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Abstract

In recent years, in order to reduce the environmental impact of fossil fuel power plants, in

most electrical systems in the world, there has been a massive penetration of renewable

energy. This phenomenon has allowed a reduction in the amount of CO2 released into the

atmosphere, but has also highlighted a number of new issues never addressed before.

One of the most signi�cant is certainly the increase in frequency excursions as a result of

power imbalances on the network. These become more and more intense and dangerous

because generators based on renewable energy sources do not contribute to the equivalent

inertia of the system.

In this context a method to estimate system inertia in real time is increasingly impor-

tant to ensure system security. An important help to this end has been provided by the

development of Phasor Measurement Units (PMUs), which are devices able to acquire

measurements from the network and provide phasors synchronized through Global Po-

sitioning System (GPS) in real time with high sampling rates, every 20-100 ms. This

technology has allowed to have a large amount of measurements with a high sampling

frequency, creating an environment suitable for the application of speci�c algorithms for

data manipulation called "Data-driven algorithm".

The purpose of this thesis is to verify if there is the possibility to estimate, in real time,

the equivalent inertia of a system using only the measurements of electric power and fre-

quency. To this end, several perturbations have been simulated to verify the e�ectiveness

of the proposed inertia estimation methods.

In addition, other comparative tests were also addressed regarding di�erent topics such

as: the choice of the most performant algorithm, the exclusive use of frequency and power

variables and the sensibility of the PMUs. In particular, 7 tests were carried out, most

of them consisting of two simulations each, in which the proposed methods are studied

considering the same perturbation but located at di�erent points of the system. Or in the

comparative test, the same perturbation is considered, but the number of PMUs available

and sample rates change.

Keywords: inertia estimation, data-drive algorithm, Phasor Measurement Units





Abstract in lingua italiana

Negli ultimi anni per ridurre l'impatto ambientale delle centrali elettrice a combustibile

fossile, nella maggior parte dei sistemi elettrici nel mondo, vi è stata una massiccia pen-

etrazione delle energie rinnovabili. Questo fenomeno ha bensì permesso una riduzione

della quantità di CO2 immessa nell'atmosfera, ma ha anche evidenziato una serie di

nuove problematiche. Una di quelle più rilevanti è sicuramente l'incremento delle escur-

sioni di frequenza a seguito di squilibri di potenza sulla rete. Le quali diventano sempre

più pericolose poiché i generatori basati su fonti di energia rinnovabile non contribuiscono

all'inerzia equivalente del sistema. In questo contesto un metodo per stimare in tempo

reale l'inerzia del sistema è sempre più importante per garantire la sicurezza del sistema.

Un importante aiuto a tal �ne è stato fornito dallo sviluppo delle Phasor Measurement

Units (PMUs), le quali sono dei dispositivi in grado di acquisire misure in tempo reale con

alte frequenze di campionamento, ogni 20-100 ms. Questa tecnologia ha permesso di avere

a disposizione una grande quantità di misure con un elevata frequenze di campionamento

creando un ambiente adatto all'applicazioni di speci�ci algoritmi chiamati �Data-driven

algorithm�. Lo scopo di questa tesi è veri�care se vi è la possibilità di stimare, in tempo

reale, l'inerzia equivalente di un sistema utilizzando solamente le misure di potenza elet-

trica e frequenza. A questo �ne sono state simulate diverse perturbazioni per veri�care

l'e�cacia dei metodi proposti per la stima dell'inerzia. Inoltre, sono stati a�rontati anche

altri test di confronto riguardo diversi temi come: la scelta dell'algoritmo più performante,

l'uso esclusivo delle variabili di frequenza e potenza elettrica e la sesibilità delle PMU.

In particolare, sono stati e�ettuati 7 test, la maggior parte composta da due simulazioni

ciascuno, in cui i metodi proposti vengono studiati considerando la stessa perturbazione

ma situata in punti diversi del sistema. Oppure nei test di confronto viene considerata

la stessa perturbazione, ma cambiano il numero delle PMU disponibili e la frequenza di

campionamento.

Parole chiave: stima dell'Inerzia, algoritmi "data-driven", Phasor Measurement Units
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1

Introduction

In the last years, renewable energy has spread more and more inside the grids of every

country. Their huge increase is expected to mitigates many important problems of our

society like climate change, energy security and environmental sustainability. For 10 years,

the growth rate of renewable energy in the World was positive every year as shown in

Figure 1 and Figure 2 [23].
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Figure 1: World total capacity.

The World total capacity is almost composed of hydropower, solar energy and wind energy

which are the most spread renewable technologies. Hydropower is a well−estabilished
renewable power technology, in which the main developments in this �eld are focused on

increasing the �exibility of plants. Flexibility is one of the most important features of

modern power plants due to the increasing penetration of intermittent renewables [16].
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World total production
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Figure 2: World total production.

In the past two decades, the policy attention was focused on the spread of the wind and

solar PV technology (and lowering their cost). Short- and long-term targets and �nan-

cial incentives have been introduced by more than 100 countries for wind and solar PV.

Indeed, in Figure 1 and Figure 2 we can see that the capacity of the solar and wind

energy increase much more than hydropower. This phenomenon is largely justi�ed by

the absence of large spaces suitable for the construction of these type of plants, high-risk

investments, speci�c policy instruments and incentives a longer-term policy in relation to

other installations. Moreover, the slowdown in hydropower growth is due to the delays

in development of the new projects in China, Latin America and Europe and due to the

increasingly erratic rainfall due to climate change that disrupting hydro production in

many parts of the world.

Instead, solar energy experienced a record increase of 270 TWh (up 26%) in 2022, sur-

passing wind for the �rst time in history. The capacity of solar PV is set to increase by

almost 1500 GW between 2023 and 2027 exceeding the installed capacity of natural gas

and coal.
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Figure 3: Share of cumulative power capacity by technology, 2010-2027 [17].

The record increase of solar energy is due to the spread of distributed solar PV which

result a good choice for consumers thanks to the policy support and high retail electricity

prices. The last of the three most popular renewable energy is wind energy which is the

second highest growth among all renewable power technologies, behind solar PV. The

expected increase of this technology is not as high as the record increase of 2021 due to

the low volume of projects under construction outside China [16].

While the increase in the use of renewable energy contributes to reducing greenhouse gas

emissions and thus mitigating climate change, the increasing penetration of renewable

energy in the national electric systems has brought many challenges to be addressed in

the future:

� Voltage Control

The RES can be installed only where the natural resources, exploited for energy

production, are available. In this condition, the main demanding centre could be

far from the renewable generating units and this could lead to the inversion of the

power �ow in some lines of the distribution network causing congestion and voltage

control issues.

� Flexibility of the plants

Most of the RES generation are characterized by uncertainty, unpredictability and

variability; therefore, the �exibility of the plants becomes one of the most important

features of the modern power plants. An increase in the �exibility of the plant

means that they must be able to follow the network requirement and keep the

frequency inside the security limit of the system, avoiding the risk of undergeneration
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or overgeneration.

To increase the �exibility of the system, many solutions can be put in place. A a

list of technical measures to increase system �exibility is illustrated in Figure 4

Figure 4: Technical options to increase system �exibility [15].

� System security

Any power imbalance in the grid involves dangerous frequency excursion that, with-

out any security systems, could be catastrophic for the entire grid. Usually, the

power imbalances are damped by the inertia of the rotary machines connected to

the grid, but it decreases when wind and photovoltaic generators are connected to

the grid. This is because RES are decoupled from the grid by converters and do not

provide directly rotational inertia.

The main aim of this work is focused on this last problem related to the di�usion of the

RES generation. Di�erent methods permit to increase the inertia level when it goes down

such as the synthetic inertia and synchronous condensers, but a method able to detect

when the inertia level of the system is too low is necessary.

With a continuous monitoring of the inertia level of the system, it is possible to under-

stand when the system is in a dangerous situation and to start compensate it.

The continuous monitoring of the value of the inertia is a problem for the Transmission

System Operator (TSO) or a Distribution System Operator (DSO) since there is not a

precise method to de�ne in real-time the level of the inertia. In the past, the complexity of

this goal was greater, since the only instrument used to monitor the grid was the Supervi-
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sory Control and Data Acquisition (SCADA) system that collected data from substations.

The data available from SCADA systems are not suitable for dynamic analysis, since the

resolution of the measure was limited and the phase angles were not monitored.

Nowadays, we can exploit a very competitive alternative which is the Phasor Measure-

ment Unit (PMU). PMUs are devices able to acquire measurements voltages and current

phasors of a three-phase network in a synchronized way with a reporting maximum fre-

quency of typically 30�60 samples per seconds [22]. About 10 years ago the commercial

PMUs were very expensive (reported as costing $40000 to $180000 in 2014, [18]) and

this aspect was very limiting for a real application, but the continuous development of

this technology has lead to a sensible reduction of the PMUs's price. In the last years,

low-cost PMU are being developed and the cost of developed prototypes is very low about

110 e[6].

The new features in real-time measurements of the PMUs merged with the huge decrease

in the price of this technology open the possibility of a true application of the methods

exposed in this work.

In a way proportional to the increasing spread of PMUs there is also a considerable in-

creasing interest in the data-driven parameter estimation algorithms [12].

Data-driven algorithms that utilize PMUs measurements have recently been utilized in

innovative applications like power grid parameter estimation. One of the �st approach in

the estimation of the power grid parameter was through the application of the Kalman

�lter and its variants [26]. This approach is followed by several works, such as the Un-

scented Kalman Filter (UKF) based approach to estimate the transient reactance and

inertia of the generator.

The main drawback of the KF-based techniques is that it cannot perform well in the pres-

ence of strong nonlinearity and for low-inertia systems that exhibit very fast dynamics

[9]. The disadvantages of the approaches based on the Kalman Filter are overcome by

a data-driven approach for power grid parameter estimation based on the technique of

Physics-Informed Neural Networks (PINNs). Although this method can handle strong

non-linearity, its main drawbacks are:

� High computational burden: The computational complexity makes it time-

consuming, especially for large power grids. Therefore, use this method for the

real-time parameter estimation may not be the best �t for it.

� Di�culties with high-inertia systems: the PINNs method does not perform

well when the system exhibit very slow dynamics.

To overcome these limitations, an algorithm for data-driven power grid parameter estima-

tion based on the Sparse Identi�cation of Nonlinear Dynamics (SINDy) was development
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[4]. The idea of SINDy was derived from the Least Absolute Shrinkage and Selection

Operator (LASSO), that is an algorithm used to promote sparsity using the L1-norm for

the identi�cation of linear systems [19]. Another techniques studied for the estimation of

the power grid parameter are:

� Koopman theory: used to estimate generator-inertia constants, but it is restricted

to transient event measurements only [14].

� Arti�cial Neural-Networks (ANN) [21].

Moreover, there are some interesting data-driven algorithms used for the discovery of

governing physical laws that can be applied for the estimation of the power grid parameter

such as the threshold sparse Bayesian regression algorithm [25] and the Sparse Relaxed

Regularized Regression (SR3) [27].
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1| Power system stability

A power system is an electrical network whose main function is to supply the loads through

the energy that is transmitted and distributed from the generation units. Every power

system has three major components:

� Generation: that is the source of power, ideally with a speci�ed voltage and fre-

quency

� Loads: which consumes power; ideally with a constant resistive value or constant

power.

� Grid: that transfer power allowing the connection between generators and loads

creating a network.

The grid of a power system is more complex and divided in di�erent voltage levels to

guarantee the minimum operational cost and minimum environmental impact. Its main

parts are:

� Transmission grid 400-230 kV: This part is a meshed grid in which the load

or the generator must be rated more than 200 MW each to be connected. The

reliability of this grid is very high since possible failure could interrupt the supply

of a huge part of the power system.

� Subtransmission grid 132-150 kV: In this part of the system, partially meshed,

can be connected load or generator in the range of 8-200 MW. The reliability is

lower than the Transmission grid to reduce the initial costs.

� Primary distribution grid 10-60 kV: The usual topology of this grid is radial

or ring normally open, while the installed capacity must be in the range of 4-8 MW.

