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Abstract: The objective of this paper is to propose an innovative interaction
method based on the conjunction of electromyographic signals and deep learning
analysis, integrated into a Digital Musical Instrument for guitarists. This inter-
action strategy exploits the correlation between the musicians’ emotional state
and their muscular activity, monitored using surface Electromyography (sEMG)
wearable sensors. Our method investigates how to effectively convey emotions by
dynamically tracking musical intentions through an analysis of muscular contrac-
tions, adapting the guitar sound accordingly. To accomplish this, a Recurrent Neu-
ral Network (RNN) based on Bidirectional Long-Short Term Memory (BLSTM)
has been developed to interpret sEMG signals. The musicians provide their ges-
tural vocabulary, each associated with a corresponding pedalboard sonic preset,
this association is used to train the gesture classification network. A dataset of
sEMG acquisitions related to various guitar techniques has been created and will
be published to support similar applications. The selection and testing of the most
effective combination of features in synergy with different muscular groups have
been conducted to optimize the learning rate of the gesture recognition model.
The digital signal processing is carried out with the visual programming language
Max/Msp 8. Finally, an evaluation strategy has been presented, involving the col-
lection of feedback from an expert guitarist through a questionnaire. The goal of
this work is to help other researchers integrate muscle signals into artistic perfor-
mance through an innovative protocol for mapping sEMG with sound.

Key-words: Human Computer Interaction, Surface Electromyography, Gesture Classification, Digital
Musical Instrument, Bidirectional LSTM

1. Introduction

Embodied engagement with music is a key element of musical experience, and the gestural properties of mu-
sical sound have been studied from multiple disciplinary perspectives, including Human-Computer Interaction
(HCI), New Interface of Musical Expression (NIME), musicology, and the cognitive sciences [21].In recent years,
the rapid evolution in wearable devices aided by machine learning has introduced novel interaction strategies
in today’s live music performances. Exploring new gestural interaction strategies is the core for establishing
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artistic practices where the performer’s body is deeply engaged in forms of corporeal interplay with the music
by means of motion and physiological sensing [52]. In this scenario, Digital Musical Instruments (DMIs) are
based on the creation of action–sound mappings, in which the relationships between the physical energy of
the input action may not necessarily correspond to that of the output sound [15], exploiting some Gestural
Interface (GI). A GI is a device that measures bodily behaviors (gestures) to manipulate digital media [43].
In this research, Gestural Interaction Design (GID) has been tackled by developing a custom wearable sensor
at the LWT3 research laboratory. To this end, we investigate the concepts of musical intention in relation to
Electromyography (EMG) for DMIs application [50]. An EMG signal measures the voltage difference generated
by the motor units within muscles during voluntary or involuntary muscle contractions, providing insights into
the neuromuscular activation patterns and muscle function. EMG is employed in the biomedical and HCI fields
as a highly sensitive way to capture human movement and has been used as a signal suitable to sense musical
gestures[51, 61]. The surface Electromyography (sEMG) technique allows non-invasive detection of the electrical
activity of the muscles by placing electrodes on the skin with minimal invasiveness. It is called surface because
in the normal EMG investigation the muscles signal of the patient are sensed by skin-inserted needles. In this
research, we leverage the sEMG signals for modeling the musician’s isometric muscular activity which does not
translate into movement; this makes possible to classify subtle motionless gestures, such as different levels of
contraction while performing the same guitar technique. Based on a systematic literature review, the majority
of the research that used sEMG biometric data for DMIs development is based on forearm muscles traced by
a Gestural Interface (GI) called Myo Armband [37]. A related example is the ’air’ guitar, a study by Erdem
et al. [17] investigating the development of an air guitar DMI (via ML methods using Myo armband). Due
to the lack in the market of affordable sEMG GI, one of the objectives of this paper is to introduce a new
wearable sEMG sensor board fully developed in our laboratory. Thanks to this innovative Gestural interface
(GI), we have the possibility to evaluate the impact of a full-body muscle selection in the design of a DMI.
In this project, we studied the muscles most activated during guitar performance and proposed a set of arm
muscles that maximize grading performance; then, we applied minimally invasive sensors on these muscles to
allow the musician intuitive interaction with a sound effects controller designed in Max/msp. After an extensive
literature review of DMI design projects using sEMG as a means of interaction, we found no attempt to control
guitar effects with the musician’s muscle signal.

In the following sessions, we present the proof of concept of a sensor-augmented system for electric guitar,
based on a Bidirectional Long Short Time Memory (BLSTM) recurrent neural network, which adapts and cus-
tomizes the sound accordingly to an sEMG analysis; it maps the user’s muscle activation into the guitar effects’
parameters, automatically adapting the sound with the detected musical intension. The musician provides a
number of sounds presets by labeling each one with a specific gesture to apply training based on supervised
learning; the smooth change between the vocabulary of gestures creates a novel overlay of effects that aims to
enhance creativity and broaden the compositional tools palette.
All the development process was conducted together with an advanced level guitarist who takes part in multiple
acquisition sessions guiding all the experimental stages explained in the last section: the sound to intentions
mapping, the design of the digital pedal-board with Max/Msp, the choosing of the gesture vocabulary and the
muscle selection. This article is structured as follow, Section 2, 3.1 present the state of the art and the theoret-
ical background. Section 4 presents all the stages of the protocol design. Section 5 presets all the experiments,
the results and the evaluation strategy. Section 6 highlight the conclusions and future works.

2. State of the Art

2.1. Digital Musical Instrument

In the realm of musical instrument craft industry, each generation of luthiers has harnessed the technological
advancements of their time to produce innovative creations. Just as Antonio Stradivari utilized the latest
discoveries in varnishes, glues, and woods during the 1700s to craft his extraordinary violins, contemporary
luthiers have the opportunity to embrace cutting-edge digital technologies. The emergence of digital lutherie [30]
calls for a combination of skilled craftsmanship, profound understanding of the materials employed, and artistic
sensibility, mirroring the traditional craftsmanship required for acoustic instruments. With the integration of
electronics into luthierie, a new class of instruments known as digital musical instruments (DMIs) has been
invented, leading to the development of various applications [12]. DMIs extend conventional instruments with
sensors, actuators, and digital signal processing techniques in an effort to balance technical and artistic novelty
with established playing techniques. Sensor-based augmentations consist of enhancing the instrument with
an interface composed of sensors dedicated to the tracking of performer’s gestures, which are repurposed into
electronically generated sounds via mapping techniques. Augmented Musical Instruments (or AMIs) are created
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by embedding sensors and actuators on traditional instruments, allowing the performer to control and modify the
instrument’s sonic output, introducing DSP controllers in the physical instrument to ease the interaction between
the musician and sound effects. In the literature, there are some previous attempts related to the creation of
augmented guitars able to introduce a higher level of embodiment compared to the traditional instrument [55].
Among the most interesting, the Moog Guitar is an electric guitar with onboard sliders that control augmentation
of the guitar’s traditional sound by sending electromagnetic energy into strings trying to convert an electric
guitar into a Moog synthesizer. MacConnell and colleagues presented the RANGE Guitar as an AMI built with
an electric guitar and variable (membrane) potentiometers, non-invasively installed on the instrument. The
embedded processor receives the membrane potentiometers data to control a guitar effect patch programmed in
Pure Data[34]. Traditional audio effect units and commercial DSP solutions tend to disregard the importance of
intuitive control interfaces that take advantage of the guitar player’s natural performance technique, forcing the
musician to interact with musical parameters by way of non-musical gestures: turnin a knob or adjusting a fader
[19]. This conflicts with the guitarist’s normal gestural interaction, fails to convey the exact musical intention,
and can even act as a distraction for the musician [36]. In recent years, the concept of DMI has been expanded
to include a new class of AMIs called Smart Musical Instrument (SML), first presented by Turchet and collegues
in [56] and deeply described in [54]. Such instruments encompass different strands of technologies, including
Internet of Things (IoT)[10] (e.g., wireless sensor networks), networked music performance systems , sensors and
actuator augmentations typical of augmented instruments [72], and embedded intelligence tailored to support
real-time audio and sensor processing. Smart instruments are instances of Musical Things, within the Internet
of Musical Things (IoMusT) paradigm [57], which refers to the network of interoperable devices dedicated to
the production and/or reception of musical content. The IoMusT ecosystem gathers devices and services that
connect performers and audiences to support performer-performer and audience-performers interactions. Such
interactions might be both co-located and remote, by leveraging, respectively, wireless local area networks and
the Internet. The most intresting (and one of the first SMI never built) is the Sensus Smart Guitar1 developed
by MIND Music Labs3 (see Figure 1). This hybrid electro-acoustic guitar, described in [56], consists of a hollow
body guitar augmented with multiple sensors embedded in various parts of the instrument, on-board processing,
a system of multiple actuators attached to the soundboard, and interoperable wireless communication (using
state-of-the art protocols for wireless transmission and reception such as Wi-Fi and Bluetooth, as well as for
exchange of musical data such as MIDI and OSC).

