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Abstract

The thesis studies the control allocation problem, which defines how a control action shall
be distributed among a set of redundant actuators, in the orbit servicing mission work
frame, regarding attitude/pose control. In-orbit servicing missions, that have become
more frequent in the last decade to cope with debris population increment and effective
spacecraft life time enhancement, are characterized by tight requirements in terms of re-
liability, availability and flexibility, because these types of activities require a wide span
of manoeuvres to be executed, that go from far and close proximity operations, to target
docking and manipulation. To ensure the mentioned requirements, a spacecraft must be
equipped with multiple and different actuators. Thus, an optimal distribution must be
investigated, considering that the allocation has to be performed in a rapid and simple
manner. The investigation starts from a literature review of the theoretical definition of
the problem and the algorithms that are implemented. During this review, it emerged
that the present methodologies apply specific algorithms for a tailored mission, in which
the focus in not servicing work frame, and computational time is generally shaded by
other drivers. Therefore a significant advancement that the investigation brought is that,
not only a clear organization of the methodologies is reported, but a transposition of al-
gorithms generally applied in the aeronautical field, which are inherently simple, fast and
robust, was conducted. This operation required a complete reformulation of the character-
istic quantities. In addition, the evaluating parameters to assess the methods performance
are rigorously stated, which are the ability to optimize a cost function, the computational
time, the accuracy, which is the difference between the required and provided action, and
the algorithm capabilities when dealing with unattainable actions. Hence a comparison
between the algorithms is performed for reaction wheels and reaction control thrusters.
The first part, therefore, outlines a practical discerning tool that an AOCS engineer can
consult to select the optimal and suited method for their own application.
The second part, instead, shows the design phase for a in-orbit servicing mission for mod-
ular spacecraft the Company is developing. The mission demonstrates how different and
diverse manoeuvres can be covered by mild modification of the allocator scheme, which
is the dual side of the innovations the thesis brings. In fact, operations that cover control
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authority shift, hardware separation and pose control are performed without changing the
control logic, which is completely disregarded in the analysis, but changing certain aspects
in the allocation. In addition, a robustness analysis was conducted to test the reliability
of the allocating scheme when dealing with variable scattering and measurement noise. In
conclusion, the survey did not limit in the simple definition of different allocation method-
ologies, but transformed a high number DOFs optimum problem, that involves multiple
constraints on the actuators, into an intuitive robust and computationally light element
whose test on a real application gives timely and effective response.

Key Words: control allocation, in-orbit service mission, control robustness, optimal
solution
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Abstract in lingua italiana

La presente tesi studia il problema di allocazione del controllo, che definisce come una
azione di controllo debba essere distribuita su un set ridondante di attutatori, con-
siderando l’ambito il controllo di assetto/posa per missioni di tipo in-orbit servicing.
Questa tipologia, sempre più frequente nell’ultima decade per sopperire alla crescita di
detriti spaziali e per prolungare la vita utile dei satelliti, è caratterizzata da stringenti
requisiti in termini di disponibilità, flessibilità, e affidabilità, in quanto queste attività
richiedo che un ampio ventaglio di manovre venga eseguito, da far e close proximity oper-
ations, a target docking/manipulation. Per garantire tali requisiti, un satellite deve essere
equipaggiato con diversi attuatori. Perciò, una soluzione ottimale deve essere investigata,
considerando che l’allocazione deve essere eseguita in maniera intuitiva e rapida. Lo stu-
dio parte da una revisione della presente letteratura riguardante la definizione teorica del
problema e i diversi algoritmi che vengono implementati. Durante tale revisione, è emerso
che le metodologie applicano specifici algoritmi per particolari missioni non riguardanti
l’ambito di in-orbit servicing, dove il tempo computazionale viene spesso oscurato da altri
requisiti prioritari. Una significativa innovazione, dunque, è emersa: non solo viene ripor-
tata una chiara organizzazione dei vari metodi, ma una trasposizione di algoritmi semplici,
rapidi e robusti, applicati per lo più nel settore aeronautico, è stata condotta. Questa op-
erazione ha richiesto una completa riformulazione delle quantità caratteristiche in esame.
Inoltre, i parametri impiegati per la valutazione delle performance degli algoritmi sono
stati rigorosamente definiti: l’abilità di minimizzare un costo, il tempo computazionale, la
accuratezza (differenza tra azione richiesta e prodotta) e la capacità di sopperire ad azioni
al di fuori delle capacità degli attuatori. Dunque, un paragone tra i vari algoritmi è stato
condotto per reaction wheels e reaction control thrusters. Questa prima parte delinea un
pratico e utile strumento che un ingegnere AOCS può consultare per aiutarlo nella scelta
della strategia ottimale e ideale per la sua applicazione.
La seconda parte, invece, mostra il design per una missione di in-orbit servicing per un
satellite modulare che l’Azienda sta sviluppando. La missione dimostra come differenti
manovre possano essere eseguite con semplici modifiche sullo schema di distribuzione,
che è il secondo aspetto innovativo della tesi. Infatti, operazioni che vanno dallo sposta-



mento della autorità di controllo, alla separazione tra parti di satellite e controllo di posa
sono condotte senza modificare la logica del controllore, che viene messa in secondo piano
nella analisi, ma cambiando certi aspetti nella allocazione. Successivamente, uno studio
di robustezza è stato definito per testare la affidabilità dello schema di allocazione nel
momento in cui incertezze sulle variabili e rumore nelle misurazioni vengono introdotti.
In conclusione, il lavoro non si è limitato nella semplice definizione dei vari metodi di
allocazione, ma ha trasformato un problema di ottimo con alto numero di gradi di libertà,
che considera diversi vincoli sugli attuatori, in un semplice, robusto, computazionalmente
rapido elemento il cui test su una applicazione reale ha dato efficaci e solidi risultati.

Parole chiave: allocazione del controllo, missioni di servizio in orbita, robustezza del
controllo, soluzione ottimale
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Introduction

Control allocation studies how a control action shall be distributed among a set of avail-
able and redundant actuators, subject to certain hardware limitations on their produced
output, called effort. In most of orbit servicing applications, spacecrafts are equipped
with different and redundant actuators for two main reasons: reliability, and flexibility.
Multiple actuators can cope with the potential failure of some of them, while still be-
ing able to execute the mission operations. Control allocation, then, becomes extremely
useful, as it may be asked to reconfigure the remaining controls to allow the mission to
progress. Flexibility, on the other hand, is a hard requirement in orbit services, since a
wide span of different manoeuvres, actions and operations have to be carried out, min-
imizing certain mission key parameters, such as propellant mass, in most of the cases.
This aspect can be granted only if redundancy is considered. Control allocation focuses
on how the actuators at disposal have to produce a desired output. The main peculiarity
of control allocation, with respect to any other control logic, is to separate the loop into
two independent, but connected, blocks: the high level control and the low level control,
as show in Figure 1. The first block contains the control law, which gives an output v,
this output is then manipulated in the allocation and u is computed. This quantity is
then fed into the system characteristic equations, and the state is integrated.

Figure 1: Block diagram describing the control loop

The control logic at a high level can be represented by various schemes, such as PID and
LQR, and it is responsible for translating the system state error with respect to a given
reference, taken as input, into a virtual effort v. Depending on the physical system in
exam, v expresses different quantities, such as a force, torque or displacement. On the
other hand, the low level control takes the action generated by the high level control and
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distributes it among the set of actuators, translating it into an actuator-provided action
u that is fed into the system, thus completing the control loop. Therefore, the high-level
control is the part responsible of computing the virtual control action, while the low level
shifts the quantity from a numerical world to a physical one, where the actuators are the
ones responsible for generating the required action.
The question that naturally arises is why divide the control logic into two separate blocks.
The primary reasons for doing so are threefold. First, against intuition, it actually sim-
plifies the control definition, as it enables the user to separate how the control effort is
defined from the actuators architecture. The control logic then can just compute the
required action, and the allocation manages how this action is actually provided by the
actuators. Secondly, a separate formulation gives more flexibility when it comes to design-
ing an actual control system, as multiple iterations and corrections may change how the
scheme is defined. If the control logic and actuator architecture are decoupled, a variation
in one of the two does not necessarily imply that the whole control scheme needs to be
modified. Finally most importantly, the control logic most of the times does not man-
age any actuator characterization such as hardware limitations, minimum and maximum
outputs. This is the main driver when dealing with a control allocation problem: the
necessity to express and highlight the physical features of the actuators in exam.
While control allocation for redundant sets of actuators in aircraft applications, both
military and civil, has been extensively studied and analyzed in the literature, research
on control allocation for space applications is comparatively less organized and thinner,
especially in the context of in-orbit servicing or modular spacecraft. Typically, research
in this field consists of individual papers or research essays that describe a specific strat-
egy tailored to a theoretical mission [16, 22, 24–26]. Two main issues have arisen from
literature research in this area. Firstly, few articles have attempted to compile the var-
ious methods and assess their unique features and capabilities, along with their optimal
field of application. Secondly, it is unclear which parameters should be considered when
evaluating these strategies, especially for applications that are characterized of long time
spans. Although most algorithms are judged based on their ability to minimize a cost
function, factors such as computational time, which is equally critical for on-board com-
puting in real mission developments, are often ignored. This investigation aims to address
these gaps by providing a comprehensive analysis of control allocation strategies for space
applications, specifically in the context of in-orbit servicing and modular spacecrafts.
The objectives of the present dissertation are here listed:

• To collect the main strategies that have been used to solve the allocation problem,
and to list their main features, in order to give the reader a practical tool to discern
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which method is most suited for their application.

• To define the parameters that evaluate the control allocation procedure, to clarify
which method is more suited for a certain application, with certain requirements.

• To demonstrate the application of the control allocation in a real developing mission
scenario.

Even though the following analysis can be applied onto different system, the focus is
brought onto the space activity work frame. The problem to be investigated in this sur-
vey is to distribute onto the actuators a virtual required torque in order to perform an
attitude tracking problem. The actuators are defined by a characteristic effort, for exam-
ple in the reaction wheels it is represented by the disk change of rotation rate. The effort
is then translated into a torque through a function called effectiveness, which expresses
the actuator architecture and on board disposition. The effort, moreover, is bounded in
a feasible range, dictated by the hardware features. In the case of the reaction wheels,
again, the lower and upper bounds may be the maximum change of rate.
The presented work is divided into three chapters. In the first part, the overall control
loop model is described. It is made of fundamental building blocks that concur in the
spacecraft attitude control problem definition. Here, all the elements that do not enter in
the low level control field are briefly characterized. This part serves as an introduction and
description on how the overall problem is modelled. The second chapter illustrates the al-
location problem, how it is described and which parameters are fundamental drivers when
assessing the performance. Different strategies are delineated and compared to determine
their advantages and limitations when it comes to computational efficiency, implementa-
tion capability and such. In the third chapter, the control allocation is tested on a real
developing mission scenario, in order to simulate the design of an AOCS subsystem for a
in-orbit service satellite. The investigation pertains to a sensitive aspect of the company’s
project, which involves testing and verifying compliance with the AOCS requirements
for pointing accuracy and fuel consumption. The study focuses on the early stages of
the mission design (Phase A), where it is necessary to estimate requirements compliance.
Throughout the description, hardware specifications and other critical parameters are
omitted to ensure confidentiality. Nonetheless, the primary aim is to evaluate the control
allocation subsystem and draw generalizable conclusions from this particular case, which
is the focal point of the thesis. In this part the control allocation is evaluated also in terms
of robustness with a Monte Carlo analysis, to test the behaviour of the allocation when
the mission characteristics are off-nominal. Before introducing the investigation, it is nec-
essary to define the convention followed regarding the vector expression. Throughout the
survey, the variables are defined in the following manner:
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• Vector are written in bold a.

• Their norm in plain a or ||a||.

• The correspondent unitary vector â.

• The cross product as a× b.

In addition, three main reference frames are considered: the inertial reference frame (IRF),
the body reference frame (BRF) and the target reference frame (TRF). Vectors expressed
in the first frame are reported with a capital letter, while with a lower case in the second
and third ones.

Work innovations and radical progresses

As previously stated, there are multiple issues when dealing with control allocation that
pertain to two different aspects. Regarding research field and literature, not only a clear
organization and listing of the main strategies is required, but, most of all, the trans-
position of the strategies application from the aeronautical field to the space frame is
necessary. In fact, efficient algorithms are mainly defined over deflectors for aircraft atti-
tude control. On the other hand, regarding the actual implementation of the algorithms,
it is necessary to define plainly which are the involving parameters that can be used
to assess the performance, especially considering the computational efficiency, which has
strict requirements for on-board installation. In addition to addressing these issues, other
technical advancements are here presented that highlight the flexibility and reliability of
the control allocation scheme:

• The application of fast and robust control allocation strategies, which are primarily
studied and utilized in the aeronautical field [3, 5, 12, 20, 21], are also employed in
the space industry on groups of actuators with different characteristics and formu-
lations. While in aeronautics, the attitude control is generally handled through sur-
face deflectors with angular displacement as the characteristic dimension, in space,
reaction wheels and thrusters are commonly used. As a result, the manipulated
quantities undergo a complete redefinition.

• The control allocation problem is rigorously stated, especially with the introduction
of the cost function minimization (Chapter 2).

• The set of evaluating parameters for the control allocation is plainly defined, which
are: output accuracy, defined as the error norm between required and produced
actions (high level output v and low level output u), ability to minimize a cost
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function, computational time and ability to respond to unattainable input action.

• Due to the shift of application, a stringent analysis is carried out when it comes
to computational efficiency and unattainable required action response. In fact, on-
board CPU must be extremely light for a reliable mission development and, since the
analyzed mission in Chapter 3 has consistent inertia, thus high torque are required,
it is necessary to exploit efficiently the redundancy at disposal.

• Definition of new solutions, as described in Section 2.5.

• The carried out analysis and comparison in Chapter 2, along with each method
description, builds a reliable and intuitive tool that helps the AOCS designer to
choose properly the correct strategy without influencing the control logic in any
way.

• High number DOFs fast allocation is analyzed, and modular/cellular actuators ar-
chitecture implementation is considered.

• Chapter 3 provides an example of the tool application in the design of a mission
for in-orbit servicing that the Company is developing. The mission is a perfect
demonstration of fast, flexible and reliable allocation for space work frame. As
the spacecraft has to perform a wide span of manoeuvres, it is demonstrated how
well suited is the allocation scheme when dealing with shifting control authority
among actuators (section 3.2.2), response to sharp state variations (section 3.2.3),
hardware variable scattering and measurements noise (section 3.3) and, most of all,
the possibility to consider, without any change in the architecture, a pose control
(section 3.2.4). It is vital to consider that all these operations are performed with
intuitive, simple and straightforward modification in the allocation, without affect-
ing in any way the high level control. In fact, in the analysis in Chapter 3, it is
completely disregarded.

• Clear description, simulation and results analysis for a Monte Carlo simulation fo-
cused on the actuators architecture to show the robustness and response when the
system is affected by scattering and noise.

