shape of a perfect sphere. It is calculated as a normalized variance of the eigenvalues: 

𝐹𝐴 =  √
1

2
 
√(𝜆1 − 𝜆2)2 + (𝜆2 − 𝜆3)2 + (𝜆3 − 𝜆1)2

√𝜆1
2 +  𝜆2

2 + 𝜆3
2
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c) Mode 

Complementary to FA, measure called mode discriminates between linear and planar anisotropy. 

Mode relates to skewness of the eigenvalues. 

(−𝜆1 − 𝜆2 + 2𝜆3)(2𝜆1 − 𝜆2 − 𝜆3)(−𝜆1 + 2𝜆2 − 𝜆3)

2(𝜆1
2 +  𝜆2

2 + 𝜆3
2 − 𝜆1𝜆2 − 𝜆1𝜆3 − 𝜆2𝜆3) 

2
3

 

 

 

Other commonly used diffusion indices derived from decomposition of diffusion tensor are listed 

in Table 1.  

 

Index Acronym  Formula Range Unit 

Mean 
diffusivity 

MD 𝜆1 + 𝜆2 + 𝜆3

3
 

Not 
defined 

𝑚2

𝑠
 

Fractional 
anisotropy 

FA 
 √

1

2
 
√(𝜆1 − 𝜆2)2 + (𝜆2 − 𝜆3)2 + (𝜆3 −  𝜆1)2

√𝜆1
2 + 𝜆2

2 + 𝜆3
2

 

 

0 ÷ 1 Dimensionless 

Relative 
anisotropy 

RA 
 √

1

2
 
√(𝜆1

2 − 𝜆2
2)2 + (𝜆2

2 − 𝜆3
2)2 + (𝜆3

2 −  𝜆1
2)2

𝜆1 + 𝜆2 + 𝜆3
 

 

0 ÷ 1 Dimensionless 

Volume 
ratio 

VR 𝜆1𝜆2𝜆3

(
𝜆1 + 𝜆2 + 𝜆3

3 )
3 

0 ÷ 1 Dimensionless 

Axial 
diffusivity 

AD 𝜆1 
 

Not 
defined 

𝑚2

𝑠
 

Radial 
diffusivity 

RA 𝜆2 + 𝜆3

2
 

Not 
defined 

𝑚2

𝑠
 

Table 1. Diffusion indices estimated from the decomposition of the diffusion tensor  

 

d) Color maps 

Another type of representation of eigenvector field is by mapping to colors. The principal 

eigenvector λ1 is a unit vector consisting of x, y and z components, that satisfy criterion 𝑥2 +

𝑦2 + 𝑧2 = 1, each scaled within 0 – 1 range. These x, y, and z components can be shown 

independently as grayscale maps, as illustrated in Figure 2A, with each vector component 
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allocated 256 (8 bit) grayscale steps. These vector component images can be multiplied by an 

anisotropy map such as FA to hide low-anisotropy regions that are presumed to have no 

dominating fibers, resulting in cleaner and more informative images. As illustrated in Figure 2B, 

these FA-weighted vector-component images can be shown as grayscale images. It is, however, 

difficult to understand fiber orientation information using three independent images. A 24-bit 

color presentation using RGB (8-bit each for red, green, and blue) channels has been proposed 

to better visualize fiber orientations in a single image. The x, y, and z component pictures are 

allocated to three RGB primary colors and concatenated to form a single color-coded map 

displayed in Figure 2C.  The color scheme which is used for representing the orientation of the 

major eigenvectors is: blue is superior-inferior, red is left-right, green is anterior-posterior, while 

colors brightness is controlled by FA [34]. 

 

 

 
Figure 2.  Various image contrasts obtained from DTI. (A) reference T2 -weighted image (least-diffusion-weighted image), (B) trace 
map, (C) fractional anisotropy map, (D) relative anisotropy map, (E) volume ratio map, and (F) color coded orientation map. 
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1.7.1.4 DTI fiber tracking 

 
Magnetic resonance diffusion tractography is the main in-vivo technique used for 

identifying white matter pathways in the living human brain. These pathways have primary role 
for transferring information between regions of the brain, and therefore they are main point in 
understanding brain functioning in health and disease. Up to date, this technique has not only 
been used to infer valuable clues about brain development and functioning, but it has also been 
used in investigating white matter connectivity in neurological disorders, but also for surgical 
planning [36]. Diffusion tractography brought major technical progress, since it is the only 
technique capable of investigating white matter architecture in the central nervous system non-
invasively. Previously, invasive tract tracing was the major method used to map structural 
connections in mesoscale connectomics. In a typical tract tracing experiment, a fluorescent dye 
or other tracer molecule is injected into a specific area of the brain. After the tracer has had 
enough time to cover the complete extent of the labeled neurons, the animal is euthanized, the 
brain is dissected, and the sites of tracer uptake are mapped. Hence, there are obvious ethical 
limits in performing tract tracing studies in humans. Although measurements made by DTI fiber 
tracking are prone to errors, the non-invasive nature and ease of measurements provide answers 
to scientific and clinical questions that cannot be answered by any other means [37]. 
 
DTI fiber tracking is used with purpose of determination intravoxel connectivity based on the 
anisotropic diffusion of water [38]. Diffusion of water molecules is obstructed in greater extent 
across axis shared by many axons aligned along it. This means that the diffusion is preferred in 
orientations that are matching with orientations of axonal fibers. In reconstructing fiber bundles, 
or drawing inferences about axonal connectivity, tractography algorithms try to find paths 
through the data field along which diffusion is least hindered [37]. In each voxel, the diffusion 
tensor provides two pieces of information: the magnitude of diffusion isotropy and the direction 
of maximal diffusion. This information is used by tractography algorithms for tracking entire 
white matter pathways by maintaining fiber continuity from one voxel to another.  
 
However, diffusion tensor provides only simplification of diffusion of water molecules inside 
brain, and it can represent only one major fiber direction in voxel. Hence, DTI cannot be reliable 
in significant part of white matter voxels which contain fiber bundles that are oriented in various 
directions. Cases of complex architectures, where fiber tracts intersect or branch, affect the 
output of DTI fiber tractography in delineating pathways and may contribute to generation of 
spurious tracks. All decisions in streamline tractography are made locally, which leads to further 
accumulation of errors which induces false positive and false negative connections [34]. Another 
confound is limited spatial resolution. Voxel sizes in human diffusion MRI investigations are 
generally 2 ∗ 2 ∗ 2 𝑚𝑚3, with state-of-the-art technology and software allowing for close to 
1 𝑚𝑚 isotropic resolution [37]. 
However, there are approximately 105 axons per voxel at this resolution, and the chances that a 

single pathway is occupying a voxel without any contamination from other fiber paths, gray 
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matter or CSF is minimal [39]. Furthermore, low spatial resolution leads to partial volume 

artifacts, where MR signal from the voxel will be equal to weighted average of the signals of 

different tissues in that voxel. Main signal contamination is caused by CSF since it is characterized 

by isotropic diffusion (FA is around 0). Thus, CSF signal can dominate the tissue signal even when 

its fraction in voxel is low. This results in voxels containing both CSF and tissue have lower FA 

than voxels having only tissue. Consequently, these voxels are frequently overlooked during 

tractography because their FA value falls below the tracking threshold, making it difficult to 

recover fiber tracts close to CSF [40]. 

 
Thus, it should be noted that none of tractography methods are able to truly reconstruct nerve 
fibers or fiber bundles. There is no perfect method, and it is unlikely that it is possible, although 
it is a topic of active research. Algorithms are computing pathways or trajectories trough the 
data, such that a great portion of nerve fibers run reasonably in parallel to them. These pathways 
are used to derive direction and scope of fiber bundles, or as region of interest (ROI) which is 
used to infer quantitative metrics. Tractography algorithms are sufficiently effective in 
reconstructing major tracts, while reconstruction of lateral fibers of these pathways remains 
challenging topic [39]. Since DTI provides information at relatively low resolution, DTI fiber 
tracking is often combined with functional and/or higher resolution anatomic information to 
delineate specific pathways [41]. 
 
DTI fiber tracking algorithms can be divided into deterministic and probabilistic methods. 
Deterministic algorithms are constrained to choose one or more fiber orientations per voxel. On 
the other hand, probabilistic algorithms consider uncertainty in fiber orientations. Generally, 
they propagate a large number (typically > 1000) of streamlines iteratively, selecting the 
direction of propagation from a collection of fiber orientations in which there is a quantifiable 
trust.  
 

1) Deterministic methods and limitations 
 

Deterministic algorithms take one estimation of fiber orientation at each point of imaging 
space, hence they follow the primary eigenvector from voxel to voxel. They are initiated from 
user-defined voxel. When end of one voxel is reached, angular relationships between 
eigenvectors in voxel and in all its neighboring voxels is explored, and connection is formed by 
choosing the ones with smallest angles [42]. Most commonly these algorithms are guided by 
following the so-called streamlines trough the eigenvector field which provides valuable insights 
to connection between brain regions. However, the outputs of the algorithm will be either 0 or 
1 depending on the existence of pathway between two data points. Thus, it can be said that 
deterministic algorithms study connections rather than connectivity.  
The object of stopping criteria in deterministic tractography is to prevent streamline propagation 

trough the regions of high uncertainty and therefore to prevent false positives. If the angle 
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between directions of eigenvectors is less than a priori defined value, two voxels are connected, 

and the process is repeated to continue streamline trough white matter in brain image. On the 

other hand, if the angle is greater than the predefined threshold, the streamline is terminated in 

that point. Another constraint used to end the streamline propagation is fractional anisotropy 

value. This ending criterium ensures that the streamlines continue in regions where direction of 

maximal diffusion is well defined. Since the uncertainty in the principal diffusion direction 

decreases as the anisotropy in a voxel increases, streamlines will only continue if the anisotropy 

in each voxel exceeds an a priori specified threshold value [43]. Thus, results of tractography are 

dependent on several factors that are pre-set by the operator: angular and anisotropy thresholds, 

and the region chosen for seeding the tractography. Noise, patient movement, and imaging 

artefacts produce uncertainty in the orientation of three eigenvectors and together they 

negatively affect streamline fiber tracking. 

 
Deterministic approach of streamline tracking using diffusion MRI data does not take into consideration 

either systematic or stochastic errors in predicting orientation of fiber. Systematic errors are due to 

complex fiber geometries with different orientations, such as crossing, twisting, bending, and kissing 

fibers cannot be adequately captured by using tensor model and the principal eigenvector orientation. 

Regarding the stochastic errors, it should not be overlooked that diffusion MRI is noisy technique. 

Susceptibility gradients, head motion, and eddy currents cause artifacts [36]. The noise in individually 

acquired images will further propagate trough the analysis and bring uncertainty in fiber orientation 

estimation, distortions in pathways and biased diffusion indices, which together lead to erroneous 

tractography [36]. Uncertainty in fiber orientation is not randomly distributed throughout the brain, but 

it will be correlated with specific area if the brain where tracking is done [42]. 

 
2) Probabilistic methods and limitations 

 
Instead of terminating the path in regions and along trajectories where errors are probable, 

the goal of probabilistic tractography is to integrate the expected uncertainty into the tracking 
algorithm. Thus, differently from deterministic methods probabilistic algorithms are generating 
set of multiple pathways or streamlines that are passing through the seed-point. As a result, 
probabilistic tractography techniques can map fiber paths in areas where deterministic 
tractography methods will have to stop. The probability density function of fiber orientation can 
be estimated with an empiric function based on FA, a Bayesian model, or bootstrap statistics [38]. 
The accuracy of probabilistic methods is limited by the method used for constructing the 
probability density function and information contained in diffusion tensor. These algorithms are 
prone to systematic errors, both in acquisition of data and analysis, in the same measure as the 
deterministic ones. The most convenient way of interpreting resulting maps is that they are 
representing connectivity, and absolute numbers indicate connection strength. However, the 
majority of probabilistic tractography techniques use a voxel-wise streamline count as their 
connection metric. This metric is strongly correlated with successfulness of streamline 
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propagation, which is in turn determined by preformed acquisition, processing technique and 
fiber geometry. Connectivity index thus does not represent the actual strength of connection, 
but the confidence in a connection.  
It worth noting than the estimation uncertainty of fiber orientation is influenced by SNR in the 
data and the total number of measurements used in estimation. The higher is SNR and number 
of measurements, the lower is the uncertainty. However, SNR linearly depends on voxel volume, 
i.e. reducing voxel volume from 2𝑚𝑚 to 1.5 reduces the SNR by more than half. Thus, outputs of 
these methods directly depend on the parameters of the MRI experiment.  Another contributor 
to accuracy decrease of probabilistic method is the length and the shape of the tract [44]. 
Streamline count is dependent on the pathway length, shape and size of the reference region 
and shape of the tract in question [39]. 
 

3) Streamlines and fractional anisotropy as a measure of connection strength 
 

 When streamlines are seeded and tracked between all pairs of nodes it is possible to derive 
several different measures of connectivity strength. The simplest measure is a count of number 
of streamlines that connect a pair of regions. The number of axonal fibers connecting two areas 
is assumed to be proportional to the number of connecting streamlines that can be reconstructed 
from the data in this calculation [7]. Thus, streamlines are not equivalent to axons; they are rather 
abstraction of the diffusion model and the tractography algorithm applied. Capacity to track a 
streamline can be influenced by numerous factors which are not essentially representative of 
axonal connectivity. This means that “raw” connection densities based on streamline are not 
biologically relevant [45]. However, streamline count is most used edge-weighing scheme and 
normalization by total brain volume, as well as streamline count with density and length 
correction, are examples of variants of this procedure. 
 
Other most common measure of diffusion strength is fractional anisotropy (FA) measured along 
the connecting streamlines that is a more physiologically relevant measure of strength. Rather 
than an abstraction of trajectory count, this form of weight relies on tract integrity and 
myelination [46]. It quantifies degree of diffusion constriction along all directions within a voxel. 
Fractional anisotropy is high in areas where axon fibers are coherently oriented and densely 
packed since axons are acting as strong constrain to diffusion. Differently, fractional anisotropy 
is low in the areas where fibers are sparse, or they are organized in geometry that is at level of 
complexity that cannot be captured by diffusion model. Since FA depends on the direction in 
which it is measured, among the factors modulating the diffusion anisotropy there are axon 
density, distribution of axon diameter and fiber myelination. FA is not particularly specific 
measure if considering that regions with low anisotropy deep in white matter can often contain 
the largest axon number passing through them. This stems from the fact that orientation of fibers 
is incoherent and thus diffusion displacements are no longer preferentially hindered along a 
single resulting with anisotropy of the voxel-averaged displacements being low. These altogether 
can lead to paradoxical observations such us increased anisotropy that can be seen in types of 
pathologies where destruction of particular fiber orientation occurred [44]. 
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Constructed weighted matrix can either be directly analyzed or it can be thresholded so that 
connections are maintained between nodes if they exceed minimum predefined number of 
streamlines or a minimum probability [13]. In functional connectivity, time series of brain activity 
in different voxels is derived and the correlation between the time series of different voxels is 
represented in form of correlation matrix where values are spanning the interval between -1 and 
1. In dealing with negative weights, most common approaches include either filtering the 
negative weights which are considered as unsynchronized activations or using the absolute value.  

Measure used for quantifying connectivity strength will also affect set of values present in 

connectivity matrix and thus impact interpretation of edge weights [7]. Both streamline count 

and fractional anisotropy are subject to a variety of factors that are not always related to 

biologically meaningful anatomical connectivity strength characteristics, such as axonal number, 

density, caliber, or myelination. Changes in the signal-to-noise of different voxels induced by 

head motion, physiological noise, or imaging artifacts, as well as complex fiber geometries within 

a voxel, all complicate the understanding of relation weights derived from diffusion MRI [7]. 

 

 

1.7.2 Methods for studying functional connectivity at the macroscale 

 

Functional connectivity at the macroscale is typically measured using functional MRI, EEG or 

MEG. 

 

1.7.2.1 Functional Magnetic Resonance Imaging 

 

Functional magnetic resonance imaging (fMRI) is delicate and noninvasive tool that 

employs MRI to image patterns of activation in the working human brain caused by changes in 

neural metabolism. FMRI methods can be made sensitive to the changes in blood perfusion in a 

region, volume of blood, or blood oxygenation that follows the neuronal activity [26]. The BOLD 

(Blood Oxygenation Level Dependent) contrast is the most common fMRI contrast. It does not 

directly measure neuronal activity, but rather the metabolic demands (measured in terms of 

oxygen consumption) of active neurons. The origin of the BOLD signal changes relies on magnetic 

properties of hemoglobin that exists in two different magnetic states resulting in diverse local 

magnetic fields. Deoxygenated hemoglobin (deoxyHB) is slightly paramagnetic relative to brain 

tissue, while hemoglobin that carries oxygen (oxyHb) is isomagnetic. Thus, oxygenated arterial 

blood containing vessels cause no distortion to magnetic field in surrounding tissue, while 

deoxygenated-blood carrying vessels distort magnetic field in their close proximity. This leads to 
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destructive interference with signal within tissue voxel, resulting in shorter 𝑇2
∗ relaxation time. 

The effect of 𝑇2
∗ shortening is most noticeable near larger veins and is accentuated by using GRE 

sequences with TEs (echo times) close to 𝑇2
∗(at fields 3T or below).  

