
Planning and trajectory generation
methods for aggressive maneuver-
ing of UAVs in the presence of ob-
stacles

Tesi di Laurea Magistrale in
Aeronautical Engineering - Ingegneria Aeronautica

Author: Marta Manzoni

Student ID: 996282
Advisor: Prof. Davide Invernizzi
Co-advisors: Eng. Roberto Rubinacci
Academic Year: 2023-24

i

Abstract

Unmanned Aerial Vehicles (UAVs) represent a leap in engineering innovation, embodying
autonomous flight capabilities without the need for human pilots on board. The achieve-
ment of full autonomy in UAVs is significantly dependent on effective motion planning.
Specifically, it is essential to plan collision-free trajectories that allow the vehicle to tran-
sition from an initial to a final configuration. However, finding a solution executable by
the actual system requires an additional level of complexity: the planned motion must be
dynamically feasible. This involves meeting rigorous criteria that include vehicle dynam-
ics, input constraints, and state constraints. In this thesis, the optimal motion planning
problem for fast and aggressive maneuvering of UAVs in known cluttered environments is
addressed by implementing two methodologies. First, a search-based approach is intro-
duced, specifically designed for quadrotors, which uses motion primitives generated by dis-
cretization of the control input. Subsequently, a second method is proposed that addresses
the motion planning problem for arbitrary system dynamics. This approach introduces
a library of motion primitives created by discretization of the state space. This method
reduces the computational load during online planning by shifting the computationally
intensive part of computing the motion primitive to the offline phase. Both methods yield
resolution-complete, resolution-optimal, collision-free, and dynamically feasible trajecto-
ries. Their versatility extends to dynamic and unknown environments, demonstrating a
crucial capability for rapid re-planning. In particular, these methods are designed for
real-time execution and are applicable to real-world autonomous navigation. The thesis
meticulously analyzes the strengths and weaknesses of the proposed methods. More-
over, their performance is demonstrated through numerical examples, simulations, and
real-world experiments.

Keywords: motion planning, autonomous vehicles, motion primitives.

Abstract in lingua italiana

Gli Aeromobili a Pilotaggio Remoto (APR) rappresentano un significativo avanzamento
nell’innovazione ingegneristica, esibendo capacità di volo autonomo senza la necessità di
piloti umani a bordo. Il raggiungimento della piena autonomia nei APR dipende signi-
ficativamente da una pianificazione del movimento efficace. In particolare, è essenziale
pianificare traiettorie prive di collisioni che consentano al veicolo di passare da una con-
figurazione iniziale a una finale. Tuttavia, trovare una soluzione eseguibile dal sistema
effettivo richiede un ulteriore livello di complessità: il movimento pianificato deve essere
dinamicamente fattibile. Ciò implica il soddisfacimento di rigorosi criteri che includono
dinamica del veicolo, vincoli di input e vincoli di stato. In questa tesi, il problema di pi-
anificazione del movimento ottimale per manovre veloci e aggressive dei APR in ambienti
conosciuti e ricchi di ostacoli è affrontato mediante l’implementazione di due metodologie.
In primo luogo, viene introdotto un approccio basato sulla ricerca, progettato specifica-
mente per quadrotori, che utilizza primitive di movimento generate mediante discretiz-
zazione dell’input di controllo. Successivamente, viene proposto un secondo metodo che si
occupa del problema di pianificazione del movimento per sistemi con dinamicha arbitraria.
Questo approccio introduce una libreria di primitive di movimento creata mediante dis-
cretizzazione dello spazio di stato. Questo metodo riduce il carico computazionale durante
la pianificazione online spostando la parte computazionalmente intensiva della generazione
della primitiva di movimento alla fase offline. Entrambi i metodi producono traiettorie
complete in risoluzione, ottimali in risoluzione, prive di collisioni e dinamicamente fattibili.
La loro versatilità si estende a ambienti sconosciuti e con ostacoli dinamici, dimostrando
una capacità per la rapida ri-pianificazione. In particolare, questi metodi sono progettati
per l’esecuzione in tempo reale e sono applicabili alla navigazione autonoma del mondo
reale. La tesi analizza meticolosamente i punti di forza e le debolezze dei metodi proposti.
Inoltre, ne vengono dimostrate le prestazioni attraverso esempi numerici, simulazioni ed
esperimenti reali.

Parole chiave: pianificazione del movimento, veicoli autonomi, primitive di movimento.

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

Introduction 1

1 Preliminary 7
1.1 Path planning . 7
1.2 Graph search algorithms . 9

1.2.1 A* algorithm . 9
1.3 System dynamics . 16

1.3.1 Quadrotor dynamics . 17

2 Kinodynamic motion planning 21
2.1 Problem formulation . 22

2.1.1 Quadrotor problem formulation . 24
2.2 Kinodynamic planning with motion primitives 25
2.3 Search-based kinodynamic planning . 26

2.3.1 Global planner and local planner 27
2.3.2 Heuristic function design . 28
2.3.3 Collision checking . 29

3 Search-based kinodynamic planning with online motion primitives gen-
eration 31
3.1 Motion primitives generation . 32
3.2 Graph construction . 35
3.3 Kinodynamic motion planning . 36

3.3.1 A* algorithm . 38

vi | Contents

3.4 Numerical examples . 40
3.4.1 Acceleration-controlled system . 40
3.4.2 Jerk-controlled system . 43

3.5 Conclusion . 47

4 Search-based kinodynamic planning with motion primitives library 49
4.1 Motion primitives generation . 50

4.1.1 Invariance properties . 51
4.1.2 Motion primitives library . 52
4.1.3 Example . 53

4.2 Search space design . 57
4.3 Kinodynamic motion planning . 58

4.3.1 A* algorithm . 58
4.4 Numerical examples . 61

4.4.1 Acceleration-controlled system . 61
4.4.2 Jerk-controlled system . 66

4.5 Conclusion . 71

5 Experimental results 73
5.1 Problem setup . 73

5.1.1 Simulations setup . 75
5.1.2 Real-world experiments setup . 76

5.2 Experimental test 1 . 76
5.2.1 Simulation 1 results . 76
5.2.2 Real-world experiment 1 results . 81

5.3 Experimental test 2 . 84
5.3.1 Simulation 2 results . 84
5.3.2 Experimental test 2 results . 88

6 Conclusions and prospective works 91
6.1 Conclusions . 91
6.2 Methods comparison . 92
6.3 Impact and applications . 93
6.4 Prospective works . 93

Bibliography 95

List of Figures 97

List of Tables 101

1

Introduction

Unmanned Aerial Vehicles (UAVs) showcase innovative engineering, enabling autonomous
flight without the need for a human pilot on board. These autonomous platforms en-
compass a complex integration of aerospace, electronics, control systems, and software
engineering. The versatility of UAVs is evident in their autonomous navigation and task
execution, expanding their applications across a broad spectrum from civilian to military
domains. These include surveillance, reconnaissance, package delivery, and exploration
[3]. However, as their roles become more dynamic and demanding, the need for UAVs to
navigate complex environments with agility and precision becomes increasingly essential.
Consequently, the challenge of planning a path within an obstacle-cluttered environment
has attracted significant attention within the communities of artificial intelligence and
robotics in the last years. Most efforts in this domain have focused on addressing kine-
matic motion problems. However, kinematic motion planning, while effective in producing
collision-free paths, may not guarantee their feasibility when executed by the actual sys-
tems. This holds particularly true for scenarios involving agile autonomous vehicles, where
supplementary limitations on the vehicle’s movement that arise from its dynamics or non-
holonomic constraints must be considered. This is the central focus of a contemporary
direction in motion planning research commonly known as kinodynamic motion planning.
Kinodynamic planning combines finding a path that avoids collisions with considering the
system’s dynamics, ensuring that the resulting trajectory is both safe and executable by
the vehicle.

This thesis tackles the challenge of optimal motion planning by taking into account system
dynamics, state constraints, input constraints, and collision avoidance. It presents two
distinct approaches: the first one employs a forward propagation method specifically
designed for quadrotor dynamics, while the second addresses the kinodynamic motion
planning problem for arbitrary system dynamics.

2 | Introduction

State of the art

Motion planning involves navigating from an initial position to a desired state while ad-
hering to specified constraints. Active research in this domain has produced a multitude
of trajectory-generation algorithms. Frazzoli et al. [4], [5] provided some of the pioneer-
ing work on real-time kinodynamic motion planning. The proposed technique involves
mapping the vehicle’s dynamics onto a finite-dimensional space, restricting the vehicle’s
potential states to two categories: either a trim state or a maneuver state. A first group
of algorithms follows a two-step approach, separating geometric and temporal planning.
Initially, a geometric trajectory is generated by linking a series of waypoints by straight-
flight trim conditions. In this phase, time information is not taken into account. The path
is then smoothed and parameterized in time by selecting the optimal sequence of trims
and maneuvers from within a precomputed library of motion primitives. This results in a
smoother trajectory while ensuring compliance with the vehicle dynamics [1]. Moreover,
the real-time computation is facilitated by using closed-form expressions. All nonlineari-
ties due to the vehicle model are confined within the stored library of motion primitives.
A second group of algorithms leverage the differential flatness inherent in the dynamics
of the quadrotor to derive constraints on the trajectory [12], [13], [8], [9]. Subsequently,
an optimization problem is solved over a trajectory class, such as minimum snap [11].
These trajectories are expressed through time-parameterized polynomials, transforming
the trajectory generation problem into the task of determining polynomial coefficients
that meet specific constraints. However, this method is only applicable to systems with
straightforward dynamics, such as quadrotors. Improvements are achieved by a third
group of algorithms that address the motion planning for arbitrary system dynamics by
introducing a database of precomputed motion primitives [15]. Here, the more computa-
tionally demanding aspect of motion planning is shifted to the offline phase of database
construction.

Motion primitives, generate a discretization of the state space which allows a graph repre-
sentation G(V,E), where V is the set of reachable system states and E is the set of edges
that connect states in the graph, each associated with a cost function. A key feature of
motion primitives is the inherent translational, which play a key role in the process of con-
structing complete flight paths by arranging sequences of alternating trim trajectories and
maneuvers. Given the graph, the problem consists of determining the optimal collision-
free sequence of motion primitives that achieve the goal while minimizing a cost function.
This problem can be solved using search-based [8], [9] or sampling-based [4], [5], [14], [15]
algorithms, which differ mainly in the optimality of the solution and computational time.

| Introduction 3

Sampling-based methods avoid the explicit construction of the configuration space by
randomly or systematically sampling the space to build a roadmap or a graph representa-
tion of the environment. Therefore, these algorithms are fast and particularly useful for
complex and high-dimensional spaces. Furthermore, they have been demonstrated to be
asymptotically optimal, meaning that as the cardinality of the tree grows toward infinity,
the probability of discovering an optimal solution, if it exists, approaches one. They are
not complete, but exhibit the property of probabilistic completeness. This means that as
the number of samples approaches infinity, sampling-based methods return a solution with
a probability converging to one if such a solution exists. Moreover, the utilization of a
dynamic tree, whose size depends only on the number of samples and not on the number
of motion primitives, contributes to the inherent speed of these algorithms. The most
widely used types of sampling-based methods include Rapidly Exploring Random Trees
(RRT) [14], [15], Probabilistic Roadmaps (PRM) and their variations. RRT presents
strong theoretical properties, including probabilistic completeness, but its randomized
approach could represent an obstacle when fast online replanning is required. In particu-
lar, paths generated by a sampling-based method during consecutive replanning periods
may exhibit significant variations, making them less suitable for applications where path
consistency is crucial [9].

Search-based methods, on the other hand, employ traditional search algorithms to navi-
gate a predefined representation of the configuration space. The A* algorithm is a well-
known example of a search-based method [8], [9]. These methods fall into the category
of exact methods and are complete. This means that they will return a solution within
a finite time if one exists, or they will correctly indicate its nonexistence. The primary
distinction between search-based and sampling-based methods lies in their approach to
motion planning. Search-based methods aim to find optimal solutions, prioritizing op-
timality, while sampling-based methods focus on finding feasible solutions, emphasizing
practicality and efficiency. Nevertheless, obtaining the optimal solution in a reasonable
time becomes extremely challenging in high-dimensional spaces. In cases where comput-
ing the optimal solution becomes computationally intractable, the randomized approach
is more suitable. However, if computational time allows, the deterministic approach is
always preferable, as it guarantees optimal solutions. Additionally, search-based methods
can become more efficient in high-dimensional spaces when a heuristic function is taken
into account [8]. However, the use of weighted heuristics often results in suboptimal
solutions and does not necessarily lead to a reduction in planning time [9].

All the proposed planning methods model the UAV as a sphere. This choice facilitates
the creation of a simple configuration space (C-space) by inflating the obstacles with the

4 | Introduction

dimensions of the robot. Consequently, the robot can be treated as a single point in
C-space, simplifying collision checks. However, the spherical model assumption is very
conservative, as it disregards numerous trajectories whose feasibility depends on the robot
orientation. An alternative that considers an ellipsoid model is proposed by Liu et al. [9].
This model allows the quadrotor to pass through gaps that are smaller than its diameter
with nonzero pitch or roll angles.

In the presence of aerodynamic effects, such as strong winds, most existing methods for
planning quadrotor trajectories will not attempt to deviate from a determined plan, even if
it is risky, under the assumption that a robust controller can counteract any aerodynamic
perturbations. Wang et al. [17] introduce an innovative trajectory planning strategy
designed to generate a safe and efficient path in unknown environments with aerodynamic
disturbances. They utilized a real-time Gaussian process to model the errors induced by
these aerodynamic effects.

In this thesis, the focus revolves around the design of a planner that can generate dynam-
ically feasible, collision-free, globally optimal, and complete trajectories in real-time. The
complexity of this task lies in considering system dynamics, input constraints, and collision
avoidance. Two distinct approaches are explored: the first utilizes a forward propagation
method meticulously designed for quadrotor dynamics, while the second addresses the
kinodynamic motion planning problem for arbitrary system dynamics.

Contributions

The primary contribution of this thesis is the development of a trajectory planner and
generator for fast and aggressive maneuvering of UAVs while satisfying vehicle dynam-
ics, state constraints, input constraints, and avoiding obstacles. The proposed advanced
planner and trajectory generator will offer a solution for UAVs to navigate efficiently in
complex and challenging scenarios without collisions, especially when the vehicle is re-
quired to use its full maneuvering capabilities, and to react in real time to changes in the
operational environment. This will lead to improvements in both efficiency and safety
compared to existing approaches.

Specifically, this thesis delves into an in-depth analysis of the planning problem, present-
ing two key solutions as its main contributions. The first solution, drawing inspiration
from the work presented in [8], introduces a search-based planner specifically tailored
for quadrotors. This planner utilizes the forward-propagation approach to compute mo-
tion primitives. Subsequently, the effectiveness of this approach is demonstrated through
numerical examples. The second solution, inspired by [15], goes beyond the quadrotor

| Introduction 5

domain, providing a versatile search-based planner. This algorithm integrates a database
of offline precomputed solutions into the search-based planning framework, effectively
alleviating the computational load associated with solving Two-Point Boundary Value
Problems (TPBVPs). This method is validated through rigorous testing that involves
both numerical examples and experimental tests.

Structure of the thesis

The thesis unfolds across several chapters, each addressing distinct aspects of the kino-
dynamic motion planning problem and proposing innovative solutions:

• Chapter 1 introduces the path planning problem accompanied by a presentation of
the general framework that utilizes graph search algorithms to address this challenge.
In addition, the chapter delves into an exploration of the dynamics of the system.

• Chapter 2 focuses on the formalization of the kinodynamic motion planning problem.
Furthermore, an innovative technique employing motion primitives is introduced to
mitigate the computational complexity inherent to this problem.

• Chapter 3 delves into the proposal of a search-based planner that uses motion prim-
itives computed through a forward propagation method to solve the deterministic
shortest trajectory problem specifically tailored for quadrotors. Moreover, numerical
examples are proposed to demonstrate the effectiveness of the proposed approach.
This chapter is largely inspired by the work presented in [8].

• Chapter 4 introduces a novel search-based algorithm that integrates a database of
offline precomputed solutions. This method is designed to be applicable to a wider
range of systems beyond quadrotors. To underscore the efficacy of this approach, the
chapter provides two numerical examples. This chapter draws significant inspiration
from the work proposed in [15].

• Chapter 5 presents two experiments designed to demonstrate the effectiveness of the
approach introduced in Chapter 4. The focus is on navigating real-world cluttered
environments, providing practical validation for the proposed solution.

• Chapter 6 presents conclusions and exposes potential avenues for future research,
as well as exploring the potential applications of these approaches.

7

1| Preliminary

In this chapter, graph search techniques for path planning are presented alongside the
system dynamics. Specifically, Section 1.1 delineates the path planning problem and for-
mulates it as an optimization problem. Section 1.2 introduces graph search algorithms for
path planning, with a detailed exploration of the A* search algorithm framework and its
characteristics. In Section 1.3, the dynamics of a generic nonlinear system are introduced
and tailored for quadrotors, accompanied by an introduction to their differential flatness
property.

1.1. Path planning

Path planning, is a fundamental problem in robotics. Its primary objective is to determine
a sequence of valid configurations that enables a robot to move from an initial position
to a designated destination while avoiding obstacles. This is a critical aspect of robotics,
as it ensures that vehicles can navigate and operate safely and effectively in various
environments.

The primary purpose in a standard path-planning problem is to identify a route with min-
imal cost between two nodes (or vertices). This path begins at the starting configuration,
denoted as qS, and ends at the goal configuration, denoted as qG. Therefore, path plan-
ning represents an optimization problem featuring a cost function and some constraints,
denoted as J(·) and ϕ(·), respectively. This problem can be formulated as proposed in
[7]:

min
P
J(P)

s.t. ϕ(P).
(1.1)

In the previous formulation, P is a path in Rm characterized by a starting point qS, a
target point qG, and a sequence of n connected waypoints that the vehicle follows to reach
its destination P := ⟨qS = q0 → q1 → . . . → qN → qN+1 = qG⟩. A path is composed
of successive segments, with each segment generated by two consecutive waypoints along
the path.

8 1| Preliminary

Typically, constraints ϕ(P) include conditions that the path must satisfy, such as con-
straints on initial and final configurations, as well as clearance from obstacles. Such
constraints can be expressed as:

qS, qG ∈ P,

P ∈ Cfree,

where Cfree is the collision-free subspace of a given configuration space C ∈ Rn. The
configuration space, also known as C-space, is the set of all possible configurations of the
vehicle.

