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Abstract: Among several other fields related to applied mathematics, Deep Neural
Networks (DNNs) have been recently deployed to the study and analysis of Partial
Differential Equations (PDEs), emerging as the so-called Physics-Informed Neural
Networks (PINNs). In this work, we focus our attention on their performance in
approximating the exact solution of a general and significative set of scalar PDEs.
During our discussion, we should expect to appreciate their renowned qualities
and face some of the notorious drawbacks that are still responsible for their limited
use in real-world applications. One of their major disadvantages consists in the
actual problem of choosing the most convenient architecture to be used for our
purposes, which represents the heart of our discussion. After a thorough analysis
of the results concerning the performances related to the basic version of the PINN,
where we study the relationship between the accuracy of the trained networks
and their structural characteristics consisting in the number of hidden layers, the
amount of neurons per layer and the cardinality of the training set, we provide
a general overview of some innovative techniques, found in literature, that aim
at enhancing this numerical tool. Finally, we propose the implementation and
the relative heuristic justification of an attempted adaptive scheme, an evolution
of the plain basic framework formerly introduced, that jointly employs the so-
called Growing Method alongside the Residual Adaptive Refinement technique. The
computational tool exploited for the construction of all models relies on a newly-
developed Python library for the resolution of scalar PDEs over elementary hyper-
rectangular domains by means of an ADAM - LBFGS optimizer (the related code
is publicly available at: https://github.com/patropolimi/Thesis).
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1. Introduction

In the ever-expanding world of applied sciences, Partial Differential Equations (PDEs) have recently become
the main character on the stage. These mathematical entities have arisen from our ability to gather, model
and translate into a rigorous and consistent framework all the fundamental principles and the experimental
evidence coming from the observation of natural phenomena. Appearing in countless fields of expertise, ranging
from biology to finance, passing through physics, chemistry and statistics, the road-map that ideally leads to
their general resolution is nowadays considered to be the most valuable of all the hunted treasures in science.
Nevertheless, although PDEs still remain extremely hard to study and analyze in their most general form, many
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great advancements have been achieved throughout the last centuries in different specific areas (see [8, 19, 49]).
Over the years, however, it has also rapidly become clear that the realization of a general methodology able
to provide the closed analytical expression for the solution of any conceivable PDE is, put mildly, utopian (see
[17, 22, 41, 50, 70]). In order to overcome this fundamental obstacle, scientists and engineers have developed
and employed several numerical methods to find reliable approximations of the target, on top of which we find
the famous Finite Element Methods (FEMs) (see [21]). Additionally, the contemporary growth of the nowadays
ubiquitous Artificial Neural Networks (ANNs) have recently offered an alternative path in the search for a
reliable tool to be used for this field of application (see [1, 6, 35–38, 53, 54, 65, 67]). This specific mathematical
structure, belonging to the vast category of Machine Learning methodologies, is generally accompanied by a
user-defined loss function which undergoes a minimization procedure through a proper optimization algorithm
(see [5]). The main idea that greatly enhances its use consists in choosing a cost functional where both the
contributions coming from PDE residuals (inside the computational domain) and boundary conditions (on the
edges) are penalized, implying their implicit imposition during optimization as for the unsupervised learning
methodologies. Thanks to this newborn technique, which conserves the soul of the so-called black-box methods,
we eliminate (or, at least, drastically reduce) the need to build and install physical sensors for the direct
measurement of target solution values over an arbitrarily chosen set of points that would be subsequently
emplaced in the loss function expression to force the network to learn the desired behavior from pure data.
Other than being outdated and extremely expensive, such an approach would be very naive and incomplete as
well, in the sense that precious information provided by the equation and boundary conditions of the governing
PDE would not be fully taken into account and/or exploited. Regarding the aforementioned innovative approach,
the most visible drawbacks clearly reside in the computational overhead attached to the need of calculating the
network function partial derivatives that appear in the studied PDE and, even more importantly, in the fact
that, having to deal with a loss function which is generally not convex, we cannot have any guarantee about the
reliability of the obtained numerical solution, which may well express one of its local (but not global) minima.
We have at our disposal, nonetheless, a very convenient fix for the former issue: the Automatic Differentiation
toolbox (AD) in [4], originally created alongside the much general class of compositional functions. The overall
structure combining all the mentioned mathematical and computational elements is currently known as Physics-
Informed Neural Network, the protagonist of our work (see [37]). In the following, we shall proceed by exploiting
a specific subclass of Artificial Neural Networks, the so-called Deep Neural Networks (DNNs). After a brief
introduction dedicated to the exposition of their essential features, we will linger on the notorious Optimal
Architecture Problem coming along with their usage, eventually presenting two attempted proposals that aim
at resolving it. Such an issue, born with DNNs, clearly remains an open problem for PINNs as well and
represents the inspiring ground for this work. A subsequent deeper explanation about the inner workings of
the PINN structure, accompanied by the presentation of some related formal results that have been recently
discovered in this framework, is followed by the essential core of our work, whose aim is to explore in detail
the behavior of PINNs, in terms of performance, in relation to their structural and architectural properties:
number of hidden layers, amount of neurons per layer and cardinality of the training set. At this point it
is crucial to disambiguate the meaning of a few important concepts: whenever we refer to basic PINNs, we
intend those plain Deep Neural Networks whose structure remains fixed throughout the whole optimization
process, while the so-called adaptive PINNs consist of those architectures that possess the ability to modify
their properties during the learning phase as, for instance, changing the number of hidden layers with which
they are embedded. In this work, the terms network, model and (in proper contexts) architecture will be used
as synonyms. Continuing with the introduction of the path followed for this project, in Section 3 and 4 we
present the results obtained analyzing a selected set of PDEs through the just explained basic and adaptive
versions of the PINN proposed in this work, dedicating the main focus of our study to the relationship between
performance and architectural properties of the models. Finally, consistently with the gathered data, we will
draw our conclusions and suggest a series of possible further developments for future studies on this subject. In
order to be clear from the beginning and avoid any possible misunderstanding, we premise that the content of
this work must not be intended as a suggestion to pursue an alternative path to the consolidated FEM technique
for the approximate resolution of PDEs. The latter has indeed proven to be a successful, consistent and reliable
framework that, at least in this context, is well ahead of any other proposed methodology.

1.1. Objectives & Perspectives

The primary objective of our work is to study, verify and reproduce the performance of the PINN mathematical
structure for a variety of cases that have already been analyzed in literature (as in [37, 49, 65]), and continue
this journey on some other instances of physical interest. In this framework, the main part of our discussion will
be dedicated to the so-called sensitivity analysis: this study essentially consists in comparing, over the same
differential problem, the performance of differently-structured networks. In doing so, we will try to identify the
most influential architectural features and hyper-parameters of PINNs, basing our conclusions on the L2 relative
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error criterion. Because each trained model started with a random initialization, we launched three attempts
for every different set of specifications (later referred to as first, second and third instances). In addition to this
investigation, we also draw a few experimental considerations about the convergence properties of PINNs (as
[60]). The last chapter of our journey will be devoted to the proposal of a trivial adaptive scheme for PINNs, an
algorithm that merges two other techniques related to this field: Growing and Residual Adaptive Refinement
(see [37]). In order to hint the effective exploration concerning the reliability of this experimental method, we
will apply it to a few test cases and draw our very first conclusions on the basis of their results. Regarding this
topic, the interested reader may even decide to pursue such road and explore other possible ways to develop
this new framework, possibly integrating other techniques found in literature inside the presented algorithm.

2. Technical Background

The present section is dedicated to the exposition of the essential machinery that constitutes the basis of our
work. First of all, we propose a general introduction to Artificial Neural Networks and Deep Neural Networks in
particular, with a glance of the context in which they were born and a description of the key phases where they
play a major role. Afterwards, it is presented a still debated and unresolved issue concerning the entire world
of Artificial Intelligence, the so-called Optimal Architecture Problem. Finally, we explore the mathematical
structure, detailed characteristics and key motivations behind the leading actor of our journey, the PINN.

2.1. Artificial Neural Networks

Developed in the context of classification problems, Artificial Neural Networks represent the core of many mod-
ern Machine Learning methodologies. Their flexibility allows the usage of this mathematical structure in a wide
range of applications, especially where a great amount of data has to be constantly elaborated, updated and
correctly interpreted. From an abstract standpoint, a Deep Neural Network is a particular compositional func-
tion formed by several layers made of fundamental building blocks, called neurons, that simulate the behavior
of a human brain by communicating through a series of connections. The latter are the essential parameters
of the model, and consist of a group of weights and activation thresholds (or biases) controlled by the user.
During a successful training phase, the network assigns a proper combination of values to these parameters,
enabling the model to reliably reproduce the phenomenon of our interest. Similarly to real neurons, the units
of the network modulate their output by applying a proper (typically nonlinear) activation function to their
input signal. A schematic visualization of a classical Deep Neural Network architecture is shown in Figure 1,
where we also represent the internal structure and all the single components of a virtual neuron. In synthesis:

N : Rm → Rn, N = NW (x)

In the expression above, x is the m-dimensional input of the DNN N , while W encodes the collection of
weights and biases for the given fixed architecture. In the most general case the network maps the elements of
the domain into n-dimensional output vectors. An alternative and more explicit functional formulation, where
we particularly emphasize the compositional structure of the Neural Network and the role of its activation
function ρ, can be written as follows (from [49]):

N (x) = TL(ρ (TL−1(. . . ρ (T1(x))))),

where Tl(y) = Aly + bl for every l ∈ {1, . . . , L}. In these expressions, L indicates the number of hidden layers
plus one (the output layer), Al ∈ RNl×Nl−1 is the weight matrix that maps the output of the l − 1-th layer
(of dimension Nl−1) into the successive layer’s input (with dimension Nl−1) and bl ∈ RNl represents the l-th
layer bias vector. Setting d as the network’s input dimension, we necessarily have that N0 = d. Notice that
here ρ is intended to be applied coordinate-wise. In Figure 2 we have depicted, in a neighborhood of the origin,
the two activation profiles that have been extensively exploited throughout our work. The introduced mathe-
matical tool belongs to the evermore thriving category of black-box techniques, typically employed to predict
the outcome of specific phenomena that are, on one hand, characterized by an unknown underlying functioning
mechanism, but nevertheless considered to be scientifically addressable. The most relevant advantage carried
by this methodology is not limited to the fact that it does not necessarily require any a priori insight on the
studied process, but also in that it may even lead to the discovering of some hidden dynamics which can be
useful for the consequent development of a mathematical theory that reproduces the observed behavior. It
is by combining a great elasticity with a cheap computational cost that DNNs have entered a wide range of
real applications in the last decades. As we will discuss later for a more specific case, the sudden birth and
rapid evolution of this scientific discipline has been accompanied by the production of several rigorous results
concerning their performance (see [1, 35, 37, 49]). The latter have proven to be crucial in taking the first steps
towards a better understanding of the positive features and possible limitations connected to this technique.
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Structure of a DNN with two hidden layers
composed by four neurons each.

Structure of the i-th neuron: wij are the
weights and θi is the activation threshold.

Figure 1: General representation of a Deep Neural Network. See [56].

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0
−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00 Tanh

(a) Tanh (x) = sinh(x)/ cosh(x).
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(b) ReLU (x) = max {0;x}.

Figure 2: Plots of the hyperbolic tangent (left) and ReLU (right) activation functions over [−2, 2].

2.1.1 Training Phase

The training (or learning) phase of a Neural Network constitutes the heart of Machine Learning. This is
the process that ultimately allows the constructed model to replicate and predict the essential features of the
phenomenon that we are analyzing. In the branch of supervised learning, this procedure comes down to the
minimization of a cost functional of the form (see [5, 56]):

J =
1

N

N∑
i=1

‖NW (xi)− yi‖2,

where ‖·‖ denotes the euclidian norm. The cost functional J formally expresses the average distance of the true
(observed) output y with respect to the prediction that the approximated model provides when fed with the
relative input x. This quantity is evaluated over a sample pool that is better known as training set, that may
be depicted as the training camp where the model learns how to emulate the studied process. During this step,
the network looks for an optimal combination of values for its parameters W , in such a way that the resulting
model is able to accurately reproduce the behavior of the input-output couples belonging to the training set.
Since the birth of this field, a great variety of learning methods have been developed and published in literature
(as in [5, 27, 48]). Without the need of exploring such details, we limit ourselves to the trivial consideration
that each of these techniques carries its own advantages and drawbacks (see [64, 66]).
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2.1.2 Testing Phase

Testing a Neural Network means evaluating its general performance. The importance of this step resides in
the fact that the ultimate goal consists in the creation of a model which is able to generalize the knowledge
acquired during the learning phase. Indeed, our final aim is to accurately predict not only the trend shown by
the samples of the training set, but also and even more importantly to reveal the hidden features of any realistic
and observable input-output couple. In other words, given a generic input x, we would like our model to provide
a reliable approximation NW (x) of the relative true output y. The implicit rationale is that, during the training
phase, we expect our network to grasp the underlying generic characteristics of the studied phenomenon. If
this is the case, when tested on unseen data, the model will be able to approximately reproduce what would be
measured through laborious and expensive experimental observations (see [62]). In order to test its performance,
we employ the expression of J over a numerous and statistically significant dataset, better known as test set.

2.1.3 The Optimal Architecture Problem

Until now we never dwelt on the problem of choosing the size of the architecture to be used for our purpose. With
no exaggeration, we might consider the latter as one of the major challenges affecting the whole mathematical
branch of Artificial Neural Networks. In order to present the issue and give an intuitive explanation of what
happens behind the scenes, let us give a look to Figure 3. In it, the black dots play the role of a noisy training
set sampled from a parabola, while the red line indicates the approximated prediction of the constructed Neural
Network. On the left, we see an exemplification of the so-called underfitting phenomenon, a trend that emerges
when the network poorly fits both the training and the test samples. This problem always arises when the size
of the model is too small, implying that the network does not possess the capacity needed to understand the
complexity of the analyzed process. On the contrary, when the selected architecture happens to be excessively
large with respect to the complexity of the studied phenomenon, the model typically shows the pattern on the
right. This behavior, known as overfitting , occurs when the network accurately fits the pattern presented by
the training set and fails at representing the test set with a similar precision. In this scenario, the model tends
to memorize the features (and the relative noise) of the input-output couples belonging to the training set,
affecting its ability to generalize the acquired knowledge and consequently resulting in a low train error and a
considerably higher test error. Only when the architecture has a nearly optimal number of free parameters can
we fully appreciate the predictive power of the Neural Network. This situation is well depicted in the central
plot: under these circumstances, the model is capable of describing both the training and test data with great
precision. Unfortunately, the determination of the optimal capacity of the model is not straightforward, since
it strongly depends on the case under study (see [9, 22, 25, 28, 44, 58]).

Figure 3: (a) Underfitting (b) Optimal fitting (c) Overfitting. See [56].

2.1.4 The Growing Procedure

Over the years, it has rapidly become clear that the concept of a complete mathematical theory that provides
and formally justifies the correct dimension of a network for each possible problem lies well beyond any realistic
scenario. It is in the aforementioned framework that the so-called Growing Methods were born. Their simple
procedure, aimed at resolving the Optimal Architecture Problem, consists in starting with a small model and
progressively increase its size until it reaches the right capacity for the description of the phenomenon of our
interest. After a successful run, the network is expected to generalize the learned knowledge with a properly-
sized architecture for the problem at hand. Part of the side benefits brought by this technique concern memory
saving and the possibility, in some cases, of extracting unknown underlying rules that characterize the physics
of the studied phenomenon (see [63]). Although in our analysis we mainly deal with PINNs, for which the
concepts of underfitting and overfitting shall be reinterpreted with a slightly different perspective, we believe
that it was worth mentioning these two concepts in the previous subsection for clarity and completeness, prior to
the introduction of the Growing procedure. This method will then be thoroughly examined in the final section,
where it has been encapsulated in a newly-developed adaptive scheme devised for the learning phase of PINNs.
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Figure 4: Growing step where a new candidate neuron is inserted into the last hidden layer. See [45].

In Figure 4 we present one among the essential operational modes through which we might attempt to grow
the architecture in use for the resolution of the problem at hand. This operative step, usually embedded with
either a formal mathematical procedural justification or just a heuristical reasoning, is generally accompanied
by a specific criterion that identifies the most convenient way to enlarge the size of our structure (see [12,
14, 23, 31, 34, 40, 55]). For the particular instance illustrated below, we evaluate the convenience of adding
a candidate neuron to the last hidden layer of the Neural Network: in the case where such modification is
considered to be worthy and effective, the newly-drawn gray connections are properly initialized alongside the
creation (and proper initialization) of the related output weights linked to our additional unit. The mentioned
step, in general, has to be iteratively repeated until a proper stopping criterion is satisfied. At this ending point,
we finally expect to possess a much more reliable structure for the interpretation of the studied phenomenon.

2.1.5 The Pruning Procedure

For completeness, we also cite the alter-ego of the just introduced Growing procedure: the Pruning technique.
The latter follows the same ideal concept of the former, but acts with the opposite rationale.

Figure 5: Generic depiction of the two main pruning approaches: elimination of single synapses (weight-
by-weight cancellation) and deletion of entire units (neuron-by-neuron elimination). See [18].

This procedure, starting with an overestimation of the ideal size needed for our network, operates by iteratively
removing subsets of internal connections (according to a chosen criterion) until it reaches an optimal architectural
state for the prediction of the phenomenon under study. In light of all considerations made, we might say that
Growing Methods seek the most convenient size of the model starting from a situation where underfitting occurs,
while Pruning techniques try to reach the same goal by shrinking the network to cancel the effects of overfitting.
Guided by the experimental evidence showing that, at least in the mathematical framework concerning the
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numerical resolution of PDEs through DNNs, larger architectures are not necessarily able to provide better fits
than smaller models even on extremely smooth functions, in this work we decided to pursue and test only the
first of these two methodologies. To the current author’s knowledge, neither of these two techniques have ever
been exploited in this context before. Figure 5 shows a symbolic but nonetheless thorough illustration of the
two most important pruning approaches that can be found in literature (see [7, 16, 20, 30, 32, 47, 51]). Every
elimination technique is based on a rigorous mathematical formulation or, at least, on a heuristical criterion
that is used to pinpoint the physical entities that should be conveniently deleted from the actual structure of
the network, whether they are a subset of single synapses or entire units, whose elimination consists in casting
away all the connections directly linked to them. These deletions are performed by setting to zero the interested
weights, along the ones that are consequently cut-off from the network by the former elimination (namely all
synapses that can no longer contribute to the input-output relation expressed by the model). Even though the
presented technique will not enter our adaptive algorithm proposal, we provide an overview of some important
related procedures (with their formal or heuristical background) in Appendix B.

2.2. Physics-Informed Neural Networks

A vast multiplicity of Partial Differential Equations present a strong form expression that contains several terms
with an arbitrary degree of derivation. On the other hand, Deep Neural Networks carry along a very impor-
tant side-benefit of their usage in this specific context: automatic differentiation (see [4]). This revolutionary
computational tool represents the key that opened the door to the resolution of PDEs with Machine Learning
techniques. The great advantage coming from the combination of DNNs and AD resides in the exact (up to
machine precision) and relatively cheap computation of any network derivative with respect not only to its
inputs but also to all the model parameters. However, finding the solution to a Partial Differential Equation
with a Deep Neural Network requires an approach that has little in common with all the other problems that
involve the usage of this technique. In fact, the target function that we want to approximate is unknown and
cannot be provided explicitly. It is therefore meaningless, in this context, to talk about the concepts of training
and test set in the form that we previously presented. Hence, these will be accordingly substituted with their
proper expression for this framework (from [37]). As a consequence, we have to accordingly provide a new
expression for the cost functional that undergoes the minimization procedure during the learning phase of the
models. Physics-Informed Neural Networks were born from a seething background, leveraging on the need of a
new mathematical tool for the resolution of PDEs. Their essential innovation consists in combining the flexibil-
ity of Deep Neural Networks with a cost functional that implicitly provides, as in the branch of unsupervised
learning, the target solution through the imposition of a null PDE residual inside the computational domain,
while forcing the model to satisfy the known boundary conditions on its edges. The pure penalization of the
strong form of the PDE residual has a relatively cheap cost thanks to the employment of the AD toolbox, as we
anticipated. In this context, differently from the FEM framework, we need not transform the problem in any of
the so-called weak formulations (also known as integral formulations) and we might as well resolve it without
any further manipulation of its characterizing expression (diversely from [1, 35]).
Consider now the general form of a scalar Partial Differential Equation, possibly parametrized by a vector of
coefficients λ for the solution u(x) defined on a domain Ω ⊂ Rd:

f

(
x;

∂u

∂x1
, . . . ,

∂u

∂xd
;

∂2u

∂x1∂x1
, . . . ,

∂2u

∂x1∂xd
; . . . ;λ

)
= 0, x ∈ Ω,

while all boundary conditions on the edges are grouped under the following notation:

B (u,x) = 0, x ∈ ∂Ω,

where B (u,x) could be Dirichlet, Neumann or periodic boundary conditions. For time-dependent problems
we consider the time coordinate as a special component of x, so that Ω represents the entire spatio-temporal
domain. In this case, the initial condition can be simply treated as a special type of Dirichlet boundary condition.
In the following, we show both a schematic and visual representation of the PINN algorithm (see [37]).

Algorithm 1 Solving PDEs using PINNs
1: Construct a network û (x;W ) such that all its parameters are encoded in W
2: Specify the two training sets Tf and Tb for the equation and boundary conditions
3: Employ a proper cost functional that includes the sum of both the L2 norm of the PDE residuals

inside the domain and the contribution coming from the boundary conditions on the edges
4: Train the model to find a suitable combination of parametersW ∗ by minimizing the cost functional
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One convenient expression for our cost functional reads as follows:

L (W ; Tf , Tb) = Lf (W ; Tf ) + Lb (W ; Tb) ,

where the explicit formulation of the written terms is provided as:

Lf (W ; Tf ) =
1

|Tf |
∑
x∈Tf

∥∥∥∥f (x;
∂û

∂x1
, . . . ,

∂û

∂xd
;

∂2û

∂x1∂x1
, . . . ,

∂2û

∂x1∂xd
; . . . ;λ

)∥∥∥∥2

2

,

Lb (W ; Tb) =
1

|Tb|
∑
x∈Tb

‖B (û,x)‖22,

in which ‖·‖2 is an alternative notation for the euclidian norm. Tf and Tb are the training sets containing
the scattered points on which we evaluate the PDE residuals and impose the boundary conditions during the
learning phase of the model, respectively. We subsequently expect from our network that, upon a successful
training procedure, it has learned to accurately reproduce and satisfy both the PDE and the boundary conditions
not only over the training sets but also everywhere else in the domain. In Figure 6 we illustrate an essential
visualization of a Physics-Informed Neural Network applied to the resolution of the simple one-dimensional
Poisson equation coupled with a set of mixed boundary conditions.