During cerebral activation more oxygenated blood is supplied to activated region than it is 

required for its immediate metabolic needs. The relative concentration of deoxy hemoglobin in 

activated areas will decrease because of this "overshoot" of oxygenated blood. 𝑇2
∗ shortening 

effects will be reduced, resulting in an increase in the BOLD signal in activated regions. The 

change in the MR signal caused by instantaneous neuronal activity is called hemodynamic 

response function. The BOLD effect is proportional to the amount of deoxy hemoglobin in the 

blood, which ranges from less than 2 percent in arterial blood to more than 40 percent in venous 

blood. 

The regional BOLD response produced by a short peripheral stimulus is known as the 

Hemodynamic Response Function is the (HRF). The HRF typically exhibits a slight initial dip, 

followed by a tall peak, and then a variable post-stimulus undershoot (Figure 3). Initial increase 

in deoxy hemoglobin leads to a decrease in BOLD signal, displayed by initial dip. Next, an increase 

in blood flow dilutes the concentration of deoxy-Hb and shifts the balance in favor of oxy-Hb. 

This results in a peak in BOLD response 4 to 6 seconds after activation. After attaining its peak, 

the amplitude of the BOLD signal falls below the baseline level. This undershoot after stimulation 

is caused by a combination of decreased blood flow and increased blood volume. 

 

 

Figure 3. BOLD signal 
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Functional MRI offers a higher spatial resolution than EEG and MEG (~mm), although with 

diminished temporal resolution (~s). Coarse temporal resolution restricts measurable bandwidth 

to 0.001 to 0.5Hz.  

Functional connectivity studies differ from task related studies since they are usually directed to 

detect spontaneous correlations of activities among brain areas. For this reason, functional 

connectivity is most frequently studied in “resting-state” condition [47], with the subject asked 

to stay still in the MRI scanner, without thinking and also not falling asleep, for a few minutes. 

Importantly, resting state data can also offer data-driven methods for a functional parcellation 

of the set of coordinated regions in the brain, which may involve also dinstant regions, thus 

encompassing the structure-function paradigm. These region sets are called resting state 

networks [un paio di REF] and can be also addressed in terms of structural connectivity, thus 

fusing functional and structural features. 

  

 

1.7.2.2 Other methods 

 

Other methods for studying functional connectivity include Electroencephalography 

(EEG) and Magnetoenchephalography (MEG). EEG is one of the most well-known and commonly 

used techniques for studying the brain's electrical function. At a given position in the extracellular 

medium, electric current contributions from all active cellular processes within a volume of brain 

tissue superimpose and form a potential, measured by electrodes placed on the scalp or 

subdural, with respect to a reference potential. MEG employs an array of superconducting 

quantum interference devices (SQUIDs) to measure the weak magnetic fields that are generated 

by neuronal currents. Both EEG and MEG have high temporal resolution, enabling neural 

activation to be sampled on millisecond scales, which is comparable to neuronal signaling pace. 

Conversely, these methods suffer from poor spatial resolution predisposed by the fact that each 

sensor measures cumulative activity across large neurons populations. MEG and EEG have 

millisecond temporal resolution, but poor spatial resolution (~1cm) and show electro-magnetic 

activity at wide range of frequencies (1-100Hz).  
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2 Methods  
  

The present chapter introduces commonly used network models. Next, connectivity 

matrix is defined, which is the starting point for brain network analysis. After the construction of 

the matrix, it is possible to evaluate a large number of metrics and topological characteristics of 

the network, which are potentially relevant indicators of health and disease (as already 

mentioned in the Chapter 1.5.) In this section, the most widespread metrics, with particular 

attention to the ones considered in the present work are described. Subsequently, widely used 

thresholding methods and new approaches to assess the role of weak connections are reported. 

 

2.1 Network models 
 

Although real-world connectivity networks are mainly compared by quantifying commonly used 

network measures, they can be classified according to the underlying structure that brings 

valuable insights to network spatial and topological organization. These simulated network 

models can be used in comparison and classification: 

2.1.1 Regular networks 

Regular networks, such as trees and lattices, are strictly homogeneous and very rarely 
representative of real-world networks, although important in the study of many human artifacts 
and also studied by graph theory methods. Accordingly, such networks are out of the scope of 
this thesis. 

2.1.2 Random graphs 

 
In past, random graphs were mainly used as a model for describing topology of various networks. 

They are generated by assigning connections between any pair of nodes in the network with 

uniform probability. If sufficiently large network is observed, connection density of this network 

is equivalent to this probability. Random graphs are distinguished by nodes of approximately 

same degree which results in Poisson degree distribution, also called exponential degree 

distribution. This configuration results to be particularly suitable both for computation and to 

derive theoretical results. Although they provide oversimplified approximations of connectivity 

structure in complex systems, still they are addressed as a benchmark to detect the organization 

hidden in complex networks.   
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2.1.3 Small world networks 

 
The small-world phenomenon is an example of a surprisingly universal macroscopic behavior in 

complex systems, and it was firstly described for large social networks. Watts and Strogatz [48] 

investigated how path length and clustering behaved in a basic generative model (henceforth the 

WS model). The WS model iteratively rewires a binary lattice network of N nodes (Figure 4), each 

connected to the same number of nearest neighbors via edges of similar weight (unity). This 

rewiring process is performed by randomly deleting an existing edge between nodes i and j, and 

subsequently replacing it by a new edge between node i and any node 𝑘 ≠ 𝑗. They discovered 

that as the probability of random rewiring increased incrementally from zero, so that the initial 

lattice was progressively “organized”, despite the random procedure.. Sparsely rewired networks 

showed both strong clustering (similar to a lattice) and short path length (like a random graph). 

These algorithmically created graphs were called small-world networks. According to findings 

from the paper [49] there is sufficient evidence to indicate that small-worldness is a practically 

universal feature of neurological systems. Moreover, brains appear to be only one of a wide 

"universality class" of small-world networks that includes many other non-neural or non-

biological complex systems. Clearly, brain organization is far from being randomly organized and 

is built on important hubs, which are currently referred as the “rich club” (see Par. 2.2.7) . 

Nonetheless, the WS model has a core position in simulation to assess the main features of 

organized networks, avoiding any a-priori constraint. 

 

 

 

Figure 4. The random rewiring procedure of the Watts-Strogatz model 
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Later, this behavior was spotted in metabolic, information, genetic, signaling, computation and 

ecological networks. In neuroscience, small-world topology has been reported across multiple 

species and scales, from both structural and functional MRI studies of large-scale brain networks 

[49]. Brain networks' short path lengths may favor integrated information processing over the 

entire network, while high clustering may favor segregated processing across functionally 

specialized cliques of nodes. Hence, the small-world organization of the brain showed that 

apparently opposing tendencies of functional integration and segregation can in fact be joined in 

a single architecture. It should be noted that the presence of the small-world topology provides 

only a limited amount of information regarding network design. For example, two small-world 

networks may exhibit highly distinct patterns of connectedness [50]. A convenient way for 

summing small-wordness property is by the ratio of the clustering coefficient to the path length, 

but with prior normalization of these metrics by comparing them to the values obtained for 

random graph with equal number of nodes and edges (Par 2.2.6 ) [51]. However, this measure is 

not sufficient for certain determination whether a network is small-world or not because it can 

be influenced by a number of factors such as the density of the connectivity matrix [4].  

 

2.1.4 Scale-free networks 

 

At about the same time of small-world networks discovery, another type of complex networks 

was introduced: scale-free networks. This architecture is distinguished by a very broad and 

nonhomogeneous degree distribution, which results in the presence of nodes with far higher 

degrees than would be expected in a random, regular, or small-world network. These networks 

are found to exhibit degree distribution that follows power law, according to which the likelihood 

of discovering a node with a degree twice as great as an arbitrary number reduces by a constant 

factor. Many networks have power-law degree distributions, which indicate a "scale-free" 

organization [52]. The term "scale-free" refers to the fact that a power-law distribution has no 

characteristic scale—"zooming in" on any segment of the distribution has no effect on its shape 

and assigning a characteristic scale for the degree of network nodes is thus pointless [50]. Power 

law degree distribution can be generated by so called preferential attachment (Figure 5), which 

means that new nodes preferentially connect to nodes that already have high degree, so “the 

rich nodes get richer”. This process results in existence of at least few highly connected nodes, 

also called hubs, and many other less connected nodes. As the result, distribution that emerges 

from this model is identified by fat-tail.  
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Figure 5. Illustration of early stages of network growth by preferential attachment. Nodes are added one by one, and a single 
new edge links the new node to an existing node chosen with a probability based on node degree. 

 

Small- world and scale- free properties are compatible, but they are not equivalent to each other, 

meaning that network can be small-world while not being scale-free. Structural networks can 

display scale-free structure, although with low maximum degrees, whereas functional brain 

networks always exhibit scale-free distribution as well as small-world characteristics [11]. As said 

in the Introduction, a full comprehension or the brain aims at the ambitious goal of integrating 

the whole connectivity scales, which can be hypothesized to show scale free (alias, fractal) 

features, as in many natural structures. However, our starting point given by neuroimages limits 

this study to the macroscale of brain areas and scale free networks are thus out of our scope.  
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2.2 Connectivity matrix and measures of connectivity 

 

The connectivity matrix (or adjacency matrix) is the simplest mathematical representation 

of network connectivity [53]. This matrix is used to create a graph-based representation of 

network, in a way that each row and column in this matrix represents a node. The matrix element 

at the intersection of the i-th row and the j-th column stores information about the link between 

nodes i and j, thus edge between two nodes. Edges can be differentiated based on weight and 

directionality. In undirected edges information flows in both directions – every connection is bi- 

directional (i.e., the connectivity matrix is symmetric), whereas in directed it is restricted in going 

from one node to the other, but not in the opposite direction. 

In this matrix form, connectivity between all nodes of the network is compactly described [7]. If 

number of the nodes in the network is equal to N, connectivity matrix is N2 sized.  

Diagonal elements of the matrix are sometimes viewed as indicating the connectedness of each 

node with itself, but they may also be used to express a node intrinsic feature. However, many 

graph theoretical metrics used to analyze brain networks neglect the matrix diagonal, by forcing 

its values to zero Conversely, the off-diagonal elements correspond to obtained pairwise 

connectivity, with values of these elements being strongly dependent on the method used for 

connectivity estimation. If the upper and lower triangles (above and beneath main diagonal) of 

connectivity matrix are identical, matrix is symmetric, and it depicts undirected graph of a 

network. Networks unidirectionality implies that we cannot draw any assumptions about 

probable information flow directions or the causal impact that one neuronal element may have 

on the activity of another. This is possible in graphs that are directed, with directionality in the 

matrix representation being encoded by asymmetric elements in connectivity matrix [7].  

Since each axonal projection initiates from a cell body and terminates at one or more synapses, 

brain anatomical networks are naturally directed. However, mapping the directionality requires 

application of invasive methods addressing functional or structural features of single fibers. 

Noninvasive methods, such as diffusion fMRI or DTI, do not provide directional information, as 

previously explained.  

Variations in connectedness between neural elements is described trough connectivity weights. 

The range of weights observed and the way they should be interpreted is determined by the 

method used for connectivity estimation. Furthermore, sensitivity, noise, artifacts and resolution 

limitation also affect weights values. Unweighted or binary networks provide simplification of 

weighted case, where edges can take either values of zero or one, depending on the presence of 

the link between two nodes [53]. Most of the past studies, and correspondingly networks metrics 

developed, are made for binary analysis. Although it has been the most widespread and reliable 

approach for the first-generation tract-tracing studies, binary graph models are considered far 



43 

 

 

from optimal strategy too. Nonetheless, evaluating the binary topology of a connection matrix 

may frequently provide useful insights into network organization [7]. Common workflow for 

simplification of network data is displayed in Figure 6. 

Tract tracing data, based on the number of detected streamlines, show values of weights span 

several orders of magnitude [54], highlighting a great variability that is completely discarded in 

binary analysis. The weighted edges carry relevant information about strength of connection 

between any pair of nodes in the network. In structural networks, weights can correspond to 

size, density, or coherence of anatomical tracts, probability that a node can be reached from 

another node (in probabilistic tracking), or the number of fibers between the brain regions (in 

streamline count of deterministic tracking). ). Besides, indexes based on the quality of the tract, 

such as fractional anisotropy (FA), are compressed in small ranges, with a lower cutoff 

determined by the tractography reconstruction rules (e.g., a streamline is stopped, when FA falls 

below 0,2). Conversely, weights can represent some statistical measure of association in 

functional and effective networks, such as magnitude of correlation or causal interactions [3], 

[7], [13]. Depending on the level of brain network which is studied, nodes and edges are defined. 

When connectivity matrix is obtained, graph theoretical measures can be computed.  
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Figure 6. Networks are typically represented using connectivity matrices, with rows and columns representing nodes and matrix 
entries representing edges. To make analysis easier, networks are frequently converted to a sparse binary undirected form by 

thresholding, binarizing and symmetrizing. 
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2.2.1  Degree and Strength 

 
Networks may be classified at several levels. Local measurements focus on individual 

component attributes, whereas global measures at macroscale look at the network as a whole. 

Although global metrics can give valuable summaries of network features, they are not sufficient 

in inferring if the effects are diffused across the brain or limited to a subset of nodes and/or edges 

[7]. 

 Components of a network, starting at the local scale, are nodes and edges. The most 

fundamental network measure, inextricably linked to most other measures, is node degree. This 

measure represents number of connections that link one node to the rest of the network. The 

node degree 𝑘𝑖  of a node i in binary graph is defined as: 

𝑘𝑖 =  ∑ 𝐴𝑖𝑗

𝑖≠𝑗

 

Definition for node degree in undirected binary network is equal to summing all the nonzero 

elements through the rows or the columns of the binary adjacency matrix (A) since it is symmetric 

for undirected network. The mean degree in an undirected network is the average of all network 

degrees, and it is most typically employed as a measure of density or the overall "wiring cost" of 

the network [4].  

〈𝑘〉 =
1

𝑁
∑ 𝑘𝑖

𝑁

𝑖=1

 

In undirected networks, every connection between pair of nodes is bi-directional. On the other 

hand, in directed networks, distinction is made between incoming (afferent) and outgoing 

connections (efferent), resulting in two diverse types of node degree: in-degree and out-degree.  

Together, all network nodes' degrees combine to generate a degree distribution, which is a 

simple depiction of network connectedness and a key indicator of network development and 

resilience[4], [53]. The degree distribution in most real-world networks is heterogeneous. 

Numerous nodes have a limited number of links, while a smaller number of nodes are included 

in many interconnections, which are referred to as network hubs [7]. Network hubs connect 

groups of regions, known as network communities, that are densely intrinsically connected and 

highly coupled within the community, but have sparse connections between members of other 

communities [50]. Therefore, network hubs are important in facilitating integration throughout 

the network.  
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Regarding weighted networks, measure that is analogous to degree is the node connection 
strength, 𝑠𝑖: 

𝑠𝑖 =  ∑ 𝐴𝑖𝑗
′ =

𝑁

𝑗=1

∑ 𝐴𝑖𝑗𝑤(𝑒𝑖𝑗)

𝑁

𝑗=1

 

In binary networks, edge can assume a value of either zero or one. On the other hand, edges in 

weighted networks can assume a range of different values (expressed by w in the formula) which 

captures variations in the strength of connectivity between pairs of neural elements. Likewise 

degree distribution, the node connection strength distribution provides a simple representation 

of connectivity in a weighted network [7], [53].  

 

2.2.2  Clustering coefficient 

 

Local measurements can also relate to the general neighborhood of a node. All nodes that 

directly project to or receive projections from a node are referred to as node neighbors. To 

analyze local clustering, the connection between neighbors is utilized [13].  The local clustering 

coefficient is calculated as the ratio between the number of edges between nodes’ nearest 

neighbors and the total number of possible connections between neighbors [13]. Thus, local 

clustering coefficient can be thought as likelihood of finding a connection between any two 

neighbors of node i. This is equivalent to computing the proportion of closed triangles that are 

attached to node i, relative to the total number of closed triangles, 

𝐶𝑙(𝑖) =  
2𝑡𝑖

𝑘𝑖(𝑘𝑖 − 1)
, 

where 𝑘𝑖  is the degree of the node i and 𝑡𝑖 is number of closed triangles that are connected to i. 

Numerator of the fraction is doubled because an undirected network is considered. 

On the other hand, one of the most commonly used global measures is based on average 
connectivity of nodes’ and it is called global clustering coefficient. To quantify the clustering of 
whole network, local clustering coefficients are averaged: 
 

𝐶𝑔 =
1

𝑁
∑ 𝐶𝑙(𝑖) =

1

𝑁
𝑖∈𝑁

∑
2𝑡𝑖

𝑘𝑖(𝑘𝑖 − 1)
𝑖∈𝑁
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The clustering coefficient is a measure of functional segregation [17]. This is a property that 
associates the clustering coefficient with specialized processing (e.g., sensory input analysis, such 
as visual and auditory) where nearby nodes work together to achieve complex tasks [55]. 
Therefore, high clustering of the neighboring nodes ultimately allows efficient communication 
and complex task processing [53]. The values of both the local and global clustering coefficients 
are in the range of zero to one. A value of zero implies no clustering, whereas a value of one 
implies full connectedness between node neighbors, or a completely linked network in the case 
of the global clustering coefficient [7].  
 