To summarize, the listed operations can be seen as small but significant advancements with
respect to the allocation state of the art. However, the key innovation is represented by the
manipulation, and consequent transformation, of a high number DOFs optimum problem
that is not treated as rigorously as in aeronautics, that involves actuators limitations, into
an intuitive, robust and efficient element that completely disregards the controller and
whose test on a real mission development gives a great and prompt response.
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Before introducing the control allocation analysis, it is necessary to describe all the el-
ements that do not enter in this category, but are fundamental building blocks for the
investigation. These blocks collect the parameters and quantities that enable the control
allocation strategies to be evaluated and to simulate an orbiting spacecraft required to
follow the target attitude. It is possible to define these main blocks as:

• Equation of Motions, dynamics

• Attitude parameters, kinematics

• Orbit propagation

• External disturbances, perturbations

• Control logic, high level control

Each block is interconnected to describe a closed control loop system, which simulates the
effort of a set of redundant actuators to maintain a target attitude for a spacecraft, against
external disturbances, during the orbital path. The control loop is shown in Figure 1.1. It
not only emphasizes the interdependence and linkages between different blocks, but also
delineates a logical progression that characterizes the simulation workflow: starting from
the dynamics block, at each time instant, the angular velocity vector is integrated, which
is then used to compute the body instantaneous attitude. The attitude is compared to
the target one (which depend on the spacecraft orbit position), and the relative error is
used as input for the controller. The required action to correct the body attitude, a net
virtual torque, is split among the available actuators and the generated effect is plugged,
along with perturbation, into the equations of motion and the loop repeats.
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Figure 1.1: Refined control loop scheme for the attitude tracking problem

1.1. Equation of Motions (EoM)

The first block expresses the link between accelerations and external forces. Since only
body attitude is considered, the accelerations are assumed to be angular throughout the
analysis or, if not, clearly stated. Considering Euler equations of motion, the angular
accelerations in 3-D space ω̇ can be expressed in function of the spacecraft inertia matrix,
angular velocity and external torques:

Iω̇ = (Iω)× ω + Text (1.1)

Throughout the analysis, it is assumed that the body reference frame does not coin-
cide with the principal axis reference frame, therefore the angular velocities are coupled
through the inertia matrix, which is full, and the term (Iω) × ω is not zero. The inte-
gration, in addition, has to be solved numerically. Text contains the sum of all external
effects, namely the actuator and environmental perturbation torques. The two elements,
ideally, should give as output the necessary action to follow the prescribed attitude. For
the simulation, the hypothesis of perfectly measured angular velocity is assumed, thus
meaning that the solution of the Euler Equations and the measured angular velocities
match. The assumption is considered to simplify the analysis, while taking into account
noise does not actually affect the control allocation, since it will be a matter of perfor-
mance degradation. It is possible, in any case, to apply a white noise onto the output of
the EoM to model the error introduced in the act of measurement. In any case, if the
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hypothesis is not considered, it will be plainly stated in the dissertation.

1.2. Kinematics

In order to mathematically depict the orientation of the body reference frame (BRF) with
respect to an inertial reference frame (IRF), namely the spacecraft attitude, two different
attitude parameters are employed: Direct Cosine Matrix (DCM) and Modified Rodrigues
Parameters (RP). The former is utilized to define the relative orientation in relation to
the IRF, to serve as an input for the control law, and to represent the desired attitude
that the spacecraft should maintain throughout its orbital path. The latter is used as
an indicator to evaluate the pointing accuracy of the satellite during simulation, which
can be perceived as the discrepancy between the body and target attitude. The DCM is
defined as a matrix transformation from one coordinate system into another, as shown in
Equation (1.2), thus projecting a vector expressed in one reference frame, into another
one. The DCM is orthogonal, which means that the opposite projection can be performed
considering the transpose of the matrix.

xREF1 = AbodyxREF2 (1.2)

It is easy to understand that, while orbiting, if the body attitude changes, so does the
DCM. This variation depends on the body angular velocity, as Equation (1.3) states.

Ȧbody = −ω∧Abody, with ω∧ =

 0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0

 (1.3)

For what concerns the Modified Rodrigues Parameters, they are a modification of Euler
Parameters that integrates the direction cosines of a rotation axis with tangent of half the
rotation angle as three quantities. Recalling Euler Parameters definition, which consists
in determining the attitude with four elements, that represent a vectorial part and a scalar
one, the RP reduces these elements only considering a vectorial characterization, in 3-D.
The relation between the two sets of parameters can be expressed as:

σ =
β

1 + β0

(1.4)

As previously stated, RP are used for assessing the pointing performance of the spacecraft,
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since they take into account far less variables, for an easier and simpler definition. Another
key advantage that the modified RP possess is that the singularity is shifted to 360°, which
is a rotational condition that is not encountered during the simulations. In addition, it
is able to better represent the angular rotations when these quantities are small, which is
the nominal condition in the analysis carried out. This fine property is highlighted in the
relation between the RP and the euler axis and angle, as show in Equation (1.5).

σ = tan(
ϕ

4
)e (1.5)

For small angles, in fact, the RP can be linked directly with the euler angle divided by
four. The modified RP can be also expressed in relation with the DCM, as the following
equation illustrates:

σ =
1

ξ(ξ + 2)

 A32 − A23

A31 − A13

A12 − A21

 with ξ =
√

tr(A) + 1 (1.6)

In order to explain why RP are more suited for defining the accuracy with respect to the
DCM, it is necessary to describe the target attitude and the error definition, which will
be a direct input into the high level control.
As it orbits, the spacecraft is required to follow a prescribed attitude, represented by
a direct cosine matrix Atarget. The target DCM is defined by a set of three orthogonal
unitary vectors. This orientation is the one the body attitude should match. For the
simulation the following triad is used:


x̂ =

h× s

||h× s||
ẑ = n̂× x̂

ŷ = ẑ × x̂

(1.7)

The first vector reported in Equation (1.7) is the result obtained from the cross product
between the orbit angular momentum vector h and the Sun position in body reference
frame, scaled by the respective norm. The direction ẑ is, instead, computed as the cross
product between the nadir direction and x̂, while ŷ completes the triad. Each unitary
vector is computed at each time instant in order to update the target attitude. This
particular orientation is characterized by two main features:
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• The x axis is always normal to the Sun position.

• The z axis is always opposite to the orbit velocity.

The delineated attitude will be used to evaluate the performance of allocation methods
in Chapter 2.
Now, the next step is to compute the discrepancy between the actual body attitude, and
the target one. The disparity is expressed as the multiplication between the two DCMs
Abody and Atarget, as follows:

Aerr = AbodyA
T
target (1.8)

If the two matrices are equal, then the error DCM will coincide with a diagonal matrix,
due to the orthogonal property of this representation. Off-diagonal, non-zero terms will
represent the mismatch of the two orientations, which has to be driven to zero. Geomet-
rically, these terms can be seen as the three axis of the body and target reference frames
difference. Zero error, in fact, would mean perfect overlapping between the two triads.
Even though this is an intuitive definition of the pointing error, it is hard to evaluate
numerically the accuracy, since nine variables have to be checked simultaneously, three
to be at value 1, and the off-diagonal six to be zero. Moreover, as the error gets close
to zero, it is hard to discern accuracy improvement with the DCM. RP, instead, makes
use of just three parameters, which is easier and more manageable, while improving, with
respect to the DCM, the accuracy trend visualization as the error grows thinner.

1.3. Orbit propagation

As the mission simulation evolves in time, the spacecraft follows an orbital path while
keeping the prescribed attitude. It is important to determine the trajectory progres-
sion as the BRF position of key elements, such as celestial bodies, will change over time.
Therefore the same target attitude previously discussed will vary in time. Moreover, envi-
ronmental perturbations intensity and characterization strongly depend on the spacecraft
pose in orbit, thus modifying the controller torque request. To propagate the orbit, an
independent side block is defined which integrates, at each time step, the unperturbed
keplerian elements. This block will take as input the assumed constants keplerian ele-
ments and the true anomaly to compute algebraically its variation and the spacecraft
pose with respect to the IRF. Since the focus of this work is not the flight dynamics
and the correct trajectory integration, this propagating method is used as it is extremely
simple, computationally fast and efficient. The procedure is defined as follows:
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Algorithm 1.1 Orbit propagation through keplerian elements

1: Compute n =

√
µ

a3

2: Compute θ̇ =
n(1 + e cos θ)2

(1− e2)
3
2

3: Compute R = a
1− e2

1 + e cos θ
4: Compute p = a(1− e2)

5: Compute R = R

 cos θ

sin θ

0


6: Compute V =

√
µ

p

 − sin θ

e+ cos θ

0



1.4. Environmental perturbations

To better reproduce a real mission application, a series of environmental perturbations are
considered in the model, which have to be counter acted by the control scheme. These
elements are described by a mathematical model that emulates the real effects on the
spacecraft. The environment presence will degrade the pointing accuracy throughout the
mission, because spurious unwanted torque will be applied onto the satellite during its
motion, and thus major effort will be required by the actuators. For the simulation, the
disturbances are modelled as pure spurious torque action, which will affect the target
attitude tracking, while perturbations in terms of forces are neglected. Therefore it is
key to underline an important assumption: if a perturbation element generates a force
which is not applied on the spacecraft centre of gravity, the net translational contribution
is not considered, while the rotational part is kept. This is due to the fact that the first
part and the relative error in the pose that the force would generate does no does not
affect directly the pointing performance and requirements, but the satellite navigation, a
secondary element in the investigation. In addition, elements that energetically affect the
orbit propagation are excluded, keeping the main focus on the attitude tracking problem.
The intrusive environmental elements are:

• Drag due to the Earth’s atmosphere

• Gravity Gradient

• Solar radiation pressure
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Earth’s magnetic field is not included, since it is generally hard to determine the dipole
moment of the spacecraft in early stages of the development1.

1.4.1. Air drag

The presence of the atmosphere, even though rarefied, can affect the spacecraft attitude,
especially if the satellite’s net surface is wide and the orbit is low. Exchange of kinetic
energy due to collision between the spacecraft and air molecules may generate a perturbing
effect in the attitude. The impact can be modelled as a force generated onto the centre
of pressure of a body, depending on the velocity and exposed body surface to the air
flow. The force, which is not necessarily aligned with the centre of gravity, will generate
a torque, the greater as the distance between the centre of mass and pressure increases.
In the following equation the model is reported:

Fdrag = −1

2
Cdρ||v||2Anetv̂ (1.9)

Where:

• Cd is the drag coefficient of the spacecraft.

• ρ is the density of the air at orbiting altitude.

• v is the velocity vector of the satellite in BRF.

• Anet is obtained from the dot product between the normal to the area and v̂.

The force is assumed to be applied in the centre of pressure of the different bodies that
composes the spacecraft, an example is shown in Chapter 3. The resulting torque is
calculated, with respect to the centre of gravity, as:

Tdrag = rCoP × Fdrag (1.10)

In the computations, air is modelled as a continuum with density decreasing with respect
to the altitude with an exponential model. As Equation (1.11) reports, the density is
determined by the product between the standard value at sea level ρ0 and an exponential
factor. The latter contains the information of the altitude difference with respect H0,
which is the value corresponding to ρ0. Ultimately, the difference is divided by a scaling
constant Hscale.

1It is possible to assume a rough value and implement the Simulink block Earth’s Magnetic Field
nonetheless
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ρ = ρ0e
−
H −H0

Hscale (1.11)

The main issue regarding this model is defining the net area onto which the air molecules
impinge, along with the estimation of the drag coefficient. Regarding the latter parameter,
it is possible to use a satellite baseline and use the same coefficient as a preliminary
analysis. Regarding the areas, it is possible to split the spacecraft main parts into simple
geometrical shapes. Solar panels, for example, can be viewed as thin panels. Using
symmetrical figures also helps to locate easily the centre of pressure. The main body, on
the other hand, can be modelled as a cylinder or a prism.

1.4.2. Gravity Gradient Torque (GGT)

The target attitude that the spacecraft needs to track does not coincide with a stable
configuration for the gravity gradient. GGT is then taken into account, as it is present
throughout the orbit, and increases as appendages, such as solar panels, increase dimen-
sions. The perturbation torque that arises from the non-uniform mass distribution, for
a general inertia matrix is reported in Equation (1.12). The moment will depend on the
earth constant µ, the inertia tensor and the orbital position of the spacecraft expressed
in body reference frame r.

TGGT =
3µ

||r||5
(r × (Ir)) (1.12)

As for the air drag, the further from Earth, the lower the contribution. Regarding this
type of perturbation, a purely rotational torque is generated.

1.4.3. SRP

Solar wind and electromagnetic flux coming from the Sun can generate a similar phe-
nomenon to the air drag. In this frame, small particles can exchange momentum through
the impact with the satellite exposed surface at light speed. Following the same procedure
as for the air drag, it is possible to model this effect as a net torque, which will depend
on the position of the centre of pressure and the net areas that are exposed to the Sun.
As the produced torque will directly depend on the incoming radiation, it is going to
be a combination of contribution of the reflected, absorbed and diffused radiation after
the impact, and the power per unit area delivered by the Sun. The expression of the
generated moment is written in the next equation:
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TSRP = −PwAnet

[
(1− ρs)ŝ+ (2ρs(ŝ · n̂surf ) +

2

3
ρd)n̂surf

]
(1.13)

Where:

• Pw is the ratio between the power per unit surface exerted from the Sun and the
speed of light.

• ρs is the coefficient of the incoming radiation which is specular reflected.

• ŝ is the unitary vector representing the direction of the Sun in BRF.

• n̂surf is the normal direction of the considered surface.

• ρd represent the percentage of the radiation diffused reflection.

The overall torque will be, then, the sum of the total incoming radiation, scaled by the
reflective and absorbing properties of the materials which face the Sun. Of course it is easy
to conclude that, if shaded by the Earth, the SRP torque will be zero. As a preliminary
analysis, it is possible to retrieve the values of the coefficients from look-up tables or
baselines.

