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1. Introduction
Failure management plays a role of capital im-
portance in microwave networks to avoid ser-
vice disruptions and to satisfy customers’ ser-
vice level agreements. Currently, failure man-
agement in microwave networks strongly relies
on the ability of domain experts who perform
failure troubleshooting observing devices alarms
and performance metrics retrieved from the net-
work. Machine learning (ML) [1] [2] [3] promises
to revolutionize this approach, by introducing
automated methods for failure management [4].
In this work, we describe a successful framework
of Machine Learning (ML) for automatic failure
prediction in microwave networks based on real-
field equipment alarms.
Modern microwave equipment are now installed
with built-in monitoring capabilities, and they
are capable to generate a large amount of
data, which can be leveraged to automate
microwave failure management using ML [5].
Indeed, this large amount of data collected
through such monitors can now be stored and
elaborated in centralized locations thanks to
new advanced control management solutions,
as network telemetry, SDN and/or orchestra-
tion frameworks that, thanks to modern net-

work intelligence (computing capabilities) can
be placed virtually everywhere (e.g., leveraging
Network Function Virtualization and/or Mobile
Edge Computing). Despite that troubleshoot-
ing on alarms logs is mainly hand-made by do-
main experts, resulting in a limited classification
of available data. Hence, as first step a data
augmentation implementation via unsupervised
learning is applied to unlabelled samples. Sec-
ond, automated failure-cause prediction in mi-
crowave networks, allowing operators to reduce
service unavailability, is performed. Third, the
most likely failure root-cause is predicted, so ap-
propriate countermeasures can be effectively put
in place (e.g., by choosing an in-field interven-
tion vs. a remote equipment reconfiguration),
potentially ahead of the actual fault.
Recalling that on microwave links, different het-
erogeneous causes (e.g., adverse atmospheric
conditions, or obstacles) lead to service un-
availability and produce alarms activation and
that failure identification is traditionally accom-
plished by domain experts via direct inspection
of alarms logs (most of the time after failure
events), our main contribution is to provide a
prediction methodology to anticipate and speed
up identification of fault causes leveraging on
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automation via ML technology, resulting in a
trade-off between two approaches with differ-
ent temporal scales, one more accurate short-
term but with computational constraint limit-
ing prediction horizon and one long-term able
to achieve longer predictions but losing accuracy
and the ability of short-term predictions.

1.1. Problem Definition
In this work, we consider source data from
network equipment providing information on
alarms behavior, but not on specific failure-
causes, which can be even unknown for network
operators, so high-level problem of predicting fu-
ture root-causes faults is broken down into the
following functional objectives:

1. The first objective is to group data in or-
der to extract significant information from
alarms data and identify distinct failure-
causes associated to alarms behavior;

2. Moreover, forecast alarms statuses is our
second objective;

3. Finally, detection of failures and identifica-
tion of the relative cause, are our final goals.

2. Machine-Learning Failure
Prediction

This chapter details the methodological ap-
proaches and algorithms used to perform fault
prediction in microwave networks. We start with
data augmentation via kMeans in order to in-
crease ground truth for model training. Then,
we describe two approaches: first we propose
a short-term multi-step prediction framework
with 1 second granularity, composted by a pre-
dictive deep learning model applied to bitse-
quence time-series to forecast alarm statuses in
the future [6], [7]. Then, failure detection sys-
tem and fault detection module using machine-
learning ensembles is described. Beside we pro-
pose a long-term single-step approach, with 15
minutes granularity, for direct fault prediction
via machine learning techniques. The overall
failure management framework developed in this
work is represented by the diagram 1, describing
the logic workflow of our work in a holistic way
and summarized by the following blocks:

1. Data Retrieval, it includes all operations re-
lated to data gathering, analysis and prepa-
ration, including data augmentation with
kMeans;

2. Training and Validation, it considers ma-
chine learning operations as model defi-
nition, training and validation, including
input data pre-processing with regards to
ML models requirements. Models used are
LSTM, kNN, SVM, RF, NN.

3. Prediction is performed following two al-
ternative approaches, i.e., short-term multi-
step or long-term single-step; the first con-
sists of alarms forecast, detection and iden-
tification; the latter consists of sole root-
cause forecast.