� Secondary distribution grid 400-230 V: This part of this grid could be a radial

grid or a pure radial system, in which the installed capacity must be up to some

hundreds of kW.

Traditionally, the power was produced by big thermal or hydraulic generation units and

then was converted and carried directly to the load sites. In this condition the power �ow
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was unidirectional from the generator to the load and the system was de�ned centralized.

In the last 15 year, the massive increase of the installed capacity of RES has modi�ed the

operation of the transmission and distribution grid. In particular, the distribution system

is designed to distribute energy from upstream to downstream. With the advent of the

RES, the distribution network reaches not only loads but also generators, which means

that power �ows in this new scenario are bidirectional and no longer unidirectional.

The bi-directionality of power �ows has changed many of the logic initially used to op-

erate the distribution networks. This change is due not only to the single big renewable

generation units but also to the overall e�ect of all small renewable generation units of in-

dividual users. This new concept of the system is called distributed system and a graphical

comparison with respect to the centralized system can be seen in Figure 1.1

Figure 1.1: Schematic of centralized and distributed systems [2].

1.1. Stability in Power Systems

The traditional power systems were based on operating at synchronous speed. Any time

in the system there is a power imbalance between the mechanical power of the generating

unit's shaft and the electrical power absorbed by the loads the system experiences a

perturbation of the synchronous speed. The relationship between the power imbalance

and the changing of the synchronous speed can described by the equation of motion for a
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generator [11]

J
dωm

dt
= Ta = Tm − Te (N ·m) (1.1)

where

� Ta = accelerating torque in N ·m

� Tm = mechanical torque in N ·m

� Te = electromagnetic torque in N ·m

� J = combined moment of inertia of the generator and turbine in kg ·m2

� ωm = angular velocity of the rotor in mech. rad/s

� t = time in s

The power imbalance could be an undergeneration in which the electric power exceeds

the mechanical power and the frequency decreases with respect to the nominal value or

an overgeneration in which the system experiences the opposite phenomenon.

One of the main goals of the TSO is to keep the frequency around its nominal value

and so operate the system at synchronous speed. This goal is much more challenging

considering all the possible disturbances which may occur during the operation of the

system. Regarding this subject, a fundamental property for the power systems is the

stability, which can be stated as "the ability of an electric power system, for a given

initial operating condition, to regain a state of operating equilibrium after being subjected

to a physical disturbance, with most system variables bounded so that practically the entire

system remains intact" [8].

The power system stability can be classi�ed by considering [8]:

� Physical nature of the resulting mode of instability

� Size of the disturbance

� Devices, processes, and the time span considered to asses the stability

An overall description of the power system stability problem with its categories and sub-

categories is given by the Figure 1.2



10 1| Power system stability

Figure 1.2: Classi�cation of power system stability [8].

The category of the power system stability problem studied in this work is the Frequency

Stability. The continuous reduction of the system inertia due to the di�usion of the RES

inside the grid increases the excursions of frequency in case of perturbation. A real-time

estimation of the inertia level of the system will permit us to avoid dangerous situations

that could easily degenerate into large excursions of frequency.

1.2. Swing equation

To obtain the swing equation we have to start from the equation of motion for a generator

[11]

J
dωm

dt
= Ta = Tm − Te (N ·m) (1.2)

In the above equation, if we suppose that the machine works as a motor we need to

consider the right side of the equation with opposite sign as Te − Tm

If we consider a �xed reference that rotates at the synchronous speed ωsm it is possible

de�ne an angle θm that is at the angular position δm with respect to the reference, such

that

θm = ωsmt+ δm (mech. rad) (1.3)

dθm
dt

= ωm = ωsm +
dδm
dt

(rad/s) (1.4)

By computing the second derivative with respect to the time of this expression, it results
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in

d2θm
dt2

=
dωm

dt
=

d2δm
dt2

(rad/s2) (1.5)

The time derivative of the term ωsm is equal to zero since the speed of the reference axis

is constant.

Substitute this result in Equation 1.2

J
d2δm
dt2

= Ta = Tm − Te (N ·m) (1.6)

By multiplying both sides for the mechanical speed of the rotor it is possible to move

from torque to power

ωm J
d2δm
dt2

= (Tm − Te) ωm = Pm − Pe (W ) (1.7)

where:

� Pm = mechanical power in W

� Pe = electromagnetic power in W

If we introduce a constant called angular momentum de�ned as

M ≜ Jωsm (kg ·m2 · rad
s

) (1.8)

Then we consider the following simpli�cation

M ≜ Jωsm
∼= Jωm (kg ·m2 · rad

s
) (1.9)

and we replace the angular momentum of the rotor in Equation 1.7 the result is

M
d2δm
dt2

∼= Pm − Pe (W ) (1.10)

However, M can assume values very di�erent numerically, depending on the size of the

machine. For this reason, another constant, called inertia constant, is used. The inertia

constant is denoted by H and de�ned as
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H ≜
1
2
J ω2

sm

Anom

=
1
2
Mωsm

Anom

(
Ws

V A
) (1.11)

where Anom is the nominal power of the synchronous machine in V A. The inertia constant

de�nes how many seconds are needed to discharge the kinetic energy of the machine when

it rotating at a synchronous speed if you supply a load with rated power equal to the rated

power of the synchronous machine. This is the physical meaning of the inertia constant.

Expressing the angular momentum of the rotor respect to the value of the inertia constant

it results in

M =
2H

ωsm

Anom (kg ·m2 · rad
s

) (1.12)

If we replace this result in Equation 1.10 we obtain

2H

ωsm

Anom
d2δm
dt2

∼= Pm − Pe (W ) (1.13)

Losses can be considered if we subtract to the right side of the Equation 1.13 a damping

term D which is multiplied by the time derivative of the angular position of the rotor in

mech. radians [11]

2H

ωsm

Anom
d2δm
dt2

∼= Pm − Pe −D
dδm
dt

(W ) (1.14)

By replacing the result in Equation 1.4 it is possible to express the Equation 1.14 with

respect to the mechanical speed of the rotor

2H

ωsm

Anom
dωm

dt
∼= Pm − Pe −D(ωm − ωsm) (W ) (1.15)

If we divide both sides by the term Anom the Equation 1.15 results in

2H

ωsm

dωm

dt
∼= (Pm − Pe −D(ωm − ωsm))

1

Anom

(W )

2H

ωs

dω

dt
∼= pm − pe −

D

Anom

(ω − ωs) (p.u.)

(1.16)

The Equation 2.16 is commonly referred to as the swing equation because it represents

swings in rotor angle δm during disturbances.
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The swing equation is the basic equation that drives the motion of the rotor of a generator

and links its dynamic behaviour with the working frequency of a synchronous machine.

1.3. Swing equation in multi-machine systems

Systems in which many generators and loads are interconnected by tie-lines are called

multi-machine systems. In these systems, the Equation 2.16 can be used to describe the

dynamic of each one of the k machines of the system [1]. The general set of the k equation,

neglecting the damping for the sake of simplicity, appears as

2
ωs
H1Anom,1

dω1

dt
∼= P1,m − P1,e (W )

2
ωs
H2Anom,2

dω2

dt
∼= P2,m − P2,e (W )

...

2
ωs
HkAnom,k

dωk

dt
∼= Pk,m − Pk,e (W )

(1.17)

A common transformation used to study the multi-machine dynamic models is the center-

of-inertia (COI) reference.

To obtain the COI reference of a multi-machine system we need to start from the generic

expression of a i -th machine

2

ωs

HiAnom,i
dωi

dt
∼= Pi,m − Pi,e (W ) (1.18)

Then, is possible to describe the dynamic of the system using a single equivalent machine

de�ned in the Equation 1.19

k∑
i=1

2

ωs

HiAnom,i

d
∑k

i=1 HiAnom,iωi∑k
i=1 HiAnom,i

dt
=

2

ωs

k∑
i=1

HiAnom,i

d
∑k

i=1 HiAnom,iωi∑k
i=1 HiAnom,i

dt
∼=

k∑
i=1

Pi,m −
k∑

i=1

Pi,e (W )

(1.19)

Fixing the base power as Anom,tot =
∑k

i=1 Ai, is possible to express the Equation 1.19 in

per unit as

2

ωs

k∑
i=1

HiAnom,i

Anom,tot

d
∑k

i=1 HiAnom,iωi∑k
i=1 HiAnom,i

dt
∼=

k∑
i=1

Pi,m

Anom,tot

−
k∑

i=1

Pi,e

Anom,tot

(p.u.) (1.20)
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Alternatively, in the Equation 1.20 is possible to choose another base power . Take into

account, the arbitrary base power Abase we can express the Equation 1.20 as follow

2

ωs

k∑
i=1

HiAnom,i

Abase

d
∑k

i=1 HiAnom,iωi∑k
i=1 HiAnom,i

dt
∼=

k∑
i=1

Pi,m

Abase

−
k∑

i=1

Pi,e

Abase

(p.u.) (1.21)

The COI reference transformation permits the reduction of the variables used to describe

the system de�ning the COI angular speeds and equivalent inertia constant as [10] [20]

[13]

ωCOI ≜

∑k
i=1 HiAnom,iωi∑k
i=1 HiAnom,i

(rad/s) (1.22)

HCOI ≜

∑k
i=1HiAnom,i∑k
i=1Anom,i

=

∑k
i=1HiAnom,i

Anom,tot

(s) (1.23)

Therefore, the equivalent motion equation of the multi-machine system expressed with

respect to its COI reference is given by

2HCOI

ωs

dωCOI

dt
∼= peq,m − peq,e (p.u.) (1.24)

where:

� peq,m =
∑k

i=1
Pi,m

Abase

� peq,e =
∑k

i=1
Pi,e

Abase

The COI reference is useful to describe the response of an area of the system to external

forces.

Traditionally, the main drawback of COI-based approaches is that the information about

the frequency of each local bus and the inter-unit synchronizing oscillations between gen-

erators is lost. Nevertheless, di�erent approach that permit the estimation of the local

frequencies from the COI frequency are under development [7].
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System Inertia

2.1. Sparse identi�cation of nonlinear dynamics (SINDy)

The sparse identi�cation of nonlinear dynamics (SINDy) algorithm is a �exible method

which is used to discover linear and nonlinear dynamic system models from data.

The increase of the available data, due to the lower cost of the sensor, together with the

increase of computation power and data storage of our devices allow us to obtain a proper

environment for the application of the SINDy algorithm.

The SINDy algorithm bypasses the intractable combinatorial search through all possible

model structures, leveraging on the fact that many dynamic systems have dynamics with

only a few active terms in the space of possible righthand side functions [3].

2.1.1. Application of SINDy to a generic nonlinear

dynamic system

If we consider a generic nonlinear dynamic system [3]

d

dt
vT (t) = v̇T (t) = fT (v(t)) (2.1)

d

dt

[
v1 (t) v2 (t) · · · vn (t)

]
(1×n)

=
[
v̇1 (t) v̇2 (t) · · · v̇n (t)

]
(1×n)

=
[
f (v1 (t)) f (v2 (t)) · · · f (vn (t))

]
(1×n)

(2.2)

(2.3)

The column vector v(t) = [v1(t) v2(t) . . . vn(t)]
T ∈ Rn represents the n state of the

system at time t, and the nonlinear function f(v(t)) represents the dynamic constraints
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that de�ne the equations of motion of the system [4]. To determine the function f from

data, we collect a time-history of the state v(t) and we either measure the derivative

v̇(t) or approximate it numerically from v(t). The data is sampled at several times

t1, t2, . . . , tm and arranged into two large matrices:

V =
[
v1(t) v2(t) · · · vn(t)

]
(m×n)

=


v1 (t1) v2 (t1) · · · vn (t1)

v1(t2) v2(t2) · · · vn(t2)
...

...
. . .

...

v1 (tm) v2 (tm) · · · vn (tm)


(m×n)

(2.4)

V̇ =
[
v̇1(t) v̇2(t) · · · v̇n(t)

]
(m×n)

=


v̇1 (t1) v̇2 (t1) · · · v̇n (t1)

v̇1(t2) v̇2(t2) · · · v̇n(t2)
...

...
. . .