Figure 1: The Sensus Smart Musical Instrument

2.2. Wearable Devices

The wearable device domain is being actively researched for the sake of enhancing ease of use, comfort, and
non-invasiveness of monitoring physiological signals and sometimes psychological or emotional state, which can
be detected by analyzing biometrical data from different sensors. Wearable devices include any device mounted
on the body and can capture noninvasive signals from the human body through the use of different types of
sensors. Examples of wearable devices are smart watches, armbands, chest straps, shoes, helmets, glasses, lenses,
rings, patches, textiles, and hearing aids [46].
There are numerous well-known signals that are read from the human body in literature to identify the vital signs
and other information about the health or mental state of the subject. Examples of these sensors include skin
temperature [49] and electrodermal activity (EDA) sensor used to record the skin conductance that varies with

1Youtube Video demostraction of the Sensus smart guitar: https://www.youtube.com/watch?v=fqzEQnsSIoY
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the sympathetic state of the subject [16]. Other examples include an electrocardiogram (ECG) sensor to capture
electrical changes in the skin corresponding to heartbeats [24]. To capture features of the electrical activity
of the brain, the health of muscles and the nerve cells, electroencephalogram (EEG) and electromyography
(EMG) sensors are used [13, 29]; these sensors can also be used with amputees, who cannot execute the
movements, but have the intention to do so [59]. Bio-signals are also fused with other sensing methods, such
as Inertial Measurement Units (IMU), small, low-cost, highly portable devices that incorporate accelerometers
and gyroscopes. When these devices are paired with magnetometers, the resulting arrays are also known as
Magnetic, Angular Rate and Gravity (MARG) sensors. These sensor arrays allow the tracking of acceleration,
rotational velocity and orientation relative to the earth’s magnetic field of whatever they are attached to. They
are used extensively in aviation, robotics and HCI. Their increasing affordability and small size have made them
a very common feature of mobile and wearable devices and other consumer electronics. They are commonly
referred to as 9DoF (9 Degrees of Freedom) sensors, as they comprise three tri-axis sensors, resulting in a total
of nine sensitive axes: 3D accelerometers, 3D gyroscopes, and 3D magnetometers. EMG with IMU is one of
the most explored fusion techniques. A reason for this could be the commercial availability of this combination
with the Delsys EMG bio-amplifiers [26] and the Myo armband by Thalmic Labs. Whereas the Myo armband
is designed to be used as an affordable interaction system for the HCI sector, the Delsys sensor is intended
for medical research and is unaffordable for wearable device development. In [20], Gijsberts et al. utilized the
NinaPro database [4] to demonstrate the need for the accelerometer data in decoding the human hand gestures.
They concluded that the highest accuracy is obtained when both modalities are integrated with a multi-modal
classifier.
Following the technological advances in the design of system-on-chip (SoC), the development and use of wearable
devices have achieved high growth rates. The increasing adoption of smart wearable technology products among
consumers is driving industry growth. The global wearable technology market was valued at USD 61.30 billion in
2022 and is expected to expand at a compound annual growth rate (CAGR) of 14.6 from 2023 to 2030 according
to the wearable technology market industry report by Grand View Research 2. Despite this growth, there has
been only one commercial armband based on the combination of sEMG and IMU for HCI application, quoted
above (i.e. the Myo armband) that is currently out of production. There are no affordable wearable devices on
the market at the moment that use sEMG meant for HCI applications. This research aims to mitigate this lack
in the market by proposing a case study based on a sEMG sensor board designed at the LWT3 lab, with plans
to turn it into a real wearable device for HCI applications.
Based on the systematic literature review conducted in [29], it was found that among the 27 analyzed systems
focused on sEMG hand gesture recognition, 21 of them utilized the - at that time - commercially available
device Myo armband, with a sampling rate of 200 Hz. The remaining six systems employed custom-made
devices, which shared a design similar to the Myo armband, and were configured with a sampling rate of 1000
Hz.
The Myo armband is composed of 8 EMG surface dry sensors. These sensors measure the electrical activity of
the muscles of the forearm at a sampling rate of 200 Hz (Fig. 2- 1a) with 8 bits of resolution for each sensor.
The forearm muscles are responsible for the movements of the different parts of the hand (Fig. 2- 1b). The Myo
transmits its measurements to the computer via BLE (Bluetooth Low Energy). Additionally, the Myo contains
an inertial measurement unit (IMU) with 9 degrees of freedom (accelerometer, gyroscope, and orientation in
the x, y, and z axes). Finally, the Myo comes with a proprietary system for recognizing 5 gestures of the hand:
pinch, fist, open, wave in, and wave out (Fig. 2- 1c) [9].

2Grand View Research wearable technology trends analysis: https://www.grandviewresearch.com/
industry-analysis/wearable-technology-market
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Figure 2: Myo armband: (a) location of the surface EMG sensors on the device, (b) placement of the
armband on the forearm (the sensor with the blue logo goes on the posterior part of the forearm), and
(c) gestures that are recognized by the proprietary software of the Myo.

2.3. sEMG Analysis Aided By Machine Learning

Most of the studies in the literature, concerning electromyography (EMG), investigate pattern recognition
criteria based on Machine Learning. The main goal in this field is to improve the performance of myoelectric
control for upper limb prostheses with respect to current clinical approaches based on direct control. One of the
first attempts was made in 1993 by William Putnam who proposed a real-time computer control system based
on a neural network for pattern recognition of EMG from physically disabled users [41]. In recent years EMGs
has been extensively utilized also outside of clinical applications in the domain of human-computer interaction
(HCI). An input device developed using EMGs is a natural means of HCI, because the electrical activity induced
by the human’s arm muscle movements can be interpreted and transformed into computer’s control commands.
The robust and accurate decoding of information from EMG signals represents a critical challenge, addressed
by numerous types of research aided by deep learning techniques: hand gesture classification [32], [35], silent
speech recognition [31], [28], stroke rehabilitation [40] and robot arm control [3]. Buongiorno et al. [14] wrote a
brief survey about DL in EMG processing that includes also other applications such as sleep stage identification
and emotion classification. For a further review of all the major methods used for EMG classification in the
field of HCI you can refer to this systematic literature review [1].
Recent studies have investigated the role that gesture representation has in sound-action mapping to build
guitar DMIs. A study by Erdem et al. [18] investigating the development of an air guitar DMI (via ML
methods) focused on excitation (Excitation is a phase where there is energy transfer between a music performer
and a musical object. The excitation phase is preceded by a prefix (movement trajectory towards the point of
contact with the musical object) and followed by a suffix (movement away from the musical object)) actions
when implementing sound-action mapping for the air guitar. The authors used several excitation categories
to investigate whether action-sound gesture coupling can be used to create action-sound mapping for a novel
DMI (air guitar) which does not rely on a physical controller (i.e., a physical instrument), using EMG data
from the Myo GI to do so. The study used a recurrent neural network (RNN) and trained it with data from
semi-professional musicians/participants to predict guitar gestures. The authors then created an RNN model
by mapping sEMG data to the root mean square (RMS) of the instrument’s audio signal and producing a
synthesised guitar sound (i.e., a physical model) [44].

3. Theoretical Backgroud

3.1. Surface Electromiography

Nowadays, there are various technologies available for capturing the movement of the body. IMU are currently
the most frequently used devices to do so, thanks to their availability on the market and modest price. However,
they are still far from being optimal. Although accelerometers are widely used for capturing body movement
due to their affordability and availability, they are not well-suited for measuring isometric strain, as this type of
muscle contraction does not result in any movement. Among other modalities for capturing movements, there
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is the electromyography (EMG), a technique that derives from the medical field and is able to recognize the
electrical activity produced by skeletal muscles. The surface Electromyography (sEMG) technique allows non-
invasive detection of the electrical activity of the muscles by placing electrode pads on the skin with minimal
invasiveness. It is called “surface” because in the normal EMG investigation, the muscles of the patient are
reached by needles inserted directly into the muscle fibers. The measured signal is a composition of the electric
activity from the nearest muscular tissue, which is related to the contraction of the muscles.
Thus, sEMG is used to record the electrical activity of skeletal muscles via surface sensors, capturing the
electrical potentials generated during two distinct states of a muscle. In the first state, when the muscle is
at rest, individual muscle fibers exhibit an electric potential of approximately -80 mV [59]. The second state
occurs when the muscle contracts, leading to the generation of electric potentials within motor units (MUs),
comprising muscle fibers and motor neurons. These electric potential differences arise when a motor neuron
triggers a neuromuscular junction by transmitting two intracellular action potentials in opposite directions.
These potentials propagate through depolarization and repolarization of each muscle fiber [45]. The summation
of intracellular action potentials from all muscle fibers within a motor unit is known as a motor unit action
potential (MUAP). Consequently, during muscle contraction, the EMG signal represents a linear combination
of multiple MUAP trains [59]. There are three types of muscle contractions:

1. Ssometric contractions refer to muscle contractions in which the length of the muscle remains constant
while tension is generated. Isometric contractions can be detected through sEMG signals: a constant
level of muscle activity without any visible movement.

2. Isotonic contractions involve muscle contractions in which tension remains constant while the length of
the muscle changes. Isokinetic contractions can be detected through sEMG signals, at a level of muscle
activity corresponding to the change in muscle length.

3. Isokinetic contractions are a type of muscle contraction in which the muscle generates constant tension
throughout its range of motion at a fixed velocity. These contractions are usually achieved with the aid
of specialized equipment. Isokinetic contractions can be detected through sEMG signals, and muscle
activity will show a constant level of intensity throughout the range of motion.

The sensing of an sEMG channel requires at least two electrodes, for measuring the differential voltage, and a
third one as a DC reference. sEMG signal is composed of two main parts - the baseline period and the contrac-
tion period - and ranges from -5mV to 5mV. The electrodes are built to optimize the electrode-skin impedance,
and decrease the crosstalk of adjacent units, through specific materials. Due to the stochastic, nonlinear and
nonstationary nature of this type of signal, it is impractical to analyze the raw myoelectric signals, and that is
why the typical procedure is computing some low-level features before the classification. We now present the
most common low-level features for sEMG analysis, which can be classified into three categories: time domain,
frequency domain, and time-frequency domain. We have considered only the first category because of their
computational simplicity, suitability for real-time application, and wide use in research and clinical practice;
Time Domain (TD) features are widely utilized due to their strong performance and computational efficiency,
as they do not necessitate transformation and consequently demand minimal computational time. Among the
prominent TD features frequently employed, the following four have demonstrated particular significance in
sEMG analysis accordingly to [47].