To be a component of a triangle, the degree of each node must be more than two, implying that 
each node must have at least two neighbors. Clustering coefficient is 0 if node degree is less than 
two [56]. Nodes with no connections (isolated nodes) or with only one link (leaf nodes) are 
unlikely to be found in structural connectivity, but such nodes might occur for functional and 
effective connectivity [13]. Differently from random networks, complex networks have high 
clustering which is associated with high local efficiency of information transferring [17]. It has 
been proven that the clustering coefficient provide a clinically useful diagnostic marker in various 
pathologies such as schizophrenia, Alzheimers’ disease, Parkinsons’ disease [19], [22].  
 
There are different purposes for extending the concept of unweighted clustering coefficient 
described above to weighted clustering coefficient, reported in the literature [57]–[59].  
 
In this work, focus was on definition of weighted clustering coefficient given in paper [58]. In this 
definition generalization from unweighted to weighted clustering coefficient is developed on the 
basis of the idea of subgraph intensity. Intensity 𝐼(𝑔) of the subgraph g with vertices vg and links 
lg is derived as the geometric mean of its weights,  

𝐼 (𝑔) = ( ∏ 𝑤𝑖𝑗

(𝑖,𝑗)∈𝑙𝑔

)

1
|𝑙𝑔|

 

 
Triangles are one of the most fundamental nontrivial motifs, and as previously stated, they play 

a crucial role in determining the clustering coefficient as one of the basic parameters of network 

characterization. As triangles are one type of subgraphs, definition of intensity can be used to 

give weighted clustering coefficient by replacing the number of triangles ti in the in local 

clustering coefficient equation with the sum of triangle intensities as: 

𝐶𝑖,𝑂 =
2

𝑘𝑖(𝑘𝑖 − 1)
∑(𝑤𝑖𝑗𝑤𝑗𝑘𝑤𝑘𝑖)

1
3

𝑗,𝑘

. 

Edge weights are normalized by maximal weight in the network, 𝑤𝑖𝑗 = 𝑤𝑖𝑗/ max(𝑤𝑖𝑗), and 

contribution of each triangle depends on all its edge weights. Triangles in which edge weight is 
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maximal will contribute unity to the sum, while the ones with negligible weight will have 
negligible contribution.  
 
 

2.2.3  Network density 

 
Another global measure, edge density (connectance or connectivity) is the proportion of 

nonzero elements in the connectivity matrix compared to the total number of connections that 
can be formed in the network. In undirected network, the overall number of potential 
connections is given by N(N-1)/2, with N being number of nodes in the network and N(N-1) the 
number of off-diagonal elements in the adjacency matrix [7]. The N diagonal elements are 
obviously not included. Hence, edge density in undirected network can be calculated as:  
 

𝐷 =  
𝑒

𝑁2 −
𝑁
2

 

 
where e is number of edges. Density can vary in interval between zero and one, where former 
indicates no connections present, while latter means that all potential edges are present, or the 
network is fully connected.  

 

 

2.2.4  Path length  

 
The edge density is a preliminary indicator of  network connectivity. However, depending 

on the network topology, the time needed to travel from one node to another, may vary 
significantly. This property is depicted by the measure called characteristic path length.  
The capacity of the brain to quickly incorporate specialized information from dispersed brain 
areas is known as functional integration. The concept of path is commonly used to assess how 
well brain areas interact and how easy it is to transport information through the network [60]. 
Hence, path length is an inverse measure of network integration.  
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Furthermore, it is a key metric, representing number of edges that must be traversed in order to 
go from node i to any other node j of the network and hence offers a potential pathway for 
information flow. Paths in functional networks are statistical association sequences that do not 
necessarily correspond to information flow on anatomical connections [4].  
When path lengths over all network nodes is averaged, resulting number represents 
characteristic path length [49], which is given by: 
 

𝐿 =
1

𝑁(𝑁 − 1)
∑ 𝑑𝑖𝑗

𝑖,𝑗∈𝑁,𝑖≠𝑗

 

 
where 𝑑𝑖𝑗 is the distance between any given pair of nodes i and j.  

 
The length of a binary path is equal to the number of links in the path, while the length of a 
weighted path is equal to the sum of individual link lengths. Link lengths are typically calculated 
as reciprocal of weights, since large weights typically represent strong connections and close 
proximity in brain networks [4].  

 

 

2.2.5  Local and Global Efficiency 

 
Local efficiency depicts the integration between nodes’ neighbors. This measure can also 

be observed as generalized clustering coefficient, taking into account only direct links between 

neighbors of a node. Local efficiency of the i-th node, 𝐸𝑙𝑜𝑐(𝑖), is defined in the paper [61] such 

that,  

𝐸𝑙𝑜𝑐(𝑖) =
1

𝑁𝐺𝑖(𝑁𝐺𝑖 − 1)
∑

1

𝑙𝑗ℎ
𝑗,ℎ∈𝐺𝑖

 

where Gi represents the subgraph containing all nodes that are the i-th nodes’ immediate 

neighbors. In other words, the local efficiency of node i is defined in relation to the subgraph that 

contains all of i's neighbors after removing i and its incident edges.  
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Alternative measure of network integration is global efficiency. The reciprocal of the harmonic 
mean of the networks’ path lengths (or the mean of all pairwise efficiencies), is representing the 
network's global efficiency [17], 
 

𝐸𝑔𝑙𝑜𝑏 =
1

𝐿′
=

1

𝑁(𝑁 − 1)
∑

1

𝑙𝑖𝑗
𝑖 ≠𝑗

. 

 
Differently from path length, the global efficiency may be meaningfully used for characterizing 
disconnected graphs. Since paths between disconnected nodes are considered as infinite lengths, 
this value corresponds to efficiency equal to zero.   
 
 

2.2.6  Small-worldness metric  

 
Summarized properties of small-world networks are described by the small-worldness 

coefficient. This metric compares the average clustering coefficient and path length values of the 
network of interest relative to clustering coefficient and path length values in random network 
characterized by same number of nodes and edges.  
 
Small-worldness metric is obtained by taking ratio of two ratios:  
 

1. the ratio of average clustering coefficient of the brain network cg to clustering coefficient 
of random network cn; 

2. the ratio of average path length of brain network lg, to the average path length of a 
random network, ln: 

 
 

𝜆 =
𝑙𝑔

𝑙𝑛
 

and  

𝛾 =
𝑐𝑔

𝜆
 

 
 
  



51 

 

 

Then, the metric of small-worldness, Sw is given by ratio: 
 

𝑆𝑤 =  
𝛾

𝜆
 

 
where γ and λ are measures of clustering coefficient and path length normalized by these 
measures obtained from random network of same size.  
Generally, binary networks small worldness shows γ > 1 and λ ~ 1 and they have a high degree of 
connections among the neighbors of any node, compared to random network, but small average 
path length is preserved.  
 
 

2.2.7  Modularity, Hubs, Rich-Clubs and Core-Periphery 

 
 

As previously mentioned, segregation and integration are important information 
processing mechanisms in the brain that promote functional specialization and effective global 
communication. Clustering coefficients and modularity are two related measures that assess 
topological segregation properties in brain networks (Figure 7A). On the other hand, integration 
is often assessed by a network's characteristic path length (Figure 7B). 
Moreover, moving our focus between the overall graph level and the node level, structures, 
communities, and families are addressed, which are subnetworks with strong intra-connections. 
In this perspective, common network metrics are, besides previously mentioned modularity, rich-
clubs and core-periphery.  
 
 

1) Modularity  
 
Many real-world networks' nodes aggregate into tightly connected subgroups known as modules 
or communities. Nodes inside these modules are more tightly connected to one another than to 
the rest of the network. The high interconnection of nodes inside a module shows that they 
perform similar tasks. Weak connectivity between nodes in distinct modules indicates that these 
functions are separated. Small-world features are common in modular networks. Strong within-
module connectivity leads in a high clustering coefficient, whereas a small number of 
intermodular links is enough to keep the network's characteristic path length low [7]. Index of 
modularity of the network is defined as the difference between the degree of intra-module 
connectivity observed in network and that which is expected by chance.  
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Figure 7.  A) Metrics describing the segregation of a network. Local clustering shows nodes' tendency to form triangles; there are 
four modules in the graph within which connectedness is much higher than between them. B) Metrics describing the integration 
of the network. The shortest path length is the minimum number of steps needed to travel between two nodes (dots in orange). 

C) Small set of high degree nodes in central position of the network suggest existence of hub nodes. High-level connectivity 
(denoted in red) between hubs may suggest the existence of central rich club in the overall network structure [62]. 

 
2) Hubs and Rich-Clubs  

 
Using various graph measurements, nodal locations in brain networks that are positioned to 
make significant contributions to global network communication can be classified as network 
hubs (Figure 7C). 
Degree centrality, which measures the number of connections associated with a given node, is 
the most basic graph measure used to locate hubs. Another metric is betweenness centrality, 
which is defined as how many of the shortest pathways between all other node pairs in the 
network flow via a given node, reflecting its capacity to change information. 
Importantly, in the brain architecture, these high-degree or high-centrality hubs are densely 
coupled, forming very well-connected subnetworks that constitute a rich-club structure. These 
hubs and rich-clubs are discovered to play essential roles in global information transformation 
despite significantly higher wiring, operating expenses, and vulnerability [62].  
 

3) Core-periphery score  
 
A core-periphery structure is defined by network being divided in two subsets of nodes. Core 
nodes are located in the networks’ topological center, and they are highly connected to one 
another. On the other hand, peripheral nodes are at least moderately connected to core nodes, 
but only sparsely connected to one another (Figure 8) [63]. The ideal structure is composed by 
core that is completely connected, and the periphery that is fully disconnected. 
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Figure 8. A network with a core-periphery structure (left) and corresponding adjacency matrix (right) [63] 

 
 
All network metrics described in present chapter are listed in the Table 2. 
 

Index Mathematical expression Definition 

Average 
degree 〈𝑘〉 =

1

𝑁
∑ 𝑘𝑖

𝑁

𝑖=1

 

 

Average of all degrees 
(number of connections that 
link one node to the rest of the 
network) gives a measure of 
“wiring cost”.  

Strength 
𝑠𝑖 =  ∑ 𝐴𝑖𝑗

′ =

𝑁

𝑗=1

∑ 𝐴𝑖𝑗𝑤(𝑒𝑖𝑗)

𝑁

𝑗=1

 

 

 
Analogue to degree in weighted 
networks (where edges can assume a 
range of different values w). 

Global 
clustering 
coefficient 

𝐶𝑔 =
1

𝑁
∑ 𝐶𝑙(𝑖) =

1

𝑁
𝑖∈𝑁

∑
2𝑡𝑖

𝑘𝑖(𝑘𝑖 − 1)
𝑖∈𝑁

 

 

 
Quantifies average connectivity of 
nodes’ neighborhood. 

Weighted 
clustering 
coefficient 

𝐶𝑖 ,𝑂 =
2

𝑘𝑖(𝑘𝑖 − 1)
∑(𝑤𝑖𝑗𝑤𝑗𝑘𝑤𝑘𝑖)

1
3

𝑗,𝑘

. 

 

Generalization of clustering coefficient 
in weighted case. 

Density 𝐷 =  
𝑒

𝑁2 −
𝑁
2

 

 

Proportion of nonzero elements in 
connectivity matrix compared to the 
total number of connections that can be 
formed in the network. 

Characteristic 
path length 

𝐿 =
1

𝑁(𝑁 − 1)
∑ 𝑑𝑖𝑗

𝑖,𝑗∈𝑁,𝑖≠𝑗

 

 

Average of all path lengths (number of 
edges that must be transverse to reach 
node any node j starting from the node 
i) of the network. 
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Local 
efficiency 

𝐸𝑙𝑜𝑐(𝑖) =
1

𝑁𝐺𝑖(𝑁𝐺𝑖 − 1)
∑

1

𝑙𝑗ℎ
𝑗,ℎ∈𝐺𝑖

 

 

Quantifies integration between nodes’ 
neighbors (connected by direct links). 

Global 
efficiency 

𝐸𝑔𝑙𝑜𝑏 =
1

𝐿′
=

1

𝑁(𝑁 − 1)
∑

1

𝑙𝑖𝑗
𝑖 ≠𝑗

. 

 

Quantifies the capability of concurrently 
exchanging information via 
shortest paths. 

Modularity 
𝑄 = ∑ [𝑒𝑢𝑢 − ∑ 𝑒𝑢𝑣

𝑣∈𝑀

]

𝑢∈𝑀

2

 

The degree to which the network may be 
subdivided into such clearly delineated 
and nonoverlapping groups. 

Degree 
centrality 

𝐶𝐷(𝑖) = 𝑘𝑖 = ∑ 𝐴𝑖𝑗

𝑖≠𝑗

 
Simplest measure of centrality 
equivalent to the node degree.  

Betweenness 
centrality 

𝑏𝑖 =  
1

(𝑛 − 1)(𝑛 − 2)
∑

𝜌ℎ𝑗(𝑖)

𝜌ℎ𝑗ℎ,𝑗∈𝑁,ℎ≠𝑗,
 ℎ≠𝑖,𝑗≠𝑖

 
It measures the proportion of the 
shortest paths between all node pairs in 
the network that pass through a given 
index node. 

Core-
periphery 

score 

𝜌 = ∑ 𝑎𝑖𝑗𝛿𝑖𝑗𝑖,𝑗   

𝛿𝑖𝑗 = {
1 𝑖𝑓 𝑐𝑖 = 𝑐𝑜𝑟𝑒 𝑜𝑟 𝑐𝑗 = 𝑐𝑜𝑟𝑒; 

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
} 

 

A measure of how well the real structure 
approximates the ideal (core fully 
connected and periphery fully 
disconnected). 

Table 2. Network metrics with mathematical expressions and definitions. 

 

2.3 Thresholding  
 

Since it is commonly considered that the traditional fiber-tracking methods cannot reliably 
determine the strength of connections in the brain [44], many studies have chosen to ignore 
connection weights entirely and instead perform graph-theoretical analysis on binary 
connectomes. Structural connectivity workflow consists of computing the weighted connectome, 
with each edge depicting the number of streamlines connecting any two regions or nodes, and 
then binarizing it by employing thresholding by zero (edges with at least one streamline are set 
to one, others to zero). Clearly, the aim is also to capture the topology of connections, leaving 
out their quantification. However, if binary connectomes are computed in this manner, weak 
connections will be indistinguishable from strong connections [64]. According to study [17], using 
binary graph model is unlikely to be appropriate approach for network analysis of tract tracing 
data. Considered that connectivity weighs are spanning over six orders of magnitude in 
mammalian cortical networks, effectively removing the seeming biological diversity in fiber 
connection strengths can be a serious limitation.  
 
Advancements in probabilistic tractography enabled the computation of dense weighted 
connectomes which provide more reliability in connection strengths. This progress leaded to 
preserving weights information and directly employing it in graph theoretical analysis instead of 



55 

 

 

binarizing it [49], [64]. However, measurement noise and the probabilistic nature of the tracking 
process, on the other hand, result in an unknown fraction of false white matter connections [65]. 
As a consequence, network thresholding techniques are commonly employed to eliminate 
purportedly spurious connections, but it is still unclear how different thresholding tactics affect 
basic network features. However, different studies suggest various thresholding strategies which 
will be briefly described in the next section. 
 
 

2.3.1 Absolute thresholding  
 
One of the strategies is absolute thresholding, where one threshold is applied uniformly across 
the network with the goal of retaining only connections with weights higher than the predefined 
one [12]. Setting an absolute threshold, however, can result in varying numbers of network edges 
across datasets, as well as varied level of network density between control and patient cases, 
which is relevant for disease analyses. 
Many graph metrics have been shown to be affected by network density [66], which could lead 
to statistical differences in network metrics between patient and control populations. However, 
these effects should be assigned to underlying different number of links in network rather than 
disease-related variation in network topology. Appropriately, it has been proposed that this 
method is less suitable for case-control investigations [47].  
 
 
 

2.3.2 Density-based thresholding 
 
To tackle this issue of different number of connections between groups, studies have suggested 
an alternative approach of using a density-based threshold  [67]–[69]. This strategy aims to keep 
the number of connections constant across all individuals and eliminate the impact of network 
density on graph metrics computation and comparison across groups. 
 
In this thresholding approach, the strongest percentage of connections in each individual 
network are chosen and retained, while in binary case surviving connections set to 1 and all other 
connections are set to 0.  
 
Therefore, this method sets the density, or so called “network cost”, to be fixed across patients 
and healthy controls. Potential between-group differences in graph metrics (e.g. clustering, path 
length) are assumed to result from differences in the topological organization of edges and not 
due to differences in number of edges. Density thresholding has been shown to successfully 
distinguish density from topological effects [70] and provide more stable network metrics, 
making it a popular method for network construction and analysis in disease connectome 
research.  
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However, in order to reach the preset density in patient group, the inclusion of lower and thus 
potentially less reliable connections is indisputable. Inclusion of more random edges means 
creating shortcuts and decreasing overall shortest path length. Considering that patient 
population has overall lower connectivity, this effect will lead to increased global efficiency, 
decreased clustering, and topology closer to random network configuration. In contrast, if 
patients have higher levels of connectivity than healthy controls, this can result in decreased 
global efficiency and higher local clustering. Thus, proportional thresholding should be cautiously 
used when there are between-group differences.  
 