...

v̇1 (tm) v̇2 (tm) · · · v̇n (tm)


(m×n)

(2.5)

Starting from a vector of possible non linear functions de�ned as

θ(v(t)) =
[
1 v(t) v(t)P2 v(t)P3 · · · sin (v(t)) cos (v(t)) sin (2v(t)) cos (2v(t))

]
(1×c)

(2.6)

where c de�nes the number of columns of θ (v(t)) that cannot be uniquely de�ned, since

they depends by the di�erent nonlinear functions inserted in the vector.

A matrix Θ(V) may be constructed, considering the vector θ (v(t)) in each one of the m

instants of time:

Θ (V) =


θ(v(t1))

θ(v(t2))
...

θ(v(tm))


(m×c)

=


1 v(t1) v(t1)

P2 v(t1)
P3 · · · sin(v(t1)) cos(v(t1)) sin(2v(t1)) cos(2v(t1))

1 v(t2) v(t2)
P2 v(t2)

P3 · · · sin(v(t2)) cos(v(t2)) sin(2v(t2)) cos(2v(t2))
...

...
...

...
...

...
...

...
...

1 v(tm) v(tm)P2 v(tm)P3 · · · sin(v(tm)) cos(v(tm)) sin(2v(tm)) cos(2v(tm))


(m×c)

=
[
1 V VP2 VP3 · · · sin(V) cos(V) sin(2V) cos(2V)

]
(m×c)

(2.7)
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Here, higher polynomials are denoted as VP2 , VP3 , etc., where VP2 denotes the quadratic

nonlinearities in the state v:

VP2 =


v21(t1) v1(t1)v2(t1) · · · v1(t1)vn(t1) v22(t1) · · · v2n(t1) · · ·
v21(t2) v1(t2)v2(t2) · · · v1(t2)v2(t2) v22(t2) · · · v2n(t2) · · ·

...
...

...
...

...
. . .

...
...

v21(tm) v1(tm)v2(tm) · · · v1(tm)v2(tm) v22(tm) · · · v2n(tm) · · ·


(m×(n·n))

(2.8)

while the symbol 1 de�ne the vector 1 =
[
1 1 · · · 1

]T
(m×1)

.

Each column of θ(v(t)) represents a candidate function for the right hand side of Equation

2.1. Note that θ(v(t)) is a vector of non linear functions of v(t), as opposed to Θ (V),

which is a data matrix.

The entries in the matrix θ(v(t)) are built with great freedom. Since only a few of these

nonlinearities are active in each row of f , it is possible to set up a sparse regression problem

to de�ne the sparse vectors of the coe�cients Ξ = [ξ1 ξ2 · · · ξn] that determine which

nonlinearities are active.

The dynamic system in Equation 2.1 can now be represented in terms of data matrices

using Equation 2.5 and Equation 2.7 as

(2.9)

Each column ξk in Ξ is a vector of unknowns determining the active terms in the k-th
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equation of the Equation 2.1 and can be found using a convex l1-regularized sparse re-

gression algorithm as:

ξk = argmin
ξ
′
k

∥V̇k −Θ(V)ξ
′

k∥2 + λ∥ξ′

k∥1 ∀k (2.10)

where V̇k is the k-th column of V̇, and λ is called sparsity-promoting knob.

A parsimonious model will provide an accurate model �t in Equation 2.9 with as few terms

as possible in Ξ. A more detailed explanation about the parsimonious model is provided

in Appendix B.2. The algorithm used in SINDy for the estimation of the few active terms

present in the matrix Ξ is the Sequentially thresholded least-squares algorithm (STLS)

analyzed more in depth in Subsection 2.1.2.

Once Ξ has been determined, a model of each of the governing equations in the Equation

2.1 may be constructed as follows:

v̇k = θ(vk)ξk (2.11)

The result of the SINDy regression is a parsimonious model that includes only the most

important terms required to explain the observed behaviour.

2.1.2. Sequentially thresholded least-squares algorithm (STLS)

The STLS, given a parameter λ that speci�es the minimum magnitude for a coe�cient

in Ξ, perform a least squares �t and then zero out all coe�cients with magnitude below

the threshold. [5]

In particular, if we want to solve the Equation 2.9 with respect to Ξ, the result is an over-

�tted matrix in which it is di�cult to identify the true active terms for the reconstruction

of the dynamic behaviour of the system. For this reason, we start a sequential method

that allows to increase the sparsity of the matrix Ξ repeating the same procedure for k

times.

In every repetition the terms of the matrix Ξ that respect this relationship |ξk|<λ are set

equal to zero.

The sparsi�cation knob allows to identify a threshold under which the algorithm sets the

term ξk equal to zero.

Then, we exclude from the matrix Θ (V) the term whose results is a term ξk considered

negligible and �xed equal to zero.

Finally, the matrix Ξ is recomputed with the new matrix Θ (V).

This process of �tting and thresholding is performed until convergence.
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The convergence is reached when the sparsity of the matrix does not change between two

consecutive iterations. Usually, ten iterations are enough to achieve convergence.

The sparsi�cation knob and the number of iteration achieved until convergence are the

most important parameter that can be changed to modify the sparsity of the matrix Ξ.

The code used to perform the sequential thresholded least squares in MATLAB is pre-

sented in Appendix B.1.

2.1.3. Application of SINDy for the estimation of the power

system inertia

If we consider to have the possibility of measure the value over time of system variables,

we can de�ne three matrices in which each column is related to a machine of the studied

electric system.

X =
[
x1(t) x2(t) · · · xn(t)

]
(m×n)

=


x1 (t1) x2 (t1) · · · xn (t1)

x1(t2) x2(t2) · · · xn(t2)
...

...
. . .

...

x1 (tm) x2 (tm) · · · xn (tm)


(m×n)

(2.12)

Y =
[
y1(t) y2(t) · · · yn(t)

]
(m×n)

=


y1 (t1) y2 (t1) · · · yn (t1)

y1(t2) y2(t2) · · · yn(t2)
...

...
. . .

...

y1 (tm) y2 (tm) · · · yn (tm)


(m×n)

(2.13)

Z =
[
z1(t) z2(t) · · · zn(t)

]
(m×n)

=


z1 (t1) z2 (t1) · · · zn (t1)

z1(t2) z2(t2) · · · zn(t2)
...

...
. . .

...

z1 (tm) z2 (tm) · · · zn (tm)


(m×n)

(2.14)

Where:

� X = matrix of the electromagnetic power in MW over the time t in each machine

� Y = matrix of the angular velocity of the rotor in rad/s over the time t in each
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machine

� Z = matrix of the mechanical power in MW over the time t in each machine

� n = number of variables measured for that speci�c quantity

� m= number of measurement made for each speci�c variables

The relationship between these three matrices can be expressed using the Equation 1.15

and it results as

2H

ωs

Anom
dY

dt
∼= Z−X−D(Y − ωs) (MW ) (2.15)

If we elaborate the Equation 2.15, in order to obtain an equation with the same shape of

Equation 2.1, the result is

dY

dt
= Ẏ ∼=

ωs

2H

1

Anom

(Z−X−D (Y − ωs)) (rad/s2)

∼=
ωs

2H

1

Anom

(Dωs −X−DY + Z) (rad/s2)

(2.16)

Where the matrix Ẏ is the matrix which holds time derivative computed

Ẏ =
[
ẏ1(t) ẏ2(t) · · · ẏn(t)

]
(m×n)

=


ẏ1 (t1) ẏ2 (t1) · · · ẏn (t1)

ẏ1(t2) ẏ2(t2) · · · ẏn(t2)
...

...
. . .

...

ẏ1 (tm) ẏ2 (tm) · · · ẏn (tm)


(m×n)

(2.17)

and obtained using the fourth-order centered di�erence approximation. A more detailed

explanation about the fourth-order centered di�erence approximation is present in the

Appendix A.1 .

Starting form the vector of the functions present in the Equation 2.16 de�ned as

θ(t) = [1 x1(t) x2(t) · · · xn(t) y1(t) y2(t) · · · yn(t) z1(t) z2(t) · · · zn(t)](1×(3n+1))

(2.18)
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A matrix Θ is built considering the vector θ(t) in each one of the m instants of time:

Θ(W) =


θ(t1)

θ(t2)
...

θ(tm)


(m×(3n+1))

= [1 x1(t) x2(t) · · · xn(t) y1(t) y2(t) · · · yn(t) z1(t) z2(t) · · · zn(t)](m×(3n+1))

=
[
1 X Y Z

]
(m×(3n+1))

=
[
1 W

]
(m×(3n+1))

(2.19)

where the symbol W de�nes the matrix of the measurements.

In matrix Θ (W) the terms corresponding to polynomial terms with order higher than

one and any other function is not considered, since they do not appear in

the Equation 1.15.

The Equation 2.16 can now be represented in terms of data matrices using Equation 2.17

and Equation 2.19 as

Ẏest = Θ (Y)Ξ

=
[
1 X Y Z

]
(m×(3n+1))

[
ξ1 ξ2 · · · ξn

]
(3n+1)×n

=
[
1 X Y Z

]
(m×(3n+1))



ξ1,k ξ2,k · · · ξn,k

ξ1,x1 ξ2,x1 · · · ξn,x1

ξ1,x2 ξ2,x2 · · · ξn,x2

...
... · · · ...

ξ1,xn ξ2,xn · · · ξn,xn

ξ1,y1 ξ2,y1 · · · ξn,y1

ξ1,y2 ξ2,y2 · · · ξn,y2
...

... · · · ...

ξ1,yn ξ2,yn · · · ξn,yn

ξ1,z1 ξ2,z1 · · · ξn,z1

ξ1,z2 ξ2,z2 · · · ξn,z2
...

... · · · ...

ξ1,zn ξ2,zn · · · ξn,zn


(3n+1)×n

(2.20)
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=



1 1 · · · 1

x1 (t1) x1 (t2) · · · x1 (tm)

x2(t1) x2(t2) · · · x2(tm)
...

...
. . .

...

xn (t1) xn (t2) · · · xn (tm)

y1 (t1) y1 (t2) · · · y1 (tm)

y2(t1) y2(t2) · · · y2(tm)
...

...
. . .

...

yn (t1) yn (t2) · · · yn (tm)

z1 (t1) z1 (t2) · · · z1 (tm)

z2(t1) z2(t2) · · · z2(tm)
...

...
. . .

...

zn (t1) zn (t2) · · · zn (tm)



T

(m×(3n+1))



ξ1,k ξ2,k · · · ξn,k

ξ1,x1 ξ2,x1 · · · ξn,x1

ξ1,x2 ξ2,x2 · · · ξn,x2

...
... · · · ...

ξ1,xn ξ2,xn · · · ξn,xn

ξ1,y1 ξ2,y1 · · · ξn,y1

ξ1,y2 ξ2,y2 · · · ξn,y2
...

... · · · ...

ξ1,yn ξ2,yn · · · ξn,yn

ξ1,z1 ξ2,z1 · · · ξn,z1

ξ1,z2 ξ2,z2 · · · ξn,z2
...

... · · · ...

ξ1,zn ξ2,zn · · · ξn,zn


(3n+1)×n

The non-zero elements ξ of the matrix Ξ are corresponding to the active terms of the

right side of the Equation 2.16.

Each column ξk in Ξ is a vector of coe�cients determining the active terms in the k-th

di�erential equation in Equation 2.16 and can be found using a a convex l1-regularized

sparse regression algorithm as:

ξk = argmin
ξ
′
k

∥Ẇk −Θ(Y)ξ
′

k∥2 + λ∥ξ′

k∥1 (2.21)

Ideally, once the sparse regression problem is solved, the matrix Ξ becomes very sparse

and it can be expressed as
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Ẏest = [1 X Y Z](m×(3n+1))



ξ1,k ξ2,k · · · ξn,k

ξ1,x1 0 · · · 0

0 ξ2,x2 · · · 0
...

... · · · ...

0 0 · · · ξn,xn

ξ1,y1 0 · · · 0

0 ξ2,y2 · · · 0
...

... · · · ...

0 0 · · · ξn,yn

ξ1,z1 0 · · · 0

0 ξ2,z2 · · · 0
...

... · · · ...

