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Abstract 
In this thesis work, we propose a new framework for effective connectivity analysis applied 

to EEG signals of resting-state conditions in the wakeful state. Our data consisted of 20 EEG 

recordings acquired during 5 minutes from 10 healthy subjects who were asked to maintain 

a relaxed state in two conditions, by keeping their eyes open, and eyes closed. First, a 

thorough analysis of the state of the art permitted to analyze and review the usual processing 

structure employed on the signals to find the effective connections that characterizes the 

connectivity patterns on the relaxation states.  

To this extent we have implemented the standard processing framework fitting a 

Multivariate Autoregressive (MVAR) model to the signal samples and requiring the 

segmentation of the time-series into shorter blocks for an appropriate fitting of the model. 

The segment length for the MVAR fitting is a topic that is not usually addressed in the 

literature and is commonly selected based on basic assumptions of the characteristics of the 

signals under analysis. This is why a window selection step as an intermediate process is 

further implemented to find the window length that guarantees stationarity over the whole 

set of EEG channels from the dataset to perform the MVAR fitting process. 

As result of this window selection approach, the windows of 400 milliseconds and 4 seconds 

were selected as the most stationary ones according to the analysis on the categories of short 

and long windows. These choices were employed to perform the effective connectivity 

analysis and were compared to other two windows of 2 seconds and 20 seconds in order to 

establish the results from them.  

The connectivity patterns derived from these windows were compared first using the 

definition of regions of interest (ROIs). The estimated patterns indicated that the posterior 

area of the brain was the most involved one in the connectivity for the resting state conditions 

in all the windows, characterizing the influence of this area onto the frontal and lateral areas. 

However, this general point of view is not sufficient to characterize the connectivity 

networks, and the connectivity in the sensor space defined by using all the channels was 

employed for the final analysis of the data. 

The connectivity analysis in the sensor space revealed similar connectivity patterns for the 

final choice of the 4 second windows. These patterns are in line with the currently most 

recognized definition of the default mode network (DMN) which involves the connections 

between specific channels in the posterior-central joint and the frontal-central area and that 

characterize the resting state connections between the Broadmann area 40 (precuneus) and 

Broadmann areas 8 and 10 (middle frontal regions). For this reason, the 4 seconds window 

was selected as the one explaining the effective connectivity according to the literature.  

These results demonstrate that our framework is an efficient algorithm that provides correct 

results on connectivity according to the literature, this is achieved by selecting appropriate 

parameters for the fitting process and the model explains better the physiological 

characteristics of the neural activity under analysis. 
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Summary 
Effective connectivity provides a way to analyze how the information flows across different 

nodes composing a network of sources. These sources are usually defined by a multivariate 

process like the electroencephalographic signals acquired by an array of EEG electrodes. 

The purpose of this thesis work is to analyze the effective connectivity on 

electroencephalographic signals that measure neural activity of resting-state conditions and 

propose possible improvements applied to the connectivity processing framework. This, to 

better explain the information flow according to the physiological characteristics of the 

signals under analysis and the observations from the state of the art. 

Neural activity encodes the information transmission and the way how the different 

structures, organs, and systems communicate inside the complex machinery known as the 

human body. At the level of the brain, the neural activity can be tracked down considering 

different imaging techniques that measure the variation of electric and magnetic potentials, 

and the blood flow to obtain a representation of the functional activity produced in the brain. 

To understand what is happening in the brain, different strategies have been designed most 

of them based on digital signal processing considering the information acquired from brain 

structures. This information can have the form of a multivariate time series acquired from 

different sources (e.g., electrodes, BOLD signals). The techniques applied to these time-

varying series range from the classical power spectral analysis, brain rhythms identification 

up to real-time applications of adaptive filtering and pattern recognition. 

Considering electroencephalography (EEG), one of these processing techniques examines 

the causal relationships of the signals and provides a multivariate approach to measure if 

past samples of a signal exert some influence in the present information of another time-

varying series. From this information, besides the anatomical relationships of the sensors 

that acquire the biopotentials in the scalp, it is possible to obtain a representation of the 

effective connections among the EEG channels, evaluating which channels exert influence 

onto other channels and to which extent. All of this is known as effective connectivity and 

provides a way to investigate the structures that are anatomically related or the hidden 

structures that participate in the transmission of information in the network that can be 

defined by the set of channels from the EEG system.  

The effective connectivity analysis relies on a multivariate autoregressive (MVAR) model 

fitting process due to the nature of the EEG signals and their acquisition characteristics. The 

MVAR model implies that the signals under the fitting process need to have stationary 

characteristics, otherwise, the effective connectivity process will provide errors in the 

estimations. This is why there are needed stationary/quasi-stationary segments to provide an 

appropriate fitting of the MVAR model to then estimate the effective connectivity measures. 

Despite this obvious requirement, a big portion of effective connectivity works in the 

literature do not provide an evaluation of the stationary characteristics of the segment size 

considered for the MVAR fitting process, thus, they make some assumptions related to the 

brain activity task under analysis and select a window size from the minimum number of 

samples needed to capture the frequency components that are expected to explain the neural 

activity. 

This is the reason why the design and implementation of an algorithm that looks for the 

stationary characteristics of different segment lengths of EEG signals is being proposed in 
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this thesis work. The EEG signals under analysis were acquired from 10 healthy subjects, 

from who 20 recordings were obtained. There were acquired 10 recordings under the open 

eyes resting-state condition and 10 more for the eyes-closed state. The recordings lasted in 

overall 5 minutes and were acquired at a sampling rate of 1000 Hz. These EEG datasets 

comprise the information of neural activity under a relaxation state in wakefulness.  

The algorithm comprises the segmentation procedure, which is performed by considering 

different segment lengths, and from them, the kurtosis variance is employed to explain the 

stationarity exhibited by performing the segmentation under a specific segment duration. 

Then, a searching strategy by looking at the density function generated from the kurtosis 

variance values is employed to look for the segments that have less variability of kurtosis 

and that maximize the number of channels in the EEG dataset exhibiting the same 

characteristics. 

As a result of this process, two windows (from two different kinds of segment length analysis, 

i.e., short, and long window length analysis), one of 400 milliseconds and one of 4 seconds 

are selected as the ones that explain most of the stationary characteristics across the channels 

for the subjects that participated in the experiment. 

After this process, an evaluation of the effective connectivity was performed by considering 

the network characteristics explained by graph theory parameters. First, the adjacency 

matrices derived from the Directed Transfer Function matrices were generated by 

performing the statistical tests on surrogate data. From this process, the significant 

connections given the connectivity matrices are obtained and the connectivity diagrams are 

generated from them. The adjacency matrices are studied considering the parameters of 

centrality, segregation, clustering, and the basic measures that account for the connections 

related to a node and the amplitudes that explain the weights explained by the adjacency 

matrices. From these values, it is possible to characterize the network by looking at central 

nodes in the network and localizing regions of greater connectivity in the process under 

evaluation.  

Some Regions of Interest (ROI) were also defined to have a bigger picture of the connectivity 

flow among larger areas that are being composed by different channels. In this way, it was 

possible to obtain general characteristics on the alpha and beta bands. Specifically, the 

posterior region showed to have a great influence on the frontal and lateral regions, as well 

as the central and frontal relationship. This was observed for all the windows under analysis; 

however, it was not enough to provide a detailed evaluation of the connectivity patterns for 

the resting state conditions. For this reason, the analysis on the sensor space considering the 

channels of the EEG system was performed and highlighted specific structures 

characterizing the neural activity.  

As a result of this process, effective connectivity networks were found for windows larger 

than 1 second. Specifically, the windows of 2 seconds and 4 seconds exhibited similarities 

in the connectivity relationships which were supported by the graph-theoretical measures 

that explained their similarities concerning the number of connections present in the 

adjacency matrices.  

In physiological terms, the networks exhibited by the windows are related to the so-called 

default mode network (DMN) which comprises the areas from the frontal-central joint and 
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the posterior-central areas which group the central nodes found in the windows of 2 seconds 

and 4 seconds. The connectivity patterns and the weights related to these connections 

highlighted a slight increment for the 2 seconds window for the alpha and beta bands 

compared to the other windows. The similarities of the results of the 4 seconds window to 

the connectivity diagrams of the 2 seconds segment, both in the connectivity structure and 

the graph-based parameters, permit to establish the relationship with the hypothesis of the 

involvement of the DMN in the characterization of the resting state conditions. The 20 

seconds window showed a similar behavior only for the closed eyes condition in the alpha 

band case, differently from the other two segments. Finally, the case of the 400 ms window 

shows that very short segments are not necessarily a source of information for the effective 

connectivity framework even though they respect the stationary requirement for the MVAR 

fitting process.  

Even though the 2 seconds window exhibited promising results to explain the connectivity 

relationships of the neural activity during resting states, it did not provide statistical 

significance for the degree measure that explains the connectivity behavior on the network 

and so the 4 seconds window was selected as an appropriate window length that explained 

the characteristics of the resting state condition in relaxation state during eyes open and eyes 

closed. 

In conclusion, it is important to underline the main two novelties of this work that are the 

framework to select an appropriate window that considers the stationary characteristics of 

the signals under consideration and a way to highlight the central nodes in the sensor space 

according to the graph theory measures employed to characterize the effective connectivity 

network. From this framework, it was possible to obtain an algorithm that provides a way to 

evaluate the stationary characteristics of the EEG signals considering high-order statistics. 

Results applying our framework to an original dataset allows to compute the effective 

connectivity by employing the segment length that provides more stationary features for the 

EEG signal composing the datasets. Here, the window of 4 seconds selected from the 

searching strategy considering the algorithm was the one that explained better the 

physiological characteristics of the neural activity under analysis. This thesis work provides 

a tool that can be used to perform effective connectivity analysis on a much larger dataset 

considering also different setups and experiment conditions. 
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Sommario 
Una connettività efficace fornisce un modo per analizzare il modo in cui le informazioni 

fluiscono attraverso i diversi nodi che compongono una rete di fonti. Queste sorgenti sono 

solitamente definite da un processo multivariato come i segnali elettroencefalografici 

acquisiti da una matrice di elettrodi EEG. Lo scopo di questo lavoro di tesi è analizzare la 

connettività effettiva su segnali elettroencefalografici che misurano l'attività neurale delle 

condizioni di stato di riposo e proporre possibili miglioramenti applicati al framework di 

elaborazione della connettività. Questo, per meglio spiegare il flusso di informazioni in base 

alle caratteristiche fisiologiche dei segnali in analisi e alle osservazioni dello stato dell'arte. 

L'attività neurale codifica la trasmissione delle informazioni e il modo in cui le diverse 

strutture, organi e sistemi comunicano all'interno del complesso macchinario noto come 

corpo umano. A livello del cervello, l'attività neurale può essere rintracciata considerando 

diverse tecniche di imaging che misurano la variazione dei potenziali elettrici e magnetici e 

il flusso sanguigno per ottenere una rappresentazione dell'attività funzionale prodotta nel 

cervello. Per capire cosa sta succedendo nel cervello, sono state progettate diverse strategie, 

la maggior parte delle quali basate sull'elaborazione del segnale digitale, considerando le 

informazioni acquisite dalle strutture cerebrali. Queste informazioni possono avere la forma 

di una serie temporale multivariata acquisita da diverse fonti (ad esempio, elettrodi, segnali 

BOLD). Le tecniche applicate a queste serie variabili nel tempo vanno dalla classica analisi 

spettrale di potenza, all'identificazione dei ritmi cerebrali fino alle applicazioni in tempo 

reale di filtraggio adattivo e riconoscimento di pattern. 

Considerando l'elettroencefalografia (EEG), una di queste tecniche di elaborazione esamina 

le relazioni causali dei segnali e fornisce un approccio multivariato per misurare se i 

campioni passati di un segnale esercitano una qualche influenza sulle informazioni presenti 

di un'altra serie variabile nel tempo. Da queste informazioni, oltre alle relazioni anatomiche 

dei sensori che acquisiscono i biopotenziali nel cuoio capelluto, è possibile ottenere una 

rappresentazione delle effettive connessioni tra i canali EEG, valutando quali canali 

esercitano influenza su altri canali e in che misura. Tutto ciò è noto come connettività 

efficace e fornisce un modo per indagare le strutture che sono anatomicamente correlate o le 

strutture nascoste che partecipano alla trasmissione di informazioni nella rete che possono 

essere definite dall'insieme di canali dal sistema EEG. 

L'analisi della connettività efficace si basa su un processo di adattamento del modello 

autoregressivo multivariato (MVAR) a causa della natura dei segnali EEG e delle loro 

caratteristiche di acquisizione. Il modello MVAR implica che i segnali sotto il processo di 

adattamento devono avere caratteristiche stazionarie, altrimenti il processo di connettività 

efficace fornirà errori nelle stime. Questo è il motivo per cui sono necessari segmenti 

stazionari / quasi stazionari per fornire un adattamento appropriato del modello MVAR per 

poi stimare le misure di connettività effettive. Nonostante questo ovvio requisito, una gran 

parte dei lavori di connettività efficaci in letteratura non fornisce una valutazione delle 

caratteristiche stazionarie della dimensione del segmento considerata per il processo di 

adattamento MVAR, quindi, fanno alcune ipotesi relative al compito di attività cerebrale in 

analisi e selezionare una dimensione della finestra dal numero minimo di campioni necessari 

per acquisire i componenti di frequenza che dovrebbero spiegare l'attività neurale. 
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Questo è il motivo per cui in questo lavoro di tesi viene proposto il progetto e 

l'implementazione di un algoritmo che ricerca le caratteristiche stazionarie di diverse 

lunghezze di segmento di segnali EEG. I segnali EEG in analisi sono stati acquisiti da 10 

soggetti sani, da cui sono state ottenute 20 registrazioni. Sono state acquisite 10 registrazioni 

in condizioni di stato di riposo ad occhi aperti e altre 10 per lo stato di occhi chiusi. Le 

registrazioni sono durate complessivamente 5 minuti e sono state acquisite a una frequenza 

di campionamento di 1000 Hz. Questi set di dati EEG comprendono le informazioni 

sull'attività neurale in uno stato di rilassamento durante la veglia. 

L'algoritmo comprende la procedura di segmentazione, che viene eseguita considerando 

diverse lunghezze di segmento, e da esse, la varianza della curtosi viene impiegata per 

spiegare la stazionarietà esibita eseguendo la segmentazione sotto una durata di segmento 

specifica. Quindi, viene utilizzata una strategia di ricerca che esamina la funzione di densità 

generata dai valori di varianza della curtosi per cercare i segmenti che hanno meno variabilità 

della curtosi e che massimizzano il numero di canali nel set di dati EEG che presentano le 

stesse caratteristiche. 

Come risultato di questo processo, due finestre (da due diversi tipi di analisi della lunghezza 

del segmento, ovvero analisi della lunghezza della finestra breve e lunga), una di 400 

millisecondi e una di 4 secondi vengono selezionate come quelle che spiegano la maggior 

parte dello stazionario caratteristiche attraverso i canali per i soggetti che hanno partecipato 

all'esperimento. 

Dopo questo processo, è stata eseguita una valutazione della connettività effettiva 

considerando le caratteristiche di rete spiegate dai parametri della teoria dei grafi. In primo 

luogo, le matrici di adiacenza derivate dalle matrici della funzione di trasferimento diretto 

sono state generate eseguendo i test statistici su dati surrogati. Da questo processo si 

ottengono le connessioni significative date le matrici di connettività e da esse si generano i 

diagrammi di connettività. Le matrici di adiacenza vengono studiate considerando i 

parametri di centralità, segregazione, clustering e le misure di base che tengono conto delle 

connessioni relative a un nodo e le ampiezze che spiegano i pesi spiegati dalle matrici di 

adiacenza. Da questi valori è possibile caratterizzare la rete osservando i nodi centrali della 

rete e localizzando le regioni di maggiore connettività nel processo in esame. 

Sono state inoltre definite alcune regioni di interesse (ROI) per avere un quadro più ampio 

del flusso di connettività tra aree più ampie composte da canali diversi. In questo modo è 

stato possibile ottenere caratteristiche generali sulle bande alfa e beta. In particolare, la 

regione posteriore ha mostrato di avere una grande influenza sulle regioni frontale e laterale, 

nonché sulla relazione centrale e frontale. Questo è stato osservato per tutte le finestre in 

analisi; tuttavia, non era sufficiente fornire una valutazione dettagliata dei modelli di 

connettività per le condizioni di stato di riposo. Per questo motivo è stata eseguita l'analisi 

sullo spazio sensoriale considerando i canali del sistema EEG evidenziando strutture 

specifiche caratterizzanti l'attività neurale. 

Come risultato di questo processo, sono state trovate reti di connettività efficaci per finestre 

di dimensioni superiori a 1 secondo. In particolare, le finestre di 2 secondi e 4 secondi 

mostravano somiglianze nelle relazioni di connettività che erano supportate dalle misure 

grafo-teoriche che spiegavano le loro somiglianze riguardo al numero di connessioni presenti 

nelle matrici di adiacenza. 
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In termini fisiologici, le reti esibite dalle finestre sono relative alla cosiddetta rete in modalità 

predefinita (DMN) che comprende le aree dall'articolazione frontale-centrale e le zone 

centro-posteriori che raggruppano i nodi centrali presenti nelle finestre di 2 secondi e 4 

secondi. Gli schemi di connettività e i pesi relativi a queste connessioni hanno evidenziato 

un leggero incremento per la finestra di 2 secondi per le bande alfa e beta rispetto alle altre 

finestre. Le somiglianze dei risultati della finestra di 4 secondi con i diagrammi di 

connettività del segmento di 2 secondi, sia nella struttura di connettività che nei parametri 

basati su grafici, consentono di stabilire la relazione con l'ipotesi di coinvolgimento del 

DMN nella caratterizzazione di le condizioni di stato di riposo. La finestra di 20 secondi ha 

mostrato un comportamento simile solo per la condizione di occhi chiusi nel caso della banda 

alfa, a differenza degli altri due segmenti. Infine, il caso della finestra di 400 ms mostra che 

i segmenti molto brevi non sono necessariamente una fonte di informazioni per il framework 

di connettività efficace anche se rispettano il requisito stazionario per il processo di 

adattamento MVAR. 

Anche se la finestra di 2 secondi ha mostrato risultati promettenti per spiegare le relazioni di 

connettività dell'attività neurale durante gli stati di riposo, non ha fornito significatività 

statistica per la misura del grado che spiega il comportamento di connettività sulla rete e 

quindi la finestra di 4 secondi è stata selezionata come lunghezza della finestra appropriata 

che spiegasse le caratteristiche della condizione di stato di riposo in stato di rilassamento 

durante gli occhi aperti e chiusi. 

In conclusione, è importante sottolineare le due principali novità di questo lavoro che sono 

il framework per selezionare una finestra appropriata che consideri le caratteristiche 

stazionarie dei segnali in esame e un modo per evidenziare i nodi centrali nello spazio dei 

sensori secondo il grafico misure teoriche impiegate per caratterizzare la rete di connettività 

efficace. Da questo quadro è stato possibile ottenere un algoritmo che fornisce un modo per 

valutare le caratteristiche stazionarie dei segnali EEG considerando statistiche di ordine 

elevato. I risultati dell'applicazione del nostro framework a un set di dati originale 

consentono di calcolare la connettività effettiva utilizzando la lunghezza del segmento che 

fornisce caratteristiche più stazionarie per il segnale EEG che compone i set di dati. Qui, la 

finestra di 4 secondi selezionata dalla strategia di ricerca considerando l'algoritmo era quella 

che spiegava meglio le caratteristiche fisiologiche dell'attività neurale in analisi. Questo 

lavoro di tesi fornisce uno strumento che può essere utilizzato per eseguire analisi di 

connettività efficaci su un set di dati molto più ampio considerando anche diverse 

configurazioni e condizioni di esperimento.  
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1. Introduction 
The analysis of signals for medical diagnosis and their processing either for supporting the 

labor of physicians and medical doctors or to research pathological/healthy conditions on 

patients is one important area in the biomedical field. Supervising, tracking, and storing the 

variation over time of the huge number of variables that provide information of the health 

state of a person is a challenging process, it involves a synergic link between hardware, 

sensors and any other elements that are able to transduce the measured variable onto a 

readable domain from which further processing can be made with information treatment 

techniques implemented using computers or dedicated processing devices. 

The appropriate conditions to obtain meaningful information from physiological processes 

makes the signal acquisition even more difficult. There are needed specific equipment with 

particular configurations, hardware, and processing steps in order to acquire data that explain 

the physiological process accurately and correctly. Moreover, the diversity on the domains 

that can explain the physiological variables in terms of biochemical reactions, bioelectric 

potentials, pressure changes, light, and magnetic responses (to name a few) in the human 

body make this process even more challenging. 

In this way proper instrumentation elements are needed to acquire the information, and there 

exist a lot of devices in charge of those specific tasks [1]. Depending on the physiological 

characteristics, how much information is needed to be acquired, if the acquirement is 

invasive/non-invasive and the costs of the tests there exist different devices that measure and 

quantify the physiological variables.  

Moreover, the different systems that compose the human body provide different types of 

information, for instance, the cardiovascular system performs complex processes that can be 

monitored; the cardiac rhythm can be characterized and evaluated through the 

electrocardiographic signals (ECG) acquired non-invasively and its sound could also be 

registered to obtain the vibrations produced by the heart and the blood circulating in this 

system, the so-called phonocardiogram (PCG) [2].  

Other examples comprise the characterization of the skeletal muscle states by means of 

observing the bioelectrical potentials in the muscles, known as electromyogram (EMG), or 

the registration of the vibration signal related to the contraction of the muscles 

(vibromyogram - VMG).  

On the other hand, the analysis of the brain is undoubtedly one of the most challenging 

practices that can be achieved not only by physicians but also from the bioengineering point 

of view. The most common and non-expensive way to have a representation of the brain 

activity is done by considering the electroencephalogram (EEG), which represents the 

general bioelectrical variation of the potentials that are transferred to the scalp from the 

cortical areas in the brain. Similarly, the electroneurograms (ENG) that registers the nerve 

action potentials provide a way to characterize the conduction velocity when an action 

potential is produced at the level of a nerve. The event-related potentials (ERPs) comprise 

the bioelectric potential patterns produced after external stimulation by means of electrical, 

light or sound, and characterize the brain response in relation to a certain stimulus as the 

result of motor, cognitive or sensory events.  
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There exist many more examples of signals that convey meaningful information of the 

systems and the physiological processes that are carried out by them in the human body. As 

it was described earlier, the signals are the product of the physiological interactions and 

reflect the natural behavior of the systems. In the same way, the alteration of the healthy 

physiological processes that affects their performance can be analyzed too, and these 

pathological processes are characterized quantitatively to enhance the diagnosis in clinical 

applications and to improve the characterization in the research practice.  

More than performing the classical analysis of signals and images from which it is possible 

to find meaningful information to understand the basic features that characterize the general 

state of the health of the brain, bioengineers devote their efforts to find sophisticated ways 

to analyze and provide more information from the raw signals that are being acquired by 

specialized equipment.  

Moreover, the techniques developed by bioengineers have been accepted more in the clinical 

field during the recent years. Passing from the classical analysis and processing of signals 

which was primarily devoted to filtering, frequency analysis and modeling from the point of 

view of signal parametrization, the modern information analysis of physiological signals 

intends to characterize the complex biological systems, their interactions and the processes 

as a whole considering the signals as the primary source of information. This allows to study 

quantitatively the different pathologies, the healthy states, and the nature of the systems 

behind a specific process in consideration improving non-invasive diagnostics and providing 

tools for physicians and doctors in their diagnosis labors.  

Is in this way that the biomedical signal analysis has a huge impact not only in the medical 

sciences but in the research practice. Specially the complex interactions in the brain have 

gotten great attention due to the recent development of technologies that comprise portable 

and relatively inexpensive devices [3]. Moreover, the great computing capabilities of modern 

computers allow to perform very complex processing schemes to multivariate long-lasting 

signals like EEG.  

The neural activity represented by EEG signals is one of the starting points to characterize 

the brain processes, is in this way that this thesis is elaborated, to provide a way to perform 

connectivity analysis for resting-state conditions in healthy subjects, specifically, to observe 

the influence of the signal partitioning process of the signals in the connectivity results. 

1.1. The brain 

The brain is a very complex organ that has been extensively studied throughout history. It 

was no earlier than the XIX century that the brain activity registered through electric signals 

was first observed by registering the signal variations using electrodes placed on the scalp 

and connected to a galvanometer [4]. Since then, there have been revolutionary 

advancements in the understanding of the brain, its core importance in commanding the 

behavior of the systems interacting in the human body, and its regulatory role in most 

physiological processes carried out by the other organs.  

A first look at the brain as an organ comprises the understanding of its anatomy and its 

organization. Neuroanatomic locations provide a way to understand the functional and 

spatial organization of the different regions identified in the brain structure [5]. Relative 

location identifiers classify the volumetric positioning of the regions, as such, we have the 
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anterior, posterior, superior, and inferior areas besides the rostral, caudal, ventral, and dorsal 

as shown in Figure 1. 

From these locations, there are identified three main divisions: the forebrain, the midbrain, 

and the hindbrain. The forebrain is composed of the telencephalon/cerebral cortex, the 

diencephalon, and the basal ganglia in charge of the modulation of motor movements. The 

cerebrum, an area of complex functions processes the perception and control of the 

conscious motor movement. Finally, we have the left and right hemispheres devoted to 

sensory and motor information processing are interconnected by the so-called corpus 

callosum.  

Moreover, there are identified 4 lobes that denote anatomical and functional processes at 

different areas. These regions process the perception of sensations, language, speech, 

movement, cognition, and some other high-level functions. Figure 2 shows the location of 

the lobes as the division of the cerebrum. 

 
Figure 1. Relative position identifiers of the brain. Image taken from [6] 

https://www.thescienceofpsychotherapy.com/glossary/rostral/ 
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Figure 2. Division of the cerebrum into lobes. Image taken from [7] https://mayfieldclinic.com/pe-

anatbrain.htm 

There are identified different functions carried out by each lobe. The frontal lobe is involved 

principally in concentration, self-awareness, intelligence, behavior, personality, and emotion 

processing, besides engaging tasks like planning and problem-solving. Other important 

functions are related to speech processing both at speaking and writing. 

The parietal lobe covers the somatosensory cortex, and it is located at the level of the center 

of the brain in the superior region in the caudal direction connecting to the anterior region. 

Its main function is devoted to the interpretation of language and the words, as well as the 

sensory signals coming from the motor, vision, hearing, and memory information. It is 

engaged in spatial and visual perception, being important to carry out location and navigation 

processes.  

The temporal lobe located in the lateral region is found to be important in language 

understanding considering the well-known Wernicke’s area, it is involved in the sequencing 

and organization of tasks as well as the hearing processing by the auditory cortex and the 

memory formation handling performed by the hippocampus.  

The posterior region is characterized for covering the occipital lobe a region located at the 

back of the brain structure. Its main function is the processing and interpretation of visual 

information through the primary visual cortex.  

As described above each lobe covers broad regions that perform very complex functions. 

Different areas delimited anatomically perform the processing of sensory and motor 

information, these cortices can be stimulated to produce muscular contraction or can be 

activated as a response to a sensory stimulus. In the same way, they can be mapped 

topographically by defining subregions, specialized areas in charge of very specific tasks. 

As an example, the Broadmann areas were defined as an atlas of the brain classifying and 

grouping the subregions devoted to specialized processes delimiting anatomically and 

functionally the cytoarchitectural organization of the neurons. 



20 

 

Other important structures are the hypothalamus, thalamus, pituitary gland, pineal gland, and 

basal ganglia, among others. They play important roles in the control of behaviors, hormone 

regulation, temperature and pressure modulation and control, sensory message conduction, 

metabolism control, and internal clock rhythm regulation, among other functionalities. 

The hindbrain composed principally by the cerebellum, pons, and medulla oblongata is 

responsible for the regulation of fundamental functions for survival, wakefulness, sleep and 

it is also involved in the respiratory rhythm and motor activity coordination. The cerebellum 

is in charge of balance, movement, and coordination tasks. The pons is engaged in bladder 

control, hearing, posture, swallowing, sleep, and respiration tasks. The medulla oblongata 

controls diverse many autonomic functions like breathing, blood pressure, and some reflexes, 

it influences the HRV as well [8].  

1.2. Neural activity 

The neural activity is the result of the interaction among the different cells that compose the 

brain circuits. Considering the neuron as the building block of the brain network and the 

nervous system, among its basic functions it is in charge of interconnecting to other neurons, 

receiving sensory inputs and transmitting motor commands to the muscles that act as the end 

effectors of the body. They are composed by three main parts, the dendrites which are the 

“terminals” of this type of cells and whose function is to connect with other neurons, the 

soma (or cell body containing the nucleus) in charge of the cell metabolism, and the axon, a 

long structure depicted as a flexible tubular element through which the electrical impulses 

travel.  

The neurons are in charge of transmitting information, they are like information channels 

that are highly interconnected among them, they react to stimuli and process the information 

locally and in a general way according to the complex structure provided by regional 

networks that compose the different areas in the brain. That information flux and the 

interactions produced there correspond to the neural activity which can be detected and 

quantified in different ways, for instance, by measuring the oxygen flow in the brain 

providing functional imaging of the brain performance (fMRI).  

The way in which the neurons have a connection interface is known as the synapsis and it is 

defined as a biochemical/electrical process that permits the transmission of action potentials 

triggered at the cell body of the neuron and that are generated by the change of the membrane 

potentials due to the stimulation received from other neurons in the complex junction 

between axon <-> dendrites or dendrites <-> dendrites over two or more cells.  

The Central Nervous System (CNS) works around the way in which the action potentials 

(AP) are transferred among the neurons, treating them as the information that flows in the 

form of synaptic currents. The APs are the natural reactions of the neurons at different kind 

of stimuli; the nerves at sensory levels react to touch, light, chemical changes, touch, and 

pressure, transducing the external information into electrical responses encoded in the APs. 

At the level of the CNS, the neurons are chemically stimulated at the synapse occurrence 

from the interaction of the neurons. 

Depending on the type of synapsis, either excitatory or inhibitory then a repolarization or 

hyperpolarization response is produced in the following neuron, producing excitatory 

postsynaptic potentials (EPSP) or inhibitory postsynaptic potentials (IPSP) [9]. From these 
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low-level interactions between two neurons there are produced other processes that encode 

the frequency of the interaction (i.e., the firing rate of the neurons), the amplitude of the 

membrane potentials during the synapsis, and in more complex scenarios a population of 

neurons can respond to the angular movement of repetitive motor actions [10], or provide 

different cortical activations depending on the motor movements in precision or force tasks 

[11]. This escalates in complexity from the different neurons that are being interconnected, 

and the important ability of the nervous system to adapt known as neural plasticity can be 

produced as well [12].  

1.3. Origin of electroencephalographic signals and brain rhythms 

The interactions produced among the neurons generate currents that flow from the cell 

membranes in the intra-extracellular junctions. That continuous flow of ionic currents 

generates what is called field potentials, translated into bioelectrical potentials as a product 

of the neural excitation/inhibition of the population of cell neurons. These bioelectrical 

potentials that merge the neural activity from the high-level processes of the different 

population of neurons flowing from deep structures up to the cortices can be then measured 

as the variation of electric signals over the scalp, generating what is known as 

electroencephalographic signals. 

Specifically, the field potentials are developed in the soma and the dendrites of the pyramidal 

cells located on the external layer of the brain at the cortex level. These are generated from 

the EPSP and IPSP during the synaptic interaction among a large group of neurons, the 

difference of the electrical potentials in the cortex as result of the sum of the postsynaptic 

potentials produce electrical dipoles evidenced as the cortical electrical activity on the brain 

surface. 

The electric potentials are distributed over the cortex and many voltage gradients are 

produced as result. This electric activity passes through the skull, and other intermediate 

structures arriving to the scalp from which non-invasive electrodes connected to 

instrumentation devices acquire the signals to measure and record the attenuated version of 

the cortical potentials that are corrupted by internal/external noise sources as well as artifacts. 

Thanks to the attenuation of the bioelectric potentials, specialized equipment must be 

employed in the recording and despite their high sensitivity, accuracy, and time resolution 

they are not able to acquire all the slight changes in amplitude and the differences in voltage 

over very small regions due to the spatial resolution restrictions given the electrode 

placement. Details about EEG equipment as a brain activity recording tool will be given in 

the subsection: Functional imaging methods.  

From the extensive study of the EEG electric potentials, there have been identified 

oscillatory characteristics associated to different brain state conditions of a person. Due to 

their periodicity, they are known as brain rhythms and are defined in the frequency domain 

and bounded as follows: 

- Delta band (𝛿): 0.5 – 4 Hz 

- Theta band (𝜃): 4 – 8 Hz 

- Alpha band (𝛼): 7 – 13 Hz 

- Beta band (𝛽): 13 – 30 Hz 

- Gamma band (𝛾): >30 Hz 
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The frequency intervals that define these brain rhythms bound the oscillatory characteristics 

of these common waves and provide meaningful information of the health condition of the 

brain and the CNS. Figure 3 shows the typical shapes of the brain rhythms from above DC 

level up to the 30 Hz frequency.  

 
Figure 3. Shapes of the brain rhythms. a) delta frequency band, b) theta frequency band, c) alpha 

frequency band, d) beta frequency band. Taken from [13] 

The alpha brain rhythms can be detected easily in the posterior part of the head in 

correspondence to the occipital lobe of the brain with bilateral synchrony, in this way, their 

amplitude is higher over this area. These signals are commonly found as sinusoidal shaped 

waves that in pathological conditions might be presented as sharp variations. The alpha 

waves are a distinctive feature that indicates relaxation during awareness state in tasks that 

do not involve concentration or attention, i.e., it is a rhythm associated to the resting state of 

the brain. These signals are more prominent at the closed-eyes state condition during 

awareness and have been thought to be scanning patterns waiting for active thinking 

processes, and are involved in clearing sensory information from distractors [14].  

The incidence of the alpha waves is greatly reduced by opening the eyes, or after receiving 

any kind of visual stimulation, or during the change of the waiting state by engaging to 

attention tasks, for instance, anxiety, mental concentration in active thinking and hearing 

unfamiliar sounds [4].  

As opposite to the alpha rhythm, the beta band reflects the active thinking process of a person, 

it is produced when active attention is being produced, and, as result, it is thought to be the 

waking rhythm of the brain. It is produced normally in adults when attention tasks are 

produced, for instance, when a problem is solved and in general in active thinking processes, 

high frequency components of the beta band, around 22 – 29 Hz, are related to behavioral 

performance, representing feature components of the behavior of a person. The beta band is 

related to the transmission and modulation of information among different cortical areas 

when attention tasks are being produced [14]. Anatomically, these waves are produced in 

the frontal and central regions, corresponding to the frontal lobe and part of the temporal and 

parietal lobes of the brain.  

Higher frequency components of the brain waves, larger than 30 Hz are classified as gamma 

components. Their amplitudes are usually very low and they are thought to play a role in the 

language processing as explained in [15]. They convey information related to different 

sensory inputs and stimuli and memory processes in the short term. The gamma wave band 
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is used for event-related synchronization of the brain; however, EEG signals are not usually 

considered for this kind of assessment.  

When the awareness state changes to drowsiness and sleep, the scanning function of the 

alpha rhythm is replaced by slower frequency components. The theta band frequencies 

appear during the first stages of sleep and the delta band takes over in deep-sleep states. In 

this way, the appearance of theta and delta components during attention and/or wakefulness 

states in adults can be considered as abnormal and can be sign of pathological conditions 

like tumors.  

Brain rhythms characterize basic health conditions of the neural activity. This knowledge 

added to the different cognition experiments and the variety of ways to acquire brain activity 

provide useful elements to understand the behavior of the neural interaction during basal and 

pathological conditions. Some examples of the investigation of brain activity include 

monitoring coma, resting state conditions and brain death, investigating evoked potentials 

from external stimuli, analyzing the effects of anesthesia, understanding seizures produced 

by epileptic events, the test of drug effects, monitoring brain development, assessing mental 

disorders, investigating the sleep disorders, analyzing connectivity patterns and information 

transfer across different brain areas, and other brain computer interface applications that 

enable the link between computer devices and neural activity systems, among many more 

research topics and applications. 

Due to the difficulty and the large set of applicable problems, it would be useful to 

understand how the technologies for brain activity acquisition work, this is done in the 

following chapter.  
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2. Brain imaging techniques 
Imaging techniques are the processes of using technology to view the human body in the 

interest of diagnosing, monitoring, and treating medical problems in a non-invasive way.  

In the process of diagnosis, the imaging techniques help the physicians to better understand 

the complications in the patient's body, optimize the wellbeing of the patients, support the 

decision-making process, and avoid unnecessary procedures. In many cases, such as in the 

diagnosis of breast cancer, or neuropathologies like Alzheimer (just to name a few 

applications) these tools can be lifesaving. Additionally, these technologies provide 

monitoring capabilities of the progress of diseases and assists in the determination of 

treatments.  

2.1. Technologies for brain imaging: A brief description 

In the following subsection the technologies for brain imaging are going to be reviewed. 

They are divided into structural imaging methods, which provide the structure of the body, 

the detection of large-scale diseases such as tumors and injuries; and functional imaging 

methods, that assist in the diagnosis of metabolic diseases and functions of the body.  

2.1.1. Structural imaging methods:  

A. Computerized Tomography (CT) 

A computerized tomography (CT) scan integrates a series of X-ray images that are taken 

from different angles around the body and then by using computer processing creates the 

cross-sectional images, which are called slices of the bones, blood vessels and soft tissues 

inside the body. Within this process, the computer is able to remove the radiographic 

“shadows” that other parts of the body may cast on the organ of interest. In general, the CT 

scan provides better resolution than the conventional X-rays procedure and detects tumors 

and other lesions at earlier stages.  

The scanner is shaped like a donut and the organ of interest (to be examined) is placed at the 

center of the donut’s hole. The patient is exposed to a small dose of radiation during the scan, 

the same as with the conventional X-ray procedure. The source of the x-ray emission rotates 

around the patient on one side, while the X-ray detector rotates directly opposite, such that 

it detects the X-rays that have been differentially absorbed as they passed through the tissues 

of the body part.  

Depending on the patient’s symptoms, they might be injected with (or consume a drink of) 

a dye to increase the contrast between the normal and abnormal tissues.  

B. Magnetic Resonance imaging (MRI): 

Magnetic Resonance imaging uses magnetic fields that exploit the physician properties of 

matter at the sub-atomic level, especially of water, that account for about 75% of the mass 

of the human body.  

Moreover, the scans not only provide higher-definition images than CT scans, but they are 

able to show the sagittal and coronal sections of the brain, not just the axial sections to which 

CT scans are limited. 
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Even though CT scans are the primary tool for imaging the chest and abdomen, they are also 

used as tools for the brain, hands, feet, and spinal column. The diseased or damaged tissues 

usually contain more water, thus easy to be detected with MRI.  

In certain cases, the patient may be injected with a contrast agent, just as for CT scans. The 

agents generally used are compounds of the element gadolinium, same purpose as iodine, 

but with less risk of allergic reactions. 

2.1.2. Functional imaging methods 

A. Electroencephalography (EEG) 

Electroencephalography (EEG) measures the brain’s overall neuronal activity over a 

continuous period using electrodes attached to the scalp. Computers then analyze the brain 

activity which is sensed by electrodes positioned at different locations on the scalp. 

The sensors detect the electrical currents that are generated mainly by the dendrite of the 

pyramidal neurons that are found in massive numbers in the cortex. Since these neurons are 

oriented parallel to one another, they amplify the signal from their common activity.  

The oscillations in the EEG are then observed as the sum of the various oscillations which 

are produced by the various assemblies of neuron, with the “harmonics” being superimposed 

on one another to produce the total recorded trace. For analytical purposes, the trace has the 

equivalent two characteristics as a sound wave: its oscillation frequency and its amplitude.  

Additionally, EEGs provide excellent temporal resolution and compared to fMRI and PETs 

are rather inexpensive, however the spatial resolution is quite poor. Nonetheless, EEGs can 

assist in diagnosing epileptic foci, brain tumors, lesions, clots, etc. They can also help to 

locate the sources of migraines, dizziness, sleepiness, and other conditions. 

Another application of EEGs is for constructing brain maps, and procedures such as Evoked 

Potentials are often used. In this procedure, the subject is exposed to a certain stimulus 

(which can be an image, a word, or a tactile stimulus) and then the neuronal response is 

associated with this stimulus in the brain which is recorded on the EEG.  

B. Functional magnetic Resonance imaging (fMRI) 

Functional Magnetic Resonance Imaging (fMRI) is used to visualize the activity in the 

various regions of the brain, by using the same basic principle applied in MRI, just with the 

difference of the computers that analyze the signals. 

The phenomenon was discovered in the late 19th century, when neurosurgeons discovered 

that the brain’s cognitive functions make local changes in the blood flow. More specifically, 

when a group of neurons becomes more active, the capillaries around them dilate to bring 

more blood and thus more oxygen to them. Within the red blood cells, the oxygen is carried 

by the hemoglobin, which also contains iron atom. When a hemoglobin molecule releases 

its oxygen, it becomes deoxyhemoglobin and has a paramagnetic property. Therefore, it 

causes a slight disturbance in the magnetic field of its surroundings. This process is used in 

fMRI to detect the concentration of deoxyhemoglobin in the blood.  The increase in blood 

flow to a more active area of the brain surpasses the area’s increased oxygen demand, so the 

concentration of deoxyhemoglobin declines. In the procedure of fMRI this decline is 

interpreted as increased activity in that specific area of the brain.  
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The process involves one fMRI image that is recorded of the brain before the subject 

performs a task and a second one while the subject performs a task. Then the intensities of 

the images are subtracted from each other, such that the areas with the biggest differences 

will appear as “lit up”. Those areas represent the parts of the brain that are the most densely 

infused with blood, thus the areas with the highest neuronal activity.  

C. Positron emission tomography (PET) 

The physiological phenomenon of PET is the same as of fMRI, that locates the group of 

neurons in the brain that is active. It is used to show the functional activation of the brain 

and detects tumors and blood clots. The difference from fMRI is that the subject has to be 

injected with a solution that contains a radioactive substance. The substance is dissolved in 

wanted or may be the water itself and because of the dilation of the capillaries it will bring 

more of this solution to the more active areas of the brain, therefore giving off more 

radioactivity during the PET scan.  

The principle of work in the PET, looks at the positron, which is an elementary particle that 

has the same ass as an electron, however with the opposite charge. The positrons that are 

emitted in this procedure some form the decay of the radioactive nuclei in the solutions that 

was injected in the subject’s bloodstream, when these positions are emitted, they annihilate 

the electrons in the surrounding atoms, thus releasing energy in the form of two gamma rays 

that move in diametrically opposite directions. There are sets of detectors that are positioned 

around the subject's head, which measure the gamma rays that are emitted. Then the 

computer uses these data to calculate the position in the brain from which the rays came. The 

computer can reconstitute a complete image of the brain and the most active areas.  

A set of detectors placed around the person’s head measures the pairs of gamma rays emitted. 

The computer then uses the resulting data to calculate the position in the brain from which 

these rays came. Through massive calculations, the computer can thus reconstitute a 

complete image of the brain and its most active areas.  

D. Magnetoencephalography (MEG) 

Magnetoencephalography (MEG) is the newest non-invasive functional imaging technology 

that allows scientists and clinicians to view the brain in action, such that it measures the very 

weak magnetic fields generated by the brain’s electrical activity. The MEG signals are able 

to show the absolute neuronal activity and compared to the other techniques provides timing 

as well as spatial information about the brain activity. Most importantly, provides temporal 

characteristics about brain activation with sub-millisecond precision.  

2.2. EEG as a brain imaging tool 

EEG is the most often used clinical tool in diagnostics of different types of neurological 

disorders. Primarily, the EEG measures the electric potential field at the same approach as 

MEG measures the magnetic field. With adequate sampling and precise analysis of the 

electric field, the EEG can give reliable information about the neuronal activity in the brain 

and the temporal dynamics of this activity in the millisecond range [16].  

The EEG is commonly analyzed in terms of the temporal waveforms at certain channels, 

also looking at the power of rhythms in the spontaneous EEG, as well at the amplitude and 

latency of the peaks and troughs in the Event-Related Potentials (ERPs) or at the specific 

graho-elements in pathological or sleep stages. However, it has not been considered as an 
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imaging method that has the potential to infer active acres in the brain that generates these 

waveform features.  

Taking into consideration the biophysical point of view, an active electrode on the scalp 

measures the electric field that is generated by the sum of the momentary post synaptic 

potentials in the brain. Because of the volume conduction, these electric fields distribute in 

the brain and reach in attenuated form the scalp surface. Then each electrode is able to 

measure a local part of this field.  With adequate number of electrodes that are distributed 

over the scalp, the electric field can be measured and reconstructed as a so-called scalp 

potential map. A new map is formed at every instant in the millisecond range. Every time 

the map topography changes, the distribution and/or orientation of the active dipoles in the 

brain changes as well.  

The rationale for basing the analyses on topographic information and in more general for 

treating the data from the entire system as a multivariate vector is the following: 

1. The topographic measures are reference-independent, meaning that the shape of the 

electric field at the scalp will not change even if one chooses another reference, but 

only will shift the zero line without influencing any spatial characteristics of the field.  

2. Topographic information has a direct neurophysiologic interpretability, meaning that 

topographic differences are indicatory of the changes in the configuration of the 

active cerebral sources.  