This strategy is mostly used in functional connectivity analysis with the goal of producing more 
sparse matrices. It is less commonly used in the reconstruction and analysis of structural graphs 
(since the matrix is usually already sparse), the inclusion of false-positive edges may, in theory, 
influence anatomical network reconstruction and thus introduce influence between-group 
differences in graph metrics. Summarizing, it is known that topological qualities vary with the 
number of edges in a network, implying that density-based thresholding should be used. On the 
other hand, individual or group differences in connection density may themselves transmit useful 
information, implying that any effect these variations have on network topology is real and 
should not be erased by density thresholding [7].  
 
 

2.3.3 Proportional thresholding 
 
Another technique commonly used is proportional thresholding which provides retaining the 
connections which are present in predefined proportion of subjects [71]. The connections whose 
prevalence (i.e., detection count) meets or exceeds this group threshold are then subjected to 
further study [12]. Low group criteria allow the inclusion of existing connections that are difficult 
to reconstruct, preventing false negatives, whereas high group thresholds require a link to be 
present in many participants, enhancing the accuracy of reported connections and therefore 
avoiding false positives. This decision to define a specific group threshold is usually made 
empirically and, indeed can lead to bias and impair the comparability of group-based results 
between investigations. 
In the study [71] the threshold value has a significant impact on regularly used network metrics, 
emphasizing the necessity of methodical knowledge in this parameter selection.  
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2.3.4 Consistency thresholding  

 
Another approach given in [72], [73]  called consistency thresholding keeps the connections with 
stable weights across individuals, assuming that connections with the most inter-subject 
variability are false. This method is used for constructing group-representative networks which 
is a single network that represents the connection data of many different subjects. 
 
 

2.4 Weak connections 
  

With the use of cutting-edge fiber tracking technologies, dense weighted structural 
connectomes are becoming more abundant, however there is no agreement on how to treat the 
many weak connections that these connectomes include [64]. On the other hand, several studies 
suggest that thresholding is not necessary in weighted connectomes [53]. Some other studies 
have argued for employing raw (unthresholded) matrices with no connections removed, claiming 
that the existence of weak connections has no effect on topological network features. The 
authors of paper [64] showed that the elimination of weak-to-moderate strength connections in 
dense weighted connectomes has no effect on value of various graph metrics computed. By 
opting not to eliminate weak connections, the computational pipeline is simplified and the 
requirement to choose an arbitrary threshold is removed. Such arbitrary or heuristic-based 
decisions make it difficult to compare studies and, worse, might lead to statistical results that are 
unstable [64]. 
 
Another point is, although the lowest weighted network connections (e.g., those involving fewest 
streamlines) are often false-positives, low weights do not necessarily correspond to implausible 
connections [65]. Considering the intrinsic uncertainty in the extraction of the weights, weak 

connections have not been given valuable attention in brain network studies and have frequently 
been eliminated by the process of thresholding.  
 
Despite the fact that long-distance connections are generally weak, they are very consistent 
among brains. Also, as an example, imagery and multisensory integration are thought to be 
enhanced by long-distance connections in the occipital brain [54].  
 
In many recent studies attention is brought to potential utility of weak connections because of 
the notion that they might be relevant for cognition and behavior.  According to study of resting 
state fMRI data by authors of paper [74], individual variations in the strength of weak functional 
connections from the lateral prefrontal cortex to areas inside and beyond the frontoparietal 
network have been found to predict individual variations in fluid intelligence. Another study [75] 
showed that individual differences in relatively weak, long-distance functional connections at 
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rest were substantially linked with full scale, verbal, and performance IQ.  Furthermore, another 
study by Basset et al. [76] showed that the significance of weak connections is extending to 
psychiatric illness, as the highly organized topology of weak functional connections in resting-
state fMRI was able to accurately and specifically differentiate people with schizophrenia from 
healthy controls, while this conclusion could not be derived from analysis of strong connections. 
Moreover, Individual variations in these weak connections were shown to be strongly associated 
to variations in cognitive scores and symptomatology. Weighted small-world organization, which 
acknowledges the relevance of weak connections, plays a vital role in system functions that are 
particularly important to neural systems, such as coherence, computing, control, and resilience 
[77]. 
 
Aside from the issue of erroneous connections, it is still unclear whether network weighting best 
reflects the underlying biological connectedness. Diffusion MRI structural networks have yielded 
a range of weights that reflect various conceptions of link strength. Interregional streamline 
counts and measures of FA are the most common weighting methods [12], which have also been 
employed for constructing matrices used in the present thesis work.   
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3 Protocol 

 

This chapter describes tools used in the present work, together with the protocols 

employed in data acquisition and analysis. Furthermore, motivates the construction and provides 

the description of a novel software tool we called SPIDER-Net for studying brain connectivity 

(currently under development finalization) is provided. SPIDER-Net tool (SNT) was validated on a 

case study of stroke. This software was employed for visualization of brain connectivity trough 

construction of “connectograms”. Following software description, an introduction is made to the 

Borderline Intellectual Functioning study, with the focus on the weak connections in weighted 

networks derived from Magnetic Resonance Diffusion Tractography.  

 

3.1 Analysis of the tools used and developed  

 

 

3.1.1 MATLAB 

 

All calculations in the present work were carried out in MATLAB.  

Calculation of networks metric is based on Brain Connectivity Toolbox (http://www.brain-

connectivity-toolbox.net), a freely available Matlab toolbox containing a collection of complex 

network measures both in binary and weighted forms. Brain Connectivity Toolbox contains 

measures that variously detect aspects of functional integration and segregation, quantify the 

importance of individual brain regions, characterize patterns of local anatomical circuitry, and 

test resilience of networks to insult. 

Furthermore, visualization of connectograms in developed software is based on freely available 

Matlab toolbox circularGraph (https://github.com/paul-kassebaum-mathworks/circularGraph).  

 

3.1.2 Motif for circular representation of brain connectivity and Circos Software 
 

The portrayal of human connectomics through the use of a circular visualization method 

is well suited to the investigation of central nervous system architecture. This sort of 

representation, known as a 'connectogram,' is capable of identifying neuro-connectivity 

http://www.brain-connectivity-toolbox.net/
http://www.brain-connectivity-toolbox.net/
https://github.com/paul-kassebaum-mathworks/circularGraph
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relationships in an intuitive and elegant manner. This methodology gives an anatomically 

informed organization of nodal cortical and subcortical architecture, geometric aspects of these 

architectures, and the degree and attributes of regional connection. 

The architecture of cortical networks has primarily been visualized using graph theory 

representations and symbols. Although they provide precise representations, they are however 

not always appropriate in the context of human connectomics. Canonical methods employed for 

node-edge relationship representation does not always provide optimal insight into functional 

and anatomical brain connections. Such representations have been adapted to the study of 

cortical structure in a multitude of ways. Still, due to the overwhelming number of intricate 

interactions whose overarching meanings can easily be missed during a visual inquiry, cortical 

networks remain difficult to comprehend. In addition to that, connectivity analysis typically 

includes a certain amount of dimensionality reduction and simplification [1]. The idea of 

representing neuroanatomical structure and connectivity information graphically in a circular 

diagram stems from Irimia et al. [1]. In this paper freely available software called Circos, is used 

for visualizing brain connectivity.  

Circos is a Perl-based1 cross-platform program that uses a circular layout to enable the 

visualization of connections between pairs of coordinates using various graphical components 

such as connections and heat maps. While originally it was constructed for the purpose of 

rendering genomic information, Circos can be efficiently adapted to the analysis of data sets 

comprising complicated interactions between large numbers of elements [78]. Links are 

generated between any two parcellations connected by a white matter tract. Connectivity 

representation is based on links that depict fibers connecting two regions. Additionally, links are 

color-coded by the average value of fractional anisotropy (FA). This value is normalized to the 

interval between 0 and 1 and divided to three equal-sized bins of different colors according to 

the value of FA.  

Furthermore, fiber count was encoded as link transparency. Within the bin, the connection with 

the highest fiber count has been rendered fully bright, while the connection with the lowest fiber 

count has been colored as transparent as possible, though avoiding making it invisible. Five 

cortical metrics are represented within the circular structure, each represented by a different 

heat map: the total gray matter (GM) volume, total area of surface associated with the interface 

between gray and white mass, mean cortical thickness, mean curvature, and connectivity per 

unit volume. An example of Circos connectogram is given in Figure 9 together with cortical 

metrics. 

 
 

1 Perl is a general-purpose programming language originally developed for text manipulation and now used for a wide range of 
tasks including system administration, web development, network programming, GUI development, and more. 
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Figure 9. Sample connectogram created for a single subject and legend of the representation of the corresponding cortical 
metrics 

  

 

3.1.3 SPIDER-NET Tool (SNT) 

 

SNT was developed as a collaborative project between Politecnico di Milano, Milano (IT) 

and CADiTeR, MRI Laboratory of Fondazione Don Carlo Gnocchi, Milano (IT). The idea for 

software development started with the motive of improving visualization of the brain 

connectivity and extend current functionalities provided by Circos.  

The visualization and quantification of brain connectivity networks represents a major issue, 

since the human brain comprises a large number of nodes and a dense network of links. In 

particular, it involves order of 100 nodes relevant to the parcellation of cortical areas and sub-

cortical structures, and hence order of 1002 potential edges. This may result in an inability to 

visualize and analyze connections within a specific part of the brain. Moreover, connections 

within the region of interest can be hidden by the huge number of network links. 

This software provides superior visualization properties by allowing the user to select regions of 

interest in brain and subsequently extract the corresponding subgraph.  
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At the initial point of software development, the construction of connectograms was based on 

the Circos tool (Figure 10). In the latest version, instead of relying on Circos, visualization was 

modified by using the open Matlab function circularGraph (Figure 11). In this way, computation 

time is reduced and problems with permissions and constraints are bypassed. Software is made 

more flexible and user-friendly. 

      

Figure 10. Connectogram visualization using Circos                    Figure 11. Connectogram visualization using Circular graph  

             

The software enables both exploration of structural and functional connectivity, with possibility, 

at the same time, to compute large number of binary and weighted network indices and visualize 

connectivity by plotting connectograms. Starting interface is displayed in the Figure 12. User is 

supposed to make a selection between structural and functional connectivity and browse atlas 

according to parcellation used to construct connectivity matrix. 
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Figure 12. The starting software interface 

Next, main software interface is opened (Figure 13). As an input, the user passes a connectivity 

matrix with corresponding node labels. Furthermore, the tool is adjusted for several anatomical 

atlases, and thus supports different brain parcellations. 

 

Figure 13. Main software interface 
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The first possibility offered by the tool is to allow the selection of gross parcels of interest 

(hemispheric partition), or finer parcels within the specific lobe. In this way, a subgraph is 

extracted from the connectivity matrix.  This enables a more precise and focused connectivity 

study adjusted to the users’ area of interest.  

An example of selection is displayed on Figure 14. Here by selecting Parietal lobe in left 

hemisphere, user can examine list of all finer sub-parcels of the Parietal lobe on the right side, 

together a dynamic legend for the abbreviations. 

 

 

Figure 14. Selection of gross parcellations and sub parcellation 

 

 

Two of the main functionalities of this software are: 

1) Calculation of topological properties  

Calculation of networks metric in the software is based on Brain Connectivity Toolbox (BCT). 

Metrics that are computed: 

1. Density; 

2. Average node degree; 

3. Average node strength; 

4. Global unweighted clustering coefficient; 

5. Global weighted clustering coefficient; 

6. Unweighted characteristic path length; 
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7. Weighted characteristic path length; 

8. Unweighted global efficiency; 

9. Weighted global efficiency; 

10. Modularity; 

11. Coreness statistics; 

12. Rich-club coefficient.  

 

As an output, together with values of network measures, this option enables the visualization of 

connectivity matrix of the region of interest (selected connectivity submatrix) and distribution of 

local coefficients (binary and weighted local efficiency, clustering and degree) values across the 

gross-parcels of the brain. An example of output is displayed in Figure 15.  

 

 

 

Figure 15. Output of topological analysis (selection of Frontal, Insular and Parietal lobe in the left hemisphere) 
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2) Visualization of connectivity  

There are two modes of visualizing the connectivity between brain regions. Selection is made in 

right bottom corner in Figure 14.  

a) Explorative mode (explore from currently selected subsets) allows the selection of one 

priority parcel or sub-parcel of the brain. Next, edges from this source to the selected 

target parcels or sub-parcels are drawn. If the target is not selected, all links between 

exploration source and all other parcels will be drawn. Example of this mode of 

visualization is given on the Figure 16. 

 

 

Figure 16. Explorative mode: Connections from Temporal left lobe to all other nodes in the network 
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b) Another mode instead provides extracting a subgraph of all common links within the 

selected parcels or sub-parcels. Example is given in Figure 17.  

 

 

 

Figure 17. Extract subset: Common links between Temporal and Insular lobe in left hemisphere and Occipital and Temporal lobes 
in right hemisphere. 
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3) Additional software functionalities  

 

 

a) Additionally, the user can select whether to obtain the intra-parcel edges or to remove 

them (checkbox keep connections within gross parcels in the main software interface). 

Examples of this functionalities are displayed in Figure 18.  

 

 

Figure 18. Connectogram without intra-lobe connections (left); connectogram with intra-lobe connections (right) for selection of 
Frontal left and Occipital right lobe 

 

 

b) Software provides the possibility to perform density thresholding (checkbox thresholding 

in the main software interface) which can be done both in the binary and the weighted 

case. Initially, the goal density is selected. Then, the software extracts the threshold that 

in the best way approximates the initial density to the one that is selected by user. In this 

process, starting threshold is equal to zero, and as it is increasing weak connections are 

the first to be removed.  

 

At the start of thresholding process, original matrix is thresholded and then selected 

subsection is extracted. Hence, topological indexes are calculated on the basis of 

thresholded matrix, and connectogram provides visualization of thresholded connectivity 

submatrix (Figure 19).   
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Figure 19.  Connectogram with original density (left) and 10% density (right) for selection from Frontal right lobe to all other 
nodes in the network. 

  

   

 

c) Another visualization option is to display weights (checkbox show the weights in the figure 

in the main software interface) in connectogram. Here, links are color coded according to 

the normalized values of their weights (Figure 20). Weight values normalized interval 

(from 0 to 1) is divided into three equal-sized bins denoted by different colors. Weakest 

connections are colored in yellow, middle in blue, while the strongest connections are in 

red.  

If negative connections are present (in the case of study of functional connectivity) they 

are colored in green.   
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Figure 20. Connectogram with displayed weight values for selection from Frontal right lobe to all other nodes in the network. 

 

d) Furthermore, the software provides possibility to display a specific property of a single 

node (checkbox visualization of a node property in the main software interface). This 

visualization is based on the heatmap tool used for representing cortical metrics within 

the circular structure in Circos Software. 

 

By selecting this option, it is possible to code by color a property of the nodes uploaded 

by the user. Hence, the colors are chosen according to the value of the local node property 

provided, that typically can be volume or thickness (or any other node attribute uploaded 

by the file). Moreover, a color-bar corresponding to normalized node property value is 
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shown in the resulting figure. Example is displayed in Figure 21. Conversely, if this flag is 

not selected the colors are randomly generated in the manner that nodes with the same 

gross parcel have similar colors.  

 

 

 

 

     

Figure 21. Visualization of a node property (one of the mentioned node indexes)  by a color scale (edges are conversely in black) 

 

 

All previously described functionalities of SNT render visualization of brain connectivity 

completely adjustable to the users’ needs.  
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3.2 Simulations and data 
 

3.2.1 Test matrices 

 

First tests were performed on two example connectivity matrices of real subjects, 

although sent us in blind, for testing only. They are denoted as “M1” and “M2”. Great discrepancy 

in their density was immediately noticed, which was assumed to be a consequence of the 

previous methodological pre-processing applied. The number of links in the former is 5424 while 

in the latter it is 13849, which correspond to density values of 0.2 and 0.5. Both matrices are 

165*165 in size and are symmetric and undirected.  

Brain Connectivity toolbox was employed for calculation of most commonly used network 

measures: 

1. Density; 

2. Average node degree; 

3. Average node strength; 

4. Global clustering coefficient; 

5. Weighted global clustering coefficient; 

6. Characteristic path length; 

7. Weighted characteristic path length; 

8. Weighted global efficiency; 

9. Small-worldness. 

 

For the purpose of computing binary network indices, both matrices were binarized, so all the 

elements of the matrix that are > 0 were set to 1, while all the others were set to 0. On the other 

hand, if weighted network indices are computed, weight information was retained. 

Values of measures computed locally, for each node of the network, compose diverse 

distributions which are visualized in Chapter 4. 