0 0 · · · ξn,zn


(3n+1)×n

(2.22)

However, is very common obtain higher number of non-zero terms in the Ξ, due to errors

during the sparse regression problem. Since the Equation 2.22 approximates the Equation

2.17, the following equality can be de�ned as

Ẏ ∼= Ẏest (2.23)

Then, if we only consider the terms related to the 1-st machine for the sake of simplicity,

the Equation 2.23 becomes

ωs

2H1

1

Anom,1

[Dωs − x1(t)−Dy1(t)+z1(t)]∼= [1 X Y Z]



ξ1,k

ξ1,x1

0
...

0

ξ1,y1

0
...

0

ξ1,z1

0
...

0



(2.24)



24 2| Determination of the Power System Inertia

ωs

2H1

1

Anom

[Dωs − x1(t)−Dy1(t)+z1(t)]∼= 1ξ1,k + x1(t)ξ1,x1 + y1(t)ξ1,y1 + z1(t)ξ1,z1

(2.25)

Then, it is possible to correlate the terms of the matrix Ξ with the constant terms that

multiply the vectors x1(t), y1(t), z1(t) in the Equation 2.17

ξ1,k =
ωs

2H1

1

Anom,1

D ωs

ξ1,x1 = − ωs

2H1

1

Anom,1

ξ1,y1 = − ωs

2H1

1

Anom,1

D

ξ1,z1 =
ωs

2H1

1

Anom,1

(2.26)

(2.27)

(2.28)

(2.29)

The same procedure can be repeated for each machine of the system.

The estimated inertia value can be extracted from the active terms of the vector ξk through

these computations:

H1 =
ωs

2ξ1,k

1

Anom,1

D ωs

H1 = − ωs

2ξ1,x1

1

Anom,1

H1 = − ωs

2ξ1,y1

1

Anom,1

D

H1 =
ωs

2ξ1,z1

1

Anom,1

(2.30)

(2.31)

(2.32)

(2.33)

Theoretically, the value of H1 estimated using these last four equation must be equal.

Once the inertia has been found, is possible to exploit the Equation 2.30 and Equation

2.32 to estimate the value of the damping term D.

D =
2

ω2
s

H1ξ1,kAnom,1

D = − 2

ωs

H1ξ1,yAnom,1

(2.34)

(2.35)

For the sake of completeness, a method for the estimation of the damping term is reported

in Equation 2.34 and Equation 2.35. However, this concept is not faced in this thesis.
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2.2. Division of the machine dynamics

From the Equation 2.16 and the Equation 2.19 previously de�ned in the Section 2.1.3 it

is possible to delineate a di�erent method in which the dynamic of a single machine is

studied individually.

Considering in the Equation 2.18 the functions related to a single machine, it is possible

to solve many smaller problems, instead of one large problem.

The vector θj(t) of a generic j -th machine result as

θj(t) = [1 xj(t) yj(t) zj(t)](1×4) (2.36)

In the same way done in previous sections, a matrix Θ is built considering the vector

θj(t) in each one of the m instants of time:

Θj(w) =


θj(t1)

θj(t2)
...

θj(tm)


(m×4)

=
[
1 xj(t) yj(t) zj(t)

]
(m×4)

=
[
1 w

]
(m×4)

(2.37)

where the symbol w de�nes the matrix of the measurements related to a single machine.

Instead, the time derivative vector of a generic machine j-th can be represented considering

the j-th column of in matrix Ẏ. The dynamics of a j-th machine can be represented in

term of vector product as

ẏj,est(t) = Θjξj =
[
1 xj(t) yj(t) zj(t)

]
(m×4)


ξj,k

ξj,x

ξj,y

ξj,z


(4×1)

(2.38)

The elements of the vector ξj are the active terms corresponding to the terms of the right

side of the Equation 2.16 take into account only the equation of the j-th machine .

In this case we know that each term of the vector ξj must be di�erent from zero, since all

are present in the Equation 2.16 related to a generic j-th machine.
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The SINDy algorithm exploit a sequential sparse regression and optimization process

performing the STLS.

This process is used to increase the sparsity of the matrix Ξ providing a better estimation

of active terms related to the matrix Θ and �xing to zero the elements not present in

each one of the equations studied.

Nevertheless, in this case is possible to reduce the computation burden avoiding the use

of a sequential method, since we don't need to increase the sparsity of the vector ξj.

Therefore, the elements of the vector ξj can be computed using a simpler algorithm.

In this work we test some algorithm already provided by the software MATLAB such as:

� Least-Squares regression (mldivide):

Xi_gen=Theta_gen\dy_gen

� Moore-Penrose pseudoinverse

Xi_gen=pinv(Theta_gen)*dy_gen

� Fit robust linear regression

Xi_gen=robustfit(Theta_gen ,dy_gen)

� Singular value decomposition

[U,S,V]=svd(Theta_gen ,'econ');

Xi_gen=V*inv(S)*U'* dy_gen

� Least Absolute Shrinkage and Selection Operator (LASSO) or Elastic net regular-

ization for linear models

lambda = 1e-3;

[XL1 , FitInfo] = lasso(Theta_gen ,dy_gen ,'Lambda ',lambda ,

'CV',10,'Intercept ',false);

Xi_gen = XL1(:,FitInfo.Index1SE)

Once the elements of the vector ξj are determined, taking into account that

Equation 2.38 approximates the j-th column of the matrix Ẏ, the following equality can

be de�ned

ẏj(t) ∼= ẏj,est(t) (2.39)
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Then, the Equation 2.39 can be represented as

ωs

2Hj

1

Anom,j

[Dωs − xj(t)−Dyj(t)+zj(t)] ∼=
[
1 xj(t) yj(t) zj(t)

]

ξj,k

ξj,x

ξj,y

ξj,z

 (2.40)

ωs

2Hj

1

Anom,j

[Dωs − xj(t)−Dyj(t)+zj(t)] ∼= ξ1,k + xj(t)ξj,x + yj(t)ξj,y + zj(t)ξj,z (2.41)

Finally, it is possible to correlate the terms of the vector ξj with the constant terms that

multiply the vectors xj(t), yj(t), zj(t) in right side of the Equation 2.41

ξj,k =
ωs

2Hj

1

Anom,j

D ωs

ξj,x = − ωs

2Hj

1

Anom,j

ξj,y = − ωs

2Hj

1

Anom,j

D

ξj,z =
ωs

2Hj

1

Anom,j

(2.42)

(2.43)

(2.44)

(2.45)

The estimated inertia value can be extracted from the active terms of the vector ξj through

these computations:

Hj =
ωs

2ξj,k

1

Anom,j

D ωs

Hj = − ωs

2ξj,x

1

Anom,j

Hj = − ωs

2ξj,y

1

Anom,j

D

Hj =
ωs

2ξj,z

1

Anom,j

(2.46)

(2.47)

(2.48)

(2.49)

The same procedure can be repeated for each machine of the system.
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2.3. Moving window method for a real time

estimation

The application of this method requires the measurements of electric power and frequency

and the computation of the frequency derivative. For the explanation of this method, three

example variables are considered and reported in Figure 2.1
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Figure 2.1: Example parameters

The following step is the identi�cation of a time window that de�nes a small part of the

variable trends where to apply the algorithm studied in Section 2.2 and Section 2.1.3. In

this work, each time windows is assumed to be of 5 s large.

A graphic interpretation of this process, considering the �rst time window between

0 s - 5 s, is represented in the Figure 2.2.

Then, iterating this process moving the time window one second ahead, is possible to

obtain the trend of the inertia in real-time estimated every second. An example of the

result obtained considering a simulation time of 30 s is represented in Figure 2.3.

The obtained values of inertia are assigned to the end of the time window considered. For

example, the inertia value estimated using the time window 0 s - 5 s is assigned to the

instant 5 s.

After the red line in Figure 2.3 the value of inertia estimated are equal to in�nite. This

is due to a limitation of the algorithm used for the estimation of inertia, explained more

in deep in Section 3.4.
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Inertia estimation algorithm
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Figure 2.2: Example of the �oating window method
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Figure 2.3: Example of inertia estimation





31

3| Performed tests and Numerical

results

In this chapter the application of the method exposed in the Chapter 2 and the numerical

results obtained are reported.

In Chapter 2 the procedures to compute the inertia of the generators from the value of

matrix Ξ are presented. Theoretically, the value of inertia can be computed starting form

one of these variables: ξk, ξx, ξz, ξz.

However, in every test of this chapter only the variable ξx were used for the estimation.

Due to the fact that the computation using the variable ξz is not feasible in a real appli-

cation since is impossible measure the mechanical power (z), while the calculation using

the variables ξk and ξy are a�ected by the variable D.

The variable D takes into account the damping e�ect of:

� The Governor's droop of each generators that can be easily estimated

� The e�ect of each machine present in the considered area (Joule losses and dampers)

� The loads that is di�cult to be identi�ed

Therefore, since we are not able to calculate in a precise way the value of the variable D

also the value of the variables ξk and ξy will not be precise.

In this work we assume that the PMUs are characterized by a sensitivity of:

� 0.001 Hz: for frequency measurements

� 0.001 MW: for power measurements

Except for the last test in which is considered a sensitivity of:

� 0.00001 Hz: for frequency measurements

� 0.00001 MW: for power measurements
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3.1. Test 1: Application of SINDy

The di�erent simulation performed in this test are listed below:

� Simulation 1:

SINDy algorithm is applied in an ideal condition with a single time windows of 30

s to estimate the inertia of each of machine of the system.

� Simulation 2:

SINDy algorithm is applied for the inertia estimation in the moving window method

to estimate the equivalent inertia of two areas.

3.1.1. Simulation 1

DETAILS OF THE SIMULATION 1

Test system: described in Section C.1

Implemented in: MATLAB

Perturbation simulated: Opening of the line 1

: Opening/Reclosure : PMUs location

Figure 3.1: Test 1 - Simulation 1 - Test-system

Simulation time: 30 s Governor: ON for each generator

Sampling time: 1 ms PSS: OFF for each generator

Fault time: 1 s AVR: OFF for each generator

Clear time: 1.2 s
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The true values of inertia of each machine of the system are:

H [s]

Generator 1 5,85

Generator 2 5,85

Generator 3 5,558

Generator 4 5,558

Table 3.1: Test 1 - Simulation 1 - True values of inertia

In this simulation, we apply the SINDy algorithm to estimate the inertia of the system

considering a single time window of 30 s.

The methods used for these simulations are described in Section 2.1.3.

During the simulation, the generated power, mechanical power and frequency of each

generator were recorded and used for the estimation of the inertia. The mechanical power

is not measurable by PMUs, but in this test were recorded for testing the studied method.

The trends of the generators main parameters during the simulation are reported as shown

in Figure 3.2.
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Figure 3.2: Test 1 - Simulation 1 - Main parameters of the system generators during the

perturbation

As we can see after the disconnection of line 1 at 1 s and its reclosure at 1.2 s, the variables

starts to oscillated and in 30 s the oscillations are not damped, since the AVR and PSS

for every machine are switch o� . However, the system after the perturbation is stable

and seem to reach slowly a steady state condition.

The parameters used for the estimation of the inertia are variables described in Figure 3.2,

plus the frequency derivatives that are computed with the method shown in Appendix

A.1. The trend of the frequency derivative are represented in the following �gure.
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Figure 3.3: Test 1 - Simulation 1 - Frequency derivative trend
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RESULTS OF SIMULATION 1

The results obtained in this simulation are listed in the following table

H [s] Hestimate [s] Error [%]

Generator 1 5,85 5,848 0.03

Generator 2 5,85 5,851 -0.02

Generator 3 5,558 5,557 0.01

Generator 4 5,558 5,552 0.1

Table 3.2: Test 1 - Simulation 1 - Estimated values of inertia

3.1.2. Simulation 2

DETAILS OF THE SIMULATION 2

Test system: described in Section C.1

Implemented in: PowerFactory

Perturbation simulated: Opening of the line 1

: Opening/Reclosure : PMUs location

Figure 3.4: Test 1 - Simulation 2 - Test-system

Simulation time: 30 s Governor: ON for each generator

Sampling time: 20 ms PSS: ON for each generator

Fault time: 1 s AVR: ON for each generator

Clear time: 1.2 s

In this test the Test-system is divided in two areas each one characterized by its own

inertia, as shown in Figure 3.5
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Area 1

Area 2

Figure 3.5: Test 1 - Simulation 2 - Areas of Test-system

The inertia of the two areas are respectively:

H [s]

Area1 5,85

Area2 16,965

Table 3.3: Test 1 - Simulation 2 - Areas true values of inertia

in which the inertia of Area 2 is obtained considering its COI equivalent inertia.