In the context of path planning, a "node" typically refers to a specific point or location
within the environment. Nodes are elements of the set V , which represents the set of
vertices in a graph. Each node corresponds to a position that a robot might occupy
within the configuration space. An "edge" in this context is a connection or link between
two nodes. Edges are elements of the set E , representing the set of edges connecting
the vertices in the graph. These edges signify possible transitions or movements between
different positions in the environment.

A common scenario within path planning involves addressing the deterministic shortest-
path problem. This specific problem aims to identify the shortest path, characterized by
minimizing the total distance between two points. In the given scenario, if the environ-
ment in which the vehicle operates is discretized into a graph, denoted as G(V , E), the
deterministic shortest-path problem can be formulated as a graph search problem. The
objective is to find a path that connects the starting point qS to the goal point qG within
the configuration space. The problem is captured within the formulation presented in [7]:

min
P

N−1∑
i=0

∥qi+1 − qi∥p

s.t. q0 = qS, qN = qG,

qi ∈ V , i = 0,...,N,

e(qi, qi+1) ∈ E , i = 0,...,N-1.

(1.2)

The first constraint imposes that the path begins at the starting configuration qS and
terminates at the goal configuration qG. The second constraint ensures that all waypoints
along the path belong to the set of vertices V and the final constraint guarantees that
each waypoint along the path is connected to its adjacent neighbor. The function e(·, ·)
represents the directional edge from one configuration to the other. To find a collision-free
path, only the graph in the collision-free space is considered such that G(V , E) ∈ Cfree.

Several algorithms can be leveraged to address this problem, including graph search al-

1| Preliminary 9

gorithms and sampling-based algorithms. The following section examines fundamental
search-based algorithms for path planning, specifically the Dijkstra and A* algorithms.

1.2. Graph search algorithms

Graph search algorithms and sampling-based algorithms are two fundamental approaches
employed in path planning to navigate environments. Graph search algorithms, such as
Dijkstra’s or A*, operate by systematically exploring nodes in a graph representation of
the environment to find the optimal path. Their advantage lies in the ability to guarantee
optimality, ensuring that the generated path is the most efficient. However, their main dis-
advantage is the computational demand, particularly in large and complex environments,
which can limit real-time applications.

On the other hand, sampling-based algorithms, like the Rapid Exploring Random Trees
(RRT) algorithm, focus on randomly sampling the configuration space and building a tree
structure to connect sampled points. These algorithms excel at handling high-dimensional
spaces and complex environments. They are computationally efficient, but their drawback
is the lack of optimality guarantees.

In the context of this thesis, which attempts to address the complexities of the kinedy-
namic motion planning problem, it has been decided to use graph search algorithms. A
detailed explanation of this choice will be provided in the subsequent chapter, in which
the kinodynamic motion planning problem will be introduced. Therefore, the following
section will delve into a comprehensive exploration of the A* algorithm, shedding light
on its main components.

1.2.1. A* algorithm

Dijkstra’s [7] algorithm serves as a fundamental graph search approach to determine the
shortest paths from a starting node to all other nodes in a graph, thereby generating a
shortest-path tree. In this context, this thesis leverages the A* algorithm, an improved
variant of Dijkstra’s algorithm, to address Problem 1.2. Unlike Dijkstra’s algorithm, the
A* algorithm only identifies the shortest path from an initial node to a defined goal node.
This trade-off is essential when employing a specific goal-directed heuristic to guide the
search, which allows for better performance and speeds up the search. In the case of
Dijkstra’s algorithm, the complete shortest-path tree is constructed, treating each node
as a potential goal. However, this approach precludes the use of goal-specific heuristics.
Incorporating a goal-oriented heuristic into the A* algorithm involves the inclusion of a

10 1| Preliminary

(a) Dijkstra algorithm.

(b) A* algorithm.

Figure 1.1: Motion planning problem solved using the Dijkstra algorithm (a) and the A*
algorithm (b). The blue dot on the right represents the starting position, whereas the
one on the left indicates the final position. The red curve is the optimal trajectory. The
green dots are the expanded nodes.

heuristic function that estimates the cost of reaching the goal from a given node, commonly
referred to as the cost-to-goal value. The integration of this heuristic function is crucial
as it can reduce the number of vertices to be expanded during the search phase compared
to the uninformed exploration conducted by Dijkstra’s algorithm.

Figure 1.1 illustrates a comparison between solving a motion planning problem using the
Dijkstra algorithm and employing the A* algorithm. Remarkably, the use of a heuristic
function is shown to decrease the number of expanded nodes (green dots). Additionally, it
is noteworthy that despite this reduction in computational load, the resulting trajectory
remains identical. This is attributed to the admissibility and consistency of the heuristic
function, ensuring that the A* algorithm identifies the optimal trajectory.

It is noteworthy to highlight the incremental planning characteristic shared by these
algorithms. In this approach, the complete graph is not established from the beginning;

1| Preliminary 11

instead, it is dynamically constructed on the fly during the search process. This dynamic
construction allows the algorithms to adapt flexibly to the specifics of the motion planning
task at hand.

Properties

A* algorithm possesses the following properties:

• Completeness: A* algorithm is complete, meaning it will always find a feasible
solution if one exists. In the cases where no solution is present, it will return FAIL
within a finite time.

• Optimality: A* algorithm is optimal when using an admissible heuristic, guaran-
teeing that it finds the path with minimum cost among all possible paths from the
start to the goal.

• Efficiency: A* is efficient when an effective heuristic is used, as it can significantly
reduce the number of nodes explored during the search.

Heuristic function

In order to enable these improvements, the heuristic function must exhibit the following
two properties:

• Admissible: the heuristic should not overestimate the actual cost to reach the goal.

h(vi) ≤ h∗(vi).

If the heuristic function is admissible, the A* algorithm guarantees finding the least-
cost path from the starting point to the goal, thus ensuring an optimal solution.
Typically, when a heuristic closely approximates the true cost-to-goal value, the
algorithm operates faster, as it tends to explore fewer vertices.

• Consistent: for every node in the graph vi and for each successor vj of vi, the
estimated cost-to-goal from vi must always be less than or equal to the estimated
cost-to-goal from vj plus the step cost to reach vj. In addition, the heuristic value
for the goal node is always zero.

h(vi) ≤ h(vj) + c(vi, vj),

h(vg) = 0.

12 1| Preliminary

A consistent heuristic is also admissible, however, the converse is not always true [7].
Dijkstra’s algorithm can be viewed as a special case of A* where h(vi) = 0 for all nodes.

Configuration space

Graph search algorithms play a fundamental role in navigating complex spaces, and their
utility extends notably to the domain of configuration spaces. The configuration space,
denoted as C, is the set of all possible configurations of the vehicle, with its topological
characteristics and dimension varying according to the particular system in focus. As an
example, the configuration space of a rigid free-flying body corresponds to the Special
Euclidean group of dimension three, denoted as SE(3). In general, the configuration
space dimension is defined by the minimum number of DoFs needed to completely specify
a vehicle configuration. The free configuration space Cfree represents the set of collision-
free configurations, that is, Cfree := C/Cobs where Cobs is a subset of C comprising the
configurations that lead to collisions.

The state of the dynamic system, denoted x, includes the configuration q, first-order
derivatives, and potentially higher-order derivatives, depending on the specific problem.
Thus, x = [x, y, z, ẋ, ẏ, ż, . . .] ∈ S and q = [x, y, z] ∈ C. The free state space, represented
as Sfree, constitutes a subset of the state space S. It delineates the free region of the
state space, encapsulating not only obstacle-free configurations Cfree, but also constraints
related to the dynamics of the system Dfree. These constraints include maximum velocity
v̄max, acceleration āmax, and potentially higher-order derivatives. Thus,

Sfree = Cfree ×Dfree
where Dfree = [−v̄max, v̄max]3 × [−āmax, āmax]3 ×

The workspace, denoted as W , is a subset of the 2D or 3D Euclidean space where the ve-
hicle operates. The process of checking for collisions between the vehicle and the obstacles
within the workspace can be complex and non-intuitive. To address this complexity, path
planning is performed in the configuration space, subsequently enabling the determination
of the optimal collision-free path within the workspace.

Graph representation

The configuration space C can be represented by a graph G(V , E), where V denotes the
set of vertices representing different configurations, and E is the set of edges connecting
these configurations. In this graph representation, each vertex corresponds to a unique
configuration, while the edges delineate feasible transitions between these configurations,

1| Preliminary 13

often influenced by permissible movements or transformations of the system. This graph
model serves as a valuable framework for employing graph search algorithms to navigate
and explore the configuration space efficiently, aiding in the determination of optimal
paths or sequences of configurations that adhere to specific criteria or constraints imposed
by the system.

An occupancy grid is a special type of graph that is used to represent the robot workspace
as a discrete grid. It divides the physical space into a grid of cells, where each cell repre-
sents a small portion of area. These cells store information about the occupancy status,
typically indicating whether a particular portion of space is occupied by an obstacle, free
for traversal, or unknown. This information about the environment can be collected from
sensors in real time or loaded from prior knowledge. Within an occupancy grid map, each
cell can be assigned a value that signifies the likelihood of occupancy. For instance, cells
might be labeled as occupied if they contain obstacles, free if they are accessible, or un-
known if there is insufficient information available about that region. Typically, values of
0 denote free space, 100 mark obstacles, and -1 signify unknown regions. This grid-based
representation acts as a pivotal framework, especially in the domain of robotic navigation
and path planning. Each grid cell directly translates into a graph vertex, while the in-
terconnections between cells are dictated by the grid layout, linking adjacent cells in an
organized manner. Consequently, this graph structure facilitates efficient path planning,
enabling robots to maneuver through their environment effectively. In this thesis, the
environment will be represented using the described occupancy grid map.

Once the graph is created, the A* algorithm can be applied to find the optimal path, and
the planned path in the configuration space will also be safe in the original workspace.
Thus, planning in the C-space is equivalent to planning in the original workspace.

Nodes attributes

The following notation is used in the A* pseudocode 1.1 presented in the next section. For
each node in the graph, denoted v ∈ V , the attributes reported in Table 1.1 are defined.

Priority queue and closed list

Both a priority queue Q, also known as an open list, and a closed list Z are used in the
A* algorithm. The priority queue collects the neighboring nodes of the expanded nodes,
serving as candidates for the next expansion. The closed list stores the already expanded
nodes that will not be considered again. The functions listed in Table 1.2 and Table 1.3
are used to manage the closed list and the priority queue, respectively.

14 1| Preliminary

Table 1.1: Notation employed for each vertex v in the graph

g(v) start-to-state value of element v

h(v) state-to-goal value of element v

f(v) priority value of element v

Succ(v) one-step successors of element v

Pred(v) one-step predecessors of element v

Table 1.2: Function employed to manage the closed list.

Add(v) add the element v to the closed list Z

A* pseudo-code

The pseudo-code for the A* algorithm is presented in Algorithm 1.1 and Algorithm 1.2. In
the AStar function, lines 2 to 7 encompass the algorithm initialization phase. Specifically,
lines 2 and 3 establish the priority queue Q and the closed list Z as empty sets, while
lines 4 to 7 initialize the g and h values for all nodes to infinity. Subsequently, the starting
vertex vs is assigned with an initial g-value of zero. Its heuristic cost is then computed
and the node is placed into the initially empty priority queue. The main steps of the
algorithm are written in the while loop from lines 12 to 36. The main loop continues until
the priority queue is empty or the goal is reached. During each iteration, a node v with
the highest priority value (f(v) = g(v) + ϵh(v)) is dequeued. If the dequeued node is the
goal, the algorithm terminates, and the optimal path is found. Otherwise, the algorithm
expands the node v by generating its successors s and updating their g(s) and h(s) values.
These successors are then enqueued based on their priority value f(s). Upon reaching the
goal node vg, the optimal path calculated by the AStar function is reconstructed by the
RecoverPath procedure by backtracking from the goal to the start using the predecessors
list and the recorded g values.

Furthermore, ϵ represents the weight of the heuristic function and can be adjusted ac-
cording to the specific purpose. For example, the Dijkstra algorithm can be considered as
a special case of the A* algorithm with ϵ set to 0. In certain scenarios, setting ϵ to a value
greater than 1 can speed up the computation, even though it may render the heuristic
value inadmissible, possibly leading to a non-optimal solution.

1| Preliminary 15

Algorithm 1.1 A* algorithm. Given the start node vs and the goal node vg, the A*
algorithm computes the optimal path for Problem 1.2.
1: function AStar(us, gs, ϵ)
2: Q ← ∅
3: Z ← ∅
4: for all v ∈ V do
5: g(v) ← ∞;
6: h(v) ← ∞;
7: end for
8: g(vs) ← 0;
9: h(vs) ← getHeuristic(vs);

10: f(vs) ← g(vs)+ϵh(vs);
11: Q.Push(vs);
12: while Q ≠ ∅ do
13: v ← Q.T op();
14: Q.Pop();
15: Succ(v) ← getSuccessors(v)
16: for all s ∈ Succ(v) do
17: Z.Add(s)
18: if v /∈ Pred(s) then
19: Pred(s) ← Pred(s) ∪ {v}
20: end if
21: h(s) ← getHeuristic(s);
22: gtmp ← g(v) + cost(v, s);
23: if gtmp < g(s) then
24: g(s) ← gtmp;
25: f(s) = g(s) + ϵh(s);
26: if s ∈ Q then
27: Q.Update(s, f(s))
28: else
29: Q.Insert(s, f(s));
30: end if
31: end if
32: end for
33: if v = vg then
34: return RecoverPath(v);
35: end if
36: end while
37: return Failure;
38: end function

16 1| Preliminary

Table 1.3: Functions employed to manage the priority queue.

Push(v) add the element v at the end of Q

Top() return the element with the highest priority

Pop() delete the element with the highest priority

Insert(v, f) insert the element v with priority f in Q

Remove(v) remove the element v from Q

Update(v, f) update the priority value f of element v

ShiftUp() preserve the list order when inserting or updating an element

ShiftDown() preserve the list order when inserting or updating an element

Algorithm 1.2 Function to recover the optimal path computed by the A* algorithm.
1: function RecoverPath(v, Pred(v))
2: P ← ∅;
3: PredList(v) ← Pred(v)
4: for all p′ ∈ PredList(v) do
5: p← arg minp′ (g(p′) + cost(p′, v));
6: P ← ⟨p, P ⟩;
7: v ← p;
8: end for
9: return P ;

10: end function

1.3. System dynamics

The dynamics of a generic nonlinear system are described by a set of ordinary differential
equations that govern its motion and evolution over time, given by:

ẋ(t) = f(x(t), u(t)), (1.3)

where u(t) ∈ U denotes the control input, and x(t) ∈ S is the state. The sets S and U
represent the state space and the control space, respectively. A system can be subjected to
physical constraints arising from its dynamics. These constraints, expressed as functional
equalities and/or inequalities, restrict the range of values that can be assumed by control
and/or state variables.

1| Preliminary 17

1.3.1. Quadrotor dynamics

In this thesis, all examples and simulations will be carried out using quadrotor UAVs,
whose dynamics are exposed in this section and drawn from the insights provided in [11].

The quadrotor is modeled as a rigid body system with six degrees of freedom (DOFs),
including position and orientation within a three-dimensional space R3. Three DOFs
pertain to linear translations along three mutually perpendicular inertial axes, and three
DOFs correspond to the rotation of the body frame B with respect to the inertial frame
W , described by the rotation matrix RW

B . A model of the quadrotor along with the
coordinate systems considered, namely the world inertial frame, denoted as W , and the
body attached frame, represented as B, are illustrated in Figure 1.2.

Euler angles are employed to define the roll ϕ, pitch θ, and yaw ψ angles. The robot’s
angular velocity, represented by ωBW , denotes the angular velocity of the body frame B
with respect to the world frame W . Its components in the body frame are denoted as p,
q, and r, and these values can be directly related to the derivatives of the roll, pitch, and
yaw angles.

ωBW = pxB + qyB + rzB.

The state vector of a quadrotor can be represented by the position and velocity of its
center of mass, the Euler angles and the angular velocity:

x := [x, y, z, ẋ, ẏ, ż, ϕ, θ, ż, p, q, r]T .

Each rotor operates with an angular velocity ωi, generating both a force, Fi, and a mo-
ment, Mi, according to the following formulas:

Fi = kFω
2
i ,

Mi = kMω
2
i .

(1.4)

The control input of the quadrotor system is denoted as u = [u1, u2, u3, u4]
T , where

the first component indicates the net body force, and the subsequent three components
represent the body torques. According to 1.4, the control input components can be written
as:

u1 = kFω
2
1 + kFω

2
2 + kFω

2
3 + kFω

2
4,

u2 = LkFω
2
2 − LkFω2

4,

u3 = −LkFω2
1 + LkFω

2
3,

u4 = kMω
2
1 + kMω

2
2 + kMω

2
3 + kMω

2
4,

18 1| Preliminary

Figure 1.2: Quadrotor model and reference frames.

where L is the distance from the center of the rotors to the center of the quadrotor.

The mass-normalized differential equations of motion governing the acceleration of the
center of mass are:

a = fzB − gzW , (1.5)

where f is the thrust input u1 normalized by the quadrotor mass m, resulting in units
of acceleration. It is important to observe in Figure 1.2 that the motors generate a force
that is perpendicular to the quadrotor’s x-y plane, thus directed along the zB body axis.
gzW is the gravity acceleration in the inertial frame, aligned with the negative zW axis.

The selected model neglects aerodynamic effects, which are taken into account in more
complex models [17]. Nonetheless, this simple and symmetric rigid model captures the
essential dynamics and is suitable for solving trajectory generation problems.

Differential flatness

Differential flatness is a valuable property that can greatly simplify the generation and
planning of trajectories for complex systems. A system can be defined differentially flat
if there exists a subset of the output, called flat output, such that the state and input
can be defined as functions of the flat output and a finite number of its derivatives. More

1| Preliminary 19

precisely, a nonlinear system

ẋ = f(x, u), x ∈ Rn, u ∈ Rm

y = h(x), y ∈ Rm

is differentially flat if there exists a flat output

σ = σ(x, u, u̇, . . . , u(l)), σ ∈ Rm

such that the state x and the input u can be defined as smooth functions of this flat
output and its derivatives as follows:

x = hx(σ, σ̇, σ̈, . . . , σ
(l)),

u = hy(σ, σ̇, σ̈, . . . , σ
(l)).

The complete state of the quadrotor system is inherently nonlinear and typically chal-
lenging to directly compute. As demonstrated in [11], the quadrotor with the four inputs
is a flat system, characterized by the following flat output:

σ = [x, y, z, ψ]T . (1.6)

Therefore, the flat output can be used to explicitly express the state of the system and
the control input in terms of σ and a finite number of its derivatives. The translational
components of the state of the system can easily be derived from the first three elements of
σ. To demonstrate that the rotation RW

B is a function of the flat outputs σ, a modification
of Equation 1.5 can be considered (see [11] for further details). Therefore, since both the
translational part of the state and orientation are dependent on flat outputs σ, their
respective derivatives are also functions of σ and its derivatives. Moreover, differential
flatness implies that any trajectory in the state of the flat outputs is flyable if their
derivatives are correctly bounded.