1. Root Mean Square (RMS), it is related to the constant force and non-fatiguing contraction. It relates to
standard deviation, which can be expressed as

RMS =

√∑N
k=1 x

2
k

N
. (1)

where N denotes the length of the signal and xn represents the EMG signal in a segment n. In the realm of
time domain (TD) analysis, RMS emerges as the primary representative feature based on signal amplitude.

2. Waveform Length(WL) : Waveform length (WL) is the cumulative length of the waveform over the time
segment. WL is related to the waveform amplitude, frequency and time. It is given by

WL =

N−1∑
k=1

|xn+1 − xn| (2)

3. Willison amplitude (WAMP) is the number of counts for each change in the EMG signal amplitude that
exceeds a predefined threshold where threshold value is 10 mV. It is defined as Equation 3 is the same as
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before, but with just one label:

WAMP =

N−1∑
i=1

{
1 if |x(i)− x(i+ 1)| > threshold
0 otherwise (3)

WAMP is related to the firing of motor unit action potentials (MUAP) and the muscle contraction level,
the threshold is set to 5 mV accordingly to the best threshold evaluation presented in [38].

4. Zero crossing (ZCR) is the number of times that EMG signals crosses zero in a window of lentgh N . The
threshold value is 20 mV. It can be formulated as .

ZCR =
1

2(N − 1)

N−1∑
i=1

{
1 if x(i) · x(i+ 1) < 0 and |x(i)− x(i+ 1)| > threshold
0 otherwise (4)

ZCR is related to slope sign change (SSC). These features provide a rough estimate of the properties in
frequency domain.

The feature with the highest noise rejection ratio was found to be the Willison Amlitude (equation 3) accord-
ingly to EMG feature selection presented in [38] with a threshold that has to be set as a percentage of full
range during a calibration phase. However, research on EMG signal processing showed that there is not a single
best feature extraction process or formula, and that it largely depends on the data and required characteristics
of the system. EMG signals can be used for a variety of applications including clinical applications, HCI and
interactive computer gaming.

3.2. Artificial Neural Network

Mathematical modelling of cutting processes is very important, not only for understanding the nature of the
process itself, but also for planning and optimizing the machining operations. Nevertheless, hard machining
involves many complex and nonlinear relationships between different variables and parameters. Modelling of
these relationships is a difficult task but some artificial intelligence based tools, have been proved their ability for
matching complex non-linear relationships. The most popular and deeply studied techniques in soft computing
are the artificial neural networks. A Feed Forward Neural Network (FFNN) is the most basic type of ANN, It
has only forward connections in between the neurons, as shown in Figure 3. In this group are included multilayer
perceptrons (MLP), radial basis function networks (RBF) and self-organizing maps (SOM).

Figure 3: Example of a feed-forward neural network.

Artificial Neural networks (ANN) have a rich history that dates back to the 1940s, arousing as an attempt to
model the human brain structure and functioning. They are inspired by mathematical models of individual
neurons and interconnected networks of neurons, mimicking the way the human brain functions. The network
is composed for several simple units, called neurons, arranged in certain topology, and connected with each
other. Neurons are organized into layers. Depending upon their position, layers are denominated input layer,
hidden layer or output layer. A neural network may contain several hidden layers. In recent years, deep neural
networks have gained significant attention due to their exceptional performance across various research domains,
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as extensively discussed in [33]. Deep learning (DL) entails the acquisition of abstract representations of input
data through the utilization of multiple hidden layers. The deeper a network is, the larger the number of hidden
layers it includes. With the ever-increasing availability of data, ANNs have become a dominant and popular
technique for machine learning tasks in the recent past. Over time, numerous network structures have been
proposed to effectively match different types of input data such as images, video or sound; The most used are
recurrent neural networks (RNN), and convolutional neural networks (CNN).
ANNs are universal approximators, meaning that they are capable of modelling any form of relationship in
the data, especially non-linear relationships. To learn complex not linear patter ANN uses specific activation
functions such as sigmoid, hyperbolic tangent (tanh), rectifier linear unit (ReLU) (shown in Figure 4). These
functions play a crucial role in enhancing the representation power and learning capabilities of ANNs. They
determine the output of a neuron or a node receiving as arguments the weighted sum of previous neurons. The
activation function is applied to this sum to introduce non-linear transformations to the network’s intermediate
or final outputs. The sigmoid function, characterized by a smooth and S-shaped curve, maps the network’s input
to a bounded output range, typically between 0 and 1. Its mathematical form is well-suited for introducing non-
linearity in ANNs, enabling the modeling of complex relationships and capturing non-linear patterns in the data.
The sigmoid activation function plays a crucial role in facilitating gradient propagation during backpropagation
(i.e. weights update), contributing to the efficient learning process and convergence of ANNs.

Figure 4: Typical activaction function used in ANN.

3.2.1 Deep Learning Fundamental Concepts

There are two fundamental systematic approaches for training an ANN:

1. Supervised Learning: In this training strategy for Artificial Neural Networks (ANNs), the network
learns from labeled data, where inputs are associated with corresponding output labels. The goal is to
minimize the discrepancy between predicted outputs and true labels, achieved through iterative weight
adjustments using optimization techniques like gradient descent. Supervised Learning requires using both
the input and the target values for each sample in the training set. In this approach, two fundamental
strategies exist to guide the learning process based on the desired output characteristics. These strategies,
namely classification and regression, play crucial roles in various applications. If you want your model to
recognize a discrete number of states you need a classifier, instead if you want to map your input to a
continuous output you need a regression model.

• Classification: Classification is the task of assigning a category, or class, to an item. In a super-
vised learning scenario, the training dataset is constituted by items labelled with the category they
belong to. The training dataset is then used to build a model that will assign labels to new unla-
belled items, or instances, that have not been seen before. In our study, the training set consists
of muscle data belonging to a specific vocabulary of gestures drawn from the most common guitar
techniques. Recognition of one of the vocabulary gestures sets a user-made sound preset. Clas-
sification of gestures based on how they unfold over time can be done by using various temporal
modelling approaches, like recurrent neural networks, that we implemented both for classification
and regression.

• Regression: Regression is the task of estimating the relationship between an independent variable,
called feature, and a dependent, output variable. This is done by building a statistical model that
explains how the variables are related, and thus allows to infer the value of the dependent variable
given the independent variable. The model describing this continuous function is built using a set
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of discrete samples of independent variables (the input) paired with the corresponding values of
the dependent variables (the output). To implement a regression model one requires labelled data
(input paired with corresponding output), hence is a supervised learning problem. In the context of
musical interaction, regression is an attractive approach as it allows us to define a continuous sound
effects modulation function based on the muscle contraction.

2. Unsupervised Learning: This training approach involves training ANNs on unlabeled data, where the
network discovers hidden patterns, relationships, or structure within the data. It aims to learn without
explicit target labels, using techniques like clustering, dimensionality reduction, and generative models.
Unsupervised learning is used for tasks such as data exploration, anomaly detection, and feature learning

In the context of training a DL model, one epoch refers to a complete iteration through the entire training
dataset during model training. The number of epochs determines how many times the training algorithm will
process the entire dataset. Choosing the appropriate number of epochs is a critical decision in the training
process, as it directly impacts the model’s performance and convergence.
For the development of this project we use a supervised learning approach, proposing two ANNs that work in
parallel: one gesture classifier and one regression network.

3.2.2 Recurrent Neural Network

Recurrent neural networks (RNN) have been created to address the problem of learning the contest of a sequence
of data (e.g. sequence of frames of a video to interpret the present frame).

Figure 5: The standard recurrent cell of a recurrent neural network with tanh() as activation function.

Figure 6: Sample of a recurrent neural network .

In RNNs, the recurrent layers or hidden layers consist of recurrent cells whose states are affected by both
past states and current input with feedback connections. The recurrent layers can be organized in various
architectures to form different RNNs. Therefore, RNNs are mainly distinguished by the type of recurrent cell
and network architecture. Different cells and inner connections enable RNNs to possess different capacities
Standard Recurrent Cell.
Usually RNNs are networks that consist of standard recurrent cells using tanh or sigmoid activation function.
Figure 6 shows a schematic of the standard recurrent sigma cell. The mathematical expressions of the standard
recurrent sigma cell are written as follows:
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ht = tanh (Whht−1 +Wxxt + b) (5)

the small, bold letters represent vectors while the capital, bold letters represent matrices; where xt , ht ,and
yt denote the input, the recurrent information, and the output of the cell at time t , respectively; Wh and Wx

are the weights; and b is the bias. The model is recurrent because the state at time t depends on the state
at time t − 1 (which in turn depends on t − 1, and so on) through the recurrent weights Wh. A recurrent
cell therefore integrates information over all previous times to produce the output state vector yt at time
t. Learning the weights Wh and Wx for a recurrent layer is computationally challenging, since the gradient
calculation depends on the entire state sequence. The standard approach is back-propagation through time
(BPTT). BPTT approximates the full gradient by unrolling state vectors up to a finite number k of time
steps, and applying standard backpropagation to estimate gradients over length-k input sub-sequences. This
standard RNN cell is known to suffer from vanishing gradient descent. In this, the gradients that are used to
update the weights during backpropagation become very small. Multiplying weights with a gradient that is
close to zero prevents the network from learning new weights. This stopping of learning results in the RNN
forgetting what is seen in longer sequence, thus recurrent networks that consist of standard recurrent cells are
not capable of handling long-term dependencies. Hochreiter (1991) and Bengio, Simard, and Frasconi (1994)
analyzed fundamental reasons for the long-term dependencies problem: error signals flowing backward in time
tend to either blow up or vanish. In order to deal with the problem of long-term dependencies, Hochreiter and
Schmidhuber (1997) proposed the Long Short Time Memory cell.