3. Multivariate analyses allow for better utilization of the added information provided 

by high-density electrode montages while also retaining statistical rigor.  

4. EEG mapping is the precursor for EEG source imaging. Using sophisticated source 

and head models, the position of the generators that generate the scalp potential map 

can be estimated with high reliability and reasonable precision. 

2.3. Relationship between EEG and Connectivity 

The access of the dense array EEG mapping systems has provided the possibilities to detect 

the spatiotemporal distributions of brain electric activity over the scalp. Many investigations 

in cognitive neuroscience, clinical neurology, psychiatry, and neurosurgery have exposed 

the power of EEG source imaging in describing dynamic brain activity. A central theme in 

neuroscience has become the detection of a particular brain region with a specific function 

[17].  

In contrast to source imaging that has the purpose to identify the functional segregation, 

connectivity offers a valuable tool for understanding the brain networks through which the 

brain functions under a highly interconnected organization. There are two types of 

connectivity, functional that measure the correlation between the neural masses and effective 

connectivity, which evaluates the causal relationships among neural masses.   
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3. Effective Connectivity background, limitations, and 

improvements. 

3.1. Effective Connectivity 

Effective connectivity refers specifically to the influence that one neural system exerts over 

another, which can be at a synaptic or population level as Aertsen and Preißl suggested in 

1991 [18].  

That “effective connectivity should be understood as the experiment and time-dependent, 

simplest possible circuit diagram that would replicate the observed timing relationships 

between the recorded neurons.” Two significant points can be derived that effective 

connectivity is dynamic (active dependent) and that it depends on a model of interactions or 

coupling [19].  

In this way, the effective connectivity corresponds to the intuitive notion of coupling or 

directed causal influence, that rests specifically on a model of that influence. This is 

important since it means that the analysis can be reduced to model comparison.  

In this regard, the analysis summarizes the scientific process, since each model matches to 

an alternate hypothesis about how the observed data resulted. Thus, the general 

implementation of effective connectivity is to test the hypotheses concerning coupling 

architecture that have been investigated experimentally. The fundamental aspect of this 

analysis is that it ultimately rests on model comparison or optimization. 

3.2. Typical measures 

In this section it is described the conceptual framework for estimating neural connectivity 

according to what is explained in [20], where the most important definitions and 

considerations with respect to the connectivity measures are given. Let us first introduce 

some definitions of what is considered as connectivity.  

- Neural entity is a set of neurons that are under consideration. The activity of a neural 

mass is going to be denoted with the symbol 𝜄𝑛 and that of 𝑁 neural masses to be 

analyzed by the vector 𝜄𝑁×1 . 
- Anatomical connectivity is the axonal, monosynaptic connection of one neural mass 

with another.  

- Neural connectivity is the causal influence of one active neural mass upon another. 

The strength of the neural connectivity (or the causal effect) of the neural mass 𝑚 

upon the mass 𝑛 is going to be denote by 𝐾(𝑚, 𝑛), with all connectivity strengths 

arranged into the matrix 𝐊 = {K(𝑚, 𝑛)}𝑚,𝑛=1…𝑁. 

Neural connectivity is intervened by the transmission of action potentials over anatomical 

connections, thus affecting the target with a connectivity delay 𝑇(𝑚, 𝑛). The set of all delays 

is denoted by the matrix 𝐓 = {T(𝑚, 𝑛)}𝑚,𝑛=1…𝑁. 

By using the state evolution equation formulated generally as a Nonlinear Autoregressive 

Moving Average Model with exogenous inputs 𝑢𝑡 (NARMAX). The evolution of activity in 

a neural network is going to be described as: 
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𝛊𝑡 = 𝑓 (𝜄𝑡−Δ𝑡, … , 𝜄𝑡−𝑝1Δ𝑡, 𝜁𝑡 , 𝜁𝑡−Δ𝑡, … , 𝜁𝑡−𝑝𝜁Δ𝑡 , 𝐮𝑡, … , 𝐮𝑡−𝑝𝑢Δ𝑡, 𝐊, 𝐓) 

Where 𝛊𝑡 is the state vector describing neural activity, 𝑓 a nonlinear function that governs 

the dynamics of the neural network, 𝑢𝑡 an external input (e.g., a stimulus), 𝜁𝑡 a noise input, 

𝛥𝑡 is the discretization period, and 𝑝𝜄, 𝑝𝜁 , 𝑝𝑢, are, respectively, the time lags of the states, 

noise, and input, required for the model to be Markovian.  

When a simple model assumes 𝑓 to be linear, without external input and without dependence 

on past values of noise input (meaning the MA component is going to be eliminated), is 

actually the linear p-order Multivariate Autoregressive Model: 

𝜾𝒕 =∑  

𝑝

𝑘=1

𝐊𝑘𝐥𝑡−𝑘Δ𝑡 + 𝜁𝑡 (1) 

The state evolution equation must be supplemented with the EEG/MEG observation 

equation: 

𝐯𝑡 = 𝐋𝐮𝑡 + 𝜉𝑡 (2) 

Equations (1) and (2) define the EEG/MEG state space model and indicate that estimation 

of neural connectivity can fall within the framework of state-space estimation. With respect 

to the MVAR definitions, the following measures of connectivity are being described. 

3.2.1. Cross-Correlation and Coherence 
Statistical dependencies between signals are detected by using correlation (for the time 

domain) and coherence (in the frequency domain). The correlation between signals arises 

when there is true connectivity between brain areas.  

A linear relationship between signals is represented in a simple model, where one signal is 

delayed and the second one is a noisy version of the other: 

𝑦𝑡 = 𝑎𝑥𝑡−𝜏0 + 𝑒𝑡 (3) 

where 𝜏0 represents the time delay between signals 𝑥 and 𝑦 and 𝑒 a noise term. When there 

is a positive delay, it means that the direction goes from 𝑥 to 𝑦. Then the cross-correlation 

(𝑐𝑜𝑟𝑟) between 𝑥 and 𝑦 is expressed by the time domain expectation operation:  

corr𝑥,𝑦 (𝜏) = ⟨𝑥𝑡 ∣ 𝑦𝑡+𝜏⟩ (4) 

which is maximal for 𝑡 =  𝜏0 . The correlation coefficient can be calculated by normalizing 

the cross-correlation by the energy of each signal. While for the frequency domain, the linear 

relationship between signals can be estimated based on the coherency (complex coherence): 

𝐶𝑥,𝑦(𝜈) =
𝑥𝜈𝑦𝜈

∗

|𝑥𝜈 ∥ 𝑦𝜈|
 (5) 

where 𝑥𝜈 and 𝑦𝜈 are Fourier transforms of 𝑥𝑡  and 𝑦𝑡 , respectively. The squared module of 

𝐶 is the coherence, which ranks between 0 (no dependence) and 1 (maximal dependency). 

The slope of the phase can be used to estimate the time delay between the signals. In fact, if 

there is a delay 𝜏0  between 𝑥 and 𝑦, then: 
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𝑦𝜈 = ⟨𝑦𝑡 ∣ 𝑒
−𝑖2𝜋𝜈𝑡⟩ = ⟨𝑥𝑡−𝜏0 ∣ 𝑒

−𝑖2𝜋𝜈𝑡⟩ = 𝑥𝜈𝑒
−𝑖2𝜋𝜈𝜏0 

𝐶𝑥,𝑦(𝜈) = 𝑒
𝑖2𝜋𝜈𝜏0 

(6) 

3.2.2. Granger Causality (GS) 

This method originates from the definition of causality in the statistical sense, which was 

given by Wiener [21] and according to which a time series has a causal effect on another if 

the capability to predict the second time series worsens when the information about the first 

one is removed from all the other available information. Granger then provided an 

implementation of this definition using linear autoregressive models of stochastic processes. 

The GS suggests directionality, since a variable causes another variable if the first one 

contains information that helps predict the future of the second one. The relationship can be 

bi-directional such that it enables the detection of directed and reciprocal influences. The 

most common implementation of the GS is founded on linear AR modelling of time series, 

under the assumption that the two variables are stochastic and wide-sense stationary.   

Two time series 𝑥(1) and 𝑦(2)  are modeled by a reduced AR (including just the past 

samples from the time series itself) and by a bivariate one BVAR (also including the past 

samples of the other time series), as follows: 

- Reduced Auto-regressive (AR)  

𝑥𝑡 =∑  

𝑃

𝑘=1

A𝑘(1,1)𝑥𝑡−𝑘Δ𝑡 + 𝑒ℓ 

𝑦𝑡 =∑  

𝑃

𝑘=1

A𝑘(2,2)𝑦𝑡−𝑘Δ𝑡 + 𝑒𝑖 

 

(7) 

- Bivariate (BVAR)  

𝑥𝑡 =∑  

𝑃

𝑘=1

A𝑘(1,1)𝑥𝑡−𝑘Δ𝑡 +∑  

𝑃

𝑘=1

A𝑘(1,2)𝑦𝑡−𝑘Δ𝑡 + 𝑒𝑡

𝑦𝑡 =∑  

𝑃

𝑘=1

A𝑘(2,1)𝑥𝑡−𝑘Δ𝑡 +∑  

𝑃

𝑘=1

A𝑘(2,2)𝑦𝑡−𝑘Δ𝑡 + 𝑒𝑡

 (8) 

where 𝑘 is the time lag between samples and 𝑝 is the model order, i.e., the maximum lag 

included in the model. In order to advance the prediction of each time series, which is due 

to the other one is assumed if the variability of the residual of the BVAR model (8) BVAR 

𝜎𝑒
2 is significantly reduced with respect to the variability of the residual of the reduced AR 

model (7) AR 𝜎𝑒
2, as expressed by the following indexes: 

𝐺𝐶𝑥→𝑦& = ln (
AR�̂�𝑒

2(2)

BVAR �̂�𝑒2(2)
) (9) 

𝐺𝐶𝑦→𝑥& = ln (
AR�̂�𝑒

2(1)

BVAR �̂�𝑒2(1)
) (10) 

A reduction of the variance BVAR 𝜎𝑒
2 (1), BVAR 𝜎𝑒

2 (2) of the residuals of the bivariate 

model (8) with respect to the variance AR 𝜎𝑒
2 (1), AR 𝜎𝑒

2 (2) of the residuals of the univariate 
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model (7) results in a GC index greater than zero, such that is fulfills the Wiener-Granger 

definition.  

The bi-directional causality is represented by different parameters of the model. This means 

the directionality of the method: 𝐺𝐶𝑥→𝑦  =  𝐺𝐶𝑦→𝑥. 

3.2.3. Multivariate Time Series 

A. Directed Transfer Function (DTF)  

Another approach was introduced specifically for the brain functional connectivity by 

Kaminski and Blinowska in 1991 [22]. Considering the spectral representation of the MVAR 

model as in (14), the Directed Transfer Function (DTF) directed from m to n was defined as 

follows: 

B𝑚→𝑛
2 (𝜈) = |B(𝜈;𝑚, 𝑛)|2 (11) 

A normalization of DTF is then performed by dividing each value of the estimator by the 

squared sums of all elements of the relevant row: 

Γ𝑚→𝑛
2 (𝜈) =

B𝑚→𝑛
2 (𝜈)

∑  𝑁
𝑙=1 B𝑚→𝑙

2 (𝜈)
 (12) 

The normalized DTF values belong to the interval [0, 1], and satisfy the following condition: 

∑ 

𝑁

𝑛=1

Γ𝑚→𝑛
2 (𝜈) = 1 (13) 

 

B. Partial Directed Coherence (PDC) 

Partial Directed Coherence (PDC) was introduced as a factorization of Partial Coherence. 

Similarly to DTF, the structure is based on a MVAR modelling of the entire set of time series 

representing the brain activity at different sites. Nevertheless, PDC is based on the transfer 

matrix 𝐴(𝜈) of the predictive MVAR filter (instead of its inverse 𝐵(𝜈), like DTF): 

Π(𝜈;𝑚, 𝑛) =
A(𝜈;𝑚, 𝑛)

√∑  𝑁
𝑙=1 A(𝜈; 𝑙, 𝑛)A

∗(𝜈; 𝑙, 𝑛)
 

Π𝑚→𝑛
2 (𝜈) = |Π(𝜈;𝑚, 𝑛)|2 

(14) 

By comparing the two approaches it was detected that there is more accuracy and a better 

interpretation of the quantitative values for DTF, however a more accurate reconstruction of 

the network structure was provided by PDC. 

C. Normalizations of DTF and PDC 

The results on connectivity employing DTF and PDC have been greatly analyzed, and 

despite that these estimators reveal similar structural characteristics in the networks that they 

highlight [23], multiple normalization schemes have been proposed to provide more stability 

and accuracy in the estimations. In this way, a list of versions based on DTF and PDC are 

explained below.  

The generalized PDC (gPFC) [24] shown in Eq. (15) accounts for the imbalances produced 

by the variance of the estimations, and provides a more robust estimation for small samples. 



32 

 

�̅�𝑖𝑗(𝑓) =

1
Σ𝑖𝑖
𝐴𝑖𝑗(𝑓)

√∑  𝑀
𝑘=1

1
Σ𝑖𝑖
2 |𝐴𝑘𝑗(𝑓)|

2

0 ≤ |�̅�𝑖𝑗(𝑓)|
2
≤ 1

∑  

𝑀

𝑗=1

|�̅�𝑖𝑗(𝑓)|
2
= 1

 (15) 

The renormalized PDC (rPDC) was introduced in [25] and eliminates the dependence of the 

statistical significance on the frequency by normalizing the PDC definition by the inverse 

covariance matrix to provide an estimator that does not depend on the unit of measurement. 

The rPDC is shown in Eq. (16). 

𝜆𝑖𝑗(𝑓) = 𝑄𝑖𝑗(𝑓)
∗𝑉𝑖𝑗(𝑓)

−1𝑄𝑖𝑗(𝑓)

 where,

𝑄𝑖𝑗(𝑓) = (
Re[𝐴𝑖𝑗(𝑓)]

Im[𝐴𝑖𝑗(𝑓)]
)  and 

𝑉𝑖𝑗(𝑓) = ∑  

𝑝

𝑘,𝑙=1

𝑅𝑗
−1(𝑘, 𝑙)Σ𝑖𝑖𝑍(2𝜋𝑓, 𝑘, 𝑙)

𝑍(𝜔, 𝑘, 𝑙) =

(
cos(𝜔𝑘) cos(𝜔𝑙) cos(𝜔𝑘) sin(𝜔𝑙)

sin(𝜔𝑘) cos(𝜔𝑙) sin(𝜔𝑘) sin(𝜔𝑙)
)

 

 

(16) 

Normalizations on the DTF measure have been proposed too. On Eq. (17), the full frequency 

DTF (ffDTF) was proposed by Korzeniewska in 2003 [26], and eliminates the dependence 

of the denominator on the frequency information which provides a more clear interpretation 

of the information flow at different frequencies.  

𝜂𝑖𝑗
2 (𝑓) =

|𝐻𝑖𝑗(𝑓)|
2

∑  𝑓 ∑  𝑀
𝑘=1 |𝐻𝑖𝑘(𝑓)|

2
 

 

(17) 

Moreover, the direct DTF (dDTF) Eq. (18), was also proposed in [26], and is considered as 

the product of the partial coherence and the ffDTF. It provides an interpretation of the 

frequency domain conditional Granger causality.  

𝛿𝑖𝑗
2 (𝑓) = 𝜂𝑖𝑗

2 (𝑓)

(

 
�̂�𝑖𝑗(𝑓)

√�̂�𝑖𝑖(𝑓)�̂�𝑗(𝑓))

 

2

 

 

(18) 

Where the partial coherence pCoh corresponds to the second term squared, and explains the 

remaining coherence (i.e., correlation in the frequency domain) that cannot be explained by 

a linear combination of the coherence from node 𝑖 to 𝑗, and is related to the proportion of 

coherence measured with respect to all other measured variables in the coherence matrix.  
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3.2.4. Dynamic Causal Modeling 
The basic principles rely on the individual neural populations and the connections between 

and within them, which are described by biophysically plausible models [27]. This simulated 

activity is mapped to the measured data through the forward model, which is adequate for 

the recorded data. After that the following calculations are made: 

● Likelihood which is the probability of the data given the model and its parameters 

● Prior which is the probability of the parameters given a model. 

● Model Evidence which is the probability of the data given a model. 

Then these parameters are combined through Bayes' theorem to estimate the posterior, which 

is the probability of the parameters given the data and the model. This Bayesian model 

inversion permits to answer the following questions:  

● Which model architecture is most likely to generate the data? 

● What parameter estimates have the highest probability given the data and the model? 

In this way, it is possible to obtain a source reconstruction framework from which a state 

space model based on the physiological characteristics mapped through a mathematical 

formalization is being produced and explains the connectivity among regions on the neural 

activity under study.  

3.3. Effective and functional connectivity 

Brain connectivity provides a way to understand how the cortical regions communicate, in 

this sense, it allows to interpret the behavior and the interactions that occur between different 

sources exploring the information flow either locally among channels in EEG or the sources 

from dipoles, or more generally by considering broader cortical areas from lobes or regions 

of interest.  

The mathematical formulations from which the flow of information is characterized relays 

on the definition of causality which states the relationship between two temporal series (e.g., 

time varying signals) if the past information from one of them, 𝑥(𝑛), improves the prediction 

of a second series, 𝑦(𝑛). This was well explained by Granger [28] and provided a way to 

evaluate the directionalities and the flow of information between the series when there 

existed a lack of reciprocity among them.  

This causal relationship was first defined for econometric models but was later popularized 

in neuroscience analysis that considered EEG, MEG and fMRI data since there is an intrinsic 

correlation between the temporal series in econometrics and the time varying signals 

produced by the sources that are topographically related and simultaneously recorded using 

an EEG acquisition system for instance.  

Causality differently from correlation establishes the effective connections that are produced 

between the sources. From this point of view, this kind of connectivity explains the causal 

relationship whose directionality can be obtained by applying the Granger principles. As it 

was explained in the previous section, there are different ways to calculate effective 

connectivity, and they are intended to quantify if the signal sources covary even if the 

structures from which these series are being measured do not have any anatomical 

connection (i.e., there is no physical connection among them).  
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This indicates that some hidden structures, that are not being measured, are participating 

actively, and are mediating between the two non-anatomical related areas, and thus, they are 

responsible of their communality. In this sense, the link among the different structures can 

be produced through intermediate networks/systems or directly by showing the actual 

connectivity between two sources. When more than two variables are under examination, it 

becomes a multivariate problem, which, according to the number of sensors that are being 

simultaneously employed to account for the biopotentials generated in the scalp, this is the 

case that applies for systems like EEG.  

On the other hand, the functional connectivity provides a temporal relationship between 

spatially remote neurophysiological events, quantified from the correlation between these 

variables. It guarantees that some form of link exists between the correlated structures, 

however it cannot quantify in which way this is happening. This is why effective 

connectivity is more powerful that functional connectivity, it provides a broader point of 

view and explains how intermediate structures are linked in a neural process allowing the 

analysis of complex brain activity.  

3.4. Applications of effective connectivity 

Considering the definitions of effective connectivity and what it has represented in the 

advancement of neuroscience, numerous developments has been performed in order to 

explain what is happening in the brain when a certain task is performed. Reviews like the 

one provided by Sakkalis [17], permit to have a broader view of the actual methodologies in 

connectivity analysis, not only from the effective point of view, but also from a functional 

sense.  

There are examples related to the theoretical analysis of the connectivity indexes in order to 

provide a significant assessment on the use of a certain connectivity measure in the 

evaluation of the neural activity. This category includes the comparison of connectivity 

estimators applied to high-resolution EEG recordings and synthetic signals to obtain the 

directionalities and the connectivity among different sources in the brain as explained in [23].  

In the same way, works like the one developed by Johnson et al [29], and Ramihi et al [30], 

intended to analyze the cortical excitability following different tasks both for attention and 

consciousness tasks. Ramihi and colleagues provided a framework in which a series of 

images were show to a group of participants and from the classes of images, they were able 

to characterize the connectivity information from the participants according to the 

psychophysical tasks. Johnson’s team characterized the electrical activity and connectivity 

patterns of people who underwent short memory tasks.  

 

More theoretical evaluations like the one presented in [31] intended to analyze the effective 

connectivity measures and their performance in detecting the causal effects and the statistical 

significance considering control data generated synthetically. They evaluated the 

information theoretic measures, MVAR model-based measures defined in time and 

frequency as well as phase-based metrics. The simulated data was produced considering the 

Henon maps, and it was possible to establish that the Partial Granger causality, MVAR 

Granger causality and conditional Granger causality are appropriate measures that account 

for the processes underlying.  
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Some other applications that evaluated the spurious connections that can arise from EEG 

signals and fMRI data considering Granger causality is evaluated in a graphical approach in 

[32], which provided a useful way to obtain interrelations in EEG and fMRI data able to 

characterize spurious causalities.  

Other works related to the analysis of pathologies have been published as well. An example 

of this is the one presented by Varotto and colleagues [33] in which it is explained an 

approach to evaluate the effective connectivity characteristics on vegetative state patients. 

They were able to compare the connectivity results with control groups and they found that 

alpha and theta bands were significantly different in comparison to healthy subjects. This 

serves as a basis to characterize what is happening to the neural activity in patients that are 

unconscious due to a pathological condition.  

 

De Tommaso and colleagues in 2012 [34], provided a statistical analysis on patients that 

suffered from migraine in order to characterize their brain activity after intermittent flash 

stimulation. They were able to find a statistically significant increase on the phase 

synchronization for the alpha band on patients that did not have aura. Moreover, the Granger 

causality increased in these patients in comparison with the control groups and the patients 

without aura. This evidenced the causal relationships and the differences according to the 

pathology type and characterizes the variables under consideration.  

 

Recent works with patients that suffer from treatment-resistant schizophrenia [35] evaluated 

the connectivity produced in specific points anatomical locations in the brain. By performing 

the source localization on EEG recordings of schizophrenic patients, Wada and colleagues 

were able to analyze the aberrant connectivity that is produced between the anterior cingulate 

cortex and the default mode network which is considered characteristic of this kind of 

pathology. By evaluating the isolated effective coherence (iCoh) they were able to find 

significant correlation of the neurophysiological basis between these areas regarding the 

characterization of the TRS. 

 

Epilepsy has been analyzed in terms of connectivity as well. On [36] the interictal EEG 

activity was analyzed for patients with childhood absence seizures. By analyzing the partial 

directed coherence (PDC) they found out that there exists a correlation between the highly 

significant increase of outgoing connectivity in frontal and central cortical areas for the 

patients in comparison with the control subjects. 

 

In the same line, the characterization of the EEG activity in relation to the connectivity 

patterns in children with autism has been of interest by the researchers. In [37] a group of 

children with autism and healthy children were evaluated to characterize the connectivity 

changes according to the main frequency bands that characterize the brain rhythms. As a 

main result, they found that it is possible to discriminate between the brain activities 

considering the metrics derived from the connectivity measures.  

 

Other works like the one presented in [38] characterized the connectivity patterns and the 

areas of more connectivity on heroin abstinent and non-addicted subjects. They found that 

there were alterations in the effective network by comparing the two subject groups, being 

evident for weaker causal pathways in the parietal region and stronger for the occipital area.  

 

Advances in biometric identification (BI) as shown in [39] are intended to provide non-

conventional ways of electrophysiological characterization of the brain activity. The 
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evidence from the authors shows that even though EEG data is contaminated with volume 

conduction, it provided comparable results to BI applications using MRI. The connectivity 

measures based on Granger causality, phase synchronization and coherence were tested 

considering KNN approaches, SVM and LDA. 

 

Combination of techniques that measure the brain activity has been reported in [40], where 

it is demonstrated that EEG and MEG data can be combined to provide improvements in the 

effective, functional and spectral power analysis. The analysis was performed in healthy 

subjects under conscious resting state conditions. 

 

Non-conventional applications of effective connectivity analysis are explained in  [41], [42] 

and [43]. In [41] the researchers provided an analysis of the effective connectivity and its 

variations in response to emotional music. They evaluated the theta, alpha, beta and gamma 

frequency bands in order to characterize the connectivity from emotional music. In [42] 

Dynamic Causal Modeling was employed to characterize the resting state conditions for 

motor imagery. In [43] there were extracted a set of features from effective connectivity 

values needed to perform the classification of objects that were presented to the subjects as 

visual information.  

3.5. What do these works have in common? 

The research works presented in the previous section provide an evaluation of the effective 

connectivity considering different applications that comprise the theoretical analysis of 

connectivity, the analysis of pathologies, classification of brain activity and resting state 

conditions analysis.  

Independently on the application, all these works share the same processing structure. This 

framework is presented in Figure 4 and comprises 6 principal steps from which the effective 

connectivity analysis is performed. The first stage corresponds to the signal acquisition and 

pre-processing, from which the data is acquired according to the brain imaging technique 

that is available. There are principally three main technologies to perform the acquisition of 

the data of interest.  

1. Electroencephalographic data 

2. Magnetoencephalographic data 

3. Electrocorticographic data 

From this list, the most common one as explained in the state of the art is the EEG data since 

it is the most affordable option in terms of portability, ease of use and data availability [44].  

The second stage corresponds to the effective connectivity measure estimation and 

corresponds to the implementation of algorithms to calculate the connectivity measures in 

order to have a ‘raw’ representation of the effective connectivity. As explained previously, 

different measures can be obtained and can be used jointly to provide a representation 

covering different points of view. The working domain definition goes next and corresponds 

to the definition of the source domain that is intended to be employed in order to estimate 

the connectivity relationships across the areas or sources. In this case, the sources can be 

defined in the channel space where the electrodes from the EEG equipment are used as the 

sources. The definition of regions of interest (ROIs) can be done as well, as it comprises 

different channels in order to evaluate the average connectivity across groups of electrodes 

or dipoles representing the sources topographically distributed in the brain.  
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After the calculation of the measures either directly in the sensor space to evaluate the 

connectivity characteristics in the channel space or the average connectivity measures by 

considering the ROIs, the fourth stage which comprises the generation of surrogate data from 

the original time series is performed as the starting point to evaluate the connectivity 

matrices through statistical analysis. Such statistical analysis can be performed using the 

analysis of variance or t-test depending on the application, in this way the statistically 

significant connections are obtained and only the meaningful information according to the 

connectivity measures and the statistical analysis are maintained. Finally, post-hoc tests are 

performed to guarantee the significance on the results under repeated measures. At the end 

of these steps, the statistically significant connections are obtained, and it is possible to 

perform the analysis of the connectivity patterns derived from the signals.  

 
Figure 4. Effective connectivity processing scheme. 

3.5.1. Connectivity examples for resting state conditions 
In order to start exploring the effective connectivity analysis in resting state conditions and 

have hands-on application from the framework shown in Figure 4, let us consider a couple 

of examples which provided a thorough analysis of the resting states during eyes open, and 

eyes closed.  

A. Comparison of connectivity analyses for resting state EEG data  

In this work, Olejarczyk and colleagues [45] worked on a method to analyze resting-state 

EEG data from 19 healthy subjects. For the opened-eyes condition, the subjects were asked 

to look at a display, fixating the gaze to a cross, and for the closed eyes condition, they were 

asked to maintain a relaxed state while being seated on an armchair. The recordings lasted 

10 minutes and were acquired at a sampling rate of 1000 Hz. The EEG dataset was composed 

by 128 signals acquired by a high-density array of electrodes. They provided the usual pre-

processing stages comprising band-pass filtering (1 – 45 Hz), artifact rejection based on ICA, 

common average re-reference, and an electrode selection stage from which they rejected 

about 25% of the total of electrodes (32 channels). 

In order to provide an analysis of the connectivity, they isolated the physiological 

frequencies (alpha, beta, gamma, and delta), and estimated different connectivity measures: 

Direct Transfer Function (DTF), Transfer Entropy (TE) and Phase Locking Value (PLV).  
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To perform the evaluation of the connectivity they estimated the significant connections 

according to adjacency matrices at each frequency band besides the whole spectrum (1 - 45 

Hz). The weighted adjacency matrices were analyzed by using indexes based on graph 

theory like density, degree, strength, path length, global efficiency, clustering coefficient, 

local efficiency and betweenness centrality, which were appropriate parameters to 

characterize the high-density array of sources defined in the channel domain from which 

connectivity measures could be estimated.  

They performed three different types of ANOVA analysis to compare the graph theory 

parameters at each frequency band and condition. In this way, they conducted a three-factor 

ANOVA evaluating the conditions (opened-eyes/closed-eyes), the frequency band (alpha, 

beta, gamma, delta, theta, and whole spectrum) and the 96 EEG signals. Then a two-factor 

ANOVA considering the condition and EEG channels, and finally, a two-way factor 

considering the condition and the frequency band. They performed the evaluation for each 

graph-theory parameter.  

A.1. What did they find? 

- In accordance with the state of the art they found that the closed-eyes state in the 

alpha and the whole frequency bands exhibited more unique characteristics when the 

adjacency matrices were compared among the different connectivity measures.  

- The multivariate TE showed less significant values compared to its bivariate 

formulation which according to the authors suggests spurious connections. As an 

important characteristic, they noted that nonlinear measures like the PLV were able 

to capture local connections on contiguous electrodes which was not possible to 

obtain for the linear measures like the DTF.  

- Connectivity results suggested that the information flux travels to the frontal region 

of the brain from the posterior area when the alpha rhythm in eyes closed condition 

was evaluated. Similar results were found for the analysis of the whole spectrum.   

- Differences between the resting state conditions are mainly observed for the alpha 

band. 

- The long-range connectivity goes from the posterior part of the brain to the frontal 

area. The frontal region corresponds to an area of higher synchronization in the alpha 

band for closed eyes.  

- The main areas involved in the characterization of the brain areas are the ones located 

in the anterior and posterior lobes. 

By comparing the strength at each frequency band, there were noticed small differences for 

the DTF value w.r.t the other measures in consideration. Only three from the total of 

electrodes exhibited significant differences between the opened and closed eyes conditions 

in the alpha band. However, when the same measure was compared considering the ROI, the 

ANOVA analysis provided statistically significant differences in the posterior, right 

temporal and frontal regions, which provides similar results to the ones obtained for the PLV 

and TE measures in the channel domain. It hypothesizes that considering the regions of 

interest provides mores sensitivity to the changes in connectivity and the results could be 

comparable to the ones obtained in the other domains. It suggests an increase of the strength 

during the closed-eyes condition. 
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B. The difference of brain functional connectivity between eyes-closed and 

eyes-open using graph theoretical analysis. 

As a second example of the methodology implementation, let us now consider the work done 

by Tan and colleagues [46]. This research work intended to differentiate the functional 

connectivity among the resting state conditions of eyes open and eyes closed by considering 

different graph theory measures like the degree, strength, path length, global and local 

efficiencies, and the clustering coefficient. In order to do this, the study was performed with 

21 healthy subjects with an EEG system of 128 channels. The sampling rate was 500 Hz, 

and the total acquisition time was set at 3 minutes per resting state condition. An epoch of 

10 seconds was employed to quantify the connectivity in the network by considering the 

synchronization likelihood measure. The alpha, beta and theta frequency bands were 

considered for the analysis.  

The main results from [46] considering the alpha band show that: 

- After opening the eyes, the connections in the posterior region were decreased in 

bilateral way for the alpha band. 

- There was an increment of the global efficiency and a reduction of the clustering 

coefficient, mean shortest path length and local efficiency for the alpha band. 

3.6. Limitations and possible improvements 

On Table 1 there are defined the substages part of the outline of the processing scheme shown 

in Figure 4. The data summarized in this table is intended to show the general characteristics 

of different connectivity works. Excepting for the case where Dynamic Causal Modeling is 

employed (last column - Friston 2019 [47]), there are several works that employ the same 

steps in order to perform the connectivity estimation, changing specific substages depending 

on their objective, for instance, considering different frequency bands, or employing 

different source definitions.  

Table 1. Substages in the processing outline considered in Figure 4.

 

Varotto - 2014 Olejarczyk - 2017 Baccalá - 2007 Johnson - 2012 Tommaso - 2013 Friston - 2019

2 s 20 s ~20 s ~5 s ~60 s 1 s

1 ✔ ✔ ✔ ✔ ✔ ✔

2 ✔ ✔ ✔ ✔ ✔ ✔

3 ✔ ✔ ✔ ✔ ✔ ✔

A. ✘ ✔ ✘ ✘ ✔ ✘

B. ✔ ✘ ✔ ✔ ✘ ✔

C. ✘ ✘ ✔ ✘ ✘ ✘

1 ✔ (PDC) ✔ (DTF, TE, PLV) ✔ (DTF, dDTF, PDC) ✔ (TMS-ER) ✔ (GC, PS) N.A.

2 ✔ ✔ ✔ ✔ ✔ N.A.

a. Frequency band ✔ ✔ ✘ ✘ ✔ N.A.

b. Whole spectrum ✔ ✔ ✘ ✘ ✔ N.A.

c. Time domain ✘ ✘ ✔ ✔ ✘ N.A.

3 ✔ ✔ ✘ ✘ ✘ N.A.

1 ✔ ✔ ✔ ✔ ✔ N.A.

1 ✔ ✔ ✔ ✔ ✔ N.A.

a. Variable definitions ✔ ✔ ✔ ✔ ✔ N.A.

b. Tests ✔ ✔ ✔ ✔ ✔ N.A.

c.
Statistical Connectivity 

analysis
✔ ✔ ✔ ✔ ✔ N.A.

✔ ✔ ✔ ✔ ✔ ✔

✘ ✔ ✔

Graph measures

Dipoles

E.C. selection

E.C. Calculation

E.C. MEASURES

Corrections

STATISTICAL ANALYSIS

ANOVA

RESULTS

POST-PROCESSING E.C.

STEPS

PREPROCESSING

WINDOW LENGTH

Channel space

ROIs

WORKING DOMAIN DEF.

Filtering

Normalization

Artifact rejection

✔
Phys. Rhythms                         

(e.g. Alpha, Beta, etc.)
4 ✔ ✔



40 

 

By looking at the Table 1, one can notice that another big difference is related to the window 

length employed for the MVAR fitting process to perform the calculation of the connectivity 

measures. Moreover, these works do not provide any explanation on why they performed 

the analysis considering that window duration and no other. The rationale is the use of a time 

window so that it is long enough so the frequency information that characterizes the brain 

activity under analysis will be covered, and the connectivity measures will be able to provide 

information about the neural activity. 

This is an issue that is not usually addressed and the segment length selection is not evaluated, 

which is critical since the window size has a substantial effect in the estimation of effective 

connectivity information [47]. Some authors have presented some observations about this 

topic: 

- Sameshima and Baccalá [48] 

“Without too much justification, Marple Jr. (1987) suggests that the total number of observed 

samples should be at least three times the number of parameters for a minimally adequate 

fit.”  

- Rotondi et al., 2016 [36] 

For epoched recordings: “In case of MVAR it has been recommended that, as a rule of thumb, 

the ratio (𝑁 ∗  𝑚)/(𝑀 ∗  𝑝) should be of 10 or larger. (Schlögl and Supp, 2006)” 

- Sakkalis, 2011 [17] 

“Stationarity is still required within each time interval for which coherence is calculated, 

meaning that in practice one should carefully decide on the optimal section length (window) 

over which each coherence estimate is measured.” 

As it can be seen, there exist some rules of thumb and very general considerations regarding 

this issue, however these are only suggestions that are not always considered and the 

effective connectivity analysis is usually performed without any analysis of the effect of the 

window size in the results.  

This means that the influence of the window size in the MVAR fitting process is totally 

overlooked. Moreover, as it can be observed on Table 2 from a short list of works that have 

performed effective connectivity analysis, it can be seen that the window duration employed 

is not common, even when similar neural activity was evaluated.  

Table 2. List of window durations on different works that perform connectivity analysis. 

 

Research work Window duration

Varotto et al., 2014 2 s

Olejarczyk et al., 2017 20 s

Astolfi et al., 2007 20 s

Van de Steen et al., 2019 1 s

Johnson et al., 2012 5 s

De Tommaso et al., 2013 60 s

Hu et al., 2017 10 s

Maharathi et al., 2016 10 s

Valizadeh et al., 2019 2 s

Ghahari et al., 2020 100 s

Muthuraman et al., 2015 1 s

Rotondi et al., 2016 3 s

Shahabi & Moghimi, 2016 2 s

Rahimi et al., 2019 1 s

Lee et al., 2020 3.5 s

Bakhshayesh et al., 2019 0.3 s

Resting-state condition

Other applications
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This heterogeneity on the window length definition is what defines the objective of this 

thesis work. The aim is to find a way to select a window size such that the stationary 

characteristics of the signals is maintained in overall along the EEG signals, which is a 

necessary condition in order to perform the MVAR fitting process and provide an 

appropriate estimation of the effective connectivity.  

Is at this point where a window size selection approach based on the stationary characteristics 

of the EEG signals could be implemented and evaluated to observe its influence in the 

connectivity results as a factor of the statistical analysis. In this way, it is proposed the 

following processing approach in which a window selection stage is included in the effective 

connectivity network. The modified approach is shown in Figure 5. 

 
Figure 5. Modification on the E.C. statistical analysis to account for the window length.  

 

According to Figure 5 there is included a window selection stage which is intended to 

provide a tool that based on the stationary characteristics of the EEG signals under evaluation 

it is possible to obtain a segment length that maintains these features along the signal. The 

following chapter describes the data available for this process and the considerations that 

were used to provide this window selection approach.  

3.6.1. Characteristics of EEG signals 
In this section there are summarized the characteristics of EEG signals and the considerations 

taken to perform the window selection approach by analyzing the stationary characteristics 

of the EEG data and using the kurtosis as a feature to account for stationarity. 

A. EEG as a stochastic process 

Electroencephalographic signals are electric biopotentials that can be measured, acquired, 

and recorded by placing electrodes over the scalp. These signals are the result of the 

propagation of cortical potentials generated in the intricate neural network and lead to the 

cortex spreading through the skull passing to the scalp where can be finally recorded using 

the electrodes, specifically, surface electrodes.  
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Considering the complex processes carried out in the brain, the EEG signals are a mixture 

of different time-varying components, in this way, brain activity registered as EEG potentials 

can be categorized as a product of non-linear, time-varying, and stochastic processes.  

The non-linearity characteristic of EEG signals demands the use of appropriate methods that 

go beyond the classic processing techniques based on the frequency and/or temporal analysis 

to provide a description of the process underlying and analyze the signals. Consequently, the 

use of high order statistics as a way to describe such kind of non-linear random process might 

fit that goal to account for the statistical characterization of the signals. Regarding the time-

varying behavior of the EEG signals, if they are analyzed in short segments, those can be 

assumed to be stationary, which is one of the main assumptions given an effective 

connectivity framework like the one described in this work. 

Nondeterministic signals like the EEG potentials cannot be characterized mathematically in 

a closed form, their stochastic nature makes them more useful to be analyzed statistically, 

for instance, by accounting for their high order statistical moments.  

One of the main purposes of this thesis work is to provide a way to select an appropriate 

segmentation duration in order maintain the stationarity in between the segments to then 

evaluate and provide further processing in Effective Connectivity, therefore, first, there are 

discussed the statistical characteristics of stochastic processes from which the framework for 

segment selection is derived.  

B. Order moments of an EEG signal 

EEG signals when recorded simultaneously from different sources (i.e. locations over the 

scalp) are considered to follow a multivariate Gaussian distribution [49]. As the result of a 

stochastic process they can be characterized according to their probability density functions 

(PDF), specifically, the order moments of the PDF provide a way to understand the random 

process behind the data generated, which is appropriate for processing EEG signals. 

For a random variable, the expectation is the value that such a variable is expected to take. 

It is denoted as 𝐸[𝑥], and it is the mean of the random process 𝑥, and corresponds to the 

first-order moment of the PDF. It is defined as shown below: 

𝜇𝑥 = 𝐸[𝑥] = ∫ 𝑥 ∙ 𝑝𝑥(𝑥)𝑑𝑥
∞

−∞

 𝜇𝑛 =
1

𝑁
∑ 𝑥(𝑛)

𝑁−1

𝑛=0

 (19) 

Where 𝑝𝑥(𝑥)  is the PDF of 𝑥 , 𝜇𝑥  is the expected value of the random process in the 

continuous domain and 𝜇𝑛 is its discrete definition for a discrete vector 𝑥(𝑛) containing 𝑁 

components, 𝑛 = 0,1,2, … ,𝑁 − 1 . For a random noise process, the expected value is 

assumed to be zero. 

Similarly, the second-order moment of the PDF 𝑝𝑥(𝑥) corresponds to the mean-squared 

(MS), and it is defined as 

𝐸[𝑥2] = ∫ 𝑥2 ∙ 𝑝𝑥(𝑥)𝑑𝑥
∞

−∞

 𝑀𝑆 =
1

𝑁
∑(𝑥(𝑛))

2
𝑁−1

𝑛=0

 (20) 

The corresponding central definition of the mean-squared accounts for the spread of the 

probability distribution. This second central moment assesses the dispersion concerning the 

expected value of the PDF and it is known as the variance (see Eq. (21)); one of the important 
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statistical characteristics used for the approach of segment selection explained in this thesis 

work. 

𝜎𝑥
2 = 𝐸[(𝑥 − 𝜇𝑥)

2] = ∫ (𝑥 − 𝜇𝑥)
2𝑝𝑥(𝑥)𝑑𝑥

∞

−∞

 𝜎𝑥
2 = √

1

𝑁
∑(𝑥(𝑛) − 𝜇𝑥)2
𝑁−1

𝑛=0

 (21) 

Usually, a better representation of the spread is calculated according to the standard 

deviation (SD), defined as the squared root of the variance (𝑆𝐷 = 𝜎𝑥). For a random process 

with a zero mean, the mean-squared and the variance are the same. 

As a way to characterize the variability of the process, it can be used the coefficient variation 

(CV), defined by the ratio between the standard deviation and the mean (𝜎/𝜇). This statistical 

attribute can be useful to perform comparisons and characterize the variability that exists 

between different processes that exhibit different means. 

Other higher-order moments like skewness and kurtosis are used to characterize the 

probability density functions derived from a random process. The normalized version of the 

third-order moment (Skewness) can be defined as follows: 

𝑆𝑥 =
1

𝜎𝑥
3∫ (𝑥 − 𝜇𝑥)

3𝑝𝑥(𝑥)𝑑𝑥
∞

−∞

 𝑆𝑥 =
𝐸[(𝑥 − 𝜇𝑥)

3]

𝜎𝑥
3  (22) 

Skewness as its name suggests shows how much a distribution lacks symmetry, in other 

words, how a distribution is skewed to the left or the right with respect to the maximum 

likelihood of the distribution. As can be inferred, a normal distribution such as the Gaussian 

has a skew value of zero. 

The normalized version of the fourth-order moment known as kurtosis characterizes if a PDF 

has a large peak around its mean value. It represents how much the distribution is different 

from a Gaussian PDF, thus, a high kurtosis value is proportional to the relative difference 

with a normal distribution of similar characteristics, while low kurtosis indicates a smooth 

transition of the PDF values near the mean value at the top of the distribution. For the purpose 

of this work, the kurtosis value is estimated to account for how different the distribution is 

from a normal distribution, for which it necessary to normalize its value by subtracting a 

constant value of 3, which is the kurtosis of any normal distribution. In this way, kurtosis is 

defined as: 

𝐾𝑥 =
1

𝜎𝑥4
∫ (𝑥 − 𝜇𝑥)

4𝑝𝑥(𝑥)𝑑𝑥
∞

−∞

 𝐾′𝑥 =
𝐸[(𝑥 − 𝜇𝑥)

4]

𝜎𝑥4
− 3 (23) 

The quantity 𝐾′𝑥 corresponds to the excess of kurtosis w.r.t the normal distribution’s 4th 

order moment estimation, accordingly, a high positive 𝐾𝑥
′  indicates a strong peak with a 

heavy tail from the distribution, and a negative 𝐾𝑥
′  corresponds to a virtually flat PDF. For 

the purpose of this work, the 𝐾𝑥
′  values are required to be close to zero so that the samples 

from a segment with that estimated kurtosis follow a normal distribution, a characteristic 

needed to guarantee the stationarity of a signal segment. 

Sudden changes of EEG signals over time as the ones produced by seizures can be 

characterized using the high order statistics of the distributions derived from the 

measurement of the signals. Even more complicated processes can be performed, like 
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automatic signal segmentation implemented to detect preictal, ictal, and postictal periods 

during the seizures [50].  

The order moments corresponding to the first (mean), second (mean squared and variance), 

third (skewness), and fourth (kurtosis) as explained earlier characterize the random process 

defined by its Probability Density Function – PDF.  

As the objective is to find a segment length duration common for all or the majority of the 

channels of an EEG recording, the 4th central moment, the kurtosis explained by the excess 

considering a normal distribution (𝐾′𝑥 ) is the principal statistical measure used in this 

approach as a scale to quantify the non-stationarity of the EEG signals. The main reasons 

that support its use are the following: 

1. Kurtosis accounts for how peaky or flat is a distribution compared to a normal PDF 

(e.g. Gaussian), hence, a low Kurtosis value means that data is normally distributed, 

which is a characteristic of stationary signals. 

2. In this way, Kurtosis estimation of different segment durations of a signal can assess 

how much a segment is stationary, needed for E.C. 
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4. Materials: EEG datasets and preprocessing 
There are several approaches used to record brain activity (as explained in the section 

Technologies for brain imaging: A brief description) some examples are Functional 

Magnetic Resonance Imaging (fMRI), Positron Emission Tomography (PET), Single Photon 

Emission Computerized Tomography (SPECT), Functional Near Infrared (fNIR), Magneto-

encephalography (MEG), and Electroencephalography (EEG), among others [3], [51], [52].  