21

2| Kinodynamic motion planning

Path planning considers the geometric aspect of the problem while addressing constraints
that are primarily kinematic in nature, typically arising from the presence of obstacles in
the environment. However, while path planning effectively produces collision-free paths,
it may not guarantee their feasibility when executed by the actual systems. This aspect
holds particularly true for scenarios involving agile autonomous vehicles, where additional
limitations on the vehicle’s movement that arise from its dynamics or nonholonomic con-
straints - constraints that cannot simply be integrated to impose a restriction on the
position components - must be considered. Consequently, there is a strong preference
for motion planning approaches that incorporate the vehicle’s dynamics. This is the cen-
tral focus of a contemporary direction in motion planning research commonly known as
kinodynamic motion planning. Kinodynamic planning goes beyond collision avoidance,
integrating the system’s dynamics and input constraints. This approach ensures that the
resulting trajectory not only avoids collisions but also remains feasible and executable
by the vehicle. Fundamentally, the essence of kinodynamic motion planning lies in the
task of determining the control inputs for a vehicle. These inputs enable the system to
smoothly transition from an initial configuration to a desired target configuration, all
while respecting its dynamical constraints and avoiding obstacles in the environment.

Kinodynamic motion planning considers both the kinematics and dynamics of a system si-
multaneously, requiring a direct exploration of the system’s state space. This approach sig-
nificantly increases the complexity of motion planning by introducing higher-dimensional
spaces and differential constraints imposed by the system’s dynamics. These complexi-
ties pose notable challenges, particularly evident when it comes to real-time trajectory
planning. While online kinematic path planning requires minimal computational effort,
the shift to online kinodynamic motion planning turns into a considerably more compu-
tationally demanding task, especially for complex systems.

This chapter is dedicated to formalizing the kinodynamic motion planning problem. Sec-
tion 2.1 formulates the kinodynamic motion planning problem as an optimization problem.
In Section 2.1.1, the problem is reformulated specifically for the quadrotor system. Next,

22 2| Kinodynamic motion planning

in Section 2.2, a technique is introduced to alleviate the computational complexity of
kinodynamic motion planning for complex systems by employing motion primitives. Fi-
nally, Section 2.3 introduces the fundamental components of a search-based kinodynamic
planner.

2.1. Problem formulation

Within the domain of motion planning applications, the resolution to the planning prob-
lem extends beyond mere feasibility and collision avoidance. In practical scenarios, the
planning problem involves the fulfillment of additional requirements, such as reaching the
goal in minimal time, minimizing control effort, and maximizing safety. This has redi-
rected the focus from solely designing collision-free and feasible trajectories to the pursuit
of optimal solutions. In light of these considerations, the kinodynamic motion planning
problem is cast as an optimization problem in which the objective is to find the input
functions u(t) and the corresponding state trajectories x(t) that minimize a cost function
while adhering to specified constraints. The formulation of an optimal control problem is
as follows:

min
x(t),u(t)

J =

∫ T

0

g(x(t), u(t)) dt (2.1a)

s.t. ẋ = f(x(t), u(t)),

x(t) ∈ Sfree, ∀t ∈ [0, T]

u(t) ∈ U , ∀t ∈ [0, T]

x(0) = xi,

x(T) = xf .

(2.1b)

(2.1c)

(2.1d)

(2.1e)

(2.1f)

In this formulation, J is the cost function we want to minimize, where g is an arbitrary
function, depending on the specific motion planning problem being examined. Equation
2.1b enforces the system’s dynamics. Conditions 2.1c and 2.1d outline the state con-
straints and the control input constraints. The initial and final conditions in 2.1e and
2.1f correspond to the boundary constraints. In general, the decision variables x(t) and
u(t) are continuous functions and finding a solution to the optimal control problem is
challenging.

In this thesis, the specific objective is to compute a trajectory guiding the vehicle from an
initial state xi to a defined final state xf , striking a balance between minimizing the total
time T and minimizing the effort of the trajectory. Therefore, the cost function in 2.1a

2| Kinodynamic motion planning 23

takes the form:

J = Je + JT =

∫ T

0

∥u(t)∥2 dt+ ρT, (2.2)

Here, the integral term Je represents the effort of the trajectory, interpreted as an upper
bound on the average of a product of the inputs to the system [12]. The control action u(t)
can be replaced by velocity v(t), acceleration a(t), jerk j(t), or snap s(t), each correspond-
ing to the objective of achieving minimum velocity, minimum acceleration, minimum jerk
and minimum snap trajectories, respectively. The parameter ρ ≥ 0 in the second term
governs the trade-off between the duration of the trajectory T and its effort, determining
their relative importance in the optimization process. In practice, when multiple solutions
are available, all capable of achieving a common high-level goal, this cost function serves
as a valuable tool to assess the aggressiveness of the input of these trajectories [13].

This thesis considers state spaces incorporating first-order derivatives (velocity compo-
nents), as well as higher-order derivatives depending on the particular problem at hand,
including acceleration, jerk, and snap. Consequently, the solution to the kinodynamic mo-
tion planning problem is a trajectory that simultaneously provides a collision-free path
and profiles for velocity, acceleration, and higher-order derivatives. A trajectory is for-
mally represented as a time-parameterized function that delineates a vehicle’s desired
states throughout time. Leveraging the formulation proposed in [9], the trajectory of the
vehicle in this study is described as a piece-wise polynomial function. This representation
involves expressing the trajectory, denoted as Γ(t), as a composite function comprising N
segments:

Γ(t) =

Γ1(t− t0), t0 ≤ t < t1

Γ2(t− t1), t1 ≤ t < t2

Γ3(t− t2), t2 ≤ t < t3
...

ΓN(t− tN−1), tN−1 ≤ t < tN .

(2.3)

Each segment of the trajectory Γi can be obtained through various methods. Firstly, by
forward integration of the state equation in 1.3, achieved by applying a control action
u(t) over a duration ∆ti = ti+1− ti. This method will be explored in Chapter 3. Alterna-
tively, each segment can be computed by solving a Two-Point-Boundary-Value problem
(TPBVP). This method will be explored in Chapter 4. A visual representation of this
trajectory is shown in Figure 2.1.

24 2| Kinodynamic motion planning

Figure 2.1: Piece-wise polynomial trajectory.

2.1.1. Quadrotor problem formulation

As explained in Section 1.3.1, the quadrotor dynamics are differentially flat, with flat
output σ = [x, y, x, ψ]. Therefore, for the differentially flat system, the objective function
can be rewritten as:

J(x(t), u(t)) = J(hx(σ, σ̇, σ̈, . . . , σ
(l)), hu(σ, σ̇, σ̈, . . . , σ

(l))) = J(σ, σ̇, σ̈, . . . , σ(l))

The quadrotor inputs can be written in terms of the qth derivative of the position (x, y, z).
Therefore, to obtain a trajectory with low control effort, the qth derivative of the position
can be minimized. This is equivalent to minimizing the qth derivative of the first three
entries of the flat output. In quadrotor systems, the yaw angle ψ is typically negligible
when the goal is to obtain a smooth trajectory and, as such, it is omitted. Consequently,
the control effort term Je of the objective function in 2.2 can be reformulated as:

Je(σ, σ̇, σ̈, . . . , σ
(l)) =

∫ T

0

(x(q)(t))2 dt+

∫ T

0

(y(q)(t))2 dt+

∫ T

0

(z(q)(t))2 dt

The choice of the derivative q being minimized results in different trajectories. Specifically,
for q = 1, the trajectory minimizes velocity. For q = 2, it minimizes acceleration. For
q = 3, it minimizes jerk. Finally, for q = 4, the trajectory minimizes snap.

These steps result in the decomposition of the quadrotor dynamics into three mutually
orthogonal inertial axes. Each axis can be treated as a double or triple integrator, as
performed in various works such as [8] and [11].

Reformulating the trajectory expression in 2.3 for the quadrotor case involves representing
it as a piece-wise polynomial function with respect to the flat outputs. The differential
flatness inherent in quadrotor systems enables the construction of control inputs based on
1D time-parameterized polynomial trajectories independently specified along each axis of
the flat output vector σ = [x, y, z, ψ]T . Consequently, a trajectory Γ(t) encompasses four

2| Kinodynamic motion planning 25

dimensions, denoted respectively as Γx(t), Γy(t), Γz(t), and Γψ(t). The omission of the
yaw angle results in the exclusion of Γψ(t) from the optimization formulation.

Following [7], x(t) is a dynamical system state, consisting of position and its (m − 1)

derivatives (velocity, acceleration, jerk, snap, etc.) in a three-dimensional space.

x(t) = [p(t)T , ṗ(t)T , p̈(t)T , . . . , p(m−1)(t)T]T .

Position along each axis can be formulated as an n-th order polynomial, given by:

p(t) = cn
tn

n!
+ cn−1

tn−1

(n− 1)!
+ ...+ c1t+ c0 (2.4)

The additional polynomial states along a single axis can be expressed in terms of the
position p(t) and its derivatives as follows:

v(t) = ṗ(t) = cn
tn−1

(n− 1)!
+ cn−1

tn−2

(n− 2)!
+ ...+ c2t+ c1,

a(t) = p̈(t) = cn
tn−2

(n− 2)!
+ cn−1

tn−3

(n− 3)!
+ ...+ c3t+ c2,

j(t) =
...
p (t) = cn

tn−3

(n− 3)!
+ cn−1

tn−4

(n− 4)!
+ ...+ c4t+ c3,

s(t) =
....
p (t) = cn

tn−4

(n− 4)!
+ cn−1

tn−5

(n− 5)!
+ ...+ c5t+ c4.

The complete state of the system dynamics in a three-dimensional space can be conve-
niently represented through individual polynomials along the three axes. For instance,
the trajectory segment Γi(t) can be expressed as Γi(t) = [pix(t), p

i
y(t), p

i
z(t)]

T , where pik(t),
with k = x, y, z denotes the polynomial 2.4 corresponding to the x, y, and z-axes for the
i-th segment.

2.2. Kinodynamic planning with motion primitives

Solving kinodynamic motion planning problems requires a significant computational load,
especially for complex systems. This complexity arises from the method’s incorporation
of higher-dimensional spaces and differential constraints resulting from the system’s dy-
namics. One potential strategy to reduce the computational complexity of kinodynamic
motion planning for a nonlinear, high-dimensional system is based on a discretization,
which involves choosing a finite set of motion primitives. Motion primitives, as implied
by their name, represent a collection of precomputed motions tailored for specific dynamic

26 2| Kinodynamic motion planning

systems. These precalculated solutions address sub-problems, which can be concatenated
to form a complete trajectory that effectively resolves the motion planning problem. These
primitives, when properly interconnected, constrain the admissible trajectories of the sys-
tem to a family of time-parameterized curves. As a result, instead of solving an optimal
control problem in a continuous and high-dimensional space, the dynamics of the sys-
tem are restricted to switching between a finite number of motion primitives [4]. This
discretization leads to an approximation, meaning that not all trajectories, which are po-
tential solutions to the vehicle’s equations of motion, can be executed by the discretized
dynamical system. Consequently, the computed solution is inherently suboptimal [1]. To
address this suboptimality, a more refined discretization can be employed.

2.3. Search-based kinodynamic planning

Addressing kinodynamic motion planning challenges involves a careful consideration of
algorithmic choices, with search-based algorithms and sampling-based approaches emerg-
ing as key contenders in this domain. Sampling-based methods, oriented towards finding
feasible solutions, contrast with deterministic methods that strive for optimality. The
choice between these approaches significantly influences the efficiency and quality of mo-
tion planning solutions. Sampling-based approaches offer a valuable advantage in terms of
computational speed, providing solutions in short timeframes. This characteristic makes
them particularly suitable for addressing problems in high-dimensional spaces, which is
common in scenarios involving complex and nonholonomic systems. Graph search meth-
ods may struggle to find optimal solutions in a reasonable time in such complex spaces,
making randomized approaches more suitable. However, the drawback of randomized ap-
proaches lies in their unpredictability, especially when fast online replanning is required.
Trajectories generated by a sampling-based method during consecutive re-planning peri-
ods may exhibit significant variations, making them less suitable for applications where
path consistency is crucial [7]. In contrast, deterministic planning approaches are char-
acterized by their ability to generate higher-quality paths and are especially preferable
when computational time permits. The deterministic approach prioritizes optimality, a
critical factor in scenarios where finding the best possible solution is crucial. In addition,
the incorporation of heuristic functions within the search-based framework serves as a
powerful tool to accelerate the search process, enabling a more efficient exploration of the
state space. The adaptability of search-based algorithms in dynamic scenarios positions
them as robust solutions for future advancements in this thesis. Consequently, the A*
method is specifically chosen to address the kinodynamic motion planning problem.

2| Kinodynamic motion planning 27

Transitioning to a more detailed exploration, in the following sections the fundamental
components of a search-based kinodynamic planner will be explained.

2.3.1. Global planner and local planner

Kinodynamic motion planning for autonomous vehicles is composed of two main compo-
nents: a local planner and a global planner. The local planner is responsible for producing
a valid trajectory between two states of the system, neglecting collisions with obstacles (it
operates independently of the environmental map). Specifically, within the graph G(V , E),
where V represents the set of vertices denoting different states, and E is the set of edges
connecting these states, the local planner’s role is to generate feasible transitions between
these states, essentially creating the edges of the graph. The local planner effectively
acts as a local trajectory generator, specialized in computing feasible trajectories without
considering obstacles. For the local trajectory to be valid, it must satisfy criteria that
ensure the adherence to dynamic constraints and input constraints.

Complementing the local planner, the global planner is the overall algorithmic process
responsible for solving the motion planning problem. It explores the state space of the
system, taking into account the map of the environment and the obstacles. Specifically,
the global planner generates a trajectory from the start state to the goal state through
multiple calls to the local planner. It is essential to note that the local trajectories
generated by the local planner do not inherently exist within the free configuration space
Cfree. The verification of this aspect is subsequently performed by the collision-checking
module of the global planner.

The local planner assumes a crucial role as a subroutine in search-based algorithms. In
each iteration of the algorithm, the local planner is responsible for establishing connec-
tions between the current node under expansion and its successors to construct a graph
structure. Two possible techniques used by local planners to create local trajectories
connecting the current node and its successors are as follows:

• State-based steering : involves computing a local trajectory that originates from an
initial state, denoted as xi, and efficiently guides the system towards the final state,
denoted as xf . This technique achieves an exact connection between the two states,
addressing the inverse problem of precisely interpolating between xi and xf . This
interpolation corresponds to the resolution of a TPBVP. This exact interconnection,
known as exact optimal steering, is a requirement for most search-based algorithms
that guarantee optimality.

• Forward propagation: generates new states by applying a feasible control input

28 2| Kinodynamic motion planning

to an already generated state over a specified time interval. This is performed
through the integration of the equations of motion and avoids solving a TPBVP.
From a computational point of view, this approach proves to be significantly more
convenient than attempting to solve the TPBVP numerically.

Both techniques will be employed in this thesis. Specifically, forward propagation will
be extensively elucidated in Chapter 3, providing a detailed exploration and explanation.
On the other hand, Chapter 4 will focus on state-based steering method, exploring its
implementation and complexities within the research context.

2.3.2. Heuristic function design

In search-based algorithms, the heuristic function plays a crucial role, acting as a guid-
ing factor that significantly influences the efficiency of the search process. The heuristic
function provides an estimate of the cost from a given state to the goal state, offering a
heuristic value that helps the algorithm make informed decisions during the exploration
of the search space. A well-designed heuristic function can greatly expedite the search
process by directing the algorithm towards more promising trajectories. The effectiveness
of a heuristic function lies in its ability to strike a balance between accuracy and com-
putational efficiency. A heuristic that accurately reflects the true cost or distance to the
goal provides the algorithm with valuable insights, enabling it to make more informed
choices. However, it is equally important for the heuristic to be computationally feasible,
to ensure that the algorithm can navigate the search space in a timely manner.

When planning in Euclidean spaces, opting for the Euclidean distance as heuristic function
is straightforward, often calculated as the straight-line distance between two points. For
instance, in the case of a translating rigid body on a 2D plane, the shortest distance
between two points is the straight line connecting them. However, as the complexity of the
state space increases, especially when involving the first and/or second order derivatives
of the position, computing a meaningful heuristic becomes more challenging. Intuitively,
the cost-to-go can be estimated using the maximum speed constraint vmax as follows:

Tmin = w
∥pg − p∥∞
vmax

,

where w is a weight. This heuristic establishes a lower bound on the minimum achievable
time to reach the goal position pg from a given position p. As proven in [7], it is both
admissible and consistent. The significant advantage of this minimum-time heuristic is
its rapid computation, which has a minimal impact on the overall trajectory planning
time. Furthermore, it accounts for velocity constraints. However, the downside is that it

2| Kinodynamic motion planning 29

evaluates the cost-to-go without considering control effort, making it a loose lower bound
on the optimal cost. In [8], an alternative heuristic function is proposed, incorporating
control effort for a more accurate cost-to-go estimate. The trade-off is its increased com-
putational complexity. Nevertheless, this thesis opts for the minimum-time heuristic, as
the development of a more sophisticated heuristic function lies beyond the thesis’s scope.

2.3.3. Collision checking

Collision checking is a crucial aspect in search-based algorithms, particularly in the do-
main of motion planning. Its primary importance lies in ensuring the feasibility and safety
of generated trajectories. This involves verifying whether a proposed trajectory connect-
ing two states, xi ∈ Sfree and xf ∈ Sfree, collides with obstacles in the environment,
essentially determining if the trajectory remains entirely within the free state space Sfree.
Furthermore, the collision detection module is invoked multiple times during the planning
process, emphasizing the need for it to be efficient in order to prevent any degradation in
the overall performance of the planning algorithm.

Throughout this thesis, numerical examples leverage an occupancy grid map as a rep-
resentation of the environment (see Section 1.2.1 for further details). Collision checks
are performed at multiple discrete instances along the trajectory to assess whether the
trajectory is obstacle-free or if it collides with obstacles.