Figure 6: Complete representation of the structure for a Physics-Informed Neural Network applied to
the resolution of the 1D Poisson equation coupled with mixed boundary conditions. Taken from [37].

Considering that the loss function is typically highly nonlinear and nonconvex with respect to the model pa-
rameters, it is generally advisable to minimize its value by using gradient-based optimizers such as Gradient
Descent, ADAM and LBFGS (see [5, 27, 48]). The former two are first-order methods, while LBFGS has a
superlinear-order of convergence since it also involves an approximate computation of the second-order deriva-
tives of the loss function. Unlike other traditional numerical methods, for PINNs there is generally no guarantee
of unique solution. This issue stems from the fact that the latter are obtained through the minimization of
nonconvex optimization problems, which in general do not ensure any uniqueness result. We also note that
PINNs may even converge to different realizations if starting from differently-initialized architectures. Thus, a
common strategy consists in training several independent versions of the same PINN, each prompted with a
different random initialization. At the end of their learning phase, we obviously choose the network presenting
the smallest loss function value. In order to achieve a good level of accuracy, we not only need to exploit a
suitable optimizer but we also have to properly tune all hyper-parameters of the model, such as the network
size and the number of residual points.
One of the notorious drawbacks attached to PINNs is better known as Frequency Principle (see [70]), an issue
that consists in the bias of learning the PDE’s solution from low to high frequencies. To overcome this problem
and, more generally, in the attempt of improving the performance of PINNs, many different adaptive schemes
have been introduced in literature. A non-exhaustive list includes the usage of adaptive activation functions
[24], the employment of a soft-attention mechanism through the proper variation of the multiplying coefficients
for each addend of the loss function components [39], the so-called Residual Adaptive Refinement method [37]
and other time-adaptive approaches for the resolution of time-dependent PDEs [67]. Furthermore, some of these
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papers have also shed light on additional pathologies from which PINNs seem to suffer (see [64, 66]). Finally, it
is worth recalling that PINNs have not been deployed only to the direct search for the approximation of PDE
solutions, but that one of the most promising among their applications concerns their use in the resolution
of inverse problems, as in [37]. In the following two subsections, we report a series of useful considerations
concerning the results of approximation theory for PINNs and a brief comparison against FEMs (see [37, 49]).

2.2.1 Approximation Theory & Error Analysis

At this point we believe it is worth recalling that PINNs are nothing else but Deep Neural Networks coupled
with a cost functional that enforces the underlying solution of the studied phenomenon in an implicit manner.
Their approximation potentialities, features and properties are, therefore, identical to the latter. It is for this
reason that all the formal results related to DNNs can be equivalently extended to our framework. One of the
fundamental questions related to PINNs is whether there exists a network which is able to uniformly satisfy
both the PDE equation inside the computational domain and the relative boundary conditions on its edges.
In other words, we are interested in understanding under which circumstances we can construct a model that
simultaneously approximates the exact solution and its partial derivatives. In order to address the mentioned
problem, we need to introduce some useful notation: let Zd+ be the set of d-dimensional nonnegative integers.
Then, for m = (m1, . . . ,md) ∈ Zd+, we set |m| := m1 + · · ·+md, and define:

Dm :=
∂|m|

∂xm1
1 . . . ∂xmd

d

.

We say that f ∈ Cm(Rd) if Dkf ∈ C(Rd) for all k ≤m, with k ∈ Zd+. The following result (from [37]) holds:

Theorem 2.1. Let mi ∈ k ∈ Zd+, i = 1, . . . , s, and set m = maxi=1,...,s|mi|. Assume σ ∈ Cm(R) and that σ
is not a polynomial. Then, the space of single hidden layer networks:

M(σ) := span
{
σ (w · x+ b) : w ∈ Rd, b ∈ R

}
,

is dense in
Cm1,...,ms

(Rd) := ∩si=1C
mi

(Rd),

which means that, for any f ∈ Cm1,...,ms

(Rd), any compact set K ⊂ Rd, and any ε > 0, there exists a network
g ∈M(σ) satisfying the relation:

max
x∈K
|Dkf(x)−Dkg(x)| < ε

for all k ∈ Zd+ such that k ≤mi for some i.
The presented theorem shows that the class of Deep Neural Networks with a single layer are able, if provided
with a sufficiently large number of neurons, to simultaneously and uniformly approximate any function with
its partial derivatives. Nonetheless we must remember that, due to the finite memory of any computational
tool, in reality we have physical constraints on the maximum number of units that can simultaneously belong
to a model. Assume now F to be the family of all functions that can be represented by the chosen DNN
architecture, and denote with u the exact solution that we want to approximate. Since it is extremely unlikely
that the latter belongs to F , we define uF = arg minf∈F ‖f − u‖ as the best approximation of u among this
class of functions. Define now T = Tf ∪ Tb. Since we train our DNN only over the points in T , we also set
uT = arg minf∈F L (f ;F ; T ) as the network in F whose loss is at global minimum. In any realistic scenario,
however, the optimization algorithm returns ũT , an approximation of uT . We can therefore provide a symbolic
expression for the upper-bound of the total approximation error as a sum of three independent contributions.
Denoting the total error with ξ, we exploit the triangle inequality to write:

ξ := ‖ũT − u‖ ≤ ‖ũT − uT ‖+ ‖uT − uF‖+ ‖uF − u‖.

The first term, also called optimization error, inevitably comes from the learning procedure: it mainly depends
on the loss function landscape and the general training settings. The second term, the so-called generalization
error, is determined by the total number and location of the training points in T , as well as by the capacity of
the family F . Finally we have the approximation error, which measures how closely uF can approximate the
target solution u. In light of Theorem 2.1, we know that networks with larger size have smaller approximation
errors. On the other hand, a wider architecture could lead to a higher generalization error. Such a balance is
better known as bias-variance trade-off, and we generally say that overfitting occurs when the generalization
error dominates the other terms. Despite some very recent forward steps that have been made in the estimation
of rigorous bounds for the latter (see [43]), we are still far from a complete theoretical framework that provides
a control on the total error for PINNs. More generally, the quantification of these three errors for the much
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wider mathematical branch of supervised learning is still an open research area (see [42, 71]). Still related to
the subject of approximation theory, we introduce below another theorem which will be later referred to (from
[49]). Such a result becomes useful when we compare the performances of shallow versus deep networks for the
pure approximation problem of a particular class of functions, the so-called saw-teeth profiles, highlighting the
essential role of depth for this specific set of targets.

Theorem 2.2. Assume N to be a shallow network with one-dimensional input and output layers, embedded
with the ReLU activation function and N neurons:

N ∈ S(σ) :=

{
N∑
i=1

zi · σ (wi · x+ bi) + q : z,w, b ∈ RN , q ∈ R

}
.

Then, it holds that N : R→ R is a piece-wise linear map characterized by 2N linear pieces at most.

2.2.2 Comparison PINN - FEM

In this subsection we make a concise comparison between the main features and differences of PINNs and the
most renowned tool used for the numerical resolution of PDEs, called FEM.

• In FEM the solution is approximated by a piece-wise polynomial function whose parameters (or, equiv-
alently, whose values on the mesh grid) are to be determined, while with PINNs we construct a network
as its surrogate model. The latter is parametrized by the weights and biases of the architecture.

• FEMs typically require the generation of a mesh and a proper weak formulation. PINNs, instead, are
suited for a strong and totally mesh-free imposition of the problem: we can either choose to employ a
uniform grid or use randomly scattered points for the construction of the training sets Tf and Tb.

• The core step for FEMs consists in converting the PDE to an algebraic system and solving it using a direct
or iterative technique. PINNs, on the other hand, embed the PDE and the relative boundary conditions
into the loss function that subsequently undergoes optimization, typically with a gradient-based method.

3. Basic PINN Results

This section, which represents the core of our work, will be entirely devoted to the thorough study of the
results relative to the networks trained with the basic version of the PINN, in which all architectural features
remain fixed throughout the entire learning procedure. Firstly, in subsection 3.2, we will dig into the detailed
presentation of the outcomes concerning the so-called sensitivity analysis, which will almost entirely cover the
content of this chapter by itself. We recall that such study essentially consists in discovering the performance
patterns that emerge in relation to the main architectural hyper-parameters of the models, which are: the
number of hidden layers, the amount of neurons per layer and the cardinality of the training set. Eventually,
in subsection 3.3, we will dedicate our final considerations to the experimental evidence coming from the
convergence analysis, performed on a few sample tests. Each of these subjects is further subdivided into three
parts, named after the nature of the solutions therein analyzed: single-scale, multi-scale and generic.

3.1. Optimization Details

As we previously mentioned, all the PINNs that have been trained for this work exploit an optimization proce-
dure based on the combined ADAM - LBFGS technique. The former has been deployed with its characteristic
parameters set to their default values (see [27]), while the latter has been employed in its most renowned form,
using at each iteration the Two-Loops Recursion algorithm and the so-called Backtracking Line-Search method
to construct the optimal descent direction and the relative step coefficient, respectively. The implementative
details of these procedures are omitted here: however, they can be accessed and consulted in [68], where their
complete description is publicly available. All parameters involved in LBFGS were set to a reasonable value, in
the same range from which they were chosen for several Python libraries that implement this technique.

3.2. Sensitivity Analysis

The general aim of this study consists in pinpointing the structural features and hyper-parameters that prove
to play an important role in the approximation of the exact solution for a given PDE. For each combination
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of trial settings, we prompted the training of three networks with the exact same characteristics, initializing
the values of their connections in a random fashion (employing the Glorot Uniform Iniziatialization method
in [33]). In order to compare the performance of all models, we make use of a discrete approximation for the
relative error measured in the L2 norm, expressed as:

‖u‖2 =

√∫
Ω

u2(x) dx ≈
√∑

x∈P
u2(x),

where P represents a dense set of points in Ω. Guided by the implicit aleatory nature of all our experiments,
we group and visualize the obtained results in two types of tables, one for each of the following criteria: average
and best error. Our general conclusions mainly derive from the latter, considered to be the most representative.

3.2.1 Single-Scale

In the single-scale sensitivity analysis we aim at studying the behavior of differently-sized architectures on the
simple one-dimensional Poisson equation with homogeneous boundary conditions, varying the forcing term in
order to evaluate their performance with respect to an increasingly oscillating sinusoidal solution.{

−u′′ = f x ∈ (−1, 1)

u = 0 x ∈ {−1, 1}
(1)

In this framework, a total of four frequencies have been considered. The extensive list of essential parameters
involved in this study is composed by:

• Amount of uniformly distributed internal points over the computational domain [−1, 1]: {80, 320, 1280};
• Employed neurons per layer: {25, 50, 100};
• Number of hidden layers: {1, 2}.

All models were trained with a total of 50000 ADAM iterations followed by another 50000 maximum number of
LBFGS steps. The activation functions used throughout this analysis are the hyperbolic tangent and the well-
known ReLU (Rectified Linear Unit), which have been defined and represented in Figure 2. As we previously
anticipated, for every different combination of learning settings we have constructed three independent models,
each prompted with a different random initialization. In all the analyses carried out in this work, with the terms
average error and best error we respectively intend the arithmetical mean and the minimum value computed
among the relative L2 errors gathered for the triplets of networks trained with the same architectural features.
The four sinusoidal solutions (frequencies) under study are listed here:

• sin(πx) (low frequency).
• sin(5πx) (medium frequency).
• sin(10πx) (medium-high frequency).
• sin(15πx) (high frequency).

The proper forcing term has been provided for all the trained Neural Networks for each of the presented targets.
Our first important observation concerns the extremely poor performance shown by all networks trained with
the ReLU activation function. A representative instance of this trend can be seen in Figure 7, where it is clear
that the model immediately encountered the zero-solution local minimum of the cost functional. Surprisingly,
despite the very smooth and simple sinusoidal target on which it was trained, the network was not able to
escape this local pit. As a consequence of this repeated behavior, all these models present a relative error that
is very close to the unity. In light of this first experimental result, a possible explanation for such failure must
be related to a very tough landscape of the loss function, meaning that the latter evidently presents numerous
local minima of this kind, at least when ReLU is employed as the activation function for the underlying PINN.
This early conclusion will be actually validated a posteriori in the generic sensitivity analysis contained in a
test of sub-subsection 3.2.3, where we will make use of several activation functions with different characteristics
over a simple differential problem. Instead, analyzing the results coming from the networks trained with the
hyperbolic tangent activation function, we face a completely different scenario. Indeed, for all the frequency
solutions that we aimed to reproduce with the current test, we have been able to find at least one model that
successfully emulates the phenomenon of our interest. These best candidates, in fact, present a relative L2 error
whose magnitude is well below 1%. All the tables contained in this work collect the relative L2 errors computed
for differently-structured networks, presenting their trends in relation to the number of hidden layers employed
(indicated by HL) and the amount of neurons per layer with which they are embedded (NPL for short).
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(a) Target solution and model approximation.
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Figure 7: On the left, we visualize the poor approximation concerning the first among the networks
trained with 1 hidden layer, 100 neurons and 320 residuals over the low frequency solution. On the
right, we report the related cost functional evolution in semi-logarithmic scale. As we can infer from
these two plots, the model got immediately stuck in a local minimum of the loss function.

NPL/HL 1 2

25 1.367280e-06 4.894299e-07
50 4.230057e-07 4.617714e-07
100 1.296052e-06 3.860986e-07

(a) Average error, 80 residuals.

NPL/HL 1 2

25 1.086028e-06 5.298863e-07
50 1.109894e-06 3.808153e-07
100 8.985316e-07 3.660251e-07

(b) Average error, 320 residuals.

NPL/HL 1 2

25 1.195013e-06 2.804097e-07
50 6.181360e-07 3.298432e-07
100 9.093512e-07 2.653261e-07

(c) Average error, 1280 residuals.

Table 1: Tables for the models trained to approximate the low frequency solution.

As we can see from Table 1, all PINNs endowed with the hyperbolic tangent are extremely reliable in the
approximation of the low frequency solution, with an average error hovering around 1e−6 and 1e−7. Moreover,
such a measure of success is also independent from both the amount of residual points employed during the
learning phase and the structural hyper-parameters of the models. The latter clearly consist in the number of
hidden layers employed and the amount of neurons per layer with which these are embedded.

NPL/HL 1 2

25 0.000050 1.481489
50 0.000004 0.000222
100 0.000015 0.000079

(a) Average error, 80 residuals.

NPL/HL 1 2

25 0.000133 0.000296
50 0.000013 0.000110
100 0.000010 0.000031

(b) Average error, 320 residuals.

NPL/HL 1 2

25 0.000074 0.000164
50 0.000023 0.000033
100 0.000029 0.000023

(c) Average error, 1280 residuals.

Table 2: Tables for the models trained to approximate the medium frequency solution.

Analogously to the first tranche of results, in Table 2 we can appreciate a range of excellent outcomes for the
approximation of the medium frequency solution. Also here, in fact, we notice that the performances are more
or less constant to a very high degree of accuracy, which remains unvaried with respect to the total number
of residuals (or internal training points) and the size of the networks. We remark that, however good these
approximations may be, there has been a consistent increase (of about one order of magnitude) in the average
error with respect to the previous frequency target. Finally, it is clearly noticeable that one of the models trained
with 2 hidden layers, 25 neurons per layer and 80 residual points got stuck in a local minimum associated to a
quite large value of the loss function, compromising the average error result for the networks with this structure.
The other two instances, however, show a relative error which is aligned to the performance of the other models.
Figures 8 and 9 show the representation of the best networks for the two described settings alongside the plots
concerning the evolution of the cost functional during the learning phase of the relative models, where we see
the appearance of an oscillating phenomenon.
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(a) Target solution and model approximation.
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(b) Loss function evolution.

Figure 8: Successful approximation of the low frequency solution by the first model trained with 1
hidden layer, 100 neurons and 80 residuals. On the left, we can fully appreciate the perfectly overlapping
plots of the network and the exact solution, while on the right we see the whole loss function evolution in
semi-logarithmic scale. After about 10000 iterations, the first-order ADAM method starts oscillating.
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(a) Target solution and model approximation.
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(b) Loss function evolution.

Figure 9: Successful approximation of the medium frequency solution by the first model trained with 2
hidden layers, 25 neurons per layer and 80 residuals. On the left, we can fully appreciate the perfectly
overlapping plots of the network and the exact solution, while on the right we see the entire loss function
evolution in semi-logarithmic scale. After about 10000 iterations, the first-order ADAM method starts
oscillating also in this case. The subsequent intervention of LBFGS dissipates this behavior.

The mentioned behavior is believed to manifest itself when the ADAM algorithm approaches, in the generally
unknown landscape of the loss function, a region in which it is not able to understand the correct descent
direction. The explanation of this phenomenon might reside in the fact that the ADAM optimizer only exploits
the components of the gradient of the cost functional, with no additional information on its local curvature.
Unsurprisingly, in both cases, we see a rapid decrease in the loss magnitude as soon as the LBFGS method
comes into play. This technique, in fact, computes and subsequently exploits an approximate estimation of the
local curvature of the cost function in order to select the most appropriate descent direction.
Let us now continue our analysis with the results concerning the approximation of the medium-high frequency
solution, shown in Table 3. Contrarily to what we did in the previous cases, in this table we represent the best
error trend of the models, instead of the average error performance. For the first time, we can make a clear
distinction between the networks trained with a single hidden layer and the ones embedded with two of them.
Independently from the number of neurons per layer and the amount of residual points employed during the
learning phase, the models constructed with a single hidden layer exhibit a gain in terms of the relative L2
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error of 1.6% at worst. On the other hand, among the networks trained with two hidden layers we find just a
few instances that are actually able to provide an error below an acceptable threshold. Regarding the attempts
made with a single layer we can say that, keeping all the remaining hyper-parameters fixed, the best error trend
tends to increase with respect to the number of exploited residual points and consistently decreases with respect
to the width of the hidden layers.

NPL/HL 1 2

25 0.006956 2.176026
50 0.000391 9.132307
100 0.000318 6.072858

(a) Best error, 80 residuals.

NPL/HL 1 2

25 0.004699 15.495498
50 0.001069 15.223295
100 0.000312 0.000543

(b) Best error, 320 residuals.

NPL/HL 1 2

25 0.016992 15.584377
50 0.001717 15.975008
100 0.000404 0.029286

(c) Best error, 1280 residuals.

Table 3: Tables for the models trained to approximate the medium-high frequency solution.

NPL/HL 1 2

25 18.931327 3.275145
50 0.030746 8.548564
100 0.003015 13.817795

(a) Best error, 80 residuals.

NPL/HL 1 2

25 20.300668 19.433272
50 0.081179 10.113400
100 0.043341 23.339901

(b) Best error, 320 residuals.

NPL/HL 1 2

25 18.397548 18.787365
50 0.097042 22.772743
100 0.016735 19.927546

(c) Best error, 1280 residuals.

Table 4: Tables for the models trained to approximate the high frequency solution.
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(a) Target solution and model approximation.

0 20000 40000 60000 80000 100000

10−1

101

103

105

(b) Loss function evolution.

Figure 10: Successful approximation of the medium-high frequency solution by the first model trained
with 1 hidden layer, 100 neurons and 80 residuals. On the left, we can fully appreciate the perfectly
overlapping plots of the network and the exact solution, performing 10 complete oscillations in the
computational domain. On the right, we see the loss function evolution in semi-logarithmic scale.

Concerning the results relative to the approximation of the solution with the highest frequency we clearly notice
that, in order to obtain a reliable representation of the target, there is a minimum requirement on the number of
neurons per layer that should be used. Indeed, all networks trained with less than 50 neurons per layer are not
able to properly fit the solution. For the first time in this analysis, even the best instances of the models with
a single layer composed by 25 neurons fail their task. All networks with two hidden layers exhibit a consistent
error, while the architectures with one hidden layer endowed with 50 or 100 neurons are able to provide at
least one successful instance with a relative L2 error below 10%, independently from the number of residuals
employed. Among the well behaving models we appreciate an increase in performance with a larger number
of neurons, while it is not completely clear whether the same trend is followed with respect to the number of
internal training points. The network that best represents the solution was instructed with 80 residual points,
1 hidden layer and 100 neurons per layer. In Figure 11 we visualize its plot and the relative loss evolution.
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Figure 11: Best approximation of the high frequency solution relative to the first model trained with
1 hidden layer, 100 neurons and 80 residuals. On the left, we can fully appreciate the perfectly
overlapping plots of the network and the exact solution, performing 15 complete oscillations in the
computational domain. On the right, we see the loss function evolution in semi-logarithmic scale.
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(a) Target solution and model approximation.
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Figure 12: Poor approximation of the high frequency solution relative to the third model trained with
2 hidden layers, 100 neurons per layer and 80 residuals. On the left, we represent the network and the
target that should be simulated. On the right, we see the cost evolution in semi-logarithmic scale.