Next, density thresholding was performed on matrix of higher density (M2). This process was 

performed for both binary and weighted case. Matrix was thresholded by using multiple values 

of threshold: 3, 4 and 10 which were set to reach densities reduction to 0.4, 0.35 and 0.3. 
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3.2.2 Stroke case study 
 

1) Study population  

 

The data set consists of connectivity matrices of two subjects provided by CADiTeR, MRI 

Laboratory of Fondazione Don Carlo Gnocchi, Milano (IT).  Matrices correspond to one stroke 

patient and one healthy control. Case and control are considered as matching subjects (matching 

criteria is age): 

1. Case: male, 44 years old; stroke patient with a lesion in the right hemisphere, displayed 

in Figure 22; 

2. Control: male, 43 years old. 

 

 

 

Figure 22. Stroke patient; lesion in the right hemisphere 

 

Moreover, each matrix has two variants based on the different methods used for the evaluation 

of connectivity strength from tractography data. Therefore, one variant is constructed by using 

the number of streamlines (or the number of fibers – denoted by NF) as connectivity measure, 

while the second variant is constructed by evaluating the values of fractional anisotropy (denoted 

by FA). 
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2) Data acquisition  

The acquisition protocol and methods reported hereunder were used both for stroke patient and 
matched healthy controls subject. 
The MRI protocol was acquired on a 1.5 T Siemens Magnetom Avanto scanner equipped with a 
12-channels head coil. The acquisition protocol included:  

• a high-resolution 3D T1-weighted Magnetization Prepared Rapid Gradient-Echo 
(MPRAGE) image, (repetition time (TR)/echo time (TE)=1900/3.37 ms, Filed of View (FoV) 
= 192x256 mm2, voxel size = 1 mm isotropic, 176 axial slices);  

•  a diffusion-weighted echo planar images (EPI) image along 64 directions (b- value 
1500s/mm2, TR/TE 7800/109 ms, matrix size102x102x46, resolution 2.5 x 2.5 x 2.5 mm3) 
and 3 b0 images (2 with AP, and 1 with PA encoding direction); 

• two conventional anatomical sequences (axial PD/T2) to segment brain lesions (for 
patients) 
 

The lesions were segmented by an experienced neuroradiologist on the PD/T2 volumes. The 
MPRAGE volumes were parcellated and automatically labeled using FreeSurfer (version 6 –
Laboratory for Computational Neuroimaging at the Athinoula and A. Martinos Center for 
Biomedical Imaging, HMS and MGH) into 75 cortical parcels for each hemisphere (150 in total) 
according to the Destrieux atlas [6]. Seven subcortical regions per hemisphere (thalamus, 
caudate, putamen, pallidum, nucleus accumbens, amygdala and hippocampus) and the brain 
stem were also segmented using the FreeSurfer automatic labeling process [79] for a total of 165 
parcels. 

DTI volumes were preprocessed using the FMRIB’s Software Library tools. First, the susceptibility-
induced geometric distortions were corrected using the acquisition along opposite phase 
encoding directions with the topup tool; then the DTI images were corrected for eddy current 
distortion and head motion. The diffusion tensor was estimated for each voxel using the FSL 
DTIFIT toolbox. 
 
Cortical and subcortical parcels were registered to the DTI space using the FSL flirt toolbox and 
the WM tracts, connecting each pair of registered parcels (nodes) were reconstructed with 
TrackVis software. The connectivity matrices were derived by computing the edges as the 
number of the reconstructed fibers (NF).   
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3) Experiments and analysis 

All network measures in the present work were computed primarily in MATLAB using the Brain 

Connectivity Toolbox (BCT), and subsequently results were compared with SPT outputs.  

Most commonly used network metric are computed both binary and weighted matrices (Par. 

4.1.1. and 4.1.2.) For performing binary network analysis, both control and case matrices were 

binarized by zero. This means that all the matrix entries that have values higher than 0 are set to 

1, otherwise they are set to 0. Before obtaining weighted network measures, the diversity 

between matrices constructed by using fractional anisotropy and number of streamlines as a 

connection strength measure is emphasized.  

Next, accent is put on thresholding process. Disparity in density between two matching subject 

was immediately clear. Taking this into consideration, matrix of control was thresholded starting 

from its’ initial density and finally reaching the density of the patient. 

Thresholding was performed for both the binary and the weighted case (Par. 4.1.3. and 4.1.4.). 

The difference in outcomes of thresholding between two variants of weighted matrices was 

analyzed. Further analysis of thresholding effect was made by comparing network metrics on 

local level. Firstly, comparison is made between original control matrix and stoke case. Next, 

control matrix is thresholded so that the density corresponds to the density of patients’ matrix 

(Par. 4.1.5.). Furthermore, effect of thresholding on global network measures’ values was 

evaluated (Par. 4.1.6.). 

Following this, sensitivity analysis was performed on global indices (Par. 4.1.7) by assessing how 

global measures were affected by the deletion of a single link between any given pair of nodes. 

This was implemented by removing only one edge between two nodes in each loop iteration, and 

subsequently computing the global measure. This process was repeated for each possible pair of 

nodes in the network. Next, the values of the newly calculated global network metrics were 

subtracted from the original value of the corresponding metrics, hence the difference in value 

due to deleting a link was obtained. These values were sorted in descending order, and the 

highest values extracted to a display table, together with the relevant node labels.  

Next, for both control and patient matrices corresponding to left and right hemisphere were 

extracted.  Goal of this test was obtaining metrics differences between the hemispheres of a 

single subject but also the differences between the control and the patient (Par. 4.1.8.). 

In the present work both previously described modes of visualization (explorative mode and 

extraction of a subgraph) of SNT were tested on the stroke case. Connectograms depicting 

connectivity between different brain regions was obtained for stroke patient and control and 
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subsequently compared. Hence, both the patient’s healthy hemisphere and the healthy subject 

were used as control for the lesioned hemisphere. 

 

Explorative mode was used to visualize connections starting from both left and right Frontal, 

Temporal and Parietal lobe and reaching all other hemispheric parcellations (Figures 49, 50 and 

52).  

Moreover, in further tests the focus of this analysis is put on connections located in the right 

hemisphere lobes, since it is known that the patients’ stroke lesion is located there. For this 

purpose, subgraphs were extracted for visualizing connections between right Temporal and 

Frontal lobes (Figure 51) and Parietal and Frontal lobes (Figure 53).  

Finally, all common connections between Frontal, Parietal and Temporal lobes (in the left and 

the right hemisphere) were visualized, both with and without including intra-lobe connections 

(Figures 54 and 55). 

As a final point of this analysis, thresholding was employed in the same manner as previously in 

this work, equalizing density between patient and control (Figure 56). 

 

 

3.2.3 Borderline Intellectual Functioning Study 

 
1) Motivation for the analysis and study population 

 

Idea for this analysis was based on the study made by the authors of the paper [Blasi et 

al., 2020] The goal of this study was to investigate brain network connectivity in children who 

had been exposed to adverse social settings, and display border intellectual functioning (BIF), as 

well as its relationship to cognitive functioning. In the original study, the connectivity matrices 

were thresholded (in a way that at least one-third of subjects share the same connections) and 

subsequently binarized. 

Instead of thresholding and binarizing the matrices, the aim of this work was to extend the 
analysis to the weighted approach. Furthermore, focus was put on the potential importance of 
keeping the weak connections instead of thresholding them out.  
 
The main motivation to this approach came from multiple studies that, as stated in Chapter 2.3, 
advise about the importance of weak connection in weighted connectomes  [3], [54], [74], [75], 
[80]. Moreover, recent findings reveal that moderately weak and long-distance connections have 



77 

 

 

effect in the variance in IQ levels between the subjects. Taking this into consideration, the data 
set of children with border intellectual functioning and healthy controls was considered as 
appropriate for this analysis.   
 

 
The study population included children with BIF associated with significant ELA were recruited 
from the Child and Adolescent Neuropsychiatry Unit of IRCCS Don Carlo Gnocchi Foundation and 
the ASST S. Paolo and S. Carlo Hospital. The data set is composed of 32 children with borderline 
intellectual functioning (BIF) and 14 age-matched typical development (TD) children. Inclusion 
criteria were: 
 

1. age range comprised between 6 to 11 years old;  

2. attendance of a primary mainstream school;  

3. a Full-Scale Intelligence Quotient (FSIQ) scores ranging from 70 to 85. 
 
 
All children underwent a neuropsychological evaluation including the Wechsler Intelligence Scale 

for Children-III (WISC-III); the Child Behavioral Checklist (CBCL 6-18); the Socio-Economic status - 

SES; the Environmental Stress Checklist - ESCL, an ad hoc developed checklist to explore the 

environmental stress the children were exposed to. Among the 32 children with BIF, 25 had an 

Adjustment Disorder, 4 had a Generalized Anxiety Disorder and 1 had a Disruptive, Impulse-

Control, and Conduct Disorder. Moreover, in 14 children a Specific Learning Disorder was 

associated, in 14 there was a history of Language Development Disorder. Demographic data 

relative to the 32 BIF and 14 TD children are summarized in Table 3. No significant differences 

were found for age, sex, and (SES), while the Child Behavior Checklist CBCL (p=0.005), the ESCL, 

and as expected the Full-Scale Intelligence Quotient FSIQ (p<0.0001) were significantly different 

between the two groups.  
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 TD (n=14) BIF (n=32) p-value 

Age in years, median 
(IQR) 

9.2 (8.5-9.6) 8.6 (8.2-9.9) 0.543 

Male number (%) 7 (50%) 17 (53%) 0.9 

FSIQ, median (IQR) 119 (111.5 -121.5) 80 (75 - 84) <0.0001 

CBCL, median (IQR) 49.5 (41-53) 59 (52 - 66.5) 0.005 

SES, median (IQR) 25 (25-48.8) 23.5 (16.3 - 31.4) 0.119 

ESCL, median (IQR) 0.0 (0.0 -1.0) 2.0 (1.0 - 4.0) <0.0001 

    
Table 3. FSIQ, Full-Scale Intelligence Quotient; CBCL,Child Behavior Checklist, SES, Socio-Economic Status; ESCL, Environmental 

Stress Check List. The correction for multiple comparisons was implemented with the Bonferroni Correction, setting the 

significance threshold at p ≤ 0.0125. Significant p-values are highlighted in bold [81] 

 
2) Data acquisition 

  

MRI was performed on a 1.5 T Siemens Magnetom Avanto scanner equipped with a 12-channels 

head coil. The acquisition included:  

• a 3D T1-weighted Magnetization Prepared Rapid Gradient-Echo (MPRAGE) image, 

(repetition time (TR)/echo time (TE)=1900/3.37 ms, Filed of View (FoV) = 192x256 mm2, 

voxel size = 1 mm isotropic, 176 axial slices);  

• DTI included a diffusion-weighted EPI image along 30 directions with b-value=1,000 

s/mm2 and the reference image without diffusion weighting (TR/TE = 6,700/100 ms, FoV 

= 200x200 mm2, voxel size 1.6x1.6x2.5 mm3, 40 axial slices, two runs);  

• two conventional anatomical sequences (axial PD/T2 and coronal FLAIR) were performed 

to exclude gross brain abnormalities.  

 

The 3D-T1 images were segmented and parcellated using FreeSurfer [79]  version 5.31 into 148 

cortical areas (74 for each hemisphere) according to the Destrieux atlas [6]. Furthermore, the 

FreeSurfer automatic labeling process was used to extract seven subcortical regions per 

hemisphere (thalamus, caudate, putamen, pallidum, and nucleus accumbens, amygdala and 

hippocampus) and the brain stem for a total of 163 parcels.  
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Using FMRIB’s Software Library tools3, the DTI images were corrected for eddy current distortion. 

The motion evaluation was performed by checking the relative movement estimated by eddy 

toolbox and excluding subjects exciding a threshold fixed to 0.5. Then, using the FSL DTIFIT 

toolbox4 the tensor was estimated for each voxel. The cortical/subcortical parcels were 

registered to the DTI space using the FSL flirt tool. Finally, the WM tracts connecting each pair of 

registered cortical and subcortical parcels (nodes) were reconstructed with TrackVis software5. 

The connectivity matrices were derived by computing the edges as the number of the 

reconstructed fibers normalized by the sum of the nodes volumes (NFn) in order to consider the 

effect of anatomical variability.  

 
3) Experiments and analysis 

 
Firstly, a two-sample t-test was performed. The t-test is an inferential statistic method used to 
determine if there is a significant difference in the means of two groups, under the hypothesis of 
Gaussian dispersion. For this purpose, Matlab function ttest2 is used. This function returns the 
test decision for previously set null hypothesis stating that the data in two subject groups have 
equal mean. Moreover, assumptions made for this test are that both groups’ data are drawn 
from independent random samples that form normal distribution and have equal but unknown 
variances. Null hypothesis is rejected if 5% significance level is reached.  
 
In present work, t-test was employed with the goal of evaluating the potential importance of 
weak connections. This was done by performing and subsequently comparing the two t-tests 
results: 
 

a) Comparing control and patient original matrices; 
b) Comparing weak connections only for control and patient. 

 
 
The level of significance was set to 0.05. According to Santarnecchi et al. [75] connections with 
weights lower than 0.2 were considered weak. 
 
 
Following this, bootstrapping is utilized. This approach necessitates the creation of an ensemble 

of simulated data (surrogates) that is both similar to, and consistent with the hypothesis of 

interest. It allows to approximate the mean and variance of an estimator, construct confidence 

intervals and calculate p-values of tests when the distribution of the statistic of interest is 

unknown.  

More precisely, bootstrapping method was applied for constructing surrogates of control 

subjects. In the construction of one surrogate matrix, each entry of surrogate matrix is equal to 
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the value at the corresponding entry position from one of the 14 randomly selected control 

connectivity matrices corresponding to controls (Figure 23). This procedure was repeated 1000 

times resulting in 1000 surrogate matrices. After every surrogate matrix construction, network 

metrics were calculated and saved in the vector. In this way, 1000 control matrices are simulated, 

providing more reliable analysis.  

 

 

 

Figure 23. Construction of one surrogate matrix 

 

The purpose of this method is obtaining a confidence interval for the normality range of diverse 

network measures computed for the data corresponding to the control subjects. In this way 

significant differences to Borderline Intellectual Functioning condition can be observed.  
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4 Results and discussion 

 

The present chapter provides results of the tests performed.  

Firstly, result of analysis is displayed for two sample test subjects introduced in Par. 3.4.1. These 

analyses were performed to test the functions implemented in the Brain Connectivity Toolbox 

(BCT) and run simulations for SPIDER-Net tool (SNT) development. 

Following this, the stroke case study results are given. These include calculated binary and 

weighted network measures. Furthermore, the effect of density thresholding is widely analyzed 

evaluating the disparities between thresholding outcomes in case of connectivity matrices based 

on fractional anisotropy (FA) or on the number of streamlines (NF). Next, a sensitivity analysis 

was performed to evaluate the robustness of the network to the possible errors that can be 

introduced by tractography methodology. As a final point of this analysis, SPIDER-NET software 

was tested for visualizing connectivity between diverse brain regions and compared between the 

stroke patient and healthy control. 

As a final point of this chapter, results of Borderline Intellectual functioning study are given. These 

results include the outcomes of two sample t-test performed, also considering the case of only 

weak connections. Furthermore, preliminary results in the application of bootstrapping method 

to confirm and extend the analysis are given.  

 

4.1 Illustrative results  
 

Values of network measures are calculated for the two example connectivity matrices, denoted 

by M1 and M2. As mentioned in Par. 3.2.1. these two matrices are largely different in density since 

that of M2 matrix is twofold that of M1. The trend of measure changes under thresholding process 

was analyzed for M2 matrix. Since background information on these matrices is not known and 

hence cannot be connected to any physical meaning, focus is put on different visual 

representation of calculated measures distributions to be included in the SNT and analysis of the 

local measures. All results are obtained by using the Brain Connectivity Toolbox (BCT) functions. 

A detailed analysis is given below, relevant to both local and global indexes, while the latter ones 

are next summarized in Table 4.   
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4.1.1 Binary and weighted matrix analysis  
 

Matrices before the binarization process are displayed in Figure 24, a) corresponds to the 

M1 matrix, while b) corresponds to M2. Here, it can be seen that weights in both matrices have 

great variability. Moreover, M1 weights have much higher value (reaching up to 7000) compared 

to M2 (weights reaching up to 3000). Figure 25 shows results for the binarization process, which 

enhances the density difference. 

    

      a) M1 matrix                                                                                                    b) M2 matrix  

Figure 24. Matrix representation before binarization 

 

     

      a) M1 matrix                                                                                                    b) M2 matrix  

Figure 25. Matrix representation after binarization 
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4.1.1.1 Node degree and node strength 
 

Degree of all nodes calculated locally is displayed in Figure 26. The average degree value in case 

of M1 matrix is equal to 33.87, minimal degree value is 7, while the maximum is 77. On the other 

hand, average degree for M2 matrix is 84.2, minimum is 14 and maximum 136. 

 

 

 

      a) M1 matrix                                                                                                    b) M2 matrix  

Figure 26. Node degree distribution 

 

All degrees of the network form the degree distribution plot, which provides a simple 

representation of network connectivity. It can be clearly seen that the node degree is generally 

higher for M2 matrix. This visualization provides valuable insights regarding the overall 

connectedness in the network. The most connected nodes (nodes with the highest degree value) 

for M2 matrix are SupFG (Superior frontal gyrus), PerCaS (Pericallosal sulcus), Pu (Putamen), Hip 

(Hipothalamus) in the left hemisphere, and PerCaS (Pericallosal sulcus), PaHipG 

(Parahippocampal gyrus), Hip (Hipothealamus) and Tha (Thalamus). 
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      a) M1 matrix                                                                                                    b) M2 matrix  
Figure 27.  Highest degree nodes 

 

 

      a) M1 matrix                                                                                                    b) M2 matrix  

Figure 28. Lowest degree nodes 

Figures 28 displays the 10 highest degree values in the x-axis positions relevant to the original 

order of all parcels. Using this visualization for extracting the highest degree nodes, as in Figure 

28, hubs of the network can be easily detected and retrieved. Conversely, extracting lowest 

degree nodes may be useful when studying the effect of neurological disorder or injury, where 

nodes with mostly compromised degree value can be detected.  
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Similarly, the local strength of all nodes is displayed in Figure 29. 