In this work we adopt, the method de�ned in Section 1.3 considering a base power equal

to the nominal power of a single machine.

The perturbation considered is the same of the simulation 1, but in this case the presence

of the Governor, PSS and AVR for each generator are considered.

In this simulation we test the possibility of estimating the inertia of the two equivalent

areas of the system during a perturbation, assuming that PMUs are able to measure the

electrical power, frequency and mechanical power. The method exploited is the moving

window method described in Section 2.3, in which the estimation of the inertia is made

using the SINDy algorithm.

Trends for the generators' main parameters during in the simulation, are illustrated in

the following �gure.

0 5 10 15 20 25 30

time [s]

-0.1

0.3

0.7

1.1

1.5

E
le

c
tr

ic
 p

o
w

e
r 

[p
.u

.]

Electric power Generator 1

0 5 10 15 20 25 30

time [s]

0.99

0.995

1

1.005

1.01

F
re

q
u
e
n
c
y
 [
p
.u

.]

Frequency Generator 1

0 5 10 15 20 25 30

time [s]

0.845

0.85

0.855

0.86

0.865

0.87

M
e
c
h
a
n
ic

a
l 
p
o
w

e
r 

[p
.u

.] Mechanical power Generator 1

0 5 10 15 20 25 30

time [s]

-0.5

0

0.5

1

1.5

2

E
le

c
tr

ic
 p

o
w

e
r 

[p
.u

.]

Electric power Generator 2

0 5 10 15 20 25 30

time [s]

0.988

0.992

0.996

1

1.004

1.008

1.012

F
re

q
u
e
n
c
y
 [
p
.u

.]

Frequency Generator 2

0 5 10 15 20 25 30

time [s]

0.85

0.86

0.87

0.88

M
e
c
h
a
n
ic

a
l 
p
o
w

e
r 

[p
.u

.] Mechanical power Generator 2

0 5 10 15 20 25 30

time [s]

0.6

0.7

0.8

0.9

1

E
le

c
tr

ic
 p

o
w

e
r 

[p
.u

.]

Electric power Generator 3

0 5 10 15 20 25 30

time [s]

0.996

0.998

1

1.002

1.004

1.006

F
re

q
u
e
n
c
y
 [
p
.u

.]

Frequency Generator 3

0 5 10 15 20 25 30

time [s]

0.87

0.875

0.88

0.885

0.89

0.895

M
e
c
h
a
n
ic

a
l 
p
o
w

e
r 

[p
.u

.] Mechanical power Generator 3

0 5 10 15 20 25 30

time [s]

0.5

0.6

0.7

0.8

0.9

1

E
le

c
tr

ic
 p

o
w

e
r 

[p
.u

.]

Electric power Generator 4

0 5 10 15 20 25 30

time [s]

0.998

1

1.002

1.004

F
re

q
u
e
n
c
y
 [
p
.u

.]

Frequency Generator 4

0 5 10 15 20 25 30

time [s]

0.855

0.86

0.865

0.87

M
e
c
h
a
n
ic

a
l 
p
o
w

e
r 

[p
.u

.] Mechanical power Generator 4



3| Performed tests and Numerical results 37
0 5 10 15 20 25 30

time [s]

-0.1

0.3

0.7

1.1

1.5

E
le

c
tr

ic
 p

o
w

e
r 

[p
.u

.]

Electric power Generator 1

0 5 10 15 20 25 30

time [s]

0.99

0.995

1

1.005

1.01

F
re

q
u
e
n
c
y
 [
p
.u

.]

Frequency Generator 1

0 5 10 15 20 25 30

time [s]

0.845

0.85

0.855

0.86

0.865

0.87

M
e
c
h
a
n
ic

a
l 
p
o
w

e
r 

[p
.u

.] Mechanical power Generator 1

0 5 10 15 20 25 30

time [s]

-0.5

0

0.5

1

1.5

2

E
le

c
tr

ic
 p

o
w

e
r 

[p
.u

.]

Electric power Generator 2

0 5 10 15 20 25 30

time [s]

0.988

0.992

0.996

1

1.004

1.008

1.012

F
re

q
u
e
n
c
y
 [
p
.u

.]

Frequency Generator 2

0 5 10 15 20 25 30

time [s]

0.85

0.86

0.87

0.88

M
e
c
h
a
n
ic

a
l 
p
o
w

e
r 

[p
.u

.] Mechanical power Generator 2

0 5 10 15 20 25 30

time [s]

0.6

0.7

0.8

0.9

1

E
le

c
tr

ic
 p

o
w

e
r 

[p
.u

.]

Electric power Generator 3

0 5 10 15 20 25 30

time [s]

0.996

0.998

1

1.002

1.004

1.006

F
re

q
u
e
n
c
y
 [
p
.u

.]

Frequency Generator 3

0 5 10 15 20 25 30

time [s]

0.87

0.875

0.88

0.885

0.89

0.895

M
e
c
h
a
n
ic

a
l 
p
o
w

e
r 

[p
.u

.] Mechanical power Generator 3

0 5 10 15 20 25 30

time [s]

0.5

0.6

0.7

0.8

0.9

1

E
le

c
tr

ic
 p

o
w

e
r 

[p
.u

.]

Electric power Generator 4

0 5 10 15 20 25 30

time [s]

0.998

1

1.002

1.004

F
re

q
u
e
n
c
y
 [
p
.u

.]

Frequency Generator 4

0 5 10 15 20 25 30

time [s]

0.855

0.86

0.865

0.87

M
e
c
h
a
n
ic

a
l 
p
o
w

e
r 

[p
.u

.] Mechanical power Generator 4

Figure 3.6: Test 1 - Simulation 2 - Main parameters of the system generators during the

perturbation

To estimate inertia, the variable recorded by PMUs and the derivative of the frequency

are used. The derivative of the frequency is computed using the method explained in

Appendix A.1.

Figure 3.7 and Figure 3.8 display the trends of these variables.
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Figure 3.7: Test 1 - Simulation 2 - Area 1 measurements
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Figure 3.8: Test 1 - Simulation 2 - Area 2 measurements

RESULTS OF SIMULATION 2

In Figure 3.9, the test's results for estimating inertia are summarized. The result is minus

in�nite after all the points are �xed at 27 s.
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Figure 3.9: Test 1 - Simulation 2 - Inertia trend of Area 1 and Area 2

3.1.3. Conclusion of test 1

In Simulation 1, the SINDy algorithm perform well and the result obtained are very close

to the true ones. Nevertheless, when we try to exploit SINDy algorithm with the moving

window method the result converge to a completely wrong value with many points very

far from the point of convergence. These huge di�erent between the results of these two

simulations is due to:
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� Availability of the measurements: in Simulation 1 we were supposed to have one

PMU at the terminal of each generator, which nowadays, is not feasible in real-case

applications, while in Simulation 2 we suppose a more realistic case of two PMUs

that monitor two Areas.

� Simulation time: to give these precise results shown in 3.2 in Simulation 1 we per-

form the SINDy algorithm considering a time window of 30s, instead in Simulation

2 SINDy algorithm is applied considering a time window of 5 s.

� Sampling time: this parameter is fundamental for a good inertia estimation. Since

increasing the sampling time the step between the di�erent measurements decreases

and the computation of the frequency time derivative improves. In Simulation 1 we

assume a sampling time of 1 ms that is not realistic for the actual technology, while

in Simulation 2 we assume a more realistic sampling time of 20 ms.
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3.2. Test 2: Removal of mechanical power

The di�erent simulation performed in this test are listed below:

� Simulation 1:

Comparison of the application of the moving window method considering or not the

mechanical power variables in the inertia estimation, during the opening of the

line 1.

� Simulation 2:

Comparison of the application of the moving window method considering or not the

mechanical power variables in the inertia estimation, during the opening of the

line 8.

3.2.1. Simulation 1

DETAILS OF THE SIMULATION 1

Test system: described in Section C.1

Implemented in: PowerFactory

Perturbation simulated: Opening of the line 1

: Opening/Reclosure : PMUs location

Figure 3.10: Test 2 - Simulation 1 - Test-system

Simulation time: 30 s Governor: ON for each generator

Sampling time: 20 ms PSS: ON for each generator

Fault time: 1 s AVR: ON for each generator

Clear time: 1.2 s

The Test-system is divided in two areas, characterized by their own inertia, separated in

the same way done in Figure 3.5 and with the same value of the Table 3.3.
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This simulation is useful to understand the impact, in the inertia estimation, of the

mechanical power. The mechanical power is not measurable using the PMUs, so de�ning

a method that works using the measurements of electric power, frequency and mechanical

power cannot be implemented in a real application.

For this reason, in this simulation, we perform a comparison between the moving window

method with and without the knowledge of mechanical power measurements.

The inertia trend is estimated considering the mowing window method in which the inertia

is estimated using the mldivide algorithm described in Section 2.2.

The trend of main parameters of the generators during the simulation are the same of the

Figure 3.6. The trend of the variable used for the estimation of the inertia represented

in Figure 3.11 and Figure 3.12 are the same of the Figure 3.7 and Figure 3.8 considering

also the trend of the mechanical power. For sake of simplicity the �gures are reported in

the following:
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Figure 3.11: Test 2 - Simulation 1 - Area 1 measurements
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Figure 3.12: Test 2 - Simulation 1 - Area 2 measurements
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The considered variables are that one recorded by PMUs, the mechanical power and the

derivative of the frequency, that is computed using the method explained in Appendix

A.1.

RESULTS OF SIMULATION 1

The result of this test, in the estimation of the inertia, are summarized in Figure 3.13.
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Figure 3.13: Test 2 - Simulation 1 - Inertia trend of Area 1 and Area 2

All the points, after the red line �xed at 27 s, give as result in�nite.

By analysing the trend of the inertia in both cases, it is apparent that there is a time

period when it seems to converge to a speci�c value.
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3.2.2. Simulation 2

DETAILS OF THE SIMULATION 2

Test system: described in Section C.1

Implemented in: PowerFactory

Perturbation simulated: Opening and reclosure of line 8

: Opening/Reclosure : PMUs location

Figure 3.14: Test 2 - Simulation 2 - Test-system

Simulation time: 30 s Governor: ON for each generator

Sampling time: 20 ms PSS: ON for each generator

Fault time: 1 s AVR: ON for each generator

Clear time: 1.2 s

The Test-system is divided in two areas, characterized by its own inertia, separated in

the same way done in Figure 3.5 and with the same value of the Table 3.3.

In this simulation we perform the same computation of the previous one considering the

opening and reclosure of line 8.

The trends of the generators main parameters during the simulation are reported as shown

in Figure 3.2.
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Figure 3.15: Test 2 - Simulation 2 - Main parameters of the system generators during the

perturbation

The trends of the variables recorded by the PMUs are shown in Figure 3.7 and Figure 3.8
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Figure 3.16: Test 2 - Simulation 2 - Area 1 measurements
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Figure 3.17: Test 2 - Simulation 2 - Area 2 measurements
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RESULTS OF SIMULATION 2

The result of this test, in the estimation of the inertia, are summarized in Figure 3.18

All the points, after the red line �xed at 29 s, give as result in�nite.
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Figure 3.18: Test 2 - Simulation 2 - Inertia trend of Area 1 and Area 2

3.2.3. Conclusion of test 2

The results of the two simulations highlight that the presence of the mechanical power

variables in the estimation of the inertia is not so relevant. Indeed, in both simulations,

the algorithm can converge close to the true value without using the mechanical power

variables in the computations. For this reason, in the following tests, the mechanical

power variables are excluded by the estimation of the inertia. In this way, we obtain the

same result, but a more realistic condition is considered since all the other variables used

can be measured or calculated from the ones measured.
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3.3. Test 3: MATLAB algorithms comparison

The di�erent simulation performed in this test are listed below:

� Simulation 1:

The algorithms listed in Section 2.2 are applied to estimate the inertia of each

machine of the system, considering an ideal condition with a single time windows

of 30 s.