1.5. High level control

The last block to be analyzed is the one that computes the required torque to track the
target attitude. The task of this block can be fulfilled by different controller types. For
the simulation, since it is required computational efficiency and speed, a rather simple
but effective PID control is implemented. The choice is also driven by the fact that the
PID control does not influence the control allocation as it simply computes the torque
depending on the error fed. This condition is desirable in order to assess the performance
of the allocators. As previously stated, the error can be highlighted from the DCM Aerr,
where its components will be defined as:

Aerr = AbodyA
T
target =

 1 ϵz −ϵy

−ϵz 1 ϵx

ϵy −ϵx 1

 (1.14)

As previously stated, the off-diagonal terms are related to the pointing error, in the three
directions. If brought to zero, then Aerr will be equal to an identity matrix, and the
required attitude is being tracked successfully. If all the components are collected in the
vector ϵ, the controller torque is computed as:
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m = Kpϵ+Kdϵ̇+Ki

∫
ϵ (1.15)

As shown in Equation (1.15), the torque is described by a linear combination of three
contributions, the integral, proportional and derivative part of the error, scaled by fitting
gains, which can be computed through trial and error approach. Even though simple and
trivial, it is possible to manipulate the gains to control the tracking response, which gives
the user flexibility. Another advantage of this procedure is clearly the simplicity of the
control logic definition, as the pointing error is directly available and plugged into the
PID. The usage of Aerr, moreover, gives the user a clear and straightforward view on the
relation between attitude error and direction of the required torque, as the components
of the vector ϵ corresponds to the components of the vector m.
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In this chapter, different strategies for control allocation are studied. The investigation
is mainly driven by the accuracy of the solution, computational cost and ability to op-
timize mission parameters. An initial introduction to the control distribution problem
and analysis of the main drivers, definitions and key parameters is carried out. Then, the
different algorithms present in literature are shown, explained and evaluated in order to
give a first idea of the main advantages and limitations of each strategy. Along the de-
scription, a pseudo-code algorithm is attached to better grasp the logical process and ease
code creation. To further investigate the features of each algorithm, they are applied in a
spacecraft control simulation, onto a set of redundant reaction wheels (RW) and reaction
control thruster (RCT), for different orbital families. Throughout the whole survey, the
attitude tracking problem is considered, with the high level control generating a required
torque, which needs to be distributed onto the actuators.

2.1. Allocation theory

Initially, it is essential to elaborate on the concept of control distribution and elucidate
the way in which the problem is formulated1. Control allocation studies how the vector
of required action m ∈ Rn, output of the high level control, can be mapped over a set of
actuator DOFs, which can be represented by variables collected in the vector u ∈ Rm ,
in an optimal and suited way. In the case taken into exam, m will represent the set of
required control torque computed, as stated before, by the high level control, thus n = 3.
On the other hand, u will represent the actuators degrees of freedom. Depending on
the type of actuator in exam, the value in u can represent different physical quantities,
for example, a magnitude, angular position and such. Each actuator generally is able
to generate a single action, which is concatenated with the others in u. Hence, the ith

element of u ui is called effort of the ith actuator. The set of these actuators can vary
depending on the mission type and spacecraft configuration, thus the length of u is not
fixed, but changes along the number of producible efforts.

1Throughout the whole chapter the same nomenclature and definitions in [5] are followed.
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The two spaces where m and u lie, respectively the moment space Rn and control space
Rm, are linked together through a function called effectiveness B : Rm → Rn. This
function can be seen as the projection of the m-dimensional actuator effort, into a n-
dimensional torque vector. In the case of RCT, for example, B contains the information
regarding the position and orientation of the thruster with respect to the body reference
frame, so that the effort of each thruster is converted into a moment. In the analyzed
framework, B is assumed to be linear and time-invariant. The first hypothesis states that
the effectiveness can be seen as a set of gains, that multiply u. This is applicable in both
RW and RCTs cases, where the effort ui intrinsically generates a torque, which can be
enhanced or reduced by the gain in B. In RCTs, for example, the effort, which can be
linked to the thrust, is cross multiplied by the arm, which is a geometrical fixed constant,
and depending on the arm length, the produced torque will vary as well. The geometrical
information are collected in the effectiveness, which logically defines how "effective" is a
certain actuator. The second aspect, instead, means that the actuators positioning and
orientation does not change over time. This solution is commonly implemented in this
kind of problem, since not only it simplifies the analysis, but also practical applications do
not require B to change, especially if the actuators dynamic response is fast with respect
to the system nominal working frequencies. However, it is possible to apply the following
analysis including variations on the function definition if these are assumed instantaneous,
or the update frequency is higher than the controller one. If these conditions are met, the
following analysis is still applicable, since the system will have a compliant effectiveness
B at each time instant. If the above hypothesis are considered, B can be represented
as an n × m matrix, a linear mapping that connects control space (Rm) and moment
space (Rn). Each ith column of B will correspond to ui, thus determining whether the
considered effort can generate a torque in the n directions. So, for example, if the ith

column of B has a zero entry in the jth row, the actuator ui is not able to generate a
torque in the jth direction.
Regarding control allocation, the trivial problem is represented by having m = n, thus
meaning that the distribution has only one solution, which can be determined by solving
the linear system m = Bu with the effectiveness matrix being square. Though extremely
simple and straightforward, this problem rarely represents a real case, where spacecrafts
are equipped with multiple actuators for redundancy and failure occurrence. Moreover,
redundant actuator architectures generate a more flexible and robust system, which are
two vital aspects in space operations. Regarding specifically in-orbit servicing, redundancy
is required to have a precise pointing accuracy and adaptable system to cope with different
actions and activities. For example, modular and cellularized spacecrafts are inherently
defined by groups of redundant actuators. Therefore, the studied case will consider m > n,
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which implies that the linear system m = Bu has an infinite number of solutions. Of
course the case m < n is degenerate, since the actuator degrees of freedom are not able to
generate independently an action in all n directions, which is not admissible in most of in-
orbit applications. In addition to reliability, redundancy in the system adds the possibility
of cost minimization, for example propellant mass or moment storage, which can be a
driver in the mission. Therefore, control allocation is the investigation of an optimal set
of control commands on the actuator sets among the different multiple solutions that can
generate the required control torque while taking into account other factors important to
the mission. The problem can be stated as reported in Equation (2.1).

find u s.t.


m−Bu = 0

p is minimum

ui
min ≤ ui ≤ ui

max for i = 1 : m

(2.1)

Where p is a scalar cost function. On the other hand, ui
min and ui

max define the feasible
range boundaries of the control variable ui. This interval represents the actuator hardware
limitations, namely maximum and minimum efforts. These minimum and maximum
values, for each control variable, generate a feasible enclosed subset of the control space
named Ω admissible or feasible control set, defined as:

Ω = {u ∈ Rm|ui
min ≤ u ≤ ui

max for i = 1 : m} ∈ Rm (2.2)

The subset is closed and bounded and represents a geometrical m-dimensional (m-D)
polyhedron of feasible and admissible control, specifically it is the envelope of possible
control efforts. The contour ∂Ω represents, instead, the region where at least one actuator
has reached saturation, thus umin or umax. If a linear mapping is considered, it is possible
to defined the n-D subset Φ which corresponds to Ω, called attainable moment set, which
is the torque envelope the system can generate through its actuator configuration. Since
B is linear time invariant, also Φ will be an enclosed and bounded subset. Moments
which lie on the boundary of Φ are denoted by ∂Φ, and represent the maximum torque
the actuators can generate in a specific direction. Before introducing the analysis of the
different methods, it is necessary to identify some key elements:

• The degree of redundancy is defined as m−n and it expresses how much redundant
is the actuator configuration. In the studied work frame, it is lower bounded to
zero.

• A subspace is a lower dimensional portion of a higher dimensional space.
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• Linear variety is a subspace which may have been translated from the origin. An
n-dimensional linear variety is referred to as an n-flat.

• Residual mresidual is the numerical discrepancy from required to produced torque:
mresidual = m−Bu.

In conclusion, each strategy is evaluated and compared each other under three main
aspects: the computational efficiency and cost minimization, which are key for in-orbit
operations, and accuracy in the problem solution reported in Equation (2.1).

2.2. Generalized Inverse (GI)

The first method to be analyzed is the rather trivial and most straightforward allocation
through the Generalized Inverse. This strategy involves the generation of a matrix P

which satisfies the equation BP = In, where In is an identity matrix nxn, while the
matrix P will be mxn. P forms a basis for an n-dimensional subspace of Rm, called
Ps. Since this basis contains the origin, and as long as the origin is contained within
Ω, these two elements are guaranteed to intersect. It is necessary to underline one of
the requirements the control space has to cope with: Ω must contain the origin. By
mapping the intersection set using B, all the moments for which the generalized inverse
will allocate admissible controls can be seen. A simple and effective way to specify the
Generalized Inverse is through the implementation of the pseudo-inverse. It solves through
the minimization of the l2 norm of the control variable vector. The problem statement is
the following:

Minimize uTu s.t. Bu = m (2.3)

The problem is solved by defining a scalar function H(u, λ) such that:

H(u, λ) =
1

2
uTu+ λT (m−Bu) (2.4)

Where λ is a nx1 vector of Langrange multipliers which enforces the constraints on the
problem. Hence, the partial derivatives with respect to u and λ of H are computed:

∂H(u,λ)

∂u
= uT − λTB

∂H(u,λ)

∂λ
= m−Bu

(2.5)
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If the two equations are equal to zero, then a minimum is found with respect to H:{
u = BTλ

Bu = m
(2.6)

By plugging the first equation shown in Equation (2.6) into the second one, it is possible
to solve for λ, therefore the solution u can be calculated:{

λ = (BBT )−1m

u = BT (BBT )−1m
(2.7)

Hence, a solution u is found by solving a minimum problem. Some important remarks
can be stated:

• (BBT )−1 is an n× n matrix invertible if the effectiveness matrix has rank n.

• In this case the matrix BT (BBT )−1 is the Generalized Inverse matrix P .

• BP = In,
∂2H(u,λ)

∂2u
= 1 and

∂2H(u,λ)

∂2λ
= 0, so the solution computed is a

minimum.

The presented method is just one of the infinite possible solutions of the allocation prob-
lem. However, when specifying the generalized inverse, it is not possible to define freely
all m×n elements, since it is required BP = In to be granted. When a generalized inverse
is identified, an n-D subspace in an m-flat is defined as well. Therefore the number of
degrees of freedom is (m− n)(n+ 1). Moreover, if the flat has a set of points to be fixed,
the DOFs decreases as (m− n)(n− p+ 1) where p is the number of fixed points. In this
case, since the GI is a subspace, the origin is fixed. Finally, the overall number of DOFs
is (m− n)n.
Another strategy to build the generalized inverse is through the implementation of a
weighting matrix W , which gives P = W (BW )T [BW (BW )T ]−1. A diagonal matrix is
typically used to represent W because it has a clear and intuitive interpretation. Each
diagonal value measures how heavily weighted and preferred is one particular control
degree of freedom with respect the others. If this procedure could give more flexibility
regarding the limitations on the control and a way of expressing preference in the actuator
activation, it is not efficient in terms of total tunable variables. In fact, for a diagonal
matrix, there are m variable coefficients. For example, for four control variables and three
torques, P has three DOFs, while W has four, thus meaning that there are generalized in-
verse which can not be generated through W . Even though this strategy can easily find a
solution to the allocation problem, it is affected by multiple limitations. First, it does not
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include the cost minimization, as it just focuses on the minimization of the control vector
l2 norm. Of course, the two aspects are generally correlated, but this method does not
explicitly take the cost problem into consideration, shading part of the control allocation
problem. Secondly, in the shown procedure, control value feasibility did not take part
in the computations. Therefore the GI of a certain m may solve the problem with the
generation of an unfeasible control vector, with elements that exceed the nominal working
regime. It is required, then, a post process to enforce "manually" the actuator limitations
onto the solution found. This will generate a residual error vector between the required
torque and provided one. This major limitation affects intrinsically the method, and it
is particularly detrimental since not only there may be a residual in terms of magnitude,
but also direction, thus generating a coarse control response in the loop. On the other
hand, as Algorithm 2.1 shows, it is clear to see the great advantage this strategy has,
which is the simplicity and computational speed.

Algorithm 2.1 Generalized Inverse through the Pseudo-Inverse
1: Given B, m and the boundaries umin and umax

2: Compute the pseudo-inverse P = BT (BBT )−1

3: Compute the control vector u = Pm

4: for i = 1 : m do
5: if ui exceeds saturation then
6: ui = ui

min or ui
max

7: end if
8: end for
9: Compute the residual mresidual = m−Bu

In conclusion, it is possible to see the GI through pseudo-inverse as as fast and rough
allocation that disregards the geometrical definition of control and moment spaces. This
method, then, is particularly useful when actuators are not affected by tight feasibility
ranges, and fast solution must be computed.

2.3. Cascade Generalized Inverse (CGI)

In order to cope with the limitations regarding the Generalized Inverse [5], the CGI
exploits the intrinsic redundancy of the system and redistribute the residual on the set
of actuators that are not saturated. This is performed iteratively until all efforts are
at maximum acceptable value or the residual is under required tolerance. The Cascade
Generalized Inverse computes the solution through a specific GI, then checks each control
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variable ui of the vector u. If it exceeds the valid range, namely it is greater than
the saturation level, the value is brought to saturation. The control vector u will not
produce the required torque, hence the residual is computed. This quantity is now fed
again as input torque m into the control allocation scheme. This time, however, the
effectiveness matrix is modified in order to omit the saturated actuator in the problem
solving. Mathematically, this means removing the column Bi of the effectiveness matrix
which corresponds to ui that is at its limit value. Again, the distribution is performed
through the Generalized Inverse, and exceeded variables are brought to saturation. The
residual is newly computed and redistributed onto the set of available actuators. The
effect of this redistribution effort is to enlarge the region in moment space for which the
scheme will allocate admissible controls.
Even though the CGI is more capable, with respect to the GI, of coping with actuator
limitations, and exploits in a more efficient way the redundant nature of the system,
still it is an indirect way to solve the allocation problem, since the user is not able to
actually impose the actuator range in a straight forward manner, but iteratively tries to
lower the residual until the set of actuators are capable of coping with the redistribution.
Moreover, it is key to understand that this procedure can be followed as long as the degree
of redundancy m−n ≥ 0, thus meaning that a reallocation is possible if the actuators left
are able to actually produce the required residual torque. Therefore the residual at the
end of the iterative cycle may be still nonzero. This procedure can be used with either
pseudo-inverse, or generalized inverse weighted with a diagonal N matrix.

Algorithm 2.2 Cascade Generalized Inverse through the Pseudo-Inverse
1: Given B, m and the boundaries umin and umax

2: Compute m0
res and u through the GI algorithm

3: while ||mk
res|| > tolerance or rank(B) ≥ n do

4: Omit the column of B that corresponds to a saturated actuator
5: Perform GI with m = mk

res and reduced B

6: Compute uk+1 = u+uk which is the accumulation of the control effort after each
redistribution

7: Compute the new residual as mk+1
res = m−Buk+1

8: end while

Even though this method is extremely intuitive, straightforward and easy to implement,
it lacks of flexibility and does not consider again direct cost minimization. Moreover, as
the GI, saturation constraints are manually applied to the solution, which may lead to a
loss in the accuracy. In fact, the residual may be still both in magnitude and direction.
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However, it is a step forward a more efficient solution with the basic GI, as the system is
now more robust when it comes to deal with unattainable moments.