For completeness, in Figure 12 we also show the bad performance of a model that was not able to extract the
expected features from the target function. The overall accuracy of such network is representative of all the
2-layered architectures, which are never able to provide a reliable approximation of the solution. From their
loss function evolution, which present a characteristic series of plateaux, we can easily infer their cost functional
landscape to be extremely complicated to be interpreted by the optimization procedure.
In light of all results presented in this analysis, we can conclude that all the architectural features (number
of hidden layers, amount of neurons per layer and cardinality of the training set) that were initially supposed
to play a potentially significant role in the approximation capabilities of the underlying PINNs actually seem
to confirm the validity of these expectations. Given the particular settings of this experiment, we generally
appreciate the best results coming from the networks with a single hidden layer endowed with 100 neurons.
Moreover, we have seen how it is not true that more training points necessarily lead to better approximations,
at least under the environmental conditions exploited in our experiments. It should be needless to say that
different instances of ground settings (that, among the others, involve the exploited target solutions and the
number of learning iterations performed during the simulations) may well have led to other outcomes with,
consequently, different final considerations.
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3.2.2 Multi-Scale

Pursuing the path drawn by our sensitivity analysis for single-frequency targets, we move forward with two
multi-scale tests, extending our study to the category of solution targets involving multiple frequencies in their
analytical expression. Our objective still concerns the evaluation of the influence attached to each architectural
parameter on the overall performance shown by the models. Such variables consist in the number of uniformly
distributed residual points, the total number of hidden layers and the amount of neurons per layer employed.

Test 1
In this first multi-scale test we reuse the machinery introduced for the single-scale sensitivity study. In particular,
we exploit the linearity of the one-dimensional Poisson equation with homogeneous boundary conditions (1)
to impose a multi-frequency function as the solution of this differential problem. Such target is nothing else
than the weighted sum (with decreasing coefficients) of the four frequency solutions previously encountered.
All models were trained with a total of 25000 ADAM iterations followed by another 75000 maximum number
of LBFGS steps. The remaining settings, concerning the list of ranges for the architectural options and the
activation functions embedded in the networks, are exactly identical to the ones used in the previous analysis.
In Table 5, analogously to what we observed in the single-scale sensitivity analysis, it seems very likely that all
models trained with the ReLU activation function encountered a bad local minimum of the loss during their
learning phase. This conjecture is actually confirmed by the plots shown in Figure 13, where it is evident that
the illustrated network immediately got stuck in the zero-solution local minimum of the cost functional.

NPL/HL 1 2

25 0.996798 0.999333
50 0.998223 1.000019
100 1.000138 0.999838

(a) Best error, 80 residuals.

NPL/HL 1 2

25 0.997638 1.000008
50 0.996829 0.999735
100 0.998572 0.999960

(b) Best error, 320 residuals.

NPL/HL 1 2

25 0.998380 0.999768
50 0.997587 0.999458
100 1.000764 0.999885

(c) Best error, 1280 residuals.

Table 5: Tables for the ReLU models trained to approximate the multi-scale solution.
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(a) Target solution and model approximation.
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(b) Loss function evolution.

Figure 13: Poor approximation of the multi-frequency solution relative to the first model trained with
1 hidden layers, 100 neurons and 80 residuals with the ReLU activation function. On the left, we
represent the network and the target that should be simulated. On the right, we see the cost evolution
in semi-logarithmic scale, basically constant throughout the entire range of optimization iterations.

In Figure 14 we visualize the functional representation and the loss function evolution of the network whose
approximation is the most reliable among all models trained for this test. Table 6, on the other hand, reports
the performance resume of all networks embedded with the hyperbolic tangent activation function.
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Figure 14: Best approximation of the multi-frequency solution by the first model trained with 1 hidden
layer, 100 neurons and 320 residuals. On the left, we can fully appreciate the perfectly overlapping
plots of the network and the exact solution, while on the right we see the entire loss function evolution
in semi-logarithmic scale, passing from nearly 1e7 to a final value in between 1e− 1 and 1e− 2.

NPL/HL 1 2

25 4.108624 1.218205
50 0.004938 1.802231
100 0.000058 1.402370

(a) Best error, 80 residuals.

NPL/HL 1 2

25 3.132702 1.586473
50 0.006641 0.728400
100 0.000020 0.460028

(b) Best error, 320 residuals.

NPL/HL 1 2

25 2.169297 1.817634
50 0.001935 1.935542
100 0.000036 2.466783

(c) Best error, 1280 residuals.

Table 6: Tables for the Tanh models trained to approximate the multi-scale solution.

In light of the results revealed by the single-scale sensitivity analysis concerning the high frequency solution, it
is not surprising to witness a lack of accuracy for all the models embedded with two hidden layers. Recall, in
fact, that such frequency belongs to the spectrum of the analyzed multi-scale solution. For the same reason, as
expected, the networks with a single layer and 25 neurons are not sufficiently large to grasp all the features of
such target. Regarding the other architectures we always appreciate, among the usual three attempts performed,
at least one successful instance which well approximates the solution to this problem. We particularly observe
an evident improvement in performance for a higher number of neurons (nearly two orders of magnitude better),
while we ascertain a basically constant (or at least non-decreasing) trend when we simply vary the number of
uniformly distributed residual points that are employed during the optimization procedure.

Test 2
Inspired by [65], we try to approximate the multi-scale solution sin(2πx) + 0.1 sin(50πx) for the associated
one-dimensional Poisson equation with homogeneous boundary conditions (1). Let us now provide the ranges
of variation for the usual architectural parameters for this test case.

• Amount of uniformly distributed internal points over the computational domain [−1, 1]: {160, 320, 480};
• Employed neurons per layer: {100, 200, 400};
• Number of hidden layers: {1, 2}.

All models were trained with a total of 25000 ADAM iterations followed by another 175000 maximum number
of LBFGS steps. Discouraged by the results shown by the models trained with ReLU in the previous analysis,
we decided to select only the hyperbolic tangent as the activation function for this experimental trial. The
overall performances of the relative architectures have been entirely gathered in Table 7.
As we can see, in terms of pure error there is only one network that has been able to reach a satisfactory
level of accuracy with the given settings. Such model is characterized by 2 hidden layers, 400 neurons per
layer and 320 residuals. For the first time in this work, we have launched a test where not even a single
architecture embedded with a unique hidden layer has been able to accurately reproduce the expected outcome.
Nevertheless, all models endowed with two hidden layers were approximately ten times more (computationally)
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expensive than the single-layered networks. For a fair comparison in terms of computational cost, we performed
three additional simulations with only one hidden layer and all the other architectural parameters fixed to the
values that were exploited for the unique successful (double-layered) model of this test (400 neurons per layer
and 320 uniformly distributed residual points) and ten times more learning iterations.

NPL/HL 1 2

100 1.981729 3.013872
200 2.970425 12.243158
400 0.599130 4.283990

(a) Best error, 160 residuals.

NPL/HL 1 2

100 1.765399 3.701198
200 1.614595 2.508974
400 2.929941 0.019762

(b) Best error, 320 residuals.

NPL/HL 1 2

100 1.271179 3.588748
200 1.780399 5.676355
400 1.250672 0.268985

(c) Best error, 480 residuals.

Table 7: Tables for the models trained to approximate the multi-scale solution.
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Figure 15: Unsuccessful approximation of the multi-frequency solution by the first model trained with
1 hidden layer, 400 neurons and 320 residuals. On the left, we can sharply distinguish the plots relative
to the network and the exact solution, while on the right we see the entire loss function evolution in
semi-logarithmic scale. This network does not belong to the additional tranche of models.
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(a) Target solution and model approximation.
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(b) Loss function evolution.

Figure 16: Best approximation of the multi-frequency solution by the third model trained with 2
hidden layers, 400 neurons per layer and 320 residuals. On the left, we can fully appreciate the almost
perfectly overlapping plots of the network and the exact solution, while on the right we see the entire
loss function evolution in semi-logarithmic scale, passing from nearly 1e6 to a final value close to 1e1.
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In Figure 15, we represent a single-layered network whose learning phase was seemingly going in a promising
direction. In the last few thousands iterations, in fact, the loss magnitude started a sudden decrease that might
have led to a satisfactory instance of such architecture. Furthermore, except for the central band of the domain,
the PINN has been able to understand the low and especially the high frequency spectrum of the solution. These
observations further justify our efforts put in the additional attempts that we performed, in which we enforced
a much longer optimization procedure in order to observe whether also the shallow networks are potentially
able to grasp this stiff solution, if provided with a sufficient amount of learning time. After all these necessary
premises we are finally ready to analyze the aforementioned extra tranche of single-layered PINNs, which have
been endowed with a boosted number of learning steps. Figure 17 shows the plots related to the best network
among these three extra models, all trained with ten times more learning iterations than the others. Its relative
L2 error, of about 2.4%, is surprisingly close to the one associated with the best among the models of the first
tranche, depicted in Figure 16. Also the other two PINNs belonging to the second set of models are able to
closely fit the solution, even though they present a slightly higher value for their relative error.
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(b) Loss function evolution.

Figure 17: Best approximation of the multi-frequency solution by the third model trained with 1 hidden
layer, 400 neurons, 320 residuals and an increased number of learning iterations. On the left, we can
fully appreciate the almost perfectly overlapping plots of the network and the exact solution, while on
the right we see the entire loss function evolution in semi-logarithmic scale.

In line with what we previously said at the end of the single-scale analysis, we can naturally conclude that the
architectural settings (consisting in the number of hidden layers, amount of neurons per layer and number of
uniformly distributed training points) represent the main keys that determine the approximation quality of the
resulting networks, as expected. Thanks to our last case of study, however, we also understood that the number
of learning iterations plays a fundamental role as well. Let us now readily move to the central part of our work.

3.2.3 Generic

We shall now dig into the details of the sensitivity generic tests for our basic PINN, exploring its behavior over
a set of classical PDEs presenting a variety of solutions. Such analysis, that represents the heart of our work, is
based on the evaluation of the relative L2 error (Rel_Err). As an equivalent measure for the reliability of our
networks we can also consider the accuracy (Acc), defined as: Acc = 1−Rel_Err.

Saw-Teeth Tests
Test 1, 2 and 3 of this section share the same underlying solutions, the so-called saw-teeth waves (later rep-
resented in Figures 18, 20 and 21), to the respective governing PDE: it is for this reason that the former are
jointly introduced here. Each of them is further subdivided into three parts, where a different target profile is
indirectly imposed through a distinct source term coupled with the same equation and boundary conditions.
Test 1 consists in evaluating the performance of several architectures for the problem of pure approximation,
Test 2 implicitly passes the same solutions through an ODE involving their almost everywhere well-defined first
order derivative, while Test 3 resolves a Poisson problem whose right hand side is a regularization of the Dirac
delta, the distributional second order derivative associated to these targets. It is crucial to remember that any
saw-teeth wave is obtainable as the DNN realization corresponding to the composition of an elementary ReLU
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network with itself (for a specific number of times) (see [49]). Such profile presents 2N+1 linear pieces, where
N stands for the number of performed compositions. As we can see, the total amount of the former increases
exponentially with respect to the latter, accordingly to the number of teeth (equal to 2N ). It is in this specific
framework that Theorem 2.2 comes into play: due to its statement, we immediately understand that shallow
networks must be necessarily endowed with a large number (exponential with respect to N) of neurons in order
to be potentially able to approximate these solutions. We therefore expect to appreciate much more reliable
results from models embedded with at least two hidden layers, at least in this context. With the aim to explore
and validate the outcome of these tests in light of the cited theorem, we selected a proper range for the number
of neurons per layer employed in our architectures, in which the lowest values are not sufficient to allow the
shallow networks to reliably approximate our targets. The highest values in these lists, instead, permit an
accurate result even for these slim architectures, at least in principle. These three tests, originally designed
for the ReLU networks, have been extended also to identical architectures that utilize the hyperbolic tangent
activation function. Before proceeding with a complete description of all these cases, we conclude this overview
by summing up the fundamental aspects that we want to explore through these correlated studies:

• Understand the role of depth in the approximation for a specific class of functions.
• Observe the behavior of indefinitely regular Tanh models while they learn piece-wise linear targets.
• Investigate the ability of PINNs in grasping a fixed solution by interpreting it under three different

perspectives: pure approximation, enforcing its first order derivative through an ODE and imposing a
regularization of its second order derivative by means of the Poisson equation.

Test 1

Let us now consider the pure approximation problem for the mentioned class of saw-teeth waves.

u = f x ∈ [0, 1] (2)

For these experiments we chose to vary the architectural parameters in the following ranges:

• For the 4-saw-teeth solution, corresponding to N = 2 (see Figure 18):
◦ Amount of uniformly distributed internal points over the computational domain [0, 1]: {20, 40, 80};
◦ Employed neurons per layer: {2, 4, 8, 16, 32, 64, 128};
◦ Number of hidden layers: {1, 2, 3}.

• For the 8-saw-teeth solution, corresponding to N = 3 (see Figure 20):
◦ Amount of uniformly distributed internal points over the computational domain [0, 1]: {50, 100, 200};
◦ Employed neurons per layer: {2, 4, 8, 16, 32, 64, 128, 256};
◦ Number of hidden layers: {1, 2, 3}.

• For the 16-saw-teeth solution, corresponding to N = 4 (see Figure 21):
◦ Amount of uniformly distributed internal points over the computational domain [0, 1]: {250, 500, 1000};
◦ Employed neurons per layer: {5, 10, 20, 40, 80, 160, 320};
◦ Number of hidden layers: {1, 2, 3}.

During the learning phase of all models we performed 25000 ADAM iterations followed by 75000, 125000 and
175000 maximum LBFGS steps for these three parts, respectively. The reason for which we boosted the training
iterations for the solution targets with a higher number of linear pieces obviously resides in the increasing stiffness
of the respective functional profiles, for which we expect our models to need a longer learning procedure. As
anticipated, we employed both ReLU and the hyperbolic tangent (Tanh) activation functions.

NPL/HL 1 2 3

2 0.473970 0.303289 0.330498
4 0.335536 0.101400 0.083329
8 0.081556 0.166978 0.207404
16 0.105302 0.118761 0.087268
32 0.100130 0.104283 0.106371
64 0.090872 0.094726 0.086730
128 0.093540 0.123094 0.125643

(a) Best error, 20 residuals.

NPL/HL 1 2 3

2 0.464863 0.301092 0.357771
4 0.332342 0.047544 0.028198
8 0.057466 0.024726 0.024074
16 0.043763 0.025314 0.023858
32 0.043299 0.025926 0.022286
64 0.054347 0.025638 0.023264
128 0.039938 0.025363 0.023296

(b) Best error, 40 residuals.

NPL/HL 1 2 3

2 0.464857 0.464277 0.297231
4 0.332301 0.053901 0.033823
8 0.058822 0.030465 0.011049
16 0.051910 0.017289 0.008405
32 0.049633 0.015921 0.008107
64 0.047400 0.010865 0.007474
128 0.049400 0.011354 0.007905

(c) Best error, 80 residuals.

Table 8: Tables for the Tanh models trained to approximate the 4-saw-teeth solution (N = 2).
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NPL/HL 1 2 3

2 0.591705 0.527785 0.591710
4 0.527785 0.465181 0.466103
8 0.465180 0.415417 0.293268
16 0.465199 0.416296 0.293730
32 0.591730 0.327118 0.060990
64 0.439188 0.043996 0.058448
128 0.326080 0.029619 0.056192

(a) Best error, 20 residuals.

NPL/HL 1 2 3

2 0.592457 0.569203 0.661452
4 0.592457 0.569203 0.592457
8 0.465466 0.324929 0.389396
16 0.414214 0.007199 0.293054
32 0.418693 0.293176 0.018639
64 0.292910 0.022210 0.025200
128 0.009365 0.015527 0.026813

(b) Best error, 40 residuals.

NPL/HL 1 2 3

2 0.592484 0.569111 0.661452
4 0.569111 0.592484 0.437429
8 0.437422 0.464102 0.389281
16 0.389270 0.324899 0.005755
32 0.325007 0.292926 0.005905
64 0.292894 0.008450 0.007756
128 0.004502 0.004558 0.009267

(c) Best error, 80 residuals.

Table 9: Tables for the ReLU models trained to approximate the 4-saw-teeth solution (N = 2).

Tables 8 and 9 show the pattern followed by the best relative L2 error related to the networks trained to approx-
imate the 4-saw-teeth solution. In both we can evidently appreciate the importance connected to the number of
uniformly distributed residual points. Increasing their density inside the domain, in fact, generally leads to bet-
ter performances in basically all situations. Even more importantly, we clearly see what we expected to observe
in relation to the role played by the number of hidden layers employed. Indeed, enlarging the architecture by
adding new layers not only improves the general performance of the model, but also makes the approximation
easier to realize even with fewer neurons per layer, in agreement with Theorem 2.2. Deep networks present,
indeed, a clear edge with respect to their shallow counterparts, which typically fail (apart from sporadic cases)
in finding a reliable approximation until they possess a considerably high number of neurons.
In Figure 18 we appreciate the graphical representation of the best models obtained in the first part of this
test, basically overlapping with the exact solution. Taking into account the statement of Theorem 2.2, it is
not surprising to ascertain that the networks endowed with multiple hidden layers have proven a much higher
stability, in terms of performance, with respect to shallow models. Despite the validity of our previous consid-
eration, we see that the most reliable among the ReLU architectures is characterized by a single hidden layer,
even though the other two attempts made with the same specifications actually failed to reach an acceptable
degree of precision, confirming the previous observation concerning the instability of the shallow networks. Due
to the nature and regularity of the solution, it has been easily verified that ReLU outplays Tanh here. In order
to fully understand the main effects, advantages and drawbacks depending on the activation functions employed
for this specific test case we can inspect Figure 19, where we appreciate how their characteristic nature affects
the approximation of the 4-saw-teeth solution target in the delicate regions of the domain where the solution
suddenly inverts the sign of its derivative. We can clearly observe that, in correspondence of the mentioned
sharp peaks and pits, the models embedded with the hyperbolic tangent activation function are not able to
grasp the correct profile while ReLU networks prove to be much more reliable in doing so (as we should expect).
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(a) Target solution and Tanh model approximation.
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(b) Target solution and ReLU model approximation.

Figure 18: Best approximations of the 4-saw-teeth solution by the third Tanh network trained with 3
hidden layers, 64 neurons per layer and 80 residuals (left) and by the second ReLU network trained
with 1 hidden layer, 128 neurons and 80 residuals (right). Even though they both match the expected
behavior with a satisfying level of precision, the smooth Tanh model presents evident lacks of accuracy
near the sharp peaks and troughs of the solution, as expected (see Figure 19).
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(a) Tanh model.
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(b) ReLU model.

Figure 19: Zoom of the first peaks related to the best networks shown in Figure 18. The indefinitely
regular Tanh model struggles visibly more than the suited ReLU architecture in this region.

Tables 10 and 11 present the best relative L2 errors related to the models trained with the hyperbolic tangent and
ReLU activation functions for the second part of this test, respectively. Looking at the former, we immediately
notice that these networks work acceptably well even with only 50 residuals, although it must be noticed that
they are never able to stay below the error threshold of 5%. Another interesting consideration concerns the fact
that, for the mentioned architectures, there are not clear clues about the role played by the number of hidden
layers or the amount of neurons per layer. It is by using 100 and 200 internal points that the expected hierarchy
comes back to the center of our stage: with these configurations the single-layered models are still not able to
overcome the 5% relative error, while the other architectures reach a best accuracy of about 96%-98% when
they exploit 100 residual points and more than 99% using 200 of them.

NPL/HL 1 2 3

2 0.483842 0.454231 0.416491
4 0.428456 0.319222 0.104757
8 0.426125 0.063296 0.083011
16 0.302581 0.063895 0.172420
32 0.062738 0.062754 0.145462
64 0.061551 0.059931 0.176483
128 0.062212 0.210803 0.112224
256 0.062369 0.140507 0.058574

(a) Best error, 50 residuals.

NPL/HL 1 2 3

2 0.483646 0.415747 0.450111
4 0.428397 0.376780 0.214147
8 0.313455 0.061924 0.045200
16 0.069404 0.048284 0.030372
32 0.058254 0.024484 0.024442
64 0.057371 0.032799 0.026957
128 0.058643 0.031344 0.027478
256 0.057134 0.029791 0.037336

(b) Best error, 100 residuals.

NPL/HL 1 2 3

2 0.483645 0.415832 0.414092
4 0.428387 0.349524 0.064410
8 0.340414 0.059984 0.041696
16 0.077873 0.050662 0.015590
32 0.058090 0.026023 0.008639
64 0.058764 0.031628 0.008304
128 0.058315 0.022669 0.007965
256 0.058076 0.016042 0.009275

(c) Best error, 200 residuals.

Table 10: Tables for the Tanh models trained to approximate the 8-saw-teeth solution (N = 3).

NPL/HL 1 2 3

2 0.573765 0.661906 0.573765
4 0.573765 0.483326 0.604777
8 0.478153 0.478874 0.480136
16 0.463899 0.418317 0.276717
32 0.464381 0.230769 0.209022
64 0.394254 0.275768 0.209084
128 0.378964 0.025940 0.025754
256 0.214168 0.025437 0.037347

(a) Best error, 50 residuals.

NPL/HL 1 2 3

2 0.573765 0.661906 0.487534
4 0.573765 0.483318 0.483318
8 0.483318 0.478771 0.428379
16 0.483318 0.460372 0.229815
32 0.444528 0.296122 0.275304
64 0.328192 0.021822 0.006964
128 0.309418 0.004320 0.008856
256 0.207454 0.008119 0.012176

(b) Best error, 100 residuals.

NPL/HL 1 2 3

2 0.572816 0.604619 0.572816
4 0.483317 0.600640 0.449694
8 0.483317 0.483317 0.390820
16 0.478765 0.456218 0.229735
32 0.456218 0.346420 0.296061
64 0.404229 0.207151 0.207144
128 0.229846 0.207144 0.003600
256 0.275854 0.003493 0.004448

(c) Best error, 200 residuals.

Table 11: Tables for the ReLU models trained to approximate the 8-saw-teeth solution (N = 3).

Regarding the ReLU networks whose learning procedure was performed with the lowest number of training
points, we acknowledge success only for the multiple-layered architectures embedded either with 128 or 256
neurons per layer. Such trend is extended also for the models trained with 100 residual points, which exhibit
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a similar pattern and generally improve their performance, reaching a satisfying level of accuracy even when
they are endowed with a smaller number of neurons per layer. In absolute terms, the best architectures were
obtained exploiting 200 internal spots. Nevertheless, some structural settings (e.g. the ones corresponding to
the two-layered networks with 64 or 128 neurons each) are able to provide excellent levels of accuracy with a
lower number of residuals but not with 200 of them, showing a perceivable lack of stability with respect to the
mentioned parameter.
In Figure 20 we graphically show the plots linked to the best networks obtained for the second part of this
test, trained with identical architectural settings. The ReLU representative presents a smaller relative error, as
expected, even though the best model embedded with Tanh carries an accuracy of the same order of magnitude.
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(a) Target solution and Tanh model approximation.
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(b) Target solution and ReLU model approximation.