Figure 7: The LSTM cell architecture, ⊗ denotes the element-wise vector multiplication (citare sito
web)

They have improved the storage capacity of the standard recurrent cell tanh by introducing multiple "gates"
composed of sigmoid cells (in the figure 7 represented as σ); thus the LSTM cell can be divided into 4 com-
ponents: forgetting gate, input gate, output gate, and cell status. These gates function as filters and control
the flow of information and determine what information is retained or ignored. All three gates use the sigmoid
activation function. Only the weights and biases differ. The state of the cell is updated through the forgetting
port and the input port.

1. The forget gate decides how much information from previous states to throw away, in other words,
how much long memory shall be kept. For this, a sigmoid activation function is used which states the
importance of the cell state. The output varies between 0 and 1 and states how much information is kept,
i.e., 0, keep no information and 1, keep all information of the cell state.

forgetGatet = σ(Wf,xxt +Wf,hht−1 + bf ) (6)

Based on ht−1 (previous hidden state) and xt (current input at time-step t), this decides a value between
0 and 1 for each value in cell state ct−1. For all 1’s, all the information is kept as it is, for all 0’s all the
information is discarded and with other values it decides how much information from previous state is to
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be carried to the next state.

2. The input gate decides which information shall be added to the cell state and thus the long-term memory.
Here, a sigmoid layer decides which values are updated.

inputGatet = σ(Wi,xxt +Wi,hht−1 + bi) (7)

3. The output gate decides which parts of the cell state build the output. Hence, the output gate is
responsible for the short-term memory.

outputGatet = σ(Wo,xxt +Wo,hht−1 + bo) (8)

4. Cell state serves as the memory of an LSTM. The cell state is updated through the forget gate and the
input gate.

cellStatet = (ft ⊗ ct−1 + it ⊗ tanh (ht−1)) (9)

⊗ denotes the element wise vector multiplication. The first term in the above equation determines how
much of the long-term memory is kept while the second terms adds new information to the cell state.

The hidden state of the current time step is then determined by the output gate and a tanh function which
limits the cell state between -1 and 1.

ht = ot ⊙ tanh (ct) (10)
RNN emerge as promising models for gesture recognition classifiers based on EMG signals due to their ability
to identify patterns in dynamic time series; they have been widely used in different fields to forecast time series
data and model energy system behavior. In the field of Human–Machine Interfaces and electromyography,
multiple studies have explored the application of RNNs in gesture recognition systems in order to determine
whether is or not suitable for gesture prediction and prosthesis control [53].
Along with the LSTM, one of the most used RNN architectures is the bidirectional recurrent neural network
(BRNN) first described by Schuster and Paliwal [1997]. While traditional LSTMs effectively capture dependen-
cies in one direction, they lack the ability to exploit information from future time steps, limiting their potential
in certain applications. Bidirectional LSTM networks were introduced to address this limitation by incorporat-
ing two LSTM layers: one processing the input sequence in the forward direction and another in the backward
direction. This means that for every point in a given sequence, the BRNN has complete, sequential information
about all points before and after it. Also, because the net is free to use as much or as little of this context as
necessary. This bidirectional nature empowers the network to capture dependencies from past and future con-
texts simultaneously, enabling more comprehensive modeling of sequential data. The first layer is responsible for
processing the input sequence in the forward direction and the second in the backward direction. The outputs
of both layers are concatenated, providing a holistic representation that captures information from both past
and future contexts. This bidirectional flow enhances the network’s ability to capture complex dependencies
and improve the performance.
Due to the two-sided connectivity of basic units, the BRNN architecture is able to capture the relationship of
inputs better than a one-sided RNN architecture. Indeed, sharing the features that are learned by each basic unit
reduces the misclassification and improves overall accuracy. Also, considering the same inputs for all basic units
enhances the classifier performance by providing prior information about the inputs. In [5] various architectures
of RNN at different signal lengths are compared for hand gesture classification using an eight-channel sEMG
dataset. BRNN with the same inputs and RNN with the sequential inputs show better performance than other
architectures, those architectures achieve the accuracy of 0.93 in 500 msec of batch size.

4. Protocol Design

The protocol pipeline for acquiring, processing, and classifying sEMG signals in real-time to control the guitar
sound, depicted in Figure 8, can be summarized as follows:

1. Electrode Placement: Electrodes are placed on the skin following the protocols of the Atlas of Muscle
Innervation Zone [7]. These electrodes are connected to a wearable board, which captures analog sEMG
signals and performs analog-to-digital conversion (ADC).

2. Prefiltering Stage: A prefiltering stage is applied to ensure signal fidelity. This stage consists of an
anti-aliasing filter and a high-pass filter (with a cutoff frequency of 5Hz) applied in cascade.

3. Data Acquisition and Processing: The wearable board transmits the signals to a computer system
running a proprietary data acquisition platform called Row Power. This platform performs crucial op-
erations such as feature extraction and signal packaging. The packaged data is then simultaneously fed
into two separate recurrent neural network (RNN) models.
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Figure 8: This image shows the entire signal flow, from its generation and acquisition from the user’s
body to the modification of the sound by the Max/Msp patch.

4. Gesture Classification: The first RNN model is dedicated to gesture classification, facilitating the
selection of pedalboard presets based on the recognized gestures.

5. Effect Modulation: The second RNN model operates as a regression model, enabling continuous mod-
ulation of the chosen effects based on the sEMG signals.

6. Max/Msp 8 Patch: The predicted parameters from the RNN models are sent to a Max/Msp 8 patch
using the Open Sound Control (OSC) network protocol. The Max/Msp 8 patch encapsulates a series
of five Virtual Sound Technology (VST) plugins arranged in a sequential manner to achieve the desired
audio effects and modifications.

7. Audio Output and Processing: The audio output from the Max/Msp 8 patch is routed to a PA system.
Ableton, a Digital Audio Workstation (DAW), is employed as an intermediary between the Max/Msp 8
patch and the PA system. Ableton provides a robust platform for audio mixing, signal processing, and
playback control, ensuring high-quality sound reproduction.

This protocol pipeline enables the real-time control of guitar sound using sEMG signals, involving electrode
placement, signal acquisition and processing, gesture classification, effect modulation, and audio output with
the aid of Max/Msp 8 and Ableton.

4.1. Data Acquisition Platform

Figure 9: Data acquisition platform: 8-channels sEMG werable sensor board. Two sides, four channels
for each side.

To introduce the sEMG signals to the artistic practice, in a reliable and robust way, in the laboratory we
designed a non-invasive wearable sensor. We were able to investigate multiple muscle areas using this wearable
computer system able to track the biometric signals of all the body. This device aims to be a bridge between the
performer’s internal world (observed through biopotential signals) and the world of the media arts (hardware
and software used to create music and audio-visual contents, such as Max/Msp). The acquisition is made by
our wearable computer device shown in figure 9 with a sampling rate of 1000Hz with 22bit resolution ADC
for 8 channels in double differentials configuration. Then the data is sent to the software by wired USB 2.0
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communication channel.

4.2. Electrode Pads Placement

Figure 10: This photo shows an example of electrode placement on the guitarist’s arm during muscle
selection.

The electrode pads placement is critical for accurate sEMG measurements. The electrode pads should be placed
over the belly of the muscle, with wires leading away from the muscle. It is essential to ensure that the skin is
clean and dry before applying the pads, and avoid placing them over bony areas or areas with excessive hair.
For the experiments, we use Ag/AgCl foam TOP TRACE ST 50 RLI electrodes (Ø 50 mm) (see Fig. 10). Next,
it is important to connect the cables securely to the sEMG amplifier, ensuring that there is no interference from
other sources. For the correct placement the protocols of Atlas of Muscle Innervation Zone has been followed
[7]. Furthermore, we fixed the cables to the body with elastic straps to compensate for external electromagnetic
disturbances due to the cables’ movements during the recording.

4.3. Data Elaboration Platform

The data elaboration platform facilitates the acquisition of surface electromyography (sEMG) signals from the
8-channel sensor board described in ??. It is designed to capture and record synchronized sensor data, enabling
real-time visualization of muscular activities through a dynamic plot. Furthermore, the platform incorporates
a range of sophisticated post-processing computations, designed to assess and evaluate the performance of the
acquired data. In the context of live performances, the observation and analysis of sEMG signals enable the
tracking of the artist’s expressive intentions manifested through varying degrees of muscular contractions. To
enhance the live elaboration of sEMG acquisition during guitar performances, it becomes imperative to mitigate
the impact of movement artifacts and electromagnetic interferences. To address this challenge, a pre-filtering
stage is incorporated, aimed at attenuating high-frequency motion artifacts and ultra-low-frequency electromag-
netic noise. This pre-filtering is achieved through the implementation of a fifth-order Butterworth bandpass
filter, with cut-off frequencies set at [30, 300] Hz. In addition, to minimize the influence of electromagnetic
disturbances stemming from nearby electronic devices, a harmonic band-stop Notch filter is applied. This fil-
ter is specifically designed to suppress the interference at a center frequency of 50 Hz, commonly associated
with power line noise. The quality factor of the Notch filter is set at 0.8, ensuring effective attenuation of the
targeted frequency while preserving the integrity of the sEMG signal. By implementing the pre-filtering stage
as described, a more refined analysis, interpretation, and subsequent processing of the acquired sEMG data is
enabled. This pre-filtering approach enhances the accuracy and reliability of investigations into the underlying
muscle activity.