31

3| Search-based kinodynamic
planning with online motion
primitives generation

When search-based methods are employed for optimal kinodynamic planning, the core
challenge is to develop an efficient local planner to compute the optimal trajectory between
two states. This involves computing a trajectory from an initial state, labeled xi, to guide
the system towards a goal state, denoted as xf . While holonomic vehicles can readily
establish this connection through straightforward straight-line paths, the task becomes
considerably more intricate for many other dynamic systems, necessitating the solution of
a TPBVP. Generating optimal trajectories for such systems inherently poses significant
challenges. However, certain dynamic systems, such as double or triple integrators [6],
benefit from efficient solutions that facilitate the system’s transition from one state to
another. Therefore, this chapter focuses on addressing these specific systems, drawing
considerable inspiration from the work presented in [7]. The focus will involve exploring
the generation of motion primitives using a forward-propagation approach. This method
involves the generation of new states by applying a feasible control input to an already
generated state over a specified time interval. This is executed through the integration
of the equations of motion and avoids solving a TPBVP. From a computational point of
view, this approach proves to be significantly more convenient than attempting to solve
the TPBVP numerically.

Within this chapter, Section 3.1 explains the theory behind motion primitive generation
utilizing the forward propagation approach. This is complemented by illustrative examples
that demonstrate its practical application. Subsequently, Section 3.2 elaborates on the
discrete representation of the state space achieved through motion primitives. Section 3.3
addresses kinodynamic motion planning by utilizing motion primitives. Additionally, it
introduces modifications to the classical A* algorithm to handle motion primitives. Lastly,
Section 3.4 proposes two examples designed to evaluate the effectiveness and performance
of the proposed methodology.

32
3| Search-based kinodynamic planning with online motion primitives

generation

3.1. Motion primitives generation

Following [8], the differential flatness property of quadrotor systems allow us to construct
control inputs by utilizing 1D time-parameterized polynomial trajectories, which are inde-
pendently specified for each of the three position axes. Hence, the subsequent analysis con-
siders polynomial state trajectories denoted as x(t) = [p(t)T , v(t)T , a(t)T , j(t)T , s(j)T]T ,
where the position can be mathematically expressed as:

p(t) = ck
tk

k!
+ ck−1

tk−1

(k − 1)!
+ ...+ c1t+ c0 ∈ R3, (3.1)

where C = [c0, . . . , ck] ∈ R3×(k+1) is a polynomial trajectory parametrization. Then,
velocity as well as all other derivatives can be straightforwardly obtained as its derivative.
To generate the polynomial trajectories in 3.1, the following linear time-invariant system
in state space form can be employed:

ẋ = Ax+Bu,

ẋ =

0 I3 0 . . . 0

0 0 I3 . . . 0
...
0 0 I3

0 0 0

x+

0

0
...
0

I3

u. (3.2)

The control input u(t) is confined within the set U = [−umax, umax] ⊂ R3, where umax

denotes the maximum limit of the control input in a three-dimensional space.

The dynamic model described in Equation 3.2 is employed to create a series of motion
primitives. This process involves a lattice discretization of the control input set U =

[−umax, umax], denoted as UL = {u1, . . . , uL} ⊂ U . In this context, each control vector
ul ∈ R3 defines a short-duration motion for the system. To create this discretization UL,
a practical approach involves selecting a discrete number of samples z along each axis
within the permissible control input range [0, umax]. This choice of samples results in a
discretization step du = umax

z
, which, in turn, generates a total of N = (2z + 1)3 motion

primitives [7]. It is worth noting that during this stage, input constraints and affine
state constraints are intentionally excluded. Instead, the focus is on generating motion
primitives that are feasible with respect to the system’s dynamics. This process involves
solving for each of the three spatial axes independently. Input and state constraints will
be addressed in a later phase, subsequent to the generation of motion primitives.

3| Search-based kinodynamic planning with online motion primitives
generation 33

Following [7], given an initial state denoted as xi = [pTi , v
T
i , a

T
i , . . .]

T , a motion primitive
with a duration of τ > 0 is generated by applying a constant control input u(t) ≡ ul ∈ UL
for t ∈ [0, τ], ensuring that:

u(t) = p(n)(t) =
k−n∑
i=0

ci+n
ti

i!
≡ ul.

The constancy of the control input requires that all coefficients dependent on time must
be identically zero, which means

c(n+1):k = 0.

This leads to a control input that remains constant throughout the motion.

ul = cn.

The integration of the control function u(t) = ul from an initial condition xi yields to the
following polynomial expression for the position:

p(t) = ul
tn

n!
+ . . .+ ai

t2

2
+ vit+ pi.

Equivalently, the resulting trajectory of the linear time-invariant system in Equation 3.2
is:

x(t) = eAtxi +

[∫ t

0

eA(t−β)B dβ

]
ul = F (t)xi +G(t)ul.

Figure 3.1 presents an illustration of the system trajectories that emerge from this ap-
proach. Given that both the duration τ and the control input ul are fixed, the overall cost
of the motion primitive, incorporating both the per-axis control effort and the specified
duration, is:

J = (∥ul∥2 + ρ)τ. (3.3)

The motion primitive which connects two states xi, xj with xj = F (τ)xi +G(τ)uij is op-
timal according to the cost function in Equation 3.3 [8]. The generated motion primitives
adhere to the system’s dynamics in Equation 3.2, but do not incorporate information
regarding the system’s dynamic constraints, which encompass velocity limitations and
constraints on higher-order derivatives. Consequently, after the computation of the mo-
tion primitive, one must verify that the computed trajectory is feasible for the vehicle.
This involves verifying that the state variables fall within the permissible limits.

In the following, some examples of practical interest are provided.

34
3| Search-based kinodynamic planning with online motion primitives

generation

(a) Acceleration-controlled system. (b) Jerk-controlled system.

Figure 3.1: Generate 2D motion primitives for an acceleration-controlled system (a) and
a jerk-controlled system (b) starting from the initial state (xi, yi) = (0, 0). The red dot
denotes the initial state position, whereas the blue dots represent the final state positions
(xf , yf). The black lines depict the computed trajectories resulting from various control
inputs. The initial velocity and acceleration are vi = [1, 0]T and ai = [0,−1]T (applicable
to figure (b) only).

Examples

Example 1 (velocity-controlled system): Starting from an initial state, which is charac-
terized solely by its position, xi = pTi , a trajectory is generated by applying a constant
velocity input for a duration τ , where u(t) = v(t) ≡ ul. The integration of the control
action from the initial condition results in the polynomial expression for the position as
follows:

p(t) = ult+ pi.

Example 2 (acceleration-controlled system): Starting from an initial state, which is char-
acterized by its position and velocity, xi = [pTi , v

T
i]
T , a trajectory is generated by applying

a constant acceleration input, where u(t) = a(t) ≡ ul. The integration of the control
action from the initial condition results in the polynomial expression for the position as
follows:

p(t) =
ul
2
t2 + vit+ pi.

Example 3 (jerk-controlled system): Starting from an initial state, which is characterized
by its position, velocity and acceleration, xi = [pTi , v

T
i , a

T
i]
T , a trajectory is generated by

applying a constant jerk input, where u(t) = j(t) ≡ ul. The integration of the control

3| Search-based kinodynamic planning with online motion primitives
generation 35

action from the initial condition results in the polynomial expression for the position as
follows:

p(t) =
ul
6
t3 +

ai
2
t2 + vit+ pi.

Example 4 (snap-controlled system): Starting from an initial state, which is characterized
by its position, velocity, acceleration, and jerk, xi = [pTi , v

T
i , a

T
i , j

T
i]
T , a trajectory is

generated by applying a constant snap input, where u(t) = s(t) ≡ ul. The integration of
the control action from the initial condition results in the polynomial expression for the
position as follows:

p(t) =
ul
24
t4 +

ji
6
t3 +

ai
2
t2 + vit+ pi.

3.2. Graph construction

Motion primitives create a finite lattice discretization within the state space, providing
a systematic framework to explore the various possible states and transitions. When
considering all control inputs u(t) within the discretized control set UL and applying
each of them for a duration τ to an initial state xi, it results in the creation of N =

(2z + 1)3 distinct motion primitives. Here, z represents the discrete number of samples
selected along each axis within the permissible control input range [0, umax], as defined
in Section 3.1. These primitives, illustrated in Figure 3.1, generate a multitude of final
states, totaling N = (2z + 1)3. The iterative application of these control inputs leads
to the gradual construction of a graph, denoted as G(V , E). Here, V represents the set
of vertices and E is the set of edges connecting these vertices. Each edge within this
graph represents a transition between two states, forming a structured framework that
encapsulates the system’s dynamics and feasible movements. A visual representation of
this graph is provided in Figure 3.2

Expanding upon this discussion, it is crucial to note that the state space undergoes dis-
cretization as a result of the discretization of inputs. This discretization of control inputs
leads to the creation of state lattices that are discretized not only in position but also in
velocity and higher-order derivatives. However, the resulting grid in position is nonuni-
form in general, as demonstrated in [7]. This non-uniformity in the positional grid signifies
that the discretization, particularly in position, may not adhere to a uniform or regular
distribution across the state space. This irregularity could potentially influence the reso-
lution and accuracy of the state space representation, impacting the efficacy of the motion
planning algorithms utilized within this discretized space. In the next chapter, a method
that avoids the issue of non-uniform discretization in the state space will be introduced.

36
3| Search-based kinodynamic planning with online motion primitives

generation

Figure 3.2: Graph generated from a starting point (red dot) located at coordinates
(xi, yi) = (1, 1) to a goal point (red dot) positioned at coordinates (xf , yf) = (5,−7).

3.3. Kinodynamic motion planning

In the context of the quadrotor system under consideration, the effort of a trajectory can
be expressed as

J(C) =

∫ T

0

∥u(t)∥2 dt =
∫ T

0

∥p(n)(t)∥2 dt,

where C ∈ R3×(k+1) is a polynomial trajectory parametrization. Therefore, the motion
planning problem arises from reformulating Problem 2.1 and incorporating the dynamics
in Equation 3.2. Given an initial state xi ∈ Sfree and a goal region Sgoal ⊂ Sfree, the
objective is to find a polynomial trajectory parametrization D and a time T such that

min
C,T

J(C) + ρT (3.4a)

s.t. ẋ(t) = Ax(t) +Bu(t),

x(t) ∈ Sfree, ∀t ∈ [0, T],

u(t) ∈ U , ∀t ∈ [0, T],

x(0) = xi,

x(τ) ∈ Sgoal.

(3.4b)

(3.4c)

(3.4d)

(3.4e)

(3.4f)

3| Search-based kinodynamic planning with online motion primitives
generation 37

In this formulation, Equation 3.4b characterizes the system’s dynamics. Conditions 3.4c
and 3.4d outline the state constraints and the control input constraints. The initial and
final conditions in 3.4e and 3.4f correspond to the boundary constraints.

The generation of motion primitives enables the conversion of Problem 3.4 from an opti-
mal control problem to a graph-search problem, which can subsequently be solved using
a graph-search algorithm. Based on [7], an effective method involves incorporating addi-
tional constraints that define the control input u(t) as piece-wise constant within intervals
of duration τ , mirroring the duration of each motion primitive. The overall trajectory
duration becomes T = Nτ , where the integer N represents the total number of concate-
nated motion primitives required to form the final trajectory. Expressing this control
input constraint can be achieved through the formulation:

u(t) =
N−1∑
k=0

uk.

In this equation, each uk(t) belongs to the discretized control input set UL and is valid
within the interval [kτ, (k + 1)τ]. This constraint rigorously ensures that the control
trajectory is a composite sequence derived from admissible controls found within the
set UL. Finally, Problem 3.4 can be reformulated into a graph-search problem. Within
this context, the objective is to determine, given an initial state xi ∈ Sfree, a goal region
Sgoal ∈ Sfree, and a finite set of motion primitives each with a duration τ > 0, the optimal
sequence of control inputs uk, k = 0, ..., N − 1 such that:

min
uk

(
N−1∑
k=0

∥uk∥2 + ρN

)
τ

s.t. xk+1(t) = F (t)xk(τ) +G(t)uk,∀ t ∈ [0, τ],

xk+1(t) ∈ Sfree,∀ k = 0, ..., N − 1, t ∈ [0, τ],

uk ∈ UL,∀ k = 0, ..., N − 1,

xk+1(0) = xk(τ),∀ k = 0, ..., N − 1,

x0(0) = xi,

xN(τ) ∈ Sgoal.

Such problem is solved via search-based motion planning algorithm.

38
3| Search-based kinodynamic planning with online motion primitives

generation

3.3.1. A* algorithm

To solve the previously discussed graph search problem, the A* algorithm, explained
in Section 1.2.1, is used. The primary adaptation of this algorithm lies within the
GetSuccessors function, which will be explained in the next section. Additionally, a
significant modification is found within the RecoverPath function (Algorithm 1.2). Specif-
ically, this function is replaced by the RecoverTraj function (Algorithm 3.1), which is
explicitly crafted to manage motion primitives while retrieving the optimal trajectory
computed by the A* algorithm. It begins by initializing the trajectory as an empty set
P in line 2. The subsequent steps involve the recovery of the predecessors list of node v
(line 3). The core of the procedure spans lines 4 through 9: here, for each node p′ within
the predecessors list of node v, the corresponding index of the control action utilized to
transition from node p′ to node v is obtained. Subsequently, the forwardAction function
(Algorithm 3.2) computes the primitive guiding the vehicle’s transition from node p′ to
node v. This derived primitive segment is then added to the set P . Ultimately, the opti-
mal trajectory is determined by concatenating all the trajectory segments present within
the set P .

The forwardAction procedure (Algorithm 3.2) employs the PrimitiveStateControl

function to calculate the coefficients of the motion primitive polynomial trajectory. This
trajectory is obtained by applying a constant control input uidx to the state v over a dura-
tion of τ . This computation applies the methodology outlined in Section 3.1, particularly
leveraging the expressions provided in the examples within that section.

Algorithm 3.1 Function to recover the optimal trajectory computed by A* algorithm.
1: function RecoverTraj (v, Pred(v))
2: P ← ∅;
3: PredList(v) ← Pred(v)
4: for all p′ ∈ PredList(v) do
5: idx ← PredActIdx(p′)
6: pr ← forwardAction(p’, idx)
7: P ← ⟨pr,P⟩;
8: v ← p;
9: end for

10: return P ;
11: end function

Successor nodes

The central function within the A* algorithm is the getSuccessors procedure, which is
outlined in Algorithm 3.3. This crucial procedure aims to propagate states and plays a

3| Search-based kinodynamic planning with online motion primitives
generation 39

Algorithm 3.2 Function to compute the motion primitive pr derived by applying the input
uidx corresponding to the index idx within the lattice discretization of the control input
UL to the current node v for a duration τ .
1: function forwardAction(v, idx)
2: pr ← PrimitiveStateControl(v, uidx, τ);
3: return Pr;
4: end function

fundamental role in exploring the free state space while constructing the connected graph,
as discussed in Section 3.2. The core of the algorithm resides in lines 5 through 16. For
every control action ul within the control input set UL, a motion primitive is calculated by
applying the chosen control action ul to the current node v for a duration τ . Then, this
calculated trajectory is evaluated for its dynamic feasibility. If feasible, the corresponding
successor node is determined and inserted into the successors list of v. Additionally, the
cost of the primitive trajectory is computed and stored. On the contrary, if the computed
trajectory is found to be dynamically infeasible for the vehicle, it is eliminated from the
feasible motions that the vehicle can execute.

Algorithm 3.3 Given the current node v and the lattice discretization of the control input
UL, find the set of successors Succ(v), their associated cost SuccCost(v) and their action
index SuccActIdx(v).
1: function GetSuccessors(v, UL,τ)
2: Succ(v) ← ∅;
3: SuccCost(v) ← ∅;
4: SuccActIdx(v) ← ∅;
5: for all ul ∈ UL do
6: pr ← PrimitiveStateControl(v,ul,τ);
7: if isDynamicallyFeasible(pr) then
8: sf ← pr(τ);
9: Succ(v) ← Succ(v) ∪ {sf};

10: SuccCost(v) ← SuccCost(v) ∪ {(∥ul∥2 + ρ)τ};
11: idx ← getIndex(ul);
12: SuccActIdx(v) ← SuccActIdx(v) ∪ {idx};
13: end if
14: end for
15: return Succ(v), SuccCost(v), SuccActIdx(v) ;
16: endfunction

40
3| Search-based kinodynamic planning with online motion primitives

generation

3.4. Numerical examples

In this section, two examples of a high-level trajectory generator that uses motion prim-
itives are presented. The primary goal is for a quadcopter to move from a predefined
initial state to a target final state, with a focus on striking a trade-off between trajectory
duration and effort along the trajectory. In both examples, the quadrotor can operate in
a 2D 40m× 10m rectangular virtual environment.

3.4.1. Acceleration-controlled system

In this example, the quadrotor is modeled as a double integrator:
ẋ(t) = vx(t)

ẏ(t) = vy(t)

v̇x(t) = ax(t) = ux

v̇y(t) = ay(t) = uy.

Velocity and acceleration (control input) are bounded within vx, vy ∈ [−2, 2]m/s and
ax, ay ∈ [−2, 2]m/s2, respectively. The control input set is discretized taking into account
the following 9 control inputs:

[ux uy] =

−2 −2
−2 0

−2 2

0 −2
0 0

0 2

2 −2
2 0

2 2

.

During each iteration of the A* algorithm, motion primitives are generated by applying
each control input within this set to the current node under expansion for a duration τ .
The duration of the primitives can be customized by the user and is set to a fixed value
of τ = 1s in this example.

The vehicle is initialized with the state (x, y, vx, vy) = (2, 1, 0, 0) in a simulated indoor
environment, and the goal state is set to (x, y, vx, vy) = (38, 7, 0, 0). The algorithm is
developed in MATLAB, and the simulations are executed on a personal computer with

3| Search-based kinodynamic planning with online motion primitives
generation 41

Figure 3.3: Simulation result for acceleration-controlled system. The blue dot on the right
represents the starting position, whereas the one on the left indicates the final position.
The red curve is the optimal trajectory. The green dots are the expanded nodes.

an IntelCore i7 processor running at 2.30 GHz and 16GB RAM. In Table 3.1 some relevant
results are reported.

Table 3.1: Relevant results for the acceleration-controlled system.

Algorithm runtime 8964.06 ms

Number of expanded states 794

Figure 3.3 shows the simulation results for the acceleration-controlled system. The optimal
trajectory in red shows the vehicle’s ability to reach the target state navigating through
the environment without any collisions with obstacles.

Figures 3.4 and 3.5 depict the velocity and actuation profiles corresponding to the optimal
trajectory shown in Figure 3.3. These figures provide a clear visualization of how the
trajectory satisfies both the velocity and the input constraints. Furthermore, the system
model used introduces discontinuities in the acceleration profile, as observed in Figure 3.5.
To address this issue, a more extensive exploration of the state space becomes necessary,
as exemplified in the next example.