Figure 20: Best approximations of the 8-saw-teeth solution by the first Tanh network trained with 3
hidden layers, 128 neurons per layer and 200 residuals (left) and by the second ReLU network trained
with the exact same architecture (right). Both show a very high level of accuracy.

Tables 12 and 13 report the best relative L2 errors for the models trained to approximate the 16-saw-teeth
solution target. In the former, where we represent the outcomes concerning the Tanh networks, we see that
by keeping the amount of hidden layers fixed, the networks accuracy clearly increases with a growing number
of neurons per layer until it reaches a more or less stable saturation level. Vice versa, fixing the latter and
raising the former, we still see important improvements. In particular, wider architectures (embedded with
more hidden layers) prove to reach a satisfactory performance needing fewer neurons per layer. Regarding
the second table, where we refer to the ReLU architectures, we can provide similar general comments and
observations. There are, nevertheless, a few distinctions that immediately emerge: on one hand ReLU models,
with respect to Tanh networks, typically require a higher minimum number of neurons per layer to reach good
levels of accuracy. On the other hand, however, they possess the best candidates among all. Relating to this
fact, it is worth highlighting that the most reliable ReLU architectures beat, in terms of pure performance, the
best Tanh networks by approximately one order of magnitude. Another important difference resides in the fact
that no single-layered ReLU network has been able to get even close to the solution of this problem, showing a
lack of reliability from these architectures even when they possess (in principle) the needed capacity to provide
an accurate approximation. We finally notice that augmenting the cardinality of the training set typically leads
to better performances, independently from the activation function in use.

NPL/HL 1 2 3

5 0.457641 0.392238 0.389087
10 0.371480 0.368605 0.288920
20 0.365798 0.059660 0.048496
40 0.332071 0.056279 0.018936
80 0.059669 0.047758 0.016864
160 0.060418 0.052315 0.017574
320 0.060062 0.041518 0.018140

(a) Best error, 250 residuals.

NPL/HL 1 2 3

5 0.450262 0.420352 0.396867
10 0.455074 0.367055 0.255565
20 0.400755 0.106033 0.053831
40 0.280051 0.058448 0.020463
80 0.060664 0.055957 0.013948
160 0.060294 0.053410 0.019115
320 0.060275 0.040950 0.006873

(b) Best error, 500 residuals.

NPL/HL 1 2 3

5 0.465914 0.429389 0.383387
10 0.441058 0.323248 0.279350
20 0.398551 0.062156 0.057328
40 0.235473 0.054416 0.034279
80 0.060394 0.056609 0.015498
160 0.060683 0.058572 0.009427
320 0.059855 0.044218 0.006693

(c) Best error, 1000 residuals.

Table 12: Tables for the Tanh models trained to approximate the 16-saw-teeth solution (N = 4).
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NPL/HL 1 2 3

5 0.491935 0.490530 0.490767
10 0.491935 0.483532 0.445216
20 0.491294 0.491936 0.406077
40 0.475781 0.456147 0.287172
80 0.467045 0.359986 0.245594
160 0.458087 0.243935 0.005066
320 0.402185 0.011704 0.008276

(a) Best error, 250 residuals.

NPL/HL 1 2 3

5 0.575364 0.481559 0.490768
10 0.491936 0.491294 0.459530
20 0.482984 0.476364 0.401010
40 0.472609 0.437093 0.342825
80 0.464358 0.361989 0.223663
160 0.431833 0.162467 0.002723
320 0.421541 0.003341 0.002642

(b) Best error, 500 residuals.

NPL/HL 1 2 3

5 0.491935 0.490054 0.465546
10 0.491181 0.486471 0.429122
20 0.481683 0.441678 0.389848
40 0.467036 0.365021 0.276299
80 0.455378 0.337787 0.194639
160 0.456487 0.162446 0.001207
320 0.319734 0.001364 0.000927

(c) Best error, 1000 residuals.

Table 13: Tables for the ReLU models trained to approximate the 16-saw-teeth solution (N = 4).
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(a) Target solution and Tanh model approximation.
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(b) Target solution and ReLU model approximation.

Figure 21: Best approximations of the 16-saw-teeth solution by the first Tanh network trained with 3
hidden layers, 320 neurons per layer and 1000 residuals (left) and by the first ReLU network trained
with the exact same architecture (right). Both show a very high level of accuracy, well below 1%.

Let us conclude the discussion of our first generic test with an important remark related to Theorem 2.2.
Analyzing the aforementioned results we are forced to acknowledge that, even if some single-layered architectures
showed well functioning instances for the studied cases, possessing a theoretically sufficient capacity for the
prediction of a certain complex phenomenon does not guarantee a successful learning procedure for the relative
model. Sometimes, as we appreciated above, we necessarily need to significantly enlarge the number of neurons
per layer to employ in our shallow networks if we want to obtain satisfactory outcomes from our experiments.
Nevertheless, in presence of particularly stiff saw-teeth solutions, this trick might not even be sufficient (see the
ReLU models with only one hidden layers for the last part of this test). Increasing the number of hidden layers
for the studied class of saw-teeth targets for this test case, instead, has proven to bring appreciable advantages.

Test 2

Let us now consider the simple ODE problem for the mentioned class of saw-teeth waves.{
u′ = f x ∈ (0, 1)

u = 0 x = 0
(3)

For these experiments we chose to vary the architectural parameters in the following ranges:

• For the 4-saw-teeth solution, corresponding to N = 2:
◦ Amount of uniformly distributed internal points over the computational domain [0, 1]: {20, 40, 80};
◦ Employed neurons per layer: {2, 4, 8, 16, 32, 64, 128};
◦ Number of hidden layers: {1, 2, 3}.
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• For the 8-saw-teeth solution, corresponding to N = 3:
◦ Amount of uniformly distributed internal points over the computational domain [0, 1]: {50, 100, 200};
◦ Employed neurons per layer: {2, 4, 8, 16, 32, 64, 128, 256};
◦ Number of hidden layers: {1, 2, 3}.

• For the 16-saw-teeth solution, corresponding to N = 4:
◦ Amount of uniformly distributed internal points over the computational domain [0, 1]: {250, 500, 1000};
◦ Employed neurons per layer: {5, 10, 20, 40, 80, 160, 320};
◦ Number of hidden layers: {1, 2, 3}.

During the learning phase of all models we performed 25000 ADAM iterations followed by 75000, 125000 and
175000 maximum LBFGS steps for these three tests, respectively. The reason why we boosted the training
iterations for the targets with a higher number of linear pieces obviously resides in their increasing stiffness. As
anticipated, we employed both ReLU and the hyperbolic tangent (Tanh) activation functions.
Our first comment concerns the surprising inability expressed by every ReLU network in approximating the
rather simple and well-suited 4-saw-teeth solution. With no exceptions, all these models immediately got stuck
in the zero-solution local minimum of the cost functional. This behavior appears to be extremely puzzling: we
must remember, indeed, that with the exact same learning and architectural specifications, in the first part
of Test 1 we managed to achieve good levels of accuracy for the same solution. The only detail that differs
between the two tests regards the way by which we impose the target: in the former we explicitly resolve a
pure approximation problem, while in the latter we implicitly provide the solution through its first derivative
by means of an ODE. As for the previous single-scale and multi-scale sensitivity analyses (in sections 3.2.1 and
3.2.2), ReLU networks fail at grasping relatively simple solution targets when an actual derivation is contained
in the expression of the PDE. In light of these results, we reasonably conjecture that there must be an unknown
feature related to ReLU that is responsible for the mentioned issues when dealing with non-degenerate differential
operators. Such a trend is a fortiori shown also in the second and third parts of the current test. This subject
will be further investigated in one of our subsequent trials (Test 5), where we will dig into the details of this
phenomenon. On the basis of what we just said we limit our considerations to Table 14, representing the best
L2 relative errors related to the models trained with the hyperbolic tangent activation function. We see that
20 uniformly distributed points are not enough to interpret the solution with satisfactory accuracy. Instead,
employing 40 residuals, we appreciate several working architectures with some instances of the multi-layered
networks reaching a relative L2 error in the order of 1%-2%. Here, shallow models show performance levels that
are positively correlated to an increasing total number of neurons per layer, reaching a saturation accuracy of
about 95%. Using 80 training points leads to a very high accuracy (well past 99%) for these models, while multi-
layered networks do not improve appreciably. Concerning the typical architectural parameters under study, in
the last two cases that we described there are no general related patterns that emerge distinctly. In Figure
22 we represent the most successful approximating network of the 4-saw-teeth solution target for this part of
the test, along with the related cost functional evolution. Figure 23, instead, shows the notorious behavior of
the ReLU architectures, which appears whenever they are trained to learn the solution of a PDE that contains
effective differential terms in its expression.

NPL/HL 1 2 3

2 0.920594 0.727893 0.504348
4 0.514314 0.692048 1.290939
8 0.641434 1.708846 0.435716
16 0.674161 0.460413 0.403932
32 0.522378 0.459221 0.430089
64 0.510950 0.429403 0.398886
128 0.770445 0.448640 0.513728

(a) Best error, 20 residuals.

NPL/HL 1 2 3

2 0.610074 0.416505 0.665898
4 0.396115 0.049787 0.047099
8 0.059533 0.250497 0.184904
16 0.062870 3.073549 0.021354
32 0.044272 0.021754 0.016591
64 0.049279 0.023817 0.021972
128 0.051243 0.186686 0.040941

(b) Best error, 40 residuals.

NPL/HL 1 2 3

2 0.687386 0.597666 0.431485
4 0.364336 0.048274 0.091481
8 0.058471 0.036431 0.014043
16 0.047344 0.064007 0.077940
32 0.008358 0.010178 0.051681
64 0.007155 0.017330 0.074364
128 0.006418 0.145762 0.018758

(c) Best error, 80 residuals.

Table 14: Tables for the Tanh models trained to approximate the 4-saw-teeth solution to (3).

Table 15 shows the best relative L2 error results for the architectures trained in the second part of this test,
built to approximate the 8-saw-teeth wave. With the selected maximum number of learning iterations, the
models have not been able to give appreciable results neither with 50 nor with 100 residual points. The only
case in which, given the mentioned learning configuration, we obtained acceptable results (with a relative L2

error of about 8%-9%) refers to the instances trained with 200 uniformly distributed training points. Figure 24
provides a graphical representation of the best architecture obtained for this part of the test.
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NPL/HL 1 2 3

2 0.709838 0.710325 0.828946
4 0.575349 0.628883 0.633521
8 0.417751 0.576178 4.218417
16 2.459462 1.186847 1.155442
32 0.395278 2.016019 0.477766
64 0.293250 0.168155 0.266048
128 0.227262 0.199784 0.195286
256 0.395510 0.153651 0.145828

(a) Best error, 50 residuals.

NPL/HL 1 2 3

2 0.520246 0.523033 0.504719
4 0.475513 0.551188 1.789424
8 0.442974 0.383959 0.295322
16 0.152286 0.280635 0.256253
32 0.237664 0.456316 3.017988
64 0.254598 0.645825 0.232782
128 0.260487 0.198131 0.216551
256 0.256340 0.209013 0.225106

(b) Best error, 100 residuals.

NPL/HL 1 2 3

2 0.785472 0.752976 0.775996
4 0.589097 0.452756 0.743016
8 0.367243 0.113602 0.150532
16 0.107657 0.139436 0.180609
32 0.098185 0.110316 0.088574
64 0.094483 0.086540 0.124224
128 0.095669 0.101022 0.105222
256 0.089450 0.104572 0.087223

(c) Best error, 200 residuals.

Table 15: Tables for the Tanh models trained to approximate the 8-saw-teeth solution to (3).

In Table 16 we eventually report the results concerning the approximations for the stiffest among our solution
targets, the 16-saw-teeth wave. First of all we notice one more time the importance of the role associated to the
number of residual points used in our experiments. Exploiting 250 of them, with the current learning settings,
we are never able to reach an acceptable level of accuracy. Embedding our networks with 500 training points,
we begin to spot sporadic instances where the relative L2 error stays below 10%. However, it is only by using
1000 residuals that we start to appreciate visible patterns in the error table: fixing the number of hidden layers,
the performance increases as the amount of neurons per layer grows, at least until it reaches a saturation level
that depends on the former parameter. The best architectures are composed by two or three hidden layers. The
most reliable network produced for this part of the test is also illustrated in Figure 25.

NPL/HL 1 2 3

5 0.519144 0.594262 0.546625
10 0.550090 0.645890 0.486174
20 0.394933 0.299214 0.478642
40 0.245825 0.182306 0.509257
80 0.171314 0.148630 0.686234
160 0.174021 0.148974 0.242684
320 0.174872 0.183394 0.139937

(a) Best error, 250 residuals.

NPL/HL 1 2 3

5 0.754264 0.750128 0.684918
10 0.631826 0.813879 0.524691
20 0.453729 0.330968 0.608885
40 0.124598 0.084565 0.514669
80 0.129309 0.122246 0.347749
160 0.121357 0.100947 0.079897
320 0.111164 0.104554 0.109690

(b) Best error, 500 residuals.

NPL/HL 1 2 3

5 0.552737 0.727696 0.462595
10 0.624218 0.458627 0.592527
20 0.360279 0.475390 0.575436
40 0.213597 0.063409 0.548513
80 0.068715 0.041562 0.397271
160 0.066581 0.048937 0.039099
320 0.070134 0.048792 0.044086

(c) Best error, 1000 residuals.

Table 16: Tables for the Tanh models trained to approximate the 16-saw-teeth solution to (3).
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(a) Target solution and Tanh model approximation.
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(b) Loss function evolution.

Figure 22: Best approximation plot of the 4-saw-teeth solution to (3) by the third Tanh network
trained with 1 hidden layer, 128 neurons and 80 residuals (left) and its related cost functional evolution
(right) in semi-logarithmic scale. As we can see from the latter, this model seemingly still had some
unexpressed potential that would have probably become visible with more learning iterations.
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(a) Target solution and Tanh model approximation.
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(b) Loss function evolution.

Figure 23: Poor approximation plot of the 4-saw-teeth solution to (3) by the first ReLU network
trained with 3 hidden layers, 128 neurons per layer and 80 residuals (left) and its related cost functional
evolution (right) in semi-logarithmic scale. This model closely represents all architectures trained with
the ReLU activation function, which present identical characteristics and issues.

Looking at Figure 24 we see that, as for Figure 22, the best model that we obtained for the approximation of the
8-saw-teeth wave appears to have some unexpressed potential that could have become visible with more learning
iterations. The final network state actually shows poor approximation capabilities close to the vast majority
of the sharp corners characterizing the mentioned saw-teeth solution target, and the related cost functional
does not seem to have reached convergence. It is therefore reasonable to assume that, with a longer learning
procedure, they would have probably got adjusted. Even if this would have been the case, however, also in
relation to what we observed in the first part of this test, we can ascertain that it seems to be much harder to
interpret the (exact same) target profile when it is provided by means of a PDE (or ODE) rather than through
its explicit expression. What interests us the most is the fact that, keeping all learning parameters unchanged,
the higher the order of derivation appearing in the equation, the tougher it seems to interpret all the key features
of the solution. We anticipate that the overall results obtained in Test 1, 2 and 3 are indeed compatible with
the suggested hypothesis, at least for the studied cases.
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(a) Target solution and Tanh model approximation.
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(b) Loss function evolution.

Figure 24: Best approximation plot of the 8-saw-teeth solution to (3) by the second Tanh network
trained with 2 hidden layer, 64 neurons per layer and 200 residuals (left) and its related cost functional
evolution (right) in semi-logarithmic scale. As we can see from the latter, this model seemingly had
some unexpressed potential that would have probably become visible with more learning iterations.
Also for this reason, the network still shows lacks of accuracy in correspondence to several sharp corners
of the exact solution, as we can clearly notice from the left graph.
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(a) Target solution and Tanh model approximation.
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(b) Loss function evolution.

Figure 25: Best approximation plot of the 16-saw-teeth solution to (3) by the third Tanh network
trained with 3 hidden layer, 160 neurons per layer and 1000 residuals (left) and its related cost functional
evolution (right) in semi-logarithmic scale. The network shows lacks of accuracy in correspondence
to several sharp corners of the exact solution, as we can clearly notice from the left graph. The cost
function is still slowly decreasing at the end of the learning procedure.

A further important observation is in order. The conclusions made in the second part of this test, concerning
the potential to better interpret the 8-saw-teeth wave if allowed to perform more learning iterations, are actually
formally confirmed by the results obtained in the third (and last) part of this experimental trial. Indeed, in the
latter we have been able to prove that it is possible to emulate an even stiffer solution, with a relative L2 error
in the order of 4%, using a set of structural parameters that is very similar to the one previously exploited. For
completeness it has to be remarked that, other than a larger number of learning iterations, in the last part of
this test we even embedded our architectures with much more residual points.

Test 3

Let us now consider the one-dimensional Poisson equation with homogeneous boundary conditions (1) upon the
class of saw-teeth waves. Before proceeding, we need to clarify the sense with which we intend to resolve it.{

−u′′ = f x ∈ (0, 1)

u = 0 x ∈ {0, 1}

In the expression above, we have written a strong formulation of the mentioned differential problem. However,
assuming a saw-teeth wave to be the relative solution target, it is crucial to notice that we cannot interpret
the equation in a classical way: the second order derivatives of such functions are actually not well defined
in correspondence of their sharp corners. To be precise, this consideration clearly holds also for their first
order derivative. Nevertheless, resolving the system (3) in an almost everywhere sense provides the expected
expression for our solution. Here this rather technical detail, omitted in the presentation of Test 2 for simplicity,
cannot be neglected because it plays a completely different and decisive role. Indeed, if we attempted to solve
the system above in a similar fashion (interpreting it in an almost everywhere sense), we would be seeking for
the zero-function solution, which is not our objective. The second order derivative for our class of functions, in
fact, turns out to be identically null except for a finite number of points, where it cannot be classically defined.
To overcome this intrinsic issue we treat the source term as a regularization of the distributional second order
derivative of the solution target (with inverted sign), that consists in a sum of Dirac deltas (see Figure 26).
Thanks to this expedient we are able to restore the consistency of our problem, which will be interpreted in the
usual strong formulation. Due to the introduction of an erroneous regularization, however, the exact solutions of
our new systems do not coincide with the saw-teeth waves, but with an approximation of theirs. An alternative
approach, here not pursued, is to resort to the weak formulation of the problem (differently from [1, 35]). The
regularized exact solutions’ accuracy (with respect to the real saw-teeth targets) will depend on a positive
real parameter, ε. The smaller its value, the (theoretically) closer the relative approximations to the desired
functions: in the limit, we retrieve the exact target solutions.

28



0.0 0.2 0.4 0.6 0.8 1.0

−600

−400

−200

0

200

400

600 4Teeth_Saw_[0,1]_Source

Figure 26: Regularized version of the sum of Dirac deltas corresponding to the source term (with
inverted sign) in use for the 4-saw-teeth target solution (N = 2) to (1).

For these experiments we chose to vary the architectural parameters in the following ranges of values:

• For the 4-saw-teeth solution, corresponding to N = 2:
◦ Fixed amount of uniformly distributed internal points over the computational domain [0, 1]: {400};
◦ Employed neurons per layer: {2, 4, 8, 16, 32, 64, 128};
◦ Number of hidden layers: {1, 2, 3}.

• For the 8-saw-teeth solution, corresponding to N = 3:
◦ Fixed amount of uniformly distributed internal points over the computational domain [0, 1]: {800};
◦ Employed neurons per layer: {2, 4, 8, 16, 32, 64, 128, 256};
◦ Number of hidden layers: {1, 2, 3}.

• For the 16-saw-teeth solution, corresponding to N = 4:
◦ Fixed amount of uniformly distributed internal points over the computational domain [0, 1]: {1600};
◦ Employed neurons per layer: {5, 10, 20, 40, 80, 160, 320};
◦ Number of hidden layers: {1, 2, 3}.

During the learning phase of all models we performed 25000 ADAM iterations followed by 75000, 125000 and
175000 maximum LBFGS steps for these three tests, respectively. The reason why we boosted the training
iterations for the targets with a higher number of linear pieces obviously resides in their increasing stiffness.
As anticipated, we employed both ReLU and the hyperbolic tangent (Tanh) activation functions. The (always
large) amount of residuals points employed in our trials is calibrated in such a way that, for all models across
the three tests performed, each regularization zone is embedded with an identical number of the former.
Our first consideration concerns, as usual, the fact that all ReLU models are definitely not able to grasp
any feature of the target solutions under study. Once again, they all seem to fall immediately towards the
zero-solution local minimum of the loss function, experimentally confirming our conjecture about their evident
inability to understand the right training path when tested on problems involving effective differential terms.
Table 17 collects the complete spectrum of best relative L2 error results related to the architectures embedded
with the hyperbolic tangent activation function, for all three tests performed.

NPL/HL 1 2 3

2 1.208059 1.009891 2.350983
4 2.010388 2.356984 1.000177
8 3.824559 2.410723 3.362979
16 6.120269 3.605160 3.583601
32 0.497861 3.788019 0.025933
64 0.158427 0.026248 0.028666
128 0.039368 0.026866 0.030798
\ \ \ \

(a) N = 2, 400 residuals.

NPL/HL 1 2 3

2 1.214229 1.012062 2.414002
4 1.491775 2.523375 2.366880
8 2.952532 2.466374 4.157850
16 3.400309 6.170633 6.203755
32 5.977035 7.325827 2.065365
64 2.289498 8.055386 1.102825
128 0.870293 0.079352 6.258685
256 0.226520 0.175243 0.067705

(b) N = 3, 800 residuals.

NPL/HL 1 2 3

5 0.541032 2.508024 2.605327
10 4.250449 3.224238 3.684910
20 5.817959 6.211009 13.806236
40 9.138324 3.032845 10.321249
80 7.907577 10.335821 10.610042
160 14.255289 23.221757 3.093698
320 6.860933 21.305189 14.751557
\ \ \ \

(c) N = 4, 1600 residuals.