4.4. Feature Selection

In order to enhance the discrimination capabilities among various guitar techniques based on the acquired
sEMG signals, a feature selection stage is executed. The primary objective of this feature selection process
is to identify the most informative and discriminative features that effectively differentiate between different
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guitar gestures. By adhering to specific selection criteria, we aim to achieve a high level of inference and
accuracy in distinguishing the selected gestures. In this study, we focus on identifying the two most significant
low-level features in the time domain, which are crucial for characterizing the unique aspects of the guitar-
playing techniques. The model shows the best performance while using the combination of two features in the
time domain, the Root Mean Square (RMS) and the Zero Crossing Rate (ZCR), the first reflects the amount
of power activation, the latest reflects the behavior of the signal in the frequency domain. We compute the
feature over a sliding window of 500ms with no overlaps, this ensures the best trade-off between classification
performance and low latency for real-time interaction. To track the signal amplitude we use the RMS. The
sEMG amplitude is considered the most meaningful feature because it is directly proportional to the exerted
force, for this reason, the RMS is one of the most popular features used in EMG signal analysis [39]. It has been
shown that sEMG amplitude analysis is more useful than frequency domain analysis, for gesture recognition
tasks based on supervised learning algorithms [2].
ZCR is a widely used feature in audio signal processing, it is used to recognize harmonic sounds from noisy
ones, and it is employed in speech recognition [6]; applied to the zero-mean EMG signal it’s an indicator of the
neurons firing rate, directly proportional to the level of activation of muscular fiber. It’s helpful to understand
the activation level of a particular muscle in an interval of time.
The Zero Crossing Rate (ZCR), previously explained in Section 3.1, serves as a valuable and computationally
efficient feature that encapsulates the approximate frequency behavior of the signal. By quantifying the rate
at which the signal crosses the zero amplitude threshold, the ZCR provides a succinct representation of the
frequency dynamics present within the analyzed acquisition; behaving as an accurate descriptor of the amount
of activation over time during a specific gesture. Based on the combination of ZCR and RMS, we present in
the next section an evaluation method to classify the best muscles having a set of specific gestures to classify,
such as the one of a guitarist.

4.5. Muscle Selection Criteria

Elenco puntato per definire le fasi svolte
The selection of appropriate muscles is paramount in ensuring accurate gesture classification, as distinct guitar
techniques elicit unique patterns of muscle activation. To establish a robust muscle selection criterion, we
conducted multiple 30-second acquisitions wherein the same gestures were performed. By computing the average
Zero Crossing Rate (ZCR) for each muscle, we obtained an indication of the level of muscle activation overtime
during the execution of specific gestures. Through extensive testing, we observed that in a resting position, the
ZCR values ranged from 40 to 70, while the RMS ranged from 1000 to 3000 compared to the baseline. These
observed ranges serve as the threshold for muscle classification. Consequently, we rank the muscles based on
their mean ZCR and RMS values, discarding those muscles that fall below the established threshold, thereby
ensuring the selection of only the most relevant and activated muscles for accurate gesture discrimination. We
present the result and the selected muscles in section 5.1. Out of the twelve muscles we examined, only eight
surpassed the predefined thresholds. This muscle selection process consisted of two stages.
In the first stage, we analyzed the average activation over time of each muscle using the Zero Crossing Rate
(ZCR). We plotted the ZCR values for each of the seven gestures we aimed to classify. This allowed us to assess
the extent to which each muscle was activated on average during the set of gestures. As an example, Figure [add
figure reference] illustrates the ZCR plot for the Brachioradialis muscle across all seven gestures. By comparing
the average ZCR values with the specified threshold, we identified the top eight muscles for further analysis.
Moving on to the second stage, we divided the twelve muscles into groups of eight and evaluated the average
Root Mean Square (RMS) values for each of the seven gestures. We plotted the RMS values for the selected eight
muscles and examined the average amplitude levels. This step helped us determine the amplitude threshold.
For instance, we excluded the hand muscles from selection due to their lower RMS values, which contributed to
a lower average RMS for the group compared to other sets that did not include hand muscles.
To provide a comprehensive understanding of our selection process, we present different plots that illustrate
the two phases. These plots demonstrate the evaluation of individual muscle activation using ZCR and the
assessment of group average amplitude using RMS.

4.6. Dataset Creation

To the best of our knowledge, there are no public sEMG datasets of guitar techniques. A dataset of sEMG guitar
gestures was meticulously constructed following a strict procedure, which is publicly available at the GitHub
repository of this research 3. Seven widely recognized guitar techniques were carefully selected for inclusion

3GitHub repository of the research
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Figure 11: Example of plots of eight different muscles during the second stage of the selection.

in the dataset, namely fingerpicking, strumming, bending, down picking, alternate picking, tapping, and pull-
off/hammer-on. To ensure consistent movements across different participants, each technique was paired with
a corresponding guitar riff that best represented its characteristic motion. Two acquisitions were performed for
each technique, one in a completely relaxed and uncontracted state, and the other in an overly contracted and
rigid state. These acquisitions were instrumental to establishing the dataset used for training the regression
model, which aims to differentiate the varying levels of force exerted during the gestures. To ensure a balanced
distribution across classes, each acquisition lasted for 30 seconds, maintaining a constant tempo of 100 beats per
minute (BPM), and participants assumed a standing position during the data collection process. The dataset
was collected from four guitarists with varying levels of expertise, spanning from beginner to professional, and
with diverse anthropometric measures such as heights, weights, and muscle shapes, all carefully documented.
All acquisitions were performed by capturing the signals from the eight selected muscles as presented in Section
5.1. Additionally, audio files of each acquisition were saved for potential future application.
Each acquisition was meticulously labeled and organized into dedicated folders using Row Power software.
Subsequently, a specific function within Row Power was utilized for post-processing to export a filtered RMS
version of each acquisition. These processed acquisitions were then loaded into a pandas data frame, enabling
the proper shaping of the dataset. By concatenating a target dataset alongside each acquisition, the supervised
learning procedure was facilitated. This target dataset included references to the corresponding class assigned
to each gesture acquisition. This tagging process, wherein each example is labeled with its associated class,
adheres to the standardized procedure employed prior to training the model.
The dataset was split into two parts: 80% was used for training, and the remaining 20% was used as a validation
set to allow the process of hyper-parameter tuning ( i.e.updating of the weights) and validation of the training
step.

4.7. Proposed Model

For the purpose of upper limbs gesture classification and real-time regression, this section present the steps
followed to develop a novel model, showing key concepts that allow the implementation of a customized ar-
chitecture based on a Bidirectional Recurrent Neural Network (BRNN). Specifically, the model incorporated a
Bidirectional Long Short-Term Memory (BLSTM) layer, coupled with two consecutive fully connected Dense
layers. The schematic representation of the model architecture can be observed in Figure 13 and a detailed
esplanation abou the parameters of each layer is presented in Section [inserire].

The utilization of an RNN structure with LSTM configuration has been widely acknowledged as an effective
approach for capturing temporal patterns in time series data. Numerous researchers have highlighted the RNN’s
capacity to retain information, rendering it highly suitable for applications involving time series analysis. In this
study, we proposed a hybrid RNN architecture, comprising a recurrent layer followed by two dense layers, to
enhance overall performance. Notably, it has been demonstrated that incorporating dense layers in conjunction
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with the recurrent layer can yield superior outcomes compared to models solely relying on the recurrent layer
[25].
To further enhance the model architecture, we explored the implementation of a bidirectional LSTM, allowing
the recurrent layer to operate in both the past and future directions. By incorporating bidirectionality, we
aimed to capture more comprehensive temporal dependencies and improve the model’s predictive capabilities.
The network was developed using Python programming language, utilizing the latest version of TensorFlow
(2.12.0). The Keras API was employed to implement the layers, while the Scikit-learn library facilitated the
integration of useful preprocessing functions. The source code and scripts are openly accessible on Google Colab
3.

4.7.1 Model Design

The first crucial aspect that requires careful consideration when employing a Long Short-Term Memory (LSTM)
network is the selection of the input data shape. Specifically, the input data shape in a recurrent neural network
(RNN) dictates the number of samples to be analyzed collectively to identify recurrent patterns within the input
stream. In essence, it determines the memory capacity of the system, enabling it to capture and retain temporal
dependencies effectively. Every LSTM layer accept as input a 3-Dimensional tensor composed of (number of
batches, number of time steps, number of features) as shown in Figure 12. It is mandatory to set the shapes

Figure 12: The chosen input shape of the model, the batch size is a varying parameter.

for the last two dimensions, while the first (i.e the number of batches) could vary. In our specific case, the
number of features remains fixed at eight, representing the RMS values of each sEMG channel. The time steps
dimension corresponds to the desired number of time steps (i.e 8 RMS sEMG values) that the network will
analyze. Notably, a larger value for this dimension allows the network to consider a longer temporal context.
The third dimension, referred to as the number of samples, can vary and represents the number of time-steps
provided as input to the network during training. We fixed a number of time steps to 256, considering the
real-time application and the literature review on sEMG minimum window size, taking into consideration that
the sample time is 1ms, 256 sample windows allow an actuation speed of around 200–300 ms considering a serial
communication with the computational model, which is within the required speed;