Each of these brain imaging techniques offers different advantages respecting temporal 

and/or spatial resolution besides the sensitivity in recording the brain activity. Moreover, the 

fundamental working principle differs among them comprising different physical properties 

to be measured. In particular, the EEG technique comprises high temporal resolution for 

signal acquisition, low cost (relative to the application considered), and great 

wearable/portability capacities, which make this technique an affordable way (both in 

economical and procedural terms) to record brain activity, at the expense of lower spatial 

resolution and more difficult preparation for the acquisition [3]. 

As a result of the acquisition of EEG signals, there are obtained a set of waveforms which 

correspond to the digital conversion of the variation over time of the biopotentials recorded 

across the scalp of a person whilst is performing a specific cognitive/non-cognitive task. 

Different electrodes that cover the scalp area register the voltage variations at different 

locations of the scalp giving as result a recording comprising as low as 1 and up to 256 

signals [53].  

Functional and effective connectivity analysis can be done from the imaging techniques 

mentioned previously, however, the possibility of analyzing the directionality on the flow of 

information offered by Effective Connectivity allows to understand how different areas of 

the brain interact when brain activity is produced. In this sense, the first step in a 

comprehensive effective connectivity analysis is the acquisition of brain activity data 

recorded using imaging techniques. For the effective connectivity approach, 

electroencephalographic signals are often used for processing. 

4.1. EEG Dataset 

The EEG dataset considered for this thesis was provided by the Istituto di Bioimmagini e 

Fisiologia Molecolare (IBFM) of the Consiglio Nazionale delle Ricerche (CNR). Such 

dataset comprises brain activity of ten healthy and ten chronic stroke patients with 

monolateral upper-limb deficits, and it was used to obtain quantitative 

electroencephalographic markers from the cerebral activity of the subjects. The recordings 

and the corresponding metrics were employed to evaluate the motor improvement success 

rate of the stroke patients who went through a robot-assisted rehabilitation program [54]. 

The brain activity was recorded in resting-state conditions and during motor tasks as a way 

to characterize and evaluate the evolution of the patients during rehabilitation [55].  

As the purpose of this work is the analysis to provide a basis in the processing stage of the 

effective connectivity only the signals of the healthy subjects were considered. In this way, 

a total of 20 recordings corresponding to two different resting-state conditions of the 10 

healthy subjects were used for the assessment and selection of an appropriate segmentation 

duration to obtain the multivariate autoregressive model needed for effective connectivity. 

The resting-state EEG signals considered were acquired from each of the subjects while they 

were in a supine position. They were asked to be aware of their surroundings during two 

different states; while keeping their eyes opened (resting-state condition 1 - R1) and closed 
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(resting-state condition 2 - R2). The acquisition was performed for 5 minutes overall for all 

the patients.  

The signals were acquired using the EEG signal acquisition equipment Synamps 2/RT from 

Neuroscan [56]. This is an amplifier of EEG, event-related potentials (ERP), and evoked 

potentials (EP), and has a sampling rate up to 20 kHz (Bandwidth: DC to 3500 Hz) 

comprising analog-to-digital converters of 24-bits. The system includes a total of 70 

channels; 64 monopolar, 4 bipolar, and 2 high-level, which are sufficient to have a high-

density EEG recording [57]. 

The placement of the electrodes over the scalp was performed using the 10-20 standard. 

Figure 6 shows the topological location of 62 of the 70 channels. The sampling frequency 

for the resting-state recordings for all of the participants was set at 1000 Hz. Regarding the 

acquisition characteristics considering the electronics set up of the equipment, there was 

applied an active filtering scheme for the power line frequency at 50 Hz, omitting any other 

acquisition feature. Further processing of the signals was performed digitally with the help 

of a computer. 

 
Figure 6. Channel locations over the scalp using the EEG system Synamps 2/RT from Neuroscan. Only 62 

out of 70 channels are shown since apart from the two high-level electrodes, the channels M1, M2, LDA, 

LBIC, RDA, RBIC were not used for recording. (Plot generated using EEGLAB [58]) 

4.2. Noise and artifacts in EEG signals 

Before starting the description of the main steps considered for the selection of appropriate 

segment durations within the Effective Connectivity framework, let us have a closer look at 

the signals that were analyzed to define a pre-processing stage that minimizes the noise and 

possible artifacts that affect the recordings.  

As an example, Figure 7 depicts a short segment of the signal recorded by the channel F8 

located at the frontal right position on the scalp (see Figure 6). As described previously, the 

sampling frequency was set at 1000 Hz, from which it can be inferred that the total number 

of points of this segment is 2000 samples, corresponding to a signal length of 2 seconds 

occurred in the time interval 100 to 102 from the total duration of 328 seconds (~ 5.5 

minutes). Moreover, it can be observed that the amplitude is normalized with respect to the 

mean and the overall standard deviation of the signal (known as z-score).  
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Figure 7. A segment of an EEG signal recorded by the channel F8. Taken from the EEG dataset of subject 

10 (S10) during the closed eyes resting-state (R2). 

In total, the dataset for each resting-state condition is composed of 68 signals which are 

processed to improve the information that can be obtained from them. Considering the noisy 

environments and the uncertainty in the measurement process, different factors might 

produce errors in signal acquisition. Such kind of interferences (i.e. artifacts) that affect the 

signal digitization include, but are not limited to sudden movements of the patient during the 

acquisition, fluctuations of the thermal charge generated in the electronics components that 

are part of the amplification stage and/or variations of the same nature at the junction of the 

electrode and skin, moreover, spontaneous biopotentials can arise and affect the signals as 

well [59]. These can be categorized as internal if they are produced by physiological 

processes that contribute either to unnatural oscillatory components in the signal or sudden 

amplitude changes, and external if the artifact sources are identified from the environment 

setting of acquisition, the equipment, or procedural misplacement of the electrodes [60]. 

Figure 8.a shows a set of signals acquired by eleven electrodes during the time interval 127 

to 132. This figure is aimed to show how the recordings are stored, comprising the time-

series variation of the biopotentials in a parallel way (i.e. matrix wise). The signal registered 

by the electrode F8 during this time interval is plotted in red to highlight some artifacts that 

were probably produced by sudden movements from the subject. It is worth to notice that 

those artifacts are very common and interfere with the signal during its overall registration.  

 a) 
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 b) 
 Figure 8.a. Subset of signals registered by 11 out of a total of 68 channels.  Figure 8.b. Same segment of 

the signal from the channel F8 containing artifacts. 

Figure 8.b depicts the isolated segment of the signal registered from the channel F8. Can be 

observed the great difference in magnitude concerning the same signal at a different time 

interval (second 100 to 102) as shown in Figure 7. Here, after normalization, the amplitude 

reaches a maximum of about 6 a.u. and a minimum of -4 which are about one order of 

magnitude higher than the values presented at previous instants. Such kind of abrupt changes 

in the amplitude suggest the presence of artifacts as explained above, and it is needed to 

minimize their effects or eliminate them to have clean signals to work with. 

Is for this reason that a preprocessing stage is defined to obtain clean versions of the signals 

which is the initial step to provide a processing framework for the segment length selection 

and further effective connectivity analysis.  

4.3. Preprocessing stage 

For the purpose of preprocessing and Effective Connectivity testing, the EEGLAB toolbox 

was employed during the development of this thesis work. EEGLAB [58] is a toolbox 

designed for the high-level computational language MATLAB® to provide a set of tools for 

processing and analyze electroencephalographic signals. It has a graphic user interface from 

which it is possible to import and read different file formats (e.g. CNT/EEG files from 

NeuroScan™ acquisition equipment or the EDF standard file format for medical devices, 

among others), and also, it incorporates a large set of functions specifically designed for the 

EEG signal processing which vary from classical signal processing ones like the application 

of filtering strategies, frequency representation through the Fourier transform, calculation of 

power spectral densities, and time-frequency methods combining Wavelet transform for 

multiresolution analysis and signal visualization, to more complex uses as the Independent 

Component Analysis (ICA) [61], epoching, labeling and visualization of Event-Related 

Potentials (ERP), Evoked Potentials (EP), statistical analysis of the signals, and artifact 

rejection, among other functions. 

Figure 9, shows a block diagram describing graphically the main steps considered for the 

Effective Connectivity framework for this thesis work. As can be noted, the first step 

corresponds to the signal acquisition, which has been done by the IBFM lab, grouping all 

the signals of interest, and providing them for processing. The second step is the 
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preprocessing stage in which filtering, ICA, artifact rejection, and channel selection are 

performed as data cleaning processes. The third stage corresponds to the application of high 

order statistics as metrics to establish a non-parametric framework to select an appropriate 

segment length that captures the smooth variations over time of the varying system 

underlying the EEG signals. The fourth stage corresponds to the validation of the results 

found in the segment length selection, and finally, the window found is applied to test the 

effective connectivity for the resting state conditions and each of the subjects.  

 
Figure 9. Pre-processing block diagram for the data cleaning process. 

Figure 9, also shows in detail the preprocessing stages followed to clean the EEG signals 

from noise and artifacts during recording. The first step corresponds to the Artifact Subspace 

Reconstruction (ASR) [62], a method that considers signal segmentation and variance 

estimation as a metric to establish exceeding values from a threshold that are evaluated by a 

Principal Component Analysis decomposition, then the artifact segments are rejected and 

signal reconstruction is performed to obtain a cleaner version of the signal [63]. The next 

step is the selection of useful channels from which some of the channels are discarded 

considering that they do not convey any useful brain activity information since they were 

not actively part of the set of electrodes connected to register the signals. 

The preprocessing stages 3 to 5, are considered as artifact rejection strategies based on 

classical approaches, inspecting abnormal trends, improbable data, atypical spectral 

characteristics, and channel statistics. These are performed in between ICA decomposition 

steps, employed for source separation, component selection, and elimination using 

complementary tools as the Multiple Artifact Rejection Algorithm (MARA) [64], [65], a 

supervised machine learning algorithm that considers frequency, temporal and spatial 

features to reject component sources derived from ICA.  

A. Artifact Subspace Reconstruction (ASR): 

As explained by Chang et al. in [66], in a general way, Artifact Subspace Reconstruction 

(ASR) can be understood as a method based on Principal Component Analysis (PCA) to find 

the underlying components that exhibit large variances with respect to clean segments of the 

same signals. These are automatically identified by the algorithm and are used to find the 

variance thresholds as the features to reject the components with large deviations, recognized 

as artifacts. After the rejection, the signals are transformed back into the time domain from 

the remaining components and a cleaner version of the original dataset is obtained. 
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A segment from a signal 𝑋𝑡 is decomposed into its principal components 𝐶𝑡 by considering 

a mixing matrix 𝐴𝑟 given as 𝑋𝑡 = 𝐴𝑟 𝐶𝑡. The rejection of the large variance components is 

then performed in the principal component space 𝑌𝑡 = 𝑉𝑡
𝑇𝐴𝑟𝐶𝑡, and a clean version of the 

original dataset (𝑋𝑡) is can be reconstructed using the selected PCs from 𝐶𝑡 → 𝐶𝑡
′ (i.e. 𝐶𝑡

′ is 

the clean version of 𝐶𝑡). The reconstruction is carried out using the pseudoinverse of the 

truncated matrix 𝑉𝑡
𝑇𝐴𝑟 → 𝐶𝑡

′ = (𝑉𝑡
𝑇𝐴𝑟)𝑡𝑟𝑢𝑛𝑐

+  𝑌𝑡 = (𝑉𝑡
𝑇𝐴𝑟)𝑡𝑟𝑢𝑛𝑐

+ 𝑉𝑡
𝑇𝑋𝑡 , hence, the time 

domain projection in the channel space is: 

𝑋𝑡
′ = 𝐴𝑟(𝑉𝑡

𝑇𝐴𝑟)𝑡𝑟𝑢𝑛𝑐
+ 𝑉𝑡

𝑇𝑋𝑡 (24) 

Where 𝑋𝑡
′ is the clean version of the signals after the rejection of large deviated components 

performed in the PC space. Let us consider the ASR framework as follow: 

A.1. Reference Data extraction:  

The extraction of reference data is performed after segmentation into windows of 1 second 

windows for each of the signals of the recording, followed by the root-mean-squared 

calculation across them. Then, normalization is done considering the z-score and artifact 

windows are identified if their scores are outside the range of -3.5 and 5.5. The windows that 

exhibit values inside the RMS range are concatenated and build the reference data vector 𝑋𝑟. 
Tolerance values can be applied in order to allow small percentage of windows with high 

variance to be part of the reference so the vector 𝑋𝑟, has sufficient data to continue with the 

calibration process. 

A.2. Threshold identification: 

The reference vector 𝑋𝑟 is filtered using a IIR filter to eliminate frequencies associated to 

brain oscillations, giving as result the vector 𝑋�̃� . Afterwards, the mixing matrix 𝐴𝑟 =

𝐶𝑜𝑣(𝑋�̃�) is calculated and so the eigenvalues and eigenvectors of 𝐴𝑟  are obtained in the 

matrices 𝑉𝑟 and 𝐷𝑟 respectively. The principal components obtained by 𝑌�̃� = 𝑉𝑟
𝑇𝑋�̃� are used 

to estimate the mean 𝜇𝑖 and the variance 𝜎𝑖
2 of the RMS of 0.5 second windows from 𝑌�̃� of 

the i-th component. Finally, the threshold for artifact classification is set as 𝑇ℎ𝑖 = 𝜇𝑖 + 𝑘𝜎𝑖, 

where 𝑘 is a cutoff hyperparameter that defines how stringent the artifact selection will 

behave.  

A.3. Artifact components rejection and signal reconstruction: 

Eigenvalue decomposition is applied to the 𝐶𝑜𝑣(𝑋�̃�) = 𝑉𝑡𝐷𝑡𝑉𝑡
𝑇  considering a sliding 

window of 0.5 seconds length and a shift size of 0.25 seconds. At each iteration, a IIR filter 

like the one described in step 2 is applied to each segment in the channel space. By 

considering the thresholds 𝑇ℎ, the ASR strategy identifies the j-th principal components 

(𝑉𝑡)𝑗 with variance (𝐷𝑡)𝑗 is larger than 𝑇ℎ𝑖. If (𝐷𝑡)𝑗 > Σ𝑖(𝑇ℎ𝑖(𝑉𝑟)𝑖
𝑇(𝑉𝑡)𝑗

2) then the i-th PC 

values are replaced with zero vectors, and Eq.(24) is used to reconstruct the clean version of 

the segment.  

B. Channel selection 

The EEG signal acquisition equipment Synamps 2/RT registers brain activity coming from 

70 channels that are located over the scalp following the 10-20 system. The cap containing 

the 70 channels has 64 monopolar, 4 bipolar and 2 high-level electrodes which for the 

registration performed by the IBFM lab only the monopolar ones were considered. This 

leaves the channels LDA, LBIC, RDA, RBIC, HL1, HL2 (4 bipolar + 2 high-level) 
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connected but not actively registering the EEG data. In addition, two more monopolar 

channels, M1 and M2, are left aside too since they are not actively used for registration. 

Hence, from a total of 70 channels, only 62 were used for active registration of brain activity. 

Regarding the processing, the 62 signals are considered as an initial step, however, after the 

following artifact rejection steps, the preprocessing framework could discard some other 

signals that are not useful to consider, as explained in the following subsections.  

C. Pipeline for artifact rejection 

Besides the ASR tool, EEGLAB [58] offers other approaches for rejecting artifacts in 

continuous and epoched data. This is based on the estimation of statistical metric thresholds 

useful to track epochs or larger segments from the dataset to discard if necessary.  

The two approaches mentioned above offer different advantages, however, artifact rejection 

following epoched data can be applied to non-labeled signals, which does not require expert 

knowledge about EEG data to characterize the noise and the artifacts. In this way, despite 

that for resting state conditions usually epoching is not applied, such process was 

implemented in order to provide a more rigorous approach for data cleaning.  

First, a passband filter with cutoff frequencies of 0.5 and 100 Hz was applied to consider 

useful frequency information of brain rhythms. Then an epoching scheme was performed 

recalling that resting signals convey frequency information comprising delta (0.5 – 4 Hz), 

theta (4 – 8 Hz), alpha (8 – 13 Hz) and beta bands (>13 Hz). This suggests that slow variation 

components (due to the delta band) have periods of about 2 seconds, which to be noticeable 

in the frequency domain would need at least ~10 times that duration. Similarly, for the theta 

rhythm, considering the lower bound of the interval of 4 Hz, oscillatory components have 

periods of 0.25 seconds which would require at least a segment of 2.5 seconds to generate 

an appropriate frequency representation of the signal.  

Considering the upper bound given the delta rhythm, the epoching of the signal would be set 

at 20 seconds, but, this kind of oscillatory components is produced in deep sleep primarily 

[49], in a like matter, theta waves appear as consciousness slips towards drowsiness, which 

are not part of the resting state conditions considered in this project, which is related to 

wakefulness state in closed eyes and opened eyes conditions. As only beta and alpha rhythms 

are noticeable during these conditions, a 1-second epoch is considered with no overlapping, 

so the signals are divided into non-overlapping segments of 1 second duration each, enough 

to have 8 cycles of the slower components from the alpha rhythms. Thus, each epoch 

contains 1000 points. 

After epoching a first step of Independent Component Analysis decomposition is performed 

using the binary Infomax ICA1 algorithm (BINICA) that can be found as an extension of the 

EEGLAB interface. BINICA is a C compiled binary version of the ICA algorithm based in 

the Infomax approach and it optimized to run in less time than other implementations.  

Data cleaning according to this pipeline is then started by rejecting extreme values that can 

be present at a certain trial (i.e. epoch), if the amplitudes (defined in microvolts) are outside 

 
1 Binary Infomax ICA by Sigurd Enghoff based on the Matlab version of Scott Makeig and collaborators. 
Makeig S, Anthony J. Bell, Tzyy-Ping Jung and Terrence J. Sejnowski, Independent component analysis 
of electroencephalographic data in: D. Touretzky, M. Mozer and M. Hasselmo (Eds). Advances in Neural 
Information Processing Systems 8:145-151 (1996). 
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the range −75 ≤ 𝑎𝑚𝑝𝑙 ≤ 75 within a specific epoch, then that segment is marked to be 

rejected. Another consideration for artifact rejection is based on abnormal trends, this 

approach calculates the slope of a linear model fit from the data of each segment. The fit 

between the signal and the line is evaluated using the R-square measure which at a limit set 

at 0.05 determines the correlation that exists between the EEG data and the model. For this 

case, the maximum slope was defined at 10 𝜇𝑉/𝑒𝑝𝑜𝑐ℎ, if the slope exceeds such value in 

the trial, then it is marked for rejection. 

Improbable data can be also tested to reject epochs from the recordings. This can be done by 

estimating the probability the distribution of the amplitudes that are present at the different 

epochs, from which, the probability of a datapoint can be obtained. This holds by assuming 

that artifacts are improbable events from which a probability of occurrence can be defined 

for the trials. Thresholds are set considering the first and second order moments of the 

distribution and in this case, were set at 4 times the standard deviation of the distribution. 

Larger values are considered as artifactual components and are marked for rejection.  

Kurtosis is also employed to determine in this case abrupt changes in the signals, such 

changes are related to artifacts. When high kurtosis values are found it means that in a 

segment exists high differences in between the amplitudes of a trial, in the opposite case it 

means that all values have similar values. The thresholds set for this rejection consideration 

is set at 5 times the standard deviation from the mean kurtosis value. 

Finally, the last consideration for epoch rejection is based on spectral estimates of the 

segments. The amplitude changes of the spectral quantities are expressed in decibels and are 

fixed in a range from −50 ≤ 𝑑𝐵 ≤ 50 for the 0 to 2 Hz frequency components. A multi-

taper frequency decomposition approach is used by the tool to obtain accurate spectral values 

and after comparison with the frequency information in the epoch it marks the trial for 

rejection if exceeds those limits. 

All the marked epochs are then rejected automatically, some of them are marked more than 

once considering the different metrics.  

After the epoch marking according to the thresholds, statistics and frequency features 

estimated from each of the segments of the signals, a second round of ICA decomposition is 

recommended to improve the quality of the components. It can reveal more independent 

components that are associated to neural activity. REFERENCES. Then epoch inspection 

and rejection are performed to obtain the final clean version of the signals. 

D. MARA algorithm 

ICA decomposition provides a set of components that are either driven by artifacts or by 

neural activity, in this way, different algorithms for artifact rejection have been designed 

under that assumption of independence between the artifactual components and the neural 

sources.  

The Multiple Artifact Rejection Algorithm (MARA) [65] has as objective the identification 

of independent components coming from artifacts to then perform the reconstruction of the 

signals in the channel space domain. At this point all of the preprocessing steps performed 

thus far are part of the useful and necessary procedures needed in the MARA framework to 

estimate the artifactual ICs.  
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The MARA algorithm was designed to use 6 features as the most representative ones after 

considering a feature selection scheme based on a Linear Programming Machine (LPM), 

which in the validation stage originally grouped a total collection of 38 parameters. The 6 

parameters are estimated from the dataset in order to perform the linear classification scheme 

for this purpose [67]. These representative data are estimated from spectral, scalp map and 

temporal information of the signals. 

The first feature corresponds to the current density norm (1), derived from the ICA scalp 

maps and used to estimate the location of the sources of the signals. To do this, the 𝑙2 −

𝑛𝑜𝑟𝑚 between the considered ICA scalp map component and a predefined topological set 

of locations is calculated, and so, the one with the minimum norm is selected as the source. 

Large 𝑙2 − 𝑛𝑜𝑟𝑚 values are characteristic of the artifact components; hence, this value can 

be used as a discriminant feature of abnormal trends in the signals. 

The range within pattern(2) is obtained as the logarithm of the difference between the 

maximum and minimum values in the scalp map component. This feature provides a high 

value when movement artifacts are present or there is a poor junction between the electrodes 

and the scalp. Another factor that can be obtained is the third order central moment (3), 

which is considered to check how much the distribution of the magnitudes is skewed, thus, 

it is useful to detect possible outliers from the IC vectors.  

Some parameters associated to the components’ spectral information are also used as 

characteristic terms taking into account a prototype of the curve given by 1/𝑓 (4) and its 

shape (5). The parameters 𝑘1, 𝜆, 𝑘2 > 0 define such curve 𝑓 →
𝑘1

𝑓𝜆
− 𝑘2, and are estimated 

following the log-power at 2 Hz, 3 Hz, and the local minimum values in the frequency bands 

5 - 13 Hz and 33 - 39 Hz respectively. The logarithm of 𝜆 and the mean squared error of 𝑓 

given 𝑘1, 𝜆, 𝑘2 in the range of 8-15 Hz are used as the features. Artifacts are recognized as 

such when there exist high values in the 20-50 Hz range when the value of 𝜆 is high and 𝑘1 

low. 

The last spectral feature accounts for the average log-power of the alpha rhythm in the range 

of 8-13 Hz (6). Abnormal values are considered as artifact derived components.  

All of these features are fed into a linear classifier pre-trained with data coming from a 

reaction time (RT) study which was hand labeled by experts to obtain a parametric model 

for classification. The model parameters after training were tested for generalization and 

according to the results it shows efficiency in the automatic detection of artifactual 

independent components considering different sources of artifacts including but not limited 

to muscular, eye and external artifacts [65].  

In this way, all the preprocessing steps give as result a refined version of the original dataset 

both in temporal and component spaces. This scheme is repeated 20 times, one for each of 

the 10 subjects and considering the two resting state conditions R1 and R2; opened eyes and 

closed eyes, respectively. Then, the processing scheme is started and the objective is to find 

the appropriate segment length to perform the effective connectivity analysis of the brain 

activity. 
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E. Results of preprocessing 

Considering the example of the EEG signal registered by the channel F8 for the subject 10 

in resting-state condition R2 - closed eyes, (see Figure 8), Figure 10 shows the result after 

the preprocessing steps performed for the time segment 127 to 132 seconds.  

 
Figure 10. EEG signals after preprocessing. The bold signal corresponds to the F8 recording during 

the time interval 127 to 133. 

As can be observed in Figure 10, the result of the preprocessing stage produces an automatic 

segmentation and channel rejection after the ASR application. It produces the labeling of 

segments that are cataloged as artifacts in each of the signals, and that produces the rejection 

of the whole segment in all the channels i.e. the segments plotted in red. After that, the 

remaining segments, the ones plotted in blue are concatenated and the clean version of the 

data samples is generated.  

It is necessary to clarify that for the case depicted in the previous figure, the algorithm 

detected such large variations and according to the thresholds it was better to reject the 

segment than to perform the reconstruction of the signal. In summary, as it has been 

described through these sections as a didactic example, the artifact localized at the interval 

127 – 132 s of the F8 signal was needed to be rejected and not minimized, which as 

consequence produced the loss of EEG data during the duration of the artifact.  

As a consequence of the filtering and data cleaning stage of the algorithm, the recordings are 

shortened and data is lost in the process, but the resulted signals are clean from artifacts and 

undesired noise, so it is possible to perform further processing. 

F. Dataset revisited. 

As explained in the section EEG Dataset, the analysis and processing of the EEG data are 

based on recordings acquired from 10 healthy subjects considering two resting-state 

conditions (opened eyes – R1, and closed eyes – R2). Each recording lasted about 5 minutes 

and contains samples coming from 68 electrodes located over the scalp acquired at a 

sampling frequency of 1000 Hz.  
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Then, a data cleaning process to reduce and reject the effect of artifacts and noise from the 

signals was performed using the implementation summarized in Figure 9, as result, the EEG 

datasets were shortened considering the stringent rejection procedure for the heavily affected 

portions of the signals by the noise. Table 3, shows the original size of the raw dataset and 

the reduced size after the data cleaning process. 

Table 3. Recordings’ characteristics before and after the cleaning process 

 R1 - Opened eyes  R2 - Closed eyes  

Subject 
record 

Raw signals 
duration [s] 

Cleaned 

signals 
duration [s] 

Selected 
channels 

Raw signals 
duration [s] 

Cleaned 

signals 
duration [s] 

Selected 
channels 

S1 305 46 51 311 172 53 

S2 308 235 59 314 256 60 

S3 284 46 59 204 43 58 

S4 192 101 54 278 123 53 

S5 308 205 57 306 155 59 

S6 308 230 57 311 226 60 

S7 353 135 54 313 212 55 

S8 315 197 61 319 231 62 

S9 189 145 55 184 116 58 

S10 303 172 60 328 240 61 

Mean 286 151.2 57 287 177.4 58 

Starting from the data cleaning process, there is selected a subset of channels that contain a 

group of clean EEG signal sources from which it is possible to perform the segmentation 

analysis. From the original set of signals composed of 68 data series for the 10 subjects in 

both conditions, the number of channels is reduced on average to a proportion of ~84% its 

original value, corresponding to 57/58 signals as shown in Table 3. Such a number represents 

the overall amount of channels that is maintained after the pre-processing stage.  

Moreover, the duration of each of the recordings after the artifact rejection process is reduced 

to ~53% of the original length on average. This suggests that the data was heavily affected 

by noise and artifacts; from an average duration of about 4.8 minutes, only 143 seconds were 

useful for processing.  

From these pre-processing results, it can be observed that some of the recordings were more 

affected by noise components than others. For instance, the dataset S1 - R1 had an original 

duration of 305 s and was reduced to 43 s, similarly, the same happened for S3 - R1 and S3 

- R2. If each of these results is analyzed one can infer that there were more data rejected in 

the opened-eyes resting-state condition compared to the closed-eyes condition, which can 

be since in opened-eyes condition more artifacts can be generated (e.g. blinking eyes artifacts 

are present over the recordings).  

According to these results, the pre-processing stage shows to be useful in rejecting noisy 

data, and the parameters selected according to the guidelines explained in Preprocessing  

offer a rigorous data cleaning process which due to the nature of the brain activity 

investigated in this work can take place. Considering that resting-state conditions are used 

to analyze the normal rhythmic components of the EEG signals, no engaging tasks are 

involved and continuous noise-free signals are needed. 
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5. Methods on Segmentation and Effective 

Connectivity 

5.1. EEG segmentation 

5.1.1. Segment length analysis on EEG data 

A. Segmentation and kurtosis estimation 

Following the EEG signal processing strategy depicted in Figure 11, after the pre-processing 

stage from which the datasets are filtered and cleaned out from artifacts and undesired 

components, a signal resampling step is done to provide a new sampling frequency of 250 

Hz, this step is performed to meet the requirements according to the literature; which states 

that such sampling rate is sufficient to accomplish Effective Connectivity analysis [48]. 

After that, a pass-band filter is employed to limit the frequency components outside the usual 

brain activity range (𝑓 = 0.5 𝐻𝑧 − 50 𝐻𝑧). Finally, the segmentation is performed as a way 

to estimate the statistical characteristics over the signals at specific time intervals. It is worth 

to mention that the subprocesses of the block diagram are performed individually to each of 

the signals composing the artifact-free datasets. 

 
Figure 11. Processing pipeline after data cleaning. 

Segment length analysis in this approach is based on an iterative piecewise subdivision of 

the datasets into blocks called segments/windows, from which it is possible to obtain 

estimations of the dynamical properties of the EEG signals and the nonlinear processes 

behind them.  

To explain the segmentation procedure, let 𝐖𝐋 be the basis window length defined as the 

elemental duration of the segments in milliseconds/seconds, and 𝑵𝒘 be the total number of 

windows (i.e. the number of segmentation operations) considered to perform the iterative 

segmentation. According to these parameters of the processing scheme, it is defined the 

following simple mathematical relation: 

ℎ = 𝑁𝑤 ∙ WL (25) 

Where ℎ corresponds to the longest segment duration for a specific segmentation procedure. 

From Eq.(25) it can be checked that the inequality 0 < WL ≤ ℎ  holds and states the 

possibility to have a basis-window length equal to the longest segment duration in the case 

𝑁𝑤 = 1.  

By considering the total duration of the recording (𝒕), as well as the dummy variable 𝒘𝒍, 

used to keep the value of the segment duration for a specific segmenting step  (𝑖 = 1,… , 𝑁𝑤), 

at each iteration, it is produced a matrix of size 𝑡/𝑤𝑙 by 𝑤𝑙 ∙ 𝑓𝑠 samples that contains the 

segmented signal with non-overlapping segments. The indexed version of the dummy 

variable (𝑤𝑙𝑖) refers to the segment duration according to the segmenting step iteration, so 

that: 

Clean signal 

record
Resampling

fs = 250 Hz

Band-pass 

filtering

f = 0.5 - 50 Hz

Chn =         

SEGMENTATION
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𝑤𝑙𝑖 = 𝑖 ∙ WL, ∀𝑖 = {1,… ,𝑁𝑤} (26) 

In summary, the iterative process for the segmentation of a signal is explained from its 

sequential splitting according to the window length (𝑤𝑙𝑖) that is increased at each iteration 

by a factor defined as a multiple of the basis window (WL) according to Eq.(26). In this way, 

the signal of duration 𝑡 is divided into non-overlapping pieces, each one of length 𝑤𝑙𝑖. The 

resulted segments are then stored in matrix form and are organized in chronological order. 

The procedure is repeated 𝑁𝑤 times producing a total of 𝑁𝑤 matrices of segments for each 

of the signals that compose the dataset. Figure 12 shows the relationship that exists between 

WL, 𝑤𝑙𝑖 and 𝑁𝑤 in the segmentation procedure of an EEG signal.  

 
Figure 12. The general approach for segmentation performed on an EEG signal. 

Figure 12 depicts the process of segmentation for a signal of generic duration. As can be 

observed, the process is performed sequentially, at a first iteration a window duration  𝑤𝑙1 =
WL is used to break the signal into non-overlapping pieces, then, the segmented signal is 

stored in a matrix. In the second iteration, the process starts by considering a new window 

duration 𝑤𝑙2 = 2 ∙ WL, followed by the same partition method. The segmentation is stopped 

after reaching the largest window for the process when 𝑤𝑙𝑖 = 𝑁𝑤 ∙ WL = ℎ, 𝑖 = 𝑁𝑤.  

Figure 13 instead shows the non-overlapping segments of a subset of channels from an EEG 

recording. There are shown the bounds of the segments considering a basis window length 

WL = 1 second and the sequential partitioning considering 𝑤𝑙2 = 2s and 𝑤𝑙𝑁𝑤 = 4s. 

 

 (a) 

𝑤𝑙1,𝑗 = (𝑥𝑗 , 𝑥𝑗+1, 𝑥𝑗+2, … , 𝑥𝒋+𝐖𝐋−𝟏, 𝑥𝒋+𝐖𝐋)  

.  .  .

.  .  .

.  .  .

.  .  .

.  .  .
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 (b) 

𝑤𝑙2,𝑗 = (𝑥𝑗 , 𝑥𝑗+1, 𝑥𝑗+2, … , 𝑥𝒋+𝟐∙𝐖𝐋−𝟏, 𝑥𝒋+𝟐∙𝐖𝐋)  

 (c) 

𝑤𝑙𝑁𝑤,𝑗 = (𝑥𝑗 , 𝑥𝑗+1, 𝑥𝑗+2, … , 𝑥𝒋+𝑵𝒘∙𝐖𝐋−𝟏, 𝑥𝒋+𝑵𝒘∙𝐖𝐋)  

Figure 13. Segmentation bounds over time for a subset of channels considering  

a segment duration of (a) 1 second, (b) 2 seconds, (c) 4 seconds (𝑖 = 𝑁𝑤). 

 

By considering any basis window length, it is easily confirmed that any of the segments of 

the iteration 𝑖 = 1 (𝑖. 𝑒. 𝑤𝑙1 = WL), it is composed of a sequence of samples defined by 

𝑤𝑙1,𝑗 = (𝑥𝑗 , 𝑥𝑗+1, 𝑥𝑗+2, … , 𝑥𝒋+𝐖𝐋−𝟏, 𝑥𝒋+𝐖𝐋), where 𝑗 corresponds to the starting index where 

the starting of the segment is located with respect to its occurrence in time. Thus, 𝑤𝑙𝑖,𝑗 

defines the data vector resulted from a specific segment, a data block formed by a number 

equal to 𝑖 ∙ WL samples that initiates at the time instant corresponding to the index 𝑗. Figure 

13 shows the generic segment definition for 𝑤𝑙1,𝑗, 𝑤𝑙2,𝑗, and 𝑤𝑙𝑁𝑤,𝑗 (Figure 13. (a)-(c)) and 

their graphical description considering a real case scenario when WL = 1s. The arbitrary 

time instant 𝑡𝑎 defines a time point in which the segmentation is restarted at a future instant, 

displaying the continuous segmentation over the signals.  

ta...

ta...
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Figure 14. Graphical representation of the result of segmentation for 𝑤𝑙1 = 1 s of an EEG signal coming 

from the channel F6. 

Figure 14 shows the way how the matrix comprising the windows is built for a signal 

acquired from the channel F6 by considering the first segmentation iteration 𝑤𝑙1 = WL = 1s. 
The time intervals are stored sequentially considering the occurrence in time of the segment 

up to the last segment defined by the half-open interval ((𝑡 − 𝑤𝑙1), 𝑡] . In general, a 

segmentation matrix of generic size in number of samples, 𝑡/𝑤𝑙𝑖 rows by 𝑤𝑙𝑖 ∙ 𝑓𝑠 columns is 

built ( 𝑡 x 250  for this specific case). Similar procedure is followed for the remaining 

segmenting steps (𝑖 = 2,… , 𝑁𝑤).  

The basis window length defines the different segment durations at different iterations and 

from them, it is possible to obtain the time intervals that comprise the samples stored in a 

segment. Figure 15 shows exactly that relationship which is useful to understand the further 

process based on kurtosis.  

Considering that the segmentation procedure is the same for all the signals of a dataset, 

Figure 15 depicts how are the segments being extracted from a generic basis window WL, 

which besides to define the limits of the segments, also plays a significant role to track down 

the windows over time making possible to perform the estimation of statistical features that 

characterize that specific time interval, and so, it can be analyzed the variation of the 

statistical characteristics of the EEG process with respect to time, not only for a single signal 

but for the complete set, among resting states and subjects. 

From Figure 15, it is possible to see that there are obtained different subdivisions from the 

same sources; the brain activity represented by the EEG signals is being segmented in 

different ways considering two fixed parameters, WL  and 𝑁𝑤 . From the sequential 

segmentation, as shown in Figure 14, there are obtained a series of matrices of the same size 

for all the channels considering the relative duration given by 𝑤𝑙𝑖  at an iteration 𝑖 =
(1,… ,𝑁𝑤). By considering the same segment durations across channels it is possible to 

compare their statistical quantities and by analyzing the spread of those statistics it is 

possible to define an approach to find the most common segment duration across channels 

exhibiting high relative stationarity, for the two resting-state conditions and for all the 

subjects of the experiment.  

 

...
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Figure 15. Signal segmentation considering the basis window length to locate in time the window. 

As explained earlier, the size of each segmentation matrix is 𝑡/𝑤𝑙𝑖 x 𝑤𝑙𝑖 ∙ 𝑓𝑠 samples, then, 

the statistical measures like the ones explained in equations (19) - (23) can be applied to each 

of the rows of the matrix, giving as result a new representation of the data, a vector which 

depending on 𝑤𝑙𝑖 comprises the statistical moments’ estimations exhibited by a signal at the 

time interval defined by the boundaries of the range referred to as the row index of the matrix 

(see Figure 14). Hence, it can be defined that: 

𝑊𝑚𝑎𝑡𝑟𝑖𝑥 ∈ 𝑅
𝑡/𝑤𝑙𝑖 x 𝑤𝑙𝑖∙𝑓𝑠 →  𝑠. 𝑐 ∈ 𝑅𝑡/𝑤𝑙𝑖   , ∀𝑐ℎ𝑛 = {1, … ,𝑀} (27) 

Where 𝑊𝑚𝑎𝑡𝑟𝑖𝑥 is an array containing the segments of a signal and 𝑠. 𝑐 stands for statistical 

characteristic whose values are being mapped into. From Eq.(27), it is noted that the 

statistical characteristic space has a dimension of only 𝑡/𝑤𝑙𝑖 components (i.e. a vector), each 

of them indicating the statistical attribute exhibited by the segment at a specific time interval. 

In this way, it is possible to account for the variation over time of these statistical 

characteristics considering different window ranges.  

The expression from Eq.(27) is provided as a generalization on the estimation of statistical 

characteristics from a matrix of segments. From this, one could estimate all the statistics (or 

a subset of them) to provide a better explanation of the stochastic processes defined by all 

the PDFs derived from the different segments.  

However, some of the order moments are not useful, or in other words, they cannot be 

estimated to account for their variations that exist from segment to segment. Let consider 

the first-order moment (Eq.(19)). From the pre-processing steps that involve the mean 

subtraction and the filtering subprocess, this statistical quantity is reduced towards zero, 

making it not useful for characterization. Moreover, as a consequence, the second-order 

moment (mean-squared) and the second-order central moment (variance) are approximately 

the same being the variance centered around a small mean value (𝜇𝑥 → 0).  

The coefficient variation under these circumstances is not useful to represent the variations 
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over different processes since the ratio (𝜎𝑥/𝜇𝑥) goes to infinity as long as the mean is 

reduced to zero. Thereby, only higher-order moments like the skewness and kurtosis 

contribute to the process characterization, and as it will be demonstrated from the dataset, 

the skewness is very small since the PDFs from the segment means to follow a normal 

distribution. 

In this way, the 4th order central moment (Eq.(23)) and its definition accounting for the 

existing excess from a normal distribution is the statistical quantity used to determine the 

non-stationarity behavior exhibited by a segment of fixed duration extracted from the 

segmentation process explained before. As result, a much more detailed form of the 

expression summarized in Eq.(27) is found below: 

𝑊𝑚𝑥𝑖,𝑐ℎ𝑛 s  ∈ 𝑅𝑡/𝑤𝑙𝑖 x 𝑤𝑙𝑖∙𝑓𝑠 → 𝑲𝒊,𝒄𝒉𝒏 ∈ 𝑅
𝑡/𝑤𝑙𝑖   , ∀𝑐ℎ𝑛 = {1,… ,𝑀} (28) 

Where 𝐾𝑖  is a vector that contains the kurtosis excess estimated at each segment from 

the𝑊𝑚𝑥𝑖,𝑐ℎ𝑛 = 𝑊𝑚𝑎𝑡𝑟𝑖𝑥  at iteration 𝑖 and channel 𝑐ℎ𝑛  (i.e. a vector of kurtosis values 

calculated from each row of the windowed matrix). Then, each component of the vector 

𝐾𝑖,𝑐ℎ𝑛 explains the degree of non-stationarity of a segment at a specific time interval bounded 

by the duration 𝑤𝑙𝑖 on each channel.  

From the segmentation process and the formation of the 𝑁𝑤 segmenting matrices it can be 

inferred that the sizes differ from each other, producing kurtosis vectors that have more 

components for the first segmenting steps (i.e. when 𝑖 is close to 1), specifically, the largest 

𝐾𝑖,𝑐ℎ𝑛  vector-length is produced when 𝑖 = 1, and as long as 𝑖  increases, the number of 

components of the kurtosis vector decreases. In this way, to provide a framework to compare 

the statistics resulted from the segmentation in a signal coming from a channel (and later on 

from different channels), a 1-D interpolation step is performed to obtain the same number of 

kurtosis samples across the different 𝑊𝑚𝑥𝑖,𝑐ℎ𝑛 considering different widow durations 𝑤𝑙𝑖.  

In this way, the number of kurtosis samples is bounded to the number of rows obtained by 

the expression 𝑡/𝑤𝑙1  given that 𝑤𝑙1 = WL , thus, the basis window length is the main 

parameter from which the 𝐾𝑖,𝑐ℎ𝑛 vector-length is defined.  

Figure 16 shows the representation of the kurtosis values considering different window 

lengths. For 𝐾1 (second row of the table figure), each block representing the kurtosis value 

exhibited by a basis segment is grouped in a vector. Thus, the number of components for 

this first case is the maximum since the number of segments is the highest, that is why for 

subsequent segments, the interpolation allows completing the number of components 

considering larger windows. The cells containing the interpolation values (I) are shown to 

represent how this procedure is performed to complete the samples for further processing. It 

is necessary to explain that the first cell comprising the fixed duration of a segment should 

be located at half of the period of the segment, however, for the sake of illustration, it is 

placed at the beginning of the vector to visualize better how the interpolation values are 

completing the vector lengths.  

The array formed by all the kurtosis values characterizes the stationarity of the segments that 

each block represents and so, from it, it can be possible to perform estimations, not in the 

discrete-time domain but the kurtosis domain. Let consider an example in which the analysis 

case is focused on the EEG signal coming from the channel F1 (see Figure 17) for the resting 

state condition R2 (Closed eyes) acquired from subject 10. In this case, the segmentation 

was performed by considering a WL = 1 second and 𝑁𝑤 = 10 , which corresponds to a 

sequential segmentation considering windows of durations that go from 1 to 10 seconds.  
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As a result of the segmentation and kurtosis estimation, a matrix similar to the one shown in 

Figure 16 is generated, from it, there can be obtained the distributions of the 4th order 

moments according to the window lengths from the same signal, thus, the expected value of 

the kurtosis under those different parameters are estimated and their variances can also be 

analyzed. 

 (𝟎,𝐖𝐋] (𝐖𝐋, 𝟐𝐖𝐋] (𝟐𝐖𝐋, 𝟑𝐖𝐋] (𝟑𝐖𝐋, 𝟒𝐖𝐋] (𝟒𝐖𝐋, 𝟓𝐖𝐋] (𝟓𝐖𝐋, 𝟔𝐖𝐋] 
 … … … (𝒕 −𝑾𝑳, 𝒕] 

 

𝑲𝟏 𝐖𝐋 𝐖𝐋 𝐖𝐋 𝐖𝐋 𝐖𝐋 𝐖𝐋 … 𝐖𝐋 𝐖𝐋 𝐖𝐋 𝐖𝐋 … 

𝑲𝟐 𝟐𝐖𝐋 I 𝟐𝐖𝐋 I 𝟐𝐖𝐋 I … 𝟐𝐖𝐋 I 𝟐𝐖𝐋 I … 

𝑲𝟑 𝟑𝐖𝐋 I I 𝟑𝑾𝑳 I I … 𝟑𝐖𝐋 I I 𝟑𝐖𝐋 … 

𝑲𝟒 𝟒𝐖𝐋 I I I 𝟒𝐖𝐋 I … 𝟒𝐖𝐋 I I I … 

… … … … … … 

𝑲𝑵𝒘  𝑵𝒘 ∙ 𝐖𝐋 I I I I I … 𝑵𝒘 ∙ 𝐖𝐋 I I I … 

Figure 16. Kurtosis estimation from segment to segment and disposition of 

interpolation values for a generic signal. 

 

Figure 17 shows the distributions of the kurtosis values for the F1 channel under the 

conditions described above. The expectance value from each of the distributions calculated 

from the fitted PDF is also presented individually for each case. As can be noted, all of the 

graphs are in the same kurtosis range to observe the differences between them. Gaussian 

distributions are fit to check the correspondence between the kurtosis values and the densities 

that arise from the data, and as depicted, it is possible to state that the kurtosis values follow 

normal distributions and that considering the expectation it is possible to compare them.  

Similarly,  Figure 18 comprises the PDFs found for a different segmentation setting, WL =
50 ms and 𝑁𝑤 = 20. In this case, the distributions estimated every 100 ms are shown, and 

as the number of kurtosis values from those vectors is larger than in the Figure 17 example, 

the distributions are more accurate but the kurtosis values are less significant since they are 

derived from less number of samples (i.e. shorter windows comprise fewer data points). 