� Simulation 2:

The algorithms listed in Section 2.2 are applied for the inertia estimation in the

moving window method to estimate the equivalent inertia of two areas.

3.3.1. Simulation 1

DETAILS OF THE SIMULATION 1

Test system: described in Section C.1

Implemented in: MATLAB

Perturbation simulated: Opening of the line 1

: Opening/Reclosure : PMUs location

Figure 3.19: Test 3 - Simulation 1 - Test-system

Simulation time: 30 s Governor: ON for each generator

Sampling time: 20 ms PSS: OFF for each generator

Fault time: 1 s AVR: OFF for each generator

Clear time: 1.2 s

In this test, the algorithms listed in Section 2.2 are compared to de�ne which of these

work best in the estimation of the inertia.

In particular, the algorithm compared are:
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� Least-Squares regression (mldivide)

� Moore-Penrose pseudoinverse (pinv)

� Fit robust linear regression (r�t)

� Singular value decomposition (SVD)

� Least Absolute Shrinkage and Selection Operator (LASSO)

The variables recorded in this simulation are the generated power and frequency of each

generator. The trends of the generators's main parameters during the simulation are

reported in Figure 3.2. The parameters used for the estimation of the inertia are the

electric power and the frequency described in Figure 3.2, plus the frequency derivatives

that are computed with the method shown in Appendix A.1. The trend of the frequency

derivative are represented in Figure 3.3.

The true values of inertia of each machine of the system are:

H [s]

Generator 1 5,85

Generator 2 5,85

Generator 3 5,558

Generator 4 5,558

Table 3.4: Test 3 - Simulation 1 - True values of inertia

RESULTS OF SIMULATION 1

The estimation results, using the di�erent algorithm, are listed in the Table 3.5.

mldivide pinv SVD

H [s] Error [%] H [s] Error [%] H [s] Error [%]

Generator 1 5,756 -1,601 5,756 -1,601 5,756 -1,601

Generator 2 5,7 -2,577 5,7 -2,577 5,7 -2,577

Generator 3 5,228 -5,936 5,228 -5,936 5,228 -5,936

Generator 4 5,254 -5,461 5,254 -5,461 5,254 -5,461

r�t LASSO

H [s] Error [%] H [s] Error [%]

Generator 1 5,753 -1,651 5,965 1,967

Generator 2 5,726 -2,115 5,754 -1,638

Generator 3 5,341 -3,899 5,922 6,561

Generator 4 5,452 -1,893 6,088 9,542

Table 3.5: Test 3 - Simulation 1 - Estimation of inertia
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As we can see from the Table 3.5 the result obtained using the �rst three algorithm are

the same. The LASSO algorithm is characterized by the highest percentage error in the

estimation and the Fit robust linear regression is the algorithm that gives the best result

with the lower percentage error. Another parameter very important in the comparison

is the computation time of these algorithms. In the Table the time requested by each

algorithm to obtain the result in Table 3.5 is reported.

mldivide pinv SVD r�t LASSO

Simulation time 23 ms 14 ms 10 ms 84 ms 21,585 s

Table 3.6: Test 3 - Simulation 1 - Computation times of the considered algorithm

Analysing the result is possible to state that the quicker algorithm is the SVD and that

the time requested by the LASSO algorithm is huge compared to the other one.

3.3.2. Simulation 2

DETAILS OF THE SIMULATION 2

Test system: described in Section C.1

Implemented in: PowerFactory

Perturbation simulated: Opening and reclosure of line 1

: Opening/Reclosure : PMUs location

Figure 3.20: Test 3 - Simulation 2 - Test-system

Simulation time: 30 s Governor: ON for each generator

Sampling time: 20 ms PSS: ON for each generator

Fault time: 1 s AVR: ON for each generator

Clear time: 1.2 s



3| Performed tests and Numerical results 49

In this simulation each of the algorithm compared in the previous simulation is exploited

in the moving window method.

The Test-system is divided in two areas, characterized by its own inertia, separated in

the same way done in Figure 3.5 and with the same value of the Table 3.3.

The trend of the main parameters of the generators, the recorded variable by the PMUs

and the time derivative of the frequency during the simulation are the same of Figure 3.6,

Figure 3.7 and Figuree 3.8.

RESULTS OF SIMULATION 2

The comparison between the di�erent algorithm tested in the estimation of the inertia

are summarized in Figure 3.21

All the points, after the red line �xed, give as result in�nite.
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Figure 3.21: Test 3 - Simulation 2 - Inertia trend of Area 1 and Area 2 using di�erent

algorithm
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In each case, there is an interval of time in which the inertia seems to converge to a speci�c

value. The results of the �rst three tested algorithms are the same, while the ones of the

Fit robust linear regression and LASSO algorithm are di�erent.

The main di�erences between the two last algorithms tested respect the other ones are:

� Fit robust linear regression: is slightly more precise concerning the other al-

gorithms, especially during the perturbation. Nevertheless, its result tends to be

in�nite, when the transient is close to the end, sooner than in mldivide, Moore-

Penrose pseudoinverse and SVD algorithm.

� LASSO algorithm: using this algorithm the convergence is less evident, especially

in the Area 2 result. Furthermore, as found for the Fit robust linear regression

algorithm, the values tend to be in�nite sooner than in the �rst three algorithms

exposed.

3.3.3. Conclusion of test 3

Simulation 1 permits a more conscious choice of the algorithm to use for the inertia es-

timation and highlights the strengths and weaknesses of each algorithm. The LASSO

algorithm since its low precision and its very high running time is outclassed by all the

other algorithms. The Fit robust linear regression is the algorithm with the highest

precision, but its computational burden is much higher than the �rst three algorithms

analyzed. Therefore, for the analysis of a very large amount of data we need to consider

that its computational burden will be very higher. Finally, the mldivide, Moore-Penrose

pseudoinverse and SVD algorithm merged the necessity of a precise result and low simula-

tion time. Regarding simulation 2, we have the con�rmation that even using the moving

window method, the results of the Least-Squares regression, Moore-Penrose pseudoin-

verse and SVD algorithm are the same. If the computational burden is not so high a

good alternative for this algorithm is the Fit robust linear regression. Instead, after these

two simulations we can state that due to its lower precision and higher running time, the

LASSO algorithm is the last in terms of performance with respect to the other ones.
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3.4. Test 4: Opening of a line

The di�erent simulation performed in this test are listed below:

� Simulation 1:

Moving window method to estimate the inertia trend during the opening of the

line 1 is applied.

� Simulation 2:

Moving window method to estimate the inertia trend during the opening of the

line 8 is applied.

3.4.1. Simulation 1

DETAILS OF THE SIMULATION 1

Test system: described in Section C.1

Implemented in: PowerFactory

Perturbation simulated: Opening and reclosure of line 1

: Opening/Reclosure : PMUs location

Figure 3.22: Test 4 - Simulation 1 - Test-system

Simulation time: 30 s Governor: ON for each generator

Sampling time: 20 ms PSS: ON for each generator

Fault time: 1 s AVR: ON for each generator

Clear time: 1.2 s

The Test-system is divided in two areas, characterized by their own inertia, separated in

the same way done in Figure 3.5 and with the same value of the Table 3.3.

This section tests the possibility of estimating the inertia of the two equivalent areas of

the system, during a perturbation, using only the measurements of the electric power and
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frequency recorded by the PMUs.

The inertia trend is estimated considering the mowing window method in which the inertia

is estimated using the mldivide algorithm described in Section 2.2.

Trends for the generators main parameters during in the simulation, are illustrated in

Figure 3.6.

As we can see after the disconnection of line 1 at 1 s and its reclosure at 1.2 s, the

frequency and the electric power of each machine start to oscillate. After about 25 s the

oscillations are damped and the system returns in a steady state.

The inputs useful for the inertia estimation are the variables recorded by the PMUs and

the derivative of the frequency that is computed using the method explained in Appendix

A.1. The trends of this variables are shown in Figure 3.7 and Figure 3.8.

RESULTS OF SIMULATION 1

The result of this test, in the estimation of the inertia, are summarized in Figure 3.23

All the points, after the red line �xed at 27 s, give as result in�nite.

By analysing the trend of the inertia we can see that in each case there is an interval of

time in which the inertia seems to converge to a speci�c value.
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Figure 3.23: Test 4 - Simulation 1 - Inertia trend of Area 1 and Area 2

Studying more in deep the points very far from the convergence point it is interesting to

delineate the limits of the method used in this test.

A �rst limit can be de�ned when the transient tends to end and the variables become

more and more �at. In particular, when the frequency derivative tends to zero, the value

of inertia tends to increase till becomes in�nite.

Indeed, comparing three di�erent values in di�erent time intervals this increase is visible:
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Area 1 Point 18 Point 22 Point 23

H [s] 5,2 27,377 -Inf

Time Interval [s] 17-22 21-26 22-27

Area 2 Point 19 Point 22 Point 23

H [s] 18,822 178.759 -Inf

Time Interval [s] 18-23 21-26 22-27

Table 3.7: Test 4 - Simulation 1 - Last increasing values of inertia of Area 1 and Area 2

After points 18 and 19 the estimated values start to increase till in�nite. If we represent

graphically, in Figure 3.24, the parameters used for the estimation of the inertia we can

easily con�rm their �attening.
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Figure 3.24: Test 4 - Simulation 1 - Increasing value of inertia of Area 1 and Area 2

Another limit is that in the area where the fault occurs, the algorithm takes some seconds

to converge. To study better this aspect we consider the �rst values computed that are

described more in deep in Table 3.8 .

Area 1 Point 1 Point 2 Point 3 Point 4 Point 5

H [s] -67,863 -75,336 17,386 8,584 6,682

Time Interval [s] 0-5 1-6 2-7 3-8 4-9

Table 3.8: Test 4 - Simulation 1 - Fist increasing value of inertia of Area 1 and Area 2
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We can analyse the reason behind this time span before reaching convergence considering

the trend of the variable used to compute the �rst values of inertia of Area 1. The variables

trend of the points 1 and 2 are shown in the following �gure:
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Figure 3.25: Test 4 - Simulation 1 - Variable trend Point 1 and Point 2

In the time interval of these two points, the fault occurs and that leads to a huge error in

the inertia estimation.

While in points 3,4 and 5 the algorithm starts to converge, however, these points are far

from the value of convergence. The variable trend in the correspondent time interval is

shown in Figure 3.26.
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Figure 3.26: Test 4 - Simulation 1 - Variable's trend Point 3,4 and 5

Comparing the Figure 3.26 with Figure 3.27, in which is represented the trend of the

variables of point 10, we can obtain important information about the limits of the inertia

estimation.
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Figure 3.27: Test 4 - Simulation 1 - Variable's trend Point 10

Point 10 is very close to the true value and is one of the points used for the estimation of

the mean inertia. As shown in Figure 3.27, in the variables used for the computation of

point 10 the oscillations amplitude are lower, but they are more regular.
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Therefore, we can reasonably assume that when the oscillations of the trend variables

become more regular and sinusoidal the estimation improves.

3.4.2. Simulation 2

DETAILS OF THE SIMULATION 2

Test system: described in Section C.1

Implemented in: PowerFactory

Perturbation simulated: Opening and reclosure of line 10

: Opening/Reclosure : PMUs location

Figure 3.28: Test 4 - Simulation 2 - Test-system

Simulation time: 30 s Governor: ON for each generator

Sampling time: 20 ms PSS: ON for each generator

Fault time: 1 s AVR: ON for each generator

Clear time: 1.2 s

The Test-system is divided in two areas, characterized by its own inertia, separated in

the same way done in Figure 3.5 and with the same value of the Table 3.3.