 

 

      a) M1 matrix                                                                                                    b) M2 matrix  

Figure 29. Node strength distribution 

 

Like degree distribution, the node connection strength distribution provides a simple 

representation of connectivity in a weighted network. Observing the obtained range of strengths, 

it can be seen that matrix M1, even though less dense, is composed by generally higher weights 

values in comparison to Matrix M2. More precisely, the average node strength value for M1 matrix 

is 24148, whereas for M2 matrix it is 7009,6.  

 

 

4.1.1.2 Clustering coefficient 

The binary clustering coefficient computed over all nodes in the network is displayed in Figure 
30. Additionally, the global clustering coefficient for M1 is 0.6603, whereas for M2 it is 0.7371. 
The same analysis was performed for the weighted clustering coefficient which highlighted 
stronger values in the left hemisphere for M1. This difference is confirmed by Figure 30, where it 
is obvious that highest strength nodes are located exactly in this part of the brain.  
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      a) M1 matrix                                                                                                    b) M2 matrix  

Figure 30. Clustering coefficient for weighted undirected network (Onnela et al. implementation) 

 

4.1.1.3 Characteristic path length 
 

The characteristic path length for M1 was 2.086, while for M2 it was 1.4856. Taking into the 

consideration that the density of M1 matrix is only 0.2, the calculated path length was 

unexpectedly low, meaning that to reach a node from any other node of the network only ~2 

steps on average are needed. From this, it can be concluded that the low number of edges, a 20% 

of potential ones, is highly efficient for the whole network integration. On the other hand, the 

value of characteristic path length for M2 was expected to be lower compared to M1, which is 

more dense. The weighted characteristic path length obtained for the M1 was 0.0022 and for M2 

was 0.0073. These results can possibly be a consequence of the weight distribution in the 

adjacency matrix (as mentioned, weights in M1 are reaching twice as high values compared to the 

M2 matrix). 

 

4.1.1.4 Global and local efficiency 
 

The global efficiency was inversely related to characteristic path length. The global efficiency 

calculated for binary M1 matrix was equal to 0.5532 and 0.7554 for M2. For the weighted 

networks, the global efficiency for M1 was 0.0858 and 0.0514 for the M2. The local efficiency 

values distribution across all nodes of the binary network is displayed in Figure 31.   
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      a) M1 matrix                                                                                                    b) M2 matrix  

Figure 31. Local efficiency for binary undirected network 

   

4.1.1.5  Small-worldness 
 

The first step in computing small-worldness was creating 100 random networks with the same 

number of nodes and edges as the networks of interest. Subsequently, values of the global 

clustering coefficient and characteristic path length for random networks are obtained and 

averaged (generated for both M1 and M2 matrix). The average global clustering coefficient of 

generated random networks were 0.2067 (generated for M1) and 0.5142 (generated for M2). The 

characteristic path length values were 1.7895 and 1.4775.  

The value of small-worldness metrics is obtained for the M1 matrix was 0.9125, whereas for M2 

matrix it was 1.4292. Hence, it can be concluded that M1 does not have small-world properties, 

since the value of small-worldness metric is less than 1. Since the small-world property is 

considered nearly-universal for real-world data, it can be assumed that the differences between 

the two matrices, especially in the density of M1, could be attributed to possible differences in 

the acquisition protocol of DTI methodology (e.g. different predefined threshold for 

deterministic/probabilistic approaches) that likely removed important information. This result 

should explain the poor M1 efficiency, despite its higher density.  
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4.1.2 Results summary  
 

Results of all computed global indexes for both M1 and M2 matrix are displayed in Table 4. 

 

 M1 M2 

Density 0.2 0.5 

Average node degree 33.87 22.8 

Average node strength 24148 7009.6 

Global clustering coefficient 0.6603 0.7371 

Weighted global clustering 
coefficient 

0.0502 0.0094 

Characteristic path length 2.086 1.4856 

Weighted characteristic path 
length 

0.0022 0.0073 

Global efficiency 0.5532 0.7554 

Weighted global efficiency 0.0858 0.0514 

Small-worldness 0.9125 1.4292 
Table 4. Network measures computed for incomplete and complete matrix 
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4.1.3 Binary thresholding  
 

Density thresholding was performed on the M2 binary matrix. As stated in the Chapter 2.3.1, this 

approach is mainly used in canceling out the differences in number of connections between the 

subjects, and it was used in further analysis made the present work. Starting from the original 

density, M2 was thresholded by using multiple values of threshold: 3, 4 and 10 which were set to 

reach densities reduction to ~ 0.4, 0.35 and 0.3. These values of densities were chosen arbitrarily, 

to observe the trend of network measures under thresholding. Results are displayed in Figure 32. 

 

    

             a) Density                      b) Average node degree                c) Characteristic path length       d) Global clustering coefficient                                                                 

Figure 32. Binary thresholding:  Density, node degree, characteristic path length and global clustering coefficient for binary 
matrix 

Figure 32 a) shows how the increase in the threshold leads to the decrease in density. In Figure 

32 b) it can be seen that the node degree is decreasing with increasing threshold, since increase 

in the threshold means decrease in the edge numbers. Furthermore, Figure 32 c) shows that the 

characteristic path length is increasing as the threshold increases. This could be expected since 

the distribution shifts to longer paths lengths when weak edges serving as "shortcuts" are 

removed. Distribution of the binary clustering coefficient varies from 0.7371 to 0.6418 (Figure 32 

d)) which is a consequence of weak edges removal and the loss of strength in some nodes, 

eventually resulting in a clustering coefficient decrease.  

 

Figures 33 and 34 provide the visualization of node degrees across all nodes of the network 

before and after the thresholding process.   
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Figure 33. Node degree distribution for original M2 matrix. Red color denotes highest degree nodes, blue middle values and 
yellow the lowest values 

 

Figure 34. Node degree distribution for thresholded M2 matrix. Red color denotes highest degree nodes, blue middle values and 
yellow the lowest values 
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Nodes are divided in 3 different color-coded groups according to their degree value. Red color 

denotes highest degree nodes, blue middle values and yellow the lowest values. Additionally, on 

the x-axis of the graph hemispheric parcellations are listed so degree can be visualized across the 

lobes of left and right hemisphere, respectively. 

Figure 33 represents the original degree values in M1, while Figure 34 was obtained by a threshold 

of 10 (i.e., the highest value of threshold used in previously described binary thresholding).  

Comparing these two figures it is evident that there is high difference in distribution of node 

degrees between without a threshold and the maximal considered threshold. The maximal node 

degree is decreasing by thresholding, as previously stated. 

4.1.4 Weighted thresholding  
 

The same thresholding procedure previously described was performed on weighted M2 matrix 

and results are displayed in Figure 35.  

 

 

              a ) Average node strength                          b) Characteristic path length                    c ) Global clustering coefficient       

Figure 35. Weighted thresholding: Average node strength, characteristic path length and global clustering coefficient for 
weighted matrix 

In case of weighted matrix, node strength (corresponding to the binary measure of node degree) 

is relatively constant for all nodes as the threshold is increasing. (Figure 35.a). The characteristic 

path length appears to be constant under various thresholds (Figure 35.b). This is because 

thresholding removes the weakest weight connections which are several orders of magnitude 

lower than the highest weights values. Weighted clustering coefficient varies only slightly with 

varying thresholds which can also be explained by specific weight distribution. Behavior of both 

binary and weighted indices under thresholding will be analyzed in further detail in thestroke 

case study (Par. 4.2.2 and 4.2.3).  
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4.2 Stroke case study 
 

4.2.1 Binary network  
 

Results of computation of global network measures are displayed in the Table 5.  

  

 Average 
node degree 

Density Characteristic 
path length 

Global 
clustering 
coefficient 

Global 
efficiency 

Patient  36.6060 0.1865 1.9154 0.6043 0.5866 

Control  84.1455 0.5153 1.4817 0.7270 0.7559 

Table 5. Global measures for binary network 

 

Regarding Table 5, the density is obviously compromised in case of stroke. However, the 

strongest difference is seen in average node degree. Moreover, the characteristic path length is 

significantly higher, indicating the lower network integration and thus lower ability for efficient 

information transfer trough the network. Accordingly, global efficiency (inverse of path length is 

lower in case of stroke.  

 

4.2.2 Binary matrix thresholding  
 

As it can be seen in Table 5, the matrix density of the control case is more than two times higher 

compared to the density of the stroke patient. As stated in Par. 2.3.1., various graph measures 

are dependent on the network density. Therefore, differences in computed measures may reflect 

this density discrepancy instead of reflecting the disease-related outcomes. Taking this into 

consideration, matrix of control was thresholded starting from initial density and finally reaching 

the density of the patient. This method is known as density thresholding (see Par. 2.3.2). Results 

of binary thresholding are displayed in the Figure 36.   
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a) Average nod degree                                                                          b) Characteristic path length 

                           c) Clustering coefficient                                                                        d) global efficiency                     

 

 

The average binary network degree is decreasing as the threshold is increasing (Figure 36.a), 

which is expected since increase in threshold results with reduction of the edges number in the 

graph. This is in keeping to the findings by Colon-Perez [53]. Regarding the path length it is 

expected that removing links by thresholding will result in longer path lengths, since in binary 

network path between each pair of connected nodes is equal to 1. However, results displayed in 

Figure 36.b), show a different behavior. Initially the trend is upward, but after reaching the 

density of 0.25 it starts decreasing. Additional tests were performed where threshold was set to 

values even lower than the lowest value displayed on the graph, which resulted in abrupt 

increase of characteristic path length. High values of threshold imposed disconnection of many 

nodes, which, in turn, abruptly raised the average path length.  

Figure 36. Binary Thresholding: Node degree, characteristic path length, global clustering coefficient and global efficiency 
for binary matrix 
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4.1. 2. Weighted network  

 

Before observing the values of global coefficients for weighted networks, attention should be 

brought to the effects on indices due to different connection metrics, namely FA and NF. It is 

worth recalling that in weighted analyses the length of an edge is conventionally assumed as the 

inverse of the weight. Figure 37 displays box plots of normalized data sets. In Figure 37 a) weights 

distribution is displayed. Regarding the FA, median value is 0.44. The weight distribution is such 

that the 98th percentile is equal to 0.8. On the other hand, median value for NF matrix is 3.34 ∗

10−4 and 98th percentile is equal to 0.15. Figure 37 b) shows lengths distribution. Blue color scale 

corresponds to the FA matrix, while red to NF one. Here, 75th percentile for FA matrix is equal to 

1.57 and median value is 1.20. In case of the NF matrix 75th percentile is 186.94 while the median 

value is 4.56. Global measures for weighted network are displayed in Table 6. Prior to 

calculations, all matrices were normalized to the interval between 0 and 1. 

 

Figure 37. Boxplot of weights (a) and lengths (b) distributions for FA and NF matrix 

 

 Average 
node 
strength 

Density Characteristic 
path length 

Global 
clustering 
coefficient 

Global 
efficiency 

Patient  (FA) 20.1079 0.1865 3.0194 0.3927 0.3784 

Patient  (NF) 1.1384 0.1865 36.7087 0.0152 0.0384 

Control  (FA) 53.9081 0.5131 2.1258 0.4618 0.5098 

Control  (NF) 2.3918 0.5131 20.7833 0.0107 0.0602 
Table 6. Global measures for weighted networks 
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As to Table 6, it can be seen that the index values highly differ (on order of magnitude) depending 

on whether FA (i.e., fractional anisotropy) or SN (i.e., tract quantity) was the applied metrics. This 

behavior of global network measures reflects the large difference or the two weight distributions, 

as described in the previous section. 

Despite the highly different absolute values with metrics, stroke vs. control differences observed 

in binary indexes were maintained by the weighted approach. The average node strength 

(analogous to node degree, in binary networks) is about two-fold lower in case of stroke. 

Similarly, to the binary case, the stroke patient displays a higher characteristic path length and 

lower clustering coefficient, depicting compromised integration and segregation in the network.  
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4.2.3 Weighted matrix thresholding 
 

Different outcomes are produced by thresholding FA and NF matrices. Results are displayed in 

Figures 38 and 39.  

 

  

                                  a) Average node strength                                                                   b) Characteristic path length 

 

                       c) Global clustering coefficient                                                                         d) Global efficiency 

Figure 38. Thresholding FA matrix: a) average node strength, b) characteristic path length, c) global clustering coefficient and d) 
global efficiency for weighted control matrix across different thresholds 
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a) Average node strength                                                                b) Characteristic path length 

 

                       c) Global clustering coefficient                                                                d)   Global efficiency 

Figure 39. Thresholding NF matrix: a) average node strength, b) characteristic path length, c) global clustering coefficient and d) 
global efficiency 

 

In the next section the outcomes shown in the Figures 38 and 39 are discussed for each index 

computed:  
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1. Node strength  

The average node strength for NF is only slightly decreasing as the threshold is increasing. This 

trend can also be attributed to the limited impact of the thresholded weak connections, as 

previously mentioned.  

It is known that the weights are spanning over 6 orders of magnitude in matrices derived by 

reconstructing number of streamlines (i.e., NF)  in mammalian cortex [54]. Considering that NF 

matrix is composed by mainly low connection weights, as previously mentioned, their effect in 

computation of average strength is non negligibly lower comparing to multiple orders of 

magnitude weights of strongest connections. Hence, node strength remains almost invariant to 

thresholding.  

However, this is not the case regarding the FA matrix, where for the same reason of specific 

weights distribution mentioned earlier, node strength is showing downward trend with 

increasing threshold.  

2. Characteristic path length 

Characteristic path length value for FA and NF matrices also shows diverse trends when 

computed across the thresholds. As mentioned in Par 2.2.4, in the computation of path length 

related indexes, connection lengths are commonly associated to the inverse of connection 

weights [17]. Hence, a path of stronger connections (higher weights) is assumed to be shorter. 

As a result, the shortest path between two nodes is characterized either by a low number of 

leaps, or by high weights, or both. As a result, even if two regions were connected by a direct 

weak edge, a path composed of more strong connections will be shorter [64]. 

This fact provides an explanation why path length for NF matrix is invariant to thresholding – 

since weak connections are effectively bypassed during the metric computation removing them 

has no effect and thus path length remains constant. Proven results are in coincidence with 

findings by [64]. Conversely, path length for FA matrix shows slight increase as threshold is 

increased. This can be attributed to the fact that higher values of threshold imply deletion of 

stronger weights, having in mind the weighs distribution in this case.   



99 

 

 

3. Clustering coefficient 

Comparing the thresholding results for FA and NF matrices, it can be seen the trend of clustering 

coefficient is opposite. In case of FA, the global clustering coefficient is decreasing as the 

threshold is increasing, while for NF the opposite holds. 

The clustering coefficient for weighted network was calculated by the formula given in the work 

by Onnela et al. [58] (Par. 2.2.2). Here, the edge weights are normalized by the maximal weight, 

𝑤𝑖𝑗 = 𝑤𝑖𝑗/ max(𝑤𝑖𝑗), and the contribution of each triangle depends on all its edge weights [82]. 

Concerning Figure 37, it is confirmed that the NF matrix is structured so that the majority of 

entries corresponds to extremely low weights, while the number of large weights (98th percentile 

is 0.15) is very low. Hence, removing the low weights by thresholding will show a negligible 

contribution, since triangles composed by very low weights have insignificant contribution to the 

clustering coefficient. On the other hand, the thresholding process affects the node degree, 𝑘𝑖, 

which is decreasing as links are removed. Observing that node degree appears in the 

denominator in global clustering coefficient formula, this will lead to an overall effect of increase 

in clustering coefficient.  

FA matrices’ structure is, unlike NF matrices, characterized by higher abundance of large weight 

connections (98th percentile is 0.8). Since in this case, according to the formula by Onnela et al. 

[58], thresholding means removing triangles with weights whose contribution to the clustering 

coefficient value cannot be considered as negligible, overall effect will be instead decreasing 

trend of clustering coefficient. 

It is worth remarking that the tractography procedure always implies at least a low threshold, 

with the goal of ensuring accurate and efficient outcomes. E.g., a threshold (typically around 0.2) 

is set on FA, bellow which propagation of the pathway is stopped [39]. And this is ahead of 

considering more selective thresholding for the connectivity analysis. Appropriate choice of FA 

threshold for tractography analysis of neurodegenerative diseases is known to be essential [83]. 

Study by Kunimatsu et al. [84] suggests that optimal trackability threshold for corticospinal tract 

(CST) tractography is 0.2 Another study [83] stated that for uncinate fasciculus tracing optimal FA 

threshold value is in range between 0.15 and 0.20. It can be assumed that putting threshold on 

FA value will contribute largely to the distribution of weights in connectivity matrix, and these 

properties will propagate trough further analysis. The problem is even worst considering the SN 

metrics, where the effects of FA thresholding are superimposed to further constraints given to 

the minimal length of counted fibers. In addition, quantitative tract measures are highly 

influenced by geometrical factors (extension of connected areas, their distance, interference of 

other crossing tracts, etc.), which explains the large range of weights, which makes further 

thresholding even more critical [42].  
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4. Global efficiency  

Since global efficiency is calculated as the reciprocal value of the harmonic mean of the path 

lengths [17], it is expected that for both FA and NF matrices it will display opposite behavior to 

characteristic path length, which can be evidenced in Figures 38 and 39. 