2.1. Dataset description
Datasets provided by SIAE Microelettronica
used for our analysis is a collection of logs from
AGS20 equipment type, a universal microwave
aggregation platform. The input data consists
of collected measurements and alarm logs which
are used to analyze network failures, obtained
by an Italian microwave network of 10841 radio
links. In this study, we concentrate on alarm
logs to determine hardware failures. We ana-
lyze network alarms for one week period starting
from the beginning of 27/09/2019 to the end of
4/10/2019. We generate various datasets with
different alarm structure. First, bitsequence
dataset consists of a log with information on
alarms ON/OFF status, also including reference
to equipment and site, and additional informa-
tion related to the alarm. Second, alarm statis-
tics windows that include all links and all the
existing alarms in the system, computing occur-
rences with a 15 minutes granularity.
Meanwhile, time slices to feed the alarms fore-
casting model are created, where a slice is a se-
quential bitsequence subset with length equal to
the sum of 2 parameters: forecaster input size
and forecaster output size [8]. So, dataset is
transformed into a new dataset constituted by
a set of slices that feeds the forecast model.
Finally, our implementation produces a dataset
where each window is labelled with a root-cause
label.

2.2. Short-term Multi-Step Approach
In this approach, prediction of future fault root-
causes is divided into 3 sequential modules:
alarm forecasting, failure detection and fault
identification. Its workflow is shown in Figure
2 and is summarized with the following steps:
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1. Alarms are collected and organized in bit-
sequence per each link;

2. Bitsequence are prepared for forecasting:
data is splitted into training, validation and
testing set. Then, each dataset is sliced
into multivariate, i.e. considering multiple
alarms, time-series with simulation scenario
dimensions - as defined in next paragraphs;

3. Alarms forecast is performed;
4. Windows are prepared from predicted

alarms bitsequence;
5. Failure detection and identification is per-

formed on windows using machine learning
classifier.

2.3. Long-term Single-Step Approach
We propose another approach to perform fail-
ure root-cause identification leveraging on data
structure characterization, as described in the
following steps:

1. Applying data augmentation to collected
windows including no-failure case creating
as output a windows dataset with either rel-
ative failure root-causes or no-failure.

2. Then, fault label is updated of the predic-
tion time horizon . e.g. 1 hour prediction
consists of updating the current label with
the label of the next fourth window, since 1
hour is 4 windows.

3. Finally, this swapped dataset is used to
train previously defined model for fault
identification, so the resulting model could

be used for future prediction of faults.
Figure 3 shows its workflow diagram.

2.4. Hyperparameters Optimization
This section provides first a definition of used
algorithms parameters used in execution of our
framework, as summarized in Tables 1, 4, 3, 2
and 5. At the end, a description of the perfor-
mance computation method is provided.
Tables 1, 2, 3, 4, 5 summarize models parame-
ters chosen.

Parameter Value
Output Layer Dense with sigmoid
Loss function Binary cross entropy
Optimizer Adam

Metrics TP, TN, FP, FN, Acc,
Rec, Prec, AUC, PRC

Overfitting Earlystopping with pa-
tiente = 10

Epoch 1 (trained iteratively
on links)

Table 1: Hyperparameters for LSTM

Parameter Value
Number of trees 10

Maximum tree depth 10
Minimum number of split 2

Table 2: Hyperparameters for RF

Figure 1: Overall Prediction Diagram
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Figure 2: Short-Term Multi-Step Approach

Figure 3: Long-Term Single-Step Approach

Parameter Value
Number of neighbors 5

Weight function Distance
Distance function Manhattan

Searching algorithm Kd-tree

Table 3: Hyperparameters for KNN

Parameter Value
Regularization parameter 100

Kernel RBF
Kernel coefficient 0.01
Decision function One-versus-rest

Table 4: Hyperparameters for SVM

Parameter Value
Number of hidden neuron 5

Activation function Linear

Table 5: Hyperpar. selected for ANN algorithm

Now, the classical method for estimating the
accuracy of a ML algorithm is k-folds cross-
validation (CV).
The simplest measure of the quality of a classi-
fiers is the accuracy, i.e., the proportion of in-
stances which are correctly classified. However,
accuracy assumes that all errors are equally bad,
while usually different types of error have dif-
ferent costs. So recall and precision are more
relevant metrics than accuracy: recall = num-
ber of positive cases predicted as positive total
number of positive cases precision = number of
positive cases predicted as positive number of

positive predictions Precision and recall are two
contrasting objectives and different algorithms
give different trade-offs on these measures.
In our study, we divided sequentially bit-
sequence data to 70% as training set and 20%
as validation and 10% as test. Framework per-
formance is measured in terms of accuracy, pre-
cision, recall. In the following paragraphs results
are presented for each phase.