Based on the input 3D shape, a reshaping process is required, in which the training set is divided into groups of
sizes equal to the number of time steps. Applying a supervised learning techniques we need to create for each
class a correspondent target set of two dimension: the first equal to the number of baths obtained during the
reshaping of the training set and the second equal to the number of output classes.
One of the key points to reach a good performance is the architecture design of the model: In this stage we

avaluate numerous architecture firtly stacking multiple LSTM, then reiforcing the generalization and fetures
extraction of the RNN stacking at the end multiple LSTM. The main difficulties was finding an architecture
wiht not too many parameters, suitable for a real-time usage. Stacking multiple LSTM with a high number of
units (i. e. neurons), resulting in architecture with number of parameter of the order of millions; We discover
that a single BLST with fewer units perform much better that multiple stack LSTMs layer. Only one BLSTM
was not able to reach high performance, for this reason we stuck multiple Dese layer after it to reinforce the
inference of the architecture. After varius experiment, we reach the best performance with the architecture
described in Figure 13.
The system consist of one BLSTM, two Dense layers with activation function tanh and ReLu respectively, a
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Figure 13: The model architecture diagram

regularization layer called Dropout, a Flatten layer to reduce the dimensionality and a final SOFTMAX layer
to compute the class probabilities. Dropout is a commonly used technique to avoid overfitting by improving the
generalization ability of the network. During the training phase, a dropout layer randomly "drops out" (i.e.,
temporarily removes) a certain proportion of the units or neurons in the preceding layer as shown in Figure
14. The dropped-out units are temporarily ignored during both forward and backward propagation, effectively
making the network less reliant on specific units. By doing so, dropout prevents the network from relying too
heavily on any individual neuron, which encourages the network to learn more robust and generalizable features.
The output of the last layer is a flattened vector, to reduce the shape of the data from 3D (RNN work with

Figure 14: A representation of how a Dropout layer randomly “drops” neurons during training with
the aim of forcing the network to learn more robust representations.

3D tensor) to a 2D before feeding the vector to the output layer. The output layer integrates a SOFTMAX
activation function to classify which gesture is being performed. The SOFTMAX activation function is one of
the most widely used functions for multi-class classification problems because of its performance in predicting
the probability of each class [22]. The SOFTMAX function predicts the probability of a class Cj given an input
X as shown in Equation 11.

pj = P (Cj |X) =
ezj∑K
k=1 e

zk
(11)

where:

• pj is the output probability of the class j
• C is the total number of classes that are being predicted
• zj represents the linear combination of the weights and the previous layer activations in matrix form, and

can be defined as zj = Wzl−1

Its important to note that the SOFTMAX output layer has the same units or nodesas the number of
classes that are being predicted.

4.7.2 Model Optimization

Once the model is defined, the next step was to select a cost function in order to optimize it through training and
obtain the desired results in the classifier. In general, when using an output layer with a SOFTMAX activation
function,a categorical cross entropy loss function 12 is selected, which allows optimizing the cost function 13
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that sums the loss over the training examples. The categorical cross entropy loss allows a correct penalization
of incorrect predictions and improve the performance in multi-class classification problems

Categorical Cross Entropy Loss = θ = −
C∑
i=1

yi log(pi) (12)

Cost Function J(θ) =
1

m

m∑
i=1

−
C∑

j=1

yi,j log(pi,j)

 (13)

where:

• C represents the number of classes in the classification task.
• yi denotes the true probability (ground truth) of class i.
• pi represents the predicted probability of class i assigned by the model.

The batch size was set during the hyper-parameter tuning process along with the number of training epochs
(Training iterations). The optimization algorithm will be explained in greater detail in the next paragraph. In
order to minimize the cost function, it is necessary to update the weights W and biases b of each layer. This
must be done by an optimization algorithm such as gradient descent. In this research, the Adaptive Moment
Estimation ADAM algorithm was selected; that is, a combination of Gradient Descent With Momentum and
Root MeanSquare Propagation (RMSProp). The ADAM optimization algorithm is considered to be one of
the best optimization algorithms to train neural networks [27]. The learning rate represents the step size or
magnitude at which the weights of the neural network are updated during the training process. During each
iteration of the training process, the ADAM algorithm computes the gradients of the weights with respect to
the loss function, and then scales these gradients by the learning rate before updating the weights.The update
rule for the weights using ADAM optimization with a learning rate α can be represented as follows:

wnew = wold − α× gradient (14)

Here, wnew represents the updated weight value, wold represents the current weight value, and gradient represents
the computed gradient of the weights with respect to the loss function. The learning rate α controls the
magnitude of the weight updates. In summary, the learning rate α determines the step size at which the
weights are updated during training, influencing the convergence speed and stability of the learning process.
Selecting an appropriate learning rate is essential for achieving optimal performance. If the learning rate is set
too high and the training becomes unstable, reducing the learning rate can help stabilize the process. Conversely,
if the learning rate is set too low and the training becomes slow, increasing the learning rate can accelerate
convergence.
In order to prevent overfitting we add to the loss function a regularization term called L1 kernel regularization.
it is a technique that adds a regularization term into the loss function to impose a penalty on the absolute
values of the weights (kernels) in the network. This regularization technique encourages the model to have
sparse weight values, meaning it tends to set many weights to exactly zero. The L1 kernel regularization term
is defined as the sum of the absolute values of all the weights in the network, multiplied by a regularization
parameter λ :

Loss with L1 regularization = −
C∑
i=1

yi log(pi) + λ
∑
i

|wi| (15)

Here, wi represents an individual weight in the network, and the summation is taken over all the weights in the
network. The regularization parameter λ controls the strength of the regularization effect, with larger values
promoting sparser weights. The L1 regularization term encourages the network to learn sparse weight values
because it introduces a penalty for non-zero weights. When the loss is minimized, the network will tend to assign
smaller absolute values to less important weights, effectively driving some of them to zero. By promoting spar-
sity in the weights, L1 regularization can simplify the model and improve its ability to generalize to unseen data.

4.7.3 Hyperparameters tuning

After the architecture is decided, the next key step for model optimization, is the process known as hyper-
parameter tuning. The hyper-parameter are values used to control the learning of the model, for example,
the number of neurons of each layer, the number of training epochs (Training iterations), the learning rate
η . This process is performed with the objective of obtaining an optimal performance of the model , and
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correct issues like high bias and high variance. In this research, manual hyper-parameter tuning was performed.
This optimization was done by changing the following hyperparameters: the learning rate η, the batch size,
the number of training epochs, the model architecture, the number of neurons of each layer and its activation
function. During the hyperparameter tuning, we investigated the proper number of training time steps after
which the weights are updated, called the batch size. This hyperparameter can change performance dramatically
and must be chosen carefully, along with the number of training process interactions, called epochs, over which
the process of updating the weights will be iterated.
To determine the optimal number of epochs we applied a well know techquince called Early stopping. It involves
monitoring the model’s performance on a validation dataset (i. e. data that the model has not been directly
trained on) and stopping the training when the validation loss function does not decrease for a specified number
of epochs. Early stopping helps identify the point at which the model achieves the best trade-off between
capturing the underlying patterns in the training data and generalizing to unseen data.
The result with the chosen hyperparameters can be seen in Figure 3

4.7.4 Evaluation Metrics

Once the model is trained, it is important to define a way to determine its performance, this is when performance
metrics come to play. There are many metrics to indicate the performance of a model, most of them based
on the confusion matrix, which contains the values of true positives (TP), true negatives (TN), false positives
(FP) and false negatives (FN), values that come in handy to calculate these metrics. This research evaluated
the performance of the gesture classifier using one metric commonly used in the literature [23], the accuracy,
which can be mathematically defined as shown in Equation 16

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

As Equation 16 shows, the accuracy measures how much the model is correctly predicting on the entire data-set
and represents the probability that a prediction made by the model is correct. The accuracy does not take into
consideration the dataset class distribution, which could be misleading if the model is trained with imbalanced
data sets in which some classes have fewer examples than other classes. For this reason during the training set
creation, we ensured to have the same number of examples for each class.
In order to analyze and evaluate the proposed model two main phases were performed. An initial phase where the
model was tested, accordingly to previously labeled sEMG acquisition, over a test set; and a second phase where
the model was tested in a real-time gesture classification scenario. The accuracy of the model computed over
the test set can be seen in Figure 17 where we show the result using a confusion matrix. A confusion matrix
is a square matrix used to evaluate the performance of a multi-class classifier. It summarizes the predicted
and actual labels of the data in a tabular form, showing the classifier’s performance and identifying areas for
improvement. The matrix provides information about true positives, false positives, true negatives, and false
negatives for each class, enabling the calculation of various evaluation metrics such as accuracy.

5. Experimental Setup and Evaluation

This section presents the experimental setup and evaluation strategies followed for the creation of the described
intelligent DMI. The development of this project was guided by different experiments that took place in the
LWT3 laboratory; All of them were conducted using the same right-hand solid-body electric guitar, performed
in a stationary standing position. The resulting architecture, which shows the signal flows of the proposed
system, is presented in Figure 8. The experiments first involved a single guitarist, then multiple ones and were
conducted in three phases, all consisting of multiple muscle acquisitions:

Phase 1: Muscle Selection
• Objective: Define muscle selection criteria and evaluate the best upper limb muscles for guitar gesture

classification.
• Result: Identified the 8 arm muscles that maximize classification results.

Phase 2: Mapping strategy
• Objective: Define the gestures and the VSTs for mapping muscles to sound.
• Result: Development of the RNNs’ architecture, the training process, and the Max/msp patch.

Phase 3: Evaluation
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• Objective: Evaluate the system’s performance and effectiveness with three additional guitarists.
• Result: Validation questionnaire.