From Figure 18, it can be distinguished that as the segment length increases (e.g. 𝑤𝑙𝑖 ≥
400 ms), the kurtosis distributions start to follow a more gaussian shape and the skewness 

from this 4th order statistic quantity decreases. Likewise, the example of Figure 17, the mean 

values and the spreads from the densities are similar (i.e. their values are close to each other) 

and a comparison strategy can be defined.  

The data characteristics noticed from these two examples on a single signal under different 

segmentation parameters are generalized for the remaining signals from the EEG recording, 

moreover, the same is found for different EEG datasets of the other subjects.  



63 

 

 
Figure 17. Kurtosis distributions of the channel F1 of subject 10 (S10) in R2, estimated from different 

segment lengths considering WL = 1s and 𝑁𝑤 = 10. 
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Figure 18. Kurtosis distributions of the channel F1 of subject 10 (S10) in R2, estimated from different 

segment lengths considering WL = 50ms and 𝑁𝑤 = 20. Shown PDFs of tenths of a second. 
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B. Kurtosis as a feature 

As described before in the section Characteristics of EEG signals, the statistical quantities 

explain certain characteristics of the data under analysis. In this case, kurtosis is employed 

to examine the non-stationarity variation from segment to segment at different window 

configurations. This means that kurtosis is a feature estimated from the data, or putting it in 

a better way, it is a feature derived from shorter portions of the data and explains the dynamic 

change of the underlying process referred to the segments. In this sense, different conditions 

of segmentation can provide more or less information about the non-stationarity, and, as a 

way to select which duration would be appropriate to explain most of the stationarity (not 

only for a single signal, but for a dataset), it is necessary to compare the features, first for a 

single channel then for a complete dataset, and finally, among conditions and subjects. 

To perform this, let consider the kurtosis densities estimated from a segmentation 

configuration when WL = 1 s and 𝑁𝑤 = 10. As can be observed in Figure 19 there are 

considered the kurtosis densities from the channels P7, C1, of subjects 10 and 7 in opened-

eyes resting condition (R1), and channels CP3, AF4 from subjects 4 and 5 in closed-eyes 

condition (R2). These channels and subjects were selected randomly for demonstration 

purposes.  

From the superimposition of the kurtosis densities under analysis, it is noted that from 

different segment lengths, the expectances (means) are close to each other and tend to 

increase as the number of samples in the window grows. Such behavior is common for the 

majority of the channels, even for the ones with larger dispersion among densities like the 

S10 (R2) - AF4 channel in the bottom right figure. It is also important to evidence that 

usually mean-kurtosis values from shorter segments are close to the distribution expectance 

of the longer ones. This also holds across the channels that form a recording (the set of EEG 

signals of a subject).  
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Figure 19. Kurtosis densities estimated from signals of different recordings.  

Then, following the comparison strategy, but now applied to the case of analyzing different 

channels at the same time, it is built a single distribution comprising the kurtosis components 

defined by all the 𝐾𝑖,𝑐ℎ𝑛 vectors (𝑖 = 1,…𝑁𝑤), in that way a single PDF is fit to the data, and 

a similar process of superimposition but now across channels is performed to analyze the 

kurtosis data.   

Figure 21 shows the histograms and the fitted kurtosis distributions of 4 signals acquired 

from the same subject (S10 – R2), so all of them are a representation of the EEG activity 

measured at the same times from different locations on the scalp. Specifically, the data comes 

from 2 frontal electrodes (F1, F4, first row on top of the graph) and the other 2 located at the 

posterior area of the scalp in the occipital area (PO4, PO5, second row at the bottom of the 

graph). These electrodes were selected because of the large distance relative to the frontal 

and posterior areas of the skull (for the specific locations see Figure 6.), so it could be 

possible to observe the non-stationary characteristics of the EEG potentials represented by 

the kurtosis values generated at different locations but referred to the same brain activity, 

besides to analyze the correlation that exists between neighboring channels (PO4, PO5, and 

F1, F4 pairs).  

 
Figure 20. Kurtosis distributions considering all the segment estimations.  

Subject 10, resting-state: closed-eyes condition 
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The distributions exposed in Figure 20 show the kurtosis values of all the segment 

configurations for 1 ≤ 𝑖 ≤ 10 for a basis window length WL = 1 s. As result, all the vector 

components from the windowing process as well as the interpolated values were combined 

forming a single vector from which the distributions were produced. By doing this, the 

values from different segment durations are shuffled and then organized according to their 

magnitude, in this way similar kurtosis values exhibited by different segment lengths are 

organized close to each other and so it would be possible to obtain the expected kurtosis 

value derived from different window configurations.  

As can be noted from the densities, they have similar shapes, and their distributions consider 

comparable domain limits (i.e. the kurtosis values are bounded within the same approximate 

limits −1.5 ≤ 𝐾 ≤ 2). This is an interesting observation because it can be used to compare 

the same EEG process considering kurtosis distributions derived from different source 

channels. In this way, Figure 21 depicts the superimposition of the kurtosis densities of the 

4 channels investigated.  

 
Figure 21. Kurtosis distributions considering all the segment estimations. 

The relationship that exists between the frontal channels F1 and F4 is evident, their kurtosis 

values are distributed approximately in the same way in almost the same domain, it is an 

expected behavior since the locations of these channels are very close and by considering 

the closed-eyes resting-state condition (see also Figure 22), the brain rhythms in the anterior 

area of the scalp are not so prominent, instead, the alpha rhythm that goes from 7 Hz to 14 

Hz registers a higher power spectra magnitude around these limits, and is more noticeable 

in the occipital area covered by the channels PO5 and PO4. This could be the reason why 

the kurtosis distributions are not as related to each other explaining the characteristic 

dynamics of the brain activity process considering the frequency components that arise at 

the alpha frequency range.  

Even though there exist small differences between the distributions, their expected means 

(dashed green lines) are values that are present in all the distributions; the mean of the F1 

kurtosis distribution is a value found within the F4, PO5, and PO4 densities, and the same 

occurs for the remaining permutations of the expectances. This can be generalized, and if 

more channels are compared, there will be subsets of distributions that are closer than others. 
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Thus, it sets a starting point to look at how different the kurtosis distributions are considering 

their most probable value and if they are present or not in the estimated densities from the 

remaining signals of an EEG recording.  

 
Figure 22. Kurtosis distributions from frontal channels F1, F2, F3, F4, F5, and Fz (S10 - R2). 

Observe that the densities are very close to each other suggesting similar EEG processes from different 

locations in the same region. Complementary graph w.r.t Figure 21. 

B.1. Kurtosis variance 

By examining the kurtosis expectancies and the distributions it is introduced the basis of an 

action course to compare the segment durations in a block (all at once) among the channels’ 

signals of a dataset. Seeing the distributions plotted in Figure 23 that are estimated from all 

the channels composing the EEG recording taken from subject 10 in closed-eyes resting-

state condition, it can be observed that the generalization presented previously holds. It was 

said that the expectance value of an arbitrary distribution is part of any of the remaining 

kurtosis PDFs, however, it is having a lower or higher likelihood of being observed 

following the point of view of the process obtained from a channel. 

 
Figure 23. Kurtosis distributions from all the signals acquired from S10 in R2. 

 



69 

 

In this way, a better representation of the data would be expressed in terms of the spread of 

the kurtosis data obtained from the different segment durations among the different channels 

that compose the EEG recording. Since it was demonstrated that the combination of the 

kurtosis samples considering different segment durations provides a gaussian PDF for any 

channel (see Figure 20 and Figure 23) and that such representation is the overall distribution 

of the 𝐾𝑖,𝑐ℎ𝑛 vectors combined, then, it is possible to come back to the single 𝐾𝑖,𝑐ℎ𝑛 densities 

and estimate the dispersion that exists on each of these vectors.  

In order to show the kurtosis dispersion obtained from the distributions 𝐾𝑖,𝑐ℎ𝑛, the heat plot 

depicted in Figure 24 shows the estimation of the variance of the kurtosis vectors considering 

a segmentation procedure with a WL = 1s and 𝑁𝑤 = 10. Each row is referred to a channel 

that composes the dataset and the columns are the estimated variances of the kurtosis 

according to the segment duration under analysis (1s ≤ 𝑤𝑙 ≤ 10s). The lower the variance 

the brighter the color, from yellow to dark blue. The color code is relative to the maximum 

and minimum values among the variances. 

 
Figure 24. Kurtosis variance presented as a heat plot. From signals of the dataset of S10 in R2. 

By considering the variance of the Kurtosis to account for the spread of the values at different 

windows’ durations, the outcome is twofold: 

1. The kurtosis vector (𝐾𝑖) generated for each channel is then re-expressed as a single 

value representing the deviation from the mean considering a specific segment length. 

In further processing, this is computationally less expensive than a vector of 𝑡/𝑤𝑙𝑖  
components. The data re-expression can be explained as follows: 

𝐾𝑖,𝑐ℎ𝑛 ∈ 𝑅
𝑡/𝑤𝑙   → 𝐾𝜎𝑖,𝑐ℎ𝑛

2 ∈ 𝑅1,   ∀𝐶ℎ𝑛 = {1,… ,𝑀} (29) 

2. Similar means and variance values from different length sizes permit us to compare 

the dispersion that exists on a dataset containing different signals, as it was 

introduced earlier and exemplified in Figure 21-Figure 22. 

 

Hence, since the kurtosis distributions and their spreads are similar across channels (Figure 

22), it is possible to design a searching approach to find a variance range as short and small 
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as possible and common for most of the channels, so that the kurtosis value is close to its 

expected mean according to each signal’s kurtosis density. And to do it, the kurtosis 

variances (𝐾𝜎𝑖,𝑐ℎ𝑛
2 ) compiled in matrix form (the array employed to generate the heat plot of 

Figure 24) are used to estimate the probability density function that groups the data of the 

kurtosis variances for all the channels in a recording.  

As an example, Figure 25 shows the PDF derived from the kurtosis variances obtained at 

each segmentation setting considering windows going from 1 to 10 seconds, these data come 

from the same dataset that has been discussed in the last sections (S10 – R2). The distribution 

follows a Chi-square shape. 

From the variance distribution, it is now necessary to define a searching strategy to find a 

variance range as short and small as possible and common for the majority of the channels 

from the dataset, such that the kurtosis expectances be close to each other in that range so 

that similar stationary characteristics are expected to be shared among such channels.  

 
Figure 25. Kurtosis variance density (𝐾𝜎2 PDF), estimated by considering the array of kurtosis values 

from the 60 channels that compose the S10 – R2 dataset. 

In summary, by finding an appropriate variance range then it is hypothesized that the number 

of channels sharing the kurtosis variance in that interval is maximized, and common segment 

durations exhibiting the same variance across the EEG signals are found in the process. As 

a consideration, the segmentation, the statistical feature calculation, and the searching 

strategy can be performed by considering different window configurations for short 

segments (𝑤𝑙𝑖 < 1s) and long segments (𝑤𝑙𝑖 > 1s).  

Up to this point, the segment duration has not been discussed. There were described some 

examples considering long segments, but in the following sections, it is expected to analyze 

in more detail the differences between short and long windows according to the searching 

strategy and the outcomes that are produced from them.  

However, it would be useful to contemplate that after this point if the segmentation is 

performed by using longer windows, then, the kurtosis estimation would be more reliable, 

but the segment duration would be increased, which can bring some advantages and 

disadvantages, for instance: 
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‐ It supposes a tradeoff between the reliability of the expected value of kurtosis and an 

appropriate segment length that includes the dynamics behind the EEG process. 

‐ The longer the window the longer is the EEG recording needed to perform effective 

connectivity analysis, which also requires the use of higher model orders to do the 

fit of the MVAR model. 

‐ Depending on the kind of brain process we are investigating, shorter windows would 

be needed to capture the highly dynamical behavior of the process in consideration, 

for instance, cognitive processes have frequencies higher than 15 Hz, such rapid 

changes need shorter segments to capture appropriately the process in consideration. 

‐ In the opposite case, if the objective is to observe and study brain activity in deep 

sleep and drowsiness, the frequency range is 0.5 to 7 Hz which requires windows of 

durations larger than 2 seconds. 

By analyzing the results and evaluating the performance of the segment selected according 

to the approach described in this work, the idea is to address these inquiries and answer them 

according to the objective of providing a pre-step for data segmentation in the effective 

connectivity framework.  

5.1.2. Stationary segments: The searching strategy 
In order to explain the searching procedure, let us start by looking at the kurtosis variance 

distribution estimated from the EEG recording of the subject 2 (S2) during opened eyes 

resting-state condition (R1). Figure 26 shows the 𝐾𝜎2 density and the fitted Chi-square (𝜒2) 

distribution (red dashed line). The density was derived from the matrix of values represented 

by the heat plot shown in Figure AN 1. 

 
Figure 26. Kurtosis variance PDF. (S2 – R1). 

Then, the 𝐾𝜎2 matrix of the S2 – R1 dataset organizes the kurtosis variances with respect to 

the basis segment length WL = 1s  (𝑤𝑙𝑖, for i = {1,… ,10}) for each channel of the EEG 

recording. In this way, the searching algorithm is defined as follows: 
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Algorithm 1 – Variance range searching strategy 

Input: 𝐾𝜎2 matrix 

Variables:    𝑙𝑜𝑤_𝑡ℎ𝑟 –   Lower threshold variable 

                    ℎ𝑖𝑔ℎ_𝑡ℎ𝑟 – Higher threshold variable 

                    𝑚𝑎𝑥_𝑝𝑘 – Max peak of the distribution  

                    𝑚𝑖𝑛_𝑣𝑎𝑟[1,M] – Vector with the lowest 𝐾𝜎2 of each channel 

                    𝑚𝑎𝑥_𝑣𝑎𝑟[1,M] – Vector with the highest 𝐾𝜎2 of each channel 

        𝑚𝑒𝑡𝑟𝑖𝑐𝑠 – Vector with the metrics of the searching process 

User defined variables: 

                    𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 – No. of channels that have at least one segment within the range 

                    𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 – Highest relative variance mean w.r.t 𝑚𝑎𝑥_𝑣𝑎𝑟[1, M] vector 

                    𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑3 – Max. Number of iterations performed by the searching method 
 

1-> PDF estimation  
a. MLE for a Gamma distribution ≡ χ2 distribution  
b. Gamma fit 

2-> Find 𝑚𝑎𝑥_𝑝𝑘 = max(Gamma(α, β)) 
3-> 𝑙𝑜𝑤_𝑡ℎ𝑟 = ℎ𝑖𝑔ℎ_𝑡ℎ𝑟 = 𝐾𝜎2(𝑚𝑎𝑥_𝑝𝑘) 
4-> 𝑚𝑖𝑛_𝑣𝑎𝑟[1,M]   = min𝐾𝜎2 , ∀chn = {1,… ,M} 
𝑚𝑎𝑥_𝑣𝑎𝑟[1,M]   = min𝐾𝜎2 , ∀chn = {1,… ,M} 
 

5-> Loop  
𝑙𝑜𝑤_𝑡ℎ𝑟 = 𝑙𝑜𝑤_𝑡ℎ𝑟 − 0.001 

ℎ𝑖𝑔ℎ_𝑡ℎ𝑟 = ℎ𝑖𝑔ℎ_𝑡ℎ𝑟 + 0.001 

 

6-> Find σ2 values from 𝐾𝜎2  s. t. →  𝑙𝑜𝑤_𝑡ℎ𝑟 ≤ 𝐾𝜎2 ≤ ℎ𝑖𝑔ℎ_𝑡ℎ𝑟  
𝑡𝑒𝑚𝑝_𝐾𝜎2 = 𝑙𝑜𝑤_𝑡ℎ𝑟 ≤ 𝐾𝜎2 ≤ ℎ𝑖𝑔ℎ_𝑡ℎ𝑟  

7-> Sort matrix 𝑡𝑒𝑚𝑝_𝐾𝜎2  w. r. t channels 
8-> Select the segment with the lowest duration per channel 

𝑡𝑒𝑚𝑝_𝑠𝑒𝑙[1,M]  = selected segments 
9-> Relative variance calculation 

𝑟𝑒𝑙_𝑣𝑎𝑟[1,M]  = 𝑡𝑒𝑚𝑝_𝑠𝑒𝑙[1,M]  ./ 𝑚𝑎𝑥_𝑣𝑎𝑟[1,M] 
𝑠𝑢𝑚_𝑐ℎ𝑛[1, 𝑁𝑤] = sum of channels per 𝑤𝑙𝑖 within variance range  

10-> If: count(𝑡𝑒𝑚𝑝_𝑠𝑒𝑙[1,M])  ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 

𝑚_𝑣𝑎𝑟 =  average(𝑟𝑒𝑙_𝑣𝑎𝑟[1,M]) 
11-> If:  𝑚_𝑣𝑎𝑟 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 

𝑚𝑒𝑡𝑟𝑖𝑐𝑠 = [

𝑚_𝑣𝑎𝑟
𝑙𝑜𝑤_𝑡ℎ𝑟
ℎ𝑖𝑔ℎ_𝑡ℎ𝑟
𝑠𝑢𝑚_𝑐ℎ𝑛

] 

 

-> Until 𝑘 iterations > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑3 

 

The variance range searching strategy shown above receives as input the kurtosis variance 

matrix 𝐾𝜎2  of size 𝑀 x 𝑁𝑤  (channels x number of segments), each of its components 

corresponds to the kurtosis variance of one of the EEG signals after segmentation at a 

specific window length.  

The user-defined variables are used as processing parameters, and as described in the 

algorithm, they are used in specific cases:  
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1. 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 – Number of channels that have at least one segment (expressed by the 

kurtosis variance at a window duration - 𝐾𝜎2,𝑤𝑙𝑖 ) within the range defined by the 

searching interval: 𝑙𝑜𝑤_𝑡ℎ𝑟 ≤ 𝐾𝜎2 ≤ ℎ𝑖𝑔ℎ_𝑡ℎ𝑟. If the number of channels is lower than 

the threshold, then, the algorithm restarts the searching by setting a new range, wider 

than the previous one. Since the idea is to find a variance interval which is common for 

a large set of channels, this threshold sets a boundary to skip computations in the case 

searching conditions are not met.  

 

2. 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 – Highest relative kurtosis variance average. After averaging the 𝑟𝑒𝑙_𝑣𝑎𝑟 
vector, the result expresses the mean of the kurtosis variance relative to the maximum 

variance found on each signal. If this threshold is exceeded it means that the variance 

range which is common for the channels (on average) is very similar to the expectance 

of maximum kurtosis variances, which could represent that the searching space covers 

most of the 𝐾𝜎2 density. 

 

3. 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑3 – Maximum number of iterations performed by the algorithm. If this bound 

is not set, the algorithm runs forever. So, this corresponds to a stop threshold.  

A practical example of the actual use of the searching algorithm is presented in Figure 27. It 

is depicted the iterative increase of the searching range defined by the lower and higher 

bounds of the kurtosis interval generalized as follows. 

𝑙𝑜𝑤_𝑡ℎ𝑟 − (𝑘 ∙ 0.001) ≤ 𝐾𝜎2 ≤ ℎ𝑖𝑔ℎ_𝑡ℎ𝑟 + (𝑘 ∙ 0.001) (30) 

Where 𝑙𝑜𝑤_𝑡ℎ𝑟 and ℎ𝑖𝑔ℎ_𝑡ℎ𝑟 are the bounds of the searching interval initialized as the 𝐾𝜎2 
value associated with the max point of the distribution fitted from the data (i.e. max(𝜒2)). 
The index 𝑘 refers to the iteration step inside the loop. Hence, the expression in (30) provides 

the updating rule of the variance range to search for at the step 𝑘.  

By observing Figure 27.a, the searching range corresponds to 𝑙𝑜𝑤_𝑡ℎ𝑟 − 0.001 ≤ 𝐾𝜎2 ≤
ℎ𝑖𝑔ℎ_𝑡ℎ𝑟 + 0.001. As this is a real example, the kurtosis variance interval is 0.099 ≤
𝐾𝜎2 ≤ 0.101, for the max(𝜒2) = 0.1. The searching algorithm then starts to look for the 

segments identified as the ones which exhibit a variance magnitude inside the interval. As 

there can be more than one window per channel whose dispersion is found within the range, 

the result of the searching is organized in vector form from lower to higher w.r.t each of the 

channels of the dataset.  

Such an arrangement permits to find which are the lower segment durations for the set of 

channels that exhibit a 𝐾𝜎2within the searching-interval limits (if there is any), and so, the 

lowest segment durations on each channel under those searching conditions are grouped to 

form the vector 𝑡𝑒𝑚𝑝_𝑠𝑒𝑙  (line 8 of the algorithm) which is employed to compute the 

relative kurtosis variance considering the highest values of the 𝐾𝜎2  on each channel. The 

calculation results in the 𝑟𝑒𝑙_𝑣𝑎𝑟 vector (line 9) whose components are the proportions of 

the kurtosis variances computed as the amount of the selected variance from the channel 

over the highest magnitude of the variance. 

As explained earlier, it can happen that only a small subset (or none) of the channels contains 

at least one segment configuration whose kurtosis variance is found within the range. In such 

a case, it is necessary to account for the number of signals that have a positive result from 

the searching, since the idea is to maximize the number of channels that exhibit a small 

variance range. The vector 𝑠𝑢𝑚_𝑐ℎ𝑛  vector (line 9) sums the channels with a positive 

searching result and organizes them with respect to the window length of the kurtosis 

variance matrix.
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(a) 

(b) 

(c) 
Figure 27. Searching algorithm at different iterations.  

a) iteration k = 1, b) iteration k = 2, c) iteration k = 3. 

max(χ2) 

max(χ2) 

𝑘 = 1 → 𝑙𝑜𝑤_𝑡ℎ𝑟 − 0.001 ≤ 𝐾𝜎2 ≤ ℎ𝑖𝑔ℎ_𝑡ℎ𝑟 + 0.001 
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Furthermore, if the number of channels which do not have any segment with a 𝐾𝜎2 within the 

searching-limits is higher than the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 then, the loop is reestablished, and the interval 

is updated to initiate the searching again. If, on the contrary, the number of channels is lower 

than the threshold, the process continues with the computation of the average of the relative 

kurtosis variance from the 𝑟𝑒𝑙_𝑣𝑎𝑟 vector (line 10). Finally, if the average is small, it means 

that the selected segments have a kurtosis variance which is lower than the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2, and by 

that, it is guaranteed that both the 𝐾 variance range is small (i.e. the kurtosis dispersions are 

close to each other as well as the kurtosis values w.r.t their expectancies) and the number of 

channels exhibiting similar kurtosis is maximized considering the shortest window duration as 

possible. 

In this way, after the evaluation of those conditions, some metrics related to the vectors that 

were generated during the process are combined and as result, it is generated an array 

comprising the values in consideration and then it is updated as long as the searching process 

keeps going.  

From this algorithm, it is clear that it can be generalized with subtle changes to other recordings 

to provide a framework that considers all the kurtosis variance matrices so all the datasets can 

be processed and the results for all of them are obtained. 

Figure 27 b-c, shows schematically how the searching range is extended as long as the iteration 

steps are increased. Since the loop is done indefinitely, a stop flag is set to finish the searching 

after a 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑3 = 1000 iterations, which would be enough to cover the whole 𝐾𝜎2 domain 

from the distribution, considering the Δ𝜎2 = 0.001.  

A. Stop criteria. 

The stop criteria in the searching approach can be formalized as follows considering the 

thresholds.  

- The [argmin(𝐾𝜎2)] subject to a channel 𝑐ℎ𝑛, and the variances selected from the channels 

[arg sel (𝐾𝜎2)] combined in the vector 𝑡𝑒𝑚𝑝_𝑠𝑒𝑙, can be expressed as relative magnitudes 

from the maximum variances [argmax(𝐾𝜎2)] on each channel. Hence: 

𝐾𝜎𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
2 ≤

1

𝑁𝑐ℎ𝑛
∗ ∑ 𝑡ℎ𝑟𝑖

𝑁𝑐ℎ𝑛

𝑖=1

 (31) 

𝑡ℎ𝑟𝑖 = 𝐺 ∗ (
argmax 𝜎2

chn i
) ,  ∀𝐺 ∈ {0,1} (32) 

- For instance, if 𝐺 = 0.3, it means that only 30% of the selected kurtosis w.r.t the maximum 

kurtosis in the channels is allowed to continue the processing. 

𝐾𝜎𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑
2 ≤ 0.3 ∗ (argmax 𝜎

2

chn 1:M
) 

B. Searching domain 

By considering the vectors 𝑚𝑖𝑛_𝑣𝑎𝑟[1,M] and 𝑚𝑎𝑥_𝑣𝑎𝑟[1,M] which contain the lowest and 

highest kurtosis variance values channel-wise respectively, it is possible to construct a 

searching domain limited by these bounds.  

Figure 28 shows the searching domain as a function of the kurtosis variances expressed by the 

channels that compose the dataset. The min𝜎2 and max𝜎2 values that result in the red and 

black plots, set the limits of the possible values that segments (𝑤𝑙𝑖) can exhibit regarding its 

stationarity measured in terms of kurtosis. In this way, intermediate values can be obtained from 

non-boundary segments, and by using the searching approach, close kurtosis variances across 
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the channels can be found.  

For the case in consideration (subject 2 EEG recording in opened-eyes resting-state condition), 

after setting the relative kurtosis variance mean of the selected channels every 10% and 

increasing it from 20% to 70% of the maximum kurtosis variances, the algorithm can select the 

segment lengths whose 𝐾𝜎2 average is not larger than the relative proportion expressed by each 

percentage threshold. As result, Figure 28 shows the kurtosis variances after the selection 

according to the percentage limits. These correspond to the 𝐾𝜎2 values found to be expressed 

by the shorter possible segment on each channel considering a specific percentage bound. In 

accordance, the 𝐾𝜎2  magnitude meeting the conditions is color-coded according to the 

percentage limits, so each color indicates the variance of a segment within the searching limits 

such that the relative kurtosis variance mean is close to the percentage threshold.  

As can be observed, the lower the percentage threshold the closer the selected 𝐾𝜎2 values are 

from the min𝜎2 bound, however, as can be noted also the lesser number of channels that meet 

the requirements are found, i.e. approaching the limit most channels do not have any value 

plotted on the graph according to the percent bound. Consequently, by increasing the searching 

limits (Eq. (30)) the results are translated in the increment of channels with similar 

characteristics considering higher kurtosis values, and so, if the graph is observed for the 30% 

threshold, it can be seen a considerable number of channels compared to the 20% limit and 

maintaining 𝐾𝜎2 values close to the lower bound. The same happens for 40% and 50% limits, 

however, the dispersion among the channels also starts to be evident. 

 
Figure 28. Kurtosis variance searching space bounds and relative variances. (S2 – R1) 
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For higher percentage limits, as for 60% and 70%, the dispersion of the kurtosis variance values 

is very large, however, in those cases a larger number of channels share the variance interval in 

consideration and are approaching the higher bound (max𝜎2) which suggests that the searching 

interval is very wide and that it is considering almost all the values from the distribution.  

Figure 28 shows graphically the definition of the searching space as well as the kurtosis 

variance values considering different thresholds with respect to the maximum relative 𝐾𝜎2 
found at each channel for a particular segmentation strategy, in this specific case, considering 

a WL = 1s and 𝑁𝑤 = 10. The color-coded plots show which is the kurtosis variance within the 

searching interval that a channel exhibits if it exists. Such representation permits us to have a 

sense of how close the kurtosis variances across the channels are and also depicts how many 

channels meet the conditions at that interval. However, it would be also useful to check the 

interval limits from which such results are found. In this way, Figure 29 comprises the searching 

intervals at the different percentage thresholds from which the channels expose the values 

within the searching domain.  

 
As can be observed from the searching strategy, by defining sequentially higher percentage 

thresholds the searching interval is increased and covers a wider area from the density. By 

covering a larger area, a greater number of segments on each channel meet the conditions for 

selection, which at the end after the ordering procedure would result in the selection of the 

minimum variance segment of each channel (min 𝜎2). That is why a sequential increase of the 

searching interval is performed by the algorithm, and restricting the relative quantity of kurtosis 

variance allows to analyze which area from the density is being covered, how many channels 

are being identified in those limits, and which are the segments that are contained in the 

searching range.  

The searching domain and the corresponding limits related to the relative proportions of the 

maximum kurtosis variances bring an analysis tool from which it is possible to provide an 

informed decision on how to select the minimum segment duration shared for most of the 

20%

30%

40%

50%

60%

70%

Figure 29. 𝐾𝜎2 PDF of the S2 – R1 EEG recording 

considering the searching intervals at different 

percentage thresholds. 
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channels, which guarantees similar stationary characteristics among the signals. By considering 

different percentage thresholds, it is possible to check graphically the areas covered by the 

searching interval, and depending on the type of segmentation, either for short (WL < 1s) or 

long (WL ≥ 1s) windows, the selection of the segment duration is derived from the statistical 

characteristics coming from the dataset, so overall it can be considered as a non-parametric 

method for that purpose.  

The information coming from this procedure is summarized in matrix form and corresponds to 

the last step of the algorithm: the definition of the 𝑚𝑒𝑡𝑟𝑖𝑐𝑠 array (line 11). Table 4 comprises 

the searching interval associated with the relative kurtosis variance expressed in percentage and 

the corresponding number of channels that meet those searching conditions with respect to the 

segment durations from 1 to 10 seconds. These data are derived from the searching space and 

the kurtosis density described in Figure 28 - Figure 29 respectively.  

Table 4. Segment durations and number of channels sharing kurtosis variances  

according to relative percentages. 

  10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Lower 
limit 

0.1096 0.1066 0.1006 0.0796 0.0496 0.0076 0 0 0 0 

Upper 
limit 

0.1156 0.1186 0.1246 0.1456 0.1756 0.2176 0.2636 0.3016 0.3416 1.1136 

1 sec 0 0 0 0 1 7 22 35 49 59 

2 sec 2 2 6 15 31 55 59 59 59 59 

3 sec 1 2 3 16 36 48 53 55 57 59 

4 sec 3 6 9 25 38 48 54 55 57 59 

5 sec 3 6 13 30 47 51 54 55 57 59 

6 sec 1 5 10 34 50 53 54 56 56 59 

7 sec 1 5 10 31 50 52 55 57 57 59 

8 sec 4 5 11 25 50 55 57 58 58 59 

9 sec 1 2 5 19 46 53 55 56 57 59 

10 sec 2 6 13 27 47 57 57 58 58 59 

By having a close look at the data from Table 4, it is possible to check what was explained 

before. As long as the searching interval is increased, the number of channels exhibiting a 

kurtosis variance in that range also increments. As the purpose of the algorithm is to maximize 

the number of channels by defining a short and small variance range common for them, from 

the table, it is possible to perform an informed decision for the segment selection.  

As can be observed, the number of channels in the searching ranges lower than 30% is very low 

compared to wider searching intervals. By considering the limits on the kurtosis density from 

Figure 29, 40% and 50% ranges cover the most probable kurtosis variances of the whole dataset. 

At 40% considering a window length of 4 seconds, only 25 channels share the kurtosis variance 

from that range, however, if the 50% is then considered the number of channels increases to 38 

which is ~63% of the total of channels from the dataset. Moreover, by considering a segment 

window of 5 seconds, 30 and 47 channels are found in the variance ranges of 40% and 50% 

respectively. In this way, by looking at the 𝐾𝜎2  PDF using a segment of 5 seconds allows 

selecting 47 channels (~78% of total channels) sharing a kurtosis variance in the range of 

0.0496 ≤ 𝐾𝜎2 ≤ 0.1756, which comprises a probable proportion of the density.  

After performing the searching in the kurtosis variance domain, it is then possible to return to 

the kurtosis space after the selection of the window duration. For the example that has been 
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explained along the last sections, considering Table 4, there was selected a segment length of  

5 seconds, at a kurtosis variance range of 50% of the maximum variances explained by the 

segments. From this, there were found 47 channels meeting this criterion. Figure 30.b. shows 

the kurtosis distributions of each of the channels within the 50% searching interval (0.0496 ≤
𝐾𝜎2 ≤ 0.1756), the blue distributions correspond to the ones inside the range while the red 

plots are the densities from the channels with higher variances.  

a) 

b) 
Figure 30. Kurtosis distributions of all the channels composing the S2 – R1 EEG recording  

for a segment duration 𝑤𝑙 = 5 s.  
In blue, 𝐾 PDFs inside the interval defined by a) 40% the relative max (𝐾𝜎2), b) 50% the relative 

max (𝐾𝜎2). In red 𝐾 PDFs outside those limits.  

 

The 40% corresponding to the interval 0.07957 ≤ 𝐾𝜎2 ≤ 0.14557  allows to perform the 

discrimination of the kurtosis PDFs shown in Figure 30.a. As the searching space is reduced, 
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the dispersion displayed by the expectances across channels also decreases (dispersion on the 

location of the expectance values of the blue distribution), however, the number of channels is 

not as high as in the previous case.  

The reduction of the kurtosis dispersion observed in Figure 30.a among the channels is derived 

from the searching interval restricted to the relative variance expressed in percentage from the 

𝐾𝜎2 domain, and provides a way to maximize the number of channels sharing similar kurtosis 

values guaranteeing similar dynamical behavior across the signals within a fixed segment 

duration which can be employed in the calculation of Effective Connectivity.  

5.2. The effective connectivity framework 

In order to perform the effective connectivity analysis, let us recall the processing scheme that 

was introduced in the section What do these works have in common?. As shown below 

(recalling Figure 4), this process considers 6 principal steps; the usual signal acquisition and 

pre-processing treatment (implemented in the same way as explained in the section 

Preprocessing ), applied to the EEG signals; the Effective Connectivity measure estimation, 

from which different connectivity indices can be estimated; the working domain definition 

either at the channel domain, regions of interest (ROIs) domain or independent components 

domain considering the estimation of dipoles; then, the generation of surrogate data using phase 

randomization, bootstrapping or cross validation approaches to sample the original data to 

estimate the significance of the connectivity measures and calculate the adjacency matrices as 

the pre-step of the statistical analysis employing ANOVA and the post-hoc tests using 

Bonferroni correction.  

 
Figure 4. (Recall) Effective connectivity processing scheme.  

As final results of this approach there are obtained the statistically significant connections 

among the nodes that compose the working domain (e.g., ROIs, channels, or dipoles), their 

amplitudes, and other kind of customizable parameters that can characterize the existent 

connectivity across the different regions associated to the nodes. 

As it was described earlier, this approach is affected by the stationarity characteristics of the 

window chosen in regard to the fitting process of the MVAR model, from which the 

connectivity measures are then estimated. As it was shown previously, the window selection 

depends on the characteristics of the question under investigation for the research work (see 
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Table 2), however, even though some works investigate similar brain regions, pathologies, and 

brain conditions during rest, attention, wakefulness/drowsiness, or sleep, the windows 

employed on such works have durations that are very different from each other.  

In this way, by considering the window selection approach based on the stationary 

characteristics given high-order statistical moments as the one described in this thesis work, it 

could be possible to obtain the window length that exhibits similar stationarity across the signals 

composing the EEG recordings of different subjects following the same experiment conditions 

under analysis. Then, a modification of the processing scheme from Figure 4 is proposed as 

shown in Figure 5 to account for the window length characteristics and then observe the 

effective connectivity results for the resting state condition analysis of healthy subjects under 

eyes-opened (R1) and eyes-closed (R2) conditions.  

 
Figure 5. (Recall) Modification on the E.C. statistical analysis to account for the window length. 

According to Figure 5, the window selection approach would be an intermediate step that 

considers the stationary characteristics of the EEG signals. In order to test the influence of the 

window length in the connectivity process, it is then used as a factor in the statistical analysis, 

either by performing ANOVA or t-tests, where the interactions of the window length are 

evaluated to obtain the effects on connectivity.  

In accordance with the results obtained from the window selection algorithm as described in 

the section (see Selected window durations); for the short window class, the segment duration 

for the MVAR fitting process was selected at 400 ms, being the window size that exhibits 

similar stationary characteristics in the short term. On the other side, durations larger than 1 

second were also analyzed and as result, a window length of 4 seconds was obtained as the most 

common for the EEG recordings from the different subjects in consideration. In this way, to 

check the influence of the window size in the effective connectivity analysis, besides the 

windows of 400ms and 4s, there were selected the windows of 2s and 20 s according to the 

works of Varotto [33] and Olejarczyk [45], who studied resting state conditions in similar 

settings to the ones explained in this thesis work.  

5.2.1. Effective Connectivity estimation 
The resting state condition datasets comprised EEG recordings from 10 healthy subjects as 

explained earlier in the section EEG Dataset. In order to perform the window selection 

approach, there were discarded 4 datasets (from subjects S1, S3, S4 and S7) because there was 
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a significant reduction on their total durations after performing the stringent data cleaning 

process.  

In this section it is described the effective connectivity estimation, which comprises the 

statistical significance analysis and uses the same recordings employed for the window 

selection approach. However, due to the small cohort size translated into a reduced number of 

samples to perform the statistical analysis, the number of subjects for effective connectivity 

was increased from 6 to 8, including the recordings from subjects S1, S4 and S7, and discarding 

S9 since its connectivity amplitudes were out of the normal range for effective connectivity (i.e., 

they were significantly larger than 1). Hence, the datasets employed for the effective 

connectivity analysis were (S1, S2, S4, S5, S6, S7, S8 and S10) and they comprised signals that 

exhibited very similar stationary characteristics as summarized in Table 9.  

A. EEG data characteristics: 

Each of the selected EEG recordings (S1, S2, S4, S5, S6, S7, S8 and S10) were individually 

segmented into non-overlapping windows according to the four window lengths defined 

previously (i.e., 400ms, 2s, 4s and 20s). In this way, there were obtained 4 new segmented data 

series for each subject at each resting state condition, producing a total of 8 different segmented 

matrices per subject obtained from the original cleaned EEG recording.  

The segmentation procedure was carried out following the total duration of each of the clean 

recordings and segmenting them into a chain of segments of 400ms, 2s, 4s and 20s. In this way, 

for instance, considering the S10 recording in opened-eyes condition which has a total duration 

of 172 seconds (see Table 4), there were produced 430, 86, 43 and 8 segments for each window 

duration (i.e., 400ms, 2s, 4s and 20s), respectively.  

After this, epochs of 25 times the duration of each window length were employed to 

characterize the connectivity during those periods (except for the 20 seconds segment for which 

all the segments were employed since the number of signal slices was less than 25). This is 

done to guarantee the proper fitting of the MVAR model since it produced singular matrices 

when the total number of windows were employed for this purpose. This establishes a boundary 

in the epoch duration to perform the fitting process and from it, a characterization of the 

connectivity in the long-term given the epoch definition is performed.  

From this process, there were obtained epochs of 10s (25 windows*400 ms), 50s (25 

windows*2s) and 100s (25 windows*4s), respectively. For the window of 20 seconds the epoch 

duration was different for each subject recording since it was defined according to the original 

duration of the cleaned version of the recording, so, if on average the duration of all the 

recordings was 167 seconds, then, the epoch was on average 160s, corresponding to the duration 

of 8 non-overlapping 20s windows.  

In this way, it is possible to characterize the connectivity given the epoch durations, its 

dynamics given the segment durations and their frequency components contained on the epochs. 

This process is performed at each resting state condition for the group of subjects considered.  

B. Connectivity measures 

The connectivity measure in this case, was the DTF, calculated as following the theoretical 

definitions explained in the section Typical measures. This connectivity index was estimated 

using the SIFT plugin for EEGLAB [68], [69]. The toolbox received as input the data coming 

from each of the 4 segmented recordings to calculate the connectivity across the channels at 
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each window length configuration from each subject’s recording. As result of the connectivity 

measure estimation, a 4-D matrix as the one depicted in Figure 31 was obtained, generating an 

array of size 𝑁𝐶ℎ𝑛 ×  𝑁𝐶ℎ𝑛 × 𝑁𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 × 𝑁𝑊𝑖𝑛𝑑𝑜𝑤.  

 
Figure 31. Matrix organization for the connectivity measures of size 𝑁𝐶ℎ𝑛 ×  𝑁𝐶ℎ𝑛 ×  𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ×

 𝑊𝑖𝑛𝑑𝑜𝑤. 

𝑁𝐶ℎ𝑛  corresponds to the number of channels composing the EEG recording, having a 

maximum number of 62, hence the influence from channel 𝑖 (at each row) to the channel 𝑗 (at 

each column) is contained in the 2D matrix of size 𝑁𝐶ℎ𝑛 × 𝑁𝐶ℎ𝑛. Since the DTF is a directed 

measure, the values contained in the lower triangular portion of the 𝑁𝐶ℎ𝑛 × 𝑁𝐶ℎ𝑛 matrix 

correspond to the inflows in connectivity from the pair of channels 𝑖, 𝑗. Likewise, the outflow 

is masked in the upper triangular part of the matrix.  

The 𝑁𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 is the number of frequencies considered for the connectivity estimation, for 

this case the frequency range considered was 1 - 45 Hz, given the band-pass filtering stage 

performed during the pre-processing, so each entry of the frequency page of the 4D matrix 

gathers the connectivity measures across all the channels (𝑖, 𝑗) at the specified frequency (each 

index at the corresponding page representing the connectivity at a frequency 𝑓, increasing in 

steps of 1; e.g., index 12 corresponds to the connectivity at the frequency of 12 Hz). Finally, 

each window index (i.e., the temporal reference along the epoch) going from 1 to 𝑁𝑊 

comprises the connectivity information of the frequency bandwidth (i.e., 1 to 45 Hz), defining 

the dynamical variation over time of the connectivity values on the epoch.  

The 4D matrix of size 𝑁𝐶ℎ𝑛 ×  𝑁𝐶ℎ𝑛 ×  𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ×  𝑊𝑖𝑛𝑑𝑜𝑤  comprises the 

connectivity values obtained for a subject at a specific resting state condition. Since the window 

length was previously defined as well, then the 62 × 62 × 50 × 𝑁𝑊 array of DTF values 

provide the connectivity information at each frequency obtained at every segment composing 

the epoch that has a size of 𝑁𝑊 (10s, 50s, 100s and ~160s for each window length respectively). 

Since the idea is to characterize the alpha and beta frequency bands, then, the average of the 

components on those ranges (i.e., the average on the third dimension of the 4D DTF matrix 

over the pages [7 – 13] Hz, and [14 – 25] Hz, respectively) is performed, and results in two 

different arrays of size 62 × 62 × 𝑁𝑊 each, characterizing the connectivity for the alpha and 

beta frequency bands respectively. By doing this, the connectivity characteristics are now sorted 

by those frequency ranges at each window length partition (i.e., 400ms, 2s, 4s and 20s) thus 

allowing to group them considering the results obtained for each subject. Then, the resulting 

matrices from each recording are concatenated forming a new matrix of size 62 × 62 × [8 ∗

𝑁𝑊] (8 subjects * number of windows). 

Chn 1 2 3 . . . NChn Frequency Window

1 1 1

2 2 2

3 3 3

. . .

. . .

. . .

NChn 50 NW
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Then, a second average step in the 3rd dimension of the matrix is performed, and a single 2D 

array is obtained, it characterizes the overall effective connectivity over a specific window 

length. This process is performed for each of the selected window segments producing the final 

2D matrices employed to perform a statistical analysis (e.g., ANOVA or t-test) to establish the 

significant effective connections of the alpha and beta frequency bands, giving as result the so-

called adjacency matrices.  

C. Surrogate data 

The significance of the connections is established by generating surrogates of the original data 

considering the phase randomization of the data series as explained by the Theiler algorithm 

[70]. This procedure consists of employing the clean EEG recordings and generating from them 

a set of sampled copies of the frequency data that contain randomly shuffled sample points from 

the original series, then they are transformed back in the time domain. By doing this process, it 

breaks any phase relationship existent in the new copies while maintaining the amplitudes of 

the original source. This process generates a number of shuffled series (usually 100) and then 

they are used to estimate the connectivity patterns from which surrogate connectivity matrices 

at each window duration are estimated. After this, a t-test is performed by comparing the 

connectivity matrix coming from the original series and the surrogate ones, establishing the 

significance of the connections, and providing the adjacency matrices for statistically 

significant values.  

D. Adjacency matrices 

The adjacency matrix is an array that encodes the directed or undirected relationships of a group 

of nodes that compose a network. For instance, given the high dense array of electrodes of the 

EEG cap containing 62 channels in our case, its adjacency matrix is a 62 × 62 array that 

contains the one-to-one connectivity relationship among the electrodes. By construction, the 

DTF matrices obtained in the previous stages provide the adjacency matrices at each frequency 

of every window that composes an epoch. Then by performing the t-test across the time 

dimension at a specific frequency range like the alpha (i.e., testing the connections that remain 

significant over the whole epoch in the band of 7 – 13 Hz) and setting up a threshold of 

significance, e.g., 𝛼 = 0.05, the effective connections of the adjacency matrix that are not 

statistically significant (𝑝 > 0.05) are set to 0, providing the directed relationships that are 

considered as meaningful statistically.  

From this 2D representation of the significant values of the adjacency matrix, a network is built 

by mapping the indices of the array as the nodes that compose the network of 62 × 62 channels, 

from the statistical test, the significant connections that remain are the ones that define the 

connectivity diagram from the channels. In Figure 32, there are depicted the adjacency matrices 

resulted from this process for all the windows considered at each resting state condition for the 

alpha band.  