42
3| Search-based kinodynamic planning with online motion primitives

generation

Figure 3.4: Velocity profile for the optimal trajectory in Figure 3.3. The blue and cyan
lines depict the velocities along the x- and y-axes. The red lines show the velocity limits.

Figure 3.5: Actuation (acceleration) profile for the optimal trajectory in Figure 3.3. The
blue and cyan lines depict the accelerations along the x- and y-axes. The red lines show
the actuation limits.

3| Search-based kinodynamic planning with online motion primitives
generation 43

3.4.2. Jerk-controlled system

In this example, the quadrotor is modeled as a triple integrator:

ẋ(t) = vx(t)

ẏ(t) = vy(t)

v̇x(t) = ax(t)

v̇y(t) = ay(t)

ȧx(t) = jx(t) = ux

ȧy(t) = jy(t) = uy.

(3.5)

Velocity, acceleration, and jerk (control input) are constrained within vx, vy ∈ [−1, 1]m/s,
ax, ay ∈ [−1, 1]m/s2 and jx, jy ∈ [−1, 1]m/s3, respectively. The control input set is
discretized taking into account the following 9 control inputs:

[ux uy] =

−1 −1
−1 0

−1 1

0 −1
0 0

0 1

1 −1
1 0

1 1

.

During each iteration of the A* algorithm, motion primitives are generated by applying
each control input within this set to the current node under expansion for a duration τ .
The duration of the primitives can be customized by the user and is set to a fixed value
of τ = 1s in this example.

The vehicle is initialized with an initial state (x, y, vx, vy, ax, ay) = (2, 1, 0, 0, 0, 0), while
the target state is defined as (x, y, vx, vy, ax, ay) = (38, 7, 0, 0, 0, 0). The algorithm is
implemented in MATLAB, and the simulations are executed on a personal computer
equipped with an Intel Core i7 processor operating at 2.30 GHz and 16GB of RAM. In
Table 3.2 some relevant results are reported.

Analyzing the results presented in Table 3.1 and Table 3.2, a clear increase in the al-
gorithm’s runtime becomes evident when implementing the jerk-controlled system. This
substantial increase is primarily attributed to the augmented graph cardinality, directly
influencing the computation time within the A* algorithm. The increase in computa-

44
3| Search-based kinodynamic planning with online motion primitives

generation

Table 3.2: Relevant results for the jerk-controlled system.

Algorithm runtime 82438.77 ms

Number of expanded states 3080

tion time is related to the increase in the number of successor nodes to be checked at
each iteration of the A* algorithm. Specifically, the number of expanded states increases
significantly from 794 nodes for the acceleration-controlled system to 3080 nodes for the
jerk-controlled system, showcasing the expanded search effort. Furthermore, if higher-
order derivatives were included in the state space, both the algorithm’s runtime and the
number of expanded states would likely experience further increments. For enhanced
search speed, considering code optimization techniques and transitioning to a C++ im-
plementation could be beneficial.

Figures 3.7, 3.8 and 3.9 provide the velocity, acceleration, and actuation profiles for the
optimal trajectory depicted in Figure 3.6. These figures vividly illustrate the adherence
to velocity, acceleration, and input constraints.

In this particular example, the system model employed ensures a continuous accelera-
tion profile. Additionally, compared with the previous example, the velocity profile is
considerably smoother.

Figure 3.6: Simulation result for jerk-controlled system. The blue dot on the right repre-
sents the starting position, whereas the one on the left indicates the final position. The
red curve is the optimal trajectory. The green dots are the expanded nodes.

3| Search-based kinodynamic planning with online motion primitives
generation 45

Figure 3.7: Velocity profile for the optimal trajectory in Figure 3.6. The blue and cyan
lines depict the velocities along the x- and y-axes. The red lines show the velocity limits.

Figure 3.8: Acceleration profile for the optimal trajectory in Figure 3.6. The blue and cyan
lines depict the accelerations along the x- and y-axes. The red lines show the acceleration
limits.

46
3| Search-based kinodynamic planning with online motion primitives

generation

Figure 3.9: Actuation (jerk) profile for the optimal trajectory in Figure 3.6. The blue and
cyan lines represent the jerks along the x- and y-axes. The red lines show the actuation
limits.

3| Search-based kinodynamic planning with online motion primitives
generation 47

3.5. Conclusion

In this chapter, a search-based planner that leverages motion primitives has been intro-
duced as a solution explicitly tailored for quadrotors, aiming to address the complexities
of the kinodynamic motion planning problem. The central focus was on generating motion
primitives using a forward-propagation approach to circumvent the numerical challenges
associated with solving TPBVPs.

In conclusion, the presented search-based motion planning approach demonstrates good
performance in navigating quadrotor UAVs through complex and cluttered environments.
In particular, this approach stands out for its ability to generate trajectories in real time,
producing dynamically feasible, collision-free, resolution-optimal, and complete trajecto-
ries. However, this approach presents some limitations. The real-time computation of
motion primitives at each iteration of the planner, while computationally tractable for
straightforward systems with available analytical solutions, becomes intractable for more
complex systems. Furthermore, the method’s use of motion primitives with fixed duration
hinders the overall objective of generating a minimum-time trajectory. The fixed duration
of a motion primitive connecting two states remains unchanged, even if a shorter-duration
trajectory compliant with dynamics and input constraints is feasible. In the next chapter,
a method that efficiently addresses both of these issues will be introduced.

49

4| Search-based kinodynamic
planning with motion
primitives library

Chapter 3 delves into the complexities of addressing kinematic motion planning prob-
lems, focusing in particular on straightforward systems such as double and triple in-
tegrators. The simplicity of these systems enables the calculation of motion primitives
through forward propagation of the equations of motion, eliminating the necessity of solv-
ing a TPBVP. For these simple systems, performing real-time computations of the motion
primitives within each iteration of the A* algorithm is relatively straightforward, thanks
to the immediate availability of analytical solutions. However, this task becomes consid-
erably more intricate for more complex dynamic systems. Addressing the computation of
a motion primitive for these systems involves solving a TPBVP, which is non-trivial and
time-consuming. Consequently, in such cases, performing real-time computations of the
motion primitives during each iteration of the A* algorithm becomes intractable. The
considerable time required to compute the solution slows down trajectory planning, mak-
ing it unsuitable for dynamic environments where rapid and frequent replanning of the
trajectory is crucial.

This chapter builds upon the methodology proposed in [15], providing an effective ap-
proach for addressing kinodynamic motion planning problems for complex systems. Specif-
ically, Section 4.1 explains the generation of motion primitives by employing state-based
steering techniques and delving into essential concepts regarding the invariance properties
of the system. Additionally, it introduces the notion of a motion primitive library, accom-
panied by a comprehensive example illustrating the process of computing this library for
a simple system. Section 4.2 delves into the intricate realm of search space design, explor-
ing methodologies and considerations inherent to this crucial aspect of motion planning.
Section 2.2 addresses kinodynamic motion planning by integrating the motion primitive
library within the A* algorithm. This integration forms a pivotal part of the methodology,
enhancing the algorithm’s capabilities in handling complex systems. Finally, a numerical

50 4| Search-based kinodynamic planning with motion primitives library

validation is presented to show the efficacy of the proposed methodology.

4.1. Motion primitives generation

This section explores the generation of motion primitives through the application of state-
based steering technique, drawing considerable inspiration from the work presented in [16].
More specifically, it involves computing a trajectory that originates from an initial state,
denoted as xi, and efficiently guides the system towards the final state, denoted as xf , by
establishing an exact connection between the two states. State-based steering effectively
tackles the inverse problem of precisely interpolating between states xi and xf , which
corresponds to the resolution of a TPBVP spanning from the initial state to the final
state. This exact interconnection between the two states, known as exact optimal steering,
guarantees the optimality of the algorithm. On the contrary, the approach described in
Chapter 3 aims to achieve optimality without solving a TPBVP. Instead, it computes op-
timal trajectories analytically. Although motion primitives can be analytically computed
in many straightforward scenarios, such as systems with linear dynamics and quadratic
costs, including several aerospace applications such as double or triple integrators [6],
traditional optimal control methods such as the Pontryagin minimum principle [7], [13]
become computationally infeasible for solving more complex problems. Consequently, in
the case of more complex systems, the resolution of a TPBVP becomes a required step.

The primitive motion that originates in the initial state xi and arrives at the final state xf
is the solution to the following constrained optimal control problem. This problem focuses
on determining the optimal duration τ for the trajectory, along with the corresponding
optimal control input u(·).

min
u(·),τ

J =

∫ τ

0

γ(x(t), u(t))dt (4.1a)

s.t. ẋ(t) = f(x(t), u(t)),

x(t) ∈ Sfree for t ∈ [0, τ],

u(t) ∈ U for t ∈ [0, τ],

x(0) = xi, x(τ) = xf ,

(4.1b)

(4.1c)

(4.1d)

(4.1e)

where J represents the cost function that needs to be minimized, typically consisting of
both a boundary term and an integral term. The boundary term typically pertains to
the trajectory’s duration, while the integral term includes the control input, in order to

4| Search-based kinodynamic planning with motion primitives library 51

penalize excessive control efforts. The search for an optimal solution involves ensuring the
satisfaction of various equality and inequality constraints. In particular, Equation 4.1b
characterizes the dynamics of the system. The condition 4.1d outlines the control input
constraints, where u(t) represents the control inputs vector, and U denotes the admissible
set of control inputs. The condition 4.1c describes the state constraints, which include
restrictions on velocity and higher-order derivatives. In this context, x(t) denotes the
system’s state vector. The initial and final conditions in 4.1e correspond to the boundary
constraints.

Typically, the decision variables (x(t), u(t)) are continuous functions, posing a challenge
in solving Problem 4.1. However, the differential flatness of the quadrotor system allows
to rewrite Problem 4.1 using a finite parametrization. Subsequently, the problem can be
reformulated as a nonlinear program and solved using NLP techniques. In this way, opti-
mization over states and control inputs is avoided. This process will be better explained
in the example provided in Section 4.1.3.

4.1.1. Invariance properties

Dynamic systems exhibit a fundamental characteristic: translation invariance. This prop-
erty is a common feature in autonomous vehicle systems and has been extensively explored
in previous works [5], [1], [15]. This property implies that if the dynamics of the system
1.3 and the initial conditions are expressed in a new set of coordinates obtained by a
simple translation of the original one, the state evolution resulting from the application of
a control input u(·) is a translated version of the original coordinates [16]. In other words,
the use of the Euclidean norm in the cost function 2.2 ensures invariance under transla-
tion. As a consequence, the optimal primitive for a specific problem remains the same,
regardless of the coordinate frame in which the problem is formulated [13]. Furthermore,
the satisfaction of algebraic path constraints and the value of the cost function remain
unaffected by the translation of the coordinate system. This provides the designer with
the flexibility to formulate the motion primitive generation problem in the most suitable
reference frame.

In specific instances, certain dynamic systems exhibit more robust invariance properties.
Within such systems, it becomes possible to derive optimal solutions for two distinct sets
of boundary conditions from one another. This capability arises when the initial and
final configuration pairs are connected through an affine transformation that conserves
distances. This extension of the invariance property goes beyond mere translation, includ-
ing rotation and mirror reflection. As a result, rotated and symmetric motion primitives

52 4| Search-based kinodynamic planning with motion primitives library

share the same cost and satisfy identical algebraic path constraints [16]. For example,
quadrotors exhibit the characteristic of being invariant to horizontal plane translations as
well as rotations about a vertical axis [4]. This implies that all trajectories can be rigidly
translated to start from any arbitrary point and rotated about the vertical axis to initiate
with an arbitrary yaw angle. Furthermore, quadrotor motion primitives corresponding to
boundary conditions that are symmetric with respect to both the x-axis and the y-axis
are symmetric.

An issue in the offline trajectory generation process is the large storage memory required.
In this context, the properties mentioned above can be leveraged to reduce the required
storage memory. For the remaining part of this work, the essential properties of transla-
tional invariance and symmetry of motion primitives will serve for the assembly of motion
primitive sequences into a complete trajectory.

4.1.2. Motion primitives library

Solving a TPBVP for a generic nonlinear system is a challenging task that requires the
use of a nonlinear solver. Consequently, the online computation of motion primitives
at each iteration of the planning algorithm becomes computationally intractable. This
issue arises from the intention to apply the kinodynamic motion planning procedure in
real-time scenarios, particularly in dynamic environments where vehicles must rapidly
replan their trajectories. To enable real-time application, the algorithm must achieve
exceptionally short runtimes, and the heavy computational load resulting from solving
numerous TPBVPs precludes this possibility. In addressing this issue, a practical solution
has been presented in [15] and [1], which introduces a library of motion primitives. One
notable feature of this innovative approach is that transcribing the system dynamics into
a motion library shifts all challenges related to solving nonconvex optimization problems,
handling model nonlinearities, ensuring constraint satisfaction, and more, to the offline
phase. In this phase, the use of iterative and computationally intensive algorithms does
not pose problems. The remainder of this chapter adopts this efficient approach, drawing
substantial inspiration from [16].

In this study, the database of motion primitives is generated offline by solving Problem 4.1
numerically for a suitable number of boundary conditions, obtained by uniformly gridding
the continuous state space. In particular, for every pair of initial and final states (xii, xif),
i = 1, ..., n, taken as the grid points of the uniform discretized grid, a TPBVP is solved.
This process yields the optimal time history of the vehicle states x∗i (t), the optimal control
input u∗i (t), the optimal trajectory duration τ ∗i , and the optimal cost C∗

i . All of these

4| Search-based kinodynamic planning with motion primitives library 53

elements minimize the cost function J and satisfy all constraints.

The resulting quantities for each trajectory are stored in a data structure that can be
conveniently organized as a Look-Up Table (LUT). This collection of optimal trajectories
is subsequently employed repetitively online; when the planner requires an edge connect-
ing two nodes, it can simply select a suitable trajectory from the library. This approach
transfers the generation of motion primitives to the offline phase, eliminating the require-
ment to repeatedly invoke a non-linear solver during the online planning stage. It is worth
noting that in cases where a vehicle model is not available, trajectories can be obtained
directly from experimental flight data [4]. Therefore, primitives are by design compatible
with the vehicle dynamics.

In the following example, we will investigate the practical application of this method
to quadrotors, leveraging their ready availability for experimental testing within the
Aerospace Systems and Control Laboratory (ASCL) at Politecnico di Milano. However,
it is essential to recognize that employing this method with such a straightforward system
does not yield significant advantages compared to the approach outlined in Chapter 3.
In this scenario, selecting the trajectory required by the planner from the library is es-
sentially equivalent to computing the analytical solution in real time. Nevertheless, it
is worth mentioning that this method offers wide versatility and can be employed with
a broad range of dynamical systems governed by differential equations and subject to
analytical constraints, provided that the design of edges can be formulated as a TPBVP.

4.1.3. Example

Consider a planning scenario that involves a quadrotor UAV operating in a 2D config-
uration space. The system is characterized by a 4D state space (x, y, vx, vy), including
position (x, y) and velocity (vx, vy) along the x and y axes,in addition to a 2D actuation
space (ax, ay) = (ux, uy), constituted by the linear accelerations along the respective axes.
The quadrotor’s dynamics is described by the following set of equations:

ẋ(t) = vx(t)

ẏ(t) = vy(t)

v̇x(t) = ax(t) = ux

v̇y(t) = ay(t) = uy.

The library of motion primitives is computed by solving the following TPBVP for every
combination of initial state (xi, yi, vxi, vyi) and final state (xf , yf , vxf , vyf).

54 4| Search-based kinodynamic planning with motion primitives library

min
ux(·),uy(·),τ

J =

∫ τ

0

(ux(t)
2 + uy(t)

2)dt+ ρτ (4.2)

s.t. ẋ(t) = vx(t),

ẏ(t) = vy(t),

v̇x(t) = ax(t) = ux,

v̇y(t) = ay(t) = uy,

vx(t) ∈ [−1, 1] for t ∈ [0, τ],

vy(t) ∈ [−1, 1] for t ∈ [0, τ],

ux(t) ∈ [−3, 3] for t ∈ [0, τ],

uy(t) ∈ [−3, 3] for t ∈ [0, τ],

x(0) = xi, y(0) = yi,

vx(0) = vxi, vy(0) = vyi,

x(τ) = xf , y(τ) = yf ,

vx(τ) = vxf , vy(τ) = vyf ,

(4.3)

where ρ is a weight on the time that can be adjusted by the user to suit the specific
problem at hand.

Leveraging differential flatness, a polynomial parametrization of the flat output is as-
sumed. In particular, a third-order polynomial is used to express the positions along both
the x and y axes:

x(t) =
C1

6
t3 +

C2

2
t2 + C3t+ C4,

y(t) =
B1

6
t3 +

B2

2
t2 +B3t+B4.

The velocities along both axes are derived from the respective positions as their first
derivatives:

vx(t) =
C1

2
t2 + C2t+ C3,

vy(t) =
B1

2
t2 +B2t+B3.

In a similar manner, the accelerations (control inputs) are the second derivatives of the
positions:

ax(t) = ux(t) = C1t+ C2,

ay(t) = uy(t) = B1t+B2.

4| Search-based kinodynamic planning with motion primitives library 55

As a result of the polynomial representation, the optimization variables for the optimal
trajectory along the x-axis are represented by coefficients C1, C2, C3, and C4 while for
the trajectory along the y-axis, they are represented by coefficients B1, B2, B3, and B4.
Additionally, the duration of the primitive τ is a shared optimization variable for both
one-dimensional trajectories, as they are required to satisfy the final boundary conditions
simultaneously. This allows the cost function in 4.2 to be reformulated in terms of the
optimization variables:

J =

∫ τ

0

[(C1t+ C2)
2 + (B1t+B2)

2]dt+ ρτ. (4.4)

Likewise, the constraints can be expressed as functions of the optimization variables.
Finally, the constrained optimization problem in 4.3 can be discretized in terms of the
selected optimization variables as follows:

minimize
Ci,Bi,i=1:4

J =

∫ τ

0

[(C1t+ C2)
2 + (B1t+B2)

2]dt+ ρτ

s.t. x(t) =
C1

6
t3 +

C2

2
t2 + C3t+ C4,

y(t) =
B1

6
t3 +

B2

2
t2 +B3t+B4,

vx(t) ∈ [−1, 1] for t ∈ [0, τ],

vy(t) ∈ [−1, 1] for t ∈ [0, τ],

ux(t) ∈ [−3, 3] for t ∈ [0, τ],

uy(t) ∈ [−3, 3] for t ∈ [0, τ],

x(0) = xi, y(0) = yi,

vx(0) = vxi, vy(0) = vyi,

x(τ) = xf , y(τ) = yf ,

vx(τ) = vxf , vy(τ) = vyf .