2.4. Null-Space solution (NS)

The Null-Space intersection method is particularly useful when tight constraints on the
control variables are present, namely, configurations which have a particular definition of
the feasible region Ω, or the control subspace does not comprise the surrounding of the
origin. It is, then, through the effectiveness that the effort is translated into a torque.
Considering RCTs with fixed orientation, for example, each thruster can generate, in its
relative reference frame, only a contribution in one positive direction. Hence, Ω can ap-
proach the origin of Rm only from a positive region. With this particular configuration,
the implementation of a Generalized Inverse could generate a negative output in the con-
trol vector u, which does not meet the actuators constraints. The manual post process
may require multiple actuators to saturation and the residual would be unbearable. Ge-
ometrically, if an allocation scheme asks a control to exceed its limit, then the vector
position is outside the control space. The Null-Space solution is based on the traslation of
the feasible control region Ω in order to intersect the required control vector while meeting
up with the actuator constraints. In other words, it is possible to consider the Null-Space
as a set of particular active actuator configurations different from zero that will generate
a net zero torque or zero torque variation Bunull = 0. By summing a null configuration
and the particular one required for the control, a new solution is generated such that both
control and actuator requirements are satisfied, as state in Equation (2.8).

m = Bup +Bunull with up = Pm (2.8)

The new control vector will be a combination of the effort required by the null space
and the one required to solve the control allocation. Geometrically, this operation can be
seen as a translation of Ω of a quantity defined by unull, an m− n flat, thus shifting the
feasible region and, possibly, intersecting the solution vector. This operation is granted
by the fact that, for an n×m matrix B with rank equal to n, there exist a set of m− n

orthonormal vectors which forms a matrix m× (m− n), the Null Space2 N of B, which
is orhtogonal to P , the pseudo-inverse of B. Therefore it is possible to build the solution
as a linear combination of the two contributions.
In order to find the vector unull, it is necessary to partition the solution obtained from

2This matrix can be easily computed through singular-value decomposition with the Matlab function
null.
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the pseudo-inverse up into two parts containing the saturated and feasible elements of
the vector, respectively us and uf . The same procedure is applied for N , thus Ns and
Nf are computed. The null control vector can be found as reported in Equation (2.9),
with PNs being the pseudo-inverse of Nf , while ulim the vector corresponding to us with
entries equivalent to the saturated values3.

unull = N(PNs(ulim − us)) (2.9)

The presented method can be, although intuitive, quite expensive in terms of computa-
tional cost, since the different combinations of maximum and minimum values have to be
tested in ulim to find the feasible solution. Instead of applying the whole algorithm, it is
possible to simplify the allocation problem, for a certain configuration of B. Considering
the RCTs, the effectiveness matrix may be characterized in a way such that, if u has the
same value for each component, the net torque is zero, because coupled nozzle will gener-
ate the same but opposite force. Hence a particular feasible solution unull is immediately
available, it will be characterized by a vector m× 1 of same values, corresponding to the
effort of u that is the furthest from the feasible region, which is going to be, generally,
the most negative for the RCT case4. Therefore the final solution will have the minimum
negative brought to zero, and the overall effort of the other actuators incremented. This
process is extremely straightforward and simple but it is fundamental to understand that
this shift needs to be applied to the whole control vector. If an actuator is particularly
loaded, meaning that ui is close to the saturation level, the added null contribution may
let it exceed feasible range. It is still necessary a post process to ensure that u is still
bounded within ∂Ω. In Figure 2.1, an intuitive visualization of the the null vector sum
operation is presented in a 2-D plot. As the orange axis shows, the application of the null
vector can be seen as a general translation of the zero axis, so that the overall control
effort will be brought to higher values, but compliant with the feasible ranges. As Algo-
rithm 2.3 illustrates instead, the procedure can be seen as a particular case of post process
in the Generalized Inverse method, where the actuator constraints are imposed through
the null vector, while, in the GI, this is performed by checking each component of the
control vector and enforce the saturation. In conclusion, it is clear to see that the method
is extremely light regarding the computational cost, in expense of a higher general effort
of the control vector, which could go against the mission cost minimization.

3Thorough explanation can be found in [5].
4This explanation is delineated to introduce the architecture in Section 3.1.
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Figure 2.1: Visualization of the null vector sum effect

Algorithm 2.3 Null-Space allocation for lower bounded control vector - RCT example
1: Given B, m and the boundaries umin and umax

2: Compute up through the GI algorithm
3: Compute the u = up + |min(up)|
4: Post process the result to check if the opposite saturation limit is reached

2.5. Direct Allocation (DA) and Pseudo-Direct Alloca-

tion (pDA)

The direct allocation method considers the direction of the required torque in the attain-
able moment set in Φ, it projects the unitary vector onto the control space in Ω and scales
the magnitude to match ||m|| or to intersect the boundary ∂Ω. Therefore the produced
torque will be equal to the target one or, if it is not attainable through feasible range, the
direction will coincide and the magnitude will be scaled to the maximum the actuators can
provide. In order to implement this method, Φ has to possess two geometrical features:

• It must contain the origin and be convex.

• Points on the boundary of Φ correspond to unique points on the boundary of Ω.

The first condition is required in order to have a generic vector always intersect ∂Φ once or
be completely enclosed in the volume of the attainable moment space. This requirement
can be verified through Ω. If all controls in exam have positive and negative position
limits, the origin of the control space is contained within Ω. Since a linear mapping B is
being considered, if the origin in Rm is contained within Ω, then the origin of Rn will be
contained in Φ as well. It is possible however, that a set of particular actuators is defined
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such that the position limits spans only a positive or negative range. For example, fixed
RCTs can go from 0 to maximum thrust. If this kind of situation occurs, it is necessary
to shift the control limits such that the origin is contained in the control space. This shift
can be obtained by adding a constant value ∆u to the control variable vector such that:

umin
i +∆ui ≤ ui +∆ui ≤ umax

i +∆ui

umin
i ≤ ui ≤ umax

i

(2.10)

Therefore a new set of control variables, u′, along with a new desired moment m′ are
defined:

m′ = m+B∆u

u′ = u+∆u
(2.11)

On the other hand, to ensure the convexity of Φ, it is sufficient that Ω is convex5, which
is granted as long as the position limits of the actuators can be represented as planes in
Rm. In other words, it is sufficient that the variables are defined as umin

i ≤ ui ≤ umax
i .

Regarding the second requirement, which states that every point of ∂Φ corresponds to
unique points in ∂Ω, it is necessary that every n × n submatrix of B is full rank, thus
meaning that each subset must be able to generate a torque in n-D directions. This is
a stricter requirement over the actuators configuration, since it is necessary that each
combinations of n actuators, and their respective columns of B must be able to solve
the allocation m = Bu. Configurations that are able to cope with this requirements are
called purely redundant. In other words, the addition of actuators is considered only for a
reliability purpose, or to increase the overall attainable moment set in terms of magnitude
and not direction.
The technique of Direct Allocation can be applied to any problem where the degree of
redundancy is greater than one. It requires the boundary of Φ to be determined to find the
intersection of the torque m with ∂Φ. A way to perform this operation would be to map
all the vertices of the m-D polyhedron Ω into the moment space, and have a projection of
the whole attainable moment set but that is extremely heavy in terms of computational
cost. One could possibly compute this projection "offline" to save computational effort,
but the algorithm would still require to search through the entire boundary surface.
Considering the geometry of Ω, instead, it is possible to define a way to perform the
aforementioned operation, in an easier and more efficient manner. To better display the
process, n = 3 case is studied. Therefore, n− 1-D objects are 2-D faces, or planes, which

5The proof can be found in [5].
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corresponds to two control free variables and m−2 fixed. All the possible combinations of
couples among the m variables, while the other are set to their maximum and minimum
values, represent all the faces of Ω. These faces are parallel when the same two controls
are varying in Rm. The face that belongs to ∂Ω is called facet. To align an axis of Rn

perpendicular to a set of parallel faces, consider a nxn transformation matrix T . The
rotated matrix will be TB. Since only one axis is to be specified, it is necessary for the
algorithm one row t of TB. The ith and jth elements of u are considered, while the other
m−2 are fixed. In order to find the rotation which will align m̂, the unitary vector of m,
perpendicular to a set of faces, tBi and tBj must be zero, where Bi,j are the columns
of the effectiveness matrix corresponding to the given indexes. Hence the vector t can be
computed as6:

[
Bi1 Bi2

Bj1 Bj2

] [
t1

t2

]
+ t3

[
Bi3

Bj3

]
= 0 (2.12)

Where t3 can be chosen arbitrarily (typically 1). If the built system is not full rank, the
perpendicular vector can be found considering the other two 2×2 matrices, since the 3×3

submatrix of B is full ranked. Once compute the quantity tB, the result will be a row
vector with zero values in the respective i, j positions, which corresponds to the couple
taken into account. The other vector elements, on the other hand, will have positive and
negative values. With this information, it is possible to build a combination of three
distinct control vectors u1, u2 and u3, which define the vertex of a facet in m-D space.
All the m − 2 elements are brought to their minimum or maximum value depending on
the sign reported in the tB vector correspondent position, while the i, j elements will
take a combination of minimum-maximum values to have the three distinct vectors. For
example, if i = 1 and j = 2 the three vectors would take the following form:

u1 =

 umin

umin

umin/max

 u2 =

 umin

umax

umin/max

 u3 =

 umax

umin

umin/max

 (2.13)

Where umin/max represents the m − 2 vector of minimum-maximum entries depending
on the sign reported in tB. Once the three vectors are computed, the correspondent
quantities in moment space are calculated through the linear mapping:

m1 = Bu1 m2 = Bu2 m3 = Bu3 (2.14)
6Ibid [5]
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As in control space, also in moment space the three vectors define the vertex of a facet.
The actual facet can be computed considering the three following vectors:

 m1

m1−2 = m1 −m2

m1−3 = m1 −m3

 (2.15)

Figure 2.2: Facet of attainable moment set in Rn for a generic triad ijk

Now, it is necessary to check if the required torque lies onto the facet the three vectors
identify (Figure 2.2). For a generic vector m∗ to belong onto the face, it is necessary
that the system reported in Equation (2.16) is satisfied, which states that the required
torque, the product between the unitary vector and its magnitude, is a linear combination
of three vectors.


am̂∗ = m1 + bm1−2 + cm1−3

0 ≤ b ≤ 1

0 ≤ c ≤ 1

(2.16)

The constraints on b and c enforce the direction m̂∗ to intersect the currently considered
facet. Therefore it is possible to solve the equation and check if the constants are compliant
with the constraints:
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[
m̂∗ −m1−2 −m1−3

]  a

b

c

 = m1 (2.17)

If a > 0 and the constraints in Equation (2.16) are satisfied, the required torque lies on
the considered facet, otherwise, it is necessary to perform the same process with another
couple of actuators. To compute the correct control u, since B is linear, it is sufficient to
operate the same projection:

u∗ = u1 + bu1−2 + cu1−3 (2.18)

u∗ corresponds to the maximum attainable torque in the direction parallel to m. if the
required moment is feasible, then a ≥ ||m|| and the correct control variable output would
be:

u = u∗||m||/a (2.19)

Hence, the scaling is applied to meet the performance requirements. If a < ||m||, the re-
quired moment lies outside the feasible region and thus u∗ is the final result. In this case,
it is easy to understand that the computed torque will not meet with the controller re-
quirements, but the direction is nonetheless preserved. If the conditions in Equation (2.16)
are not met, a new couple of variables in u have to be considered, and the whole process
is repeated.
With this procedure the control vector u can be efficiently computed without the knowl-
edge of all the conformation of ∂Φ. In addition, it can maintain the correct direction of
the produced moment when this is not attainable, thus meaning that the residual will
only be present in terms of magnitude. Even though the method can provide an optimal
solution, it is affected by strict hypothesis in the definition of the effectiveness matrix,
which limits its applications in real actuator configurations. Especially, if each n×n sub-
matrix of the effectiveness is not full ranked, it is possible to apply this method loosening
the restriction, in expense of having the probability of finding a sub-optimal solution.
Consider, for example, a system which does not satisfy the second hypothesis. In this
case the method is still applied with three important aspects:

• It is not always possible to find the perpendicular vector t.

• The product tB may not have only two zero entries in the i, j positions.
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• Constraints in Equation (2.16) may not be satisfied for each combinations of actuator
couples due to other zero entries in tB, thus leading to an approximation of the
direction of m.

Mathematically, the relaxation of the above hypothesis can lead to an error in the check of
the facets, and it is possible that the direction m̂ will not belong to any of the planes com-
puted, in other words that the constraints in Equation (2.16) are not satisfied. With these
considerations, the method can still be applied taking into account all the outputs given
by the different couples and selecting the one which suites the best the user requirements,
for example, the output that minimizes the residual or a cost function.

Algorithm 2.4 Direct allocation
1: Given B, m, ncouples, tB for each ncouples, saturation levels umax and umax

2: for i = 1 : ncouples do
3: index0 = find(tB = 0)
4: indexmax = find(tB > 0)
5: indexmin = find(tB < 0)
6: Create u1, u2 and u3 considering umax and umin in positions indexmax and

indexmin

7: Compute m1, m2 and m3

8: Solve the linear system [m̂−m1−2 −m1−3][a b c]T = m1

9: if 0 ≤ b ≤ 1 and 0 ≤ c ≤ 1 then
10: u∗ = u1 + bu1−2 + cu1−3

11: if a ≥ ||m|| then
12: u = u∗||m||/a
13: Break cycle
14: else
15: u = u∗

16: Break cycle
17: end if
18: else
19: Proceed with the next couple of actuators
20: end if
21: end for

The Algorithm 2.4 reports the procedure for the Direct Allocation method. If the pseudo
Direct Allocation is used, instead, line 9 is not implemented. Instead, for example, a
check on the feasibility of the solution u calculated can be used. Then, the cycle does
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not break but all combinations outputs are stored and the suited option is taken as final
result. As selector to choose among the solutions, it is possible to use an external index
which directly depends on the actuator efforts (in RCTs, for example, the propellant mass
flow rate to be minimum). In conclusion, it is important to underline that pDA is less
effective when dealing with unattainable moments. If the input unfeasible solution is far
greater than what the actuators can produce, and the substitute check is used, it may
occur that no output is computed, since the solution, during the cycle, is stored only if
it satisfies the actuator ranges. One could ease these constraints with a certain tolerance
and, through a post process, enforce the necessary boundaries, with a possible loss in
the direction match between required and furnished torque (which is the strength of this
method). If m is instead in the neighborhood of ∂Φ, the output should be found as stated
in line 15 in Algorithm 2.4. Even though the strict definition, this method actually takes
into account the geometrical view of the problem, as the feasible actuator range have a
key role in the computations.