The initial two phases were guided by experiments conducted with a single guitarist involved from the very
beginning of the development process. Multiple sessions of sEMG acquisition were performed, which guided the
mapping of sound to intentions, the design of the digital pedal-board using Max/Msp, and the determination
of the gesture vocabulary. The user is required to provide their own gesture vocabulary and VST pedals to
construct the augmented pedalboard. In this experiment, the selected gesture vocabulary consists of seven
guitar techniques, chosen on the basis of their popularity, low gesture similarity, and inclusion of only left limb
movements (e.g., pull-off and hammer-on). Due to variations in individual anatomies and muscle usage, even
seemingly identical gestures can differ in muscle activation. The careful selection of features and muscles, as
explained in the previous sections, required fine-tuning through multiple acquisitions.
A step-by-step evaluation experiment was established to apply the muscle selection criteria defined in Section
4.5:

1. Seven guitar gestures were performed at fixed BPM (Beats per minute, i.e 120).
2. All the acquisition has the same lengths of 30 seconds.
3. Multiple groups of eight muscles were collected to identify the best set.

Performance data for the seven technical gestures was collected for each tested muscle. Muscles with consistently
low RMS values (left anterior deltoid, left and right triceps, and hand muscles) were discarded in this phase.
To further refine the muscle selection and identify the muscles specifically activated during each guitar gesture,
the Zero-Crossing Rate (ZCR) was utilized to evaluate mean activation over a time interval. The combination
of these two features, as extensively described in Section 4.4, facilitated the identification of the optimal set of
eight arm muscles for classifying each specific gesture, as depicted in Table 1.

Figure 15: Guitarist who follow the first two experimental stages, during data acquisition in the lab,
wearing the proprietary data acquisition system.

5.1. Selected Muscles

We propose a method for selecting muscles (listed in Table 1) relevant to guitar performance through a sys-
tematic evaluation experiment. We analyzed twelve upper limbs muscles selecting the best eight following the
criteria explained in 4.5. The guitarist is instructed to perform a set of standard technical gestures belonging to
the most common guitar techniques: finger picking, strumming, bending/vibrato, pull off - hammer on, tapping,
down picking and alternative picking. He performed them at a fixed tempo of 120 Beats per Minute (BPM) for
a duration of 30 seconds each. During this phase, we exclude muscles with consistently low Root Mean Square
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Figure 16: Selection of the best eight muscles for guitar gesture classification. This image shows the
electrode adhesive placement area, highlighting the chosen muscles.

(RMS) values, namely the left anterior deltoid, left and right triceps, and hand muscles. In order to further re-
fine the muscle selection process and identify the specific muscle activation patterns associated with each guitar
gesture, we utilize the Zero-Crossing Rate (ZCR) to evaluate the average activation level within predefined time
intervals. By combining these two features, as elaborated in Section 4.4, we are able to determine the optimal
set of eight upper limb muscles for accurately classifying each specific gesture, as illustrated in Table 1. while
performing The twelve analyzed muscles are listed in Table 1, and the discarded ones are the last four. For each
of the eight selected ones, you could see in which gesture they perform better. As a result, we present here the
most activated muscle during guitar playing.

1. Forearm muscles: including the flexor carpi radialis the extensor carpi radialis and brachioradialis,
they are responsible for the wrist movement during guitar playing, which is particularly activated during
techniques such as strumming, arpeggio, tremolo picking, double pick and strong pick.

2. Right anterior Deltoid muscle: This muscle is involved in shoulder movement, which is important
for detecting techniques such as strong picking, strumming, and chord changes ( i. e left-hand movement
when changing chords). The Deltoid muscles are responsible for abduction and flexion of the right arm at
the shoulder, it is crucial to detect techniques such as strumming and chord changes. We notice that the
anterior right deltoid muscle has slightly higher values, than the lateral, as it tends to be more consistently
active during guitar playing. While the left deltoid is completely discarded for low activation proved by
low values of both ZC and RMS.

3. Biceps muscles: These muscles are involved in elbow movement, which is high activation during tech-
niques such as bending and vibrato, and they are responsible for elbow flexion strongly activated during
string bending and strong picking.

We discarded the triceps muscle and the right brachioradialis, which fall behind the thresholds defined in 4.5.
The hand muscles show too little SNR due to cross-talk. The cross-talk of the hand muscle is more significant
than the other part of the body because of higher tissue density concentrated in a smaller area which induces
weaker signals due to the muscle’s reduced size. The final muscle selection is presented in figure 16.

5.2. Training Process

We split the training into two parts once for the classification and the other for the regression. In the first
part, we train the Gesture classification: the guitarist defines four sonic presets in the Max/Msp path, tagging
each one to the intention he wants to convey. Based on those we create three classes in the model named:
calm, happy, and frenetic; then we ask the musician to associate each class to the corresponding guitar gestures
(among the seven guitar techniques defined in section 4.5) that he wants to link to that specific intention. He
associates the calm class with fingerpicking and rest position. The happy class with strumming, down picking
and bending. The frenetic with tapping, pull off/hammer on, and alternate picking. The classifier model changes
the Max/Msp preset by sending an OSC message as soon as a specific gesture is classified. In the second part, we
train the regression model; it modulates a group of guitar effects based on the amount of muscular contraction.
The musician chooses to modulate the Mix potentiometer (i.e the parameter that controls the blending of the
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effects) of the chorus, reverb and delay, and the drive potentiometer of the overdrive and distortion pedals. The
regression model has one output for each parameter, changing them via OSC messages during the performance.
We train this model by collecting two acquisitions for each gesture with opposite contraction levels: a harder
and a relaxed one. Eventually, the musician associates each acquisition with the desired values to create the
target dataset.

5.3. Model Evaluation

Now we present the final architecture of the classifier model, specifying the number of units for each hidden
layer, the activation functions, and the input/output shape. The architecture of the regression model is identical
besides the output shape of (varying, 6) having 6 pedalboard’s parameters to control, and the output activation
function equal to ReLu.

Layer Output Shape Number of parameters Units
Input (varying, 256, 8) - -

BLSTM( kernel regularizer=l1(0.001)) (varying, 256, 32) 3200 32
Dropout(0.1) (varying, 256, 32) 0 0

Dense (activation= ’tanh’) (varying, 256, 64) 2112 64
Dense(activation= ’relu’) (varying, 256, 32) 2080 32

Flatten() (varying, 8192) 0 0
Dense(activation= ’softmax’) (varying, 3) 24579 3

Model Summary
Total Parameters 31,971
Trainable Parameters 31,971
Output Shape (varying, 3)

Table 2: Architecture of the classifier model with 3 classes. Units indicate the number of neurons for
each layer

5.3.1 Hyperparameter Tuning Results

In this section, we present the results of our hyperparameter tuning for the classification and regression of sEMG
signals, taking into consideration that we aim to define a lightweight model suitable for real-time application
and its embedding into wearable devices. We considered various hyperparameters and performed an extensive
manual search to find the optimal values. After evaluating several combinations, we selected the values of the
hyperparameters presented in Table 3 succeeding in defining two efficient models, one for regression and one for
classification, weighing 735 Kb and 450 Kb, respectively.

Hyperparameter Value

Input Time Steps 256
Regularization Strategy L1(factor= 0.001)
Dropout Rate 0.1
Optimization Algorithm Adam
Learning Rate 0.0001
Loss Function Categorical Cross Entropy
Batch Size 32
Early Stopping Monitor ’loss function’ with patience 10
Early Stopping Monitor ’validation loss’ with patience 10

Table 3: Model’s Hyperparameters Values

The values of the hyperparameters were chosen based on their performance in terms of accuracy and convergence
during the training process. We tried to strike a balance between model complexity and generalization capability,
achieving good performance with only 31,971 parameters (we started from an initial architecture with 2 million
parameters), resulting in a compact model suitable for real-time applications. Using these hyperparameters, we
trained the classifier BLSTM model on our sEMG dataset and evaluated its performance on a separate test set.
The results of the training evaluation are presented in Figures 17, 18, both for the classifier and the regression
model.
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5.3.2 Training evaluation

In this section, we present training evaluation plots for the two proposed models; during training, we monitored
the loss function and accuracy to ensure convergence (Fig. 18). Finally, we evaluate the model on the test set
by plotting the confusion matrix and regression residuals (Fig 17).

(a) classifier’s confusion matrix (b) regression residuals

Figure 17: (a) Confusion matrix of the classifier with three classes over the test dataset, with an overall
accuracy of 0.905. (b) Histogram of the regression’s residuals, the bins’ Gaussian distribution shows
the effectiveness of the model.

(a) classifier’s loss and accuracy

(b) regression’s loss and RMSE

Figure 18: (a) Evaluation plot of the classifier’s training, with a loss: 0.1801 - accuracy: 0.9245.(b)
Evaluation plot of the regression RNN, whit an MSE loss: 0.0316 and a RMSE: 0.1464 over the test
set.
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Figure 19: Max/Msp patch for sound parameters control

5.4. Sound Processing Unit

For the sound implementation of the augmented pedal board, We asked to the guitarist to provide us with the
VSTs he usually use during his performance. He chose five different effect:

• Overdrive: Overdrive TSC 1.1 develop by Mercuriall with three knobs to control: drive, tone, level.
• Distorsion: Distortion Greed smasher develop by Mercuriall with three knobs to control: drive, tone,

level.
• Chorus: Chorus WS-1 develop by Mercuriall with three knobs to control: depth, speed, mix.
• Reverb: Pro-R develop by Fab Filter with three knobs to control: space, pre-delay (ms), mix.
• Delay: Valhalla Super Massive Delay with three knobs to control: delay time (ms), mix, feedback.

we use Cycling ’74 Max/Msp 8, a visual programming language for music and multimedia. It controls the
five imported VST with the vst object. The data communication between Row Pawer and the Max/Msp
patch was implemented using the OSC network communication protocol [60]. We add three knobs for each
VST, allowing the modulation of the effect’s main parameters by the recursive model. These knobs are directly
controlled by OSC messages allowing the regressive network to communicate with the augmented pedalboard.
The Max/Msp patch receives the output of the two RNN models through two different OSC messages: one for
setting the sonic preset and one containing a list of float in a [0,1] range for the real-time parameters mapping.
The artist can save and recall the sonic preset using the preset object and can activate/deactivate each vst
with the tugle button .