 



85 

 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

 

f) 

 

h) 

Figure 32. DTF adjacency matrices for each window duration (400ms, 2 s, 4 s, 20 s) during eyes open (a, c, e, 

g) and eyes closed (b, d, g, h). 
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The amplitude of the connections is represented by color, going from dark blue (minimum) to 

dark red (maximum). In this way, the connections that have higher amplitudes can be 

recognized visually from the adjacency matrices.  

The first elements of the adjacency matrices (from top to bottom or left to right) correspond to 

the nodes located in the frontal part of the EEG cap according to the topographic distribution 

of the electrodes. In this way, the elements in the central part of the array are related to the 

electrodes in the central region and the last electrodes to the posterior area. In this way, from 

the adjacency matrices it is possible to observe some clusters of electrodes that exhibit 

connections with high amplitudes incoming and outgoing mostly between the frontal and 

posterior regions for the windows of 2 s and 4 s. The distribution of electrodes presents 

statistically significant high values over these areas according to the color-coded scheme 

employed; however, the adjacency matrices are not easy to analyze, and other strategies can be 

employed to obtain the relationships among the nodes according to the DTF values. 
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6. Results and Analysis 
Considering the approach discussed as part of the processing methodology of the EEG signals, 

it is important now to discuss the results derived from that methodology for the different 

recordings available. The first part of this section is devoted to the results obtained for the 

selection of the segment length for each of the recordings available. The second part accounts 

for the effective connectivity analysis considering the segment duration selection and common 

segmentation procedures found in the literature as a way to compare and analyze the outcomes 

in connectivity.  

 

6.1. Results on window length selection 

6.1.1. Selection of EEG recordings for processing 
Let us recall that there was a total of 20 EEG recordings, coming from 10 different subjects in 

two resting-state conditions. As summarized in Table 3, the EEG signals were shortened in time 

as a consequence of the preprocessing stage, in addition, there was performed a channel 

selection procedure among the signal sources concerning the possible instabilities and noise 

that affected them.  

Table 3. (RECALL) Recordings’ characteristics before and after the cleaning process 

 R1 - Opened eyes  R2 - Closed eyes  

Subject 

Raw 
signals 

duration 
[s] 

Cleaned 
signals 

duration 
[s] 

Clean 
signals 

percentage 

Selected 
channels 

Channel 
Selection 

percentage 

Raw 
signals 

duration 
[s] 

Cleaned 
signals 

duration 
[s] 

Clean 
signals 

percentage 

Selected 
channels 

Channel 
Selection 

percentage 

S1 305 46 15% 51 82% 311 172 55% 53 85% 

S2 308 235 76% 59 95% 314 256 82% 60 97% 

S3 284 46 16% 59 95% 204 43 21% 58 94% 

S4 192 101 53% 54 87% 278 123 44% 53 85% 

S5 308 205 67% 57 92% 306 155 51% 59 95% 

S6 308 230 75% 57 92% 311 226 73% 60 97% 

S7 353 135 38% 54 87% 313 212 68% 55 89% 

S8 315 197 63% 61 98% 319 231 72% 62 100% 

S9 189 145 77% 55 89% 184 116 63% 58 94% 

S10 303 172 57% 60 97% 328 240 73% 61 98% 

Mean 286 151.2   57   287 177.4   58   

As a following step of the preprocessing stage, it is then possible to perform a recording 

selection. The criterium used to do it is based on the relative reduction of the dataset length. If 

a threshold is set at 50% of the original duration of each recording, then, the datasets which 

were reduced to less than that threshold are marked as not useful (i.e. meaning that more than 

half of the samples from the EEG signals were eliminated).  

As the process is considered for both resting-state conditions, therefore, if one dataset has more 

than half of its samples after the pre-processing in one state but contains less than the threshold 

for the other condition, then both recordings are discarded. As an example, consider the 

recordings from subjects S1, S4, and S7 which after pre-processing had at least half of their 

original duration for the states R2, R1, and R2 respectively, and did not meet the requirement 

for their counterpart resting-state cases.  

The S1 recording in R1 had an original duration of 305 seconds and was reduced to 46 seconds, 

corresponding to only 15% of the initial time. Such reduction suggests that the signals were 
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heavily affected by noise and artifacts, and consequently only a few seconds were able to be 

maintained. In the same fashion, the recordings from subjects S4 and S7 had an important 

reduction that went to 44% and 38% in the R2 and R1 conditions, respectively. Also, subject 3 

recordings were reduced drastically in both conditions, suffering a reduction of 84% and 79% 

of their times. 

As it will be explained in the section Subjects S5, S6, S8, S9, and S10:, subjects S6 and S9 in 

both resting-state conditions present certain particularities from their statistical features which 

could lead to their discarding from the analysis, however, they are kept observing the 

characteristics and to compare them with the remaining datasets. 

After these considerations, only 6 pairs of EEG datasets are counted for analysis (S2, S5, S6, 

S8, S9, and S10). 

6.1.2. Window selection approach 

A. Single EEG dataset analysis 

As discussed in the methodology description, the segmentation approach can be performed by 

considering short segment lengths whose durations are below 1 second (𝑤𝑙𝑖 < 1s), and long 

segments that are considered when 𝑤𝑙𝑖 ≥ 1s. For this data analysis, both segment duration 

categories are employed considering the indications summarized in Table 5. 

Table 5. Segmentation characteristics for long and short segments. 

a. WL = 0.05 s, 𝑁𝑤 = 20 →  𝑤𝑙𝑖 = {0.05,0.1,0.15,… ,1} Short segments 

b. WL = 1 s, 𝑁𝑤 = 10 →  𝑤𝑙𝑖 = {1, 2, 3, … , 10} Long segments  

The segmentation procedures based on these characteristics have the particularity of being 

complementary. They were chosen in this way to allow the characterization of the EEG signals 

when the segments are short below 1 second to account for higher frequency components 

present on the EEG signals. On the other hand, slow modulations in time can be captured if 

longer segments are considered for analysis. In this case, segments as short as 50 ms were 

considered as the basis window length from which the segmentation procedure is employed. 

Hence, multiple segmentations were performed considering an upper limit of 1 second.  

Similarly, a basis segment duration WL = 1 s was chosen for long segment length analysis, in 

this case, the largest segment is of 10 seconds , sufficient to account for low-frequency 

components that can be present in the signals. 

From these considerations, the Algorithm 1) was employed in both conditions, and the 

following results show the kurtosis variance searching approach applied to the selected 

recordings.  

A.1. Subject 2 (S2): 

Table 4 shows that the raw EEG signals acquired from the subject 2 (S2) had a duration of 308 

and 314 seconds for opened-eyes and closed-eyes resting-state conditions, respectively. After 

pre-processing, the datasets were shortened to about 80% of their initial durations, giving as 

result signal lengths of 235 and 256 seconds. Then, segmentation was applied considering long 

duration windows. As results, the heat plots of Figure 33 show the kurtosis variances (𝐾𝜎2) as 

function of the segment length intervals that go from 1 second up to 10 seconds. The color code 

reflects the 𝐾𝜎2 magnitudes contemplating bright yellow colors for lower 𝐾𝜎2 values and dark 

blue ones for higher kurtosis variance magnitudes.  
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Figure 33. Heat plot derived from 1 to 10 seconds segmentation  

considering the 𝐾𝜎2  values. Left: S2 - R1 𝐾𝜎2 . Right: S2 – R2 𝐾𝜎2  

From the plots, it can be observed that longer segments have lower variances which in principle 

would be appropriate to account for most of the stationarity of the segmented signals. However, 

longer segments do not provide a good representation of high-frequency components that are 

of interest according to the brain activity in consideration.  

According to the temporal frequency characteristics of the brain rhythms, the lower limit needed 

to provide a close-fitting representation of the frequency components of the alpha rhythm has 

to be set at a minimum of 𝑤𝑙𝑜𝑤 = 0.143 s. By looking at the segments like the ones of the 

segmentation in Figure 33, their durations are very long, even for the lower kurtosis variances 

which could represent properly the slow dynamics of the oscillatory components that can be 

registered in EEG signals, however, for the case of the analysis presented in this work, 

according to the characteristics of the brain activity, such slow oscillatory components would 

never be present in awake resting-state conditions, so it would be useful to search for shorter 

segments, and the considerations defined by the methodology in this thesis approach were 

defined to account such characteristics to then apply them in the effective connectivity analysis.  

These observations hold for all the kurtosis variance representations derived from all the EEG 

recordings; however, each variance matrix has unique characteristics regarding the 𝐾𝜎2 as a 

function of the segment duration, hence it is necessary to perform the analysis of the particular 

characteristics of each dataset to provide results that can be generalized across the recordings 

and resting-state conditions.  

From the 𝐾𝜎2 matrices represented as heat plots in Figure 33 for S2 – R1 (left) and S2 – R2 

(right) there are obtained the searching domains constrained by the lower and upper bounds 

presented in Figure 34.  
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Figure 34. Kurtosis variance (𝐾𝜎2)  searching domain for S2 – R1 (left) and S2 – R2 (right).  

Considering segmentation characteristics from Table 5.a. 

Considering a segmentation that goes from 1 second to 10 seconds, lower and upper bounds 

(min 𝜎2 – red plot and max𝜎2 – black plot) on each resting-state condition are defined as the 

relative minimum and maximum values of kurtosis variance magnitudes exhibited by each of 

the channels composing the EEG dataset. In between the limits, the searching strategy 

(Algorithm 1) works to find segment durations exhibiting low kurtosis variances so that the 

spread back in the kurtosis domain is small across the channels’ 𝐾 -distributions, which 

guarantees common kurtosis magnitudes, and hence stationarity if their values are restricted to 

be small and common for all the channels while maintaining similar stationarity characteristics 

as well. 

Figure 34 shows the 𝐾𝜎2 (kurtosis variance) variations from segment to segment when different 

relative variance proportions are set as thresholds to maintain common values in all the channels. 

Those thresholds are relative to the maximum variance on the channels (max𝜎2 ). For 

visualization purposes, these thresholds were increased from 20% to 70% of the largest variance, 

so each point represents the variance found on one of the segments of a channel whose value 

belongs to that proportion w.r.t the largest variances. Those percentages proportions can be 

represented as variance intervals and are depicted in Figure 35.  

The searching domain and the selected variances according to the thresholds produce the plots 

in between the lower and upper bounds in Figure 34, as can be observed, the lower the threshold 

the closer to the lower bound plot. In some cases, the variances near a specific threshold do not 

represent a significant change with respect to the next one. This is the case of all the percentage 

threshold variances in the left panel (S2 – R1) of Figure 34 for the channels located at the 

posterior part of the scalp (lower part of the figure), whose kurtosis variances are almost the 

same, and in some conditions, they are recognized exactly equal e.g. some 𝐾𝜎2 points of the 

50%, 60% and 70% thresholds are the same according to the algorithm.  

Similar behavior is observed for the S2 – R2 case (right panel on Figure 34), in this case, 

variances belonging to the 30%, 40%, and 50% are shared, however, the 50% seems to be more 
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common for more channels.  

As a complementary graph, Figure 35 shows the associated searching intervals to each of the 

percentage thresholds in Figure 34. As can be observed, the lower the threshold the shorter is 

the interval which is set to look for common segment lengths among the channels. The intervals 

determine the minimum and maximum limits to look for the segments that exhibit a variance 

within the accepted range according to the likelihood of occurrence derived from the kurtosis 

variance density.  

In detail, for both resting-state conditions, Figure 35 a-b, the 50% searching interval (delimited 

by the purple vertical lines) cover a probable part of the distribution which is translated in the 

increase of segments of all channels composing the dataset with similar kurtosis variance 

characteristics, guaranteeing similar stationarity behavior among the channels because of the 

kurtosis spread being restricted to those limits. It is clear that as long as the searching interval 

is increased, the whole variance density is considered, and in the limit, because of the segment 

selection characteristics of the algorithm, the lower bound variances would be chosen, which 

are not optimal as discussed in previous sections.  

(a) 

(b) 
Figure 35. 𝐾𝜎2 searching intervals with respect to max𝜎2 proportion thresholds. 

a. S2 – R1 𝐾𝜎2  distribution and b. S2 – R2 𝐾𝜎2  distribution. 
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The representations of the searching domain, the searching intervals, and the kurtosis variance 

distributions can be used to construct a heat plot that depicts the number of channels that can 

be found in an interval considering a specific kurtosis variance interval used in the searching 

stage by the algorithm. Accordingly, Figure 36 depicts the number of channels (color-coded) 

as a function of the searching interval defined as the kurtosis variance range where a subset of 

channels exhibit close kurtosis values among them w.r.t the window length defined for the 

segmentation.  

(a) 

(b) 
Figure 36. The number of channels as a function of the segment length and the searching interval in terms 

of the kurtosis variance. a. S2 – R1 b. S2 – R2. 

The variance range found for 50% of the largest 𝐾𝜎2 delimited in the kurtosis variance PDFs in 

Figure 35 a and b, is shown in Figure 36 as the dashed line. By considering that threshold 

defined by the 50% range, it is possible to observe that in the case of the resting state in opened-

eyes condition (Figure 36.a) the highest number of channels sharing similar gaussian 

characteristics is found at 𝑤𝑙 = 5s when the range is defined as 0.086 ≤ 𝐾𝜎2 ≤ 0.214. To be 

exact there are 34 channels exhibiting similar stationarity features in that range, and by looking 

at the interval considering the 𝐾𝜎2  PDF, it can be said that the algorithm is covering the most 
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probable values for kurtosis variance which by being located near the apex of the density, then, 

the kurtosis values are close to each other assuring the common stationary observation across 

channels. 

Similarly, Figure 36.b shows the kurtosis variance 50% threshold defined for the interval 

0.13129 ≤ 𝐾𝜎2 ≤ 0.21129. In this case, there are different options to select the appropriate 

segment length. Segment 𝑤𝑙 = 6s is the one from which more channels are found, 48 in total, 

however, shorter segments like 𝑤𝑙 = 5s provides 44 channels sharing the same features. Finally, 

a 𝑤𝑙 = 2s can be considered as well, where can be found 39 channels.  

According to these outcomes, for S2 – R1 the selected window is 𝑤𝑙 = 5s and for S2 – R2 the 

segment length is defined at 𝑤𝑙 = 6s. The tables summarizing the number of channels with 

respect to the percentage thresholds, variance ranges, and segment durations are found in the 

annex as Table AN 1 and Table AN 2 for the resting state conditions R1 and R2 respectively. 

The variance interval defined for the 50% threshold can be used to return to the kurtosis domain 

and perform the selection of the channels that are below the threshold that was set considering 

the 𝐾𝜎2 values. In that way, it is possible to estimate the probability density functions from the 

kurtosis values, considering:  

1. The whole set of EEG signals that were segmented by using the selected window length. 

2. The subset of channels that are below the threshold defined by the kurtosis variance 

interval. 

3. The subset of channels that are considered as discarded since their variances are 

exceeding the limits of the variance boundaries.  

In this way, the derived PDFs bring a way to evaluate the spread of the kurtosis values among 

the channels selected, and for the discarded ones, having as reference the kurtosis PDF of the 

whole set of signals. Figure 37 depicts the distribution fitting performed for the selected 

channels for S2 in both resting-state conditions. 

(a) 
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(b) 
Figure 37. Kurtosis distributions considering the selected channels from the percentage threshold.  

a. S2 - R1 𝑤𝑙 = 5s b. S2 – R2 𝑤𝑙 = 6s  

Figure 37 in both conditions (a, b), depicts the kurtosis distributions of three sub-datasets 

derived from the segmentation procedure. In Figure 37.a, it is depicted in green the kurtosis 

distribution of all the segments from all the signals of the S2 – R1 recording. Moreover, it is 

shown the standard deviation with the parallel lines with the same color. In blue is plotted the 

distribution of the kurtosis magnitudes considering the 5-second segment length from the 

selected channels, the standard deviation is shown considering the dashed parallel lines. Finally, 

the fitted PDF for the discarded signals is plotted in red, as can be observed from the graph, 

there exists a significant deviation from the discarded kurtosis values w.r.t the density defined 

from the whole dataset. On the other hand, the PDF from the selected channels is more similar 

to the distribution of all the channels. 

In Figure 37.b the fitted distributions are almost the same for the three cases. Considering the 

variance range 0.13129 ≤ 𝐾𝜎2 ≤ 0.21129 the segmentation procedure using a 𝑤𝑙 = 6s does 

not discriminate a large proportion of channels with very different stationary attributes 

considering the kurtosis domain. From this figure it could be said that all the signals from the 

EEG channels that are considered at that segmentation window have mean values very similar 

among them which reflects in the small differences among the spreads, that is why the PDFs 

are so similar and their standard deviations are almost equal.  

To perform a comparison between the short and long windows, let us now consider the 

segmentation approach for short windows, below 1 second. The basis window length was 

defined as WL = 50 ms and 𝑁𝑤 = 20. From such segmentation, the kurtosis variance matrix 

represented as a heat plot is shown in Figure 38. The figures were derived from the S2 – R1 

and S2 – R2 datasets. 
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Figure 38. Heat plot derived from 50 ms to 1-second segmentation  

considering the 𝐾𝜎2  values. Left: S2 - R1 𝐾𝜎2 . Right: S2 – R2 𝐾𝜎2  

Following these kurtosis variance values, the searching space defined in Figure 39 for S2 – R1 

(left) and S2 – R2 (right), provide a hint on the percentage threshold selection for the segment 

length selection across channels. Considering the S2 - R1 resting-state condition, the first 

threshold that groups most of the channels corresponds to 50% of the maximum variance 

exhibited by each of the channels, such threshold is translated into a variance range of 0.2409 ≤
𝐾𝜎2 ≤ 0.2529 for the opened eyes condition (Figure 39 left). On the other hand, for the S2 – 

R2 condition, the percentage threshold is defined at 40%. As can be observed in Figure 39 right 

some channels are grouped from that consideration. The variance range for that threshold (40%) 

corresponds to 0.2281 ≤ 𝐾𝜎2 ≤ 0.2321 (Figure 39 right).  

  
Figure 39. Kurtosis variance (𝐾𝜎2)  searching domain for S2 – R1 (left) and S2 – R2 (right). 

Considering segmentation characteristics from Table 5.b. 
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However, from Figure 39 it can be noted the superimposition of some of the variance values at 

higher percentage thresholds (e.g. 60%, 70% in R1 and 50%, 60% in R2 condition), which 

suggests that in broader searching intervals the variances are similar and thus, a lower threshold 

would be more appropriate to be selected. In this way, the searching intervals at 50% in the case 

of the opened-eyes condition are maintained as well as the 40% threshold in the closed-eyes in 

accordance to the limits defined in the kurtosis variance distributions as can be observed in 

Figure 40. 

(a) 

 

(b) 

Figure 40. 𝐾𝜎2 searching intervals with respect to max𝜎2 proportion thresholds. 

a. S2 – R1 𝐾𝜎2  distribution and b. S2 – R2 𝐾𝜎2  distribution. From 50 ms to 1s 

The boundaries of the searching interval according to the percentage thresholds that are 

suggested by the algorithm show a concentration of the most probable kurtosis variance 

magnitudes at 50% for S2 – R1 and 40% for S2 – R2, however, when examining the number of 
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channels found at each of the kurtosis variance intervals associated to the percentage thresholds 

summarized in the arrays Table AN 3 and  

Table AN 4 for S2 – R1 and S2 – R2 respectively, one can notice that common channels exhibit 

similar characteristics when considering a 𝑤𝑙 = 250 ms for the S2 – R1 condition, which is the 

highest number of common channels (23) at 50% of the max𝜎2 per channel considering the 

limits in Figure 40.a.  

Similarly, the kurtosis variance limits for the S2 – R2 at 40% of the largest kurtosis variance 

consider a maximization in the number of channels when the 𝑤𝑙 = 300 ms. There are only 8 

signals with similar stationary characteristics considering the narrow interval associated with 

the 40% threshold (Figure 40.b). In such a case it would be useful to consider a larger variance 

range, which if selected, the total number of signals would be considered for a 50% threshold 

at a 𝑤𝑙 = 100ms. 

Considering that the maximum number of signals within the 40% limits is only 8, it would be 

better to consider the higher range corresponding to 50% (0.0261 ≤ 𝐾𝜎2 ≤ 0.4341). From this 

increase, Figure 41 depicts the number of channels as a function of the 20 windows and the 

variance searching intervals. 

The 50% range (S2 – R1) depicted in Figure 41.a with the dashed line might be very restrictive 

in order to find a better segment length. As can be observed there might be better segment 

lengths considering broader variance ranges, in this case, an interval defined at 0.2309 ≤
𝐾𝜎2 ≤ 0.2699 might present a larger number o channels with similar characteristics, however, 

the percentage ranges might be very small in between. This means that the computational time 

for this kind of segmentation is very large to account for such small changes, and this is why it 

was not possible to consider the exact number of channels and the associated percentages.  

A similar situation occurs for the S2 – R2, Figure 41.b, a better range is depicted with the black 

dashed line and suggests that within the kurtosis variance limits 0.1981 ≤ 𝐾𝜎2 ≤ 0.2621 and 

using a 𝑤𝑙 = 300 ms most of the channels are covered, and similar stationary characteristics 

are found. The yellow dashed line considers the broader variance range at 50% which goes out 

of the range of the heat plot, which means that the whole density is considered.  

(a) 
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(b) 
Figure 41. The number of channels as a function of the segment length and the searching interval in terms 

of the kurtosis variance – Short window segmentation. a. S2 – R1 b. S2 – R2. 

Figure 42 shows the kurtosis PDFs for the selected channels, the discarded ones, and the whole 

set of signals considering a segmentation of 250 ms and 100 ms according to the 50% threshold 

in both resting-state conditions. As can be observed, all the fitted distributions are almost the 

same, producing the same shape and magnitudes. This suggests that the rejected channels in the 

S2 – R1 does not deviate from the original set of kurtosis values. In the same way, it happens 

for the kurtosis distributions of the analyzed channels in the S2 -R2 conditions.  

a) 
b) 

Figure 42. Kurtosis distributions considering the selected channels from the percentage threshold. a. S2 - R1 

𝑤𝑙 = 250𝑚s b. S2 – R2 𝑤𝑙 = 100𝑚s 

Considering shorter segments for kurtosis analysis requires the analysis of smaller intermediate 

steps of the percentage thresholds, in this way, the heat plots like the ones presented in Figure 

36 and Figure 41 are needed to perform the selection of the window.  

A.2. Subjects S5, S6, S8, S9, and S10: 

The analysis performed for subject 2 (S2) considered the main ideas behind the representation 

of the statistics derived from the EEG dataset. These ideas can be generalized concerning what 

does the kurtosis value represents and how its spread is depicted in a tractable way considering 

its probability density function. Based on this concept, in this passage there are deemed all the 
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resulting distributions, searching domains, and kurtosis-variance/segment-length plots of the 

remaining selected datasets (S5, S6, S8, S9, and S10). Thereby it is expected to provide a 

concise explanation and description of the results to then perform a further analysis that 

attempts to generalize the data for all the EEG recordings as the previous step for effective 

connectivity analysis.  

As explained earlier, the kurtosis variance values that are obtained for each of the segment 

lengths can be represented as heat plots (e.g. Figure 33 and Figure 38 for S2), such kind of 

figure embodies the matrix of 𝐾𝜎2 derived from each EEG dataset, however, in those examples 

they were shown for explanation/representation purposes and do not provide a useful way to 

analyze the statistical quantities more than to check where the lower and higher variances are 

more concentrated according to the segment length.  

In this way, since it is more useful to analyze the searching domain graphs, the densities, and 

the number of channels-variance interval-segment length plots, the 𝐾𝜎2 heat plots from EEG 

recordings S5, S6, S8, S9, and S10, are found in the annex section in Figure AN 2, for the long 

and short window segmentation approaches respectively.  

Long window duration analysis 

For this first part of the analysis, it is being considered the long window segmentation approach 

from a WL = 1s, 𝑁𝑤 = 10 and 𝑤𝑙𝑖 ∈ (1,… ,10). As result, the 𝐾𝜎2 heat plots (Figure AN 2) 

define the searching domain for each dataset in both resting-state conditions R1 and R2. The 

following graphs (Figure 43) show the searching domain and the variances found at different 

extents (percentage thresholds) considering the largest 𝐾𝜎2 on each channel. There are shown 

the resulted graphs for all the subjects under analysis in both resting-state conditions. 

 (a)  (b) 



100 

 

(c) (d) 

(e)  (f) 

(g)  (h) 
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(i)  (j) 
Figure 43. Kurtosis variance (𝐾𝜎2)  searching domains for segmentations from 1 to 10 seconds.  

Resting-state conditions depicted in pairs: a, b) S5 – R1, R2. c, d) S6 – R1, R2.  

e, f) S8 – R1, R2. g, h) S9 – R1, R2. i, j) S10 – R1, R2 

As explained previously, the searching domain is limited by the lowest kurtosis variances that 

are represented by the red plot in all of the graphs (min 𝜎2), on the other hand, the upper bound 

is graphically defined by the black plot marked as max𝜎2. These bounds define the searching 

domain from which the segments are selected under the considerations defined in the 

methodology. The lowest kurtosis values cannot be selected since they probably correspond to 

the longest segments. Intermediate values with respect to the maximum variance are then found 

and are represented by the plots associated with the proportions of the largest variance values.  

By considering the searching domain bounds in all of the graphs under the segmentation 

characteristics of 1 to 10 seconds, there are identified three main searching domain 

configurations. First, a very narrow domain in which it is difficult or not even possible to 

identify the lower and upper boundaries as shown in Figure 43.d, corresponding to the EEG 

dataset of S6 in R1.  

Secondly, a mid-range domain in which the different kurtosis values according to the thresholds 

are found in between the boundaries, and from which most of the recordings belong to; Figure 

43. b, d, e, f, g, h, for S5 – R1, S6 – R2, S8 – R1, R2, and S9 – R1, R2.  

Finally, the third category is defined for the searching domains which are broad enough to 

identify and classify the variance ranges belonging to a certain threshold without much 

overlapping for the lower variabilities (small percentage thresholds). This is the case in Figure 

43. a, i, j, on datasets S5 – R1 and S10 – R1, R2.  

From the first category (Figure 43.d), the algorithm is not able to identify the segments and 

their corresponding variances that meet the threshold requirements, it means that the searching 

boundaries are so close to each other that it would require a smaller value for the Δσ2 step in 

the searching algorithm (i.e. Δσ2 < 0.001) to find the variances under each threshold. It is 

computationally complex, and it would take so much time to do complete this task for one 

single dataset. Moreover, by considering the characteristics of the other EEG recordings which 
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do not require special considerations for performing the searching, it suggests that the S6 – R1 

recording had some issues during its recording and the data itself can be corrupted.  

For the second category from which most of the recordings exhibit the same characteristics, it 

can be observed that the algorithm was able to find the variances belonging to the thresholds, 

in most cases, lower percentage thresholds (lower than 50% - blue, red, and yellow plots) are 

close to the lower bound of the kurtosis variances, in some cases, there exists superimposition 

of some values across thresholds from which it is not possible to discern among the kurtosis 

values that are within a certain range. On the other hand, for values larger than 50% the 

variabilities among the values are significant, as can be observed for the “jumps” in the 

𝐾𝜎2  magnitudes from channel to channel. This suggests that the kurtosis values meeting the 

lowest of the percentage threshold requirement are sparse considering the heat plots and are not 

concentrated in a portion of the kurtosis variance PDF.  

For the last category, the broad searching space allows to find the kurtosis magnitudes for each 

threshold very easily, even for the lower percentage ones, the algorithm is able to find them for 

the majority of channels and it is possible to choose from them the proper segment length for 

effective connectivity since the 𝐾𝜎2 magnitudes are uniformly found for all of the channels. For 

the larger variances case, starting from the 50% threshold, the same behavior as in the mid-

range category holds, the variability among the segment variances is very large and it might not 

be possible to select a segment length meeting the threshold characteristics since it would 

consider a larger portion of the kurtosis variance density.  

These observations provide an overview of the kurtosis variance searching domain and can be 

complemented using the probability density functions where the searching ranges w.r.t the 

percentage thresholds are graphically defined. Thereby, Figure 44 comprises the kurtosis 

variance densities of the subjects S5, S6, S8, S9, and S10 in both resting-state conditions, and 

the variance ranges are depicted as well to observe to what extent each of the threshold ranges 

covers each PDF area and what would be the probability of occurrence for the variance values 

considered in between the bounds.  

  (a) 
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  (b) 

  (c) 

  (d) 
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 (e) 

  (f) 

  (g) 
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  (h) 

  
(i) 

  
(j) 

Figure 44. 𝐾𝜎2 PDFs and the corresponding searching intervals with respect to max𝜎2 proportion 

thresholds. Resting state conditions depicted in pairs: a, b) S5 – R1, R2. c, d) S6 – R1, R2. e, f) S8 – R1, 

R2. g, h) S9 – R1, R2. i, j) S10 – R1, R2 
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The distributions that are built from the kurtosis variance values coming from the statistical 

feature matrices represented in Figure AN 2 are depicted in Figure 44. As can be noted, the 

distributions follow a chi-square (𝜒2) approximation since they correspond to the variance 

density of a normally distributed quantity (i.e. the kurtosis, as demonstrated previously). From 

the distributions and the corresponding percentage thresholds, the searching strategy finds the 

𝐾𝜎2 intervals in within the segments exhibit a variance in such limits.  

The corresponding interval bounds for each percentage threshold on each dataset are plot as the 

parallel lines that limit a portion of the PDF. The broader the threshold limits, the larger is the 

area from the PDF being covered, and according to the considerations of this work, the purpose 

is to maintain that interval as short as possible and at the same time maximizing the number of 

channels sharing the same characteristics. As the datasets are independent of each other (even 

for the same subject), each resulting density has its own characteristics, which considering the 

relative values that are found it is needed then to obtain a representation of common channels 

sharing the same stationary attributes derived from the kurtosis quantity.  

To do so, first, let’s have a look at Table 6 and Table 7 which consider the variance interval at 

different percentage thresholds for all of the EEG recordings in both resting-state conditions 

respectively. 

Table 6. Kurtosis variance range of different percentage thresholds, 𝑤𝑙 = 1,2, … , 10 seconds.  

Subjects S5, S6, S8, S9, and S10 in opened-eyes resting-state condition R1 

R1 Bound 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

S5 
Lower 0.0346 0.0076 0 0 0 0 0 0 0 0 

Higher 0.0446 0.0716 0.1066 0.1556 0.2396 0.2556 0.2716 0.3216 0.3526 0.4156 

S6 
Lower 0 0 0 0 0 0 0 0 0 0 

Higher 0.0537 0.0877 0.1377 0.2007 0.2307 0.2487 0.2817 1.0197 0 0 

S8 
Lower 0.034 0.011 0 0 0 0 0 0 0 0 

Higher 0.044 0.067 0.098 0.155 0.188 0.208 0.22 0.251 0.296 1.04 

S9 
Lower 0.0334 0.0064 0 0 0 0 0 0 0 0 

Higher 0.0554 0.0824 0.1174 0.1554 0.2414 0.2834 0.3054 0.3344 0.3774 0 

S10 
Lower 0.0311 0.0101 0 0 0 0 0 0 0 0 

Higher 0.0431 0.0641 0.0881 0.1491 0.1971 0.2251 0.2621 0.3101 0.3221 0.4901 

 

Table 7. Kurtosis variance range of different percentage thresholds, 𝑤𝑙 = 1,2, … , 10 seconds.  

Subjects S5, S6, S8, S9, and S10 in closed-eyes resting-state condition R2 

R2 Bound 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

S5 
Lower 0.0747 0.0357 0.0037 0 0 0 0 0 0 0 

Higher 0.0907 0.1297 0.1617 0.1967 0.2477 0.2727 0.2927 0.3127 0.4117 0 

S6 
Lower 0.0542 0.0402 0.0152 0 0 0 0 0 0 0 

Higher 0.0602 0.0742 0.0992 0.1342 0.1902 0.2162 0.2372 0.2582 0.2732 1.0582 

S8 
Lower 0.0648 0.0578 0.0318 0 0 0 0 0 0 0 

Higher 0.0688 0.0758 0.1018 0.1498 0.1958 0.2438 0.2858 0.3238 0.3628 1.0678 

S9 
Lower 0 0.2004 0.1984 0.1924 0.1884 0.1604 0.0754 0 0 0 

Higher 0 0.2084 0.2104 0.2164 0.2204 0.2484 0.3334 0 0 0 

S10 
Lower 0.0441 0.0341 0.0061 0 0 0 0 0 0 0 

Higher 0.0481 0.0581 0.0861 0.1291 0.2011 0.2311 0.2431 0.2691 0.3011 0.3381 

 

Table 6 and Table 7 summarize the upper and lower bounds of the kurtosis variance ranges 

associated with the percentage thresholds that go from 10% to 100% of the maximum variance 

accounted for on the EEG signals of each recording. As can be observed, a great part of the 
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lower bounds of higher percentage thresholds (starting from the 30% in the R1 case excluding 

S6, and 40% in the R2 case, except S9) are assigned to a zero value. This means that the 

algorithm at that lower bound was out of range going towards the negative values of the PDF, 

which is not possible since the lower value of a quantity like a variance is always greater than 

zero, so any negative lower bound is redefined as zero, which is useful for representation and 

analysis.  

All of the interval limits comprised in the last two tables are graphically depicted in Figure 44, 

and as can be inferred from the graphs and the data, these bounds cannot be modeled or 

generalized among the EEG datasets but only explained through the densities. The compound 

of intervals and thresholds are data-dependent and correspond to the unique characteristics of 

the distributions.  

Considering the particularities of the bounds, it can be noted that the lower limits are prone to 

go towards negative values as the searching interval and the percentage thresholds increase, this 

is due to the skewed shape of the 𝜒2 distribution and the searching approach which follows a 

linear increase of the searching intervals considering only the point of the largest probability of 

the density as the principal parameter to perform the searching. 

Considering the distribution S6 – R1 (Figure 44.c), it can be seen that it follows a very narrow 

and uniform tendency, despite preserving 75% of its original length after data cleaning (see 

Table 3), the kurtosis variance distribution is not in compliance to the characteristics of the 

other datasets. This observation suggests that the dataset presents odd features w.r.t the expected 

statistical behavior, thus it can be considered to be discarded, however, for comparison purposes, 

it is used to provide further analysis.  

From the searching intervals, it is then possible to count how many channels exhibit similar 

stationarity as a function of the segment length. Thereby, Figure 45 shows the number of 

channels that a certain percentage threshold covers w.r.t the segment length. Each heat plot is 

the result of the processing of a subject’s recording and it was performed for resting-state 

conditions R1 and R2.  

 (a) 
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 (j) 
Figure 45. The number of channels as a function of the segment length and the searching interval in terms 

of the kurtosis variance – Long window segmentation. 

 a, b). S5 – R1, R2. c, d). S6 – R1, R2. e, f) S8 – R1, R2. g, h) S9 – R1, R2. i, j) S10 – R1, R2 

 
Considering the intervals that are summarized in Table 6 and Table 7 (which are graphically 

depicted as the boundaries of the searching intervals on each PDF of Figure 44), there are 

derived the heat plots of Figure 45. On each of these plots, the percentage thresholds 

considering the values of the tables are represented as the dashed lines with their corresponding 

labels. The y-axis is referred to the kurtosis variance interval at which a certain number of 

signals share a value of variance within those limits. In accordance, it is possible to look for the 

intervals associated with the percentage thresholds as can be observed. 

By setting the thresholds in the variance range that cover a certain number of channels helps to 

decide which of the segment lengths should be used to maximize the number of channels 

sharing similar magnitudes of the variance. Besides, by taking into account the corresponding 

𝐾𝜎2 distributions of each heat plot, it can be performed an informed decision of the portion of 

the density that is being considered and delimited by the variance interval, so it is determined 

the largest portion of the density that is going to be used to select the segment duration.  

In most of the heat plots that were produced, the largest number of signals is found when the 

segmentation is done considering larger windows, it also increases as the variance interval is 

larger, however, the increment in the number of channels is not sensitive to shorter window 

durations, so it is necessary to consider larger thresholds to obtain a greater number of signals 

for short segments. As can be noted from the graphs, this behavior is common for all the plots 

except for Figure 45.h, corresponding to S9 – R1.  

The dataset S9 – R1 is a particular example of the EEG characteristics that have been discussed 

so far. The kurtosis variance interval needed to account for the majority of channels is very 

broad (in respect to the min and max values of the 𝐾𝜎2 of the dataset) which suggests that to 

obtain a large number of channels it is needed to consider the whole searching domain (Figure 

43.h). By these observations, the S9 – R1 dataset could be discarded as well as the S6 – R1, as 

explained earlier. 

In this way, according to the long window segmentation approach (WL = 1s,𝑁𝑤 = 10), this 

analysis derived from the datasets that do not have any particularity can be treated as a common 

pattern for the kurtosis variance distributions.  

Segment length selection strategy 

Then, a process of window selection is performed by considering the shortest window within a 

kurtosis variance interval defined at the portion of the PDF with the broadest area and the lowest 

percentage range as possible. For the current state of this development, this is performed by 
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visual inspection considering the searching domains, the kurtosis variance probability 

distributions and the 𝐾𝜎2/segment-length plots like the ones on Figure 43 Figure 45.  

Considering this selection strategy for the EEG datasets from subjects S5, S6, S8, S9, and S10 

in R1-R2, Table 8 is built and summarizes the segment lengths that were considered for 

selection with their characteristics, including the variance intervals, their percentage thresholds, 

and the number of channels found within the interval. 

Table 8. Selected segment lengths (in green) for each subject and resting-state condition. 

Subject Condition Lower  Upper % 
Win 

length 
# 

Channels 
Channel % 

S5 
R1 

0.00764502 0.07164502 20% 7 s 44 -- 

0 0.10664502 40% 4 s 48 -- 

0 0.15564502 30% 5 s 41 72% 

R2 0 0.19674487 40% 4 s 29 49% 

S6 
R1 0 0.13766813 30% 4 s 35 61% 

R2 0 0.13416711 40% 4 s 48 80% 

S8 
R1 0 0.09804196 30% 

4 s 33 54% 

5 s 38 -- 

R2 0.03184988 0.10184988 30% 4 s 27 44% 

S9 
R1 0 0.24143193 50% 

3s 50 91% 

4 s 50 -- 

R2 0.13543015 0.27343015 67% 2 s 48 83% 

S10 

R1 0 0.08810486 30% 4 s 45 75% 

R2 0.00606251 0.08606251 30% 
4 s 47 77% 

5 s 54 -- 

      Mean 69% 

By considering the kurtosis variance distributions in Figure 44, some of the lower and upper 

boundaries on each dataset are considered for the selection of the window length in Table 8. As 

can be noted from the percentage thresholds, the proportions considered are from 30 to 40% of 

the largest variance of the segmentations. The heat plots in Figure 45 define which would be 

the segment length according to the segment length selection strategy discussed above. As result, 

for most of the subjects in both resting-state conditions, the most common window length was 

found at 4 seconds (for 7 out of 10 datasets).  

As result, the selected window lengths (𝑤𝑙) on each resting-state condition cover the most 

significant part of the PDF distribution in which more channels exhibit similar variances. As 

can be noted in the last column of the table, the number of channels being selected represent a 

large proportion of the original channel size after preprocessing, in all of the cases they 

represent more than two-thirds of the signals sharing similar stationary characteristics on 

average.  

From these results, it can be said that the objective of maximizing the number of channels is 

being accomplished by analyzing the datasets in a relative way, i.e., according to the 

characteristics of each dataset. Now, it is necessary to show which are the deviations that exist 

in the kurtosis domain. Since the idea of considering the kurtosis variance as a feature is to 

select it in a way that is as small as possible and common for the signals composing an EEG 

dataset so that is reflected in the kurtosis distributions. To do this, Figure 46 shows the 

corresponding kurtosis distributions of all the signals from each dataset segmented at the 

selected window (from Table 8), in addition, the kurtosis densities fitted from the selected 

channels and the PDFs of the discarded signals are also shown.  
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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(i) (j) 

Figure 46. Kurtosis distributions considering the selected channels from the percentage thresholds. – Long 

window segmentation. Resting state conditions depicted in pairs: a, b) S5 – R1, R2. c, d) S6 – R1, R2. e, f) S8 – 

R1, R2. g, h) S9 – R1, R2. i, j) S10 – R1, R2 

 

From the hypothesis of selecting the EEG signals that exhibit similar stationary characteristics 

using the segment durations that were chosen considering the kurtosis variance distributions 

and the searching intervals derived from the searching algorithm, it is possible then to consider 

the magnitudes of the kurtosis from each channel which comply with the variance range 

selected on each dataset.  

Figure 46 shows the fitted distributions in three different cases:  

1. By considering the kurtosis values of the whole set of signals composing a recording 

being subject of segmentation at the selected 𝑤𝑙 (green plot on each figure).  

2. Taking into account the channels that have kurtosis variances within the limits of the 

selected window length characteristics.  

3. Using the channels that exhibit kurtosis variances outside the window length picked. 

From this description it can be analyzed that kurtosis distributions coming from the selected 

channels should be different from the densities estimated from the signals considered for 

rejection since the stationary characteristics should be different and the spread, in this case, 

represented by the standard deviation, should be different from the one of the selected channels.  

The parallel lines of the graphs in Figure 46 correspond to the standard deviation limits from 

the distributions, as can be observed, in almost all the graphs (Figure 46 a-g, j) the spreads from 

the blue (selected channels distribution) and the red (rejected channels distribution) are different 

from each other, and in some cases, they do not overlap at all (Figure 46 a, b, e, g). Since the 

expected kurtosis values are restricted by a narrow-spread interval defined by the variance range, 

it is supposed that the kurtosis estimations within that interval are close to each other and so 

they share similar stationary characteristics. Any signal not meeting these conditions has a 

larger variance and hence is discarded, which as consequence the compound of all of these 

signals provides a kurtosis distribution that should differ from the selected channels’ density.  

From the graphs in Figure 46, some cases have an overlapping in the expected value, however, 

the variance of those distributions is larger than the one defined by the condition of the 

percentage threshold. From it, the characteristics of the selected window durations in most of 

the cases (except for S9 – R2, Figure 46.h) correspond to these observations, which guarantee 

similar stationary characteristics among most of the channels composing the EEG recording. 

Short-window duration analysis 

The short window duration analysis of the EEG recordings of the subjects S5, S6, S8, S9 and 

S10 is included in the Appendix A. 



114 

 

6.1.3. Selected window durations 
The results from the window selection for all the EEG recordings considered are summarized 

in Table 9. 

Table 9. Segment selection for the considered EEG recordings 

Subject Condition 𝑤𝑙 ∈ 1,… ,10 𝑠 𝑤𝑙 ∈ 50,… ,1000 𝑚𝑠 

S2 
R1 5 s 250 ms 

R2 2 s 300 ms 

S5 
R1 5 s 400 ms 

R2 4 s 200 ms 

S6 
R1 4 s 500 ms 

R2 4 s 450 ms 

S8 
R1 4 s 400 ms 

R2 4 s 400 ms 

S9 
R1 3 s 250 ms 

R2 2 s 400 ms 

S10 
R1 4 s 400 ms 

R2 4 s 450 ms 

Table 9 shows the results of the window durations that were selected according to the segment 

length analysis that was proposed in this work. From the design of the algorithm, passing 

through the characterization and analysis of the kurtosis values derived from this approach, 

until the segment duration selection, this table shows the result of that process. 

As it was commented before, the most common segment duration for the long window 

segmentation was the segment corresponding to 4 seconds being common in 7 out of 12 datasets 

in both resting-state conditions (6 subjects * 2 resting states). On the other hand, for the short 

window segmentation, the most common duration is 400 ms, which is common for 5 out of 12 

recordings.  

Regarding the channel selection that is derived from this framework, the set of channels that 

are common concerning each condition and segment length analysis type (short or long window 

segmentation), are shown in Table 10. In addition, the common elements across subjects, 

resting-state conditions, and type of segmentation are presented as a Venn diagram in Figure 

47, and Table 11 shows the corresponding common channels in the intersection. 

Table 10. Common channels of all the considered subjects according to  

resting-state condition on each segmentation approach 

COMMON to                   
50 ms to 1 s 

R1 
PO4 FC1 CB1 FC2 Pz Oz P6 C3 CB2 

17 
FC3 POz CP1 PO8 PO3 P2 F3 C5   

R2 
CB1 PO6 Pz O2 Oz F5 P1 FC4 PO3 

16 
P2 Fp1 F3 Fp2 AF4 CB2 O1     

COMMON to                     
1 s to 10 s 

R1 
P7 Pz POz CP1 CP6 C4 PO3 CP5 P2 

13 
CP4 C5 CP2 P5           

R2 
FC1 FC2 FC4 C3 Fz F1 FC3 C2 FCz 

11 
C5 F2               
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Figure 47. Venn diagram of the common channels across 

subjects and types of segments, derived from Table 10. 

(Diagram generated using the web tool at 

http://bioinformatics.psb.ugent.be/webtools/Venn/) 

 

Table 11. Common channels across 

subjects and segment types. 

Data type Common Channels 

R1-1s                       
R1- 50 ms             
R2-50 ms 

3 

P2 

PO3 

Pz 

R1-1s                      
R1- 50 ms             

R2-1s 
1 C5 

R1 -50 ms              
R2- 50 ms 

4 

Oz 

F3 

CB1 

CB2 

R1-1s                   
R1- 50 ms 

2 
CP1 

POz 

R1 -50 ms                                                
R2-1s 

4 

FC1 

FC2 

FC3 

C3 

R2-1s                                 
R2-50 ms 

1 FC4 

From Table 10 it can be noted that there are 17, 16, 13, and 11 channels that are common across 

subjects for short segmentation in R1, R2, and long segmentation in R1, R2 respectively. These 

channels could be used as a further reference to compare not only the stationary characteristics 

on each dataset and the effective connectivity that exists among them but also to identify the 

EEG signals associated with them and analyze the common characteristics across the EEG 

recordings categorized by resting-state conditions and segmentation type.  