2.6. Allocation through function minimization

The previous methods try to resolve the allocation problem by looking directly into the
definition of Φ and Ω, feasibility and the generation of a control effort to cope with the
required moment. Hence the driver of the problem was the compliance m = Bu, namely
the accuracy, while the mission cost is completely disregarded or it is affected indirectly.
The dual side of the problem is selecting as a driver the minimization of a scalar function
that represents a vital aspect of a mission, namely p. The resulting control vector will
be the one that minimizes p while taking into consideration the saturation constraints.
This scalar value may represent propellant mass consumption, or momentum storage
increment, depending on the application, but the procedure is general. This family of
allocators collects the different algorithms that solve the following problem:

minimizeu p s.t

{
umin ≤ u ≤ umax

m = Bu
(2.20)

Which is a manipulation of the problem stated in Equation (2.1). The main difference
is that now the focus is brought onto the minimization of p, and the consequent defini-
tion of u in compliant ranges. The research is then carried out through feasible regions
determined by the active constraints, for example the valid actuator ranges. If the mini-
mum investigation will move towards an unfeasible region, a function, called barrier, will
increase the objective cost, thus leading the process back to a feasible region. Some of
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these algorithms, since they are based on an iterative method, require an initial guess
solution of the input variable which will generate an estimate of the cost function. The
dependency on an initial point highly affects the solution found, since it will dictate the
course of the research, which could be close to a local minimum where the algorithm "may
fall", thus not finding the absolute optimal solution. An example of such algorithms is the
Linear Programming (LP) [4], which solves the linear problem stated in Equation (2.21).

minimizeu fTu s.t

{
umin ≤ u ≤ umax

Bu = m
(2.21)

In this case, the cost function is directly defined by the sum of the control variables
each multiplied by a weighting factor. The resolution is performed through the Matlab

built-in function linprog. In the problem formulation, it is also possible to add a set of
inequality constraints, which are not required for the allocation problem solution. If the
cost function can not take the form expressed in Equation (2.21) or the problem is affected
by non-linear constraints, another algorithm shall be implemented, such as the built-in
function fmincon, which can solve directly Equation (2.20). The key vantage of these
kinds of methods is that the optimal solution, starting from the "correct" initial guess,
is calculated. On the other hand, they are affected by two major detrimental factors.
Not only they are generally computationally heavy algorithms, but also are not able to
cope with unattainable moments. If Direct Allocation is considered, for example, it is
capable of preserving the direction of the required torque, while the magnitude will be
the maximum actuators can provide. If solution lies in unfeasible regions, the algorithm
will not be able to converge, and coarse output, or even no result may be produced.
Regarding the advantages that this type of algorithms present, they are characterized by
an intuitive and straight implementation of feasibility regions, and may take into account
multiple, different constraints at the same time.

2.7. Weighted Least Square solution (WLS)

The whole set of methods seen so far have a common feature, which is the focus on one
respective aspect of the control allocation problem. In fact, the solution can be accuracy
or cost-driven, meaning that the problem is solved giving attention to, for example, how
the allocation is accurately describing the required torque, minimizing the residual, while
affecting indirectly the second part, which is cost minimization. The same is applied vice
versa. This matter can be considered both an advantage or a limitation depending on the
applications and mission requirements. It is possible to define a method such that both



34 2| Control allocation methodologies

aspects are considered at the same time, giving the user the possibility to select which
aspect is to be prioritized. Particularly suitable for this kind of problem is the optimal
solution through Weighted Least Square minimization7, which merges the two drivers into
a single cost function, as written in Equation (2.22).

u = arg minumin≤u≤umax γ||Wa(Bu−m)||2 + ||Wp(u− up)||2 (2.22)

The above problem statement declares that the solution will be a trade-off between the
two 2-norm cost functions. The first part represents the accuracy of the solution, which
is the residual. The second part, instead, represents the cost minimization, stated as the
difference between the control command set u and the desired one up. Concerning space
applications, the actuators effort can be generally linked to the parameter, or cost, that is
necessary to minimize, such as power or propellant consumption. By reducing the overall
intensity of the variables in u, it will eventually reduce the cost. If RCTs are considered,
for example, each element in the control vector can be seen as the fraction of thrust the
engine can exert. If all the thrusters are the same, then 0 ≤ u ≤ 1, where the lower
bound represents the switched off condition, and the upper one maximum thrust. The
same thrust is linked to the propellant mass flow rate of each nozzle through the specific
impulse, which can be assumed, for the analysis, to be constant:

ṁprop =
T

Ispg0
(2.23)

Therefore, the linear dependency, as Equation (2.23) shows, demonstrates that the lower
each actuator effort, the lower the consumption. Moreover it is possible to state, mathe-
matically, that:

• For each x, if f(x) ≥ min(f(x)) and g(x) ≥ min(g(x))

• f(x) + g(x) ≥ min(f(x)) +min(g(x))

• min(f(x) + g(x)) ≥ min(f(x)) +min(g(x))

Which corresponds to the RCTs case, where ui is lower bounded with 0, being the absolute
minimum. The sum of each effort, if minimum, will guarantee the minimum for the overall
propellant mass consumed. Thus, the cost minimization (propellant for RCTs) is directly
present in the problem definition, if up is selected to be a zero entries vector, representing
the minimum possible effort of the actuators. The same discussion can be done for

7Nomenclature and procedure are followed as in [18].
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the reaction wheels. Of course, it is clear to see that, if only the cost minimization is
considered, represented in Equation (2.22) by the second part, the optimal solution will
be a null control vector, which goes against the attitude control problem (first part in
Equation (2.22)). The combination of the two contributions, which represents a trade-off
between cost savings and accuracy, shows the great utility of the method: the freedom
given to the user to select, depending on the mission requirements, the characterization of
the allocator. The solution obtained could guarantee lower accuracy but save propellant
or vice versa.
Each quantity in Equation (2.22) is then multiplied by a weighting factor, respectively
Wa ∈ Rn×n which defines how relevant each element of the residual vector has to be with
respect to the overall cost, and Wp ∈ Rm×m, which states the same but applied on the
control variables in u. Generally for simplicity, these matrices are diagonal and have
the same values if no prioritization is required among control DOFs. Moreover, γ is an
additional constant to further highlight the accuracy total cost with respect the other
one. Generally γ should be greater than 106, otherwise the solution could be unfeasible
or the residual would be too high. This parameter is introduced due to the fact that,
generally, the accuracy has to be more relevant with respect to cost minimization to avoid
the condition in which the solution gets too close to the null, but feasible, solution up.
In order to solve the WLS, an Active Set Algorithm is implemented8 which rewrites
the cost function in Equation (2.22) as follows:

γ||Wa(Bu−m)||2 + ||Wp(u− up)||2 = ||Au− b||2 (2.24)

A =

[
γWaB

Wp

]
, b =

[
γWam

Wpup

]
(2.25)

And solves:

u = argmin||Au− b|| s.t. umin ≤ u ≤ umax (2.26)

The algorithm solves the minimization problem through a sequential resolution of equal-
ity constrained problems. At each iteration, some inequality constraints are treated as
equality, defining the working set WS, while the other are not considered. The optimum
investigation is carried out by perturbing of a quantity p the result of the previous it-
eration thus computing uk+1 = uk + p. The residual is updated as well with the new

8Ibid in [18]
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solution. If uk+1 is not compliant with the constraints, a constant α is defined such that
uk+1 = uk + αp is feasible, where α represents the closest distance among the actuator
variables, between their values and respective boundaries. This operation is necessary in
order to have the variable brought to saturation. The correspondent element is, then,
omitted from the working set, as it is fixed. The process is repeated until a certain num-
ber of actuator variables, that generate an unfeasible solution after the perturbation, are
eliminated from the working set. Once a feasible solution is found, it is necessary to check
the compliance with the problem constraint Au−b, which is carried out by calculating the
lagrangian multipliers λ associated with the problem. Since the problem is describing a
quadratic programming (Equation (2.24)), with the minimization of the squared norm of
the cost function, a necessary condition that ensures an optimal solution, as stated in [17],
is that all components of λ are strictly non-negative. If a certain number of multipliers are
negative, it is then necessary to deactive the constraint associated with the most negative
λ. For the algorithm initialization, a feasible initial guess should be implemented for fast
convergence, since the algorithm depend on the residual d = Au − b. In Algorithm 2.5
the procedure for computing the WLS solution is shown.
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Algorithm 2.5 Weighted Least Square with Actibe Set Algorithm
1: Given A, b, u0, saturation levels umin and umax

2: Define WS which contains the active inequality constraints at u0

3: Compute the initial error d0 = b− Au

4: for k = 1 : niter do
5: Define the matrix A which corresponds to WS

6: Solve the equation Ap = d

7: Apply the perturbation onto the variable uk

8: if uk + p is feasible then
9: uk+1 = uk + p

10: Update d = d− Ap

11: Compute Lagrangian multipliers λ = WS(ATd)

12: if λ ≥ 0 then
13: uk+1 is the optimal solution, break the cycle
14: else
15: Remove the constraint associated with the most negative λ from the working

set
16: end if
17: else
18: Compute α such that uk+1 = uk + αp is feasible.
19: end if
20: end for

The initial working set can contain all the actuator DOFs, then a part of them will be
excluded during the cycle. The algorithm is able to compute efficiently and rapidly an
optimal solution, with the unique feature of a direct control on both aspect of the control
allocation problem, which gives high flexibility and freedom to the user.

2.8. Strategies comparison

All the described methods have their own points of strength and weakness. It is necessary
to highlight them through a real implementation on a set of redundant actuators. To
perform this task, a series of simulations are executed, with same conditions for actuator
architecture, orbital elements, pointing requirements and control logic, namely merging all
the information from Chapter 1 and the control allocation algorithms. In the simulation,
a spacecraft is required to follow a prescribed target attitude against perturbation using
the set of redundant actuator at disposal. The control allocation will be assigned to
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the different methodologies. To evaluate the strategies and have a numerical comparison
between each other, a set of key parameters are selected, that generally represent the
accuracy, efficiency and optimality of the algorithms:

• The cost, which can be represented by a scalar value, such as propellant mass, vital
to the mission life span.

• Pointing accuracy, as the norm of the error between target and body attitude in
terms of Rodrigues parameters.

• The residual, namely the error between required and produced torque, which eval-
uates how precisely the solution is calculated.

• The computational efficiency, which will take into account how much time the sim-
ulation takes to complete.

In addition, the behaviour when dealing with unattainable moments is examined to assess
the reliability of the allocation in critical conditions. The methodologies are divided
into two groups, applied respectively onto RW and RCT, whose effort is assumed to
be continuous. On the first set of actuator the GI, CGI, DA and WLS methods are
implemented. On the other hand, for RCT, the NS, LP, pDA and WLS are used. For
each algorithm, three operating orbits are chosen to span different working conditions:

SSO Dawn-Dusk GTO GEO

Perigee Altitude [km] 500 180 35786

Eccentricity [-] 0 0.6 0

Inclination [°] 90 0 0

Perigee anomaly [°] 0 0 0

RAAN [°] 0 0 0

Table 2.1: Orbital elements for the simulations

2.8.1. RW allocation comparison

Before introducing the evaluation, it is necessary to show the configuration of the wheels,
which is reported in Equation (2.27).
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B =

 0.579 −0.579 −0.579 0.579

−0.579 −0.579 0.579 0.579

0.579 −0.579 −0.579 0.579

 and − 0.2 ≤ u ≤ 0.2 (2.27)

As reported in the above equation, each column of the effectiveness matrix represents the
orientation of each of the four wheels, in the three directions xyz. Each row, instead,
represents the contribution of the wheels to generate a torque in the specific direction.
B has no zero entry, meaning that all the wheels provide a moment in each direction,
and that the architecture is purely redundant9. Additionally, the degree of redundancy is
equal to 1. In conclusion saturation levels limit the effort of the actuators in a feasible,
bounded region. The simulation time considered is 50000s, starting from a matching
condition between target and body attitude.
Regarding the SSO scenario, the low altitude will generate intense perturbation due to
pressure drag and gravity gradient. So, generally, the effort of the actuators will be greater
with respect to, for example, the GEO case.

SSO Dawn Dusk GI CGI DA WLS

Storage at tf [s] 20.79 20.79 20.57 19.17

Mean pointing error [arcsec] 116.86 116.86 116.90 116.86

Mean residual [Nm] ∼0.00 ∼0.00 ∼0.00 ∼0.00

Computational time ratio [-] 0.90 0.90 0.99 1.00

Table 2.2: Performance evaluation for SSO case

As Table 2.2 shows10, the GI and CGI methods solves the allocation problem faster than
the other two, in expense of a more rough optimization, since the storage at the end of
the mission is higher. On the other hand, DA and WLS are able to reduce the cost with
a higher computational time. Generally, regarding this scenario, the four methodologies
are able to solve the allocation problem, as the residual and the pointing accuracy, in-
trinsically linked, are reasonably low, thus meaning that the required torque always lie
within Φ. Even though the difference in the results do not seem relevant, the life span
of years of a in-orbit servicing mission could benefit greatly with the efficiency increment
of WLS or DA. For example, the first storage saturation occurrence is delayed by three

9It is therefore possible to apply the strict Direct Allocation method.
10The results are reported in terms of ratio between the algorithm computational time and the maxi-

mum one to decouple the evaluation from the machine efficiency that tested the algorithms.
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hours using WLS with respect to GI.

GTO GI CGI DA WLS

Storage at tf [s] 30.80 30.80 29.90 28.83

Mean pointing error [arcsec] 31.31 31.31 29.08 29.08

Mean residual [Nm] ∼0.00 ∼0.00 ∼0.00 ∼0.00

Computational time ratio [-] 0.89 0.89 0.96 1.00

Table 2.3: Performance evaluation for GTO case

In GTO case, a similar trend is shown in Table 2.3. First, as in the SSO case, both GI
and CGI perform equally, since no saturated wheels is detected during the allocation.
Secondly, the performance are comparable to the previous case, where DA and WLS are
more accurate but slow compared to GI and CGI and vice versa. The difference in the
strategies is more marked due to the increment in the perturbation elements, especially
atmosphere drag, being the perigee of the orbit at 180 km. Even though each algorithm
is able to cope with the required torque, the storage is rather different, making the WLS
the best choice, but the less computationally efficient. In conclusion, it is possible to
state that, as the perturbation elements increase in intensity, the strategies differ in the
computed solution, and the efficiency as well. On one hand, the GI computing a fast and
rough solution, and the WLS and DA, taking more time to refine the results.
In conclusion, the same considerations can be applied for the GEO case, which is the least
perturbed case, thus the error is almost null. Of course it is necessary to underline that
these numerical results depend on the different blocks discussed in Chapter 1, which, if
varied, can affect the performance, especially the pointing accuracy, since it depends on
the definition of the control logic (in this case the gains selected), but the behaviour of
the strategies is conserved.