 

 

4.2.4 Local differences analysis  
 

In this section, network metrics are compared on local level. Values of metrics are displayed 

across the lobes of left and right hemisphere, respectively. Firstly, comparison was made 

between the original control matrix and the stroke case. Next, the control matrix was thresholded 

to drop its density to that of the patient. All local indices were analyzed in this way and the results 

are displayed in Figures 40-47. Furthermore, this procedure was performed for both FA and NF 

matrices for the purpose of visualization of thresholding effect differences on the local level in 

case of diverse weight distributions. 
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Strength 

a)  FA matrix 

 

Figure 40. Node strength distribution: control (blue) and patient (red) (FA) 

 

Figure 41. Node strength distribution: thresholded control (blue) and patient (red) (FA) 
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b) NF matrix 

 

Figure 42. Node strength distribution: control (blue) and patient (red) (NF) 

 

Figure 43. Node strength distribution: thresholded control (blue) and patient (red) (NF) 
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1. Clustering coefficient 

a) FA matrix 

 

Figure 44. Clustering coefficient distribution: control (blue) and patient (red) (FA) 

 

 

Figure 45.  Clustering coefficient distribution: thresholded control (blue) and patient (red) (FA) 
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b) NF matrix 

 

Figure 46. Clustering coefficient distribution: control (blue) and patient (red) (NF) 

 

 

Figure 47. Clustering coefficient distribution: thresholded control (blue) and patient (red) (NF) 
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In the next section the outcomes shown in the previous figures are discussed for each local index 

computed: 

1. Node strength 

In Figure 40 highest difference in strength between the patient and the control is found in in the 

right hemisphere (lesioned) and spans across the temporal region, sub-cortical structures, and 

the parietal region. This analysis confirmed the brain regions where connectivity was 

compromised. Figure 41 shows that this difference persists even upon thresholding the control 

matrix to the density of the patient. On the other hand, in case of NF matrix node strengths show 

no visible differences before (Figure 42) and after thresholding (Figure 43) which is in accordance 

with the previously described weight distribution (Par. 4.1.2) for the NF matrices. Thresholding is 

removing low weight connections which are much more abundant compared to only few large 

weight connections, hence thresholding has no overall effect to node strength values.  

  

1. Clustering coefficient 

Figures 44 and 45 show that thresholding of the FA control matrix leads to the decrease of 

clustering coefficient. Most visible differences are across the frontal region in the right 

hemisphere, and they are maintained even after thresholding the control matrix. This is, again, 

in line with the fact that one of the regions affected by the lesion is the right frontal region. In 

Figures 46 and 47, it can be observed that the clustering coefficient trend for NF matrix is 

opposite to the one of FA matrix (Par. 4.2.3). Here, thresholding leads to an increase in clustering 

coefficient, which again can be attributed to the specificity of weight distribution in the NF 

matrices as previously described (Par. 4.1.2). 

2. Local efficiency 

Regarding the local efficiency analysis, results showed some changes after thresholding the FA 

matrix, in the control subject, but overall trend remained the same. The highest discrepancy was 

maintained across the right frontal lobe. On the contrary, in the case of the NF matrix, results 

showed an abrupt change in control local efficiency after thresholding. Local efficiency for the 

control was increased more than two-fold after thresholding.  
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4.2.5 Sensitivity analysis  
 

Sensitivity analysis was performed on control matrix according to the procedure described in Par 

3.2.1 (Experiments and analysis).  

Prior to performing the sensitivity analysis, we inspected which nodes have the highest local 

degree value in the binary network, and analogously highest average node strength in the 

weighted network. For the binary network, nodes with the highest degrees were: 

1. BSt - Brain stem 

2. lh.Tha - Thalamus 

3. lh.Pu - Putamen 

4. lh.PerCaS - Pericallosal sulcus (S of corpus callosum) 

5. rh.PerCaS - Pericallosal sulcus (S of corpus callosum) 

6. rh.Tha - Thalamus 

7. lh.CeB - Cerebellum 

8. rh.CeB - Cerebellum 

9. rh.Pu – Putamen 

10. rh.CaN - Caudate nucleus 

In weighted network, nodes with the highest node strengths were: 

1. lh.PerCaS 

2. rh.PerCaS 

3. rh.Pu 

4. BSt 

5. lh.Pu 

6. rh.Tha 

7. rh.SupTS 

8. lh.Hip 

9. lh.MedOrS 

10. lh.Tha 

Subsequently, sensitivity analysis was performed on weighted characteristic path length, 

weighted global clustering coefficient, average node strength and small-worldness metrics. 

Results are displayed in Tables 7, 8, 9 and 10. 
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Node 1 Node 2 Value lobes 

lh. Pu lh.InfCirInS 0.1351 Sbc/Ins 

rh. Pu BSt 0.1128 Sbc/Bst 

lh.InfCirInS lh.HG 0.1044 Ins/Tem 

lh.Tha BSt 0.1012 SbC/BSt 

lh.InfCirInS BSt 0.0970 Lim/BSt 
Table 7. Sensitivity of weighted characteristic path length. Pu - Putamen; InfCirInS - Inferior segment of the circular sulcus of the 

insula; BSt - Brain Stem; HG - Heschl's gyrus (anterior transverse temporal gyrus); Tha - Thalamus; PerCaS - Pericallosal sulcu 
sulcus (S of corpus callosum) 

 

Node 1 Node 2 Value Lobes 

rh. JS rh.AOcS 3.0839 ∗ 10−5 Par/Occ 

rh. JS rh.InfTG 2.7752 ∗ 10−5 Par/Tem 

rh. JS rh.SupPL 2.2379 ∗ 10−5 Par/Par 

rh. JS rh.SbCG/S 2.1168 ∗ 10−5 Par/Fro 

rh. JS rh.CS 2.0470 ∗ 10−5 Par/Fro 

rh.PosCS rh. JS −1.8771 ∗ 10−5 Par/Par 

rh.MTG rh. JS −1.9781 ∗ 10−5 Tem/Par 

  lh.PerCaS rh.PerCaS −2.1916 ∗ 10−5 Lim/Lim 

  rh.AngG rh. JS −2.2566 ∗ 10−5 Par/Par 

   rh.SuMarG rh. JS −2.6213 ∗ 10−5 Par/Par 
Table 8. Sensitivity of global weighted clustering coefficient. JS - Sulcus intermedius primus (of Jensen); AOcS - Anterior occipital 

sulcus and preoccipital notch (temporo-occipital incisure); CS - Central sulcus (Rolando's fissure); PosCS -.0 Postcentral sulcus; 
MTG – Middle temporal gyrus; PerCaS - Pericallosal sulcus (S of corpus callosum); AngG - Angular gyrus; SuMarG - 

Supramarginal gyrus 

 

Node 1 Node 2 Values Lobes 

rh.PerCaS lh.PerCaS -0.0061 Lim/Lim 

BSt rh.CeB -0.0048 BSt/CeB 

lh.CeB rh.CeB -0.0042 CeB/CeB 

BSt lh.Tha -0.0041 BSt/SbC 

rh.CS rh.PrCG -0.0039 Fro/Fro 

Table 9. Sensitivity of the average node strength. PerCaS - Pericallosal sulcus (S of corpus callosum); BSt - Brain Stem; CeB - 
Cerebellum; Tha - Thalamus; CS - Central sulcus (Rolando's fissure); PrCG - Precentral gyrus 
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Node 1 Node 2 Values Lobes 

lh.InfFGOrp lh.MOcS/LuS 0.0089 Tem/Occ 

rh.HG rh.SupOcG 0.0089 Par/Occ 

rh.JS rh.AOcS 0.0089 Par/Occ 

lh.PosTrCoS lh.MOcS/LuS 0.0088 Occ/Occ 

lh.MOcS/LuS lh.InfFGOrp 0.0088 Occ/Fro 
Table 10. Sensitivity small worldness measure. InfFGOrp - Orbital part of the inferior frontal gyrus; MOcS/LuS - Middle occipital 

sulcus and lunatus sulcus; HG - Heschl's gyrus (anterior transverse temporal gyrus); SupOcG - Superior occipital gyrus; JS – Sulcus 
intermedius primus (of Jensen); AOcS - Anterior occipital sulcus and preoccipital notch (temporo-occipital incisure); PosTrCoS - 

Posterior transverse collateral sulcus; MOcS/LuS - Middle occipital sulcus and lunatus sulcus; InfFGOrp - Orbital part of the 
inferior frontal gyrus 

This analysis indicates which nodes are strategically important in the network. These nodes, 

whose deleting leads to valuable difference obtained in global measures, are the network hubs 

– most important nodes generally with the highest number of connections. 

According to the work by van den Heuvel and Sporns [85] network analyses have consistently 

identified the precuneus, anterior and posterior cingulate cortex, insular cortex, superior frontal 

cortex, temporal cortex, and lateral parietal cortex as densely anatomically connected regions 

with a central position in the overall network. These results are confirmed by the sensitivity 

analysis presented in this work. Moreover, brain hub regions are more densely associated than 

indicated by their degree alone, resulting in the establishment of a highly interconnected ‘core' 

or rich club (Par. 2.2.7). This form of organization may have substantial functional significance by 

increasing the robustness of inter-hub connection and encouraging efficient communication and 

functional integration across the brain. Further neurophysiological investigations on the brain 

regions, starting from anatomical knowledge, are in progress with cooperation of neurologists 

and physiologists at Don Carlo Gnocchi Foundation.  
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4.2.6 Visualization of connectivity 
SPIDER-NET software was used to select and subsequently visualize connectivity in left and right 

hemispheres for both the control and the patient. Resulting connectograms, together with 

number of links in specific hemisphere, for both control and patient, are displayed in Figure 48.   

        

                            a) Control left hemisphere 2017 links                                                b) Control right hemisphere 2187 links 

          

c) Patient left hemisphere 1193 links                                                     d) Patient right hemisphere 805 links 

Figure 48. Connectograms of the controls’ and the patients’ left and right hemispheres, intra-lobe connections included 
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Figure 48 displays visible differences in connectivity between control and patient for both 

hemispheres. Additionally, connections within the single lobes are included in this visualization. 

The difference between the control and the patient is more prominent for the right side, which 

can be expected due to the right hemisphere lesion. For the control, in the left hemisphere 2107 

links were drawn, while in the right there were 2187. In contrast, for the patient 1193 links were 

drawn in the left hemisphere, while in the right there were 805 links.  

Hence, previously described discrepancies in density between the subjects can be visualized in 

this representation. Additionally, comparing connectograms b) and d) it is visible that mainly 

connections from/to the frontal lobe are affected.  

 

 

4.2.7 Comparison between left and right hemisphere  
 

For both control and patient matrices corresponding to left and right hemisphere were extracted.  

Goal of this test was obtaining metrics differences between the hemispheres of a single subject 

but also the differences between the control and the patient.  

Matrix division into two parts according to the hemispheric partition was made by using SPIDER-

NET tool (SNT). This selection is graphically displayed in Figure 48. Brain Stem is excluded. Results 

are displayed in Table 11.  
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 Control (FA) Patient (FA) Control (NF) Patient (NF) 

Average node 
strength (L) 

31.6714 19.2193 1.8998 1.2744 

Average node 
strength (R) 

33.6441 11.8211 1.8030 0.6918 

Density (L) 0.6344 0.3592 0.6344 0.3592 

Density (R) 0.6585 0.2423 0.6585 0.2423 

Characteristic 
path length (L) 

2.0489 2.3730 19.9705 23.3525 

Characteristic 
path length (R) 

1.9883 3.1656 18.5068 42.0641 

Global clustering 
coefficient (L) 

0.4690 0.4411 0.0152 0.0203 

Global clustering 
coefficient (R) 

0.4994 0.3755 0.0147 0.0158 

Global efficiency 
(L) 

0.5219 0.4615 0.0657 0.0553 

Global efficiency 
(R) 

0.5389 0.3642 0.0665 0.0336 

Table 11. Values of metrics for the left and the right hemisphere 

 

Regarding the values of measures obtained for the matrices or the control subject, as expected, 

there were minor differences in metrics between the left and the right hemisphere. In contrast 

to this, the values of measures for the stroke case significantly differed between the left and the 

right hemisphere.  

Additionally, by comparing values for each hemisphere between the two subjects, further insight 

was obtained. For example, differences in characteristic path lengths in the left hemisphere 

between the control and the patient is much lower compared to the difference seen in the right 

hemisphere. The same pattern can also be observed for all other measures computed.  

These results advocate that the patient’s connectivity is strongly compromised, especially in the 

right hemisphere, in keeping with this localization of the, spanning multiple lobes. It is also clearly 

visible how the right damage is also projected to the left hemisphere via long range connections, 

although the differences in connectivity metrics are less evident than in the lesioned side. Hence, 

intra-lobe connections are the ones mostly affected, which results with network measures for 

affected hemisphere showing remarkable discrepancies compared to the corresponding 

measures for the healthy control.  
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4.2.8 The effect of lesion to the brain connectivity  
 

 

The stroke patient observed in this study is known to have a lesion in the right hemisphere, 

localized among the frontal, temporal, and parietal lobe. The goal of this analysis is to visualize 

the differences in connectivity between the two subjects (control and patient) across the brain 

regions and try to localize the lesion by relying on visual representation given by connectograms.  

 

 

1. Connections from/to frontal lobe 

 

        

                             a) Control Fro L -all 1352                                                                              b) Patient Fro L - all 487 
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                              c) Control Fro R -all 1051                                                                          d) Patient Fro R - all 279 

Figure 49. Connectograms displaying the connections from/to the frontal lobe 

 

In Figure 49, connections from or to the frontal lobe are displayed (taking into consideration that 

the matrix is undirected). Selection of submatrix is made through explorative mode of SNT 

software, by selecting Frontal lobe as starting point (exploration source) and leaving target 

undefined. This means that all other gross parcels will be observed as target of connections using 

the Frontal lobe as priority region.  

By comparing these figures it can be concluded that the overall connectivity in the stroke case is 

lower compared to the connectivity of the control. This can also be expected considering that the 

connection density of control is more than twice larger than the density of the patient. 

Furthermore, even though the left hemisphere of the patient is not affected directly by the lesion, 

still the discrepancy in connectedness between the patient and the control persists. Thus it can 

be concluded that the lesion is not disrupting only the connectivity in the hemisphere where it is 

located, but also affects the intra-hemispheric connections. Additionally, the difference in 

connectivity is present also considering the number of links within the frontal lobe. For control 

number of links is equal to 129, while for the patient it is 82 suggesting interruption of intra-lobe 

connectivity.  
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2. Connections from/to temporal lobe 

         

                                 a) Control Temp L - all 701                                                                       b) Patient Temp L - all 303 

 

                                c) Control Temp R - all 780                                                                        d) Patient Temp R - all 246 

Figure 50. Connectograms displaying the connections from/to the temporal lobe 
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The analysis of the connections from the frontal lobe was also extended to a comparison between 

the two subjects. An extraction of the relevant submatrix was performed in the same way as for 

the Frontal lobe. Results are displayed in Figure 50.  

Similarly, the connectivity was compromised in both hemispheres regardless of the lesion 

location. Furthermore, comparing the differences in Figure 50 a) and c) and  Figure 50 b) and d) 

it can be appreciated how a large majority of the inter-lobe connections from the temporal lobe 

was disrupted. Conversely, comparing these results with the decrease in the intra-lobe 

connections ( control: 43 connections, patient: 34 connections), it can be concluded that 

connections within the temporal lobe were less affected.   
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3. Connections between temporal and frontal lobe 

 

        

                        a) Control Temp R – Fro R 113                                                                     b) Patient Temp R – Fro R 3 

Figure 51. Connectograms displaying the connections the temporal right and the frontal right lobe 

 

 

Figure 51 provides a clearer look at the connections between the temporal and the frontal lobe 

in the right hemisphere. In this way, the already described pattern from Figure 50 (generally 

lower number of inter-lobe connections) is more visible for this specific selection of lobes. Here, 

the ease of visualization provided by a selection of interhemispheric parcels in this novel software 

can be valued.  

Here, submatrix is selected trough extraction mode of SNT, whereby selecting Temporal and 

Frontal lobe in the right hemisphere, common edges between mentioned lobes are drawn.   
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4. Connections from/to parietal lobe 

       

                               a) Control Par L - all 812                                                                            b) Patient Par L - all 306 

       

                             c) Control Par R - all 820                                                                             d) Patient Par R - all 251 

Figure 52. Connectograms displaying the connections from/to the parietal lobe 
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After the exploration of connections from Frontal and Temporal lobe, procedure was repeated 

using Parietal lobe as exploration source, since it is also known to be affected by the lesion. 

By comparing number of connections from right Parietal lobe, Figure 52 c) and d), it can be 

concluded that the discrepancies in connection numbers were expectedly higher than in the left 

side of the brain. Furthermore, comparing connectograms c) and d), it can be seen that mostly 

compromised connections were the ones between right Parietal and left Frontal lobe, where only 

one link were present in connectogram corresponding to the patient, d). It can be also quickly 

visualized that, the link between right Parietal lobe and both left and right hemisphere 

Cerebellum was disturbed.  