Table 17: Best error tables for the Tanh models trained to approximate the 4-saw-teeth (left), 8-saw-
teeth (middle) and 16-saw-teeth (right) solutions to (1) with the relative number of internal points.

29



For the 4-saw-teeth target, corresponding to N = 2, we appreciate approximation performances that highlight
some visible patterns. First of all, keeping the amount of hidden layers fixed, the networks accuracy clearly
increases with a growing number of neurons per layer until it reaches a more or less stable saturation level.
Vice versa, fixing the latter and raising the former, we still see important improvements. In particular, wider
architectures (embedded with more hidden layers) prove to reach a satisfactory performance needing fewer
neurons per layer. The best models are obtained with two and three hidden layers, with a performance in the
order of 97%-98%. Regarding the 8-saw-teeth solution, corresponding to N = 3, we do not find straightforward
trends that emerge from data. A few important observations concern the fact that shallow networks have not
been able to reach reliable approximations, and that the only two cases in which we see acceptable levels of
accuracy are characterized by architectures with a large number of neurons per layer and either two or three
hidden layers. In particular, we acknowledge success for at least one attempt among the networks with the
following structures: 2 hidden layers endowed with 128 neurons and 3 hidden layers composed by 256 of them.
We report, for completeness, also the results related to the stiffest saw-teeth solution under study, characterized
by N = 4. As we can see from its relative L2 error table, there is not even a single model that has been able to
get even close to a consistent approximation of the target. The complexity of its source term is evidently too
difficult to be reliably interpreted by these networks. In Figure 27, we represent the best network approximations
for the first and second saw-teeth waves. We observe that both architectures present issues close to the sharp
corners of the exact solution, where the slope suddenly changes sign. Given the evident lack of reliability shown
simulating the 16-saw-teeth target for this test case, we do not report any related plot here.
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(a) 4-saw-teeth solution and model approximation.
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(b) 8-saw-teeth solution and model approximation.

Figure 27: Best approximation plots of the 4-saw-teeth solution by the second Tanh network trained
with 3 hidden layer, 32 neurons per layer and 400 residuals (left) and of the 8-saw-teeth solution by the
first Tanh network trained with 3 hidden layers, 256 neurons per layer and 800 residuals (right). Both
architectures present lacks of accuracy in correspondence to all the sharp corners of the exact solutions
to (1), where the regularization effectively takes place. Their entire loss evolution, not represented
here, suggest that they expressed all the available potential during the relative learning phases.

In Table 17 we assume to be observing a non-disposable component of the error due to the inexact regularization
of the exact solution’s second order derivative, that can be formally defined just in a distributional sense. We
therefore decreased the regularization parameter, ε, by a factor of 10, in order to explore the accuracy trend
when the source term tends (in the specified sense) to the proper sum of Dirac deltas for the easiest saw-teeth
target of our study. In order to keep the same number of residual points inside the key zones where regularization
occurs, we accordingly augmented the number of internal training points. If on one hand we should expect to
achieve a better approximation thanks to the improvement of the regularized source term, on the other we know
that the latter becomes increasingly stiff when ε decreases. The resulting approximation unfortunately indulges
our initial concern, showing a very poor accuracy even for the easiest test solution: optimization is unable to
overcome the mentioned obstacle. On this basis, we would expect to observe an increasing error trend as ε tends
to zero. This would mean that our networks are not suitable for this kind of approximation, failing at correctly
interpreting the solution of our original problem under the lenses of this PDE through these learning settings.
In order to conclude the description of this test we remark that, differently from the previous two, we decided
to involve a much higher and uniquely fixed number of residual points here. This has been done with the aim
of focusing on the essential structural parameters of our networks, willingly avoiding an analysis of the results
with a dependency from the amount of training points exploited.
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Take Home Messages

• ReLU seems to be an unreliable activation function when effective differential terms are involved in the
governing equation. We will later discover the presumed reason that explains such failure (Test 5).

• Increasing the maximum order of derivation appearing in the PDE that implicitly expresses the (exact
same) searched target leads to much more difficult and unstable learning procedures.

• Involving the results coming from the single-scale and multi-scale sensitivity analyses, we can confidently
affirm that it is not necessarily true that it is more convenient to use deep architectures with respect
to shallow networks. By means of the presented tests we found instances where, depending on the
analyzed case, one choice was more suitable than the other. Moreover, we also referred to Theorem 2.2
to experimentally verify that shallow architectures having the theoretical capacity to emulate a specific
objective function are not necessarily able to do so in a straightforward manner. As we saw, it could be
necessary for them to be embedded with a very large number of neurons to obtain satisfactory results,
while deep architectures are able to achieve comparable performances with fewer neurons. In this context
we particularly refer to Test 1,2 and 3 for the models trained with ReLU.

We are now ready to discuss the results concerning a series of tests performed on a generic variety of Partial
Differential Equations. Other than the usual Poisson equation, we will also explore several time-dependent
differential formulations like the so-called Burger’s equation, the Heat equation and a particular case of the
Advection-Diffusion-Reaction problem. Let us now dig into the details for each of them.

Test 4

One of our main aims consists in understanding whether the ReLU activation function is, as it seems from Tests 2
and 3 of this section, really unable to provide reliable approximations of the solutions underlying non-degenerate
PDEs (whose differential operator is not the identity), even when these targets are particularly suited for this
activation function (as the saw-teeth profiles seen before). The aim of this experiment is twofold: investigating
the behavior of our basic PINN on a simplified version of the Advection-Diffusion-Reaction (ADR) problem and
observing the features that characterize ReLU even further. In the following, as anticipated, we consider the
one-dimensional homogeneous ADR system where only advection is considered (with constant velocity v, set
to 0.5). Recall (see subsection 2.2) that time-dependent PDEs are computationally treated by embedding the
time variable t in the spacetime coordinate x, letting it vary in our hyper-rectangular domain Ω = [0, 1]2.

∂u

∂t
+ v

∂u

∂x
= 0 (x, t) ∈ Ω

u = g (x, t) ∈ Γ ⊂ ∂Ω
(4)

Notice that, in order to provide a mathematically well-defined formulation, the boundary conditions for this
problem are to be imposed only on a portion of ∂Ω, corresponding to the inflow boundary of our domain:

Γ = {(0, t) ∀t ∈ [0, 1]} ∪ {(x, 0) ∀x ∈ [0, 1]}

This test is split in two parts, each corresponding to a different solution belonging to the class of saw-teeth
functions, travelling with speed v. Differently from Test 2 and 3, where we attempted to solve a differential
problem having a fully implicit saw-teeth target, here we actually provide a partially explicit hint for some
features of the exact solution through the initial condition, having imposed the latter in a Dirichlet fashion.
Keeping the meaning associated to parameter N as in the previous tests, for these experiments we chose to vary
the architectural parameters in the following ranges:

• For the 1-saw-teeth travelling solution, corresponding to N = 0:
◦ Amount of uniformly distributed internal points over the computational domain [0, 1]2: {100, 200};
◦ Employed neurons per layer: {10, 20, 40};
◦ Number of hidden layers: {1, 2}.

• For the 8-saw-teeth travelling solution, corresponding to N = 3:
◦ Amount of uniformly distributed internal points over the computational domain [0, 1]2: {250, 500};
◦ Employed neurons per layer: {25, 50, 100};
◦ Number of hidden layers: {1, 2}.

During the learning phase of all models we performed 25000 or 50000 ADAM iterations followed by 75000 or
150000 maximum LBFGS steps, depending on the considered part of the test. The reason why we boosted the
training iterations for the targets with a higher number of linear pieces (i.e. growing values of N) resides in
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their increasing stiffness. All networks possess 200 uniformly distributed boundary points on Γ. As always, we
have employed both ReLU and the hyperbolic tangent (Tanh) activation functions for the sake of comparison.

NPL/HL 1 2

10 0.006036 0.002103
20 0.005392 0.001877
40 0.005026 0.001943

(a) Tanh, 100 residuals.

NPL/HL 1 2

10 0.006585 0.001750
20 0.005284 0.001657
40 0.005971 0.001989

(b) Tanh, 200 residuals.

NPL/HL 1 2

10 0.000276 0.000425
20 0.000477 0.001211
40 0.000923 0.001315

(c) ReLU, 100 residuals.

NPL/HL 1 2

10 0.000203 0.001151
20 0.000769 0.000921
40 0.000825 0.000822

(d) ReLU, 200 residuals.

Table 18: Best error tables for the models trained to approximate the 1-saw-teeth solution (N = 0) to
(4) with the hyperbolic tangent and ReLU activation functions, with the related number of residuals.

NPL/HL 1 2

25 0.060264 0.032930
50 0.060249 0.023083
100 0.058477 0.019961

(a) Tanh, 250 residuals.

NPL/HL 1 2

25 0.060229 0.036502
50 0.059530 0.023483
100 0.059058 0.020410

(b) Tanh, 500 residuals.

NPL/HL 1 2

25 0.415206 0.337360
50 0.395114 0.332299
100 0.394417 0.074689

(c) ReLU, 250 residuals.

NPL/HL 1 2

25 0.438893 0.344116
50 0.419388 0.255373
100 0.358435 0.225070

(d) ReLU, 500 residuals.

Table 19: Best error tables for the models trained to approximate the 8-saw-teeth solution (N = 3) to
(4) with the hyperbolic tangent and ReLU activation functions, with the related number of residuals.

In the first part of the test (corresponding to N = 0), in terms of the evolution for the respective loss functions,
all models have reached convergence. Table 18 refers to the related results, where we can appreciate reliable
approximations for all of them. In particular, ReLU models show a relative L2 error with a value close to one
order of magnitude lower than the identically-structured (trained with the same values of the hyper-parameters)
Tanh networks. Independently from the number of neurons per layer and the amount of residual points employed,
shallow Tanh architectures present a constant performance with an error hovering around 0.5%-0.6%. When
embedded with two hidden layers, the latter show an accuracy trend that remains nearly constant with respect
to the number of neurons per layer, but slightly improves if more residuals are deployed. Regarding the ReLU
networks, we do not see any identifiable pattern with respect to their architectural parameters. They generally
provide, however, a better interpretation for the sharp travelling corner of the exact solution, as expected (see
Figure 19). By imposing a PDE with explicit hints of some target features through the initial condition, even
ReLU is able to grasp the underlying solution with excellent accuracy, at least for the simple target under study.
In the second part of the test (corresponding to N = 3), Tanh models generally provide a loss function evolution
that appears to have not reached convergence yet. It is therefore presumable that, with a larger number of
learning iterations, they could have shown better results. These architectures represent, nevertheless, the only
reliable instances for the approximation of the 8-saw-teeth solution. In the only case where a ReLU network
has proven satisfactory levels of accuracy, its architecture is composed by 250 residual points, two hidden layers
and 100 neurons per layer. Table 19 gathers all relative L2 errors for the introduced test case. Looking at the
evolution of their cost functional, we can confidently affirm that almost all of ReLU models have been rapidly
trapped in a local minimum of the cost functional, being able to interpret only partially the solution’s signature
throughout the whole computational domain. Despite their clear potentialities, the loss function landscape
proves to be extremely variegated for ReLU networks, at least for the proposed basic version of the PINN.
Recalling the premise that Tanh models have not had the time to fully express their potential, we notice that
the shallow architectures present a best error of approximately 5%-6%, while the double-layered models hover
around 2%-3% with a slight improvement for an increasing number of neurons per layer employed. Figures 28
and 29 show the best functional approximations obtained for these experimental trials: the first refers to the
travelling 1-saw-teeth, while the second is linked to the 8-saw-teeth moving target.
We conclude the discussion of this test with a series of useful remarks. On the basis of the obtained results we
can ascertain that ReLU networks, when tested on PDEs that contain effective differential terms (characterized
by a differential operator that does not coincide with the identity) with a simple (easy to be interpreted)
solution, might be capable of emulating the desired features if provided with a hint of the target. Indeed, with
a sufficiently complex solution, ReLU still proves to be unreliable. The networks trained with the hyperbolic
tangent activation, on the other hand, show satisfactory accuracy levels in all cases (see Figure 29).
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(a) Target solution and network approximation, t = 0.
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(b) Target solution and network approximation, t = 0.2.
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(c) Target solution and network approximation, t = 0.4.
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(d) Target solution and network approximation, t = 0.6.
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(e) Target solution and network approximation, t = 0.8.
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(f) Target solution and network approximation, t = 1.

Figure 28: Best approximation plots, at six uniformly-spaced time steps, of the travelling 1-saw-teeth
(N = 0) solution to (4) by the third ReLU network trained with 1 hidden layer composed by 10 neurons
and 200 uniformly distributed residual points.
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(a) Target solution and network approximation, t = 0.
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(b) Target solution and network approximation, t = 0.2.
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(c) Target solution and network approximation, t = 0.4.
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(d) Target solution and network approximation, t = 0.6.
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(e) Target solution and network approximation, t = 0.8.
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(f) Target solution and network approximation, t = 1.

Figure 29: Best approximation plots, at six uniformly-spaced time steps, of the travelling 8-saw-teeth
(N = 3) solution to (4) by the first Tanh network trained with 2 hidden layers composed by 100
neurons each and 250 uniformly distributed residual points.

To sum up, every time we have dealt with a non-degenerate differential equation (that is to say a PDE whose
operator is not the identity, as for Test 1 of this section), we have observed several difficulties associated with
the networks trained with the ReLU activation function. The next test is mainly devoted to the search for the
motivations hidden behind the transversal failure of ReLU architectures.
We conjecture two possible explanations for the failure proven by the architectures embedded with ReLU:
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• Since this activation function identically evaluates to zero for the negative half-line of the real numbers,
it might introduce sparsity in the gradient back-propagation inside the network.

• Differently from the hyperbolic tangent function, it has a discontinuous derivative in correspondence to
the origin that may be the root of the unexpected behavior seen throughout our experiments.

In order to discover which (if any) of these motivations concur in manifesting the mentioned issue, we employed
two additional activation functions for our models: the so-called LeakyReLU and SiLU (see [11, 69]). The former
should be able to avoid the possible problem consisting in the phenomenon known as dying gradient, related
to the first point made above. The latter, instead, is an indefinitely regularized version of ReLU, expected to
overcome the possible issue connected to the discontinuous derivative in the axis origin. The aforementioned
activation functions have been graphically represented in Figure 30, and they can be formally defined as:

LeakyReLU(x) =

{
αx if x < 0

x if x ≥ 0

SiLU(x) =
x

1 + e−x
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(a) LeakyReLU.
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(b) SiLU.

Figure 30: Graphical visualization of the LeakyReLU (left) and SiLU (right) activation functional
profiles over the domain [-10,10]. For the former plot, α has been taken equal to 0.05.

An important remark resides in the fact that LeakyReLU keeps the discontinuity of its derivative in the origin
(as ReLU), except for the case in which α = 1 (representing the linear profile). For our experiments, we decided
to employ a value equal to 5% for this parameter, that defines the function’s slope for x < 0.

Test 5

In order to search for the issue characterizing the ReLU activation function, while continuing our basic PINN
analysis, we consider the simple one-dimensional Poisson equation with homogeneous boundary conditions (1).
In this test case we impose a peculiar bell -like function (see Figure 31 (a)) as the solution target of our problem.{

−u′′ = f x ∈ (0, 1)

u = 0 x ∈ {0, 1}

The models constructed for this experiment were prompted with a set of learning specifications and architectural
parameters within the following ranges of values:

• Amount of uniformly distributed internal points over the computational domain [0, 1]: {10, 20, 40, 80};
• Employed number of neurons per layer: {10, 20, 40, 80};
• Number of hidden layers: {1, 2}.

All models were trained with a total of 15000 ADAM iterations followed by another 35000 maximum number
of LBFGS steps. As anticipated, the exploited activation functions are: Tanh, ReLU, LeakyReLU and SiLU.
The current test has been inspired by the work shown in [35].
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Tables 20, 21, 22 and 23 report the best relative L2 error results for this experiment. In Table 20 we appreciate
the trends shown by the Tanh models, which present excellent levels of accuracy when provided with more
than 20 residual points. Even when just 10 training spots are exploited, all double-layered networks and a few
instances of shallow architectures provide satisfactory performances. Moreover, the error typically decreases if
any of the following parameters is increased: amount of neurons per layer, number of hidden layers or cardinality
of the training set. A significant exception to the last point made can be observed using 80 residual points: in
this case, the performance slightly worsens with respect to the models trained with only half of them. The best
Tanh network is represented in Figure 31, alongside its loss function evolution.

NPL/HL 1 2

10 0.053937 0.053090
20 0.080961 0.041974
40 0.185773 0.019171
80 0.264085 0.053871

(a) 10 residuals.

NPL/HL 1 2

10 0.004502 0.000280
20 0.002051 0.000460
40 0.000592 0.000197
80 0.000055 0.000163

(b) 20 residuals.

NPL/HL 1 2

10 0.002190 0.000160
20 0.000028 0.000285
40 0.000067 0.000079
80 0.000149 0.000088

(c) 40 residuals.

NPL/HL 1 2

10 0.005263 0.000704
20 0.000768 0.000618
40 0.000213 0.001567
80 0.000064 0.000119

(d) 80 residuals.

Table 20: Best error tables for the models trained with the Tanh activation function.

Tables 21 and 22 are related to the architectures that exploit ReLU and LeakyReLU, respectively. Regardless of
the differences between these two profiles, our new activation function does not show any sign of improvement
with respect to ReLU. As a matter of fact, all the networks that have been trained with one of these activation
functions eventually proved their incapability in finding reliable approximations even for the extremely simple
solution target underlying our differential problem.

NPL/HL 1 2

10 1.000000 0.966978
20 1.069109 0.950462
40 0.958389 1.012757
80 0.949887 0.917786

(a) 10 residuals.

NPL/HL 1 2

10 0.836206 0.888710
20 0.916266 0.899800
40 0.839887 0.918538
80 0.991914 0.965247

(b) 20 residuals.

NPL/HL 1 2

10 0.716903 0.894153
20 0.958032 0.905396
40 0.974853 0.866829
80 0.875598 0.942498

(c) 40 residuals.

NPL/HL 1 2

10 1.009563 0.925407
20 0.962618 1.014600
40 0.901529 1.017370
80 1.008544 0.984397

(d) 80 residuals.

Table 21: Best error tables for the models trained with the ReLU activation function.

NPL/HL 1 2

10 0.799493 0.792292
20 0.818724 1.004341
40 0.828104 0.874943
80 0.916210 0.988886

(a) 10 residuals.

NPL/HL 1 2

10 0.688966 0.821222
20 1.020829 0.922211
40 0.899339 0.991628
80 0.968637 0.989566

(b) 20 residuals.

NPL/HL 1 2

10 0.781606 0.937788
20 0.774002 0.833073
40 0.969570 0.966451
80 0.988512 0.992599

(c) 40 residuals.

NPL/HL 1 2

10 0.992159 0.901548
20 0.854928 0.938832
40 0.862462 0.944870
80 0.865678 0.992672

(d) 80 residuals.

Table 22: Best error tables for the models trained with the LeakyReLU activation function.

Finally, in Table 23 we may appreciate the successful results characterizing the SiLU models. Differently from
the Tanh networks embedded with the same structure, for these architectures 10 residual points are too few.
Apart from this fact, we highlight stunning levels of accuracy, with a precision that permanently stays well
above 99.9%. The only trend which clearly emerges from data concerns the relation between the number of
internal training points and the general performance of the models. These two are, in fact, positively correlated
with each other. The best SiLU network is represented in Figure 32, alongside its loss function evolution.

NPL/HL 1 2

10 0.258267 0.379755
20 0.245813 0.119700
40 0.312816 0.175850
80 0.453008 0.109568

(a) 10 residuals.

NPL/HL 1 2

10 0.000147 0.000098
20 0.000206 0.000078
40 0.000454 0.000115
80 0.000299 0.000314

(b) 20 residuals.

NPL/HL 1 2

10 0.000066 0.000103
20 0.000029 0.000020
40 0.000088 0.000043
80 0.000026 0.000030

(c) 40 residuals.

NPL/HL 1 2

10 0.000144 0.000046
20 0.000116 0.000023
40 0.000049 0.000010
80 0.000016 0.000030

(d) 80 residuals.

Table 23: Best error tables for the models trained with the SiLU activation function.
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(a) Target solution and Tanh model approximation.
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(b) Loss function evolution.

Figure 31: Best approximation plot of the target solution to (1) by the second Tanh network trained
with 1 hidden layer, 20 neurons and 40 residuals (left) and its related cost functional evolution (right)
in semi-logarithmic scale. Given the final flat shape of the latter after all the available LBFGS learning
iterations were performed, we can confidently ascertain that convergence has been reached by this
model. From the former, we see that the network and the exact solution plots basically overlap.
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(a) Target solution and SiLU model approximation.
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(b) Loss function evolution.

Figure 32: Best approximation plot of the target solution to (1) by the first SiLU network trained
with 2 hidden layers of 40 neurons each and 80 residuals (left) and its related cost functional evolution
(right) in semi-logarithmic scale. Given the final flat shape of the latter after all the available LBFGS
learning iterations were performed, we can confidently ascertain that convergence has been reached by
this model. From the former, we see that the network and the exact solution plots basically overlap.