Equatorial GEO GI CGI DA WLS

Storage at tf [s] 14.28 14.28 13.74 13.74

Mean pointing error [arcsec] 8.34 8.34 8.34 8.34

Mean residual [Nm] ∼0.00 ∼0.00 ∼0.00 ∼0.00

Computational time ratio [-] 0.88 0.88 0.96 1.00

Table 2.4: Performance evaluation for GEO case
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For what concerns the response to unattainable moments, a simulation was performed
testing the different algorithms with increasing required torque, to analyze at which input
value the allocator would fail. Therefore, the capacity of the attainable moment set is
studied.
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Figure 2.3: Residual as the required torque grows

In Figure 2.3 it is possible to see how the different algorithms try to cope with a required
torque increasing in intensity. The graph plots in semi-logarithmic scale the norm of the
residual in function of the norm of the input required torque m, simulating a condition
where the spacecraft has to execute a manoeuvre that exceeds the actuators capabilities.
The thin green line, indicated as "ideal", represents the residual if a boundless allocation
is implemented, in order to have a comparison of what should be the actual solution.
The generalized inverse is the first to be incapable of producing the required torque, since
no further operations is done other than the pseudo-inverse. On the other hand, the
other three strategies are more suited to treat unattainable moments, as they delay the
failure condition. Geometrically, it is possible to view the enhancement as an overall
augmentation of the admissible control set Ω with respect to the simple GI: regarding the
CGI, the second distribution can avoid early saturation, while for DA and WLS, a more
suited solution is directly computed. Of course, also these more accurate algorithms will
eventually meet their limits. In the upper right part of the graph, the strategies reach
a plateau. This is due to the fact that, as the actuators get saturated and are not able
to cope with the input moment, the residual, defined by the difference norm between
required and produced torque ||m − Bu||, will continue to grow, since u is practically
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fixed at its maximum attainable value. Therefore the values reported in the x and y axis
will eventually match. Finally, it is important to underline that this trend may vary in
terms of minimum unattainable moment value, due to the fact that a certain direction
of torque increment was selected as an example, but the consideration still apply for any
other direction.

2.8.2. RCT allocation comparison

As done for the reaction wheels, first, it is necessary to display the hardware actuators
configuration that is implemented for the evaluation. One of the possible effectiveness
definition is the following: assuming the RCTs to be fixed, the effectiveness matrix will
collect the cross product of the nozzle thrust and its position with respect to the centre of
gravity. Therefore, each column will contain the torque each nozzle can provide in BRF.
The control vector u, instead, will represent the fraction of thrust to be furnished. For
example, if the nozzle needs to generate half the maximum thrust, its correspondent value
in u will be equal to 0.5, if switched off it will be 0. In this way it is possible to decouple
the thruster specific characterization from the control problem. This operation can be
performed as long as the thrust profile is assumed continuous or the actuator response is
faster than the controller update frequency.

B =
[
r1
nozzle × T 1 · · · ri

nozzle × T i · · · rm
nozzle × Tm

]
and 0 ≤ u ≤ 1 (2.28)

This configuration is more problematic with respect to the wheels case, where all the
variables are able to produce a torque in the three directions, and the system is purely
redundant. First, since a nozzle, in its relative frame is able to produce a one direction
effort, the control vector is bounded to a positive region. Moreover, in this scenario, it
may be possible to select three nozzles which are not able to provide a 3-D moment, thus
it is not guaranteed purely redundant configuration. As previously carried out for the
RW, the RCT allocation methods are evaluated for the three orbits, for a time span of
3600 s.
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SSO Dawn-Dusk NS pDA LP WLS

Consumed propellant [kg] 0.19 0.18 0.07 0.09

Mean pointing error [arcsec] 264.04 264.79 264.82 263.78

Mean residual [Nm] ∼0.00 ∼0.00 ∼0.00 ∼0.00

Computational time [s] 4.66 14.64 1067.92 16.12

Computational time ratio [-] 4.40e-03 1.37e-02 1 1.51e-02

Table 2.5: Performance evaluation for SSO case

Looking at Table 2.5, the first thing to emerge is the extremely high computational time
for computing the optimal solution through the linear programming. This is due to two
important aspects: first, at each integration step, an optimal solution search has to be
evaluated. In addition, Simulink is not able to solve optimization problems that require
undefined variables. A possible solution to this issue is to force Simulink to transfer the
function related to the optimization problem onto Matlab and solve it on this platform,
but this procedure is extremely inefficient11. As already highlighted by the wheels analysis,
the basic null space solution is able to rapidly compute a rough solution. On the other
hand WLS prioritize the optimization of the cost function. The pseudo-Direct Allocation
demonstrates that the algorithm, loosening the hypothesis defined previously, not only
solves the problem, but finds a better solution with respect to NS in a reasonable time
lapse. Of course, since all the combinations of facets have to be checked, the computational
efficiency is likely to be lower than strict direct allocation. In conclusion, each algorithm
is able to solve the allocation as the residual is zero.
For what concerns the transfer orbit, the results are presented in the next table:

GTO NS pDA LP WLS

Consumed propellant [kg] 5.71e-03 8.86e-03 3.78e-03 4.22e-03

Mean pointing error [arcsec] 22.68 22.68 22.68 22.68

Mean residual [Nm] ∼0.00 ∼0.00 ∼0.00 ∼0.00

Computational time [s] 4.02 7.76 1094.05 15.71

Computational time ratio [-] 3.70e-03 7.10e-03 1 1.44e-02

Table 2.6: Performance evaluation for GTO case

11In appendix A a comparison between the strategies is also performed using only Matlab to assess if
the same conclusions can be drawn.
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As the SSO work frame, again the linear programming is affected by a heavy computa-
tional burden, while the other strategies have the same order of magnitude, with Null
Space being the fastest. It is possible to see that the pDA efficiency decreases, as its com-
puted cost overcomes the NS one. This phenomenon is clearly highlighted in Table 2.7,
where, since the perturbations are even lower, the controller requires even less effort, and
thus the optimality again is subject to a decrement. This is probably due to the fact that,
as the required torque reduces in intensity, a small imprecision in the approximation of
the direction of the facet (line 8-9 in Algorithm 2.4 for pDA) becomes more relevant, and
the imprecision is more visible. However, all the procedures are still able to solve the
allocation problem.

Equatorial GEO NS pDA LP WLS

Consumed propellant [kg] 6.95e-04 11.85e-04 5.17e-04 5.76e-04

Mean pointing error [arcsec] 12.92 12.96 12.92 12.95

Mean residual [Nm] ∼0.00 ∼0.00 ∼0.00 ∼0.00

Computational time ratio [s] 4.02 6.81 1012.12 16.72

Computational time ratio [-] 4.00e-03 6.70e-03 1 1.65e-02

Table 2.7: Performance evaluation for GEO case

Once the nominal performance are evaluated, the next step is to investigate the response
to unattainable moments. Again, the allocators are required to deal with a continuously
increasing torque, in order to underline which algorithm is able to extend the feasible
region the furthest.
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Figure 2.4: Residual as the required torque grows

In Figure 2.4, the four algorithms, compared to an ideal unbounded allocator, are tested.
It is clear to see that the Null Space strategy, which resemble a pseudo-inverse distrib-
utor, performs the worse, while the pseudo-Direct and Weighted Least Square are able
to prolong the working, feasible condition. Shaded by the pDA in the right part of the
graph, the Linear Programming, instead, is affected by discontinuities as the required
torque grows, which are visible in the central part of the plot. This happens because the
algorithm always tries to find the solution in the feasible range, and if a high unfeasibility
is detected, the algorithm will provide imprecise results. The spurious spike is probably
due to numerical tolerance and ill-conditioning of the problem. In conclusion, the same
plateau is present, as the discussed conclusion holds in this case as well. Clearly, as for
the RW, also in this case the transition from feasible to unattainable is instantaneous, as
it marks the crossing of ∂Φ and, consequently, ∂Ω.
The studied methods, with their unique features and different definitions, assemble an
extremely useful tool that enables the user to navigate through the allocation problem
and find the best tailored solution for different applications, taking into account multiple
and varying drivers. In fact, the "best" solution is not unique, as it varies depending on
the application. The analysis then becomes handy when it is necessary to decide which
method implement based on the design requirements. The next step is to implement and
study the control allocation on an actual mission for in-orbit servicing, presented in the
following chapter.
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Up to this point, the control loop defined in Chapter 1 has been fully described, and various
allocation methodologies have been investigated. The abilities of these strategies were
evaluated using a "test bench" application that focused solely on numerical applications,
in order to assess the accuracy, performance, and efficiency of the allocating algorithms.
The next step involves verifying whether the control allocation is capable of handling the
complexities and demands of an actual mission in development. This is essential in order
to demonstrate another critical feature that the control allocation scheme should possess:
reliability in a real scenario. In this chapter, a real in-orbit servicing mission is defined,
including its own characterization, work frame, and conceptual operations. This will
enable the assessment of whether the allocation architecture can fulfill the requirements
necessary for the spacecraft to execute its tasks. The chapter is divided into three main
parts, which outline a logical workflow for the design and testing of an attitude control
subsystem:

• Mission definition, architecture and work frame, where the spacecraft, its operations,
and functioning environment are delineated.

• Mission phases description: divided into sections for each phase, the different ac-
tions and manoeuvres the satellite has to execute are delineated furthermore. The
performance are evaluated in terms of accuracy, optimization and computational
efficiency.

• Robustness analysis, executed through a Monte Carlo simulation to assess reliability
and ability to cope with unexpected errors in the architecture.

3.1. Mission architecture and work frame

The mission consists of a series of in-orbit servicing operations. The spacecraft, defined
Module A (MA), shall carry the client spacecraft Module B (MB) to target position. The
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two, then, separate so that the client satellite can perform its required operations. After
the detachment, a movable thrust vector, present on MB, is activated and its effects have
to be counter acted by the attitude control system. Therefore, it possible to divide the
overall mission into four main phases:

• Phase I - MAMB phasing: the two satellites, connected, execute a phasing
manoeuvre to reach target position.

• Phase II - MB desaturation: the client spacecraft damps out the momentum
storage collected throughout the phasing.

• Phase III - MAMB separation: the client separates from the carrier, as the
latter has to counter the perturbation due to the detachment.

• Phase IV - MB thrust vectoring compensation: the client spacecraft MB
has to operate a thrust vectoring subsystem that generates a series of perturbing
reaction forces and torques. These quantities must be opposed by a pose control
system.

The overall spacecraft, divided into two main parts, can be modelled as two cylinders,
one on top of the other, the carrier MA and the client MB. The thrust vector part
is considered as an external body that just transfers, by means of reaction force and
moment, its operating effects. The main difference in the two bodies is the presence in
MA of wide solar wings, which affect especially the solar radiation pressure contribution,
and impose a significant difference in the mass distribution between the two spacecrafts.
All the fundamental parts are assumed to be perfectly rigid and uniform bodies. This
rather simple model, show in Figure 3.1, is used to estimate the perturbation terms and
the actuators positioning within the spacecraft. In Figure 3.1, in addition, the body
reference frame is shown, with the x axis that runs parallel to the panels longer edge, the
z axis along the cylinder axis of the connected parts and the y axis to complete the triad.
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Figure 3.1: MAMB attached spacecraft model

In Table 3.1, on the other hand, the geometrical properties of the spacecraft are reported.

Data Value

MA height 2 m
MB height 2 m
MA radius 0.7 m
MB radius 0.7 m

Solar panel length 5 m
Solar panel width 1 m

Table 3.1: Spacecraft data

Regarding mass and inertia parameters, more refined data are used, in order to have
relatable results. For MA and MB, the parameters are here shown, in body reference
frame:

IA = 1e− 06 ∗

 7.02e+ 09 −4.05e+ 08 −1.88e+ 07

−4.05e+ 08 1.505e+ 10 9.34e+ 07

−1.88e+ 07 9.34e+ 07 1.02e+ 10

 [kgm2] (3.1)
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IB = 1e− 06 ∗

 1.03e+ 09 −6.93e+ 06 −4.03e+ 07

−6.93e+ 06 1.18e+ 09 3.87e+ 07

−4.03e+ 07 3.87e+ 07 8.12e+ 08

 [kgm2] (3.2)

IAB = 1e− 06 ∗

 2.08e+ 10 −3.68e+ 08 −2.03e+ 08

−3.69e+ 08 2.87e+ 10 3.54e+ 07

−2.03e+ 08 3.54e+ 07 1.11e+ 10

 [kgm2] (3.3)

rA
CoG = 1e− 03 ∗

 4.87e+ 00

−1.62e+ 01

1.21e+ 03

 [m] (3.4)

rB
CoG = 1e− 03 ∗

 6.08e+ 01

−5.33e+ 01

8.12e+ 02

 [m] (3.5)

rAB
CoG = 1e− 03 ∗

 1.56e+ 01

−8.02e+ 00

1.77e+ 03

 [m] (3.6)

Both satellites are defined by a full inertia matrix, as the selected frame does not coincide
with the principal inertia axis, thus meaning that couplings effects are present in the
equation of motions. Both MA and MB are equipped with the same sets of reaction
wheels and reaction control thrusters. For what concerns the first group of actuators, the
same features reported in Section 2.8.1 are implemented, namely effectiveness matrix and
hardware ranges. The same goes for the propulsion system, where the maximum thrust
is now equal to 0.5 N, and the minimum producible is 1 mN. The configuration is shown
in the next illustration.
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Figure 3.2: MA and MB RCT configuration

As Figure 3.2 shows, 24 cold gas thrusters are displayed in an angular configuration.
Here it is easy to notice that, if all switched-on, the overall contribution is zero. The
effectiveness matrix still collects the contribution of the cross product between arm and
thrurst direction. This value is then scaled by the control vector u which represents
how widely open is the valve. Throughout the mission, it is assumed that the dynamic
response of the valve that controls the propellant flow, and the wheels change of rate are
faster than the control logic, selected to 8Hz. In addition, the actuators quantization is
neglected so, by merging the two assumption, the effort is always treated as continuous.
The selected control logic is a variable gain PID controller, with a numerical constraint
on the output, where, if the module of the required action is lower than 1e-04, then
the controller treats it as a 0, to simulate a real hardware lower limitation. Therefore
||m|| ≥ 1e − 04. The spacecraft servicing orbit is assumed to be an equatorial GEO.
Again, all the building blocks discussed in Chapter 1 are plugged in the model, especially
the perturbing elements. Throughout the simulation, it is assumed that all the operations
are performed on the same orbit. The assumption is given for two main factors: first it
simplifies the analysis, secondly the displacement from the selected orbit are reasonably
low (in the order of metres), as well as the characteristic simulation time spans, and
precise flight dynamics and spacecraft positioning is not the aim of this study, rather the
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spacecraft control. Finally, the analysis is carried out considering, if not stated differently,
a purely attitude control problem, with the state vector represented by the angular velocity
ω.

3.2. Conceptual operations

Once the overall system is described, it is possible to delineate what the spacecraft shall do
to complete the mission, the attitude to track and the perturbations the actuators have to
cope with. As previously stated, the mission can be divided into a phasing, desaturation,
separation and operation manoeuvres. Each phase is characterized by different control
authority and allocation, because different pointing requirements are applied. In each
phase, the capacity of the allocation to guarantee the mission success is analyzed, in the
same terms seen in Chapter 2, such as accuracy, computational efficiency, which becomes
a key issue in this mission, and ability to optimize the action distribution.