(4.5)

Consequently, optimization over states and control inputs is avoided. Subsequently, the
discretized problem in 4.5 is solved using the built-in MATLAB function fmincon.

Then, the database is constructed starting from an initial state position at (xi, yi) = (0, 0).
It relies on a low-resolution uniform square grid, where (xf , yf) ∈ [−1, 0)∪(0, 1]×[−1, 0)∪
(0, 1], and each cell has a size of one meter. The choices for both initial and final velocities,
vx and vy, are made from a set of three values: {−1, 0, 1}m/s.

Figure 4.1a shows a subset of motion primitives. These primitives are distinguished by tra-

56 4| Search-based kinodynamic planning with motion primitives library

(a) Subset of motion primitives. (b) Complete set of motion primitives.

Figure 4.1: Subset (a) and complete set (b) of motion primitives computed for a 4D
state space (x, y, vx, vy). Red dot corresponds to the initial state position (xi, yi), while
blue dots correspond to the final state positions (xf , yf). The black lines represent the
computed trajectories for different final velocities vx and vy.

jectories that originate from the steady state, defined as (xi, yi) = (0, 0), (vxi, vyi) = (0, 0).
Figure 4.1b illustrates the complete collection of motion primitives, with trajectories orig-
inating from the position (xi, yi) = (0, 0) and velocities selected from the three available
values of {−1, 0, 1}m/s.

Thanks to the property of translation invariance introduced previously (4.1.1), it is pos-
sible to maintain a small database size while effectively covering the entire space in which
the vehicle operates. A key consequence of the system dynamics’ invariance is the ability
to treat all trajectory primitives as equivalent classes and select a prototype for each one,
starting at a reference position. In practice, without any loss of generality, the initial po-
sition can be set as (x̂i, ŷi) = (0, 0) during the database construction phase. Subsequently,
the motion primitives can be easily translated to match any other initial position (xi, yi)

simply by recentering the coordinate system around (xi, yi) [16].

Upon observation of Figure 4.1, it becomes evident that, within the context of the straight-
forward dynamic system at hand, a symmetry property holds with respect to both the
x-axis and the y-axis. More precisely, it is necessary to keep only the trajectories lo-
cated within the first quadrant in the database, as all other trajectories can be generated
through straightforward mirroring relative to the x-axis and y-axis. Figure 4.2 illustrates
the steps involved in generating a complete database starting from a smaller set of refer-
ence motion primitives. Figure 4.2a shows the collection of reference trajectories, which
pertain to the first quadrant. In Figure 4.2b, a single reference trajectory (depicted by

4| Search-based kinodynamic planning with motion primitives library 57

(a) (b) (c)

Figure 4.2: Steps to build a complete motion primitives database (c) starting from a
smaller set of reference trajectories (a) through mirror reflection relative to the x and y
axes for all the trajectories within the reference set (b).

the magenta line) is subject to mirroring operations along the x and y axes. Figure 4.2c
presents the complete set of primitives resulting from these mirroring operations. It is
worth noting that to simplify the representation, only primitives originating from the
steady state xi = yi = vxi = vyi = 0 are considered. To generate the entire database, all
velocities within the set {−1, 0, 1}m/s must be taken into account for the initial state.

A close examination of Figure 4.2 reveals a rotational invariance in the trajectories. This
property derives from the fact that quadrotors exhibit an inherent invariance to horizon-
tal plane translations and rotations about a vertical axis. By taking this property into
account, it becomes possible to further reduce the size of the database.

4.2. Search space design

Motion primitives establish a finite lattice discretization within the state space. These
predefined motions encapsulate a range of possible actions or trajectories that a system
can undertake, enabling efficient and rapid planning by leveraging a precomputed set
of feasible maneuvers. In the realm of search-based planning, leveraging motion primi-
tives means making sure the planner’s search space matches well with the precalculated
motions stored in the database. To maximize the utility of this precomputed database,
the search space within the planner must be carefully designed. It is imperative that
this space aligns with the region where the motion primitives are generated. To facil-
itate connectivity between nodes during planning iterations, the planner’s search space

58 4| Search-based kinodynamic planning with motion primitives library

is uniformly gridded based on the constructed motion primitives’ region. This strategic
alignment ensures that when the planner needs to establish connections between different
nodes, it can efficiently access the corresponding optimal trajectories within its prede-
fined search space. One crucial aspect often considered in this context is the trade-off
between granularity and computational complexity. A finer grid within the search space
can offer increased accuracy and precision in motion planning, but comes at the expense
of higher computational demands due to an expanded number of grid cells and increased
connectivity between nodes. On the contrary, a coarser grid reduces computational load
but might sacrifice planning accuracy by limiting the diversity and precision of available
trajectories.

4.3. Kinodynamic motion planning

In the domain of search-based kinodynamic motion planning, this thesis represents a sig-
nificant breakthrough by integrating a library of precomputed motion primitives directly
into the conventional A* algorithm. This integration eliminates the necessity of solving
complex and time-consuming TPBVPs in real time during the connection of nodes in the
planning process. This integration allows the planner to access a precomputed database
of feasible and optimized motion primitives representing various permissible trajectories.
Rather than recalculating these trajectories during each node connection, the planner
efficiently retrieves and utilizes these pregenerated motion primitives. This method sig-
nificantly improves the computational efficiency of the planning process while preserving
the ability to generate high-quality trajectories.

4.3.1. A* algorithm

To address the kinodynamic motion planning problem, the proposed methodology is based
on the use of the A* algorithm, detailed in Section 1.2.1. The primary adaptation of this
algorithm lies within the GetSuccessors function, which will be explained in the next sec-
tion. Additionally, a significant modification is introduced within the RecoverPath func-
tion (Algorithm 1.2). Specifically, this function is replaced by the RecoverTrajLibrary

function (Algorithm 4.1), which is specifically crafted to manage the motion primitives
library while retrieving the optimal trajectory computed by the A* algorithm. The pro-
cess starts by initializing an empty set P for the trajectory at line 2. Following this, the
procedure involves retrieving the predecessors list of node v at line 3. The main operation
unfolds from lines 4 to line 8: for each node p′ within v’s predecessors list, the function
extracts the trajectory allowing the transition from node p′ to node v from the motion

4| Search-based kinodynamic planning with motion primitives library 59

primitive database. Subsequently, this resulting primitive segment is incorporated into
the set P . Ultimately, the optimal trajectory is formed by combining all segments of the
trajectory contained within the set P .

Algorithm 4.1 Function to recover the optimal trajectory computed by A* algorithm.
1: function RecoverTrajLibrary(v, Pred(v))
2: P ← ∅;
3: PredList(v) ← Pred(v)
4: for all p′ ∈ PredList(v) do
5: pr ← L(p′, v);
6: P ← ⟨pr,P⟩;
7: v ← p;
8: end for
9: return P ;

10: end function

Successor nodes

Successor nodes consist of a collection of predefined trajectories that connect initial states
to defined final states within a meticulously defined grid. The motion primitives database
simplifies the process of determining a node’s successors by simplifying the computation
of the required steering action during online motion planning. Instead of solving TPBVPs
in real-time, this process involves searching for a motion primitive within a pre-computed
Look-Up Table (LUT), resulting in a substantial acceleration of the motion planning
solution.

When provided with an initial state and a final state, the GetSuccessorsLibrary pro-
cedure in 4.2 is employed to query the motion primitives database. This process involves
a sequence of geometric transformations, as depicted in Figure 4.3. Specifically, for each
edge connecting two nodes, vi and vf , the respective trajectory and its associated cost are
recovered using the following approach: First, the original pair of initial and final states
(vi, vf) (Figure 4.3 a) are translated so that the resulting initial state v̂i has the position
corresponding to the origin of the motion primitive library (x̂i, ŷi) = (0, 0) (Figure 4.3b).
Subsequently, a database query is executed to retrieve the trajectory connecting these
transformed nodes, along with the associated cost. Finally, to recover the trajectory link-
ing the actual pair of boundary values, vi and vf , the inverse of the initial translation
is applied. Therefore, the edge that connects the initial required boundary conditions is
determined (Figure 4.3c).

Throughout this process, it is important to maintain trajectory continuity. Specifically,
the selected primitive must ensure the continuity of all state variables, encompassing not

60 4| Search-based kinodynamic planning with motion primitives library

only position but also velocity, and, where applicable, higher-order derivatives, at each
node. This attention to continuity is crucial to achieve a smooth and reliable trajectory.

(a) original nodes. (b) translated nodes. (c) inverse translation.

Figure 4.3: Steps involved in the geometric translation.

Algorithm 4.2 Given the current node v and the motion primitive library L, including all
initial states si, final states sf , connecting primitives pr, and their associated effort costs
c, find the set of successors Succ(v) and their cost SuccCost(v).
1: function GetSuccessorsLibrary(v, L)
2: Succ(v) ← ∅;
3: SuccCost(v) ← ∅;
4: for all si, sf ∈ L do
5: L.isContinuous(v,si L);
6: L.Translate(v,si,sf L);
7: end for
8: for all pr ∈ L do
9: if isCollisionFree(pr) then

10: Succ(v) ← Succ(v) ∪ {sf};
11: SuccCost(v) ← SuccCost(v) ∪ {c+ ρτ};
12: end if
13: end for
14: return Succ(v), SuccCost(v);
15: end function

4| Search-based kinodynamic planning with motion primitives library 61

4.4. Numerical examples

This section proposes two examples from a virtual environment to demonstrate the effec-
tiveness of the described methodology. We shall explore the practical application of this
approach to quadrotors in the following cases, making use of the fact that they are avail-
able for experimental tests in the Aerospace Systems and Control Laboratory (ASCL) at
Politecnico di Milano University. However, it is important to note that this approach is
highly adaptable and may be used for a variety of dynamical systems governed by differ-
ential equations and subject to analytical constraints, as long as the edge design can be
expressed as TPBVP.

In the following examples, the goal is to navigate a quadrotor from an initial state to a
final state, with an emphasis on achieving a balance between trajectory duration and the
effort expended along the trajectory. In each example, the quadrotor can operate in a 2D
rectangular virtual environment measuring 40m × 10m.

4.4.1. Acceleration-controlled system

Consider a planning scenario involving a quadrotor UAV operating in a 2D configuration
space. The system is characterized by a 4D state space (x, y, vx, vy), including position
(x, y) and velocity (vx, vy) along the x and y axes, in addition to a 2D actuation space
(ux, uy) = (ax, ay), constituted by the linear accelerations along the respective axes. The
quadrotor’s dynamics can be represented by the following set of equations:

ẋ(t) = vx(t)

ẏ(t) = vy(t)

v̇x(t) = ax(t) = ux

v̇y(t) = ay(t) = uy.

Leveraging quadrotor differential flatness, a polynomial parametrization of the flat output
is assumed. In particular, a third-order polynomial is used to express the positions along
the x and y axes.

x(t) =
C1

6
t3 +

C2

2
t2 + C3t+ C4,

y(t) =
B1

6
t3 +

B2

2
t2 +B3t+B4.

The velocities and accelerations along both axes are straightforwardly obtained by taking
the first and second derivatives of the respective positions. Following the methodology
described in the example in Section 4.1.3, motion primitives are obtained solving the

62 4| Search-based kinodynamic planning with motion primitives library

following discretized problem:

minimize
Ci,Bi,i=1:4

J =

∫ τ

0

∥u(t)∥2 dt+ ρτ

s.t. x(t) =
C1

6
t3 +

C2

2
t2 + C3t+ C4,

y(t) =
B1

6
t3 +

B2

2
t2 +B3t+B4,

∥v(t)∥ ∈ [−1.5
√
2, 1.5

√
2], t ∈ [0, τ],

∥a(t)∥ ∈ [−4.5
√
2, 4.5

√
2], t ∈ [0, τ],

x(0) = xi, y(0) = yi,

vx(0) = vxi, vy(0) = vyi,

x(τ) = xf , y(τ) = yf ,

vx(τ) = vxf , vy(τ) = vyf .

(4.6)

where the weight on the time is chosen as ρ = 10, in order to obtain a faster trajectory,
while simultaneously minimizing overall control effort. To enhance the realism of the
example, coupled constraints for velocities and accelerations are introduced. Specifically,
limits are defined for the total velocity ∥v∥ =

√
v2x + v2y and the total acceleration (control

input) ∥u∥ = ∥a∥ =
√
a2x + a2y. The maximum overall velocity and acceleration are set as

vmax = 1.5
√
2m/s and amax = 4.5

√
2m/s2, respectively.

To solve the discretized optimization Problem in 4.6, the built-in MATLAB function
fmincon [10] is employed as a nonlinear programming solver. Among the available solvers,
the Sequential Quadratic Programming algorithm (SQP) is selected.

The database is assembled starting from an initial state position at (xi, yi) = (0, 0). It
relies on a uniform square grid, where (xf , yf) ∈ [−3, 0)∪ (0, 3]× [−3, 0)∪ (0, 3], and each
cell has a size of one meter. The choices for both initial and final velocities are made
from a set of three values: {−1.5, 0, 1.5}m/s. Then, motion primitives are calculated for
every combination of initial state (xi, yi, vxi, vyi) and final state (xf , yf , vxf , vyf) by solving
Problem 4.6. By leveraging the symmetry property, generating the reference trajectories
(equivalent to 1/4 of the complete database) requires approximately 21 minutes. Fortu-
nately, this timeframe poses no issue for the motion planning problem, as the resolution
of the TPBVPs is conducted offline. The complete database comprises a total of 1701
motion primitives. The numerical details concerning the generation of the database are
presented in Table 4.1.

In the virtual indoor environment, the vehicle is initialized with the state (x, y, vx, vy) =

4| Search-based kinodynamic planning with motion primitives library 63

Table 4.1: Database details for the acceleration-controlled system.

Generation time ≈ 21 min

Number of primitives 1701

(2, 1, 0, 0), and the destination is set at the state (x, y, vx, vy) = (38, 7, 0, 0). Simulations
are executed on a personal computer equipped with an IntelCore i7 processor running at
2.30 GHz with 16GB RAM, and the algorithm is implemented in MATLAB. In Table 4.2
some relevant results related to motion planning simulations are reported.

Table 4.2: Motion planning results for the acceleration-controlled system.

Algorithm runtime 1410.60 ms

Number of expanded states 11

When comparing Table 3.1 and Table 4.2, an interesting observation emerges: the al-
gorithm’s runtime exhibits a reduction for the current problem. This reduction comes
primarily from the database of motion primitives employed, which includes trajectories
spanning 1, 2, or 3 meters in length, exceeding the length of trajectories generated within
the analogous example discussed in Chapter 3. Consequently, this results in a reduced
number of segments that must be concatenated to obtain the overall trajectory. As a con-
sequence, the algorithm requires fewer iterations and expands a lower number of nodes
to compute the optimal trajectory. These insights highlight the crucial role of discretiza-
tion within the library, which includes position, velocity, and higher-order derivatives,
in influencing the performance of the algorithm. The discretization is closely tied to
the particular problem at hand, requiring thoughtful consideration and tailored selection.
Moreover, as the grid resolution increases, augmenting the precision of the state space, a
corresponding increase occurs in the state space’s cardinality. This tends to decelerate the
search process, highlighting the trade-off between precision and computational efficiency.

Figure 4.4 shows the simulation result for the acceleration-controlled system. The optimal
trajectory in red shows the vehicle’s ability to reach the target state navigating through
the environment without any collisions with obstacles. Figures 4.5 and 4.6 illustrate
the velocity and actuation profiles for the optimal trajectory presented in Figure 4.4,
providing a clear demonstration of the satisfaction of the velocity and input constraints.
It is worth noting that the velocity profile displays jerky acceleration behavior. This is a
result of the velocity at each node being constrained to precisely match one of the values
in the database. This observation underscores the importance of carefully selecting the

64 4| Search-based kinodynamic planning with motion primitives library

velocity discretization step when aiming for a smoother velocity profile. Furthermore, in
this example, continuity has been enforced only on the velocity components, resulting in
a discontinuous acceleration profile. To address this issue, a more extensive exploration
of the state space is required, as exemplified in the subsequent example.

Figure 4.4: Simulation result for acceleration-controlled system. The blue dot on the right
represents the starting position, while the one on the left indicates the final position. The
red curve is the optimal trajectory.

Figure 4.5: Velocity profile for the optimal trajectory in Figure 4.4. Blue and cyan lines
depict the velocities along the x- and y-axes. Magenta curve represents the combined
velocity. Red lines show the velocity limits.

4| Search-based kinodynamic planning with motion primitives library 65

Figure 4.6: Actuation (acceleration) profile for the optimal trajectory in Figure 4.4. Blue
and cyan lines depict the accelerations along the x- and y-axes. Magenta curve represents
the combined acceleration. Red lines show the actuation limits.

66 4| Search-based kinodynamic planning with motion primitives library

4.4.2. Jerk-controlled system

Consider a planning scenario involving a quadrotor UAV operating within a 2D configura-
tion space. The system is characterized by a 6D state space (x, y, vx, vy, ax, ay), including
position (x, y), velocity (vx, vy) and acceleration (ax, ay) along the x and y axes, in addi-
tion to a 2D actuation space (jx, jy) = (ux, uy), constituted by the linear jerks along the
respective axes. The quadrotor’s dynamics is described by the following set of equations:

ẋ(t) = vx(t)

ẏ(t) = vy(t)

v̇x(t) = ax(t)

v̇y(t) = ay(t)

ȧx(t) = jx(t) = ux

ȧy(t) = jy(t) = uy.

Leveraging quadrotor differential flatness, a polynomial parametrization of the flat output
is assumed. In particular, a fifth-order polynomial is used to express the positions along
the xx- and y-axes.

x(t) =
C1

120
t5 +

C2

24
t4 +

C3

6
t3 +

C4

2
t2 + C5t+ C6,

y(t) =
B1

120
t5 +

B2

24
t4 +

B3

6
t3 +

B4

2
t2 +B5t+B6.

Obtaining velocities, accelerations, and jerks along both axes involves straightforwardly
computing the first, second, and third derivatives of the respective positions. Applying
a methodology similar to that outlined in Section 4.1.3, motion primitives are computed

4| Search-based kinodynamic planning with motion primitives library 67

by solving the following discretized problem:

minimize
Ci,Bi,i=1:4

J =

∫ τ

0

∥u(t)∥2 dt+ ρτ

s.t. x(t) =
C1

120
t5 +

C2

24
t4 +

C3

6
t3 +

C4

2
t2 + C5t+ C6,

y(t) =
B1

120
t5 +

B2

24
t4 +

B3

6
t3 +

B4

2
t2 +B5t+B6,

∥v(t)∥ ∈ [−1.5
√
2, 1.5

√
2], t ∈ [0, τ],

∥a(t)∥ ∈ [−3
√
2, 3
√
2], t ∈ [0, τ],

∥j(t)∥ ∈ [−15
√
2, 15
√
2], t ∈ [0, τ],

x(0) = xi, y(0) = yi,

vx(0) = vxi, vy(0) = vyi,

ax(0) = axi, ay(0) = ayi,

x(τ) = xf , y(τ) = yf ,

vx(τ) = vxf , vy(τ) = vyf .

ax(τ) = axf , ay(τ) = ayf .