Remarkably, we observe that the heaviest architectures (in terms of computational cost) trained for this trial
took not more than a few minutes to complete their learning phase. For all our simulations, we have exploited
a machine that employs a 2,6 GHz 6-Core Intel Core i7 processor and a 16 GB 2400 MHz DDR4 memory.
The inevitable conclusion that we infer on the basis of the exposed results consists in considering the lack of
regularity in the first order derivative of ReLU as the main reason behind the failure of the related models
throughout all tests performed so far. SiLU has actually been able to overcome, for the analyzed case, these
obstacles in a brilliant manner. On the other hand, LeakyReLU shares the same issues of ReLU. If the unknown
issue had been related to the dying gradient phenomenon, we would have expected to observe the opposite
outcome. The successful activation profiles (tried until now) for PINNs have the common property of belonging
to the set of analytical and indefinitely differentiable functions. In virtue of these considerations, in the next two
tests we will limit ourselves to the analysis of the results coming from the models trained with the hyperbolic
tangent activation profile, neglecting the other unsuccessful trials performed by means of ReLU.
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Test 6

This experiment has been executed taking inspiration from an analogous test presented in [37]. In the present
context we want to analyze the behavior of our basic PINN structure in understanding a very stiff target
profile, namely the solution to the well-known one-dimensional homogeneous (regularized, with ν 6= 0) Burger’s
equation over the spacetime domain Ω = [0, 1]2:

∂u

∂t
+ u

∂u

∂x
− ν ∂

2u

∂x2
= 0 (x, t) ∈ Ω

u = g (x, t) ∈ Γ ⊂ ∂Ω

(5)

The initial and boundary conditions are imposed over the so-called parabolic frontier of the domain, that is:

Γ = {(xb, t) ∀t ∈ [0, 1] : xb ∈ {0, 1}} ∪ {(x, 0) ∀x ∈ [0, 1]}

The models constructed for this test were prompted with a set of learning specifications and architectural
parameters within the following ranges of values:

• Amount of uniformly distributed internal points over the computational domain [0, 1]2: {400, 800};
• Employed number of neurons per layer: {25, 50, 100};
• Number of hidden layers: {1, 2}.

All models were trained with a total of 25000 ADAM iterations followed by another 225000 maximum number
of LBFGS steps. Overall 400 boundary points were exploited, 200 of which solely reserved for the imposition
of the initial condition. As anticipated, we are essentially interested in studying the results coming from
the models trained with the hyperbolic tangent activation function. In fact, once again, all ReLU networks
provide extremely poor performances that are not reported here. Finally, ν is set to 2.5e − 3 and g(x, t) =
1− tanh(200(x− t)), which also represents the exact solution of the problem. The latter, as we can see from its
analytical expression, is mainly characterized by an extremely sharp transitional interface in proximity of the
spacetime line t = x, where its value suddenly (but smoothly) drops.

NPL/HL 1 2

25 0.000023 0.385417
50 0.385021 0.301815
100 0.368582 0.387447

(a) 400 residuals.

NPL/HL 1 2

25 0.414848 0.000022
50 0.001711 0.370403
100 0.000250 0.412992

(b) 800 residuals.

Table 24: Best error tables for the models trained with the Tanh activation function.

Table 24 shows the best relative L2 errors for the models trained with the hyperbolic tangent activation function.
It can be immediately seen that there are no patterns that appear to be generally valid for this case of study.
For instance, the errors coming from the architectures trained with 800 residual points seem to suggest two
contradictory conclusions. In fact, shallow networks present significative signs of improvements when the number
of neurons increases, while double-layered models show the exact opposite trend. On the other hand, when we
employ 400 internal training points, only the smallest architecture proves to be capable of obtaining a satisfactory
accuracy, which in this case is even stunning. Embedding the models with twice as much residuals, we appreciate
three successful network structures. One of the few reasonable conclusions that can be made on the basis of
these results consists in the observation that a larger number of residuals seems to contribute in favor of a
better performance. This fact is not surprising: we actually expect that, involving more training spots close to
the stiff interface where the solution presents huge gradient values, our approximation naturally comes closer
to the target. Concerning the rest we can say that, given the stiff nature of the phenomenon under study, it is
probable that the initial random guess with which we prompt the learning phase of the models plays a crucial
role in determining the quality of their final approximation. Even though most of the successful architectures
are characterized by a single hidden layer, the best one is actually reached with two of them. As we said,
however, augmenting the number of neurons per layer in the double-layered networks leads to unsatisfactory
performances. On the basis of all these considerations, it seems reasonable to infer that the absence of emerging
patterns for this test could be due to the difficult optimization procedure linked to such a stiff solution target,
that introduces a large number of local minima for our loss function (especially for the double-layered structures
that possess a larger amount of neurons per layer).
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(a) Target solution and network approximation, t = 0.
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(b) Target solution and network approximation, t = 0.2.
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(c) Target solution and network approximation, t = 0.4.
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(d) Target solution and network approximation, t = 0.6.
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(e) Target solution and network approximation, t = 0.8.
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(f) Target solution and network approximation, t = 1.

Figure 33: Best approximation plots, at six different time steps, of the target solution to (5) by the
second Tanh network trained with 2 hidden layers of 25 neurons each and 800 residuals.

Figure 33 above illustrates the target solution’s profile at six different time steps, as well as the best model
approximation that we have managed to obtained for this test. We can clearly appreciate that, in all of the
following representations, they almost coincide.
We observe that the heaviest architectures (in terms of computational cost) trained for this experiment took
approximately 2-3 hours to execute their whole learning phase.
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Test 7

The last experiment concerning our basic PINN sensitivity analysis involves another classical Partial Differential
Equation, the one-dimensional homogeneous Heat problem over the spacetime domain Ω = [−1, 1] × [0, 1]:

∂u

∂t
− ν ∂

2u

∂x2
= 0 (x, t) ∈ Ω

u = g (x, t) ∈ Γ ⊂ ∂Ω

(6)

The initial and boundary conditions are imposed over the so-called parabolic frontier of the domain, that is:

Γ = {(xb, t) ∀t ∈ [0, 1] : xb ∈ {−1, 1}} ∪ {(x, 0) ∀x ∈ [−1, 1]}

We chose g so that the exact solution is a highly regular function characterized by an exponentially decaying
sinusoidal profile given by g(x, t) = exp(−t) sin(3πx) (therefore ν is correspondingly set to the value of 1/9π2).
The models built for this test were prompted with a set of learning specifications and architectural parameters
within the following ranges:

• Amount of uniformly distributed internal points over the computational domain [−1, 1]2: {100, 200, 400};
• Employed number of neurons per layer: {25, 50, 100};
• Number of hidden layers: {1, 2}.

All models were trained with a total of 25000 ADAM iterations followed by another 125000 maximum number
of LBFGS steps. An overall amount of 400 boundary points were exploited, 200 of which solely reserved for
the imposition of the initial condition. As we anticipated at the end of Test 5, we are essentially interested in
studying the results coming from the models trained with the hyperbolic tangent activation function. Also in
this case, all ReLU networks provide extremely poor performances that are not reported here.

NPL/HL 1 2

25 0.061475 0.038649
50 0.038218 0.156886
100 0.046123 0.209087

(a) 100 residuals.

NPL/HL 1 2

25 0.010572 0.001866
50 0.007145 0.005628
100 0.004237 0.007973

(b) 200 residuals.

NPL/HL 1 2

25 0.006809 0.000294
50 0.001248 0.000478
100 0.002705 0.000960

(c) 400 residuals.

Table 25: Best error tables for the models trained with the Tanh activation function.

Table 25 shows the best L2 relative error results related to the networks trained with the hyperbolic tangent
activation function. The overall evaluation concerning the quality of our basic PINN structure on this experiment
is positive. Moreover, all models show a loss function evolution that presents a plateaux at the end of the learning
phase (hence, we can assume that they have had enough time to reach convergence) The architectures endowed
with the lowest number of training points present performances that do not exhibit any identifiable accuracy
trend with respect to an increasing number of hidden layers or neurons per layer. Nevertheless, all shallow
models and the smallest double-layered network provide satisfactory levels of accuracy with a relative error in
the 3%-6% range. Exploiting 200 residual points, we always obtain a best accuracy of at least 99%. Moreover,
in this case, increasing the number of neurons per layer yields an improvement for shallow networks and a
deterioration for multi-layered models. By employing architectures endowed with 400 internal training points,
we appreciate the following patterns: multi-layered networks drop their accuracy with an increasing number
of neurons per layer, while the best shallow model is obtained in correspondence to an intermediate amount
of neural connections. The most influential parameter is clearly represented by the number of residual points:
performances improve as it is increased.
Figure 34 below illustrates a six time-frame evolution of the target solution and the best model approximation
that we managed to obtained for this experimental trial. As we can see, in all these representations they
basically overlap with each other. Notice that the amplitude of the sinusoidal solution diminishes over time.
The heaviest architectures (in terms of computational cost) trained for this trial took approximately 10-15
minutes to execute their whole learning phase.
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(a) Target solution and network approximation, t = 0.
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(b) Target solution and network approximation, t = 0.2.
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(c) Target solution and network approximation, t = 0.4.
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(d) Target solution and network approximation, t = 0.6.
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(e) Target solution and network approximation, t = 0.8.
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(f) Target solution and network approximation, t = 1.

Figure 34: Best approximation plots, at six different time steps, of the target solution to (6) by the
first Tanh network trained with 2 hidden layers of 25 neurons each and 400 residuals.
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Take Home Messages

• The outcomes of Test 4 definitively discouraged the usage of ReLU: even when we provide a hint (through
the initial condition) of a target profile that is suited for this activation function, in fact, the related models
fail at obtaining satisfactory approximation performances unless the underlying solution is extremely
simple (as for the first part of the mentioned test, corresponding to N = 0).

• Test 5 shed light on the issue concerning ReLU networks, proving that the most reasonable explanation
for such failures resides in the discontinuity of the related first order derivative in the axis origin.

• Tests 6 and 7 have been useful to study the behavior (and the potentialities) of our basic PINN over
two classical time-dependent PDEs, with the latter that presents a particularly stiff target profile. Their
related outcomes are more than positive, even though for the Burger’s problem we did not manage to
obtain straightforward results concerning the performance trends with respect to the structural hyper-
parameters of the models (probably due to the stiffness of the exact solution).

3.3. Convergence Analysis

The aim of this subsection consists in presenting the experimental convergence properties, with respect to an
increasing number of residual points, of the basic PINN structure, by testing the latter on three different types
of solution targets: single sinusoid, multi frequency function and a generic bell-like profile, all implicitly imposed
through the solution of the one-dimensional Poisson problem with homogeneous boundary conditions (1). Some
related formal results and computational examples can be found in [60]. For this study, rather than their
absolute performances (measured through the relative L2 error), we are much more interested in the asymptotic
behavior shown by the accuracy presented by the trained models (all embedded with the hyperbolic tangent
activation function).

3.3.1 Single-Scale

For this test we employed the medium frequency solution that we already encountered in the single-scale
sensitivity analysis of sub-subsection 3.2.1. The structure of our basic PINN is fixed, embedded with a single
hidden layer and 100 neurons. Three identical attempts (with a different random initialization seed) were
performed for all architectural specifications, involving a total of 25000 ADAM iterations followed by a maximum
of 100000 LBFGS steps. In order to exploit the full potential of these networks and accordingly focus uniquely
on their convergence properties, a sufficiently large amount of learning iterations have been set and performed.
The number of uniformly distributed residual points inside the domain [−1, 1] ranges in the following list of
values: {20, 40, 80, 160, 320, 640, 1280, 2560}.

(a) Average trend plot. (b) Best trend plot.

Figure 35: Average (left) and best (right) error plots for the basic PINN single-scale convergence
analysis (with respect to the number of uniformly distributed residual points employed) visualized in
semi-logarithmic scale. The lines associated to the linear and quadratic orders lines are represented.

Figure 35 represents the average (left) and best (right) relative L2 error trends for this experiment in semi-
logarithmic scale. As we can see the two profiles are very similar to each other, confirming that the networks
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had enough time to fully exploit their approximation features. It is clearly visible that 40 residuals represent the
threshold to obtain an extremely reliable emulation of the solution, with a relative error that stays well below
1%. Exploiting a higher number of training points leads to a level of saturation in the order of 1e− 5/1e− 6.

3.3.2 Multi-Scale

For this experiment we reuse the multi-scale solution to (1) that we already exploited in the first test case of
the homonym sensitivity analysis of sub-subsection 3.2.2 (for the same differential problem, that is the one-
dimensional Poisson equation with homogeneous boundary conditions). The structure of our basic PINN is kept
fixed to an architecture with a single hidden layer constituted by 100 neurons. Also in this case we performed
three attempts for every set of architectural specifications, involving a total of 25000 ADAM iterations followed
by a maximum of 100000 LBFGS steps. In order to exploit the full potential of these networks and accordingly
focus uniquely on their convergence properties, a sufficiently large amount of learning iterations have been set
and performed. The number of uniformly distributed residual points inside the domain [−1, 1] ranges in the
following list of values: {20, 40, 80, 160, 320, 640, 1280, 2560}.

(a) Average trend plot. (b) Best trend plot.

Figure 36: Average (left) and best (right) error plots for the basic PINN multi-scale convergence
analysis (with respect to the number of uniformly distributed residual points employed) visualized in
semi-logarithmic scale. The lines associated to the linear and quadratic orders lines are represented.

Figure 36 reports the similar evolution for the average (right) and best (left) relative L2 error trends for this
experiment. Similarly to the previous study, we appreciate a generically increasing performance in correspon-
dence of an augmented number of residual points employed. Even these networks, however, reach a saturation
level for their accuracy (close to 1e − 4) when the amount of training points exceeds 80. The performances
obtained with a lower number of them proved to be thoroughly unsatisfactory.

3.3.3 Generic

We conclude this brief analysis with another trial, where we impose the bell-like profile (taken from [35]) that
we considered for Test 5 in sub-subsection 3.2.3 as the solution to the differential problem (1):

u(x) = x
(
e−100(x−1/3)2 − e−400/9

)
The structure of the following networks is kept fixed to an architecture with two hidden layers composed by
80 neurons each, belonging to the settings that showed the best results in the aforementioned test. As usual
we performed three attempts for every set of architectural specifications, involving a total of 25000 ADAM
iterations followed by a maximum of 175000 LBFGS steps. In order to express the full potential of these
networks and accordingly focus uniquely on their convergence properties, a sufficiently large amount of learning
iterations have been set and performed. The number of uniformly distributed residual points inside the domain
[0, 1] ranges in the following list of values: [20, 40, 80, 160, 320, 640, 1280, 2560].
Figure 37 shows a similar evolution for the average (left) and best (right) relative L2 error patterns for this
experiment. Differently from the other tests, we ascertain a constant trend for the models performances with
respect to the total number of training points employed, with a value of the error that hovers around 1e− 4.
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(a) Average trend plot. (b) Best trend plot.

Figure 37: Average (left) and best (right) error plots for the basic PINN generic convergence analysis
(with respect to the number of uniformly distributed residual points employed) visualized in semi-
logarithmic scale. The lines associated to the linear and quadratic orders lines are represented.

The best models obtained for the approximation of the solutions to these convergence tests show a functional
representation that coincides with the related targets. Their respective plots are essentially identical to the ones
we already presented in section 3.2 for their counterpart sensitivity experiments (Figures 9 (a), 14 (a), 31 (a)).
The most important conclusion related to the present analysis resides in the confirmation of the experimental
evidence shown in [60], where the relative L2 error trend linked to the approximation of a set of regular solutions
through the one-dimensional Poisson problem reaches a saturation level with respect to the number of uniformly
distributed residual points employed. Our work exhibits and repeats the same pattern for three different types
of target profiles for the same differential system embedded with homogeneous boundary conditions (1).

The analyses and considerations made so far all belong to the original scope of this work, whose aim is to
give a general overview of the basic PINN behavior through a series of classical test cases that are ubiquitous
in literature. The main focus of the previous sections was to study and linger on the architectural features
of the models trained to approximate the target functions that are passed, in a more or less implicit manner
(depending on the case), through the imposition of a Partial Differential Equation. Provided with a sufficiently
long learning procedure, the mentioned architectural characteristics are essentially represented by the following
list of parameters: number of hidden layers, amount of neurons per layer and number of internal residual points.
The latter, in particular, have been uniformly sampled inside the computational domain of the problems treated
in the previous sections. This choice has been made for several reasons, among which the most important
ones concern consistency and reproducibility of our experiments. In this context we transversely evaluated
the performances shown by different activation functions, discovering that the presence of effective differential
terms in (presumably) any PDE leads to favor the indefinitely regular profiles over the ones that present critical
points. An example with the former characteristics is represented by the hyperbolic tangent function, which
turned out to be extremely reliable in this respect. On the contrary, ReLU, that presents a discontinuity for
it first derivative in the origin, shows poor abilities whenever any differential term appears in the equation
governing the phenomenon under study. Such irregularity evidently impacts on the complexity of the cost
functional landscape, that becomes excessively difficult to be explored by our optimization procedure. These
conclusions were drawn after a proper investigating for the reasons behind such failure in one of the previous
tests. After a complete sensitivity analysis where we studied the influence of the aforementioned parameters
on the relative networks performances, we experimentally investigated the PINNs convergence properties over
a set of simple cases. Concerning this topic, we eventually observed an interesting saturation pattern that is
present in all our experiments. This trend profoundly differs from the results coming from other computational
methodologies employed for the resolution of PDEs, such as FEMs. These, indeed, are embedded with strong
theoretical foundations and a set of formal results regarding their convergence features which have also been
experimentally verified (see [3]). Due to a lack of tangible theorems in the field of Artificial Neural Networks,
we can consider our tests to be valid only in an experimental sense.
In some of our trials we observed better performances related to shallow networks, while in other tests we saw
that multi-layered models were able to provide more accurate results. Even if with wider layers we typically
obtained better approximations, we cannot classify this observation as generally valid: in some situations, in
fact, too many neurons lead to architectures with a larger generalization error.
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Continuing our discussion, we can certainly regard the total amount of learning iterations performed as another
key variable for obtaining a satisfactory accuracy from our models. This fact should come with no surprise:
indeed, the stiffer a solution target, the longer we expect our learning procedure to take in order to understand
and emulate it correctly.
On the basis of all the previous considerations, we will dedicate the next section to the description and testing
of a new computational tool for the numerical resolution of PDEs with a new adaptive algorithm for PINNs.

4. Adaptive PINN

In this chapter we propose an alternative version of the basic PINN endowed with a series of adaptive features,
based on a set of heuristical assumptions, aiming at providing a substantial help in determining the proper
structure to be used for the resolution of the related problem. This procedure is therefore intended to select the
right number of hidden layers, their relative size and the amount of residual points to be employed, along with
their location. It is needless to say that such an algorithm requires a stopping criterion which is expected to
end in a proper configuration for the network. Also remember that, as general as an adaptive algorithm might
be, it will always certainly need a set of hyper-parameters to be manually prompted with. Before passing to the
detailed description of our proposal, we present a non-exhaustive list of adaptive techniques already presented
in literature, accompanied by a short description.

• Residual Adaptive Refinement ([37]): an iterative technique used not only to adaptively increment the
number of internal training points, but also to pinpoint their convenient location inside the domain.

• Time Adaptive Approaches ([67]): a pair of useful methods to address the resolution of time-dependent
PDEs by sampling the residuals in specific spacetime portions during the learning phase.

• Loss Terms Adaptive Weights ([64, 66]): introduction of a set of adaptive weights multiplying the terms
composing the cost functional expression.

• Individual Loss Terms Adaptive Weights ([39]): introduction of a set of adaptive weights multiplying the
single individual terms of the cost functional.

• Adaptive Activation Function ([24]): technique that endows the network’s activation profile with an adap-
tive coefficient varying in the learning phase of the model.

In the following we will construct an adaptive procedure that only focuses on the network architectural features.
The latter will combine the renowned Growing Method (see for instance [12, 14, 23, 31, 34, 40, 55]), developed
in the general field of Machine Learning, and a variation of the just mentioned Residual Adaptive Refinement
technique. A first justification for their combined use resides in the fact that, despite being two different concepts,
they are strictly correlated with each other. It is actually intuitive to assume that, in front of a stiffer solution,
we will consequently need more residual points and, at the same time, a larger architecture, whether this means
adding more neurons or increasing the number of hidden layers. All the related implementative details will
be discussed in the next subsection, after which we shall test the proposed procedure through a campaign
of significant experiments. Before entering into the aforementioned expositions, a crucial premise is in order.
Indeed, we must specify that the following results are to be intended as trials of our newborn algorithm, and
that all the consequent considerations must be accordingly taken with caution. It is important to contextualize
their significance in terms of mere initial experimental attempts in a new (and possibly promising) direction for
the development of adaptive PINNs, that nonetheless still remains unpretentious.

4.1. Implementation

We are finally ready to present the outline of our adaptive algorithm, which is intended to be the building block
for the construction of a properly sized and highly performing PINN. As we already remarked, our aim is to
combine the well-known Growing Method and a variation of the so-called Residual Adaptive Refinement tech-
nique, focusing our attention on the related architectural aspects. A first fundamental assumption underneath
this procedure consists in considering the network’s physical structure and the number of residual points to be
employed as interconnected with each other. In fact, we might heuristically link stiffer solutions to the need of
larger models and a higher number of training points. It is for this reason that, in our adaptive procedure, the
operative steps responsible for these two enhancements intervene at the same time. In the following we present
the exhaustive list of additional hyper-parameters considered for our new optimization procedure, which is still
based on the combined ADAM - LBFGS learning technique, already exploited to construct our basic PINNs.

• Pools_Residuals_Size : cardinality of the test set Tt, over which we perform accurate evaluations of
our PINN between consecutive learning procedures. Even more importantly, it is also exploited as a
uniform and dense pool of points where we seek the candidates that should be added to the training set.
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• Max_Number_Residuals: maximum amount of residual points that can be employed.
• Max_Hidden_Layers: maximum amount of hidden layers for the current PINN structure.
• Min_Neurons_Per_Layer : minimum amount of neurons inside each hidden layer.
• Max_Neurons_Per_Layer : maximum amount of neurons inside each hidden layer.

The operative step of our process, which is responsible for the architectural evolution of our PINN, bases its
decisions upon the value of a fundamental target variable, represented by the target ratio (T.R.) between the
PDE residual evaluated on the uniformly dense test set (C1 for short) and over the actual pool of training
points that is currently in use (C2 for short) (see subsection 2.2 for the adopted notation):

T.R. (W ; Tt, Tf ) =
Lf (W ; Tt)
Lf (W ; Tf )

=
C1

C2

Since our networks are trained upon the latter, we generally expect this value to be greater than one. We also
provide the definition of another important variable which is extensively exploited inside our algorithm, the
so-called improvement factor (I.F.). Assuming n represents the index of the last learning cycle performed, the
related value for the n-th stage of our algorithm is defined as the factor of improvement of the cost functional
during the last training phase:

I.F. (W ; Tt, Tb, n) =
L (W ; Tt, Tb, n)

L (W ; Tt, Tb, n− 1)

We may now continue with the exposition of the list of additional hyper-parameters and jointly explain the
heuristical justifications underlying the strategies of our adaptive algorithm.