Regarding Table 11 and Figure 47 there is no intersection of channels from Table 10 at any 

condition and subject. Some channels are shared in both resting-state conditions (e.g., 4 

channels are shared between the R1 and R2 considering the short window segmentation), 

however, the number is not significant considering the total number of channels on a dataset 

which is 62.  

6.2. Results on Effective connectivity 

6.2.1. Results from state-of-the-art methods 
Let us first apply the methods summarized in [45] and [46] that were explained in the section 

Connectivity examples for resting state conditions. 

A. Comparison of connectivity analysis for resting state EEG data 

As explained earlier in section Comparison of connectivity analyses for resting state EEG data, 

this work evaluated basic, integration, segregation and centrality measures explained in Table 

15 for the delta, theta, alpha, beta, gamma frequency components as well as in the whole 

spectrum (1 – 50 Hz) by considering the DTF connectivity index to establish the causal 

relationships among the channels from the EEG equipment. In this way, the data available for 

this thesis (see EEG Dataset) were employed to recreate the same approach in order to establish 

similarities and differences on the connectivity results. A first comparable outcome of this 

process is evidenced in Figure 48 where the connectivity diagrams show the statistically 

significant relationships on their data and our data.  
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Figure 48. Connectivity diagrams of the window of 20 seconds using the DTF as connectivity measure - 

Connectivity during eyes closed (R2) condition. (left) results by [45] (right) results obtained with our data.  

Considering the results from the work performed by Olejarczyk (Figure 48 - left), it can be 

observed a significant influence originated in the posterior region of the brain from which most 

of the connections are generated. The channels located in this area present local connections 

and provide an evident influence from the occipital-posterior region towards the channels 

located in the frontal area of the scalp. Similarly, the significant connections obtained from the 

data available for this thesis (Figure 48 - right) show similar connections that are kept in the 

posterior part of the scalp, being directed towards the frontal area as well.  

The connections portrayed in these diagrams are a topographic representation of the scheme 

that was produced for the adjacency matrices (see Figure 32) as explained on the section of 

Results on the graph theory indexes.  

Olejarczyk and colleagues provided an interaction analysis using the ANOVA statistical test 

and compared the eyes closed condition against the eyes open state for the alpha and beta 

frequency bands. On Table 12 there can be observed the ANOVA results and the p-values 

estimated from the interaction analysis for some of the graph-based parameters. The table 

includes some significant results for other connectivity measures employed in Olejarczyk’s 

approach, including the multivariate transfer entropy (MV-TE) and the phase locking value 

(PLV) which are included in the table for comparison purposes.  

 

Table 12. Interaction analysis between Condition*Band (Eyes open/Eyes closed * Frequency band – Alpha and 

Beta) 

 

Considering the interaction analysis summarized on Table 12, it can be observed that our results 

are consistent with the approach from Olejarczyk and colleagues. By evaluating the resting state 

conditions and the frequency bands using the data available for this thesis (IBFM dataset), the 

only statistically significant increment was evidenced for the alpha band on the strength 

ALPHA BETA ALPHA BETA ALPHA BETA ALPHA BETA

Density
↑ Alpha                          

(p < 0.0001)

-

(p > 0.05)

↑ Alpha                          

(p < 0.0001)

-

(p > 0.05)

-

(p > 0.05)

-

(p > 0.05)

-

(p > 0.05)

-

(p > 0.05)

Strength
↑ Alpha                          

(p < 0.0001)

-

(p > 0.05)

↑ Alpha                          

(p < 0.0001)

↑ Beta                         

(p < 0.0001)

-

(p > 0.05)

-

(p > 0.05)

↑ Alpha                          

(p < 0.0001)

-

(p > 0.05)

Degree
↑ Alpha                          

(p < 0.0001)

-

(p > 0.05)

↑ Alpha                          

(p < 0.0001)

↑ Beta                         

(p < 0.0001)

-

(p > 0.05)

-

(p > 0.05)

-

(p > 0.05)

-

(p > 0.05)

IBFM Dataset

DTF

Graph 

based 

parameter

MV-TE PLV DTF

OLEJARCZYK et.al.
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parameter which according to the ANOVA analysis its significance was evidenced for the 

channels located in the frontal, central and right lateral regions of the EEG setting. This is one 

main difference relative to the work made by Olejarczyk’s team since they did not find any 

significant increment for these three basic graph features using their data when the DTF 

measure was employed.  

The degree and density were not statistically significant as it was evidenced in this thesis work 

as well. On the other hand, other measures like the multivariate transfer entropy and the phase 

locking value gave evidence of the significance on the alpha band. According to the authors, 

these measures account for the nonlinear characteristics exhibited by the EEG signals and those 

cannot be measured by linear models like the multivariate autoregressive employed for the DTF 

estimation.  

Other result compared  with the Olejarczyk’s approach corresponds to the difference of the 

connectivity measures between closed eyes and open eyes in the alpha band. The difference 

between the conditions is observed in Figure 49, and establishes the statistically significant 

differences (p < 0.05) observed between closed and open eyes. 

  

Figure 49. Strength difference between eyes closed and eyes open. (left) results by [45] (right) results obtained 

with our data.  

Figure 49 shows the differences on the strength parameter between the closed and open eyes 

conditions. As can be observed from the results, the significant differences from Olejarczyk’s 

work (Figure 49 - left) show only 4 out of 96 electrodes (red filled circles) exhibiting 

significantly higher values on the strength when the closed eyes condition was produced. On 

Figure 49 right, for our data it is shown a distribution of channels that evidence a significant 

difference among those conditions when the alpha band was evaluated. In this case, there is an 

increment on the DTF amplitudes produced on the posterior area when the closed eyes condition 

was performed. Moreover, some central-frontal electrodes and prefrontal electrodes have larger 

amplitudes and provide a very similar distribution of central channels found in Figure 58. 

Specifically, channels from the pre-frontal, the left central-frontal joint and the parietooccipital 

region in a bilateral way exhibited higher values during the closed eyes condition in comparison 

to the open eyes state.  
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B. The difference of brain functional connectivity between eyes closed and eyes 

open using graph theoretical analysis 

By applying the methods from [46] to our data, considering the characteristics explained in the 

section The difference of brain functional connectivity between eyes-closed and eyes-open using 

graph theoretical analysis., there were found the connectivity indexes that characterized the 

resting state conditions as a function of the partial connections present in the connectivity 

diagram. Figure 50 shows the result of the mean cluster coefficient, local and global efficiencies 

that were obtained in relation to the cost of the network in the range of proportions of effective 

connections between 8% to 20% for the alpha frequency band. 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

Figure 50. Graphs of mean cluster coefficient, global efficiency, and local efficiency as a function of the cost in 

the range of 8% - 20% at each resting state condition for the alpha band. Figures on the left are the results 

obtained by [46], and the ones on the right correspond to the results with the IBFM data.  



119 

 

On Figure 50 a, c, e, there are depicted the results of some graph parameters that summarize 

the variation over the cost in the network found from the data of Tan and colleagues. As can be 

observed, there is an increment of the local efficiency and the mean cluster coefficient over the 

range of costs for the closed eyes condition (red squared markers), while the global efficiency 

experimented a decrease for the same condition. On the other hand, the reduction of the local 

efficiency during the eyes open state is contrasted by the opposite trend applied to the IBFM 

data (Figure 50 f). This is a main difference for the alpha band characterization with respect to 

Tan’s work. However, as it can be noted from the remaining graph-based parameters, the trends 

follow similar behaviors, even for the amplitudes of the measures that have been calculated. 

Figure 51 summarizes the results of the same graph parameters on the beta frequency band. 

 

a) 

 

b) 

 

c) 

 

d) 

 

e) 

 

f) 

Figure 51. Graphs of mean cluster coefficient, global efficiency, and local efficiency as a function of the 

cost in the range of 8% - 20% at each resting state condition for the beta band. Figures on the left are the 

results obtained by [46], and the ones on the right correspond to the results with the IBFM data. 
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The results summarized in Figure 51 considering the data available for this thesis regarding the 

processing on the beta band range show more explicit differences in comparison with the alpha 

band case. Here there are significant variations that can be used to characterize these resting 

state conditions. The results by Tan and colleagues (Figure 51 a, c, e) show no significant 

differences in their data, the graph based indexes are not useful according to their approach to 

characterize the resting state conditions as opposed to the results obtained with the IBFM data 

(Figure 51 b, d, f). Specifically, the efficiency calculated globally and locally provide a 

significant difference by accounting the 95% in the confidence interval at each step of the cost 

variation.  

Similarly to the alpha band case, the efficiencies incremented for the eyes open condition 

providing a way to characterize the resting states at each frequency band.  

From the application of the connectivity approaches summarized in [45], [46] to our data, there 

were found the following observations:  

- The local connections are reduced in the bilateral posterior area for the alpha band in 

the open eyes condition as could be evidenced in the connectivity diagrams from Figure 

57. 

- There is a bilateral distribution of the alpha rhythm over the posterior areas for the eyes 

closed state. 

- During the state of eyes closed, there were exhibited more long-range connections 

coming from the posterior area in comparison to the eyes open condition. 

- Eyes closed state had a stronger local activity in bilateral posterior areas in comparison 

with eyes open. 

- After opening the eyes, the connections in the frontal area significantly decreased in the 

alpha band.  

- The topological features of nodes and connections were significantly reduced in the 

posterior area when the state was eyes closed compared to the eyes open condition. 

- It is hypothesized the involvement of channels belonging to the Default Mode Network 

(DMN) which are important part of the so-called resting state network.  

- The main difference concerning the graph measure results considering our data are: 

1. The local efficiency for the alpha band (α) increased for the eyes open condition 

rather than the eyes closed one. 

2. There is a significant difference evidenced for the efficiencies in global and local 

terms between R1 and R2 for the beta band. This can be used to characterize the 

resting state conditions. 

These observations can help to characterize the resting state conditions under analysis. The 

common observations regarding the group of channels that exhibit interconnections and the 

relationships to other areas are very similar to Olejarcykz results, however, the significance of 

the strength parameter was different in our data, which could be explained by the data available; 

in our case there were considered a smaller number of subjects and the adjacency matrices 

exhibited different distributions of electrodes participating on the connectivity. 



121 

 

On the other hand, by comparing Tan’s work, the graph-based parameters applied to our data 

showed different results for the beta band, suggesting that these could be used for characterizing 

the resting state conditions considering higher frequency rhythms, something that Tan and 

colleagues did not observe in their results.  

6.2.2. Connectivity analysis from the ROIs point of view 
The adjacency matrices obtained from the previous processing stage provide the significant 

connections that can be used to perform the connectivity analysis by considering the channels as 

sources. This analysis at the level of the channel domain gives a detailed view of what is happening 

with the connections and how they provide information on the influence among the sources as it 

was described in the examples explained in the section Connectivity examples for resting state 

conditions.  

This detailed point of view can be difficult to analyze considering the large number of nodes that 

are present in the network, in this way, first, it is considered the definition of regions of interest 

(ROIs) that could lead to a more general point of view that characterizes the connectivity among 

broader areas in the scalp. Thus, the ROIs defined from the topographic map of electrodes was 

defined as shown in Figure 52. 

 
Figure 52. Regions of interest definition comprising the frontal, posterior, left-temporal, right-temporal and 

central regions. 

The ROIs shown in  Figure 52 are defined considering the works described in [23], [29], [33], 

[47]. These ROIs comprise the 62 channels of the EEG montage, however, by recalling the pre-

processing stage in which some of the channels are discarded due to artifacts and filtering, the 

channels that are marked as not useful are not being considered part of the ROIs and they are 

ignored in the following calculations.  

Considering the ROIs and the adjacency matrices found previously (see section Adjacency 

matrices), the DTF arrays that account for the connectivity in the network defined in the sensor 

space were employed to analyze the average strength from the ROIs as well as the relative 

density estimated from the group of channels that belong to each region. As a way to evaluate 

this, the ANOVA statistical tool was employed for this purpose. 
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A. The ANOVA analysis 

The analysis of variance is a way to measure and establish the possible interactions that can be 

obtained from measuring different variables of interest under repeated measuring or particular 

settings. In this case, according to the examples and the state of the art described in the section  

Applications of effective connectivity, the factors considered for analysis can be defined from 

the condition under analysis (e.g., resting state, attention task, pathological/control, etc.), the 

source definition (e.g., the channels comprising the EEG acquisition system as shown in the 

previous section, the ROIs, or dipoles), the frequency band (e.g., alpha, beta, gamma, delta, 

theta, or non-conventional frequency bands), the SNR and path length from known networks 

(e.g., based on the analysis of synthetic signals [23]), or graph theory parameters (e.g., density, 

degree, strength, etc. [71], [72]). 

In this way, there can be established the connectivity relationships of the physiological rhythms, 

their directionalities and the influence of a source that exerts onto another one. And as result, 

there can be characterized the high-level neural processes carried out by the subjects at specific 

experiment set-ups. In this case, it is done for the resting-state conditions during eyes open and 

eyes closed events. The ANOVA set-up is defined as depicted in Figure 53. 

 
Figure 53. Three-factor ANOVA analysis and the possible interactions. 

The three-factor ANOVA considers 2 levels for the resting state condition (i.e., eyes open (R1) 

and eyes closed (R2)), 4 levels for the window length (i.e., window sizes: 400ms, 2s, 4s and 

20s), and 5 levels for the regions of interest (i.e., frontal, right-temporal, left-temporal, central 

and posterior). As result, two-way and three-way interactions as well as their main effects 

corresponding to each of the levels are obtained, and the statistically significant results show 

the connectivity patterns across the regions of interest. 

The ANOVA analysis was defined for the ROIs since it was more convenient due to the number 

of repeated measures and the limited number of variables for the third factor (ROI factor). Here, 

there are defined two graph-based measures corresponding to the average strength and the 

average density of each region in contrast to the sensor space which also considers centrality, 

segregation and integration measures which can be only addressed in the nodal point of view 

according to what the theoretical definitions of the graph-theory states (see Connectivity in the 

sensor space: Graph Theory indexes). 
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In this way, considering that only two measures by region are being used (i.e., the relative 

density and relative strength), the definition of only five broad sources (i.e., the regions of 

interest), the 4 windows employed and the two frequency bands under analysis, then, it is 

possible to perform an ANOVA analysis. Hence, it would represent a less complex scenario for 

the processing rather than considering 62 sources and 8 graph-based measures to obtain the 

statistically significant measures and the connectivity between those regions.   

B. Connectivity results 

The connectivity measures are evaluated by considering the strength (amplitude) and the 

number of connections that are directed from or towards a node (e.g., an electrode) as explained 

previously. The definition of regions of interest (ROIs) permits the evaluation of the extent of 

connectivity in long and short distances [33], as well as to reduce the complexity in the 

evaluation of results in accordance to the high number of signals coming from the EEG cap (62 

electrode sources at most in this setting).  

In this way, the frontal, left-temporal, right-temporal, central and posterior regions as shown in  

Figure 52 were defined, and then, the degree measure was transformed into a normalized 

density by using the average degree value on each region and dividing it by the number of 

possible connections given the electrode array and the first line of electrodes interacting in-

between regions. From this process, the average strength and the normalized density at each 

region were used to evaluate the connectivity from the defined ROIs.  

C. Three-factor interaction (Resting State * Window length * ROI) 

The first stage of analysis corresponds to the three-factor interaction that exists among resting 

state conditions, window length and regions of interest. The three-way interaction analysis 

determines if there exists an interaction effect between the conditions (R1/R2), the window 

lengths (400ms, 2s, 4s and 20s) and the ROIs (frontal, left-temporal, right-temporal, central and 

posterior) on a dependent variable, in this case, either the normalized density or the strength at 

the alpha or beta frequency bands. It means that there were defined four different 3-way 

ANOVA; for the normalized density in alpha band, average strength in alpha band, normalized 

density in beta band and average strength in beta band.  

After performing the Mauchly’s test of sphericity and performing the Greenhouse-Geisser 

correction on the normalized density and the relative strength for alpha and beta bands, the 

following tables comprise the p-values that summarize the significance of the interactions from 

the factors that are being evaluated. Specifically, From Table 13 and Table 14 it can be observed 

that according to the ANOVA results there are no statistically significant interactions between 

the three factors (Row: Res_State*Windows*ROI) for each connectivity relationship evaluated 

for the alpha band. This suggests that the segment durations provide similar results regarding 

the areas that have connections, however, it does not mean that the connectivity patterns suggest 

different networks over the ROIs.  

 

Table 13 and Table 14, show the significance of the three-way interaction between the factors: 

resting state, window length and ROI for the normalized density and the average strength, 

respectively. The columns are organized as follows: 1. Factor under analysis, 2. SumSq: Sum 

of squares of the samples, 3. DF: Degrees of freedom, 4. MeanSq: Mean squared, 5. F: F-
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statistic, 6. pValue, 7. pValueGG: Greenhouse-Geisser correction on p-value, 8. PValueHF, 

pValueLF: High and low boundaries for p-value. 

From Table 13 and Table 14 it can be observed that according to the ANOVA results there are 

no statistically significant interactions between the three factors (Row: 

Res_State*Windows*ROI) for each connectivity relationship evaluated for the alpha band. This 

suggests that the segment durations provide similar results regarding the areas that have 

connections, however, it does not mean that the connectivity patterns suggest different networks 

over the ROIs.  

 

Table 13. Significance of interactions for the normalized density of the alpha band. 

 

Table 14. Significance of interactions for the average strength of the alpha band. 

 

The same occurred for the interactions in the beta band which are shown in the annex section 

on  

Table AN 15 and Table AN 16. 

In order to obtain the connectivity from each of the regions of interest, the significance of the 

connections given the normalized density at each ROI was used to account for the connections 

and their directionalities. Moreover, for the case of the strength, it was used the normalized 

amplitudes on the ROIs so the causal relationships on the generalized network are tested and 

established. This was tested using the ANOVA setting and as result, the Table AN 17 found in 

the annex section shows the p-values evaluated for each of the windows at each frequency band 

for eyes open and eyes closed. Since these tables comprise a lot of information that is not 

Row SumSq DF MeanSq F pValue pValueGG pValueHF pValueLB

 63.80058196 1 63.80058196 6643.316585 8.32995E-36 8.32995E-36 8.32995E-36 8.32995E-36

Error 0.278508009 29 0.009603724 1 0.5 0.5 0.5 0.5

Res_State 0.011136615 1 0.011136615 2.448230878 0.128505573 0.128505573 0.128505573 0.128505573

Error(Res_State) 0.131916413 29 0.004548842 1 0.5 0.5 0.5 0.5

  Window 1.245129723 3 0.415043241 150.2128002 2.69639E-34 2.37141E-25 2.92265E-27 5.4148E-13

Error(Window) 0.240384055 87 0.002763035 1 0.5 0.5 0.5 0.5

  ROI 2.946897686 4 0.736724421 153.2253827 2.51614E-45 3.96981E-31 2.55186E-34 4.24585E-13

Error(ROI) 0.557740704 116 0.00480811 1 0.5 0.5 0.5 0.5

  Res_State*Window 0.019914728 3 0.006638243 3.138128684 0.029428081 0.032036434 0.029428081 0.086991234

Error(Res_State Window) 0.184035514 87 0.002115351 1 0.5 0.5 0.5 0.5

  Res_State*ROI 0.124573992 4 0.031143498 14.43341442 1.35592E-09 1.03634E-07 1.95115E-08 0.000688274

Error(Res_State ROI) 0.250297376 116 0.002157736 1 0.5 0.5 0.5 0.5

  Window*ROI 0.177278867 12 0.014773239 12.86692986 7.56505E-22 2.77284E-11 1.04838E-13 0.001211695

Error(Window ROI) 0.399558184 348 0.001148156 1 0.5 0.5 0.5 0.5

  Res_State*Window ROI 0.019323016 12 0.001610251 1.578020827 0.095981242 0.160419654 0.141028062 0.219071946

Error(Res_State Window ROI) 0.355107783 348 0.001020425 1 0.5 0.5 0.5 0.5

Row SumSq DF MeanSq F pValue pValueGG pValueHF pValueLB

(Intercept) 7410.987793 1 7410.987793 1291.119751 1.34086E-25 1.34086E-25 1.34086E-25 1.34086E-25

Error 166.4591064 29 5.739969254 1 0.5 0.5 0.5 0.5

(Intercept):Res_State 237.4324951 1 237.4324951 118.8771896 8.95872E-12 8.95872E-12 8.95872E-12 8.95872E-12

Error(Res_State) 57.92147446 29 1.99729228 1 0.5 0.5 0.5 0.5

(Intercept):Window 3446.862061 3 1148.953979 582.8811035 0 2.62312E-26 5.71455E-27 9.43944E-21

Error(Window) 171.4912262 87 1.971163511 1 0.5 0.5 0.5 0.5

(Intercept):ROI 5.719110966 4 1.429777741 5.790431023 0.000276632 0.001555756 0.000960039 0.022710638

Error(ROI) 28.64281082 116 0.246920779 1 0.5 0.5 0.5 0.5

(Intercept):Res_State:Window 11.9960413 3 3.998680353 5.282623768 0.002150689 0.018047277 0.017039303 0.028940171

Error(Res_State:Window) 65.85462189 87 0.756949663 1 0.5 0.5 0.5 0.5

(Intercept):Res_State:ROI 6.031976223 4 1.507994056 9.311461449 1.46184E-06 9.62093E-06 2.73771E-06 0.004834409

Error(Res_State:ROI) 18.78623581 116 0.161950305 1 0.5 0.5 0.5 0.5

(Intercept):Window:ROI 6.640697479 12 0.553391457 3.877868176 1.36056E-05 0.000417862 5.40068E-05 0.058547251

Error(Window:ROI) 49.66136169 348 0.142705068 1 0.5 0.5 0.5 0.5

(Intercept):Res_State:Window:ROI 1.985429049 12 0.165452421 1.217987895 0.268647462 0.293358386 0.2799052 0.278829753

Error(Res_State:Window:ROI) 47.27259064 348 0.135840774 1 0.5 0.5 0.5 0.5
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readable in a straightforward way, the connectivity diagrams displayed on Figure 54 summarize 

the statistically significant connections for the regions of interest. The arrows on the 

connectivity diagrams indicate the directionalities (i.e., the normalized density), the width 

indicates the average strength of the causal relationship, and the color indicates if the amplitude 

of the connection increased (red) or decreased (blue) from one ROI to the other.  

As it can be observed from the connectivity diagrams, there are a lot of connections that 

according to the ANOVA analysis are significant. In some cases, like the one for the eyes closed 

condition for the alpha band, it can be observed that the connectivity structure from the windows 

of 400ms, 2s, 4s and 20s is very similar among the windows. Specifically, it can be noted that 

there are 4 main connections across the ROIs that are common for all the windows. These are: 

1. The posterior – frontal link, 2. The posterior – right temporal, 3. The posterior – left temporal, 

and, 4. The frontal – central connection. 

 

Window 

length 
Eyes open condition Eyes closed condition 

400 ms 

  

2 s 
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4 s 

  

20 s 

  

Figure 54. ROI connectivity diagrams obtained for the eyes open and eyes closed conditions for the alpha 

frequency band 

This states that there are significant connections that start in the posterior ROI and are directed 

to the right and left temporal areas, as well as the causal relation that is being directed to the 

frontal area. There are other connections like the one occurring in the frontal area that is being 

directed to the right temporal region, and the interactions that occur towards the central region 

which is being influenced from the frontal and right temporal areas.  

Unfortunately, as it can be noted, the connectivity diagrams are very general, all of the regions 

receive and generate connections that might not be correct since they consider very broad 

regions, a lot of channels participate in the region and the normalized density might detect slight 

changes occurring between regions. Moreover, when comparing the connectivity in the channel 

space there are no similarities, excepting for the influence of the posterior region directed to the 

frontal one. However, due to the very general point of view it is not possible to characterize 

physiologically the connectivity across the windows.  

In the same way, these observations hold also for the beta frequency band as shown in the annex 

on Figure AN 4. 

For all these reasons, in order to improve these results, it would be useful to consider narrower 

regions or less channels coming from the regions in order to get a better representation of the 
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connectivity among these areas. That is why the connectivity analysis in the channel space are 

now considered and analyzed in the following section.  

6.2.3. Connectivity in the sensor space: Graph Theory indexes 
The use of the adjacency matrices to encode the significant connections as result of the DTF 

estimation across the channels, provides the raw structure that shows the effective connections 

on the channels. This can be difficult to interpret due to the high density of connections 

considered as significant from the adjacency matrix. In this way, it is useful to consider graph 

theory measures to perform a characterization of the connectivity in the network that is able to 

show hidden structures, and central nodes that participate more in the transmission of 

information and clusters that could characterize the brain activity that is being investigated, i.e., 

the resting state conditions during eyes open (R1) and eyes closed (R2). 

As explained in [73], there can be distinguished 4 broad classes of graph measures; the basic 

measures that reflect the importance of a node (channel) in the network by considering the 

number of connections it has with other nodes (i.e., the degree), the graph density which 

measures the actual number of connections in the network and that can be expressed as the 

percentage of links present in the network being 0% when no connections are considered in the 

graph and 100% when all the significant links are shown, and finally the strength, which 

accounts for the amplitude of the connection between two nodes, e.g., the DTF magnitude 

registered for the pair channel 𝑖, 𝑗 in the matrix.  

The second class of measures are the so-called measures of integration which account for how 

effortless the communication between the channels is performed. In this category, there are 

different measures that help to estimate this. The shortest path length between two channels as 

its name indicates, calculates the line with minimum length that connects two nodes on a surface, 

in this case given the topographic characteristics and the placement of the electrodes over the 

scalp of a person. Its value is defined for every pair of nodes and given the high density of nodes 

that form a network of electrodes, the average shortest path length is used to characterize the 

typical separation between the nodes.  

Conversely, the global efficiency accounts for the inverse of the average shortest path length 

and indicates the capacity of a network to support the information flow, and in the case where 

networks are not fully connected it provides a better representation of the integrative 

communication characteristics among the nodes since unlike the average shortest path length, 

the global efficiency does not diverge to infinity when a connection is not present in the network. 

This provides a useful way to account for how easy the communication among the present nodes 

is since the adjacency matrices in our case are not fully connected considering that they only 

contain the statistically significant connections.  

The third category of graph parameters are the so-called measures of segregation that 

characterize the independence of local structures found within the network given the formation 

of groups that are interconnected, i.e., clusters of nodes. The clustering coefficient accounts for 

the channels connected to a node which are interconnected to each other. Another measure of 

segregation is the local efficiency which is defined as the efficiency among the neighbors of a 

node. 

Lastly, the importance of a node in the network is estimated by considering the betweenness 

centrality, a parameter that quantifies how central is a node in the information flow considering 
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the integration and effective connections produced within the structure. This measure calculates 

the number of the local short paths connected to a node and that represent the importance of a 

channel in the network. Table 15 provides the equations of the graph theory parameters.  

The density parameter is a basic measure that quantifies the fraction of actual connections that 

are present on a network. When an adjacency matrix is calculated, it summarizes the effective 

directed connections among the channels that are significant in statistical terms as explained 

above, then, it is most probable that its density is less that the maximum number of possible 

connections on the network, defined as 𝑁(𝑁 − 1), being 𝑁 the total number of channels (i.e., 

62). Thus, the density of a non-fully connected network given the statistically significant 

relationships condensed in the adjacency matrix will never be equal to 𝑁(𝑁 − 1).  

In these terms, the density is constrained by the number of significant connections of the 

adjacency matrix whose elements’ magnitudes can be sorted from lowest to highest in order to 

generate the ‘cost’ variable, used as the independent variable from which the remaining graph-

based parameters are calculated, and by these considerations they are defined as a function of 

the number of actual connections in the network. By sorting out the magnitudes, the cost 

represented as the proportion of connections encodes a linear scale from the highest to the 

lowest magnitudes.  
Table 15. Graph theory measures applied to the adjacency matrices of significant connections.  

Basic 

Degree 

𝑘𝑖 = ∑  

𝑗∈𝒩

𝑎𝑖𝑗 

Where 𝑎𝑖𝑗  denotes the existence of the connection 

between 𝑖 and 𝑗. 

Density 

𝑑 =
1

𝑁
∑𝑘𝑖
𝑖∈𝒩

 

It is defined as the mean network degree and accounts 

for the total average of the degree accounted for all 

the nodes belonging to a network. 

Strength 

𝑠𝑖 = ∑  

𝑗∈𝒩

𝑤𝑖𝑗 

Where 𝑠𝑖 is the strength of a node by summing up the 

weights - 𝑤𝑖𝑗  (e.g., DTF amplitudes) of all the 

connections incoming or going out of that node. 

Integration 

Average path length 

𝐿 =
1

𝑁(𝑁 − 1)
∑  

𝑖,𝑗∈𝒩,𝑖≠𝑗

𝑑𝑖𝑗 

Where 𝑑𝑖𝑗  is the length of the geodesic from the 

nodes 𝑖 → 𝑗. 

Global efficiency 𝐸 =
1

𝑁(𝑁 − 1)
∑  

𝑖,𝑗∈𝒩2,𝑖≠𝑗

1

𝑑𝑖𝑗
 

Segregation 
Clustering 

coefficient 
𝑐𝑖 =

2𝑒𝑖
𝑘𝑖(𝑘𝑖 − 1)

=
∑  𝑗,𝑚 𝑎𝑖𝑗𝑎𝑗𝑚𝑎𝑚𝑖

𝑘𝑖(𝑘𝑖 − 1)
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𝐶 = ⟨𝑐⟩ =
1

𝑁
∑  

𝑖∈𝒩

𝑐𝑖 

Where 𝑒  is the number of edges in the cluster of 

neighbors belonging 𝐺. The ratio 𝑘𝑖(𝑘𝑖 − 1)/2 is the 

maximum number of edges in 𝐺𝑖. 

Local efficiency 

𝐸loc =
1

𝑁
∑  

𝑖∈𝒩

𝐸(𝐺𝑖) 

Where 𝐸(𝐺𝑖) is the global efficiency for the cluster 

of neighbors belonging 𝐺. 

Centrality Betweenness 

𝑏𝑖 = ∑  

𝑗,𝑘∈𝒩,𝑗≠𝑘

𝑛𝑗𝑘(𝑖)

𝑛𝑗𝑘
 

Where 𝑛𝑗𝑘 is the number of shortest paths connecting 

𝑗 and 𝑘, and 𝑛𝑗𝑘(𝑖) establishes the number of shortest 

paths that connect 𝑗 and 𝑘 that pass through 𝑖. 

In this way, 1% of the cost comprises the number of connections in the network that have a 

magnitude larger or equal to the 99% of the maximum DTF value found in the adjacency matrix. 

The same applies for the other percentages up to reaching 100% whose cost comprises all the 

significant connections regardless of the DTF magnitudes on the matrix.  

A. Results on the graph theory indexes. 

As a way to show the results obtained from the graph-based parameters calculation and for the 

sake of simplicity, let us consider the results of one of the windows. The window chosen for 

this purpose is the one corresponding to 20 seconds for the alpha band rhythm. 

As explained above, the graph theory indexes quantify the important channels of a network by 

considering their roles over the evolution of the complex connections given the 62 nodes of this 

structure. That is why the cost of the network is considered and each of the graph-based 

parameters is estimated as a function of this cost. This independent variable varies from 1% to 

100% being the lowest limit the one that represents the significant connections with the highest 

amplitudes and increasing the range towards 100% while the number of connections increases 

and hence considering all the intermediate DTF amplitudes up to the minimum.  

Is in this way that the quantification of the integration, segregation, centrality, and basic 

measures is performed by calculating those parameters as a function of the density/cost of the 

network accounting for the network dynamics that changes over the number of connections 

considered and that are sorted from the highest to the lowest.  

On Figure 55 there is depicted the mean value of the parameters of degree and strength 

estimated in the range of 0 – 100% of the cost variation. The graphs are shown for the eyes 

open and eyes closed conditions in the alpha band for the window of 20 seconds. 
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Figure 55. Average degree (left) and strength (right) of the effective connections estimated for the 62 channels 

composing the network.  

Figure 55 shows the average value of the connections calculated for each of the channels that 

compose the network of 62 nodes, the red dotted line corresponds to the mean value of that 

average and corresponds to the threshold selected to choose the channels that have more 

connections (incoming + outgoing) and the nodes with higher weights according to the cost 

dynamics, i.e., the degree and strength, respectively.  

The mean of the average was used to establish a threshold from the distribution formed by the 

values calculated according to the cost. Since some distributions are skewed to the left (e.g., the 

degree of the channels is mostly low w.r.t the higher values) this threshold was employed to 

consider the channels that have higher graph parameters and that can be considered as central 

according to the flow of information in the network.  

Only the channels that have strength and degrees higher than the threshold are picked and 

listed as central nodes relative to the parameter that are representing.  

For the remaining nodal graph parameters (e.g., local efficiency, mean cluster coefficient and 

betweenness centrality), the same process applies, the average over the cost is performed and 

the threshold is set relative to each measure to find the central nodes, see Figure 56 below. 

 

a) 

 

b) 
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c) 

 

d) 

 

e) 

 

f) 

Figure 56. Graphs of mean local efficiency, mean cluster coefficient and betweenness centrality as a function of the 

cost for the channels of the network at each resting state condition (a, c, d).  Averaged values of the nodal parameters, 

the thresholds and the channels selected represented by the marker ‘O’ (b, d, f). The colors in a, c, d represent the 

parameter amplitude at each cost percentage. 

As can be observed from Figure 56 a, c, e, the graph parameters are not static and change in 

relation to the number of connections considered in the network (i.e., the cost, variable in the 

y-axis). This means that a node can be considered as important w.r.t what a graph measure 

represents in the network over a short range of cost values (see the yellow colors indicating the 

higher amplitudes for some channels in the graphs), however, as depicted in the figure this is 

not maintained when the network cost increases, and that indicates that its complexity grows. 

This is why the mean over the cost is calculated to highlight the channels with higher values in 

the overall range as shown in Figure 56 b, d, f.  

The nodes that exhibited quantities higher than the threshold are grouped with the ones obtained 

from the basic features estimated earlier, and only the channels that were common for all the 

graph indexes are finally selected as the central electrodes at each resting state condition under 

evaluation. This means that it is possible to highlight the channels considered as central 

according to the causal relationships that occur inside the network and allows to have a better 

representation of the connectivity occurring among these channels testing the DTF amplitudes 

that converge on these central nodes.  

Now, by combining the information of the DTF amplitudes given the adjacency matrices and 

the selected electrodes at each resting state condition for the window of 20 seconds for the alpha 

band, the connectivity diagrams shown in Figure 57 are generated.  
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Figure 57. Connectivity diagrams of the window of 20 seconds. (left) Connectivity during eyes open (R1) 

condition. (right) Connectivity during eyes closed (R2) condition. 

 

The connectivity diagrams on Figure 57 show the significant effective connections derived 

from the adjacency matrices at a cost of 51% of the maximum value of the DTF matrix, which 

means that only the connections that exhibited a DTF magnitude higher or equal 51% of the 

highest DTF element (~ 0.6 in both conditions) are being plotted in the graph. The connections 

are color coded so the strongest interactions can be identified.  

The intersection of the selected channels from the graph measures provided a list of nodes that 

can be considered as central elements that participate actively in the network. These selected 

nodes are highlighted by the red circles around their topographic locations in the graphs (see 

Figure 57). Moreover, the directionalities are also depicted in the graph and show how the 

information is being directed to specific areas from different channels located given some 

identifiable clusters of channels observed in the connectivity diagrams.  

The central channels can be grouped forming clusters which are used to identify the changes in 

the flow of information not only in the local level given the topographic location of individual 

electrodes but in a more general view considering complete regions that highlight the active 

areas in which the connectivity is being produced inside the group of nodes and between these 

areas. In this way, Figure 58 shows the clusters generated from the connectivity diagrams and 

the central electrodes that were obtained above for the window of 20 seconds in both resting 

state conditions for the alpha frequency band.  
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Figure 58. Connectivity diagrams of the window of 20 seconds. (left) Connectivity during eyes open (R1) 

condition. (right) Connectivity during eyes closed (R2) condition. 

 

Considering the clusters in Figure 58, there are observed a set of channels that participate in the 

effective connectivity. Specifically, the channels grouped for the closed eyes condition show 

that the posterior region composed by channels located at the occipital and parietal areas (Ox, 

POx and Px channels) are more involved in the network for the information transmission. 

Moreover, the involvement of channels in the central, frontal, and prefrontal regions provide 

some insights of the network and how the distribution of channels and the information is 

flowing from or towards these areas.  

In the case of the eyes open condition, the distribution of the channels is different and by 

observing its connectivity diagram (Figure 57 left), only a few channels show strong 

connections given the DTF amplitudes, which gives the idea that the connectivity in this case 

is more uniform among the clusters and tends to have more midrange connectivity amplitudes 

than the eyes closed case. In order to understand what happens at each resting state condition, 

it would be useful to observe what happens in the case where other windows are employed, and 

this will be shown in the section Connectivity in the different windows.  

B. Connectivity in the different windows 

One of the end goals of this thesis work is to provide a selection approach for the window size 

in order to perform the effective connectivity analysis of EEG data. This step was already done 

as explained before in the section Window selection approach. As result of this step, the 

windows of 400 milliseconds and 4 seconds were selected as the ones that exhibited most of 

the stationary characteristics given the EEG signals. This nonparametric step is designed as a 

tool to perform the selection of what is hypothesized to be a window length that is useful to 

capture most of the information given the assumption of stationarity needed to perform the 

effective connectivity analysis.  

In order to evaluate the connectivity from the windows that were selected in this stage, some 

graph-based parameters were estimated and the connectivity diagrams that comprise the brain 

processes were generated and are now used to analyze the influences exerted among the 

channels that measure the neural activity in the form of electric potentials in the scalp.  
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As it was explained in the state-of-the-art section of this work, there is no consensus about a 

proper window duration that could be employed to analyze the connectivity information. There 

are some authors who even encourage the research of this issue since the results are heavily 

affected by this matter. In this way, this thesis work had as objective to provide a way to perform 

an informed decision regarding the window that could be employed for the connectivity 

analysis. It is based on the statistical characteristics of the EEG signals and is intended to be a 

pre-processing step on the connectivity framework which employs high order statistics to 

account for the stationary features so that they do not change drastically over time and be more 

uniform along with the signal that is being segmented piecewise into non-overlapping windows 

of the same size. 

For the windows under consideration, the connectivity diagrams for the alpha and beta bands 

are summarized in Figure 59 and Figure 62 respectively. On the connectivity diagrams obtained 

from each of the window sizes of 400ms, 2s, 4s and 20s are shown for the eyes open and eyes 

closed condition for the alpha frequency band (7 – 13 Hz).  

The figures displayed on Figure 61 and Figure 64 show the central electrodes found from the 

estimation of the graph-based measures as explained in the section Connectivity in the sensor 

space: Graph Theory indexes. The central electrodes highlighted by the red circle markers show 

the regions where there are more and stronger effective connections, as can be noted from the 

color-coded arrows which indicate the directionalities in a node-wise way.  

From these graphs it is possible to note that there are regions formed by some of the electrodes 

which exhibit more internal connections. This is the case of the windows of 2s, 4s and 20s for 

the eyes closed condition. The electrodes located at the posterior part of the scalp formed by 

the occipital (Ox), parietal (Px) and central parietal (CPx) electrodes appear to be more involved 

in the connectivity process. In this region, the internal connections are very evident in terms of 

strength and number of connections. Also, the salient connections with other areas like the 

frontal region is shown as well. Considering the network and the connectivity estimated among 

the electrodes, it is observed a structure that is common for different windows. Excepting the 

400 ms window, the connectivity diagrams for the closed eyes condition provide some insights 

about the directionalities of the connections as well as where they are being conducted.  

In this way, besides the obvious internal connections occurring in the posterior area of the brain, 

during the eyes closed condition there is an influence from this region towards the frontal area, 

and each of the windows (excepting the 400ms one) were able to show such relationships. 

In the case of the eyes open condition, the structures are less consistent, in other words they are 

not so structured as in the eyes closed condition where it was possible to observe similar 

connectivity across the windows (see the 2s and 4s windows) and the strengths from the central 

channels that participated more in the network were different as well. Finally, the window of 

400 ms did not provide results comparable to the other segments, in fact, the connectivity 

diagrams show more spread connections that do not follow the observations from the state of 

the art [45], [46], [71], [74].  
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Figure 59. Connectivity diagrams for eyes open and eyes closed states during the alpha band for the selected 

windows. 

In order to observe the channels that were involved in the process, the Figure 60 shows the 

cluster of electrodes composed by the central channels highlighted in the figures from Figure 

59. 
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Figure 60. Cluster diagrams for eyes open and eyes closed states during the alpha band for the selected windows. 

The cluster of electrodes on Figure 60 highlight the nodes from which more connections are 

being generated/directed. As it can be observed, these areas display most of the activity related 

to the effective connections from the windows that are being analyzed. 

Let us focus on the clusters over the windows for the eyes closed condition. It is observed that 

these electrodes in the posterior part of the brain are the more active ones according to the 

connectivity diagrams in Figure 59 

. The slight differences on these cases are evidenced by the slim variations of the channels 

located at the frontal regions, which vary at each window.  

More interestingly, the variations on the eyes open condition are more evident, showing more 

spread clusters from the channels grouped at different window characteristics. These clusters 

can help to analyze what is happening in physiological terms and how they are connected to the 

areas of more influence that characterize the resting state conditions as the end goal of this 

analysis. The physiological analysis is performed in the discussion section. 

As a final set of the useful results, in order to analyze what is happening in the network formed 

by the channels, let us consider some of the graph-based parameters introduced in Table 15. In 

this case, the parameters employed are: betweenness centrality, mean cluster coefficient, global 

efficiency, and local efficiency at each resting state condition of all the windows. The graph-
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measures are shown as a function of the number of effective connections given the statistically 

significant relationships given the adjacency matrices generated for each window.  
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Figure 61. Graph based parameters estimated for R1 and R2 states during the alpha band for the selected windows. 

According to the figures in Figure 61, when the graph-based parameters are calculated for the 

different window durations, there are observed evident differences across the segment durations 

on each resting state condition evaluated for the alpha band.  

By considering the eyes open state (second column on the table), the betweenness centrality 

measure shows a significant increment for the window of 20 seconds. Its amplitudes increase 

up to reaching a maximum point that is almost the double in comparison to the other windows. 

While the trends exhibited for the windows of 400ms, 2s and 4 s, are similar to each other, 

evidencing a close correlation between the windows of 2s and 4s. The results of the betweenness 

centrality for the eyes open condition for the alpha band suggest that as long as the window 

length is increased, the values for this graph-based parameter increase as well, however, it 

would be needed to perform more tests considering intermediate window size to confirm this 

hypothesis.  

In the case of the eyes closed condition, the previous observation is less obvious. The trend of 

the betweenness centrality in this case is more uniform for the short duration windows and the 

amplitudes for the segment of 20 seconds are smaller in comparison. Moreover, it is worth 

noting that the maximum points for the 400ms, 2s and 4s windows in both resting state 

conditions, is reached at a cost value of about 15% - 40% while for the window of 20 s such 

range is larger than 40%.  

The betweenness centrality is a measure that quantifies how central a node is by considering 

the total of short-range connections that a node has in the network. By varying the proportion 

of effective connections in the network given the cost (i.e., density percentage), it is obtained a 

maximum value relative to the connections where all the central electrodes are found in the 

nodal structure, this means that at that maximum point all the main connections and the central 

electrodes can be displayed. Based on this, the connectivity diagrams from the Figure 59 are 

generated guaranteeing a proper visualization of the connectivity in the graphs.  

Following the other graph parameters, they all follow a logarithmic like function, in the case of 

the eyes open condition, the window of 2 seconds exhibits the higher values w.r.t the cost of 

the network, exhibiting a similar trend to the windows of 4s and 400 ms for the global and local 

efficiencies while for the mean cluster coefficient its values are significantly higher. In the case 

of the close eyes condition, the window of 4 seconds exhibits the higher graph-based values 

and present a similar behavior to the 2 seconds window as explained above.  

Finally, the 20 seconds window presents the lowest variation of the segregation and integration 

measures for both resting state conditions.  

Let us now consider the results over the beta band. Figure 62 shows the connectivity diagrams 

obtained for the resting state conditions evaluating each of the window lengths. As can be noted 

from these graphs, there is no evident structure on the connectivity that is being produced 

among the channels and that could be considered as common for the different windows, which 

is a difference w.r.t the alpha band where the effective connections that were captured in the 

processing established more connections with higher amplitudes that can be considered as 

common among the windows.  
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Excepting the 400 ms window, the connectivity diagrams show a broader distribution of 

connections including channels from different regions, not only from the posterior and frontal 

areas but including more temporal and central electrodes. In this case the connectivity 

evidenced by the 2 seconds and 4 seconds window are the most similar from the 4 segments 

evaluated it is found again a distribution of electrodes in the posterior part of the brain located 

in the right hemisphere that exerts influence in the central frontal areas, different from the alpha 

band where the central electrodes were found in a bilateral way in at the same area.  