(4.7)

where the weight on the time is chosen as ρ = 10, in order to obtain a faster trajectory,
while simultaneously minimizing overall control effort. Similarly to the previous example,
coupled constraints are considered for velocity, acceleration, and jerk.

To solve the discretized optimization problem, the built-in MATLAB function fmincon

[10] is employed as a nonlinear programming solver. From the available solvers, the
Sequential Quadratic Programming algorithm (SQP) is the chosen approach.

The database construction starts from an initial state positioned at (xi, yi) = (0, 0). This
process is based on a uniform square grid, with the final state position coordinates (xf , yf)
residing within the region [−4, 0) ∪ (0, 4]× [−4, 0) ∪ (0, 4], where each grid cell spans one
meter. The process of selecting initial and final velocities involves choosing among a
set of three predefined values: {−1.5, 0, 1.5}m/s. Similarly, the selection of initial and
final accelerations involves selecting from a set of three specified values: {−3, 0, 3}m/s2.
Subsequently, the motion primitives are computed for every combination of initial states
(xi, yi, vxi, vyi, axi, ayi) and final states (xf , yf , vxf , vyf , axf , ayf) by solving Problem 4.7.
Exploiting the symmetry property, the creation of the reference trajectories (equivalent
to 1/4 of the entire database) requires approximately 20 hours. Fortunately, this time
frame does not pose any issue for the motion planning problem, as the resolution of the
TPBVPs is conducted offline. The complete database comprises a total of 46656 motion

68 4| Search-based kinodynamic planning with motion primitives library

primitives. The numerical details regarding the database generation can be found in
Table 4.3.

Table 4.3: Database details for the jerk-controlled system.

Generation time ≈ 20 hours

Number of primitives 46656

Upon comparing Table 4.1 and Table 4.3, a significant increase is evident in both the
time needed for database generation and the quantity of primitives included within it.
This increase can be attributed to the incorporation of a wider state space, which now
encompasses acceleration within the database discretization. However, its impact on the
motion planning problem remains minimal, as the database generation process takes place
offline.

In the virtual indoor map setting, the vehicle is initialized with the state (x, y, vx, vy) =

(2, 1, 0, 0), and the destination state is set to (x, y, vx, vy) = (38, 7, 0, 0). Simulations are
performed on a personal computer equipped with an Intel Core i7 processor running at
2.30 GHz, with 16GB RAM. In Table 4.4 are reported some relevant results pertaining
to motion planning simulations.

Table 4.4: Motion planning results for the jerk-controlled system

Algorithm runtime 5353.08 ms

Number of expanded states 15

Upon examining the results reported in Tables 4.2 and 4.4, a slight increase in the ex-
ecution time of the algorithm and the expanded states can be noticed. This increase
can be attributed to the adoption of a larger state space, thus increasing the overall
cardinality of the graph. With a wider state space, the search algorithm encounters a
potentially larger number of states eligible for expansion during the search process. For
improved search speed, considering code optimization techniques and transitioning to a
C++ implementation could be beneficial.

Figure 4.7 shows the simulation result for the jerk-controlled system. Figures 4.8, 4.9 and
4.10 depict the velocity, acceleration, and actuation profiles associated with the optimal
trajectory shown in Figure 4.7. These figures offer a clear illustration of how the velocity,
acceleration, and input constraints are met. It is important to note that the velocity profile

4| Search-based kinodynamic planning with motion primitives library 69

exhibits jerky acceleration behavior. This behavior arises from the constraint demanding
that the velocity at each node matches exactly one of the values in the database. This
observation highlights the significance of a meticulous choice in the velocity discretization
step when trying to obtain a smoother velocity profile.

Upon reviewing Figure 4.9, it becomes evident that the acceleration profile no longer
shows discontinuities. This can be attributed to the parametrization of the trajectory as
a fifth-order polynomial.

Figure 4.7: Simulation result for jerk-controlled system. The blue dot on the right repre-
sents the starting position, while the one on the left indicates the final position. The red
curve is the optimal trajectory.

Figure 4.8: Velocity profile for the optimal trajectory in Figure 4.7. Blue and cyan lines
depict the velocities along the x- and y-axes. Magenta curve represents the combined
velocity. Red lines show the velocity limits.

70 4| Search-based kinodynamic planning with motion primitives library

Figure 4.9: Acceleration profile for the optimal trajectory in Figure 4.7. Blue and cyan
lines depict the accelerations along the x- and y-axes. Magenta curve represents the
combined acceleration. Red lines show the acceleration limits.

Figure 4.10: Actuation (jerk) profile for the optimal trajectory in Figure 4.7. Blue and
cyan lines depict the jerks along the x- and y-axes. Magenta curve represents the combined
jerk. Red lines show the actuation limits.

4| Search-based kinodynamic planning with motion primitives library 71

4.5. Conclusion

In this chapter, a search-based planner was introduced that innovatively incorporates a
database of offline precomputed solutions. A core emphasis was placed on the creation
of a motion primitive library, achieved through the resolution of multiple TPBVPs and
leveraging the invariance properties inherent in dynamical systems. Despite the inherent
challenges of planning with systems with arbitrary dynamics, the integration of a database
of offline precomputed solutions within the search-based framework emerges as a strategic
solution, effectively mitigating the computational load associated with this complexity.

In conclusion, the proposed advanced planner and trajectory generator, with its distinctive
characteristics, stands out for its ability to navigate UAVs effectively through complex
and challenging scenarios. Its prowess lies in the real-time generation of dynamically
feasible, collision-free, resolution-optimal, and complete trajectories. What distinguishes
this approach is not just its efficacy for quadrotors but its versatility to address a diverse
range of dynamic systems, showcasing a level of adaptability and efficiency that goes
beyond conventional planning methods.

73

5| Experimental results

This chapter showcases the efficacy of the approach introduced in Chapter 4 for navi-
gating real-world cluttered environments, demonstrated through a series of experiments.
The experiments involve conducting simulations and real flight tests using the ANT-X
quadrotor platform (depicted in Figure 5.1), within the Aerospace Systems and Control
Laboratory (ASCL) of Politecnico di Milano University.

Figure 5.1: Quadrotor platform used for the experiments.

5.1. Problem setup

The operational area for the vehicle within the environmental map covers the region where
x ∈ [−5, 5]m and y ∈ [−2, 2]m. This map is populated with two rectangular obstacles
measuring 0.4 × 1.5 × 2 meters each. Positioned in the (x, y) plane (ground plane), the
center of the first obstacle is located at (x, y) = (−1.5, 0.5), while the center of the second
obstacle is at (x, y) = (1.5,−0.5). The obstacles are inflated by 0.3m to account for the ra-
dius of the drone and prevent potential collisions. This virtual environment is visualized in

74 5| Experimental results

Figure 5.2. The start position is set at (xhi, yhi, zhi) = (−3.5, 0.5, 1), while the goal region

Figure 5.2: Virtual indoor environment used for the experiments.

is defined as a square with a side length of 0.5m, centered at (xhf , yhf , zhf) = (3,−0.5, 1).
The trajectory starts and ends with zero velocity and acceleration. Throughout the plan-
ning process, a constant altitude of 1m is maintained. The planning method is the one
described in Chapter 4.

Attention must be paid to the change of reference frame adopted in this chapter. In both
the simulations and the experimental tests, the NED reference frame is used. In contrast
to the xyz coordinate system used so far, the N-axis aligns with the y-axis, the E-axis
aligns with the x-axis, and the D-axis points downward, in correlation with the inverse
direction of the z-axis represented in Figure 5.2.

Subsequent sections will showcase the results of simulations and real-world experiments
derived from two distinct runs, each leveraging a different databases of motion primitives.
In particular, in the first example, the upper and lower limits for total velocity, accel-
eration, and jerk (control input) are defined as vmax = 1.5

√
2m/s, amax = 4.5

√
2m/s2

and jmax = 50
√
2m/s3, respectively. Consequently, this results in the total velocity and

acceleration being constrained within v ∈ [−vmax, vmax]m/s and a ∈ [−amax, amax]m/s2

respectively, and the overall control input is bounded within u ∈ [−jmax, jmax]m/s3. The
construction of the database starts from an initial state positioned at (xi, yi) = (0, 0).
This process is based on a uniform square grid, with the final state position coordinates
(xf , yf) residing within the region [−1.5, 0)∪ (0, 1.5]× [−1.5, 0)∪ (0, 1.5], where each grid
cell spans half a meter. The process of selecting initial and final velocities involves choos-

5| Experimental results 75

ing among a set of three predefined values: {−1.5, 0, 1.5}m/s. Similarly, the selection
of initial and final accelerations involves selecting from a set of three specified values:
{−4.5, 0, 4.5}m/s2.

In the second example, the limits for total velocity and acceleration remain consistent
with the first example (vmax = 1.5

√
2m/s, amax = 4.5

√
2m/s2). However, the maximum

jerk (control input) is lower, set at jmax = 15
√
2m/s3, intended to produce a smoother

and less aggressive trajectory. The process of constructing the database begins from an
initial state positioned at (xi, yi) = (0, 0). This construction method follows a uniform
square grid framework, with the final state position coordinates (xf , yf) lying within the
region [−2, 0) ∪ (0, 2] × [−2, 0) ∪ (0, 2], where each grid cell spans half a meter. Within
this grid, the velocities and accelerations at the nodes can assume values from the sets
−1.5, 0, 1.5m/s and −4.5, 0, 4.5m/s2, respectively.

5.1.1. Simulations setup

Before conducting real-world experiments, simulations are performed using the ANT-X
simulator. The simulations encompass the following phases:

1. Start: quadrotor starts and remains in the initial position (xi, yi, zi) = (−3.5, 0.5, 0)
(drone on the floor) for 5s.

2. Take off: the quadrotor moves to the initial hovering position at the coordinates
(xhi, yhi, zhi) = (−3.5, 0.5, 1). This phase lasts for a duration of 10s.

3. Hovering: the quadrotor hovers at the initial hover position at the coordinates
(xhi, yhi, zhi) = (−3.5, 0.5, 1) for 5s.

4. Trajectory tracking: the quadrotor follows the planned trajectory.

5. Hovering: the quadrotor hovers at the final hover position, which is defined as a
square region with a side length of 0.5m centered at (xhf , yhf , zhf) = (3,−0.5, 1) for
10s.

6. Landing: the quadrotor moves to the final position which is defined as a square
region with a side length of 0.5m centered at (xf , yf , zf) = (3,−0.5, 0). The duration
of this phase is 10s.

7. Hovering: the quadrotor hovers in the final position (drone on the ground) for 5s.

76 5| Experimental results

5.1.2. Real-world experiments setup

After completing the simulation phase, real-world experiments are conducted within the
Aerospace Systems and Control Laboratory (ASCL) at Politecnico di Milano University,
employing the ANT-X quadrotor platform shown in Figure 5.1. Figure 5.3 shows the
indoor environment in which the experiments are carried out.

Figure 5.3: Indoor environment used for the experiments.

5.2. Experimental test 1

In this section, both simulations and real-world experiments are executed for the example
employing the first motion primitive database explained in Section 5.1.

5.2.1. Simulation 1 results

Figure 5.4 illustrates the planned trajectory for the first simulation, with the right-side
colorbar indicating the velocity along the trajectory. It can be seen that our system can
successfully reach the goal without hitting any obstacle.

Figure 5.5 and Figure 5.6 show the position and velocity profiles, together with their
respective errors. In these plots, the dashed lines represent the setpoints, whereas the
solid lines depict the actual position and velocity of the quadrotor model. In particular,
the maximum position error is around 21cm along the east axis (x-axis in Figure 5.2),
while the maximum velocity error is approximately 0.46m/s2 along the north axis (y-axis
in Figure 5.2).

5| Experimental results 77

Figure 5.4: Planned trajectory for Simulation 1. The color bar on the right indicates the
velocity along the trajectory.

In Figure 5.7, the thrust demands on the four motors of the quadrotor are shown. Remark-
ably, the graph reveals distinct peaks, with maximum and minimum thrust requirements
reaching approximately 60% and 32% of the total thrust, respectively. These peaks co-
incide with the quadrotor’s transitions between different motion primitives, necessitating
elevated control inputs to effectuate the change.

78 5| Experimental results

Figure 5.5: Position profile and position error for Simulation 1. The dashed curve repre-
sents the setpoint, while the plain curve depicts the actual quantities.

5| Experimental results 79

Figure 5.6: Velocity profile and velocity error for Simulation 1. The dashed curve repre-
sents the setpoint, while the plain curve depicts the actual quantities.

80 5| Experimental results

Figure 5.7: Motors thrust for Simulation 1.

5| Experimental results 81

5.2.2. Real-world experiment 1 results

Figure 5.8 shows the trajectory in the (E,N) plane. The dashed curve represents the
position setpoint and the solid curve depicts the actual trajectory tracked by the quadrotor
in real-world Experiment 1.

Figure 5.8: Position setpoint (dashed curve) and corresponding trajectory tracked by the
quadrotor (solid curve) in real-world Experiment 1.

Figures 5.9 and 5.10 present the position and velocity profiles along the three axes, along-
side their respective setpoints. Upon closer examination of these graphs, it becomes
evident that the position, particularly along the North axis, is inadequately tracked. Fur-
thermore, the velocity, along both the east and north axes, also demonstrates suboptimal
tracking performance. Poor tracking performance can be attributed to the aggressiveness
of the planned trajectory, which requires abrupt changes in velocity characterized by ac-
celerations up to 6m/s2 and demanding high control inputs. This, in turn, is linked to the
discretization of the motion primitives database. In this particular simulation, the library
includes trajectories of lengths 0.5, 1, or 1.5m, resulting in high control inputs to achieve
the specified velocities at nodes (0m/s or 2m/s) over short distances. To mitigate this
problem, several strategies can be considered, all centered around the refinement of the

82 5| Experimental results

motion primitives library’s discretization. The most effective approach involves introduc-
ing additional velocity and acceleration values at the nodes (0, 1, 2m/s and 0, 3, 4.5m/s2,
for example) to produce smoother and less aggressive trajectories. Although effective, this
approach comes at the cost of a substantial increase in the number of allowed motions,
demanding extensive computation time, typically several days, to resolve all TPBVPs and
generate the motion primitives database. Alternatively, a quicker solution to implement
involves incorporating longer trajectories into the database. This modification extends
the distance available to the vehicle to reach the prescribed speed at the nodes, resulting
in a lower acceleration and reduced control input. Furthermore, the short length of the
motion primitives (0.5, 1, 1.5m) included in the database leads to a planned trajectory
lacking smoothness, characterized by numerous curves and abrupt changes in direction,
as evidenced in Figure 5.8. These considerations underscore the critical role of database
discretization in addressing specific problems, necessitating thoughtful consideration and
tailored selection. In the next simulation, a different database including longer motion
primitives (0.5, 1, 1, 5, 2m) is adopted, aiming to correct some of the above-mentioned
issues.

Figure 5.9: Profile of the position setpoint (dashed curve) and profile of the position
tracked by the quadrotor (solid curve) in real-world Experiment 1.

5| Experimental results 83

Figure 5.10: Profile of the velocity setpoint (dashed curve) and profile of the velocity
tracked by the quadrotor (solid curve) in real-world Experiment 1.

84 5| Experimental results

5.3. Experimental test 2

In this section, both simulations and real-world experiments are executed for the example
employing the second motion primitive database explained in Section 5.1

5.3.1. Simulation 2 results

Figure 5.11 visually represents the planned trajectory for the second simulation, with the
right-side colorbar indicating the velocity along the trajectory. It can be seen that our
system successfully navigates to the goal without hitting any obstacles. In Figures 5.12

Figure 5.11: Planned trajectory for Simulation 2. The colorbar on the right indicates the
velocity along the trajectory.

and 5.13, position and velocity profiles are presented, accompanied by their respective
errors. The dashed curves represent the setpoint, while the solid curves depict the actual
position and velocity of the quadrotor model. In particular, the maximum position error
is approximately 21cm along the North axis, and the maximum velocity error is close
to 0.45m/s along the same axis. This provides insights into both position and velocity
performance, highlighting the accuracy of the quadrotor model in trajectory tracking.

Figure 5.14 shows the thrust required by the four motors. In particular, the maximum
and minimum thrusts required are approximately 50% and 41% of the total thrust, re-
spectively. Moreover, the graph shows peaks significantly lower than those in Figure 5.7,
resulting in a less aggressive trajectory.

5| Experimental results 85

Figure 5.12: Position profile and position error for Simulation 2. The dashed curve
represents the setpoint, while the plain curve depicts the actual quantities.

86 5| Experimental results

Figure 5.13: Velocity profile and velocity error for Simulation 2. The dashed curve repre-
sents the setpoint, while the plain curve depicts the actual quantities.

5| Experimental results 87

Figure 5.14: Motors thrust for Simulation 2.

88 5| Experimental results

5.3.2. Experimental test 2 results

Figure 5.15 shows the planned trajectory in the plane (E,N). The dashed curve depicts
the position setpoint, while the solid curve represents the actual trajectory tracked by the
quadrotor in real-world Experiment 2. A comparative analysis with Figure 5.8 related to
Experiment 1 reveals a notable improvement in tracking performance.

Figure 5.15: Position setpoint (dashed curve) and corresponding trajectory tracked by
the quadrotor (solid curve) in real-world Experiment 2.

Figures 5.16 and 5.17 show the position and velocity profiles across the three axes, ac-
companied by their respective setpoints. Upon examination of these graphs, it becomes
evident that both the position and the velocity along all the axes are well tracked. This
improved tracking performance, compared to Example 1, can be attributed to the reduced
aggressiveness of the planned trajectory. In this specific scenario, the maximum accel-
eration achieved is approximately 4.5m/s2 and the control inputs are also significantly
lower. This achievement is obtained by utilizing a different motion primitives database.
In particular, longer trajectories are incorporated into the database for this experiment,
enabling the vehicle to achieve the selected velocities at the nodes with reduced control
effort. This strategic selection of the database discretization contributes to the overall
enhancement of the tracking.

5| Experimental results 89

Figure 5.16: Profile of the position setpoint (dashed curve) and profile of the position
tracked by the quadrotor (solid curve) in real-world Experiment 2.