3.2.1. Phase I - MAMB Phasing

The first task the satellite has to execute is to bring the client spacecraft to a target orbit.
This operation, in terms of attitude control, translates into a tracking problem, where
MAMB connected spacecraft has to follow a prescribe orientation in space1. The tracking
shall be performed with the implementation of reaction wheels to save propellant, since
the perturbations are small, the prescribed attitude does not change sharply and there
are no tight constraints on the pointing error. Since the two parts are connected, the
characteristic inertia is rather consistent, so the control effort is distributed among MA
and MB wheels, in order to have high reliability and attainable moment space increment.
However MB shall receive a small percentage of effort, in order to keep its storage as
low as possible, to avoid pre-loading before the operations in Phase II. The two factors
have conflicting objectives. On one hand, the required torque must be distributed to
the MB actuators. On the other hand, the aim is to minimize their usage. To find a
solution, a trade-off is necessary, which involves creating a weighting vector. This vector
ensures that a greater percentage of the total required torque is assigned to MA, while
the remaining small residual is assigned to MB. If the wheels on MA will reach torque
or storage saturation, also MB will contribute fully to the control effort definition. This
approach achieves a balance between maximizing saturation delay and minimizing MB
storage. Specifically, the weight vector is selected based on a trade-off between the delay

1The prescribed trajectory comes from an optimization analysis performed by the company, under
confidentiality.
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in saturating the storage of MA and the need to keep MB storage to a minimum. The
chosen priority vector is w = [0.1, 1]T , and it determines the initial distribution of control
torque between MA and MB, which can be expressed as:

µi =
1

wi

1∑ 1

w

and
[
mA

Input mB
Input

]
= µm (3.7)

Then, the allocation receives the torques allocated to each actuator. As discussed in Sec-
tion 2.7, the Weighted Least Square algorithm is a highly suitable choice for distributing
the torques, as it offers both computational efficiency and accuracy. This selection is mo-
tivated by the need to minimize storage and the fact that, considering a trade-off analysis,
the WLS method outperforms other options in this regard. In the next table, relevant
results regarding this first phase are reported:

Data Value

Initial epoch 02-Jan-2035 00:01:00
Simulation time 27.88e04 s

Computational time 3.94e02 s
Mean attitude error norm 8.09e01 arcsec

Mean residual norm 2.63e-02 Nm

MA final storage 48.64 Nms

MB final storage 35.69 Nms

Table 3.2: Performance during Phase I

The simulation requires a relatively high computational cost due to a wide time span and
the necessary interpolation of the prescribed attitude2. The average error and residual
in this phase are higher compared to the results obtained in the previous chapter. Two
primary factors contribute to this outcome. Firstly, the target attitude has a more rapid
variation. Secondly, the gains in the high-level control are reduced to slow storage in-
crement. Despite this, the reported error is still deemed acceptable, as this phase is not
critical. The next set of figures, instead, show the trend of important parameters for the
whole simulation.

2The prescribed attitude required to be numerically "smoothed".
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Figure 3.3: MAMB angular velocity

In Figure 3.3, the angular velocity vector has in the far left part of the graph, a rather
perturbed and coarse behaviour. This is due to the initial angular body orientation that
greatly differs from the required one. In the first part, in fact, the ability of the loop to
converge to the target is tested. The same trend in visible in Figure 3.4.
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Figure 3.4: MAMB attitude error
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Figure 3.5: MA and MB reaction wheel storage

Again, the high effort of the reaction wheels in the first part of the phase is clearly visible,
as the storage greatly increases and then varies more gently. In Figure 3.6, instead, it
is possible to see the residual spikes, meaning that the required torque is unattainable.
Then, after damping out the angular velocities, the tracking is performed in a feasible
allocation region, as the residual gets close to zero.
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Figure 3.6: Residual between required and provided torque
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It key to understand that the behaviour seems to be sharp due to the plot features, as the
time span is rather wide. To sum up, it is clear that implementing a concurrent action
between thrusters and reaction wheels would be adequate to reduce the pointing error if
the requirements were more stringent.

3.2.2. Phase II - MB desaturation

Before the separation between the two spacecrafts can take place, it is necessary to empty
the momentum storage accumulated during the previous phase in MB. To perform this
task, the control effort that was earlier distributed onto the two different sets of RWs,
is transferred completely to MA, while MB takes, as an input, a virtual torque that is
necessary to allow the wheels to deplete their stored energy. This torque can be expressed
as the product of the effectiveness matrix and the opposite saturation value, multiplied by
the sign of the ith wheel storage to have the fastest possible depleting time. For instance,
if the storage has a positive value, the wheel must exert the maximum negative effort until
the storage decreases to zero. The task is deemed finished when the storage falls below a
specified tolerance in the actual implementation. Of course it is clear to understand that,
if the reaction wheels are damping out the storage, they are transmitting an undesired
torque that has to be counter acted by the other available actuators. This manoeuvre also
highlights the strength in the redundancy, and the flexibility of the controller to perform
different tasks simultaneously. The virtual produced torque, therefore, is managed, with
respect to the control logic, as a perturbation that the controller has to cope with, plugged
directly into the equations of motion.
As the manoeuvre occurs, the control authority is shifted from the MA reaction wheels to
MB RCTs, linearly over the course of 100 s, until the whole required torque is obtained by
means of the thrusters. This transfer is executed for two main reasons: first, the thrusters
are able to provide a higher net torque with respect to the reaction wheels. Moreover,
it is the first procedure to decouple the two satellites in terms of control authority and
distribution, thus preparing the control loop to the separation in Phase III. As for the
reaction wheels, the WLS allocation method is implemented for the RCT subsystem.
With regards to the configuration depicted in Figure 3.2, the thrusters positioned along
the z axis do not play a role in attitude control during this stage. This is because their
contribution, which results in a torque around the x and y axis, is comparatively smaller
due to the shorter net arm given by their geometric arrangement as compared to the
other nozzles aligned with the x and y axis. Additionally, the decision to exclude them
aims to simplify the problem characteristic dimension, from m = 24 to m = 16 and
to conserve propellant. As mentioned earlier, the effectiveness matrix employed in this
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phase is the one presented in Equation (2.28). At this stage, the spacecraft is required
to point inertially a fixed orientation, with the target attitude matching the last targeted
orientation in the previous phase.

Data Value

Initial epoch 05-Jan-2035 05:27:34
Simulation time 3.00e02 s

Computational time 5.13 s
Propellant consumed 2.37e-01 kg

Mean attitude error norm 3.47e02 arcsec
Mean residual norm 5.77e-03 Nm

MA final storage 42.42 Nms

Table 3.3: Performance during Phase II

In Figure 3.7 and Figure 3.8, the spacecraft angular velocity and pointing accuracy are
shown. It is clear to see that the added perturbation element, the virtual torque, stresses
more the actuators, especially the reaction wheels. In fact, greater error is present in the
first part of the simulation. This behaviour is also highlighted in Figure 3.11, where the
residual has a spike during the wheels operations, thus proving the authority transfer to
be necessary: as the required effort by the reaction wheels is moved to the RCT, the error
quickly decreases. In Figure 3.10, on the other hand, the storage trend of both MA and
MB are presented. Clearly, it is easy to understand that, the greater the storage in the
client spacecraft, the longer it will take to damp it out. Therefore the dependancy on the
trade-off distribution from the previous phase is plainly underlined.
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Figure 3.7: MAMB angular velocity
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Figure 3.8: MAMB attitude error
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Figure 3.9: MB consumed propellant mass
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Figure 3.10: MA and MB reaction wheel storage
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Figure 3.11: Residual between required and provided torque

To summarize, it is important to note that the performances achieved in this phase are
directly influenced by the distribution chosen in the previous phase. For example, if
Phase I involves a different distribution with more MA loading, the MB storage at the
beginning of Phase II will be lower than in the presented case. This will result in lower
required propellant mass, as the overall damping torque will be reduced, but at the
expense of increased MA storage. One way to understand this is by visualizing the
energy involved, which must be conserved and can be redistributed based on the mission
requirements. It may be more advantageous to have a higher MA storage or to consume
more propellant during Phase II, depending on the scenario. It is worth noting that this
energetic consideration holds true for all the other phases as well.

3.2.3. Phase III - MAMB separation

Phase III consists in the separation between the two spacecrafts. Once the storage in
MB is emptied, MB detaches from MA, following a straight trajectory parallel to the z

axis3. This manoeuvre is modelled as an instantaneous division between MA and MB, in
which an impulsive variation of the mass and inertia properties is introduced. This phase
is particularly critical in terms of the pointing accuracy, since any kind of collision must
be avoided, or the mission may completely fail.

3Of course the characteristic time and distances enable a relative dynamics work frame, and the
trajectory curvature of the orbital path can be neglected.
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Figure 3.12: Spacecrafts detachment visualization

In this phase, the attention is brought onto the first spacecraft, MA, because it is equipped
with solar panels that can hit MB, so it is the spacecraft with tighter pointing constraints.
To assess the performance, an impulsive perturbing torque is applied to MA to simulate
the separation load. This quantity is applied instantaneously at 50s during the simulation,
drawn randomly from an interval of ±50N in the three directions. Regarding control, the
high-level control is disabled for a brief period before and after the separation to prevent
a collision when the two bodies are in close proximity. This is because a sudden control
reaction could result in an impact. Instead, low-level control authority is restored to the
MA reaction wheels, and the WLS algorithm is employed.

Data Value

Initial epoch 05-Jan-2035 05:32:34
Simulation time 5.00e02 s

Computational time 2.14 s
Mean attitude error norm 2.51e02 arcsec

Mean residual norm 2.22e-01 Nm
MA final storage 43.57 Nms

Table 3.4: Performance during Phase III
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Figure 3.13: MA angular velocity

0 50 100 150 200 250 300 350 400 450 500

0

50

100

150

200

250

300

350

400

450

500

Figure 3.14: MA attitude error

As Figure 3.13 and Figure 3.14 report, the impulse load introduction is clearly visible at
t = 50s, where the analyzed quantities are subject to an almost discontinuous variation,
a spike trend. Then, the controller is switched back on and the pointing error decreases
throughout the rest of the simulation, stabilizing the spacecraft. The same behaviour is
also highlighted in the next graphs, where the storage is characterized by a smooth trend
before the separation, then sharp variation to cope with the disturbance and, finally, the
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progressively damped oscillations as the body attitude approaches the target one. In
Figure 3.16, on the other hand, it is clear to see the presence of unattainable moments
early after the separation, with a decreasing trend as the system goes back to regime.
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Figure 3.15: MA reaction wheel storage
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Figure 3.16: Residual between required and provided torque

In conclusion, this phase not only can be used to assess the possibility of reallocation when
strong unattainable moments are present, but also to see how the controller behaves when
dealing with discontinuities or sharp variations in the system state.
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3.2.4. Phase IV - MB thrust vectoring compensation

The client spacecraft MB, after separation, has to execute a set of operations that require
a thrust vectoring action. The resultant effects on the spacecraft are a reaction torque
and force applied to MB centre of gravity. Hence, it is vital that the control loop balances
these perturbing elements. The procedure followed for the analysis is the definition of a
decoupled model: the structural parts that compose the thrust vectoring, and its contri-
butions, are treated as external elements with respect to the rest of the spacecraft. In this
way two subsystems, respectively spacecraft and thrust vector, are defined. Focusing on
MB, the satellite will see the other part actions as an external disturbing effect in terms
of torque and force, applied at the interface between the two bodies. If the reaction force
and moment are perfectly countered, the spacecraft would appear as a fixed base to the
thrust vectoring system. Thus, it is evident that the spacecraft must be capable of re-
sisting the reaction contributions for operations in this phase to proceed. However, given
the presence of perturbing net forces and the need for precise manoeuvres, it is necessary
to consider the overall pose of the spacecraft in the problem analysis. For what concerns
the equation of motions, the translational acceleration are added to the state vector:

[
M ẍ

Iω̇

]
=

[
Fext

(Iω)× ω + Text

]
(3.8)

The pointing criteria for this phase remains unchanged from the previous one, meaning
that the spacecraft must maintain a fixed orientation. Additionally, it must resist any
external vectoring forces that may cause it to shift from its current position. Regarding
the high level control, the same logic implemented for the attitude control is used for the
displacement control, where the error to be plugged in the PID control is the drift from the
origin of the target BRF attached to the MB centre of mass, since it represents the stable,
fixed, unperturbed, initial condition. Considering the low level control, on the other hand,
the implemented strategy is the following: first the required torque is allocated onto the
reaction wheels, by means of the WLS algorithm. Then a daisy chaining approach is used,
which consists in a sort of allocation method that distribute the effort considering a chain
of saturating actuators. The available actuators are divided into subsequent groups, each
able to solve the allocation. The required torque is allocated onto the first group, then, if
saturation is detected, the residual is allocated onto the second group and so on. In the
considered case, when the reaction wheels are not able to produce the required moment,
the RCTs enter in actions, providing the left residual torque. The procedure can be seen
in the next series of equation.
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mRW = BRWuRW (3.9)

mresidual = m−mRW = BRCTuRCT (3.10)

This method is particularly useful when unattainable moments are expected, but it is still
vital to preserve the propellant mass. From an energetic point of view, it is preferred to
store the momentum rather than expend propellant mass. The chain is necessary to avoid
the presence of residual, which could interfere with the target pose definition, a delicate
and even stricter requirement in this phase than the others. Hence, the allocation will
distribute first the action onto the wheels, then, if the torque is unattainable, the RCT
will compensate the residual. Concerning this set of actuator, the effectiveness matrix
is now modified to take into account also the allocation for net force production. Since
the problem now considers also the CoG position, the BRCT matrix will be augmented to
manipulate six degrees of freedom, thus n = 6. The upper part of the matrix (line from 1
to 3 per m columns) will now contain the maximum thrust each nozzle can produce in the
three directions xyz. The second part (line 4 to 6 per m columns), instead, will be equal
to the one defined in Equation (2.28). Considering the fact that fine pointing is required,
and relevant loads are applied, all the thrusters concur in the allocation problem, thus
m = 24. The final effectiveness will be B ∈ R6×24.
As stated before, this approach is useful if a large presence of unattainable moments is
present, but it is still preferable to save fuel. In this scenario, the profile model of thrust
and torque transmitted to the spacecraft base are shown in Figure 3.17, and it is clearly
visible that the actuator effort, which ideally should be the opposite of the quantities in
the graphs will stress more the control loop.
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Figure 3.17: Reaction forces and moments applied at the interface

It is possible to divide the trend into three main phases:

• First part with random white noise, until approximately 600s.

• Step both in force and torque, which lasts roughly 300s.

• Second step, after 1000s of simulation.