• NoAction_Threshold : if the improvement factor I.F. is greater than this threshold, it means that the
optimization procedure is pursuing a promising path that does not show the need of any intervention
from our adaptive toolbox. Optimization proceeds with no changes.

• RAR_Threshold : if the target ratio T.R. stays above this threshold, we assume our model to be
significantly biased towards a better performance over the actual pool of residual points. This basically
means that the PINN, under these circumstances, is thought to be presenting difficulties in generalizing
the knowledge acquired over the training set to the whole domain. Under this condition for the target
ratio, we increase the number of residual points according to a criterion that will be later explained.

• GRW_Threshold : if the target ratio stays below this threshold, we assume our model to be performing
in one of the following regimes: either the accuracy is satisfactory over both the test set and the training
set, or it is poor for all of them. It is therefore natural, when we find ourselves in this situation, to assume
that we are experiencing the worst case scenario, attributing the cause of such similar performances to
a poor architecture which is not able to give accurate predictions neither on the training points nor,
consequently, over the test set. Thus, in this case, we operate by increasing (growing) the size of the
network in a proper manner, which will be conveniently explained later.

Another important feature concerns the number of training iterations to be performed at each learning cycle.
Such parameter, inside our adaptive algorithm, conveniently depends on: the number of neurons currently
embedded in the PINN, the amount of hidden layers employed and the training set cardinality at present time.
The higher these parameters, the larger the needed amount of learning iterations we reasonably assume our
model should perform. The explicit dependency from each of the latter is not reported here: it suffices to clarify
that such relationships were purely experimentally designed. Related to this subject, we eventually introduce:

• Force_First_Iterations: represents the minimum number of training cycles that have to be manda-
torily performed at the beginning of our adaptive algorithm. In Figure 38, Forcing Left is a decreasing
counter (initialized to Force_First_Iterations) that expresses how many learning cycles still have to be
unconditionally executed.

• Learning_Iterations_Multiplier : expresses a user-defined multiplying coefficient for tuning the learn-
ing steps to be performed at each training cycle.

It must be pointed out that, by choice, our adaptive algorithm does not include any feature operating on the
boundary points of the domain, that remain fixed throughout the entire optimization process. It is therefore
recommended to provide them in a sufficient number when the PINN is initialized. Along with the starting
structure of our network and the initial residuals embedded in the architecture, the boundary points might
therefore be considered as special hyper-parameters.
Prior to the complete illustration of our adaptive algorithm, it is crucial to remark that these newly-developed
PINNs present a specifically designed architectural Feed-Forward skeleton for the interconnection of their neu-
rons. The latter consists in the presence of a special neuron on top of each hidden layer, which applies the
identity function to its input (while the other neural units are embedded with the hyperbolic tangent profile).
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Continuing our discussion, in the following diagrams we represent the salient steps and the most important
features characterizing our innovative adaptive learning procedure.

Figure 38: Flow chart for the adaptive algorithm.

In the flow chart represented in Figure 38 we illustrate the general steps of our procedure. First of all, we
save the initial instance of the model and we enter in the main loop. Secondly, we compute the number of
learning iterations that have to be performed by means of the experimental expression that we previously
mentioned, which takes into account the total number of neurons, the amount of hidden layers and the training
set cardinality that characterize the current version of the PINN. Then, after the completion of a new learning
cycle, we compute the updated values of the loss function, alongside the aforementioned target ratio (T.R.) and
improvement factor (I.F.). Notice that the expression of the cost functional involves an evaluation of the PDE
residuals over the test set, instead of the training set. At this point, if the general performance has improved (or
if we are still enforcing a possibly positive number of training cycles), we proceed by updating the number of
steps that are yet to be forced, subsequently overwriting the saved model with the current version of the PINN.
Now, if the improvement factor is larger than the NoAction_Threshold, we turn back to the beginning of the
loop without taking any further action. Otherwise, if the related entering conditions are satisfied, the Growing
Method and the RAR technique come into play and accordingly modify the PINN structure. Eventually we
go back to the beginning of the cycle, and start it over until we reach the end of the algorithm. Our stopping
criterion is met whenever the minimum number of learning cycles have been performed and the computation
of the loss function provides a worse value than the previously saved model. At that point, before exiting the
adaptive procedure, we definitively reset our PINN architecture to the last (better) version stored in memory.

In Figures 40 and 41 we visualize the specific diagrams for the inner functioning concerning the Growing
Method and our version of the Residual Adaptive Refinement technique. Starting from the former, as soon as
we enter the algorithm it is immediately checked whether there is enough space left in the last hidden layer
for the addition of new neurons. If this is the case, we double their amount (in the specified layer) and we
randomly initialize the correspondent weights by means of a zero-mean probability distribution. Otherwise, if
the Max_Neurons_Per_Layer threshold has been reached, we try to increment the number of hidden layers for
our network: if this is possible, namely if the latter has not reached its limit value (Max_Hidden_Layers), we
insert a new layer embedded with Min_Neurons_Per_Layer units. In Figure 39 we illustrate this mechanism.
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Figure 39: Addition of a new hidden layer for the Growing procedure.

First of all we remark that the first neuron of every hidden layer (depicted in yellow), in these architectures, is
embedded with the identity activation function: this implies that, when we add a new layer at the end of our
structure, simply by feeding the previous output weights (the arrows in red) to the mentioned newly-created
neuron (yellow with red borders) and by initializing its relative output connection to one (purple arrow) and
its bias to zero, and setting all the other new connections (black arrows) with a random zero-mean distribution
and their biases to zero, we are able to retain (on average) the complete information coming from the previous
version of the network. It is crucial to notice that such a property is exclusively made possible by the use
of an identity activation for the mentioned special neurons. Such a procedure can be generalized to a generic
n-dimensional output DNN employing n neurons with these characteristics on top of every hidden layer. To sum
up, following the two described procedures to enlarge our network (neuron-wise or layer-wise), the expected (in a
statistical sense) output of our model remains unchanged. It should be needless to say that, if our architecture
has already grown to its maximum size, the algorithm immediately returns without performing any further
action. Concerning the application of the Growing Method, we still need to clarify an important concept that
was willingly neglected in the previous pages. As we anticipated, whenever the target ratio T.R. stays below the
user-defined GRW_Threshold it is assumed that the related PINN, that consequently performs similarly over
the training and test sets, presents a poor general accuracy. Our claim is that the mentioned assumption does
not compromise the possible success attached to the adaptive algorithm. In fact, even if we wrongly suppose
our PINN to express bad performances, the structure of our procedure prevents the model to take a misleading
direction: in case the performance worsens, the algorithm actually stops during the successive training cycle,
retrieving the last (better) network that has been stored in memory (see Figure 38).

Figure 40: Flow chart for the Growing Method.
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Figure 41: Flow chart for the RAR technique variation used in our work.

In Figure 41 we represent the simple flow chart concerning the application of our revisited version of the so-called
Residual Adaptive Refinement technique, introduced for the first time in [37]. The unique check present in this
algorithm controls whether there is the possibility to further increase the number of residual points embedded
in the current architecture. If so, the PDE residual is evaluated over the entire test set (alternatively called
residual pool) and the points that present the worst results are aggregated to the current training set. Assuming
N to be the number of residual points prior to the application of this technique, at the end of the algorithm our
network will possess 2N of them (we actually add to the training set those N points belonging to the residuals
pool which present the highest PDE residual values). Notice that, since the test set remains unmodified during
the whole optimization phase, there are no restrictions regarding the location of the points that can be added:
some spots might actually be repeatedly inserted in the training set (in different applications of RAR). Such
eventuality does not represent an issue: if this happened, it would simply mean that the repeated points have
assumed a relatively higher importance with respect to the others, given by the fact that in the mentioned spot
the PINN struggles in providing good performances.

Before passing to the analysis of the results related to our experimental tests for the described framework, we
shall conclude the current discussion with a series of useful considerations. First of all, let us provide a comment
regarding the chosen features of our Growing Method. The operative decision that consists in prioritizing the
growth for the number of embedded neurons in the last hidden layer (before increasing the number of layers) has
been made because slimmer networks are generally much computationally cheaper than deeper architectures.
Therefore, we accordingly tried to obtain satisfactory performances with fewer hidden layers before accepting
to increase the number of the latter. Notice that, by construction, our final versions of the networks do
not necessarily have the same amount of neurons in each layer, providing a more elastic and wider range of
possibilities for our models. Our second comment concerns the fact that, operatively, the hyper-parameters
GRW_Threshold and RAR_Threshold are themselves adapted during the execution of the algorithm, changing
in a way that makes it more and more difficult to fall in the relative procedural branch every time the latter is
entered. This has been done in order to avoid the occurence of an extremely and unnecessarily heavy learning
procedure whenever these two thresholds are badly tuned for the problem at hand. We finally remark that
many of the design choices that have been made for the construction of this new adaptive algorithm might be
clearly revisited for possible further developments, that may also depend on the application that it is intended
to be addressed. Despite the fact that we certainly created an elastic, generic and portable technique, however
still belonging to its first experimental phase, we must acknowledge that, unfortunately, we have not been able
to eliminate the necessity of many hyper-parameters that need to be tuned by the user.

4.2. Results

The contents of the following adaptive tests take inspiration from a restricted subset of cases formerly analyzed
in the basic PINN sensitivity study. A total of five experiments were performed in this framework. For the sake
of simplicity, the related learning settings will not be entirely reported in our discussion.
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Test 1

In the first test case we consider the pure approximation problem (2) for the 4-saw-teeth wave, which was the
subject of our study in the first test of the basic PINN generic sensitivity analysis. In order to attenuate the
effects linked to random initialization, we trained three independent models with the same initial specifications,
all embedded with the ReLU activation function.
All these adaptive networks have noticeably explored a multi-layered architecture. In two cases (out of three)
we have even obtained the exact same structure, composed by 80 neurons in the first hidden layer and 10 of
them in the second. It is worth specifying, at this point, that we set the Min_Neurons_Per_Layer value to 10
and, accordingly, the Max_Neurons_Per_Layer hyper-parameter to 80 for this test. The obtained relative L2

errors are all satisfactory and two of them are particularly worthy, with a value of about 0.1% in one case and
0.01% in the other. The least performing model got evidently stuck in a slightly worse local minimum of the
loss function, presenting a final value for the error that is close to 3%. Figure 42 shows the basically overlapping
plots for the exact solution and the best model that we achieved (on the left), alongside the corresponding
loss function evolution (on the right). Here we recall that, for all these tests, the lastly mentioned quantity is
evaluated by exploiting the dense residual pool (other than the usual fixed boundary points) at the end of every
adaptive cycle. For the illustrated model, a total of 16 learning periods were actually performed.
Summing everything up, we have obtained satisfactory results in this very first experimental tranche of adaptive
models. Indeed, even comparing the best networks observed in the counterpart trial performed during the basic
PINN sensitivity analysis (see Test 1 of sub-subsection 3.2.3) with the best architecture constructed here, we
appreciate a better accuracy in the latter. For completeness, it must be noticed that the final number of residuals
for our best network amounts to 2560 (starting from 10), which turns out to be a much greater number than the
training set cardinalities used for the basic PINN counterparts. Notice that a minimum of 10 initial learning
cycles were forced for this experiment.
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Figure 42: Best approximation plot of the target solution by the second trial adaptive PINN (left) and
its related cost functional evolution (right) in semi-logarithmic scale.

Test 2

In this test case we look, through the implicit solution of the one-dimensional Poisson equation with homo-
geneous boundary conditions (1), for an approximation of the 4-saw-teeth target function, in the identical
fashion already explored in Test 3 for the basic PINN generic sensitivity analysis (see sub-subsection 3.2.3).
In order to attenuate the effects linked to random initialization, we trained three independent models with
the same initial specifications, all embedded with the hyperbolic tangent activation function. The salient fea-
tures for the starting configuration concern: the number of initial (uniformly distributed) residual points set
to 80, an initial structure composed by one hidden layer of 10 neurons (that is also the value given to the
hyper-parameter Min_Neurons_Per_Layer), a maximum number of residuals set to 10240 and the variable
Max_Neurons_Per_Layer tuned to 80. A total of 15 learning cycles were forced for all the networks, with the
Learning_Iterations_Multiplier augmented to 1.5.
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Figure 43: Best approximation plot of the target solution by the second trial adaptive PINN (left) and
its related cost functional evolution (right) in semi-logarithmic scale.

Figure 43 shows the graphical view of the best instance alongside the related cost functional evolution. As we
can notice from the left plot, even the most performing architecture has not been able to reach a high degree
of accuracy for its approximation. Nevertheless, we must highlight that our network has at least grasped the
essential features of the exact solution. Interestingly, given such starting configuration, all the models have
actually evolved towards an identical final overall structure with respect to the number of hidden layers (1),
the amount of neurons (80) and the training set cardinality (5120). Under the mentioned circumstances, these
final architectures remained shallow and embedded with the maximum number of neurons that we formerly
imposed. Evidently, once they reached this structural configuration, either they did not satisfy the explained
conditions to perform a further growing step or they managed to enter the Growing Method obtaining worse
results. For this reason, we made a further attempt that consisted in training three additional models by leaving
every setting equal to the described case, except for the Max_Neurons_Per_Layer parameter, decreased to 40.
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Figure 44: Best approximation plot of the target solution by the second additional trial adaptive PINN
(left) and its related cost functional evolution (right) in semi-logarithmic scale.

Figure 44 represents the best instance among the networks trained for our second attempt of the current test
case. Despite a visibly improved performance, we have not been able to obtain a satisfactory level of accuracy
yet. Noticeably, also here all the models converged to the same final structure, constituted by 40 neurons in the
first hidden layer and 10 of them in the second. Looking at the plot concerning the evolution of the loss function,
we can appreciate that its minimum was reached after seven iterations: recall that the algorithm, however, could
not stop at that point because we forced it to perform at least 15 learning cycles for this problem. In light of
these considerations, we prompted a third trial for this test, in order to investigate the final performances when
the networks are forced to execute a lower number of learning cycles. Here, Force_First_Iterations is set to 5.
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Given also these last results, we decided to spare the visual representation of the plots related to the third
tranche of models. This phenomenon seems difficult to be fully interpreted by our adaptive optimization
procedure. The latter, nonetheless, proves to be able in providing a consistent approximation framework, since
the models typically converge towards a common architectural structure and many target features are often
learned successfully. We therefore conclude the discussion for the current test case by pointing out a new possible
applicative path for the mentioned algorithm, that consists in using the latter to identify a proper structural
guess for the architecture that should be exploited to obtain a reliable approximation of the target solution.
Nevertheless, we must acknowledge that performing a limited number of attempts with our adaptive algorithm
(as we did in this case) does not always guarantee a successful level of accuracy. The experimental proof of this
statement has just been provided by the results of this trial.

Test 3

For this experiment we select the bell-like target solution, already considered in Test 5 of our basic PINN generic
sensitivity analysis (in sub-subsection 3.2.3), imposing it implicitly by means of the one-dimensional Poisson
equation with homogeneous boundary conditions (1). As usual, in order to attenuate the effects linked to random
initialization, we trained three independent models with the same initial specifications, all embedded with the
hyperbolic tangent activation function. Our structures start with 10 uniformly distributed residual points and
one hidden layer composed by 10 neurons (that is also the value attached to Min_Neurons_Per_Layer). The
hyper-parameter Max_Neurons_Per_Layer is set to 80, while a total number of 10 learning cycles are forced.
The performances are all very similar, with a relative L2 error that hovers around 0.3%-0.4%. One more time,
all three models converged to the same shallow structure formed by 20 neurons. In particular, two of them
also ended up with the same cardinality for their training sets. As we can also appreciate from Figure 45, the
best trained network matches the exact solution very reliably. Nevertheless, the PINNs belonging to the basic
counterpart of this test reached better results (also the ones embedded with the same structure), even with a
much smaller number of residual points. It is in light of all these comments and considerations that we can
attribute to the current experiment only a partial degree of success.
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Figure 45: Best approximation plot of the target solution by the second trial adaptive PINN (left) and
its related cost functional evolution (right) in semi-logarithmic scale.

Test 4

This experiment takes inspiration from Test 7 of our basic PINN generic sensitivity study (in sub-subsection
3.2.3), where we imposed a sinusoidal target with exponentially decaying magnitude for the Heat problem (6):

g(x, t) = exp(−t) sin(3πx)

Also in this case we attenuated the effects of random initialization by training three independent models
with the same specifications, all embedded with the hyperbolic tangent activation function. Our networks
start with 40 uniformly distributed residual points and one hidden layer composed by 10 neurons (which is
also the value attached to Min_Neurons_Per_Layer). The hyper-parameters Max_Neurons_Per_Layer and
Max_Number_Residuals are respectively set to 80 and 5120, while a total of 10 learning cycles are forced.
The performances shown by all models are very similar, with a relative L2 error that hovers around 2%-3.5%.
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Once again all models converged to the same shallow structure, here formed by 40 neurons. Rather uniquely,
they all present the same number of residuals (2560) as well. Although we have obtained satisfactory results
for this trial, we can still observe better performances from the networks produced during the counterpart test
executed for the basic PINN sensitivity analysis, where we even employed a lower number of training spots.
Figure 46 shows the illustration of a six time-frame evolution of the best network’s graph next to the sought
solution. As we can see, the represented curves basically overlap for small time values (close to the initial
condition) while they progressively detach as time goes by, especially close to the second peak of the target.
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(b) Target solution and network approximation, t = 0.2.
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(c) Target solution and network approximation, t = 0.4.
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(d) Target solution and network approximation, t = 0.6.
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(e) Target solution and network approximation, t = 0.8.
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Figure 46: Best approximation plots, at six uniformly-spaced time steps, of the target solution by the
first network (trained with the hyperbolic tangent activation function).
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Test 5

Our last experiment consists in re-analyzing, using the newly-developed adaptive learning scheme, the same
solution profile seen in Test 6 for the basic PINN generic sensitivity analysis (in sub-subsection 3.2.3) through
the Burger’s equation (5). We recall that one of the target’s main features is represented by the sharp (but still
indefinitely regular) interface that emerges over the spacetime line x = t in the domain [0, 1]2. As always, we
attenuated the effects of random initialization by training three independent models with the same specifications,
all embedded with the hyperbolic tangent activation function. All networks were prompted with 40 uniformly
distributed residual points and one hidden layer composed by 10 neurons (which is also the value set for
Min_Neurons_Per_Layer). The hyper-parameters Max_Neurons_Per_Layer and Max_Number_Residuals
are respectively set to 160 and 5120, while a total of 10 learning cycles are forced.
Two important considerations are in order: concerning the performances shown by the models we definitely
cannot consider ourselves fulfilled, since the best observed relative L2 error stays above 20%. Secondly, all
networks converged to different shallow structures. The one that presents the best result is, curiously, also the
smallest among all. At this point, we can usefully recall that the best model obtained during the analysis of
the counterpart basic trial corresponds to a structure composed by two hidden layers embedded with a few
neurons each. In order to dig deeper into the problem, also by considering our last observations, we decided
to prompt another tranche of networks: these were initialized identically to the former except for the hyper-
parameter Max_Neurons_Per_Layer, which was halved to 80. The results obtained with these additional
attempts slightly improve the scenario, that however remains not ideal, with a best relative L2 error close to
14%. It is worth noticing that our modification of the initial configurations did not produce any appreciable
result, because no instances actually explored a multi-layered architecture successfully. Anyway, it must be said
that the imposed solution represents a very stiff target, and that with a totality of just six attempts we can
appreciate at least a network that, graphically, went not that far from a satisfactory approximation.
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(b) Target solution and network approximation, t = 0.2.
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(c) Target solution and network approximation, t = 0.4.
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(d) Target solution and network approximation, t = 0.6.
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(e) Target solution and network approximation, t = 0.8.
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Figure 47: Best approximation plots, at six uniformly-spaced time steps, of the target solution by the
first additional network (trained with the hyperbolic tangent activation function).

In Figure 47 above, we report a graphical view for the comparison between the best model approximation
obtained in this experiment and the related target solution. Similarly to what we were able to observe for the
previous test case, also here we appreciate a progressive detachment of the network curve from the objective
function. Close to the initial condition (obviously imposed in a Dirichlet fashion) the trends basically overlap
with each other, but they move away from each other as time increases.
The heaviest architecture (in terms of computational cost) trained for this experiment (which turns out to be
the best in terms of performance) took more than two hours to complete its learning phase while, on average,
the six models produced here have run for about one hour.

5. Conclusions

In this work we have explored the performances of PINNs over a set of predefined test cases with the aim of
assessing their sensitivity (measured through the relative L2 error) with respect to, on one hand, the complexity
of the target solutions underlying the studied problems and, on the other, the choices concerning the architectural
properties of our networks. First of all, we saw that it is not necessarily true that deeper models perform better
than shallow networks. Secondly, we highlighted that some of the most common trends (which, nevertheless,
are not valid in general presumably due to effects linked to the so-called generalization error) consist in the
improvement of performances when we increase the number of neurons per layer or the amount of residual
points inside the computational domain. We remark that, in some cases, no clear patterns emerged from the
gathered outcomes of our experiments (as for Test 6 in sub-subsection 3.2.3). Along the way we also discovered
that indefinitely regular activation functions prove to be much more reliable than irregular profiles such as
ReLU, conjecturing and verifying a possible explanation for the failure associated to the latter (see Test 5 in
sub-subsection 3.2.3). Moreover, increasing the maximum order of derivative appearing in the PDE seemingly
leads to stiffer and more unstable learning procedures. Overall we can acknowledge success for the presented
tool, because for all the trials mentioned up to now we have always been able to find successful instances that
provided satisfactory levels of accuracy.
The second part of this project has been dedicated to the introduction and testing of an adaptive version of the
PINN, whose aim, other than seeking for a reliable approximation of the solution of the differential problem
at hand, consists in searching for the "optimal" architecture for the interpretation of the mentioned target
function. In order to do so we employed a revisited version of the Residual Adaptive Refinement technique
(introduced in [37]) alongside the Growing Method, all applied to a simple but innovative modification of the
usual Feed Forward Neural Network structure. At the very end of this work, we made the first experimental
tests of this adaptive algorithm over a pool of test cases already encountered in the previous analyses. Some
of them turned out to be completely successful, while other still show clear signs of improvements to be made.
With that being said we must ascertain that, after all, thanks to the smaller computational cost attached to
our new scheme, we are left with promising margins for potential improvements. In order to avoid possible
misunderstandings, we must recognize that even in this preliminary version of the algorithm, whenever we did
not achieve completely satisfactory performances, our scheme has nonetheless shown to be partially useful in
understanding a convenient structure that could be embedded in a PINN to achieve appreciable results.