5.5. Evaluation Experiment

For the final evaluation, we had an experienced guitarist try the system. We evaluated the system in a perfor-
mance scenario, after the training process (described in 5.2) to adapt the two RNNs according to the subject.
To collect the musician’s perspective, we design a questionnaire following the typical DMI evaluation method-
ologies ([8] [42]), focusing our attention on the ability of the system to understand the musical intentions.

1. Playability: How much control do you feel that you have over the tool while using it?
Grade: 7/10
Comment: The system well recognizes changes in the intensity of movements and modifies the sound
accordingly.

2. Learnability: How easy was learning to use it?
Grade: 9/10
Comment: Just as with all guitar instruments and effects it takes a moment to adjust, which in this
case is very brief

3. Expressiveness: How much does it help you to enhance your creativity and express your musical inten-
tion?
Grade: 10/10
Comment: The potentials are endless
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4. Enjoyability: How enjoyable was your experience while using it?
Grade: 10/10
Comment: There were times where the system did exactly what I wanted it to do.

5. Novelty: How much novelty does it introduce to your performance
Grade: 10/10
Comment: Changing sound without interaction with a pedalboard makes the performance more organic

6. Effectiveness: How much is it able to track your musical intention?
Grade: 8/10
Comment: Very good premise, but it will still improve with time

7. Sound quality: Rate the perceived sound quality obtained through the digital pedalboard setup.
Grade: 8/10
Comment: Excellent

8. How much does it change the way you interact with your pedalboard?
Grade: 10/10
Comment: Completely .

9. How much were we able to improve the system following your feedback after the first try?
Grade: 8/10 Comment: It would also be interesting to detect wrist movements with their changes in
intensity

10. Can you describe your experience of being involved in the development of a smart instrument (expecta-
tions, results, impressions...)?
Answer: A very useful experience to understand what the actual potential of these tools is, the results
are very compelling and I look forward to future developments.

11. How confident would you feel using it in a live performance?
Grade: 7/10
Comment: Very confident in case I play solo, in band contexts it would take more time to adapt.

12. What are the main limitations of the system in order to use it in a live scenario?
Answer: The wearable interface system might be a limiting factor for some in certain situations, but
considering the particularity of the instrument, it is something that you budget for in order to have this
kind of experience.

13. What should we carry on doing, and what could we do better, in order to work with artists like you to
develop cutting edge performance technologies that you would use on concerts?
Answer: Continue on this path by listening to feedback from testers in a passionate manner.

6. Conclusions

The objective of this paper is to propose an innovative interaction method based on the conjunction of elec-
tromyographic signals and deep learning analysis, integrated into a DMI for guitarists; in particular to develop
a tool that musicians may use to sonify their gestures during the performance, giving to the musician an inno-
vative medium to explore the instrument.
One of the main difficulties in analyzing the sEMG signal comes from its noisy characteristics. Compared to
other biosignals, sEMG provides a lower Signal to Noise Ratio (SNR) caused by inherent equipment noise, elec-
tromagnetic radiation, motion artifacts, and the interaction of different neighboring muscle, called cross-talk.
Hence, a preprocessing stage is needed to filter out the unwanted noises. This difficulty becomes more critical
when resolving a multiclass classification problem. To increase the classification performance, therefore, we
adopted multi-channel EMG sensors to detect relevant sEMG patterns by a combined signal analysis, together
with a strict muscle selection based on the specific gesture vocabulary. In this case, however, users suffer from
the inconvenience of carrying many cabled electrodes. To solve this issue, our partner the LWT3 laboratory is
prototyping a sensor suit that is able to embed the cables in elastic tissue, but we were not able to test it in
this research.
With the proposed data acquisition protocol we were able to select the best muscle groups for guitarist gestures
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classification, the results were used for the implementation of the proposed tool, which is able to modulate a set
of effects accordingly to the user’s muscle activation signals, consequently changing the sound of the guitar dur-
ing a performance stimulating creativity and exploration based on the feedback collected with the questionnaire
proposed in 5.5 after the final experiment. We have described in depth how to integrate the sEMG signal into
the development of a DMI for guitarists, but applicable to many other instruments, by using a custom Gestural
Interface able to handle full body mapping. The two proposed Deep learning models gather information related
to the gestures and the amount of exerted contraction, communicating with the Max/Msp patch, where the
digital pedal board was implemented, to change the sound in real time. In the end, We present an evaluation
strategy based on a questionnaire to collect feedback from tester musicians, with the goal of paving the way for
other researchers interested in integrating muscle signals into artistic performances.
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A. Appendix A

If you need to include an appendix to support the research in your thesis, you can place it at the end of the
manuscript. An appendix contains supplementary material (figures, tables, data, codes, mathematical proofs,
surveys, . . . ) which supplement the main results contained in the previous sections.

A.1. Model Customization

Gesture unfolds over time, and gestures that may look similar in terms of displacement in space may differ
radically in expressivity depending on their temporal evolution; by incorporating user examples in the training
step, the model can be customized to the artist’s gesture vocabulary[58]. During the development of the training
process of our model, We define a protocol to assemble the training dataset, with the goal of customizing
the model according to the artist’s taste. Our protocol also investigates how many sEMG different gesture
acquisitions are needed to obtain a smooth interaction between the guitars effects and the musician’s muscle’s
signal. In the first stage of this research, we investigated the best approach using two models in parallel:
Dynamic Time Warping (DTW) for gesture classification, and Artificial Neural Networks(ANN) for the real-
time tuning of the sonic preset through regression. These two model were provided by WEKA framework, an
open-source collection of algorithms for data analysis and ML predictive modeling [11]. We used Dynamic Time
Warping to deal with the gesture temporal modeling [48]; it is a technique that allows the temporal alignment
of incoming time series (e.g. motion features changing over time) to previously saved gesture templates. The
DTM model was responsible for selecting the sonic preset of the pedalboard. it captured continuously the
gesture match while running. For continuous regression we tested three algorithms : (i) linear regression (LR),
(ii) polynomial regression (PR), and (iii) neural network (Multilayer perceptron ANN). We evaluated the ANN
approach as the best way to implement regression; it was effectively able to continuously alter selected effects
parameters during the performance based on muscle contractions. Merging the time-dependent DTW model
with the regression one we obtained a time-evolving system, weighted by the artist’s decision. In our application,
the DTW network selects the sonic preset of the pedalboard created by the artist during the training stage.
The gesture match was computed continuously while running. We downsample the input so examples have max
length of 13 s. Continuous matches use a minimum length of 6 s, match width of 10 s and match hop size of 2
s. For continuous regression, we used a Multilayer perceptron ANN with 3 hidden layers, to continuously alter
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selected effect parameters during the performance based on muscle contractions. Merging the time-dependent
DTW network with a regression model we obtain a time-evolving system, weighted by artistic decision. The user
can tune continuously the sound effects parameters directly inside the model that was connected through an OSC
network to the digital sound processor(i.e. Max/Msp 8 patch). Users may rely on tight action-feedback loops in
which they modify model behavior through changes to the training data, followed by real-time experimentation
with models to evaluate them and inform further modifications. This two model are free to access in the Git
Hub page of this research 3.
This initial exploration process was critical to the development of a custom model and the creation of an ad hoc
training dataset, clarifying all the issues that need to be considered during the development of a digital musical
instrument that needs to function in real time.

A.2. Appendix B

It may be necessary to include another appendix to better organize the presentation of supplementary material.
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Abstract in lingua italiana

Il seguente lavoro presenta lo sviluppo di un medotodo d’interazione innovativo che sfrutta la correlazione tra
lo stato emotivo dell’artista e la sua attività muscolare, tramite l’utilizzo di sensori indossabili basati sullelet-
tromiografia di superficie (sEMG). E’ stato progettato un protocollo per tracciare dinamicamente le intenzioni
musicali di un chuitarrista, adattando il suono della chitarra in tempo reale per trasmettere efficacemente le
intenzioni sonore del musicista. A tal fine, viene sviluppata una rete neurale ricorrente (RNN) basata un una
rete bidirezionale (BLSTM) per interpretare il segnale muscolare. Per addestrare il modello di classificazione
dei gesti, il musicista fornisce esempi gestuali, assocaindone ogni uno ad un corrispondente preset sonoro della
pedaliera. E stato creato un dataset di acquisizioni sEMG relative a varie tecniche chitarristiche, che sarà
pubblicato a supporto di future applicazioni. La selezione della migliore combinazione tra caratteristiche del
segnale ( i.e features) con diversi gruppi muscolari, ha permesso di ottimizzare il tasso di apprendimento del
modello di riconoscimento dei gesti. L’elaborazione del segnale digitale viene effettuata con Max/Msp. Infine,
viene presentata una strategia di valutazione basata su un questionario per la raccolta di feedback. L’obiettivo
finale di questo lavoro è quello di aiutare altri ricercatori nell’introduzione dei segnali muscolari come mezzo di
interazione durante performance artistiche.

Parole chiave: Interazione uomo macchina, elettromiografia di superficie, classificazione dei gesti, stru-
menti musicali digitali, LSTM bidirezionale
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