Window 

length 
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2 s 
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4 s 

  

20 s 

 
 

 

Figure 62. Connectivity diagrams for eyes open and eyes closed states during the beta band for the selected 

windows. 

The results on Figure 63 explain the clusters of electrodes generated by the estimation of the 

central nodes in the network. As can be observed from the graphs, in general, for the opened 

eyes condition, the electrodes are more spread than in the closed eyes condition covering a 

larger number of electrodes that have significant connections. This is translated into having 

more areas involved in the connection which is more difficult to analyze since there are no 

focused areas that can explain the resting state process underlying. In contrast, for the eyes 

closed condition, the windows of 2 seconds and 4 seconds have some areas covered by the 

electrodes, however, the strength characteristics for these nodes are not so high. 

By comparing the clustering of channels from the alpha and beta bands, it is observed that the 

closed eyes condition in both frequency ranges provides a better structure regarding the nodes 

where the connections are originated and where are being directed, which means that there can 

be identified the central nodes as well as the regions of greater connectivity. However, the 

connectivity of the beta band is characterized by being less strong in terms of the estimated 

magnitude (DTF amplitudes) and also because the quantity of effective connections is reduced 

as well. For the beta band the 2 seconds window provides more effective connections in 

comparison with the other segments from the group of long windows (i.e., 𝑤𝑙 ≥ 1s). 
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Figure 63. Cluster diagrams for eyes open and eyes closed states during the alpha band for the selected windows. 

 

Figure 64 shows the graph-based parameters for the beta band in both resting state conditions. 

Similarly to the alpha rhythm case, there can be observed the same trend behavior for every 

window. The window of 2 seconds has the higher amplitudes with respect to the cost for the 

eyes open condition while the segment of 4 seconds provides the larger amplitudes for the eyes 

closed state. Again, the betweenness centrality for the 20 seconds window is significantly 

higher in comparison to the other windows and the ranges of centrality are similar as well, 

increasing the range of maximum value from 5% to 40%. 
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Figure 64. Graph based parameters estimated for R1 and R2 states during the beta band for the selected windows. 

Regarding the connectivity measures, the variation across frequency bands do not provide 

significant differences that could help to discriminate alpha from beta frequency bands since 

the same trends are observed across windows and resting state conditions. 

On the other hand, the graph metrics are different at each resting state which characterize the 

physiological processes and can be useful in discrimination tasks of the resting states.  
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7. Discussion 
The connectivity results obtained in the sensor space and in the domain of the regions of interest 

show the causal relationships between the neural masses that are being analyzed and 

characterize the EEG process based on the window duration that has been selected. 

As it was described above and depicted in the results, the connectivity diagrams change 

drastically according to the window duration employed for the MVAR fitting process. 

According to the theoretical considerations from some authors ([47],[48],[36],[17]), this is an 

issue that needs to be considered in order to guarantee consistent results in different experiment 

setups and inter-subject analysis. As a way to address this issue, within the framework of this 

thesis work it was defined an algorithm to look for a segment duration that maintains the 

stationarity of the EEG signals composing the recording for each of the subjects that were part 

of the resting state experiment.  

This process considered the high-order statistics of the signals to account for the variability of 

their stationary features, and the most common window length across the dataset that exhibited 

the less variation of these statistic measures was selected as the window size for the connectivity 

analysis. As result, there were obtained 2 windows, a short one of 400 milliseconds and a long 

one of 4 seconds that were the most common windows among the subjects and resting states.  

The connectivity results quantified by the DTF measures were estimated, and the adjacency 

matrices were obtained by performing statistical tests on the connectivity matrices that had the 

amplitudes and provided the causal relationships that were significant. As result, there were 

obtained non-fully connected networks that embedded only the significant values of the 

connections. These were then translated into connectivity diagrams and were analyzed through 

graph-based parameters to characterize the frequency bands and the resting state conditions.  

The characterization from the connectivity allowed to find common observations with some 

other works that are closely related to the methodologies implemented, as it was explained from 

the work performed by Olejarczyk et. al., [40]. In this case, by applying their approach to our 

data and performing the connectivity analysis, the window of 20 seconds highlighted central 

nodes located in the posterior, left central-frontal joint and pre-frontal areas, which were not 

highlighted in their results. Moreover, the ANOVA analysis allowed to find a significant 

increment on the strength parameter on the alpha band by comparing the conditions of eyes 

closed and eyes open. Such increment was produced in the mainly in some of the regions of 

higher centrality (pre-frontal and central areas). This observation is one of the differences 

obtained by implementing their approach to our data. 

Moreover, the work made by Tan and colleagues [46] also considered the analysis of graph-

theory parameters, this time by performing the analysis on the variation of the network 

characteristics with respect to the number of significant connections. In this way, the 

connectivity patterns of these graph theory parameters were explored, and significant 

differences were found in relation to the characterization of the network. The local efficiency 

evaluated for the alpha band showed a significant increment for the eyes open condition w.r.t 

the closed eyes condition which states the opposite behavior from what Tan et. al., reported.  

Moreover, the beta band characterized with the graph theory measures on our data exhibited 

significant differences for the global and local efficiencies, and, in a less extent for the mean 

cluster coefficients. This is totally opposite to what Tan and colleagues found. In this case, by 
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considering these results, it is possible to use these graph theory parameters as features of the 

resting state conditions in the beta band and opens the possibility to perform classification of 

the brain activity from graph measures. Of course, this is a possible implementation, and more 

data would be needed to validate this.  

By implementing these approaches, it could be observed that the local connections were 

reduced in the bilateral posterior area for the alpha band in the eyes closed condition with 

respect to the opened eyes condition. Which is related to the fact that there is an increment of 

the alpha rhythm over the posterior areas during the eyes closed state. Also, there were observed 

more long-range connections coming from the posterior area during the eyes closed state. 

After observing these results and analyzing what has been implemented in other works, the 

analysis of the window length was implemented, and it was provided an algorithm for the 

selection of the most stationary window according to the relative characteristics of the datasets. 

As result two windows were selected according to the short and long size analysis, one of 400 

ms and one of 4 seconds. Two more windows were used for comparison, and hence, the 

windows of 400 ms, 2s, 4s and 20s were evaluated and provided significant differences in the 

connectivity patterns produced from the segmentation of the signals at each length.  

First, an analysis in the domain of the regions of interest was performed and it provided some 

insights about main connections produced in the network. Specifically, the connections between 

the posterior to frontal areas, posterior to lateral regions and frontal to central areas were the 

most common ones across the windows. This characterized the flow of information in general 

terms, however, it was necessary to look into the details of the sensor space since the 

characterization of the connectivity was not possible to be done in such a general way by 

covering so large regions and averaging the connectivity amplitudes on the channels that 

belonged to those regions. 

Is in this way that the sensor space was used, and the different connectivity patterns were 

identified at each window segment for both alpha and beta bands during eyes open and eyes 

closed conditions. In general, the 400 ms window did not present any connectivity pattern that 

followed any of the observations made by other authors which might suggest that this is not a 

proper segment length in order to perform the analysis of effective connectivity. This was 

observed for both alpha and beta bands, showing a very spread connectivity which did not 

characterize or highlight areas of centrality in comparison to the other windows.  

The use of the 400ms segment length was derived from the results obtained by considering the 

signal segmentation into short segments (see Window selection approach), which was based on 

the assumption that stationary characteristics on physiological signals are mostly preserved in 

short periods of time [17], [75], [76]. In this way, under the short segment length processing 

framework the EEG signals were segmented into windows shorter than 1 second, and the 400ms 

was the one selected as the most stationary under this segmentation category, considering that 

it had enough samples to fulfill the sampling theorem requirement to cover the low frequency 

of 7 Hz (low level boundary of the alpha frequency band).  

Then, the analysis of effective connectivity considering the 400ms window length was 

performed based on the results obtained from the algorithm applied to the 12 EEG recordings 

(6 subjects*2 conditions) that were employed for the stationary analysis.  
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In this way, when the effective connectivity results were obtained, it was expected to find 

outcomes in line with the observations made by other works in the state-of-the-art which in 

general considered rather different (longer) window lengths, however, it was not the case as 

explained before. The employment of this segment length was for exploratory reasons 

according to the hypothesis of the preservation of stationary characteristics in short segments. 

Unfortunately, the results were not positive, and this suggest that the term ‘short segment’ is 

relative and does not necessarily mean to use windows with periods in the order of milliseconds.  

Conversely, other windows provided results that suggested similarities with the observations in 

previous research works. Specifically, the closed eyes condition for the alpha band was better 

represented by the connectivity patterns, showing similarities between the windows of 2 

seconds and 4 seconds. These patterns confirmed the expected causal relationships between the 

posterior region directed to the frontal area, and also highlighted the intra connections that are 

mostly present in the posterior area of the scalp. The window of 20 seconds showed similar 

patterns as well for the closed eyes condition, however the strengths developed in these central 

areas are not as high as the ones represented in the other two windows. 

The clusters generated from the central nodes show the areas of greater connection on each 

window, and as it could be observed on Figure 60, these cluster of electrodes were very similar 

for the closed eyes condition, only highlighting some differences on the channels located in the 

frontal area. However, what is more interesting to see are the patterns that are different and not 

the ones that do not present any changes. Thus, the cluster of channels for the alpha band in 

opened eyes state were analyzed to state those differences. By looking at the areas covered by 

the clusters, it can be seen that the electrodes that belong to the frontal region are organized 

differently, showing a symmetrical block of nodes for the windows of 2 seconds and 400 ms 

(not considered).  

The 4 seconds window covers more areas and has some channels that participate more in the 

central region facilitating the communication flow in the network between the posterior area 

and the frontal region. This could explain the involvement of intermediate structures in the 

frontal-central joint with the central-posterior one, establishing the importance of such area in 

the influence of the posterior area exerted onto the frontal area.  

The graph-based parameters evaluated as a function of the number of connections in the 

network showed greater values for the windows of 2 seconds and 4 seconds, being the results 

from the former higher for the eyes open condition, and the results from the latter higher for the 

closed eyes case in both alpha and beta bands. It is a way to characterize and identify the 

windows that convey more information according to the network characteristics derived from 

them and provide a starting point to account for the centrality of the nodes interconnected.  

The connectivity diagrams in the beta band did not exhibited the same structural characteristics 

compared to the alpha band case. The connections are more spread and the strengths from the 

connections are smaller. For the closed eyes condition, the bilateral distribution of electrodes is 

observed for the windows of 2 seconds and 4 seconds, while central nodes located at the right 

central parietooccipital area exhibit higher connections in response to the opened eyes condition. 

For the case of the 20 seconds window such network structure is not noticeable and the 

directionalities in the connectivity patterns cannot be identified which could mean that at longer 

windows the connectivity structures are not so strong and might be necessary to lower the 
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strength threshold in order to address the connectivity directionalities and find such kind of 

structures.  

According to the works described in [71], [46] and [45], it arises the hypothesis of the 

involvement of the central posterior and central frontal regions as the characteristic areas of the 

resting state conditions. According to these works, the Default Mode Network (DMN) that 

comprises the aforementioned regions are part of the synchronization over the alpha band. This 

hypothesis is reinforced by the results obtained in this thesis as it was shown in the last section. 

The posterior cingulate cortex that comprises the posterior central joint and the medial 

prefrontal cortex where the central frontal nodes are located, correspond to the areas of higher 

activation for the alpha band. It was indeed observed in the results for the 2 seconds, 4 seconds 

and 20 seconds windows, having a greater strength for the windows of 2 seconds and 4 seconds 

as shown in the results. 

Considering this, it is possible to do a selection of an appropriate window according to these 

physiological characteristics. Despite that the window of 2 seconds presents more connections 

related to the DMN circuit, it did not have apparent significance on the degree for the alpha and 

beta bands, which according to [45] it should be present. In this way, the window of 4 seconds 

is the one that explains the most out of the attributes shown in the previous works, 

characterizing the network and explaining significantly the graph theoretical attributes.  
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8. Conclusions 
This master’s thesis work presented the design, implementation and evaluation of an algorithm 

that was devised as a tool for selecting an appropriate window size as a preliminary step under 

the effective connectivity framework. The algorithm provides a way to evaluate the stationary 

characteristics of EEG signals based on high-order statistics metrics, specifically based on 

kurtosis and the variation of this quantity over time according to the signals and the analysis of 

the window duration at test.  

Based on available tools [61], [58], the approach presented here performs the data cleaning 

process of the signals and applies classical pre-processing steps (i.e., filtering, resampling, 

artifact rejection) to prepare the cleaned signals for their segmentation according to different 

non-overlapping windows which are then used as the smallest data blocks from which the 

statistical features are being estimated.  

As it was shown, the application of the cleaning process reduced the total duration of the signals 

significantly, this supposed a limitation in the processing of the data, and the posterior 

connectivity analysis was affected since there were not enough samples to provide statistically 

significant results. A workaround was needed, and it was applied a less rigorous cleaning 

process by varying the parameters of the pre-processing stage to consider more data for the 

analysis. This situation is explained because some of the EEG recordings were heavily affected 

by external noise.  

The statistical quantities characterize each of the segment durations and from them there are 

obtained a series of distributions employed by the algorithm to look for the most common 

segments across the EEG accounting for similar statistical values. In this way, according to the 

searching strategy the segments that had comparable statistical features from each signal were 

selected and grouped together. Then, the shortest segment that fulfilled these characteristics and 

that according to the theoretical constructions was the most stationary one was selected to 

perform the connectivity analysis. 

The searching algorithm worked on the distribution domain of the variance of the kurtosis 

values according to the segmentation. This was an empirical way to look for the stationary 

segments according to the characteristics given the dispersion of the measures that evaluated 

the stationarity. This was devised as an iterative procedure that considered the model of the 

distribution, which was assumed to follow a gaussian like distribution of the kurtosis values 

and a chi-squared one for the kurtosis variance.  

Based on this assumption the searching algorithm works and considers the maximum point of 

the distributions to perform the searching. In this way, the results can be affected since they 

depend on the local maxima of the distribution to perform the searching, however, as the 

iterative process considers this point as the point of maximum probability, the searching 

provides segments of similar stationary characteristics. In order to improve this, other 

modelling and searching procedures would be needed to be explored. 

From the algorithm it was possible to select two windows for the overall group of subjects that 

were part of the experiment: one of 400 milliseconds for the short segment analysis and a second 

one of 4 seconds for the analysis at longer periods (i.e., larger than one second). However, as 

shown in Table 9 not all the subjects had the same window as choice. This diversity on the 
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results highlights the necessity of performing other evaluations on the selection, by performing 

conventional statistical tests of the quantities employed by the algorithm.  

The effective connectivity analysis was based on the general processing scheme based on 

different works as shown in Figure 4. This diagram considers general steps, being one of them 

the employment of a connectivity measure. In the state of the art regarding the actual analysis 

of physiological data, the use of one measure or another is not usually compared and even 

though they are supposed to bring similar results, it is not always the case. The use of the 

Directed Transfer Function as the connectivity measure in this work was based on its 

implementation of other works, which according to the results reinforce the observations found 

in the state of the art. 

The working domain definition in the channel space is a common practice performed in the 

analysis of resting state conditions, however, as it is explained by some authors [46], this is 

prone to errors and can provide erroneous descriptions of the connectivity analysis related to 

the topographical definitions of the channels. In this way, as a possible improvement, it would 

be useful to implement source localization schemes like LORETA in order to minimize the 

possible errors and provide a more accurate representation of the physiological processes in the 

brain. 

The surrogate data approach is a complex step to perform, for the purposes of this thesis, it was 

implemented by using a MATLAB toolbox dedicated to this process, however, the performance 

was limited, and the surrogates took a long time to be produced; about 5 hours per each 

condition for each subject. Moreover, the data size was very large, producing files that were 

about 4 Gb on average. This reduced the overall performance of the processing and required to 

spend a lot of time in the data generation. As a way to improve the overall processing, as a 

future work, it could be implemented a custom program in charge of this process.  

The analysis of connectivity provided a lot of insights regarding the nodes in the sensor space 

that generate and receive more influence from the other areas. As it was demonstrated by the 

results, the influence of the posterior part of the brain is increased and directed to the frontal 

area in a greater way when the closed eyes condition is produced.  

In contrast, the open eyes condition reveals structures that are more spread in terms of the areas 

that are being covered by the electrodes in consideration, however, in this case the 

directionalities in the connectivity convey more information about the signals involved in the 

connectivity. The frontal area and specific nodes are more heterogeneous according to the 

windows employed which supports the hypothesis that the window length affects the results in 

connectivity.  

In this sense, the use of graph-based parameters to select the electrodes of higher centrality 

according to the connectivity matrices derived from the windows employed, proved to be an 

appropriate way to highlight the regions of greater influence according to the significant 

connections. Moreover, the characterization in terms of the frequency bands demonstrated to 

provide features that characterize the resting state conditions, not only for the alpha band that 

was already found in previous works but in the beta band across multiple windows, being the 

segments of 2 seconds and 4 seconds, the ones of greater difference as shown in Figure 61 and 

Figure 64.  
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The generalization of the connectivity considering regions of interest did not provide 

meaningful results in the characterization of the information flow between the areas. As 

observed on Figure 55, the interaction across the regions shows that almost all of them are 

interconnected and are influenced reciprocally. This might be due to the large areas that are 

being covered by the electrodes that belong to them from which slight changes in the DTF 

amplitudes heavily affect the interactions and from them the connectivity might change. This 

is translated in the statistical results that were obtained which suggested that the interactions 

between the factors of window length, resting state condition and region of interest was not 

significant. 

Moreover, the large areas covered by the electrodes do not allow to characterize the information 

flow and the effective connectivity from neurophysiological points of interest, which justifies 

the use of graph theory measures in the sensor space to perform such characterization. 

The evaluation of the connectivity network considering the nodal information from the EEG 

electrodes highlighted specific connectivity influences as shown in the results. The connectivity 

results for the windows of 2s, 4s and 20s provided similar characteristics in the information 

influence pattern, while the 400ms provided information that cannot be validated considering 

the results from previous works. As it was discussed previously, the 400ms window was not 

appropriate and it was employed since it was an outcome from the window segmentation 

framework, however, after evaluating its results on effective connectivity it did not provide 

reproducible results considering other characteristic windows.  

In this sense, due to the characteristics of the resting state conditions under analysis and the 

physiological observations from previous works, the results that are more in line with such 

characteristics are the ones derived from the windows of 2s and 4s, which as explained 

previously, show similarities with the DMN network which is hypothesized to characterize the 

resting state conditions in relaxation as measured by the data in our case.  

The algorithm for the window length selection based on the stationary characteristics of EEG 

signals according to this thesis work demonstrates to be a tool that could be employed in the 

effective connectivity framework as a preprocessing step used in the same way as it was 

described in this project.  

The advantage of the algorithm is that it is not restricted to be only used for signals that measure 

the resting state, after performing more tests and code optimization, it could be employed in 

any kind of EEG data (from any type of experiment setup), at different sampling rates and using 

any channel size. This could be employed as a tool that provides some insights about the 

stationary characteristics of such signals and help in the research practice considering EEG data. 

 

  



152 

 

Appendix A: Short-window duration analysis  
Following the structure of the long-window duration analysis that was presented in the previous 

section, let consider the analysis of shorter segments contemplating a basis window duration 

WL = 50ms and the number of windows 𝑁𝑤 = 20. In this case, the stationary characteristics 

estimated from segment to segment reveal the modulation of rapid temporal dynamics exhibited 

by the signals if present.  

In Figure 65 there are depicted the searching domains and the selected variances under specific 

percentage thresholds considering the subjects S5, S6, S8, S9, and S10 in R1, R2 under the 

short-window segmentation procedure. 

(a) (b) 

(c) (d) 
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(e) (f) 

(g) (g) 

(i) 
(j) 

Figure 65. Kurtosis variance (𝐾𝜎2)  searching domains for segmentations from 50 ms to 1 second.  

Resting-state conditions depicted in pairs: a, b) S5 – R1, R2. c, d) S6 – R1, R2.  

e, f) S8 – R1, R2. g, h) S9 – R1, R2. i, j) S10 – R1, R2 
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All the searching domains depicted in Figure 65 can be considered part of the third category of 

the max and min kurtosis variance limits that was introduced earlier. In general, their limits are 

defined between min𝜎2 ≅ 0.2  and max𝜎2 ≅ 0.4 , and the variability on each bound is 

considerably lower than the case for the long-window segmentation case. As explained before, 

this suggests that percentage thresholds could be found in between the interval limits, however, 

as the graphs show, this is not the case, and higher kurtosis variances are needed to obtain 

common segment durations.  

In most of the searching domains, the algorithm is not able to find values restricted to 

percentage thresholds lower than the 40% of the largest variances, this shows that the minimum 

variances on each channel already exhibit magnitudes that are close to 0.4 times the maximum 

values. In general, it can be said that the kurtosis variances from shorter segments are higher in 

comparison to the longer ones from which it was possible to obtain values from the 20% 

proportion as can be observed in Figure 43. 

From the searching domains, and the percentage thresholds the algorithm works using the 

kurtosis variance density to find the signals exhibiting similar characteristics. Such values 

restricted to such conditions are depicted in Figure 65 as the points in between the searching 

domain and the kurtosis variance densities in Figure AN 3.  

The percentage threshold variance boundaries are summarized in Table 16 and Table 17. 

Among the variance lower and upper boundaries it can be noted that the percentage thresholds 

are found for magnitudes lower than 40% of the largest variances, however, they do not 

represent a significant number of channels sharing those characteristics as can be noted on Table 

AN 5- 14.  

Table 16. Kurtosis variance range of different percentage thresholds, 𝑤𝑙 = 50,100, … , 1000 milliseconds.  

Subjects S5, S6, S8, S9 and S10 in opened-eyes resting state condition R1 

R1 Bound 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

S5 
Lower 0 0 0 0.2276 0.2176 0.0216 0.0056 0 0 0 

Higher 0 0 0 0.2336 0.2436 0.4396 0.4556 0.4706 0.4766 0.5096 

S6 
Lower 0 0 0.2017 0.1967 0.1887 0.0627 0.0317 0.0197 0.0057 0 

Higher 0 0 0.2057 0.2107 0.2187 0.3447 0.3757 0.3877 0.4017 0 

S8 
Lower 0.1964 0.1954 0 0.1914 0.1794 0.0334 0.0044 0 0 0 

Higher 0.1984 0.1994 0 0.2034 0.2154 0.3614 0.3904 0.4154 0.4364 0.4994 

S9 
Lower 0 0 0.2273 0.2253 0.0063 0 0 0 0 0 

Higher 0 0 0.2333 0.2353 0.4543 0.4933 0.5113 0.5253 0.5373 1.2313 

S10 
Lower 0 0.2007 0.1967 0.1937 0.1647 0.1217 0 0 0 0 

Higher 0 0.2047 0.2087 0.2117 0.2407 0.2837 0.4097 0.4447 0.4597 1.2037 

 

Table 17. Kurtosis variance range of different percentage thresholds, 𝑤𝑙 = 50,100, … , 1000 milliseconds.  

Subjects S5, S6, S8, S9 and S10 in opened-eyes resting state condition R2 

R2 Bound 10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

S5 
Lower 0 0.2364 0.2344 0 0.0124 0 0 0 0 0 

Higher 0 0.2384 0.2404 0 0.4624 0.4794 0.4934 0.5104 0.5224 1.2384 

S6 
Lower 0 0.1935 0.1925 0.1895 0 0 0 0 0 0 

Higher 0 0.1955 0.1965 0.1995 0.4325 0.4535 0.4655 0.4785 0.4935 0.5155 

S8 
Lower 0 0.2139 0.2129 0.2119 0.2049 0.0349 0.0209 0.0019 0 0 

Higher 0 0.2159 0.2169 0.2179 0.2249 0.3949 0.4089 0.4279 0.4519 0.4829 

S9 
Lower 0 0 0.2118 0.1858 0 0 0 0 0 0 

Higher 0 0 0.2198 0.2458 0.5168 0.5298 0.5438 0.5558 0.5688 0.5878 

S10 
Lower 0 0.2134 0.2114 0.2084 0.1854 0.0114 0 0 0 0 

Higher 0 0.2154 0.2174 0.2204 0.2434 0.4174 0.4494 0.4664 0.4804 1.2154 
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The boundaries of the percentage threshold intervals can be used to provide a graphical 

representation with respect to the number of channels that have comparable stationary 

characteristics. In this way, Figure 66 shows the heat plots of the number of channels as a 

function of the segment length and the variance interval provided by the searching strategy.  

 

 

 
(a) 

 
(b) 
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(c) 

 (d) 

 (e) 
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 (f) 

 (g) 

 
(h) 
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 (i) 

 (j) 
Figure 66. Number of channels as a function of the segment length and the searching interval in terms of 

the kurtosis variance – Short window segmentation. 

 a, b). S5 – R1, R2. c, d). S6 – R1, R2. e, f) S8 – R1, R2. g, h) S9 – R1, R2. i, j) S10 – R1, R2 

 
The heat plots in Figure 66 show the number of channels (color-coded) on each of the 20 

windows composing the segmentation matrix. As can be noted by comparing this graph with 

the long window segmentation, the distribution of the lower variances is more uniform and not 

exclusive to the longer segment durations. Considering this, the window selection can be 

performed by considering a window length whose variance interval is small enough and the 

number of channels within such interval is at least a half of the total number of channels from 

the EEG dataset.  

Note that it is not possible to select segments with a duration lower than 0.143 s since it is the 

shortest duration to guarantee the observation of representative frequency components found in 

the alpha frequency band (that starts at 7 Hz).  

By setting the percentage thresholds varying in the order of tens, it can be noted from the heat 

plots that in most of the cases the lower percentages do not cover any important number of 
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channels and when it is reached a value (around 40%), the interval coverage is so large that it 

would consider the whole domain of the distribution magnitudes. That is why for the short 

segment analysis a more subtle variation of the thresholds is needed, however, the thresholds 

shown in the heat plots as dashed lines are used for reference, and from them it is possible to 

check the variance intervals (y-axis) to look for the appropriate segment durations in the table 

of features generated by the algorithm.  

The graphical representation is given in Figure 66 and the metrics derived from the algorithm 

provide the way to select the window durations for the short segmentation approach. As result, 

Table 18 shows the exact percentages of the windows that exhibit the lowest variance intervals 

from the densities with the shortest durations considering the limitations that have been 

discussed up to now.  

Table 18. Selected segment lengths (in green) for each subject and resting-state condition – Short window 

segmentation. 

Subject Condition Lower  Upper % 
Win 

length 
# 

Channels 
Channel % 

S5 

R1 0.20560916 0.25560916 52% 400 ms 44 77% 

R2 0.21241667 0.26241667 47% 
200 ms 47 80% 

400 ms 45 --  

S6 

R1 0.17070605 0.23670605 55% 500 ms 52 91% 

R2 0.17053044 0.21853044 43% 

100 ms 46  -- 

450 ms 45 75% 

500 ms 47  -- 

S8 

R1 0.17244561 0.22244561 52% 

400 ms 40 66% 

450 ms 41  -- 

500 ms 40  -- 

R2 0.18987643 0.23987643 52% 
100 ms 54  -- 

400 ms 46 74% 

S9 

R1 0.19625657 0.26425657 47% 
250 ms 48 87% 

350 ms 43  -- 

R2 0.184817 0.246817 40% 

100 ms 51  -- 

200 ms 47  -- 

400 ms 40 69% 

500 ms 42  -- 

S10 
R1 0.16273722 0.24273722 50% 400 ms 44 73% 

R2 0.17535043 0.25335043 52% 450 ms 48 79% 

      Mean 77% 

In this case, according to Table 18, the variance intervals according to the percentage thresholds 

of the selected windows are found at around 50% of the largest variances. As can be noted, the 

most common window across the EEG datasets correspond to the 𝑤𝑙 = 400 ms (with 5 out of 

10 as the mode). According to the selected lengths, the percentage of common channels is about 

77% (higher than the 69% found for the long window segmentation approach).  

From these data, it is observed that higher relative variances are considered for the window 

selection with an average of 49% for the percentage thresholds, which represents an increase 

of 13% w.r.t the 36% obtained for the case of longer window durations (Table 8).  

To check for the kurtosis distribution differences Figure 67 shows the estimated densities for 

the selected channels, the discarded channels, and the whole set of signals composing the EEG 

recordings under consideration.  
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(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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(i) (j) 

Figure 67. Kurtosis distributions considering the selected channels from the percentage thresholds. – Short 

window segmentation. Resting-state conditions depicted in pairs: a, b) S5 – R1, R2. c, d) S6 – R1, R2. e, f) S8 – 

R1, R2. g, h) S9 – R1, R2. i, j) S10 – R1, R2 

In contrast to the previous case (Figure 46), here the resulted distributions obtained under the 

conditions for short segmentation show to have very similar characteristics, even the discarded 

segments have similar kurtosis expected values but slightly higher variances and that is why 

some of the channels are being discarded. Excepting the kurtosis distributions from Subject 10 

in both resting-state conditions, the PDFs are almost identical, from this, could be generalized 

the use of the whole set of channels at the selected window length to perform the effective 

connectivity since the stationary characteristics are very related across the channels.  

 

For the S10 – R1, R2 case, the kurtosis characteristics of the discarded channels have a large 

deviation from the ones of selected signals as well as from the overall distribution of the whole 

set of channels, this suggests that the discarded signals represent a very small portion of the 

total distribution, thereby they can be rejected for the further analysis, the very same happens 

on the cases from the long windows segmentation. 

 

By considering all of the characteristics mentioned above, the window length selection is 

performed according to the characteristics derived from each of the EEG recordings, in this 

way, the analysis regarding the overall results is presented as follows.  
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Annex 
- Figures 

 
Figure AN 1. Heat plot of the 𝐾𝜎2 values estimated from the recording of S2 

 in opened eyes resting-state condition. 

 

 

(a) (b) 
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(c) (d) 

(e) (f) 

(g) (h) 
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(i) (j) 

Figure AN 2. 𝐾𝜎2  heat plot derived from 1 to 10 seconds segmentation. Resting state conditions depicted 

in pairs: a, b) S5 – R1, R2. c, d) S6 – R1, R2. e, f) S8 – R1, R2. g, h) S9 – R1, R2. i, j) S10 – R1, R2 

 

 
(a) 

 

(b) 
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 (c) 

 (d) 

 (e) 
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 (f) 

 (g) 

 (h) 
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 (i) 

 (j) 
Figure AN 3. 𝐾𝜎2  PDFs and the corresponding searching intervals with respect to max𝜎2 proportion 

thresholds. Resting state conditions depicted in pairs – Short window segmentation:  

a, b) S5 – R1, R2. c, d) S6 – R1, R2. e, f) S8 – R1, R2. g, h) S9 – R1, R2. i, j) S10 – R1, R2 
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Table AN 1. Number of channels, variance range and segment lengths, 𝑤𝑙 = 1,… , 10 seconds. S2 – R1 
  10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Lower 
limit 

0.1096 0.1066 0.1006 0.0796 0.0496 0.0076 0 0 0 0 

Upper 
limit 

0.1156 0.1186 0.1246 0.1456 0.1756 0.2176 0.2636 0.3016 0.3416 1.1136 

1 sec 0 0 0 0 1 7 22 35 49 59 

2 sec 2 2 6 15 31 55 59 59 59 59 

3 sec 1 2 3 16 36 48 53 55 57 59 

4 sec 3 6 9 25 38 48 54 55 57 59 

5 sec 3 6 13 30 47 51 54 55 57 59 

6 sec 1 5 10 34 50 53 54 56 56 59 

7 sec 1 5 10 31 50 52 55 57 57 59 

8 sec 4 5 11 25 50 55 57 58 58 59 

9 sec 1 2 5 19 46 53 55 56 57 59 

10 sec 2 6 13 27 47 57 57 58 58 59 

 

Table AN 2. Number of channels, variance range and segment lengths, 𝑤𝑙 = 1,… , 10 seconds. S2 – R2 

  10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Lower limit 0.17 0.168 0.165 0.163 0.131 0.065 0.025 -0.01 -0.05 -0.83 

Upper limit 0.172 0.174 0.177 0.179 0.211 0.277 0.317 0.354 0.389 1.172 

1 sec 0 0 0 0 0 6 19 32 46 60 

2 sec 0 3 8 12 39 60 60 60 60 60 

3 sec 1 4 7 9 33 59 60 60 60 60 

4 sec 1 2 5 6 26 57 60 60 60 60 

5 sec 2 4 10 11 44 59 60 60 60 60 

6 sec 2 4 5 9 48 60 60 60 60 60 

7 sec 1 3 4 6 40 60 60 60 60 60 

8 sec 2 3 6 9 43 60 60 60 60 60 

9 sec 0 1 1 2 13 49 60 60 60 60 

10 sec 2 3 7 8 25 60 60 60 60 60 

 

Table AN 3. Number of channels, variance range and segment lengths, 𝑤𝑙 = 0.05,… , 1 seconds. S2 – R1 

  10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Lower 
limit 

0 0 0 0 0.24099 0.05799 0.04999 0.03599 0.02299 0 

Upper 
limit 

0 0 0 0 0.25299 0.43599 0.44399 0.45799 0.47099 1.24799 

50 ms 0 0 0 0 0 6 19 33 47 59 

100 ms 0 0 0 0 12 59 59 59 59 59 

150 ms 0 0 0 0 7 59 59 59 59 59 

200 ms 0 0 0 0 16 59 59 59 59 59 

250 ms 0 0 0 0 23 59 59 59 59 59 

300 ms 0 0 0 0 8 59 59 59 59 59 

350 ms 0 0 0 0 4 59 59 59 59 59 

400 ms 0 0 0 0 5 59 59 59 59 59 

450 ms 0 0 0 0 10 59 59 59 59 59 

500 ms 0 0 0 0 12 59 59 59 59 59 

550 ms 0 0 0 0 8 59 59 59 59 59 

600 ms 0 0 0 0 11 59 59 59 59 59 

650 ms 0 0 0 0 10 59 59 59 59 59 

700 ms 0 0 0 0 9 59 59 59 59 59 

750 ms 0 0 0 0 5 59 59 59 59 59 

800 ms 0 0 0 0 6 59 59 59 59 59 

850 ms 0 0 0 0 8 59 59 59 59 59 

900 ms 0 0 0 0 7 59 59 59 59 59 

950 ms 0 0 0 0 6 57 58 58 58 59 

1000 ms 0 0 0 0 3 59 59 59 59 59 
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Table AN 4. Number of channels, variance range and segment lengths, 𝑤𝑙 = 0.05,… , 1 seconds. S2 – R2 

  10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Lower 
limit 

0 0 0 0.22811 0.02611 0.00111 0 0 0 0 

Upper 
limit 

0 0 0 0.23211 0.43411 0.45911 0.46611 0.47511 0.48511 0.51711 

50 ms 0 0 0 0 1 12 24 35 47 59 

100 ms 0 0 0 6 60 60 60 60 60 60 

150 ms 0 0 0 4 60 60 60 60 60 60 

200 ms 0 0 0 1 60 60 60 60 60 60 

250 ms 0 0 0 5 60 60 60 60 60 60 

300 ms 0 0 0 8 60 60 60 60 60 60 

350 ms 0 0 0 7 60 60 60 60 60 60 

400 ms 0 0 0 8 60 60 60 60 60 60 

450 ms 0 0 0 0 60 60 60 60 60 60 

500 ms 0 0 0 4 60 60 60 60 60 60 

550 ms 0 0 0 0 60 60 60 60 60 60 

600 ms 0 0 0 3 60 60 60 60 60 60 

650 ms 0 0 0 5 60 60 60 60 60 60 

700 ms 0 0 0 6 60 60 60 60 60 60 

750 ms 0 0 0 6 60 60 60 60 60 60 

800 ms 0 0 0 1 60 60 60 60 60 60 

850 ms 0 0 0 4 60 60 60 60 60 60 

900 ms 0 0 0 2 60 60 60 60 60 60 

950 ms 0 0 0 2 60 60 60 60 60 60 

1000 ms 0 0 0 1 60 60 60 60 60 60 

 

 
 

 50ms to 1 second segmentation 

Table AN 5. Number of channels, variance range and segment lengths, 𝑤𝑙 = 0.05,… , 1 seconds. S5 – R1 

  10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Lower limit 0 0 0 0.22761 0.21761 0.02161 0.00561 -0.0094 -0.0154 -0.0484 

Upper limit 0 0 0 0.23361 0.24361 0.43961 0.45561 0.47061 0.47661 0.50961 

50 ms 0 0 0 0 0 8 19 32 44 56 

100 ms 0 0 0 9 21 57 57 57 57 57 

150 ms 0 0 0 0 2 57 57 57 57 57 

200 ms 0 0 0 2 8 57 57 57 57 57 

250 ms 0 0 0 2 11 57 57 57 57 57 

300 ms 0 0 0 1 10 57 57 57 57 57 

350 ms 0 0 0 6 10 57 57 57 57 57 

400 ms 0 0 0 7 28 57 57 57 57 57 

450 ms 0 0 0 8 23 57 57 57 57 57 

500 ms 0 0 0 4 14 57 57 57 57 57 

550 ms 0 0 0 4 19 57 57 57 57 57 

600 ms 0 0 0 1 10 57 57 57 57 57 

650 ms 0 0 0 6 23 57 57 57 57 57 

700 ms 0 0 0 3 15 57 57 57 57 57 

750 ms 0 0 0 4 11 57 57 57 57 57 

800 ms 0 0 0 4 14 57 57 57 57 57 

850 ms 0 0 0 3 10 57 57 57 57 57 

900 ms 0 0 0 4 10 57 57 57 57 57 

950 ms 0 0 0 3 8 57 57 57 57 57 

1000 ms 0 0 0 3 12 57 57 57 57 57 
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Table AN 6. Number of channels, variance range and segment lengths, 𝑤𝑙 = 0.05, … , 1 seconds. S5 – R2 
  10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Lower 
limit 

0 0.23642 0.23442 0 0.01242 -0.0046 -0.0186 -0.0356 -0.0476 -0.7636 

Upper 
limit 

0 0.23842 0.24042 0 0.46242 0.47942 0.49342 0.51042 0.52242 1.23842 

50 ms 0 0 0 0 8 19 26 39 48 59 

100 ms 0 0 2 0 59 59 59 59 59 59 

150 ms 0 1 7 0 59 59 59 59 59 59 

200 ms 0 3 6 0 59 59 59 59 59 59 

250 ms 0 2 4 0 59 59 59 59 59 59 

300 ms 0 4 8 0 59 59 59 59 59 59 

350 ms 0 1 4 0 59 59 59 59 59 59 

400 ms 0 0 2 0 59 59 59 59 59 59 

450 ms 0 0 2 0 59 59 59 59 59 59 

500 ms 0 2 2 0 59 59 59 59 59 59 

550 ms 0 3 4 0 58 58 58 59 59 59 

600 ms 0 3 4 0 59 59 59 59 59 59 

650 ms 0 4 5 0 59 59 59 59 59 59 

700 ms 0 0 1 0 57 59 59 59 59 59 

750 ms 0 0 3 0 59 59 59 59 59 59 

800 ms 0 1 2 0 59 59 59 59 59 59 

850 ms 0 3 4 0 59 59 59 59 59 59 

900 ms 0 0 2 0 57 57 57 58 58 59 

950 ms 0 2 2 0 59 59 59 59 59 59 

1000 ms 0 0 2 0 59 59 59 59 59 59 

 

Table AN 7. Number of channels, variance range and segment lengths, 𝑤𝑙 = 0.05, … , 1 seconds. S6 – R1 

  10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Lower limit 0 0 0.20171 0.19671 0.18871 0.06271 0.03171 0.01971 0.00571 0 

Upper limit 0 0 0.20571 0.21071 0.21871 0.34471 0.37571 0.38771 0.40171 0 

50 ms 0 0 0 0 0 1 18 36 49 0 

100 ms 0 0 1 3 5 57 57 57 57 0 

150 ms 0 0 0 0 1 57 57 57 57 0 

200 ms 0 0 0 0 0 57 57 57 57 0 

250 ms 0 0 1 2 7 57 57 57 57 0 

300 ms 0 0 4 4 13 57 57 57 57 0 

350 ms 0 0 2 10 20 57 57 57 57 0 

400 ms 0 0 3 8 22 55 56 56 57 0 

450 ms 0 0 2 8 17 55 56 56 57 0 

500 ms 0 0 4 13 23 57 57 57 57 0 

550 ms 0 0 1 9 13 53 54 55 56 0 

600 ms 0 0 1 3 13 57 57 57 57 0 

650 ms 0 0 3 8 12 54 55 55 55 0 

700 ms 0 0 1 7 13 57 57 57 57 0 

750 ms 0 0 0 1 9 56 57 57 57 0 

800 ms 0 0 2 7 11 57 57 57 57 0 

850 ms 0 0 6 8 12 49 49 49 50 0 

900 ms 0 0 1 2 7 51 52 52 52 0 

950 ms 0 0 1 2 4 55 55 56 56 0 

1000 ms 0 0 0 2 6 57 57 57 57 0 
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Table AN 8. Number of channels, variance range and segment lengths, 𝑤𝑙 = 0.05, … , 1 seconds. S6 – R2 
  10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Lower 
limit 

0 0.19353 0.19253 0.18953 -0.0435 -0.0645 -0.0765 -0.0895 -0.1045 -0.1265 

Upper 
limit 

0 0.19553 0.19653 0.19953 0.43253 0.45353 0.46553 0.47853 0.49353 0.51553 

50 ms 0 0 0 0 6 17 29 39 49 59 

100 ms 0 2 4 8 60 60 60 60 60 60 

150 ms 0 0 0 0 60 60 60 60 60 60 

200 ms 0 1 2 5 60 60 60 60 60 60 

250 ms 0 1 1 2 60 60 60 60 60 60 

300 ms 0 1 2 7 60 60 60 60 60 60 

350 ms 0 3 4 8 60 60 60 60 60 60 

400 ms 0 2 3 8 60 60 60 60 60 60 

450 ms 0 2 3 12 60 60 60 60 60 60 

500 ms 0 4 7 15 60 60 60 60 60 60 

550 ms 0 3 6 13 60 60 60 60 60 60 

600 ms 0 2 3 8 60 60 60 60 60 60 

650 ms 0 1 3 8 60 60 60 60 60 60 

700 ms 0 3 3 6 60 60 60 60 60 60 

750 ms 0 2 2 6 60 60 60 60 60 60 

800 ms 0 1 1 3 60 60 60 60 60 60 

850 ms 0 3 3 10 60 60 60 60 60 60 

900 ms 0 2 3 5 60 60 60 60 60 60 

950 ms 0 1 3 6 60 60 60 60 60 60 

1000 ms 0 1 1 5 60 60 60 60 60 60 

 

Table AN 9. Number of channels, variance range and segment lengths, 𝑤𝑙 = 0.05, … , 1 seconds. S8 – R1 

  10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Lower limit 0.19645 0.19545 0 0.19145 0.17945 0.03345 0.00445 -0.0206 -0.0416 -0.1046 

Upper limit 0.19845 0.19945 0 0.20345 0.21545 0.36145 0.39045 0.41545 0.43645 0.49945 

50 ms 0 0 0 0 0 4 20 35 48 60 

100 ms 0 0 0 0 7 61 61 61 61 61 

150 ms 0 0 0 0 0 60 61 61 61 61 

200 ms 0 0 0 0 5 61 61 61 61 61 

250 ms 0 0 0 1 4 61 61 61 61 61 

300 ms 1 1 0 2 12 61 61 61 61 61 

350 ms 1 3 0 4 13 61 61 61 61 61 

400 ms 1 2 0 9 30 61 61 61 61 61 

450 ms 0 2 0 8 29 61 61 61 61 61 

500 ms 2 2 0 7 29 61 61 61 61 61 

550 ms 1 2 0 8 27 61 61 61 61 61 

600 ms 2 3 0 7 23 61 61 61 61 61 

650 ms 0 0 0 6 20 61 61 61 61 61 

700 ms 1 1 0 5 20 61 61 61 61 61 

750 ms 4 8 0 13 19 61 61 61 61 61 

800 ms 0 1 0 6 13 61 61 61 61 61 

850 ms 0 0 0 4 12 61 61 61 61 61 

900 ms 1 3 0 6 15 61 61 61 61 61 

950 ms 0 0 0 3 12 60 61 61 61 61 

1000 ms 0 0 0 5 13 60 60 61 61 61 
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Table AN 10. Number of channels, variance range and segment lengths, 𝑤𝑙 = 0.05, … , 1 seconds. S8 – R2 
  10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Lower 
limit 

0 0.21388 0.21288 0.21188 0.20488 0.03488 0.02088 0.00188 -0.0221 -0.0531 

Upper 
limit 

0 0.21588 0.21688 0.21788 0.22488 0.39488 0.40888 0.42788 0.45188 0.48288 

50 ms 0 0 0 0 0 10 24 37 49 61 

100 ms 0 3 11 14 31 62 62 62 62 62 

150 ms 0 0 0 0 0 62 62 62 62 62 

200 ms 0 1 2 2 4 62 62 62 62 62 

250 ms 0 0 0 1 4 62 62 62 62 62 

300 ms 0 3 4 6 14 62 62 62 62 62 

350 ms 0 0 3 4 13 62 62 62 62 62 

400 ms 0 2 5 7 23 62 62 62 62 62 

450 ms 0 2 4 4 18 62 62 62 62 62 

500 ms 0 1 4 6 18 62 62 62 62 62 

550 ms 0 1 1 1 8 62 62 62 62 62 

600 ms 0 3 5 7 18 62 62 62 62 62 

650 ms 0 1 1 3 9 62 62 62 62 62 

700 ms 0 2 3 6 13 62 62 62 62 62 

750 ms 0 1 2 3 8 62 62 62 62 62 

800 ms 0 1 2 5 12 62 62 62 62 62 

850 ms 0 2 4 5 6 62 62 62 62 62 

900 ms 0 1 1 2 11 62 62 62 62 62 

950 ms 0 0 0 0 3 62 62 62 62 62 

1000 ms 0 2 3 5 12 62 62 62 62 62 

 