In this simulation we perform the same computation of the previous one considering the

opening and reclosure of line 10. The trends of the generator main parameters during the

simulation are reported as shown in Figure 3.29.
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Figure 3.29: Test 4 - Simulation 2 - Main parameters of the system generators during the

perturbation

The trends of the variables recorded by the PMUs are shown in Figure 3.30 and Figure

3.31
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Figure 3.30: Test 4 - Simulation 2 - Area 1 measurements
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Figure 3.31: Test 4 - Simulation 2 - Area 2 measurements
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RESULTS OF SIMULATION 2

The result of this test, in the estimation of the inertia, are summarized in Figure 3.32

All the points, after the red line �xed at 18 s, give as result in�nite.
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Figure 3.32: Test 4 - Simulation 2 - Inertia trend of Area 1 and Area 2

3.4.3. Conclusion of test 4

This test proves that using the Moving window method is possible to identify a conver-

gence point of the inertia after a perturbation as the opening of a line.

Moreover, we show that this method fails in the estimation of the inertia when:

� The variables have large oscillations or peaks in their developments, in particular

during the perturbation

� The transient ends and the variables trend becomes �at
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3.5. Test 5: Trig of a load

The di�erent simulation performed in this test are listed below:

� Simulation 1:

Moving window method to estimate the inertia trend during the trig and reclosure

of load 7 is applied.

� Simulation 2:

Moving window method to estimate the inertia trend during the trig and reclosure

of load 9 is applied.

3.5.1. Simulation 1

DETAILS OF THE SIMULATION 1

Test system: described in Section C.1

Implemented in: PowerFactory

Perturbation simulated: Trig and reclosure of load 7

: Trig/Reclosure : PMUs location

Figure 3.33: Test 5 - Simulation 1 - Test-system

Simulation time: 30 s Governor: ON for each generator

Sampling time: 20 ms PSS: ON for each generator

Fault time: 1 s AVR: ON for each generator

Clear time: 1.2 s

The Test-system is divided in two areas, characterized by its own inertia, separated in

the same way done in Figure 3.5 and with the same value of the Table 3.3.

In this test, we study the feasibility of estimating the equivalent area inertia of the system
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during the disconnection and the reclosure of the load connected at the bus 7. The trends

of the generator main parameters during the simulation are reported as shown in Figure

3.34.
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Figure 3.34: Test 5 - Simulation 1 - Main parameters of the system generators during the

perturbation

The disconnection of the load and its reclosure start the oscillation of the generator

variables. In the Figure 3.34 we can see that the oscillations are damped about 15-20 s

after the perturbation. The parameters useful for the inertia estimation are the variables

recorded by the PMUs and the derivative of the frequency that is computed using the

method explained in Appendix A.1. The trends of this variables are shown in Figure 3.35

and Figure 3.36.
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Figure 3.35: Test 5 - Simulation 1 - Area 1 parameters
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Figure 3.36: Test 5 - Simulation 1 - Area 2 parameters

RESULTS OF SIMULATION 1

The result of this test, in the estimation of the inertia, are summarized in Figure 3.37.
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Figure 3.37: Test 5 - Simulation 1 - Inertia trend of Area 1 and Area 2

All the points, after the red line �xed at 25 s, give as result in�nite.

Analysing the inertia's trend reveals that there is a time interval when it seems to converge

to a speci�c value.

In the inertia trend of Area 2 we can distinguish:

� Fault phase: the inertia estimated is negative

� Convergence phase: the method start to converge to a precise value
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� End of the transient: the inertia starts to increase since the oscillations becomes

more and more damped

3.5.2. Simulation 2

DETAILS OF THE SIMULATION 2

Test system: described in Section C.1

Implemented in: PowerFactory

Perturbation simulated: Trig and reclosure of load 9

: Trig/Reclosure : PMUs location

Figure 3.38: Test 5 - Simulation 2 - Test-system

Simulation time: 30 s Governor: ON for each generator

Sampling time: 20 ms PSS: ON for each generator

Fault time: 1 s AVR: ON for each generator

Clear time: 1.2 s

The Test-system is divided in two areas, characterized by its own inertia, separated in

the same way done in Figure 3.5 and with the same value of the Table 3.3.

In this simulation we perform the same computation of the previous one considering the

disconnection and the reclosure of the load connected at the bus 10. Trends for the

generators' main parameters during in the simulation, are illustrated in the next �gure.
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Figure 3.39: Test 5 - Simulation 2 - Main parameters of the system generators during the

perturbation

The trends of the variables recorded by the PMUs are shown in Figure 3.40 and Figure

3.41.
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Figure 3.40: Test 5 - Simulation 2 - Area 1 measurements
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Figure 3.41: Test 5 - Simulation 2 - Area 2 measurements
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RESULTS OF SIMULATION 2

The result of this test, in the estimation of the inertia, are summarized in Figure 3.42

All the points, after the red line �xed at 28 s, give as result in�nite.
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Figure 3.42: Test 5 - Simulation 2 - Inertia trend of Area 1 and Area 2

3.5.3. Conclusion of test 5

The results of this test prove that the Floating window method can estimate the inertia

of an Area during the trig and reclosure of a load connected to a bus of the system.

Also in this case are present the same limits in the estimation of the inertia exposed in

the previous chapter.
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3.6. Test 6: Short-circuit at a bus

The di�erent simulation performed in this test are listed below:

� Simulation 1:

Moving window method to estimate the inertia trend during a short-circuit at the

bus 5 is applied.

� Simulation 2:

Moving window method to estimate the inertia trend during a short-circuit at the

bus 10 is applied.

3.6.1. Simulation 1

DETAILS OF THE SIMULATION 1

Test system: described in Section C.1

Implemented in: PowerFactory

Perturbation simulated: Short-circuit at the bus 5

: Bus short-circuited : PMUs location

Figure 3.43: Test 6 - Simulation 1 - Test-system

Simulation time: 30 s Governor: ON for each generator

Sampling time: 20 ms PSS: ON for each generator

Fault time: 1 s AVR: ON for each generator

Clear time: 1.2 s

The Test-system is divided in two areas, characterized by its own inertia, separated in

the same way done in Figure 3.5 and with the same value of the Table 3.3.

Our objective in this test is to determine if it is possible to estimate the inertia of the

equivalent areas of the system during an event of short-circuit and its subsequent clearing

at the bus 5.
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The trends of the generators main parameters during the simulation are reported as shown

in Figure 3.44.
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Figure 3.44: Test 6 - Simulation 1 - Main parameters of the system generators during the

perturbation

The generator variables start oscillating when the shortcircuit is estabilished and cleared.

After the perturbation, the oscillations in Figure 3.44 become damped for about 20-25

seconds. The variables recorded by the PMUs and the derivative of the frequency, that is

computed using the method explained in Appendix 1, are the parameters that are useful

for inertia estimation. Figure 3.45 and Figure 3.46 display the trends of these variables.
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Figure 3.45: Test 6 - Simulation 1 - Area 1 parameters
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Figure 3.46: Test 6 - Simulation 1 - Area 2 parameters

RESULTS OF SIMULATION 1

The result of this test, in the estimation of the inertia, are summarized in Figure 3.47.
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Figure 3.47: Test 6 - Simulation 1 - Inertia trend of Area 1 and Area 2

All the points, after the red line �xed at 27 s, give as result in�nite.

The analysis of the inertia trend shows a time interval where it appears to converge to a

speci�c value.
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3.6.2. Simulation 2

DETAILS OF THE SIMULATION 2

Test system: described in Section C.1

Implemented in: PowerFactory

Perturbation simulated: Short-circuit at the bus 10

: Bus short-circuited : PMUs location

Figure 3.48: Test 6 - Simulation 2 - Test-system

Simulation time: 30 s Governor: ON for each generator

Sampling time: 20 ms PSS: ON for each generator

Fault time: 1 s AVR: ON for each generator

Clear time: 1.2 s

The Test-system is divided in two areas, characterized by its own inertia, separated in

the same way done in Figure 3.5 and with the same value of the Table 3.3.

In this simulation we perform the same computation of the previous one considering an

event of short-circuit and its subsequent clearing at the bus 10.

Trends for the generators' main parameters during in the simulation, are illustrated in

Figure 3.49.
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Figure 3.49: Test 6 - Simulation 2 - Main parameters of the system generators during the

perturbation

The trends of the variables recorded by the PMUs are shown in Figure 3.50 and Figure

3.51

0 5 10 15 20 25 30

time [s]

0.47

0.52

0.57

0.62

0.67

0.72

0.77

0.82

0.87

0.92

E
le

c
tr

ic
 p

o
w

e
r 

[p
.u

.]

Electric power

0 5 10 15 20 25 30

time [s]

0.997

0.999

1.001

1.003

1.005

1.007

F
re

q
u

e
n

c
y
 [

p
.u

.]

Frequency

0 5 10 15 20 25 30

time [s]

-0.3

-0.25

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1
F

re
q

u
e

n
c
y
 d

e
ri
v
a

ti
v
e

 [
p

.u
.]

Frequency derivative

Area 1

Figure 3.50: Test 6 - Simulation 2 - Area 1 measurements
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Figure 3.51: Test 6 - Simulation 2 - Area 2 measurements
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RESULTS OF SIMULATION 2

The result of this test, in the estimation of the inertia, are summarized in Figure 3.52

All the points, after the red line, give as result in�nite.
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Figure 3.52: Test 6 - Simulation 2 - Inertia trend of Area 1 and Area 2

3.6.3. Conclusion of test 6

This test proves that using the Floating window method is possible to identify a

convergence point of the inertia after a short-circuit cleared in 200 ms. Moreover, identify

the same limits delineated in the previous tests.
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3.7. Test 7: Increased sensitivity of the PMUs

In this test, we perform a single simulation in which the same computation of Test 4 are

performed increasing the sensitivity of the PMUs.

DETAILS OF THE TEST

Test system: described in Section C.1

Implemented in: PowerFactory

Perturbation simulated: Opening and reclosure of line 1

: Opening/Reclosure : PMUs location

Figure 3.53: Test 7 - Test-system

Simulation time: 60 s Governor: ON for each generator

Sampling time: 20 ms PSS: ON for each generator

Fault time: 1 s AVR: ON for each generator

Clear time: 1.2 s

In this test we investigate about the impact of the PMUs sensitivity in the estimation of

the inertia.

All the other test performed in this work are done considering that the PMUs are char-

acterized by a sensitivity of 0.001 Hz and 0.001 MW, since is the condition closer to the

reality. Nevertheless, is interesting studying more in deep which is the e�ect in the esti-

mation increasing the sensitivity of the PMUs.

To do that we perform the same computation made in Section 3.4, assuming a PMUs

sensitivity of 0.00001 Hz and 0.00001 MW.

The main parameters trends of the generators during the simulation are reported in Figure

3.54.
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Figure 3.54: Test 7 - Main parameters of the system generators during the perturbation

The trend of the variables recorded by the PMUs and of the derivative of the frequency,

used for the inertia estimation, are shown in Figure 3.55 and Figure 3.56
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Figure 3.55: Test 7 - Area 1 measurements
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Figure 3.56: Test 7 - Area 2 measurements

Comparing the trend considering a sensitivity of 0.001 Hz and 0.001 MW in Figure 3.6,

Figure 3.7 and Figure 3.8 with that ones that use a sensitivity of 0.00001 Hz and 0.00001

MW in Figure 3.54, Figure 3.55 and Figure 3.56 it is possible to identify some signi�cant

di�erence.

The most evident is that using measurements with a greater sensitivity the trends are

more continuous, without steps, that instead characterize the trends constructed using

measurements with a lower sensitivity. This concept is clearly visible in the frequency

trend and in the frequency time derivative trend.

RESULTS OF THE TEST

The result of this test, in the estimation of the inertia, are summarized in Figure 3.57
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Figure 3.57: Test 7 - Inertia trend of Area 1 and Area 2
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Compared to the case that exploits measurements with a sensitivity of 0.001 Hz and 0.001

MW, in this case, the trend of inertia converge for a longer time. For this reason, we need

to double the simulation time to �nd the instant of time at which the trends tend to

increase, since at 30 s the trends still converge to the true values.

3.7.1. Conclusion of test 7

In this test, we prove that the sensitivity of the PMU measurements is fundamental for a

real-time inertia estimation. In particular, increasing the sensitivity of the PMUs increases

the precision of the results at the end of the perturbation when the trend of the variables

becomes more and more �at.
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developments

In the last years, the equivalent inertia of the system has continued to decrease due to

the increasing penetration of RES. Moreover, this phenomenon could be worse if we con-

sider the increase of the HVDC links. Hence, an e�cient way to monitor in real-time the

equivalent inertia of the system is important to schedule appropriate actions in case of

system disturbances.