Figure 5.17: Profile of the velocity setpoint (dashed curve) and profile of the velocity
tracked by the quadrotor (solid curve) in real-world Experiment 2.

91

6| Conclusions and prospective

works

6.1. Conclusions

In summary, this thesis addresses trajectory planning and generation for UAVs, especially
in the context of fast and aggressive maneuvering in complex and cluttered environments.
Here, the focus extends beyond mere obstacle avoidance to include compliance with vehicle
dynamics, as well as the fulfillment of dynamic and input constraints. The implementation
of two different methods has provided valuable insights and solutions, each with its unique
strengths and contributions.

The first method, a search-based planner tailored for quadrotors, demonstrated excep-
tional performance in addressing the kinodynamic motion planning problem for quad-
copters. Moreover, this approach has applicability beyond quadrotors, extending to sys-
tems with straightforward dynamics and existing analytical solutions. Using motion prim-
itives and a forward propagation approach, this methodology excels in generating real-time
and dynamically feasible trajectories for quadrotor UAVs.

The second method introduced a search-based planner that incorporates a database of
offline precomputed solutions, showcasing efficiency and applicability beyond quadrotors
to include arbitrary dynamical systems. The integration of a library of motion primi-
tives emerged as a strategic solution, effectively mitigating the computational challenges
associated with planning with systems with arbitrary dynamics. This approach, demon-
strated through both numerical examples and experimental tests, not only broadens the
horizons of applicability but also highlights its adaptability and efficiency in handling
diverse dynamic systems.

In conclusion, the solutions presented in this thesis offer a comprehensive and versatile
framework for UAV navigation in complex and potentially hostile environments, especially
when the vehicle is required to use its full maneuvering capabilities and react in real time
to changes. The numerical examples and the real-world experiments conducted vali-

92 6| Conclusions and prospective works

date the performance and efficacy of both methods, emphasizing their ability to generate
resolution-complete, collision-free, resolution-optimal, and dynamically feasible trajecto-
ries. Furthermore, this work contributes not only to the field of quadrotor navigation but
also marks a substantial step forward in the advancement in the field of motion planning
for arbitrary dynamic systems. This will lead to improvements in both efficiency and
safety compared to existing approaches.

6.2. Methods comparison

In this comparative analysis, the method introduced in Chapter 3 (referred to as the first
method) is compared with the method presented in Chapter 4 (referred to as the second
method), and the main advantages and disadvantages of each approach are outlined.

• The first method calculates motion primitives in real-time at each iteration of the
planner. This makes it computationally tractable for relatively straightforward sys-
tems, such as quadrotors, where analytical solutions are available. However, for more
complex systems lacking analytical solutions, solving complex and time-consuming
TPBVPs becomes necessary, making real-time computation of motion primitives
intractable. The second method efficiently addresses this challenge by introduc-
ing a motion primitive library, which extends the motion planning solution to any
arbitrary dynamic system.

• The forward propagation technique employed by the first method precludes the
creation of a motion primitive database, which requires an exact connection between
the states. This limitation is effectively overcome by the second method, which
employs a state-based steering method. Moreover, most of the search-based planners
that have a guarantee on optimality require the nodes to be connected exactly and
optimally.

• The first method employs motion primitives with fixed duration, hindering the over-
all objective of generating a minimum-time trajectory. This is due to the fixed du-
ration of a motion primitive connecting two states, which remains unchanged even if
a shorter-duration trajectory that complies with dynamics and input constraints is
feasible. In contrast, the second method adopts minimum-time motion primitives,
optimizing their duration. This strategic choice enables the generation of a final
trajectory that is optimal in terms of time.

• The analytical solutions employed in Chapter 3 do not incorporate information on
the dynamic constraints of the system, such as maximum velocity, accelerations, and

6| Conclusions and prospective works 93

actuation limits. Consequently, after the computation of the motion primitive, one
must verify that the computed trajectory is feasible for the vehicle. In contrast, the
approach presented in Chapter 4 integrates information about the system’s dynamic
constraints directly into the database of motion primitives, eliminating the necessity
for a subsequent feasibility verification step.

6.3. Impact and applications

As UAVs are gaining popularity for a wide range of applications, it is crucial to ensure
their operational safety and efficiency. The advanced planner and trajectory generator
proposed in this thesis provide a solution for UAVs to navigate efficiently in complex and
challenging scenarios without collisions.

The results of this thesis can be applied to various fields, both in the commercial and
military sectors. Commercial applications such as delivery services or infrastructure in-
spections can benefit from safe, efficient and agile UAVs. On the other hand, military
operations often involve navigating through complex and challenging terrains, where ad-
vanced planning is essential. Beyond immediate applications, the thesis itself could con-
tribute to the field of robotics and autonomous systems by addressing complex challenges
in trajectory planning and control. This could lead to new insights, methodologies, and
techniques that can be applied to other domains as well.

6.4. Prospective works

Building on the foundations laid in this thesis, future efforts will expand the focus beyond
the current scope of kinodynamic motion planning in known environments. A natural de-
velopment involves extending the proposed methodologies to tackle the challenges posed
by unknown and dynamic environments. This extension aims to allow the system to dy-
namically re-plan trajectories, using real-time data to navigate and avoid newly detected
obstacles.

In the context of employing a database of motion primitives, the robustness of the offline
phase is highly dependent on the accuracy of the model employed. To address model-
ing errors and improve trajectory tracking, the application of Iterative Learning Control
(ILC) emerges as a promising avenue. The implementation of ILC proposed in [2] requires
a meticulous two-stage training process, involving learning in simulations and real flights,
to systematically construct a comprehensive database of motion primitives. This library
is subsequently referenced in real time, with the primitives exploited by an intelligent con-

94 6| Conclusions and prospective works

trol mechanism during maneuvers required for specific segments of a trajectory. Crucially,
the construction of the library is supported by a meticulous and extensive phase of exper-
imental testing, ensuring the system’s adaptability across diverse conditions. This precise
testing minimizes potential modeling uncertainties that could otherwise compromise plan-
ning performance. As a result, the robustness of the system is maintained, providing a
reliable basis for the real-time use of motion primitives in response to dynamic trajectory
requirements.

In pursuit of enhanced real-world applicability, particularly in dynamic environments de-
manding rapid replanning, the optimization of the proposed algorithms can be achieved
through their implementation in C++. This strategic choice not only aligns with industry
standards, but also lays the foundation for improved computational efficiency, contribut-
ing to the perfect integration of these algorithms into the operational framework of real
vehicles.

95

Bibliography

[1] C. L. Bottasso, D. Leonello, and B. Savini. Path planning for autonomous vehicles
by trajectory smoothing using motion primitives. IEEE Transactions on Control
Systems Technology, 16(6):1152–1168, 2008. doi: 10.1109/TCST.2008.917870.

[2] E. Camci and E. Kayacan. Learning motion primitives for planning swift maneuvers
of quadrotor. Autonomous Robots, 43:1733–1745, 2019. doi: https://doi.org/10.1007/
s10514-019-09831-w.

[3] M. Dharmadhikari, T. Dang, L. Solanka, J. Loje, H. Nguyen, N. Khedekar, and
K. Alexis. Motion primitives-based path planning for fast and agile exploration using
aerial robots. In 2020 IEEE International Conference on Robotics and Automation
(ICRA), pages 179–185, 2020. doi: 10.1109/ICRA40945.2020.9196964.

[4] E. Frazzoli, M. Dahleh, and E. Feron. Robust hybrid control for autonomous
vehicle motion planning. In Proceedings of the 39th IEEE Conference on De-
cision and Control (Cat. No.00CH37187), volume 1, pages 821–826, 2000. doi:
10.1109/CDC.2000.912871.

[5] E. Frazzoli, M. Dahleh, and E. Feron. Real-time motion planning for agile au-
tonomous vehicles. Journal of guidance, control, and dynamics, 25(1):116–129, 2002.

[6] S. Karaman and E. Frazzoli. Optimal kinodynamic motion planning using incre-
mental sampling-based methods. In 49th IEEE Conference on Decision and Control
(CDC), pages 7681–7687, 2010. doi: 10.1109/CDC.2010.5717430.

[7] S. Liu. Motion Planning For Micro Aerial Vehicles. PhD thesis, University of Penn-
sylvania, 2018.

[8] S. Liu, N. Atanasov, K. Mohta, and V. Kumar. Search-based motion planning for
quadrotors using linear quadratic minimum time control. In 2017 IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems (IROS), pages 2872–2879, 9
2017. doi: 10.1109/IROS.2017.8206119.

[9] S. Liu, K. Mohta, N. Atanasov, and V. Kumar. Search-based motion planning for

96 6| BIBLIOGRAPHY

aggressive flight in se(3). IEEE Robotics and Automation Letters, 3(3):2439–2446,
2018. doi: 10.1109/LRA.2018.2795654.

[10] MathWorks. Find minimum of constrained nonlinear multivariable function - matlab
fmincon. https://it.mathworks.com/help/optim/ug/fmincon.html, (n.d.).

[11] D. Mellinger and V. Kumar. Minimum snap trajectory generation and control for
quadrotors. In 2011 IEEE International Conference on Robotics and Automation,
pages 2520–2525, 5 2011. doi: 10.1109/ICRA.2011.5980409.

[12] M. W. Mueller, M. Hehn, and R. D’Andrea. A computationally efficient algorithm
for state-to-state quadrocopter trajectory generation and feasibility verification. In
2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pages
3480–3486, 11 2013. doi: 10.1109/IROS.2013.6696852.

[13] M. W. Mueller, M. Hehn, and R. D’Andrea. A computationally efficient motion
primitive for quadrocopter trajectory generation. IEEE Transactions on Robotics,
31(6):1294–1310, 7 2015. doi: 10.1109/TRO.2015.2479878.

[14] A. E. Ross and M. Pavone. A real-time framework for kinodynamic planning in
dynamic environments with application to quadrotor obstacle avoidance. Robotics
and Autonomous Systems, 115:174–193, 2019.

[15] B. Sakcak, L. Bascetta, G. Ferretti, and M. Prandini. Sampling-based optimal kin-
odynamic planning with motion primitives. Autonomous Robots, 43(7):1715–1732,
2019. doi: https://doi.org/10.1007/s10514-019-09830-x.

[16] B. Sakçak. Optimal Kynodynamic Planning for Autonomous Vehicle. PhD thesis,
Politecnico di Milano, 2017.

[17] Y. Wang, J. O’Keeffe, Q. Qian, and D. Boyle. Kinojgm: A framework for efficient
and accurate quadrotor trajectory generation and tracking in dynamic environments.
In 2022 International Conference on Robotics and Automation (ICRA), pages 11036–
11043. IEEE, 5 2022. doi: 10.1109/ICRA46639.2022.9812352.

https://it.mathworks.com/help/optim/ug/fmincon.html

97

List of Figures

1.1 Motion planning problem solved using the Dijkstra algorithm (a) and the
A* algorithm (b). The blue dot on the right represents the starting position,
whereas the one on the left indicates the final position. The red curve is
the optimal trajectory. The green dots are the expanded nodes. 10

1.2 Quadrotor model and reference frames. 18

2.1 Piece-wise polynomial trajectory. 24

3.1 Generate 2D motion primitives for an acceleration-controlled system (a)
and a jerk-controlled system (b) starting from the initial state (xi, yi) =

(0, 0). The red dot denotes the initial state position, whereas the blue
dots represent the final state positions (xf , yf). The black lines depict the
computed trajectories resulting from various control inputs. The initial
velocity and acceleration are vi = [1, 0]T and ai = [0,−1]T (applicable to
figure (b) only). 34

3.2 Graph generated from a starting point (red dot) located at coordinates
(xi, yi) = (1, 1) to a goal point (red dot) positioned at coordinates (xf , yf) =
(5,−7). 36

3.3 Simulation result for acceleration-controlled system. The blue dot on the
right represents the starting position, whereas the one on the left indicates
the final position. The red curve is the optimal trajectory. The green dots
are the expanded nodes. 41

3.4 Velocity profile for the optimal trajectory in Figure 3.3. The blue and cyan
lines depict the velocities along the x- and y-axes. The red lines show the
velocity limits. 42

3.5 Actuation (acceleration) profile for the optimal trajectory in Figure 3.3.
The blue and cyan lines depict the accelerations along the x- and y-axes.
The red lines show the actuation limits. 42

98 | List of Figures

3.6 Simulation result for jerk-controlled system. The blue dot on the right
represents the starting position, whereas the one on the left indicates the
final position. The red curve is the optimal trajectory. The green dots are
the expanded nodes. 44

3.7 Velocity profile for the optimal trajectory in Figure 3.6. The blue and cyan
lines depict the velocities along the x- and y-axes. The red lines show the
velocity limits. 45

3.8 Acceleration profile for the optimal trajectory in Figure 3.6. The blue and
cyan lines depict the accelerations along the x- and y-axes. The red lines
show the acceleration limits. 45

3.9 Actuation (jerk) profile for the optimal trajectory in Figure 3.6. The blue
and cyan lines represent the jerks along the x- and y-axes. The red lines
show the actuation limits. 46

4.1 Subset (a) and complete set (b) of motion primitives computed for a 4D
state space (x, y, vx, vy). Red dot corresponds to the initial state position
(xi, yi), while blue dots correspond to the final state positions (xf , yf). The
black lines represent the computed trajectories for different final velocities
vx and vy. 56

4.2 Steps to build a complete motion primitives database (c) starting from a
smaller set of reference trajectories (a) through mirror reflection relative to
the x and y axes for all the trajectories within the reference set (b). 57

4.3 Steps involved in the geometric translation. 60
4.4 Simulation result for acceleration-controlled system. The blue dot on the

right represents the starting position, while the one on the left indicates
the final position. The red curve is the optimal trajectory. 64

4.5 Velocity profile for the optimal trajectory in Figure 4.4. Blue and cyan lines
depict the velocities along the x- and y-axes. Magenta curve represents the
combined velocity. Red lines show the velocity limits. 64

4.6 Actuation (acceleration) profile for the optimal trajectory in Figure 4.4.
Blue and cyan lines depict the accelerations along the x- and y-axes. Ma-
genta curve represents the combined acceleration. Red lines show the ac-
tuation limits. 65

4.7 Simulation result for jerk-controlled system. The blue dot on the right
represents the starting position, while the one on the left indicates the final
position. The red curve is the optimal trajectory. 69

| List of Figures 99

4.8 Velocity profile for the optimal trajectory in Figure 4.7. Blue and cyan lines
depict the velocities along the x- and y-axes. Magenta curve represents the
combined velocity. Red lines show the velocity limits. 69

4.9 Acceleration profile for the optimal trajectory in Figure 4.7. Blue and cyan
lines depict the accelerations along the x- and y-axes. Magenta curve rep-
resents the combined acceleration. Red lines show the acceleration limits.
. 70

4.10 Actuation (jerk) profile for the optimal trajectory in Figure 4.7. Blue and
cyan lines depict the jerks along the x- and y-axes. Magenta curve repre-
sents the combined jerk. Red lines show the actuation limits. 70

5.1 Quadrotor platform used for the experiments. 73
5.2 Virtual indoor environment used for the experiments. 74
5.3 Indoor environment used for the experiments. 76
5.4 Planned trajectory for Simulation 1. The color bar on the right indicates

the velocity along the trajectory. 77
5.5 Position profile and position error for Simulation 1. The dashed curve

represents the setpoint, while the plain curve depicts the actual quantities. 78
5.6 Velocity profile and velocity error for Simulation 1. The dashed curve

represents the setpoint, while the plain curve depicts the actual quantities. 79
5.7 Motors thrust for Simulation 1. 80
5.8 Position setpoint (dashed curve) and corresponding trajectory tracked by

the quadrotor (solid curve) in real-world Experiment 1. 81
5.9 Profile of the position setpoint (dashed curve) and profile of the position

tracked by the quadrotor (solid curve) in real-world Experiment 1. 82
5.10 Profile of the velocity setpoint (dashed curve) and profile of the velocity

tracked by the quadrotor (solid curve) in real-world Experiment 1. 83
5.11 Planned trajectory for Simulation 2. The colorbar on the right indicates

the velocity along the trajectory. 84
5.12 Position profile and position error for Simulation 2. The dashed curve

represents the setpoint, while the plain curve depicts the actual quantities. 85
5.13 Velocity profile and velocity error for Simulation 2. The dashed curve

represents the setpoint, while the plain curve depicts the actual quantities. 86
5.14 Motors thrust for Simulation 2. 87
5.15 Position setpoint (dashed curve) and corresponding trajectory tracked by

the quadrotor (solid curve) in real-world Experiment 2. 88

100 | List of Figures

5.16 Profile of the position setpoint (dashed curve) and profile of the position
tracked by the quadrotor (solid curve) in real-world Experiment 2. 89

5.17 Profile of the velocity setpoint (dashed curve) and profile of the velocity
tracked by the quadrotor (solid curve) in real-world Experiment 2. 89

101

List of Tables

1.1 Notation employed for each vertex v in the graph 14
1.2 Function employed to manage the closed list. 14
1.3 Functions employed to manage the priority queue. 16

3.1 Relevant results for the acceleration-controlled system. 41
3.2 Relevant results for the jerk-controlled system. 44

4.1 Database details for the acceleration-controlled system. 63
4.2 Motion planning results for the acceleration-controlled system. 63
4.3 Database details for the jerk-controlled system. 68
4.4 Motion planning results for the jerk-controlled system 68

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Preliminary
	Path planning
	Graph search algorithms
	A* algorithm

	System dynamics
	Quadrotor dynamics

	Kinodynamic motion planning
	Problem formulation
	Quadrotor problem formulation

	Kinodynamic planning with motion primitives
	Search-based kinodynamic planning
	Global planner and local planner
	Heuristic function design
	Collision checking

	Search-based kinodynamic planning with online motion primitives generation
	Motion primitives generation
	Graph construction
	Kinodynamic motion planning
	A* algorithm

	Numerical examples
	Acceleration-controlled system
	Jerk-controlled system

	Conclusion

	Search-based kinodynamic planning with motion primitives library
	Motion primitives generation
	Invariance properties
	Motion primitives library
	Example

	Search space design
	Kinodynamic motion planning
	A* algorithm

	Numerical examples
	Acceleration-controlled system
	Jerk-controlled system

	Conclusion

	Experimental results
	Problem setup
	Simulations setup
	Real-world experiments setup

	Experimental test 1
	Simulation 1 results
	Real-world experiment 1 results

	Experimental test 2
	Simulation 2 results
	Experimental test 2 results

	Conclusions and prospective works
	Conclusions
	Methods comparison
	Impact and applications
	Prospective works

	Bibliography
	List of Figures
	List of Tables