Table AN 11. Number of channels, variance range and segment lengths, 𝑤𝑙 = 0.05, … , 1 seconds. S9 – R1 

  10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Lower limit 0 0 0.22726 0.22526 0.00626 -0.0327 -0.0507 -0.0647 -0.0767 -0.7707 

Upper limit 0 0 0.23326 0.23526 0.45426 0.49326 0.51126 0.52526 0.53726 1.23126 

50 ms 0 0 0 0 1 12 24 35 45 55 

100 ms 0 0 5 9 55 55 55 55 55 55 

150 ms 0 0 0 3 55 55 55 55 55 55 

200 ms 0 0 4 6 55 55 55 55 55 55 

250 ms 0 0 5 5 55 55 55 55 55 55 

300 ms 0 0 4 7 55 55 55 55 55 55 

350 ms 0 0 5 7 55 55 55 55 55 55 

400 ms 0 0 2 6 55 55 55 55 55 55 

450 ms 0 0 6 10 55 55 55 55 55 55 

500 ms 0 0 1 3 55 55 55 55 55 55 

550 ms 0 0 3 4 55 55 55 55 55 55 

600 ms 0 0 7 8 55 55 55 55 55 55 

650 ms 0 0 4 5 55 55 55 55 55 55 

700 ms 0 0 4 5 54 54 54 54 54 55 

750 ms 0 0 2 4 55 55 55 55 55 55 

800 ms 0 0 3 4 55 55 55 55 55 55 

850 ms 0 0 3 5 55 55 55 55 55 55 

900 ms 0 0 4 7 55 55 55 55 55 55 

950 ms 0 0 1 4 55 55 55 55 55 55 

1000 ms 0 0 0 0 55 55 55 55 55 55 
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Table AN 12. Number of channels, variance range and segment lengths, 𝑤𝑙 = 0.05, … , 1 seconds. S9 – R2 

  10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Lower 
limit 

0 0 0.21182 0.18582 -0.0852 -0.0982 -0.1122 -0.1242 -0.1372 -0.1562 

Upper 
limit 

0 0 0.21982 0.24582 0.51682 0.52982 0.54382 0.55582 0.56882 0.58782 

50 ms 0 0 0 0 10 20 29 39 48 57 

100 ms 0 0 6 48 58 58 58 58 58 58 

150 ms 0 0 9 42 58 58 58 58 58 58 

200 ms 0 0 8 47 58 58 58 58 58 58 

250 ms 0 0 4 37 58 58 58 58 58 58 

300 ms 0 0 5 32 58 58 58 58 58 58 

350 ms 0 0 1 34 58 58 58 58 58 58 

400 ms 0 0 9 40 58 58 58 58 58 58 

450 ms 0 0 3 30 58 58 58 58 58 58 

500 ms 0 0 11 42 58 58 58 58 58 58 

550 ms 0 0 5 28 58 58 58 58 58 58 

600 ms 0 0 6 35 58 58 58 58 58 58 

650 ms 0 0 9 39 58 58 58 58 58 58 

700 ms 0 0 3 28 58 58 58 58 58 58 

750 ms 0 0 1 24 58 58 58 58 58 58 

800 ms 0 0 2 27 58 58 58 58 58 58 

850 ms 0 0 3 26 58 58 58 58 58 58 

900 ms 0 0 3 21 58 58 58 58 58 58 

950 ms 0 0 2 13 58 58 58 58 58 58 

1000 ms 0 0 2 7 58 58 58 58 58 58 

 

Table AN 13. Number of channels, variance range and segment lengths, 𝑤𝑙 = 0.05, … , 1 seconds. S10 – R1 

  10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Lower limit 0 0.20074 0.19674 0.19374 0.16474 0.12174 -0.0043 -0.0393 -0.0543 -0.7983 

Upper limit 0 0.20474 0.20874 0.21174 0.24074 0.28374 0.40974 0.44474 0.45974 1.20374 

50 ms 0 0 0 0 0 0 15 31 45 60 

100 ms 0 0 0 0 4 48 60 60 60 60 

150 ms 0 0 0 0 0 19 60 60 60 60 

200 ms 0 2 3 7 26 50 60 60 60 60 

250 ms 0 0 2 2 26 46 60 60 60 60 

300 ms 0 2 8 12 36 52 60 60 60 60 

350 ms 0 3 6 10 40 53 60 60 60 60 

400 ms 0 5 11 15 44 52 59 60 60 60 

450 ms 0 6 10 16 42 52 59 60 60 60 

500 ms 0 2 7 10 39 54 59 60 60 60 

550 ms 0 1 3 5 37 56 60 60 60 60 

600 ms 0 5 5 7 35 55 60 60 60 60 

650 ms 0 3 12 14 38 54 60 60 60 60 

700 ms 0 2 4 5 29 55 60 60 60 60 

750 ms 0 3 8 14 36 55 59 60 60 60 

800 ms 0 1 2 2 12 54 60 60 60 60 

850 ms 0 2 3 4 15 58 60 60 60 60 

900 ms 0 1 1 3 17 53 60 60 60 60 

950 ms 0 1 1 1 16 49 60 60 60 60 

1000 ms 0 3 12 15 28 47 60 60 60 60 
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Table AN 14. Number of channels, variance range and segment lengths, 𝑤𝑙 = 0.05, … , 1 seconds. S10 – R2 

  10% 20% 30% 40% 50% 60% 70% 80% 90% 100% 

Lower 
limit 

0 0.21335 0.21135 0.20835 0.18535 0.01135 -0.0206 -0.0376 -0.0516 -0.7866 

Upper 
limit 

0 0.21535 0.21735 0.22035 0.24335 0.41735 0.44935 0.46635 0.48035 1.21535 

50 ms 0 0 0 0 0 5 20 33 47 61 

100 ms 0 0 0 1 22 61 61 61 61 61 

150 ms 0 0 0 0 4 61 61 61 61 61 

200 ms 0 3 6 6 23 61 61 61 61 61 

250 ms 0 0 2 2 16 61 61 61 61 61 

300 ms 0 1 6 11 29 61 61 61 61 61 

350 ms 0 5 8 11 32 60 61 61 61 61 

400 ms 0 2 5 9 35 61 61 61 61 61 

450 ms 0 0 6 11 38 58 58 59 60 61 

500 ms 0 0 2 6 30 59 60 61 61 61 

550 ms 0 3 5 7 28 61 61 61 61 61 

600 ms 0 1 3 4 25 61 61 61 61 61 

650 ms 0 3 3 6 30 61 61 61 61 61 

700 ms 0 1 3 5 22 61 61 61 61 61 

750 ms 0 3 3 6 24 61 61 61 61 61 

800 ms 0 0 0 1 16 61 61 61 61 61 

850 ms 0 2 3 3 24 61 61 61 61 61 

900 ms 0 0 2 3 17 61 61 61 61 61 

950 ms 0 1 2 5 13 61 61 61 61 61 

1000 ms 0 1 2 4 19 61 61 61 61 61 

 

Table AN 15. Significance of interactions for the normalized density of the Beta band. 

 

Table AN 16. Significance of interactions for the average strength of the alpha band. 

 

 

Row SumSq DF MeanSq F pValue pValueGG pValueHF pValueLB

(Intercept) 45.43532991 1 45.43532991 4519.96654 2.15443E-33 2.15443E-33 2.15443E-33 2.15443E-33

Error 0.291512018 29 0.010052139 1 0.5 0.5 0.5 0.5

 Res_State 0.005013335 1 0.005013335 3.076786165 0.089981009 0.089981009 0.089981009 0.089981009

Error(Res_State) 0.047252784 29 0.001629406 1 0.5 0.5 0.5 0.5

 Window 2.073837113 3 0.691279038 174.5138193 1.07974E-36 5.41781E-24 1.88394E-25 8.47695E-14

Error(Window) 0.344621856 87 0.003961171 1 0.5 0.5 0.5 0.5

 ROI 2.486738601 4 0.62168465 248.4578562 6.87737E-56 3.73924E-29 3.92042E-31 9.2846E-16

Error(ROI) 0.29025212 116 0.002502173 1 0.5 0.5 0.5 0.5

 Res_State:Window 0.018069819 3 0.006023273 3.584773301 0.016961997 0.023231894 0.019315042 0.068328254

Error(Res_State:Window) 0.146180721 87 0.001680238 1 0.5 0.5 0.5 0.5

 Res_State:ROI 0.029834223 4 0.007458556 6.623020084 7.76193E-05 0.000714381 0.000415177 0.015444817

Error(Res_State:ROI) 0.130634129 116 0.001126156 1 0.5 0.5 0.5 0.5

 Window:ROI 0.13729041 12 0.011440868 20.82103053 2.46031E-34 9.01308E-18 4.44002E-22 8.52993E-05

Error(Window:ROI) 0.191221174 348 0.000549486 1 0.5 0.5 0.5 0.5

 Res_State:Window:ROI 0.012192842 12 0.00101607 1.6484924 0.076848776 0.146908003 0.128996469 0.209328057

Error(Res_State:Window:ROI) 0.214494417 348 0.000616363 1 0.5 0.5 0.5 0.5

Row SumSq DF MeanSq F pValue pValueGG pValueHF pValueLB

(Intercept) 5559.851563 1 5559.851563 4285.458984 4.64202E-33 4.64202E-33 4.64202E-33 4.64202E-33

Error 37.62390137 29 1.297375917 1 0.5 0.5 0.5 0.5

(Intercept):Res_State 57.85322952 1 57.85322952 182.1325378 4.96133E-14 4.96133E-14 4.96133E-14 4.96133E-14

Error(Res_State) 9.2116642 29 0.317643583 1 0.5 0.5 0.5 0.5

(Intercept):Window 3432.019043 3 1144.006348 896.5610352 0 6.61871E-33 4.2158E-34 2.31929E-23

Error(Window) 111.0114594 87 1.275993824 1 0.5 0.5 0.5 0.5

(Intercept):ROI 0.61195755 4 0.152989388 2.553361416 0.042639766 0.048185941 0.042639766 0.120900318

Error(ROI) 6.950355053 116 0.059916854 1 0.5 0.5 0.5 0.5

(Intercept):Res_State:Window 13.34881115 3 4.449603558 9.344573021 2.02519E-05 0.002062998 0.001867456 0.004769025

Error(Res_State:Window) 41.42677307 87 0.476169795 1 0.5 0.5 0.5 0.5

(Intercept):Res_State:ROI 1.337808609 4 0.334452152 5.340751171 0.000553345 0.002083577 0.001280125 0.028139798

Error(Res_State:ROI) 7.264231205 116 0.062622681 1 0.5 0.5 0.5 0.5

(Intercept):Window:ROI 0.990084589 12 0.082507052 1.258646011 0.241647094 0.271934092 0.255803168 0.27111119

Error(Window:ROI) 22.81217575 348 0.065552227 1 0.5 0.5 0.5 0.5

(Intercept):Res_State:Window:ROI 0.377528459 12 0.031460706 0.492474943 0.918884456 0.829510272 0.87472868 0.488419563

Error(Res_State:Window:ROI) 22.2312355 348 0.063882858 1 0.5 0.5 0.5 0.5
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Figure AN 4. ROI connectivity diagrams obtained for the eyes open and eyes closed conditions for the  

beta frequency band. 
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Table AN 17. P-values of all the windows for alpha and beta. 
Alpha Beta 

  

  

Res_State_Window ROI_Origin ROI_Destination Difference StdErr pValue Lower Upper

R1 w0.4 ROI1 ROI2 -0.0153 0.0067 0.3113 -0.0358 0.0052

R1 w0.4 ROI1 ROI3 -0.0339 0.0052 0.0000 -0.0498 -0.0181

R1 w0.4 ROI1 ROI4 0.0611 0.0050 0.0000 0.0458 0.0764

R1 w0.4 ROI1 ROI5 0.0839 0.0065 0.0000 0.0641 0.1037

R1 w0.4 ROI2 ROI1 0.0153 0.0067 0.3113 -0.0052 0.0358

R1 w0.4 ROI2 ROI3 -0.0187 0.0057 0.0272 -0.0359 -0.0014

R1 w0.4 ROI2 ROI4 0.0764 0.0070 0.0000 0.0552 0.0976

R1 w0.4 ROI2 ROI5 0.0992 0.0050 0.0000 0.0841 0.1143

R1 w0.4 ROI3 ROI1 0.0339 0.0052 0.0000 0.0181 0.0498

R1 w0.4 ROI3 ROI2 0.0187 0.0057 0.0272 0.0014 0.0359

R1 w0.4 ROI3 ROI4 0.0950 0.0050 0.0000 0.0799 0.1102

R1 w0.4 ROI3 ROI5 0.1178 0.0067 0.0000 0.0974 0.1383

R1 w0.4 ROI4 ROI1 -0.0611 0.0050 0.0000 -0.0764 -0.0458

R1 w0.4 ROI4 ROI2 -0.0764 0.0070 0.0000 -0.0976 -0.0552

R1 w0.4 ROI4 ROI3 -0.0950 0.0050 0.0000 -0.1102 -0.0799

R1 w0.4 ROI4 ROI5 0.0228 0.0059 0.0063 0.0047 0.0409

R1 w0.4 ROI5 ROI1 -0.0839 0.0065 0.0000 -0.1037 -0.0641

R1 w0.4 ROI5 ROI2 -0.0992 0.0050 0.0000 -0.1143 -0.0841

R1 w0.4 ROI5 ROI3 -0.1178 0.0067 0.0000 -0.1383 -0.0974

R1 w0.4 ROI5 ROI4 -0.0228 0.0059 0.0063 -0.0409 -0.0047

R1 w20s ROI1 ROI2 -0.0312 0.0091 0.0180 -0.0588 -0.0036

R1 w20s ROI1 ROI3 -0.0668 0.0112 0.0000 -0.1007 -0.0329

R1 w20s ROI1 ROI4 0.0662 0.0065 0.0000 0.0463 0.0861

R1 w20s ROI1 ROI5 0.0873 0.0068 0.0000 0.0667 0.1079

R1 w20s ROI2 ROI1 0.0312 0.0091 0.0180 0.0036 0.0588

R1 w20s ROI2 ROI3 -0.0356 0.0106 0.0213 -0.0677 -0.0035

R1 w20s ROI2 ROI4 0.0974 0.0078 0.0000 0.0738 0.1211

R1 w20s ROI2 ROI5 0.1185 0.0089 0.0000 0.0915 0.1455

R1 w20s ROI3 ROI1 0.0668 0.0112 0.0000 0.0329 0.1007

R1 w20s ROI3 ROI2 0.0356 0.0106 0.0213 0.0035 0.0677

R1 w20s ROI3 ROI4 0.1330 0.0091 0.0000 0.1053 0.1608

R1 w20s ROI3 ROI5 0.1541 0.0093 0.0000 0.1257 0.1825

R1 w20s ROI4 ROI1 -0.0662 0.0065 0.0000 -0.0861 -0.0463

R1 w20s ROI4 ROI2 -0.0974 0.0078 0.0000 -0.1211 -0.0738

R1 w20s ROI4 ROI3 -0.1330 0.0091 0.0000 -0.1608 -0.1053

R1 w20s ROI4 ROI5 0.0210 0.0063 0.0241 0.0018 0.0403

R1 w20s ROI5 ROI1 -0.0873 0.0068 0.0000 -0.1079 -0.0667

R1 w20s ROI5 ROI2 -0.1185 0.0089 0.0000 -0.1455 -0.0915

R1 w20s ROI5 ROI3 -0.1541 0.0093 0.0000 -0.1825 -0.1257

R1 w20s ROI5 ROI4 -0.0210 0.0063 0.0241 -0.0403 -0.0018

R1 w_2s ROI1 ROI2 -0.0400 0.0110 0.0105 -0.0733 -0.0066

R1 w_2s ROI1 ROI3 -0.0488 0.0100 0.0003 -0.0791 -0.0185

R1 w_2s ROI1 ROI4 0.0888 0.0064 0.0000 0.0695 0.1081

R1 w_2s ROI1 ROI5 0.1099 0.0059 0.0000 0.0921 0.1277

R1 w_2s ROI2 ROI1 0.0400 0.0110 0.0105 0.0066 0.0733

R1 w_2s ROI2 ROI3 -0.0089 0.0107 1.0000 -0.0415 0.0238

R1 w_2s ROI2 ROI4 0.1288 0.0120 0.0000 0.0923 0.1652

R1 w_2s ROI2 ROI5 0.1499 0.0085 0.0000 0.1241 0.1756

R1 w_2s ROI3 ROI1 0.0488 0.0100 0.0003 0.0185 0.0791

R1 w_2s ROI3 ROI2 0.0089 0.0107 1.0000 -0.0238 0.0415

R1 w_2s ROI3 ROI4 0.1377 0.0088 0.0000 0.1111 0.1642

R1 w_2s ROI3 ROI5 0.1587 0.0107 0.0000 0.1262 0.1913

R1 w_2s ROI4 ROI1 -0.0888 0.0064 0.0000 -0.1081 -0.0695

R1 w_2s ROI4 ROI2 -0.1288 0.0120 0.0000 -0.1652 -0.0923

R1 w_2s ROI4 ROI3 -0.1377 0.0088 0.0000 -0.1642 -0.1111

R1 w_2s ROI4 ROI5 0.0211 0.0066 0.0336 0.0010 0.0411

R1 w_2s ROI5 ROI1 -0.1099 0.0059 0.0000 -0.1277 -0.0921

R1 w_2s ROI5 ROI2 -0.1499 0.0085 0.0000 -0.1756 -0.1241

R1 w_2s ROI5 ROI3 -0.1587 0.0107 0.0000 -0.1913 -0.1262

R1 w_2s ROI5 ROI4 -0.0211 0.0066 0.0336 -0.0411 -0.0010

R1 w_4s ROI1 ROI2 -0.0429 0.0086 0.0003 -0.0691 -0.0168

R1 w_4s ROI1 ROI3 -0.0468 0.0076 0.0000 -0.0698 -0.0237

R1 w_4s ROI1 ROI4 0.0823 0.0048 0.0000 0.0678 0.0967

R1 w_4s ROI1 ROI5 0.0985 0.0053 0.0000 0.0824 0.1145

R1 w_4s ROI2 ROI1 0.0429 0.0086 0.0003 0.0168 0.0691

R1 w_4s ROI2 ROI3 -0.0038 0.0059 1.0000 -0.0217 0.0141

R1 w_4s ROI2 ROI4 0.1252 0.0088 0.0000 0.0985 0.1519

R1 w_4s ROI2 ROI5 0.1414 0.0086 0.0000 0.1153 0.1675

R1 w_4s ROI3 ROI1 0.0468 0.0076 0.0000 0.0237 0.0698

R1 w_4s ROI3 ROI2 0.0038 0.0059 1.0000 -0.0141 0.0217

R1 w_4s ROI3 ROI4 0.1290 0.0072 0.0000 0.1072 0.1508

R1 w_4s ROI3 ROI5 0.1452 0.0092 0.0000 0.1174 0.1730

R1 w_4s ROI4 ROI1 -0.0823 0.0048 0.0000 -0.0967 -0.0678

R1 w_4s ROI4 ROI2 -0.1252 0.0088 0.0000 -0.1519 -0.0985

R1 w_4s ROI4 ROI3 -0.1290 0.0072 0.0000 -0.1508 -0.1072

R1 w_4s ROI4 ROI5 0.0162 0.0066 0.2107 -0.0040 0.0364

R1 w_4s ROI5 ROI1 -0.0985 0.0053 0.0000 -0.1145 -0.0824

R1 w_4s ROI5 ROI2 -0.1414 0.0086 0.0000 -0.1675 -0.1153

R1 w_4s ROI5 ROI3 -0.1452 0.0092 0.0000 -0.1730 -0.1174

R1 w_4s ROI5 ROI4 -0.0162 0.0066 0.2107 -0.0364 0.0040

R2 w0.4 ROI1 ROI2 -0.0249 0.0041 0.0000 -0.0374 -0.0125

R2 w0.4 ROI1 ROI3 -0.0422 0.0065 0.0000 -0.0619 -0.0225

R2 w0.4 ROI1 ROI4 0.0556 0.0041 0.0000 0.0430 0.0682

R2 w0.4 ROI1 ROI5 0.0636 0.0043 0.0000 0.0507 0.0766

R2 w0.4 ROI2 ROI1 0.0249 0.0041 0.0000 0.0125 0.0374

R2 w0.4 ROI2 ROI3 -0.0172 0.0067 0.1543 -0.0376 0.0031

R2 w0.4 ROI2 ROI4 0.0805 0.0039 0.0000 0.0687 0.0923

R2 w0.4 ROI2 ROI5 0.0886 0.0042 0.0000 0.0760 0.1012

R2 w0.4 ROI3 ROI1 0.0422 0.0065 0.0000 0.0225 0.0619

R2 w0.4 ROI3 ROI2 0.0172 0.0067 0.1543 -0.0031 0.0376

R2 w0.4 ROI3 ROI4 0.0978 0.0084 0.0000 0.0722 0.1233

R2 w0.4 ROI3 ROI5 0.1058 0.0086 0.0000 0.0798 0.1319

R2 w0.4 ROI4 ROI1 -0.0556 0.0041 0.0000 -0.0682 -0.0430

R2 w0.4 ROI4 ROI2 -0.0805 0.0039 0.0000 -0.0923 -0.0687

R2 w0.4 ROI4 ROI3 -0.0978 0.0084 0.0000 -0.1233 -0.0722

R2 w0.4 ROI4 ROI5 0.0081 0.0037 0.3736 -0.0032 0.0194

R2 w0.4 ROI5 ROI1 -0.0636 0.0043 0.0000 -0.0766 -0.0507

R2 w0.4 ROI5 ROI2 -0.0886 0.0042 0.0000 -0.1012 -0.0760

R2 w0.4 ROI5 ROI3 -0.1058 0.0086 0.0000 -0.1319 -0.0798

R2 w0.4 ROI5 ROI4 -0.0081 0.0037 0.3736 -0.0194 0.0032

R2 w20s ROI1 ROI2 -0.0072 0.0075 1.0000 -0.0301 0.0157

R2 w20s ROI1 ROI3 -0.0546 0.0105 0.0001 -0.0866 -0.0227

R2 w20s ROI1 ROI4 0.0696 0.0060 0.0000 0.0514 0.0878

R2 w20s ROI1 ROI5 0.0723 0.0067 0.0000 0.0521 0.0926

R2 w20s ROI2 ROI1 0.0072 0.0075 1.0000 -0.0157 0.0301

R2 w20s ROI2 ROI3 -0.0474 0.0103 0.0008 -0.0788 -0.0161

R2 w20s ROI2 ROI4 0.0768 0.0067 0.0000 0.0564 0.0972

R2 w20s ROI2 ROI5 0.0795 0.0062 0.0000 0.0606 0.0985

R2 w20s ROI3 ROI1 0.0546 0.0105 0.0001 0.0227 0.0866

R2 w20s ROI3 ROI2 0.0474 0.0103 0.0008 0.0161 0.0788

R2 w20s ROI3 ROI4 0.1243 0.0112 0.0000 0.0902 0.1583

R2 w20s ROI3 ROI5 0.1270 0.0115 0.0000 0.0920 0.1620

R2 w20s ROI4 ROI1 -0.0696 0.0060 0.0000 -0.0878 -0.0514

R2 w20s ROI4 ROI2 -0.0768 0.0067 0.0000 -0.0972 -0.0564

R2 w20s ROI4 ROI3 -0.1243 0.0112 0.0000 -0.1583 -0.0902

R2 w20s ROI4 ROI5 0.0027 0.0061 1.0000 -0.0158 0.0213

R2 w20s ROI5 ROI1 -0.0723 0.0067 0.0000 -0.0926 -0.0521

R2 w20s ROI5 ROI2 -0.0795 0.0062 0.0000 -0.0985 -0.0606

R2 w20s ROI5 ROI3 -0.1270 0.0115 0.0000 -0.1620 -0.0920

R2 w20s ROI5 ROI4 -0.0027 0.0061 1.0000 -0.0213 0.0158

R2 w_2s ROI1 ROI2 -0.0052 0.0057 1.0000 -0.0226 0.0123

R2 w_2s ROI1 ROI3 -0.0377 0.0067 0.0000 -0.0581 -0.0173

R2 w_2s ROI1 ROI4 0.0937 0.0052 0.0000 0.0780 0.1094

R2 w_2s ROI1 ROI5 0.0991 0.0058 0.0000 0.0814 0.1168

R2 w_2s ROI2 ROI1 0.0052 0.0057 1.0000 -0.0123 0.0226

R2 w_2s ROI2 ROI3 -0.0325 0.0095 0.0181 -0.0613 -0.0037

R2 w_2s ROI2 ROI4 0.0989 0.0039 0.0000 0.0870 0.1108

R2 w_2s ROI2 ROI5 0.1043 0.0052 0.0000 0.0884 0.1202

R2 w_2s ROI3 ROI1 0.0377 0.0067 0.0000 0.0173 0.0581

R2 w_2s ROI3 ROI2 0.0325 0.0095 0.0181 0.0037 0.0613

R2 w_2s ROI3 ROI4 0.1314 0.0089 0.0000 0.1044 0.1584

R2 w_2s ROI3 ROI5 0.1368 0.0090 0.0000 0.1095 0.1641

R2 w_2s ROI4 ROI1 -0.0937 0.0052 0.0000 -0.1094 -0.0780

R2 w_2s ROI4 ROI2 -0.0989 0.0039 0.0000 -0.1108 -0.0870

R2 w_2s ROI4 ROI3 -0.1314 0.0089 0.0000 -0.1584 -0.1044

R2 w_2s ROI4 ROI5 0.0054 0.0046 1.0000 -0.0085 0.0193

R2 w_2s ROI5 ROI1 -0.0991 0.0058 0.0000 -0.1168 -0.0814

R2 w_2s ROI5 ROI2 -0.1043 0.0052 0.0000 -0.1202 -0.0884

R2 w_2s ROI5 ROI3 -0.1368 0.0090 0.0000 -0.1641 -0.1095

R2 w_2s ROI5 ROI4 -0.0054 0.0046 1.0000 -0.0193 0.0085

R2 w_4s ROI1 ROI2 -0.0170 0.0071 0.2312 -0.0385 0.0045

R2 w_4s ROI1 ROI3 -0.0463 0.0080 0.0000 -0.0706 -0.0220

R2 w_4s ROI1 ROI4 0.0973 0.0049 0.0000 0.0823 0.1123

R2 w_4s ROI1 ROI5 0.1040 0.0048 0.0000 0.0895 0.1186

R2 w_4s ROI2 ROI1 0.0170 0.0071 0.2312 -0.0045 0.0385

R2 w_4s ROI2 ROI3 -0.0293 0.0117 0.1770 -0.0648 0.0061

R2 w_4s ROI2 ROI4 0.1143 0.0059 0.0000 0.0965 0.1321

R2 w_4s ROI2 ROI5 0.1210 0.0067 0.0000 0.1005 0.1415

R2 w_4s ROI3 ROI1 0.0463 0.0080 0.0000 0.0220 0.0706

R2 w_4s ROI3 ROI2 0.0293 0.0117 0.1770 -0.0061 0.0648

R2 w_4s ROI3 ROI4 0.1436 0.0094 0.0000 0.1152 0.1721

R2 w_4s ROI3 ROI5 0.1504 0.0109 0.0000 0.1172 0.1835

R2 w_4s ROI4 ROI1 -0.0973 0.0049 0.0000 -0.1123 -0.0823

R2 w_4s ROI4 ROI2 -0.1143 0.0059 0.0000 -0.1321 -0.0965

R2 w_4s ROI4 ROI3 -0.1436 0.0094 0.0000 -0.1721 -0.1152

R2 w_4s ROI4 ROI5 0.0067 0.0048 1.0000 -0.0079 0.0213

R2 w_4s ROI5 ROI1 -0.1040 0.0048 0.0000 -0.1186 -0.0895

R2 w_4s ROI5 ROI2 -0.1210 0.0067 0.0000 -0.1415 -0.1005

R2 w_4s ROI5 ROI3 -0.1504 0.0109 0.0000 -0.1835 -0.1172

R2 w_4s ROI5 ROI4 -0.0067 0.0048 1.0000 -0.0213 0.0079

Res_State_Window ROI_Origin ROI_Destination Difference StdErr pValue Lower Upper

R1 w0.4 ROI1 ROI2 -0.0140 0.0057 0.1949 -0.0313 0.0032

R1 w0.4 ROI1 ROI3 -0.0284 0.0060 0.0006 -0.0468 -0.0101

R1 w0.4 ROI1 ROI4 0.0465 0.0052 0.0000 0.0306 0.0624

R1 w0.4 ROI1 ROI5 0.0617 0.0063 0.0000 0.0424 0.0809

R1 w0.4 ROI2 ROI1 0.0140 0.0057 0.1949 -0.0032 0.0313

R1 w0.4 ROI2 ROI3 -0.0144 0.0047 0.0463 -0.0287 -0.0001

R1 w0.4 ROI2 ROI4 0.0605 0.0060 0.0000 0.0422 0.0788

R1 w0.4 ROI2 ROI5 0.0757 0.0048 0.0000 0.0612 0.0902

R1 w0.4 ROI3 ROI1 0.0284 0.0060 0.0006 0.0101 0.0468

R1 w0.4 ROI3 ROI2 0.0144 0.0047 0.0463 0.0001 0.0287

R1 w0.4 ROI3 ROI4 0.0749 0.0047 0.0000 0.0607 0.0891

R1 w0.4 ROI3 ROI5 0.0901 0.0057 0.0000 0.0729 0.1073

R1 w0.4 ROI4 ROI1 -0.0465 0.0052 0.0000 -0.0624 -0.0306

R1 w0.4 ROI4 ROI2 -0.0605 0.0060 0.0000 -0.0788 -0.0422

R1 w0.4 ROI4 ROI3 -0.0749 0.0047 0.0000 -0.0891 -0.0607

R1 w0.4 ROI4 ROI5 0.0152 0.0043 0.0154 0.0020 0.0284

R1 w0.4 ROI5 ROI1 -0.0617 0.0063 0.0000 -0.0809 -0.0424

R1 w0.4 ROI5 ROI2 -0.0757 0.0048 0.0000 -0.0902 -0.0612

R1 w0.4 ROI5 ROI3 -0.0901 0.0057 0.0000 -0.1073 -0.0729

R1 w0.4 ROI5 ROI4 -0.0152 0.0043 0.0154 -0.0284 -0.0020

R1 w20s ROI1 ROI2 -0.0398 0.0092 0.0017 -0.0678 -0.0118

R1 w20s ROI1 ROI3 -0.0613 0.0106 0.0000 -0.0935 -0.0292

R1 w20s ROI1 ROI4 0.0338 0.0093 0.0104 0.0056 0.0620

R1 w20s ROI1 ROI5 0.0588 0.0076 0.0000 0.0358 0.0817

R1 w20s ROI2 ROI1 0.0398 0.0092 0.0017 0.0118 0.0678

R1 w20s ROI2 ROI3 -0.0215 0.0094 0.2884 -0.0500 0.0069

R1 w20s ROI2 ROI4 0.0736 0.0102 0.0000 0.0425 0.1047

R1 w20s ROI2 ROI5 0.0986 0.0085 0.0000 0.0728 0.1244

R1 w20s ROI3 ROI1 0.0613 0.0106 0.0000 0.0292 0.0935

R1 w20s ROI3 ROI2 0.0215 0.0094 0.2884 -0.0069 0.0500

R1 w20s ROI3 ROI4 0.0951 0.0109 0.0000 0.0621 0.1281

R1 w20s ROI3 ROI5 0.1201 0.0109 0.0000 0.0870 0.1533

R1 w20s ROI4 ROI1 -0.0338 0.0093 0.0104 -0.0620 -0.0056

R1 w20s ROI4 ROI2 -0.0736 0.0102 0.0000 -0.1047 -0.0425

R1 w20s ROI4 ROI3 -0.0951 0.0109 0.0000 -0.1281 -0.0621

R1 w20s ROI4 ROI5 0.0250 0.0063 0.0047 0.0057 0.0443

R1 w20s ROI5 ROI1 -0.0588 0.0076 0.0000 -0.0817 -0.0358

R1 w20s ROI5 ROI2 -0.0986 0.0085 0.0000 -0.1244 -0.0728

R1 w20s ROI5 ROI3 -0.1201 0.0109 0.0000 -0.1533 -0.0870

R1 w20s ROI5 ROI4 -0.0250 0.0063 0.0047 -0.0443 -0.0057

R1 w_2s ROI1 ROI2 -0.0379 0.0097 0.0051 -0.0673 -0.0084

R1 w_2s ROI1 ROI3 -0.0437 0.0103 0.0020 -0.0749 -0.0124

R1 w_2s ROI1 ROI4 0.0877 0.0055 0.0000 0.0710 0.1043

R1 w_2s ROI1 ROI5 0.1035 0.0047 0.0000 0.0892 0.1179

R1 w_2s ROI2 ROI1 0.0379 0.0097 0.0051 0.0084 0.0673

R1 w_2s ROI2 ROI3 -0.0058 0.0105 1.0000 -0.0376 0.0260

R1 w_2s ROI2 ROI4 0.1255 0.0112 0.0000 0.0916 0.1595

R1 w_2s ROI2 ROI5 0.1414 0.0083 0.0000 0.1163 0.1665

R1 w_2s ROI3 ROI1 0.0437 0.0103 0.0020 0.0124 0.0749

R1 w_2s ROI3 ROI2 0.0058 0.0105 1.0000 -0.0260 0.0376

R1 w_2s ROI3 ROI4 0.1313 0.0088 0.0000 0.1047 0.1580

R1 w_2s ROI3 ROI5 0.1472 0.0114 0.0000 0.1125 0.1819

R1 w_2s ROI4 ROI1 -0.0877 0.0055 0.0000 -0.1043 -0.0710

R1 w_2s ROI4 ROI2 -0.1255 0.0112 0.0000 -0.1595 -0.0916

R1 w_2s ROI4 ROI3 -0.1313 0.0088 0.0000 -0.1580 -0.1047

R1 w_2s ROI4 ROI5 0.0159 0.0069 0.2855 -0.0051 0.0368

R1 w_2s ROI5 ROI1 -0.1035 0.0047 0.0000 -0.1179 -0.0892

R1 w_2s ROI5 ROI2 -0.1414 0.0083 0.0000 -0.1665 -0.1163

R1 w_2s ROI5 ROI3 -0.1472 0.0114 0.0000 -0.1819 -0.1125

R1 w_2s ROI5 ROI4 -0.0159 0.0069 0.2855 -0.0368 0.0051

R1 w_4s ROI1 ROI2 -0.0469 0.0080 0.0000 -0.0712 -0.0226

R1 w_4s ROI1 ROI3 -0.0601 0.0075 0.0000 -0.0828 -0.0375

R1 w_4s ROI1 ROI4 0.0572 0.0050 0.0000 0.0419 0.0725

R1 w_4s ROI1 ROI5 0.0792 0.0046 0.0000 0.0651 0.0932

R1 w_4s ROI2 ROI1 0.0469 0.0080 0.0000 0.0226 0.0712

R1 w_4s ROI2 ROI3 -0.0132 0.0074 0.8593 -0.0358 0.0094

R1 w_4s ROI2 ROI4 0.1041 0.0093 0.0000 0.0758 0.1324

R1 w_4s ROI2 ROI5 0.1261 0.0068 0.0000 0.1053 0.1468

R1 w_4s ROI3 ROI1 0.0601 0.0075 0.0000 0.0375 0.0828

R1 w_4s ROI3 ROI2 0.0132 0.0074 0.8593 -0.0094 0.0358

R1 w_4s ROI3 ROI4 0.1173 0.0090 0.0000 0.0899 0.1448

R1 w_4s ROI3 ROI5 0.1393 0.0091 0.0000 0.1116 0.1670

R1 w_4s ROI4 ROI1 -0.0572 0.0050 0.0000 -0.0725 -0.0419

R1 w_4s ROI4 ROI2 -0.1041 0.0093 0.0000 -0.1324 -0.0758

R1 w_4s ROI4 ROI3 -0.1173 0.0090 0.0000 -0.1448 -0.0899

R1 w_4s ROI4 ROI5 0.0220 0.0063 0.0150 0.0029 0.0410

R1 w_4s ROI5 ROI1 -0.0792 0.0046 0.0000 -0.0932 -0.0651

R1 w_4s ROI5 ROI2 -0.1261 0.0068 0.0000 -0.1468 -0.1053

R1 w_4s ROI5 ROI3 -0.1393 0.0091 0.0000 -0.1670 -0.1116

R1 w_4s ROI5 ROI4 -0.0220 0.0063 0.0150 -0.0410 -0.0029

R2 w0.4 ROI1 ROI2 -0.0091 0.0036 0.1681 -0.0200 0.0018

R2 w0.4 ROI1 ROI3 -0.0207 0.0067 0.0419 -0.0410 -0.0005

R2 w0.4 ROI1 ROI4 0.0485 0.0032 0.0000 0.0389 0.0581

R2 w0.4 ROI1 ROI5 0.0501 0.0035 0.0000 0.0394 0.0608

R2 w0.4 ROI2 ROI1 0.0091 0.0036 0.1681 -0.0018 0.0200

R2 w0.4 ROI2 ROI3 -0.0116 0.0056 0.4667 -0.0287 0.0054

R2 w0.4 ROI2 ROI4 0.0576 0.0034 0.0000 0.0473 0.0678

R2 w0.4 ROI2 ROI5 0.0591 0.0050 0.0000 0.0440 0.0743

R2 w0.4 ROI3 ROI1 0.0207 0.0067 0.0419 0.0005 0.0410

R2 w0.4 ROI3 ROI2 0.0116 0.0056 0.4667 -0.0054 0.0287

R2 w0.4 ROI3 ROI4 0.0692 0.0060 0.0000 0.0509 0.0875

R2 w0.4 ROI3 ROI5 0.0708 0.0083 0.0000 0.0457 0.0959

R2 w0.4 ROI4 ROI1 -0.0485 0.0032 0.0000 -0.0581 -0.0389

R2 w0.4 ROI4 ROI2 -0.0576 0.0034 0.0000 -0.0678 -0.0473

R2 w0.4 ROI4 ROI3 -0.0692 0.0060 0.0000 -0.0875 -0.0509

R2 w0.4 ROI4 ROI5 0.0016 0.0036 1.0000 -0.0092 0.0124

R2 w0.4 ROI5 ROI1 -0.0501 0.0035 0.0000 -0.0608 -0.0394

R2 w0.4 ROI5 ROI2 -0.0591 0.0050 0.0000 -0.0743 -0.0440

R2 w0.4 ROI5 ROI3 -0.0708 0.0083 0.0000 -0.0959 -0.0457

R2 w0.4 ROI5 ROI4 -0.0016 0.0036 1.0000 -0.0124 0.0092

R2 w20s ROI1 ROI2 -0.0198 0.0079 0.1827 -0.0439 0.0043

R2 w20s ROI1 ROI3 -0.0352 0.0086 0.0030 -0.0613 -0.0092

R2 w20s ROI1 ROI4 0.0462 0.0065 0.0000 0.0266 0.0659

R2 w20s ROI1 ROI5 0.0542 0.0071 0.0000 0.0325 0.0758

R2 w20s ROI2 ROI1 0.0198 0.0079 0.1827 -0.0043 0.0439

R2 w20s ROI2 ROI3 -0.0154 0.0108 1.0000 -0.0481 0.0173

R2 w20s ROI2 ROI4 0.0661 0.0064 0.0000 0.0465 0.0856

R2 w20s ROI2 ROI5 0.0740 0.0068 0.0000 0.0535 0.0946

R2 w20s ROI3 ROI1 0.0352 0.0086 0.0030 0.0092 0.0613

R2 w20s ROI3 ROI2 0.0154 0.0108 1.0000 -0.0173 0.0481

R2 w20s ROI3 ROI4 0.0815 0.0093 0.0000 0.0532 0.1097

R2 w20s ROI3 ROI5 0.0894 0.0102 0.0000 0.0585 0.1203

R2 w20s ROI4 ROI1 -0.0462 0.0065 0.0000 -0.0659 -0.0266

R2 w20s ROI4 ROI2 -0.0661 0.0064 0.0000 -0.0856 -0.0465

R2 w20s ROI4 ROI3 -0.0815 0.0093 0.0000 -0.1097 -0.0532

R2 w20s ROI4 ROI5 0.0080 0.0063 1.0000 -0.0110 0.0270

R2 w20s ROI5 ROI1 -0.0542 0.0071 0.0000 -0.0758 -0.0325

R2 w20s ROI5 ROI2 -0.0740 0.0068 0.0000 -0.0946 -0.0535

R2 w20s ROI5 ROI3 -0.0894 0.0102 0.0000 -0.1203 -0.0585

R2 w20s ROI5 ROI4 -0.0080 0.0063 1.0000 -0.0270 0.0110

R2 w_2s ROI1 ROI2 0.0036 0.0048 1.0000 -0.0111 0.0182

R2 w_2s ROI1 ROI3 -0.0326 0.0088 0.0088 -0.0594 -0.0059

R2 w_2s ROI1 ROI4 0.0907 0.0049 0.0000 0.0759 0.1056

R2 w_2s ROI1 ROI5 0.0977 0.0065 0.0000 0.0778 0.1175

R2 w_2s ROI2 ROI1 -0.0036 0.0048 1.0000 -0.0182 0.0111

R2 w_2s ROI2 ROI3 -0.0362 0.0097 0.0085 -0.0658 -0.0066

R2 w_2s ROI2 ROI4 0.0872 0.0031 0.0000 0.0776 0.0967

R2 w_2s ROI2 ROI5 0.0941 0.0042 0.0000 0.0814 0.1068

R2 w_2s ROI3 ROI1 0.0326 0.0088 0.0088 0.0059 0.0594

R2 w_2s ROI3 ROI2 0.0362 0.0097 0.0085 0.0066 0.0658

R2 w_2s ROI3 ROI4 0.1234 0.0100 0.0000 0.0931 0.1537

R2 w_2s ROI3 ROI5 0.1303 0.0103 0.0000 0.0990 0.1616

R2 w_2s ROI4 ROI1 -0.0907 0.0049 0.0000 -0.1056 -0.0759

R2 w_2s ROI4 ROI2 -0.0872 0.0031 0.0000 -0.0967 -0.0776

R2 w_2s ROI4 ROI3 -0.1234 0.0100 0.0000 -0.1537 -0.0931

R2 w_2s ROI4 ROI5 0.0069 0.0050 1.0000 -0.0083 0.0222

R2 w_2s ROI5 ROI1 -0.0977 0.0065 0.0000 -0.1175 -0.0778

R2 w_2s ROI5 ROI2 -0.0941 0.0042 0.0000 -0.1068 -0.0814

R2 w_2s ROI5 ROI3 -0.1303 0.0103 0.0000 -0.1616 -0.0990

R2 w_2s ROI5 ROI4 -0.0069 0.0050 1.0000 -0.0222 0.0083

R2 w_4s ROI1 ROI2 -0.0221 0.0077 0.0768 -0.0456 0.0013

R2 w_4s ROI1 ROI3 -0.0419 0.0088 0.0005 -0.0687 -0.0152

R2 w_4s ROI1 ROI4 0.0812 0.0052 0.0000 0.0653 0.0971

R2 w_4s ROI1 ROI5 0.0838 0.0048 0.0000 0.0691 0.0985

R2 w_4s ROI2 ROI1 0.0221 0.0077 0.0768 -0.0013 0.0456

R2 w_4s ROI2 ROI3 -0.0198 0.0130 1.0000 -0.0592 0.0196

R2 w_4s ROI2 ROI4 0.1033 0.0090 0.0000 0.0760 0.1306

R2 w_4s ROI2 ROI5 0.1059 0.0090 0.0000 0.0787 0.1332

R2 w_4s ROI3 ROI1 0.0419 0.0088 0.0005 0.0152 0.0687

R2 w_4s ROI3 ROI2 0.0198 0.0130 1.0000 -0.0196 0.0592

R2 w_4s ROI3 ROI4 0.1231 0.0098 0.0000 0.0932 0.1530

R2 w_4s ROI3 ROI5 0.1257 0.0115 0.0000 0.0907 0.1607

R2 w_4s ROI4 ROI1 -0.0812 0.0052 0.0000 -0.0971 -0.0653

R2 w_4s ROI4 ROI2 -0.1033 0.0090 0.0000 -0.1306 -0.0760

R2 w_4s ROI4 ROI3 -0.1231 0.0098 0.0000 -0.1530 -0.0932

R2 w_4s ROI4 ROI5 0.0026 0.0043 1.0000 -0.0104 0.0157

R2 w_4s ROI5 ROI1 -0.0838 0.0048 0.0000 -0.0985 -0.0691

R2 w_4s ROI5 ROI2 -0.1059 0.0090 0.0000 -0.1332 -0.0787

R2 w_4s ROI5 ROI3 -0.1257 0.0115 0.0000 -0.1607 -0.0907

R2 w_4s ROI5 ROI4 -0.0026 0.0043 1.0000 -0.0157 0.0104
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