The possibility of estimating the inertia in real-time allow a more e�ective reaction by the

TSO, so the risk of frequency instability decrease and better operation condition can be

guaranteed for the customers. For example, the reduction of the event of load shedding.

Currently, there is no de�nitive method for inertia estimation that has been developed.

The results obtained, the challenges identi�ed, and the needs for future studies are high-

lighted in this chapter, which presents and discusses conclusions about the methods and

cases studied.

4.1. Conclusion

This thesis proposed a moving windows method exploiting di�erent algorithms to esti-

mate the inertia of the system, with the �nal goal of increasing system awareness.

The �rst three tests are preliminary tests in which we identify the algorithm most suitable

and the necessary variables for our purpose.

In the �rst test, we highlight the limit of the SINDy algorithm, using it for the inertia

estimation in the moving windows method. The result that was found is that the SINDy

algorithm is not suitable for a real-time inertia estimation.

In the following test, we prove that the impact of the measurement of the mechanical

power is not so important for a good result in the estimation. For this reason, all the

other tests are performed using only the measurements of frequency and electric power.

The last of the preliminary tests allows us to understand the strengths and weaknesses

of each algorithm proposed. In this test, we identify that one of the best algorithms, in
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terms of precision and computational burden, for the inertia estimation in the moving

windows method is the mldivide. This algorithm is the one used for all the other tests

proposed.

In Test 4, Test 5 and Test 6 we apply the selected method considering di�erent perturba-

tions, in particular, we simulate: the opening of a line, the trig of a load and a short-circuit

at a bus. The results obtained in these three test is similar and permit to identify a value

of convergence, after the perturbation, very close to the true one. Also, the same limits

of this method can be identi�ed in these three tests, which can be brie�y summarized in:

� The inertia estimations tend to be in�nite when the variables tend to become �at

� The inertia estimations are not precise if the time window considered includes data

during the perturbation

Therefore, the conclusion highlighted in these tests is that is possible to identify the inertia

of the system immediately after a perturbation, for a brief period, before the estimation

tends to in�nite.

A possibility to increase the time in which the inertia converges to the true value is to

increase the PMUs sensitivity. This concept is faced in the last test which studies more

deeply the impact of the PMUs sensitivity in the inertia estimation and proves that the

role of the PMUs in the real application of this method is fundamental.

4.2. Future development

This thesis studies a possible solution of a small part of the great goal to be able to

estimate the inertia of the system in every instant of time. To reach this goal there are

many aspects still to study such as:

� Real measurement:

The measurements used for the application of the exposed method are ideal. The

real measurement is characterized by measurement errors and noise that can nega-

tively impact the estimation.

� Increase of the equivalent area considered:

The increase of the equivalent area considered could be problematic. Since, as the

size of the equivalent area increases, the frequency oscillation after a perturbation

decreases. When the oscillation of frequency becomes less than the sensitivity of

the PMUs the changes in the system are not detected by the PMUs.

� Synthetic inertia monitoring:
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The estimating system should consider also the presence of the synthetic inertia

� Better algorithm for the estimation:

The study around new data-driven algorithms are several and many of these are not

been tested for the inertia estimation. An algorithm more robust and with a less

computational burden always improves the real-time estimation performance.

The reaching of all these goals opens a serious possibility to permit the estimation of the

inertia of the system during every perturbation of the system.
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A.1. Numerical di�erentiation: �nite di�erences

The derivative of a function f at the point x is de�ned as the limit of a di�erence quotient

[24]:

f ′(x) = lim
h→0

f(x+ h)− f(x)

h

The approximation of the derivative f ′(x) gets better as h gets smaller. The previous

assumption can be proved considering the Taylor's theorem with remainder that gives the

Taylor series expansion

f(x+ h) = f(x) + hf ′(x) + h2f”(ξ)

2!

where ξ is some number between x and x+ h.

Rearranging gives
f(x+ h)− f(x)

h
− f ′(x) =

f”(ξ)

2!

which tell us that the error is proportional to h.

If h > 0, say h = ∆x where ∆x is a �nite positive number, then

f(x+∆x)− f(x)

∆x

is called the �rst-order or O(∆x) forward difference approximation of f ′(x).

If h < 0, say h = −∆x where ∆x > 0, then

f(x+ h)− f(x)

h
=

f(x)− f(x+∆x)

∆x

is called the �rst-order or O(∆x) backward difference approximation of f ′(x).

By combining di�erent Taylor series expansions, we can obtain approximations of f ′(x)

of various orders.
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For instance, subtracting the two expansions

f(x+∆x) = f(x) + ∆xf ′(x) + ∆x2f”(x)

2!
+ ∆x3f

′′′(ξ1)

3!
, ξ1 ∈ (x, x+∆x)

f(x−∆x) = f(x)−∆xf ′(x) + ∆x2f”(x)

2!
−∆x3f

′′′(ξ2)

3!
, ξ2 ∈ (x−∆x, x)

gives

f(x+∆x)− f(x−∆x) = 2∆xf ′(x) + ∆x3 (f
′′′(ξ1) + f ′′′(ξ2))

6

f(x+∆x)− f(x−∆x)

2∆x
− f ′(x) = ∆x2 (f

′′′(ξ1) + f ′′′(ξ2))

12

Hence f(x+∆x)−f(x−∆x)
2∆x

is an approximation of f ′(x) whose error is proportional to ∆x2.

It is called the second-order or O(∆x2) centered difference approximation of f ′(x).

If we use expansions with more terms, higher-order approximations can be derived. An

example is the fourth-order ��nite di�erence� formula for approximating �rst derivatives

that can be expressed as

f ′(x) ≈ −f(x+ 2∆x) + 8f(x+∆x)− 8f(x−∆x) + f(x− 2∆x)

12∆x
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B.1. STLS code

The MATLAB code of the STLS algorithm is:

function Xi = sparsifyDynamics(Theta ,dXdt ,lambda ,n)

% Copyright 2015, All Rights Reserved

% Code by Steven L. Brunton

% For Paper , "Discovering Governing Equations from Data:

% Sparse Identification of Nonlinear Dynamical Systems"

% by S. L. Brunton , J. L. Proctor , and J. N. Kutz

% compute Sparse regression: sequential least squares

Xi = Theta\dXdt; % initial guess: Least -squares

% lambda is our sparsification knob.

for k=1:10

smallinds = (abs(Xi)<lambda); % find small coefficients

Xi(smallinds)=0; % and threshold

for ind = 1:n % n is state dimension

biginds = ~smallinds (:,ind);

% Regress dynamics onto remaining terms to find

sparse Xi

Xi(biginds ,ind) = Theta(:,biginds)\dXdt(:,ind);

end

end

B.2. Parsimonious modelling

The parsimonious modelling, essentially, means getting the minimal model that describes

the data, without considering trivial solution. The entire SINDy procedure is a generalized
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linear regression, in which we follow these principal steps:

� We collect the measurements data represented by the matrix V

� We compute the measurements derivatives de�ned in the matrix V̇

� We build a library of candidate terms Θ(V)

� We solve the equation for some unknown variables Ξ

Regarding the column of the matrix Ξ, we want those to be as sparse as possible and still

�t the data. The remaining terms in the coloms of the matrix Ξ are the active term in

that di�erential equation.

Applying the least square regression to compute the terms of the matrix Ξ, it is obtained

that all the terms of the matrix result di�erent from zero.

In this way you obtain a good �t for the system of di�erential equation V̇ = Θ(V)Ξ ,but

it is reasonable to think that the training data are over�tted, as it is unlikely that the

true model will be described by a very large number of candidate terms.

Therefore, we want a sparsity penalized regression that still does a good �t, but permit

to obtain the columns of the matrix Xi sparse as much as possible. There are a lot of

algorithms you could use to solve the sparse regression problem, in SINDy algorithm is

used the Sequential Threshold Least Squares algorithm, exposed more in depth in Section

2.1.2.

This regression procedure can be described by the Equation 2.10, in which we're constantly

balancing the model error argmin
ξ
′
k

∥V̇k − Θ(V)ξ
′

k∥2 with the terms λ∥ξ′

k∥1, that de�nes

the sparsity of the model measured determining how many terms are nonzero.

The sparsity of the model is controlled by the sparsi�cation knob λ, in particular:

� Increasing λ: increase the sparsity, so the complexity of the di�erential equation

decrease, but the model error increase. In this case the model is under�t.

� Decreasing λ: decrease the sparsity, so the complexity of the di�erential equation

increase, but the model error decrease. In this case the model is over�t and the

obtained solution are the same of the least square regression.

It is possible to state that the complexity of the model is inversely proportional to λ.

Changing the sparsi�cation knob we translate the threshold of our terms, �nding a fam-

ily of models from the under�t to the over�t model. A graphical interpretation of these

concepts are show in Figure B.2.
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Figure B.1: Graphical interpretation of the parsimonious modelling

Increasing the complexity of the system is possible that the least square regression works

well with a the training data, but it is not going to perform nearly as well on the vali-

dation data, because you're over�tting to the training data. For these reason in Figure

B.2 we can identify a kind of elbow that is a Pareto optimal area in which we avoid the

over�tting problem and we identify a model with a good compromise between complexity

and precision.
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Figure B.2: Parsimonious modelling with over�tting problem
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C.1. Test-system

Electrical scheme:

Figure C.1: Test-system [11].

Machine parameters

Gen. H [s] S [MVA] Ng (*)

G1 5.850 900 1

G2 5.850 900 1

G3 5.558 900 1

G4 5.557 900 1

Load parameters

Bus V [kV] PL [p.u.] QL [p.u.]

7 230 100 9.67

9 230 100 17.67

Transformer parameters

Line V [kV] S [MVA] r [p.u.Ω/km] x [p.u.H/km] From To

1 20/230 900 0 0.017 1 5

2 20/230 900 0 0.017 2 6

3 20/230 900 0 0.017 3 11
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4 20/230 900 0 0.017 4 10

Line parameters

Line V [kV] I [kA] r [p.u.Ω/km] x [p.u.H/km] b [p.u.F/km] From To

5 230 0.435 0.003 0.025 0.044 5 6

6 230 0.435 0.001 0.01 0.018 6 7

7 230 0.435 0.003 0.025 0.044 11 10

8 230 0.435 0.001 0.01 0.018 10 9

9 230 0.435 0.011 0.11 0.193 9 8

10 230 0.435 0.011 0.11 0.193 9 8

11 230 0.435 0.011 0.11 0.193 7 8

12 230 0.435 0.011 0.11 0.193 7 8

Table C.1: Test-system parameters.
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List of Symbols

Variable Description SI unit

J Combined moment of inertia of the generator and turbine kg ·m2

ωm Angular speed of the rotor mech.rad
s

Ta Accelerating torque N ·m
Tm Mechanical torque N ·m
Te Electromagnetic torque N ·m
t Times s

θm Angular position of the rotor at time t mech. rad

ωsm Synchronous speed of the rotor mech.rad
s

δm Angular position of the rotor at time t = 0 mech. rad

Pm Mechanical power W

Pe Electromagnetic power W

M Angular momentum kg ·m2 · rad
s

H Inertia constant Ws
V A

Anom Nominal power of the synchronous machine V A

D Damping term

ωCOI COI angular speed rad/s

HCOI COI equivalent inertia s

f Nonlinear function

v System's state vector

V System's state matrix

V̇ Time derivative of matrix V

θ Vector of possible non linear functions

Θ Matrix of the values of the vector θ in each one of the m instants of time

Ξ Matrix of the active terms

ξ Elements of the matrix Ξ

λ Sparsi�cation knob

X Matrix of the electromagnetic power over the time t in each machine MW
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Variable Description SI unit

Y Matrix of the angular velocity of the rotor over the time t in each machine rad/s

Z Matrix of the mechanical power over the time t in each machine MW

Ẏ Time derivative of the matrix Y rad
s2

Ẏest Estimated matrix of the time derivative of the matrix Y rad
s2
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