3. Results
Our experiments were conducted on a PC with
Processor: Intel Core i7 processor and 16 GB
RAM. Results are the following:

3.1. Short-Term Multi-step Predic-
tion

We simulated two main scenario for this ap-
proach: first forecasting 10 seconds in the fu-
ture using 10 sec as input; second, forecasting
120 seconds using 10 seconds as input. Note that
our time horizon maximum depth - 120 seconds-
was limited by simulation hardware constraint,
i.e. random access memory.
Comparing different time length prediction is
not significant for models comparison since
model performs extremely well for considered
scenario. In fact, we can highlight a decrease of
performance moving from 2 seconds prediction
to 10 seconds, while increasing the time horizon
till the limit case of 120s does not show any vari-
ation on forecast performance, as shown in Fig.
4.
Then we compare the performance of our LSTM-
based predictor against two baseline forecast-
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Figure 4: LSTM performance varying prediction
horizon

ers. First using a naive model where each future
second of alarms is predicted based on a sim-
ple probability value; and a second one with a
more evoluted probabilistic model taking a lin-
ear combination of the overall bitsequence un-
balance value and the positive ratio of moving
window of the last seconds. For sake of brevity
baselines details are omitted in this document.
The accuracy, precision and recall are compared
to LSTM performance in Fig 5 showing a great
increase in performance value of LSTM against
baselines. Moreover, the distribution of accu-
racy, precision and recall obtained across the dif-
ferent microwave links are shown in the boxplots
of Fig. 6, showing the distributions of these met-
rics resulting in a better adherence of LSTM to
each link.

Figure 5: Alarms Forecast Performance Com-
parison

Complexity is linear with regard to bitsequence
slice dimensions. Execution times are presented
in figure 7.
The accuracy, precision and recall for detection
classifiers for both scenario are plotted in Fig. 8.
SVM, RF, KNN and ANN have extremely high
metrics over 95%. Farther, all classifiers provide
results close to each other.
Execution times considering both training and
prediction are plotted on Fig. 9. Here kNN
shows the lowest execution time, as expected,

considering that no training is performed by the
algorithm, followed by RF, while at relevant dis-
tance we have SVM and at last NN.

Figure 9: Detection Execution Time

Next identification module is considered with ac-
curacy, precision and recall for classifiers and
both scenario are plotted in Fig. 10. Here too
SVM, RF, KNN and ANN have extremely high
metrics over 95%. Farther, all classifiers provide
results close to each other.
Execution times considering both training and
prediction are plotted on Fig. 11. Here kNN
shows the lowest execution time, as expected,
considering that no training is performed by the
algorithm, followed by RF, third is at SVM and
at last with remarkable delay is NN.

Figure 11: Identification Execution Time

3.2. Long-Term Single-step Predic-
tion

Three prediction scenario are compared with re-
spect to prediction interval: 1 hour, 24 hours
and 48 hours.
Accuracy, precision and recall are respectively
plotted in figures 12, 13, 14 pointing out a gen-
eral trend inversely proportional to prediction
interval, while a similar pattern appears for all
metrics in different scenario. Furthermore, we
have similar results for all models except in
the 48 hours scenario where kNN performance
plumbs of 0.2 points respect to other classifiers.
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Figure 12: Single-step performance: Accuracy

Figure 13: Single-step performance: Precision

Figure 14: Single-step performance: Recall

Execution times considering both training and
prediction are plotted on Fig. 15. Also here
Here KNN shows the lowest execution time, as
expected, considering that no training is per-
formed by the algorithm, RF is second, at con-
siderable distance SVM and after another time
gap, NN finishes.

Figure 15: Single-step Time

4. Conclusions
Overall, framework results in very high model
accuracy and reasonable linear time complexity,
suggesting the approaches are suitable to solve
this problem, despite strong dataset unbalance.
Short-term multi-step and long-term single-step
methods allow a exhaustive analysis and predic-
tion on input data and, as future work, with
better hardware, short term multi-step predic-
tion horizon could be extended and compared
directly with long-term single-step approach.
In addition, future works could be the inte-
gration of a graph neural network for fault
identification and localization. Furthermore
alternative forecast models could be bench-
marked.

Figure 6: LSTM Performance against Baseline Opt
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Figure 7: Forecast execution time

Figure 8: Detection performance

Figure 10: Identification performance
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