Intra-hemispheric connections were 42 and 36 in the control and the stroke subject. Hence, it 

can be said that intra-hemispheric connections within Parietal lobe had negligible damage.  
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5. Connections between Parietal and  Frontal lobe 

 

                            a) Control Par R – Fro R 119                                                               b) Patient Par R – Fro R 55 

Figure 53. Connectograms displaying the connections from/to the parietal lobe 

   

Next, connections between Parietal and Frontal lobe in the right hemisphere were explored. 

Resulting connectograms are displayed in Figure 53. Selection of submatrix was made through 

extraction mode in the software, by selecting Parietal and Frontal lobe in the right hemisphere.  

Number of connections in the control subject connectogram was 119 and was two-fold lower, 

55, in the stroke one. Zooming into connectogram b), and by comparing with the control 

connectogram a), links connecting lesioned areas are effectively enhanced.  
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6. Connections between Temporal, Parietal and Frontal lobe (including connections within 

the lobe) 

          

                    a) Control Tem-Par-Fro (L) 493 links                                                                  b) Patient Tem-Par-Fro (L) 261 links                 

           

                     c) Control Tem-Par-Fro (R) 563 links                                                          d) Patient Tem-Par-Fro (R) 62 links      

Figure 54. Connectograms of common links between Temporal, Parietal and Frontal lobe (including intra-lobe connections) for 
control and patient 
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In the following analysis, common connections between Temporal, Parietal and Frontal lobe 

were extracted for both the left and the right hemisphere. Additionally, the connections within 

each of the lobes were included in the analysis. Resulting connectograms are displayed in Figure 

54. 

This selection was made by selecting the addressed lobes in either hemisphere separately, next 

using extraction mode of the software. Furthermore, by selecting the checkbox keep connections 

within gross parcels, provides intra-lobe connections to be included in the analysis. 

In this way, a sub-matrix was extracted for the regions of interest and the relevant subgraph was 

displayed thus evidencing the outcomes of stroke on connectivity in the lesioned areas and the 

symmetrical ones. 

In the Figure 54 a) number of connections in the controls’ left hemisphere is 493 while for the 

patient number of connections is 261 (Figure 54 b)). Next, in Figure 54 c) connections among 

three mentioned lobes in the controls’ right hemisphere are displayed. Number of connections 

is 563. In the contrast to this, Figure 54d) shows abrupt decrease in patients’ connectivity 

between among these three lobes, number of connections is only 216. Furthermore, comparing 

c) and d) it can be confirmed, as previously said, that connections between diverse lobes are 

more obstructed than the ones within the lobe.   
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7. Connections between Temporal, Parietal and Frontal lobe (excluding connections within 

the lobe) 

        

                        a) Control Tem-Par-Fro (L) 493 links                                                        b) Patient Tem-Par-Fro (L) 261 links                 

           

                     c) Control Tem-Par-Fro (R) 563 links                                                            d) Patient Tem-Par-Fro (R) 62 links      

Figure 55.  Connectograms of common links between temporal, parietal and frontal lobe (intra-lobe connections are excluded) 
for control and patient  
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The Temporal, Parietal, and Frontal lobe analysis was repeated excluding within lobe links.  

Connectograms are displayed in the Figure 55. This representation provides clearer visualization 

of links between the lobes since they are not overlapped with more dense intra-lobe connections. 

Thus, sharp differences in connectivity can be more efficiently explored.  

Regarding the control (Figure 55a), number of connections in the left hemisphere was 274, while 

the same lobes in case of the patient share 101 common connections. For the right hemisphere, 

Figure 55c) displays connections for the control, whose number is 322. On the contrary, patients’ 

connections number between these 3 regions was abruptly lower – which can be clearly seen in 

Figrue 58 d), number of connections is only 62. 

 

4.2.9 Results summary  
 

All the results from Chapter 4.2.9 are summed up in Table 12. 

 

Connections Control Patient 

Fro L – all 1352 487 

Fro R – all 1051 279 

Fro R – Fro R 129 82 

Tem L – all 701 303 

Tem R – all 780 246 

Tem R – Tem R 43 34 

Tem R – Fro R 113 3 

Par L – all 812 306 

Par R – all 820 251 

Par R – Fro R 42 36 

Par R – Par R 119 25 

Par R – Tem R 90 36 

Tem L – Par L – Fro L 
(intra-lobe included) 

493 261 

Tem R – Par R – Fro R 
(intra-lobe included) 

563 216 

Tem L – Par L – Fro L 274 101 

Tem R – Par R – Fro R 322 62 
Table 12. Number of edges in selected submatrix 
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4.2.10 Density-thresholding outcomes 
 

Since the effects of density thresholding on computed network measures were focus of this work, 

lastly, it was explored how this thresholding method affects the connectivity representation 

given by connectograms. Results are displayed in Figure 56. 

        

  a) Control Temp L - all 701                       b) Control Temp L – all (thresholded) 217                         c) Patient Temp L - all 303 

 

 

               

     d) Control Temp R - all 780               e) Control Temp R - all (thresholded) 239                    f) Patient Temp R - all 246 

Figure 56.  Thresholding in connectograms 
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A connectogram displaying the links from/to right and left Temporal lobe for the control and the 

patient was used for studying the effects of thresholding.  

Previously employed thresholding strategy, called density thresholding, was applied to the 

connectivity matrix prior to extraction of the submatrix and visualization of connectogram. After 

thresholding process, density of control matrix was equal to the density of the matrix 

corresponding to the patient.  

Then original matrix and the selected submatrix after the thresholding process are compared in 

Figure 56. Observing Figure 56 a) and b) it can be clearly seen that none of the connections 

between the two hemispheres have survived thresholding process. Similar features can be seen 

for the Figures d) and f), where only 3 connections are present between the hemispheres. By 

comparing these connectograms to the ones of the patient, it can be concluded that the density 

thresholding process is canceling out valuable differences between the two subjects. 

Overall, connectivity pattern after thresholding is largely changed. Hence, it should be noted that 

density is an important feature of a specific network. Moreover, many network measures are 

dependent on density. Thus, metrics computed for thresholded network may not be fully 

representative of the connectivity in that network.  

It can be concluded that thresholding control matrix in this way, and thus changing its density 

with the goal of making more suitable comparison between subjects of two groups, has the 

drawback of removing valuable knowledge for identifying abnormalities. 
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4.3 Borderline intellectual functioning study 
 

4.3.1 T-test results 
 

Two samples t-test was performed twice, firstly on all connections, following the test on 

connections with weights lower than 0.2 that are considered as weak. Results are displayed in 

Table 13. 

 

Coefficient All connections Weak connections 

Strength h = 0; p = 0.0667 h = 1; p = 0.0071 

Clustering 

coefficient 

h = 0; p = 0.2089 h = 0; p = 0.4315 

Characteristic 

path length 

h = 0; p = 0.0577 h = 1; p = 0.0481 

Global 

efficiency 

h = 1; p = 0.0434 h = 1; p = 7.1157e-47 

Density h = 1; p = 0.0089 h = 1; p = 0.0076 

Table 13. T-test results 

 

Regarding the test results for all connections, it can be seen that null hypothesis was rejected 

only for global efficiency and density, hence these are only two network metrics based on which 

statistically significant difference between control and patient group can be drawn if all network 

edges are taken into consideration.  

On the other hand, by making test solely on the weak connections (meaning all connections with 

weights higher than 0.2 are discarded), statistically significative difference between control and 

patient group can be drawn regarding global efficiency and density, but also the characteristic 

path length and strength.  
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Results displayed in Table 13 suggest that constructive discrimination can be made between the 

two groups based on the weak connections. Thus, these results were the motive for further 

exploration of weak connections utility and reliability. 

 

 

4.3.2 Bootstrapping  
 

Bootstrapping method was employed to create surrogates of control subjects. Process of 

generating surrogate samples is described in Par. 3.2.3. It is expected that making 1000 new 

samples of controls will provide a certain narrower normality range where all the values of a 

network measure for control group are located. This means that would be possible to more 

precisely identify an interval to discriminate more reliably the two populations.  

As an outcome of this analysis it should be verified that subjects from the BIF group will all form 

a cluster on the same side compared to the position of the surrogate confidence range. 

Depending on the network measure, more precisely on the fact that if it is lower or higher in case 

of disease, BIF cluster will be positioned higher or lower with the respect to the surrogate 

interval.  

Distribution for all computed network measures for 32 subjects composing BIF group, 14 healthy 

controls, and 1000 surrogate samples is displayed in Figure 60. Moreover, confidence interval 

was calculated for control and surrogate groups, and it is overlapped to the plotted distribution 

of controls. Confidence interval for control group is outlined by pink, while for the surrogates 

lines are green. Next, all the data was normalized by mean value, however the obtained results 

did not valuably differentiate from the displayed ones. 

In this way the normality range of all three populations can be visually compared by obtaining 

their distribution properties.   
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                                 a)  Average node strength                                                                  d) Global clustering coefficient  

 

                                 c)  Characteristic path length                                                                 d) Global efficiency  
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Figure 57. Distribution of values for three groups: BIF, Control and Surrogate for different network measures: a) Average node 
strength; b) Clustering coefficient; c) Characteristic path length; d) Global efficiency and e) Density. Confidence intervals of 

control and surrogate groups are denoted in pink and green, respectively. 

 

From Figure 57, it can be seen that the mean values for clustering coefficient, characteristic path 

length and global efficiency are biased (Figure 57b, c and d)). Hence, it could be concluded that 

the method used for resampling should be revised and improved.  

Furthermore, it would be expected that bootstrapping will narrow down the confidence interval 

for surrogates, compared to the one for controls. This is approved in all measures except for the 

clustering coefficient.   
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5 Conclusion  

Research in the topic of the brain networks is growing rapidly in last decades. Accordingly, this 
growth of interest and research scope necessitates the new technical tools for conducting more 
efficient analysis. Priorly developed software tools have limited reach in terms of visualizing the 
brain connectivity. Namely, it is a growing issue that instrumentation equipment (e.g., MRI), and 
the next processing (e.g., connectivity analysis) is giving us more information than we can usefully 
visualize and handle. Hence, a bottleneck is envisaged to be tackled by suitable and agile software 
tools. It is indeed clear that even a non-dense fraction of order 1002 links is hardly assessed 
without the support of suitable exploration tools giving meaningful visual portraits and 
quantitative indices. 

The research and design presented in this thesis should provide a systematic approach for 

researchers interested in studying brain connectivity. This is based on the introduction of a novel 

software that we called SPIDER-Net. The overarching goal of the software design and 

development process was to create a tool that would provide a more convenient and 

advantageous means of exploring structural and functional brain connectivity. Focus in put on 

permitting the selection of connection subsets, thus facilitating a systematic exploration of brain 

networks. 

Herby, visualization can be controlled by displaying connections emanating only from one 

hemisphere, one lobe, or from a single brain structure, thus allowing the user great leeway in the 

ability to modify the level of complexity being displayed in the connectogram. Taking into 

consideration the complexity and the number of connections between hemispheric parcels, the 

benefit of choosing the regions of interest and subsequent extraction of a corresponding 

subgraph is immediately clear and has been proven in present analysis.  

More precisely, the software was tested on case study of stroke compared to a healthy control. 

Patient presented a lesion in the right brain hemisphere, which was further explored by 

employing new approach for visualization. Based solely on comparing connectograms between 

the patient and the control, major discrepancies can be observed in the connectivity patterns. 

Moreover, not only the connections within the right hemisphere of the patient were 

compromised due to the presence of lesion, but also the inter-hemispheric connections. Number 

of connections together with plotted visualization were compared between the patient and the 

control for various selection of hemispheric parcels. This selection was based on the previously 

known information on brain areas that are particularly affected by the lesion. 
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Further test should also employ different atlases used for parcellations. Additionally, another 
possibility in employment of this software is checking the validity of connections in fiber 
pathways reconstructed by tractography.  

Furthermore, as the software was developed and simultaneously tested, some of the 

functionalities remained uncovered by this work. For example, the ability to modulate the edge 

attributes (such as thickness and color) based on the degree of connectivity between nodes was 

not exploited. Also, the possibility to extract a subgraph based on functional attributes of parcels 

(e.g., a-priori functional knowledge or, conversely, the data-driven inclusion into a resting state 

network) was not explored, so far. This work validated the tool only upon anatomical attributes. 

In this regard, it is worth recalling that the fusion between functional and structural connectivity 

is a major open problem in current brain research. 

Thresholding and Borderline Intellectual Functioning study.  

Even though the binarization process was widely used in early applications of graph theory to 

brain data, it is inherently insensitive to architectural principles embodied in edge weights. This 

realization has more generally motivated the development of methods that can be used to 

concur sensitivity to the patters of the weights on the edges, and topologies present in weak 

versus strong weights. However, the role of edge weights in brain computations and higher-level 

cognition still has received less attention.  

According to neuroanatomical data, the weights of structural connections may be dictated by 

developmental growth regulations, energy and metabolic constraints, and physical limitations on 

the volume of neural systems, particularly brains encased by bone.  

The choice for weighted approaches was the main challenge in this thesis. Particularly in 

structural connectivity studies, weighing is generally considered as problematic, since DTI is 

inherently noisy and prone to artifacts, which causes derived weights to have limited reliability. 

Moreover, this work has highlighted the large impact of the chosen metrics, whether fractional 

anisotropy (FA) or streamline number (SN) or other. The most common approach in dealing with 

this uncertainty is thresholding, which should remove lower weight connections that are 

considered as false connections that are consequence of noise. Moreover, there is no universal 

standard and agreement over generalization of network measures from binary to weighted case, 

and also on the thresholding method.  

Thus, accent in this work was put on the thresholding process, more precisely one of the most 

common thresholding methods, i.e., density thresholding. This analysis was performed on case 

study of stroke, since matrices corresponding to control and patient were available in two 

variants - connection strength was expressed by using FA or SN. From the obtained results it can 

be firmly concluded that thresholding is strongly dependent on the connection-strength 
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distribution in the connectivity matrix which is a significant determining factor in the behavior of 

weighted graph-theoretical metrics. Moreover, major discrepancies in thresholding outputs can 

be observed between the two mentioned matrix variants.  

Generally, it can be seen that connectivity matrices constructed by SN as a measure for 

connectivity strength are more invariant to thresholding process since most commonly calculated 

network measures stay stable under this process.  

The analysis of weighted connection was motivated by proofs that individual differences in 

strength of weak connections display individual differences in fluid intelligence and are strongly 

correlated with full scale, verbal, and performance IQ.  

Hence, the dataset of Border Intellectual Functioning was considered as fitting for the further 

analysis made in this thesis. 

Moreover, by performing simple statistical test this work shows valuable insights about the 

potential utility of the weak connections. However, the work is still in progress and further 

investigations are needed. Regardless of this, some considerations can still be made relevant to 

the hypothesis tested and in proposing experimental procedures, which are laid out in the 

following paragraphs. 

In order to address the issue of unreliableness of connections in tractography data bootstrap 

method was applied. This method is substantially based on the law of large numbers, which in 

short says that with enough data the empirical distribution will be a good approximation of the 

true distribution. Hence, this approach could provide extracting more stable normality range of 

values of various network measures. Thus, further comparison between patient population and 

large size sample of simulated controls could provide well-grounded analysis of the differences 

between the groups. 

However, the bootstrap protocol applied in this work introduced unexpected biases in the 

surrogate data compared to the original control group. Afterwards, data was normalized by the 

mean value, but results did not significantly change. Hence, as a future prospect, this method 

should be reviewed and enhanced in order to make the analysis more robust and valid. The 

advantage of bootstrap analysis is to provide data-driven confidence intervals, without the need 

of a-priori hypotheses, and yield a solid ground for between group comparisons. However, our 

first guess of randomly and independently extracting from controls matrix elements, gave 

unexpectedly shrank confidence intervals, smaller than those of the original set. This might be 

related to subject specific biases and should be further investigated.  

Furthermore, sensitivity analysis can be performed for weighted global measures in the control 

group. From this analysis, links that contribute the most to the value of certain measure can be 

extracted. This particular link can be searched for in patient group, and if noticed as missing or 



133 

 

 

having largely higher or lower weight value, this can be connected to the underlying condition of 

the patient.  

Summing up the findings from the study on borderline children, it may be stated that the 

approaches sensitive to the strength (or weakness) of the individual connections are critical for 

the advancement in understanding individual differences in cognitive ability and their 

modification in psychiatric disorder. Hence, the overall conclusion that can be drawn is that 

adjustments to the simulation procedures, for the purpose of studying the weighted networks, 

will most certainly be necessary.  

Passing to an overall conclusion about the whole thesis, the analysis of neuroimaging derived 

graphs was touched both in its weaknesses and strength, showing that it cannot be undertaken 

by a simple implementation of graph theory. This is prevented by large inherent uncertainties 

and artifacts, as well as by the peculiarity of damage in pathological subjects which may range 

from large focal losses (here observed in a stroke case) to subtle changes involving also weak 

connections (here observed in the borderline children). Given also the complexity of brain, this 

imposes suitable analyses which should include specific subgraph studies also sizing the 

uncertainty levels by appropriate methods.  
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