For what concerns the environmental perturbation, they are still related only to the
attitude, as their contribution to the translation part can be neglected when compared to
the values reported in the above figure.
In the next table, the results of the Phase IV simulation are reported. It is immediately
visible that the concurrent usage of both actuator sets keep the residual sufficiently low.
The pointing accuracy, also, stays below reasonable tolerance. In conclusion, the norm
of the mean drift from nominal resting position of the gravity centre is outlined, proving
that the pose control loop works successfully.
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Data Value

Initial epoch 05-Jan-2035 05:40:54
Simulation time 15.00e02 s

Computational time 2.09e01 s
Propellant consumed 7.64e-01 kg

Mean attitude error norm 5.13e01 arcsec
Mean residual norm 8.14e-06 Nm
MB final storage 6.52 Nms

MB drift mean norm 3.36e-04 m

Table 3.5: Performance during Phase IV

As done for the other phases, the trend of different quantities key to the simulation
analysis are here displayed. First, in Figure 3.18 and Figure 3.19, the trend of angular
velocity and tracking error are reported. It is possible to notice the corresponding trend
shown in Figure 3.17: an initial perturbed trend, then a set of spikes corresponding to
the first step, and a second at the latter.
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Figure 3.18: MB angular velocity
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Figure 3.19: Pointing accuracy

In terms of cost, Figure 3.20 displays the storage level, while Figure 3.21 shows the
propellant consumption. As before, the graphs exhibit three distinct sections: a small
increase in both measures, followed by plateaus dividing the first and second impulses.
Regarding storage, the torque accumulation is dampened during the second impulse due
to its opposite sign compared to the first impulse.
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Figure 3.20: MB storage



3| Mission Simulation and Monte Carlo Analysis 69

0 500 1000 1500

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Figure 3.21: MB consumed propellant

Regarding accuracy in the allocation, the residual is presented in Figure 3.22. It is char-
acterized by a practically zero value apart from two spikes. The second higher spike is
probably due to the first impulse magnitude, which is rather heavy and especially faster
than the control logic update frequency. The first one, instead, may also be due to the
incapacity, in that instant, of the reaction wheels to provide the requested torque, whose
random value may be one of the highest through the whole first simulation part. The
residual should then be fed to the RCT, but the output from the allocation does not over-
come the hardware threshold of 1e-3 N to active the RCT valve. Therefore a slight error is
present, which is still reasonably low. This aspect can be also detected from Figure 3.23,
as the RCTs are active only when the steps occur. On the other hand, Figure 3.24 delin-
eates the centre of mass divergence from the origin. The main translation, corresponding
to the spikes, are quickly counter acted by the RCTs, as the maximum displacement is
less than 4 cm. In conclusion, the performance obtained in this phase not only ensure a
precise pointing, but also demonstrate the flexibility in the control authority that shifts
between RW and RCT and, most of all, that the allocation problem can be easily solved
even when considering an overall pose definition, with a compliant effectiveness matrix.
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Figure 3.22: Residual between required and provided torque
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Figure 3.23: RW and RCT provided torque
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Figure 3.24: CoG drift from nominal position

3.3. Robustness analysis

So far, the various operations, actions, and requirements have been examined using a
nominal mission profile, which represents an ideal analysis of how all the conceptual
operations should be carried out. It is now key to investigate how the system behaves
when conditions are not matching the nominal ones. The aim of this investigation are
mainly two:

• To assess the robustness of the mission profile, especially in the delicate Phase III
and IV.

• To examine the behaviour of the allocation method when uncertainties are intro-
duced into the control scheme.

Therefore, a Monte Carlo simulation is defined, with the introduction of uncertainties
and errors in the loop. First, it is necessary to identify which elements can be affected by
noise and uncertainties. Regarding the first element, white noise is added to the angular
velocity vector and body attitude DCM, in order to simulate the intrinsic errors that are
bore in the measurements, respectively, from gyros and sensors. So, the control scheme
will not deal with the true quantities, but with their estimation. Naturally, the pointing
error is still computed with respect to the real quantities, while the high level control will
receive the affected ones, thus leading to generally worse performance with respect the
nominal case. For what concerns the second aspect, the system hardware is going to be
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affected by uncertainties that derive from the manufacturing and handling processes. For
example the centre of gravity position may differ from the one in the ideal mathematical
model. It is required that all the input values that represent a hardware component are
scattered with a specific uncertainty. This will generate a cloud of probability distribution
around the mean, which is the mathematical model value. The parameters that are going
to be scattered are the centre of gravity positions, the inertia matrices, the orientation of
the reaction wheels, the orientation of the nozzles and the thrust profile each can release.
The mean value and diagonal covariance matrix are defining characteristics of every dis-
tribution. The next step is to create a random initial spacecraft configuration, simulate
the mission and collect data to assess the performance. To create a random set of pa-
rameters for the different initial configurations, a pool can be created, which encompasses
all possible distributions of the scattered variables. Next, various random extractions are
made, each corresponding to different initial mission conditions. For instance, a single
extraction could have its center of gravity located at a specific position, but a subse-
quent extraction may cause this value to shift to another position within a certain range
based on the covariance matrix, centered around the mean. These initial configurations
are propagated throughout the mission’s phases II, III and IV, as their profile is more
delicate with respect to the coasting initial phase, that is not included in the investi-
gation. The simulation resulting parameters, especially cost and accuracy, derived from
each sample are then recorded. By repeating this process for each sample, it is possible
to generate the sample mean and sample covariance for each crucial quantity involved in
the mission’s accomplishment, thereby evaluating the system’s robustness. The mission
definition remains the same exposed through this chapter.
In Figure 3.25 and Figure 3.26, respectively, the cumulative density functions for the pro-
pellant mass consumed in Phase II and IV are reported. The graphs show the distribution
of cumulative probability for a sample to occur in the simulation regarding the propellant
mass. In other words, the two plots illustrate how likely is the system to consume a certain
amount of fuel. The mean values of these probability distribution are, correspondingly,
1.16 kg for Phase II and 1.62 kg for Phase IV. The consumption increment is clearly due
to the added noise in the measurement and generally coarser actuators capacity.
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Figure 3.25: Cumulative density function for the consumed propellant mass in Phase II

Figure 3.26: Cumulative density function for the consumed propellant mass in Phase IV

Regarding the storage profile during the phases, in Figure 3.27, Figure 3.28 and Figure 3.29
the CDF of the storage norm at the end of each stage are presented. The corresponding
mean values are 47.27 Nms, 45.72 and 7.61 Nms. The first two plots are related to the
MA storage in Phase II and III, while the third to Phase IV MB storage.
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Figure 3.27: Cumulative density function for final storage norm in Phase II

Figure 3.28: Cumulative density function for final storage norm in Phase III
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Figure 3.29: Cumulative density function for final storage norm in Phase IV

In the following images, instead, the pointing accuracy is displayed. In each graph, three
curves are delineated: for the whole vector that describe the trend of the error, at each
instant, the mean value is computed through the different samples, in order to obtain a
mean trend for the whole simulation. The same is done for the minimum and maximum
values. Therefore the error envelope is completely characterized, by the most probable
trend, the best and worst case scenarios. Again the RP error norm is displayed.
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Figure 3.30: Accuracy in Phase II
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Figure 3.31: Accuracy in Phase III
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Figure 3.32: Accuracy in Phase IV

In Figure 3.30 and Figure 3.31, the mean performance are generally worse with respect
to the nominal mission case, while the worse case demonstrate that the pointing could
be compromised. Considering the maximum error reported in the red curve in Phase
II, assuming small rotations, the maximum displacement at the tip of the spacecraft is
estimated to be 0.31 m, while in Phase III lower than 0.30 m. If, on one hand, the mean
value trends are still feasible, it may be necessary to assess if the error in the worse case
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is still acceptable or if the design should be revisited, for example, considering tighter
requirements for the manufacturing process. The pointing accuracy in Figure 3.32, even
though rather worse with respect to the nominal case, is still manageable. Moreover, the
spiked trend seen in Figure 3.19 is covered by the noise measurements. Finally, the same
approach is followed by the drift in Phase IV. In the next plots, the displacement envelope
is defined. Clearly, since the displacement is mainly due to the thrust vectoring reaction
force, the trend throughout the samples is practically the same.
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Figure 3.33: Drift in the x direction
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Figure 3.34: Drift in the y direction
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Figure 3.35: Drift in the z direction

The previous plots demonstrate the mission design and implemented allocation strategy’s
ability to handle uncertainties and measurement noise. For the sake of brevity, only the
performance with the WLS algorithm implemented were reported, but it is possible to
state that the conclusions drawn in Chapter 2 can be applied also in this case, regarding
the performance and overall efficiency. This final survey on robustness concludes the
overall analysis of control allocation. Initially, various strategies were examined and their
features were highlighted in a nominal attitude control simulation. Later, a developing
mission was introduced, and the control allocation was further studied. This workflow
not only showcases the benefits outlined in the introduction but also serves as the first
step in designing the control loop for an in-orbit servicing mission.



79

4 | Conclusions and future
developments

The main objective of the presented work is to provide a practical and valuable tool that
assists the reader in selecting the most appropriate and customized solution for achieving
optimal, precise, and prompt control allocation. Through the investigation, it has become
apparent that there is no one "perfect" strategy among those proposed, as each has its
own advantages and disadvantages that prioritize a specific aspect of the control allocation
problem. The optimal solution depends heavily on the mission scenario, architecture,
environment and requirements. Throughout the survey, the different allocation strategies
were studied and divided into two main groups. First, allocation methods that focus on
the accuracy, minimizing the residual and indirectly influencing the cost minimization
aspect. On the other hand, the second group collects the methods that prioritize the cost
minimization when a certain set of constraints are applied to the problem. To summarize,
it emerged from the analysis that:

• Straightforward and intuitive solutions such has the Generalized Inverse are able to
compute extremely fast a rough solution.

• The Cascade Generalized Inverse is able to increase the performance of the General-
ized Inverse when it comes to deal with unattainable moments, exploiting efficiently
the inherent redundancy of the system.

• Null Space solution is a simple allocation strategy especially suited when applied to
the RCT system. Still, the solution computed can be enhanced.

• To increase the efficiency in terms of cost minimization, linear programming is able
to find a better solution, but is characterized by high computational times.

• Direct Allocation settles in between optimal solutions and Generalized Inverse, as
it is faster with respect the first family of strategies and computes a more refined
solution with respect to the second one. The major points of weakness are the tight
constraints that characterize the problem, but, as seen in Section 2.5, they can be
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loosen at the expense of optimality degradation in the computed solution.

• Weighted Least Square, on the other hand, is particularly useful when it is necessary
to take into consideration, at the same time, both the accuracy and optimality of
the computed solution, as the user is free to weight the interested aspect.

As stated in the introduction, the main, key advantage of control allocation is the de-
coupling between the high level and low level control. In fact, the high level control was
completely disregarded in the whole analysis, becoming just a black box that took as
input the attitude error and gave, as result, the required torque. This procedure not only
extremely simplifies the overall control subsystem formulation, but also enables the user
to develop the two blocks separately, which gives high flexibility when dealing with prelim-
inary design corrections and iterations. In addition, not all control designs methods are
able to handle redundancy, or actuator failure. Therefore the decoupling is required for a
more relatable, realistic and practical application when developing an AOCS subsystem.
As stated at the beginning of the thesis, the presented work did not limit in the simple
description and evaluation of the different allocation methods, but, once the assessing
terms were strictly stated, explained and transposed into the space field, it built a reliable
instrument that helps choosing the tailored method for an application without influencing
the control logic in any way. Moreover, it showed how vital and suited is the application
of the control allocation in a real orbit servicing mission scenario. In fact, in Phase I
computational efficiency for long time span simulation is demonstrated, in Phase II the
inherent flexibility of the allocation, while in Phase III the ability to manage high intensity
impulses, sharp system state variations and unattainable moment response. In Phase IV,
instead, the allocation was considered for a pose control. With the Monte Carlo analysis,
finally, also the robustness was tested. Again, the control logic was not modified, but it
was just a matter of manipulating properly the effectiveness matrix. Therefore a seem-
ingly complex problem is reduced into a simple and intuitive operation.
In present literature, few examples of control allocation study can be found when deal-
ing with in-orbit servicing missions, which is an extremely vast topic. These types of
missions, that are becoming increasingly required to avoid debris creation and to make
space a more affordable environment, need intrinsically high flexibility in the AOCS sub-
system, which can be granted by redundant actuators. Naturally, the next steps involve
improving control allocation performance, discovering new customized solutions, and in-
corporating time-varying effectiveness matrix into the analysis, particularly when dealing
with movable appendages like, for example, robotic arms or thrust vectoring. In fact,
these components could assist with attitude control instead of being treated as an ex-
ternal, decoupled element. The joint effects, namely reaction force and torque, could be
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used, instead of being treated like perturbations, as actuating elements with a certain
producible effort, depending on the ratio between base and appendage mass. Considering
a robotic arm, for example, due to the conservation of angular momentum, the movement
of this appendage would generate a reaction onto the basis, thus providing an action that
affects the body attitude. This application could be particularly useful when the arm and
basis have comparable masses. The approach avoids the need for propellant mass con-
sumption to counteract their movements and instead incorporates them into the control
loop. In addition, the motion of the appendage has the potential to alter the center of
gravity and impact the effectiveness matrix. This change may result in certain subsets of
actuators being favored over others, particularly in the case of RCT where the effort is
highly dependent on the geometric definition of the torque arm. The appendage effort,
clearly, could enter in the same effectiveness matrix definition as any other actuator, with,
if required, a weighting factor for prioritization. Although the resulting model would be
highly complex, requiring a multi-body model with time variable inertia parameters and
a time-varying effectiveness, it could represent a significant advancement in fine pointing
manoeuvres and close proximity operations that are crucial regarding in-orbit servicing.
To sum up, the proposed inquiry establishes the initial phase for the aforementioned
examination and constructs a useful instrument to effectively handle and enhance the
control allocation in the closed loop control system.
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In accordance with the comparison of the allocation strategies presented in Chapter 2
it is important to confirm that the computational efficiency of the optimal algorithms,
specifically linprog and fmincon, remains inferior to the other algorithms even when
executed solely on Matlab. This condition is required to be verified, since Simulink is
not able to manage undefined variables, that are a necessary input into these algorithms.
To perform these kind of operations in Simulink, the user has to force the software, with
the command coder.extrinsic, to transpose the segment of the code corresponding to
the algorithm solving onto Matlab. This operation is especially heavy in terms of com-
putational cost. Hence, it is necessary to check whether, computed solely on Matlab, the
optimal algorithm allocation is not able to find a solution in a faster way with respect the
other. If this condition is again met, it corroborates the discussion of the computational
efficiency carried out during the comparison. To do this, the allocation procedures are
tested using a random initial required torque as input, for a total of 1000 samples, and
the computational times are recorded. In Figure A.1, the different computational time
spans are presented, for the different strategies, in a semi-logarithmic graph. It is evident
that despite having superior computational speed compared to the Simulink application,
the two optimal algorithms still exhibit slower times in comparison to the other methods.
Thus, the conclusions drawn from the comparison remain valid.
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Figure A.1: Strategies computational time comparison

To conclude, the graph clearly displays the same trend as noted in the comparison: the
optimal algorithms have the longest computation times, followed by the pseudo direct
allocation method which necessitates the inspection of all facets, while the weighted least
square approach performs better. Ultimately, the null space algorithm is the fastest due
to its minimal number of operations required to execute.
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