55



Still on this subject, the path drawn by our basic PINN analyses should motivate the need of an alternative
road for the resolution of differential problems, if we intend to pursue the usage for this category of techniques.
The latter (basic) framework, in fact, generally requires a potentially enormous amount of simulations to be
able to reach, if this is even possible, a good model for the description of the phenomenon under study. Indeed,
every time a new architectural parameter is considered, the number of trials that must be performed to explore
all the possible settings, by varying singularly each parameter in its own range, grows exponentially fast. As an
immediate consequence, this framework cannot be considered scalable at all.

5.1. Further Developments

Possible extensions of the present work are:

• Exploit the so-called Pruning techniques (thoroughly presented in Appendix B), for which the main
utilities are already included in our library, for the adaptive PINN strategy. This proposal should follow
the dual heuristical reasoning that has been pursued in the present work, starting from a very large
architecture (that should exhibit overfitting) and progressively cutting the redundant connections of the
network (according to a proper criterion that must be chosen) until an optimal performance is reached.

• Modify or enhance our adaptive algorithm with new features such as the adaptive activation functions
(see [24]) or the introduction of adaptive weight multiplying the loss function’s single terms (as in [39]).

• Exploit PINNs for the resolution of inverse problems or, as shown in [37], to solve integro-differential
equations with the features that have been exposed here.
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A. Library Structure

The aim of this short appendix is to provide a general overview of the online repository dedicated to this project,
which is publicly accessible at https://github.com/patropolimi/Thesis. Its content can be essentially sub-
divided into the following main categories, for which we will supply the most salient details:

1. Basic PINN results.
2. Adaptive PINN results.
3. Python libraries.

The items related to the first and second categories are grouped in the Basic and Adaptive folders, respec-
tively, while the internal machinery that constitutes the newly-developed Python libraries is gathered inside the
Library folder. The latter is further subdivided into two subfolders (Library/Basic and Library/Adaptive),
each clearly corresponding to the specific type of networks that can be built exploiting the related code. Other
than these two, inside the Library folder we also find the PINN_Utilities.py file, which contains all the useful
functionalities that are needed by both of the former library parts. Each of these is then formed by the following
source files, that individually carry the models applicative features in a hierarchical structure:

• PINN_Grounds.py, containing the classes that implement the functional evaluation of the networks.
• PINN_Wrappers.py, endowed with the mathematical functions that are used to: compute the PDE

residual values, calculate the boundary conditions loss, represent the network plot and, for the related
library, exploit the adaptive features of the model. Any kind of PINN wrapper (only implemented for
scalar problems, in our case) contains the network’s functional formulation for its evaluation through the
hierarchical derivation from a class contained in the previously described source file.

• PINN_Problems.py derives all the utilities provided by a wrapper class (implemented in PINN_Wrappers.py)
and specifies the differential problem that is being considered for the underlying model.

• PINN_Resolutors.py implements the optimizer used during the learning phase of our networks, combining
the ADAMmethod and the LBFGS technique for our specific cases. All its other functionalities are derived
from a class that represents the differential problem of our interest (from PINN_Problems.py).

Follows the extensive list of scalar differential problems that have already been implemented in our library:

1. Pure approximation (through the identity operator).
2. Ordinary Differential Equation including only the first order derivative (ODE).
3. n-dimensional Poisson problem.
4. Advection-Diffusion-Reaction problem.
5. One-dimensional Burger’s equation.
6. n-dimensional Heat equation.
7. n-dimensional Wave equation.
8. Allen-Cahn problem.
9. Helmholtz equation.

The interested user is allowed to properly create a set of classes for the representation of any other differential
problem, simply emulating the main rules and features illustrated in the classes that have already been coded.
Continuing with our description of the repository, we shall explain the content of the folder named Adaptive.
The latter gathers a total of five test subfolders, each containing: a proper Launch_Script.py file, which first
has to be tuned and subsequently run in order to prompt the training phase of the models for the related test,
and a series of object files that group the final state information of the model instances to which they refer.
Inside the former folder we also find the Inspect_Main.py, which can be executed to visualize the results and
plots connected to a selected set of instances for any adaptive test. While executing, the needed instructions
for its use are printed on the screen and must be followed.
Finally, we provide a brief description of the Basic folder, reporting all the results related to the prime version of
the PINNs that we have employed throughout our work. Inside we find two principal subfolders, each gathering
all the tests performed for the related analysis: Basic/Sensitivity and Basic/Convergence. These are
further subdivided into three additional categories: Single-Scale, Multi-Scale and Generic, which group
all tests depending on the characteristics of their solutions. Each of these contains the collections of all tests
performed within that framework, every one corresponding to a properly enumerated subfolder. Inside any of
the latter, we find the related Launch_Script.py and all the network instances that have been saved for that
specific trial. Back to the previously mentioned folders (that provide, as we said, the framework characterization
for their tests), we also find some utility files needed to organize the results and represent them properly.
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In particular, inside the subfolders contained in Basic/Sensitivity we include:

• Inspect_Main.py, which must be run following the instructions printed on the screen during its execution
(as for the analogous file found inside the Adaptive folder) to visualize the plots and results related to
a user-definable set of models that have already been successfully stored.

• Organize_Main.py, which, as the name suggests, is a helper file that can be run to organize the results,
measured through the L2 relative error, of a specific set of networks decided by the user at run-time. This
organization process simply consists in the creation of an additional target file that contains the error
tables for the selected trained models.

• Result_Main.py. After the successful instantiation of the result tables by running our Organize_Main.py,
we can actually visualize and inspect the latter by means of a simple execution of this script.

Lastly, the helper files contained inside the subfolders gathered in Basic/Convergence are:

• Inspect_Main.py, whose analogous functioning has already been explained above.
• Plot_Main.py, which can be run to visualize the patterns followed by the average and best relative L2

error trends with respect to a varying number of uniformly distributed residual points.

B. Pruning Methodologies

As previously anticipated, this appendix is essentially dedicated to the presentation of a selected group of
pruning techniques that are publicly available in literature. For each method, that will be treated individually,
we will provide a brief mathematical motivation and a rigorous description of the underlying assumptions.
More in general, we will dedicate our focus on the most relevant advantages and drawbacks that we should
expect to observe for each technique. All these procedures follow the same working principle, which consists
in progressively reducing the size of the network by iteratively deleting some of its free parameters, precisely
the ones that are considered to be the least salient according to a selected working criterion. From now on, for
the sake of simplicity, all the variables of the model (including the activation thresholds) will be referred to as
weights. The latter are obviously treated as the independent variables of the cost functional J .

B.1. Optimal Brain Damage [30]

Optimal Brain Damage (OBD) is a pruning method that operates during the learning phase of the Neural
Network. We will see that, in order to estimate the saliency of each weight, an approximate computation of
some second order derivatives of J is performed at each step. Diversely from other kinds of procedures, OBD
does not rely on the raw assumption that the magnitude of a weight necessarily corresponds to its importance
in the network. After every iteration, the weight that is considered to be the least salient is definitively pruned.

B.1.1 Background & Assumptions

We are now ready to dig into the mathematical assumptions that will eventually lead us towards a reasonable
expression for the saliency of the parameters. This approach starts by considering the Taylor expansion of the
variation of J for a small perturbation (δu) of the weights:

δJ =
∑
i

giδui +
1

2

∑
i

hiiδu
2
i +

1

2

∑
i6=j

hijδuiδuj + O(||δu||3)

In the expression above, gi represents the i-th component of ∇J , while hij is the ij-th element of its hessian.
Assuming the cost functional to be indefinitely regular, we may consider this formula to be valid in general.
Whenever OBD is applied, we suppose the following statements to be true:

• The network is close to a local minimum of the cost functional.
• The off-diagonal terms of the hessian of J are negligible.
• Locally, the cost functional assumes an approximately quadratic shape.

Thanks to these simplifications, we may write:

δJ =
1

2

∑
i

hiiδu
2
i

The core idea of OBD can be expressed as follows: the saliency (s) of a weight is quantifiable with the increase
that the cost functional would undergo if we pruned it. In other words, the relevance of a weight corresponds
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to the worsening of the model caused by its elimination. Through a simple set of assumptions, we see that we
have been able to come up with a valid criterion to determine the saliency of each parameter. In practice, we
will eventually need to compute, at the end of every iteration, the quantities:

si =
1

2
hiiu

2
i

Notice that, without the introduced approximations, we would need to compute the magnitude of δJ (consequent
to the elimination of each single weight) by definition. This would require, in every pruning iteration, the
evaluation of our model for as many times as the number of available weights. The expensiveness of such a
procedure clearly makes it computationally unaffordable.

B.1.2 Algorithm & Features

In order to calculate a cheap approximation of the generic term hii, which appears in the expression of si,
we can rely on a procedure that makes use of the backpropagation technique. For more details and further
explanations, [30] can be consulted. Concerning our interests, we limit ourselves to highlighting the fact that
the numerical burden associated to this step has the same order of magnitude with respect to the computation
of ∇J by means of automatic differentiation. Nevertheless, having the necessity to compute all hii terms at
each iteration, we cannot expect this method to be ranked as one of the fastest. Even more importantly, we
generally do not have any guarantee about the validity of the several assumptions that we made.

Figure 48: OBD algorithm.

B.2. Optimal Brain Surgeon [20]

Contrarily to OBD, Optimal Brain Surgeon (OBS) comes on stage only after the end of the training phase of
the model. Similarly to the former method, however, it involves the computation of the second order derivatives
of the cost functional at each pruning iteration. As we will see, the main mathematical idea behind these two
techniques is very similar, especially in the formal derivation of the expression for the saliency associated to
each parameter. The latter scheme, nonetheless, avoids the rough diagonal approximation for the hessian of the
cost functional, which has no heuristical interpretation. For a complete and thorough treatment of this subject
and the relative framework, it is advisable to consult [20].

B.2.1 Background & Assumptions

Analogously to OBD, we define the saliency of each weight as the relative increase of the cost functional that is
caused by its deletion. Our formal derivation starts again by considering the Taylor expansion of δJ for a small
variation of the model parameters, δu:

δJ = ∇JT · δu +
1

2
δuT ·H · δu + O(||δu||3)

In this more compact expression, H clearly stands for the hessian matrix of the cost functional.
As it has already been partially anticipated, whenever OBS is employed we implicitly hypothesize that:

• The network lies near a local minimum of the cost functional.
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• Locally, J assumes an approximately quadratic profile.

These assumptions drastically simplify the expression written above, resulting in:

δJ =
1

2
δuT ·H · δu

It is also important to notice that, under these hypotheses, we expect H to be a (symmetric) positive definite
matrix. This necessarily implies that the hessian is invertible and has all its diagonal elements strictly greater
than zero. We may now proceed by finding out the index (q) of the weight whose elimination causes the least
increase in the value of J , along with the correspondent adjustment (δu) that has to be applied in order to
minimize such an increment. This problem actually consists in finding the couple (q, δu) which realize:{

arg minδu∈Sq
1
2δu

T ·H · δu
Sq = {δu : δuq + uq = 0}

To this aim, we introduce the Lagrangian functional:

L =
1

2
δuT ·H · δu + λ(eTq · δu + uq)

This constrained optimization problem admits the unique solution:

δu = − uq
[H−1]qq

H−1 · eq

In the last equation, q is the index of the weight that minimizes its relative saliency, given by:

Lq =
u2
q

2[H−1]qq

B.2.2 Algorithm & Features

By its exact and rigorous nature, which does not involve any a priori assumption on the structure of the hessian
of J , we expect OBS to be much more reliable and accurate in the choice of the weights that have to be pruned,
at least with respect to OBD. We can basically consider the former as a more evolved and sophisticated version
of the latter, in which the risk of eliminating a relevant weight for the network is minimized. Another funda-
mental advantage stems from the fact that, after every pruning iteration, OBS automatically (and optimally)
corrects the values of all the other parameters of the network in order to recover the original performance. For
all these reasons, we could be naively led to account OBS as a much more worthy technique. Unfortunately,
things are not that straightforward. As a matter of fact, the high theoretical accuracy of this method carries
around a major drawback: an immense computational burden. Indeed, even neglecting the cost of calculating
the full hessian of the cost functional for several times, it must not be forgotten that the computation of the
saliencies require, at each pruning iteration, the resolution of as many linear systems as the number of available
parameters in the model. When we employ one of the celebrated factorization techniques in the attempt of
resolving the issue, this limitation might still represent an insurmountable obstacle in terms of memory and
time that would be needed to complete such an expensive task.

Figure 49: OBS algorithm.

64



B.3. Local Relative Sensitivity Index [51]

Local Relative Sensitivity Index (LRSI) is a pruning method that, similarly to OBD, acts during the learning
phase of the Neural Network. This procedure generalizes Karnin’s idea (read [26]) by improving the criterion for
the selection of the weights that deserve to be deleted at each iteration. The evolutionary step brought by LRSI
(see [51]) consists in categorizing the parameters of the model in different subsets, grouping them according to
the role they play inside the model. This approach should supposedly result in a much more qualitative and
fair comparison between the weights, facilitating the job of the pruning algorithm.

B.3.1 Background & Assumptions

As we mentioned earlier, the mathematical foundations of LRSI find their roots in Karnin’s approach for the
computation of the saliencies. Also in this case, the relevance of each parameter is considered to be equal to the
sensitivity of the cost functional with respect to its exclusion. However, differently from the other techniques
that we have analyzed so far, Karnin derived the approximated expression of these quantities in a completely
alternative way. Indeed, the magnitude of the variation δJ that follows the elimination of the k-th weight can
be computed as:

Sk =

∣∣∣∣∣
N−1∑
n=0

∂J

∂uk
(n)∆uk(n)

(
ufk

ufk − uik

)∣∣∣∣∣
In the expression above, that arises from the discretization of an integral quantity which provides the exact
estimation of δJ for this case, we recognize that all the factors can be computed and stored during the back-
propagation steps of the learning phase. In the mentioned formula, N is the pruning period that we chose, n
enumerates the current training step, while uik and ufk respectively represent the initial and final values of the
k-th parameter, at the beginning and at the end of the learning process.

B.3.2 Algorithm & Features

We now proceed by presenting the innovations brought by the LRSI technique, providing a heuristical justifi-
cation for their usage. The essential problem that Karnin overlooked in his groundwork resides in the fact that
all the parameters of the model are compared through an overall rank, regardless of their location and the role
they play inside the network. This seemingly irrelevant detail might actually constitute a decisive feature in the
process of selecting the correct weights to prune. Karnin’s procedure, indeed, does not take into account the
fact that different values of sensitivity might be uniquely related to the role that is played by distinct weights
in the network. In other words, it may well be that what appears to be globally irrelevant actually turns out
to be a very important cog in a local substructure of the model, possibly describing a peculiar characteristic of
the phenomenon under analysis. In this case, its elimination would determine a leak of useful information for
the network that we are constructing, resulting in a great and undesirable loss of precision for the model.
The last point that needs to be addressed concerns the subdivision of the parameters in smaller subcategories.
Regarding it we firstly observe that, during each learning step, provided that we are executing the training
phase by exploiting a gradient based technique, for all the incoming weights attached to a certain neuron (be-
longing to either a hidden layer or the output layer) the related variations depend only on the output coming
from the unit of the previous layer at the other end of the connection. This consideration inspires the choice
of the aforementioned fair groups, within which we can perform a proper comparison of the saliencies. For
all fixed neurons (except the ones in the input layer), we will consider the sets of their incoming weights as
such categories. Notice that every parameter of the model belongs to one (and only one) of these. Guided by
intuition, we measure the relative importance of the generic k-th weight (belonging to the Ck-th group) through
the following value, also called Local Relative Sensitivity Index :

LRSIk =
|Sk|∑

i∈Ck

|Si|

This quantity simply represents the fraction carried by the k-th parameter to the total sensitivity of the Ck-th
subcategory. Among all the possible advantages of this constructive technique, it is worth highlighting that the
latter does not rely on any assumption a priori. Furthermore, except for a little memory overhead, this proce-
dure does not pay any additional price with respect to the computation of the gradient of the cost functional
(needed for the learning iterations). Finally, we have the opportunity (and, unfortunately, the relative burden)
to set the local thresholds that are needed for the pruning procedure.
A final comment is in order: notice that, contrarily to OBD and OBS, which normally crop only one weight at
a time, LRSI may prune an arbitrary number of parameters (even zero) at each learning iteration.
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Figure 50: LRSI algorithm.

B.4. Pruning Using Relevance [47]

Pruning Using Relevance (PUR) is a technique that, analogously to OBD and LRSI, interferes with the learning
phase of the network. Known for its versatilty, we can identify at least three different versions of this method,
all working by following the same underlying principle. We anticipate that such procedure formally substitutes
the concept of saliency with the (analogous) term relevance.

B.4.1 Background & Assumptions

Let us begin our discussion with the presentation of the original framework where this method was developed.
The first version of PUR, instead of reducing the size of the model by pruning a single weight at a time, is
characterized by the elimination of an entire neuron for every iteration, meaning that all free parameters which
are directly linked to that particular unit are simultaneously deleted. In order to apply this procedure, we
temporarily need to substitute the idea of relevance for a single parameter with the concept of relevance for an
entire unit. Similarly to the mathematical concept of saliency, we define the relevance of the k-th neuron as the
variation of the cost functional with respect to the elimination of all its connections:

ρk = J−k − J

Unfortunately, this expression is ill-posed and cannot be exploited for the computation of ρk. Indeed, in order
to evaluate the relevance of all the units of the network with this definition, we would firstly need to build
as many architectures as the number of available neurons, and then perform an evaluation of the related cost
functional for each of them. In general, this represents a worthless cost. Therefore, in order to avoid such
a heavy numerical burden, we employ a smart trick: for every unit k, define the quantity αk ∈ [0, 1] as its
attentional strength. This real number acts as a gating coefficient for the original output (ak) of the relative
neuron, resulting in the gated output:

ok = αkak

Equivalently rewriting the expression of ρk in terms of the gating coefficients and assuming the cost functional
to be indefinitely regular, we can take advantage of its Taylor expansion to attain a cheap approximation for
the relevance. Neglecting the higher order terms, we finally obtain:

ρk = − ∂J

∂αk

∣∣∣∣
(αi=1 ∀i)

B.4.2 Algorithm & Features

Since this method exclusively uses the first order derivatives of J with respect to the gating coefficients, it is
enough to employ the tools of automatic differentiation for the computation of all the neural relevances. It is
worth remarking that the attentional strength is nothing more than just a useful notational parameter, which
does not influence the structure of the Neural Network nor its training phase (more details can be found in
[47]). With this idea in mind and no more theoretical effort to be made, we might repeat the same identical
procedure simply by substituting the weights of the model with the neurons of the network. In this second
version of PUR, the attentional strength has to be analogously introduced for all the parameters. In all cases,
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in every iteration we prune the least relevant among all the units (weights). The final objective of this tech-
nique consists in finding a way to eliminate those neurons (weights) that slow down the learning process of
the model, compromising or reducing the quality of its predictive power at the end of the training phase. A
possible issue that we might encounter using this pruning method concerns the notorious vanishing gradient
problem. Such a drawback would probably result in an highly unbalanced network, in which most of the pruned
neurons (weights) belong to the first layers. Another viable approach is to combine the two methodologies
described above, pruning neuron-wise for a certain number of iterations and eventually proceed by performing
weight-by-weight eliminations. This mechanism can be regarded as a coarse to fine pruning scheme.

Figure 51: PUR algorithm.

B.5. CGPCNE [7]

The last method that we describe is known as CGPCNE (short for Conjugate Gradient for Pre Conditioned
Normal Equations). Similarly to PUR, it comes in at least three different versions that reflect the same basic
mathematical derivation (see [7]). Moreover, along with OBS, it operates once and for all at the end of the
learning phase of the models, adaptively correcting the parameters of the network in the attempt of recovering
the original performance after each iteration. CGPCNE’s essential operative idea consists in iteratively selecting
an optimal candidate to be pruned and subsequently solving a least squares system to repair, as much as possible,
the damages caused by the elimination of the chosen unit (weight). The goal is to minimize the overall difference
in the input stimuli that each neuron receives before and after every pruning step, reducing the performance loss
of the whole model. Noticeably, only the parameters that are directly or indirectly involved in these cuts undergo
this procedure. In the following, we will mainly analyze the first version of this sophisticated technique, which
runs with a neuron-wise pruning approach. Eventually, we will underline the operative differences that have to
be taken into account for the application of the weight-by-weight and the coarse to fine alternative procedures.
As the method’s name suggests, a variant of the Conjugate Gradient scheme is exploited throughout the entire
work (read [57] for all the details).

B.5.1 Background & Assumptions

First of all, let us introduce some useful notation:

• V denotes the set of neurons in the Neural Network.
• E ⊆ V × V is the set of (directed) connections of the model.
• w : E → R represents the parameters function.
• wji represents the weight connecting neuron j to neuron i, accordingly directed.
• Pi = {j : (i, j) ∈ E} is the projective field of the i-th neuron.
• Ri = {j : (j, i) ∈ E} is the receptive field of the i-th neuron.
• M is the cardinality of the training set.
• f is the (differentiable) activation function of the Neural Network.

The generic i-th unit (except the ones in the input layer) receives the signal:

ξ
(µ)
i =

∑
j∈Ri

wjiy
(µ)
j
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Clearly, y(µ)
j here indicates the output of the j-th neuron for the µ-th training sample:

y
(µ)
j = f(ξ

(µ)
j )

Ignoring (for the time being) the procedure for the selection of the appropriate neuron to be pruned, assume
we need to cut off the h-th unit from the network. Pursuing the aim declared beforehand, we would like to
adjust all the weights in the receptive field of every neuron in the projective field of our candidate unit, in order
for the former to receive the closest possible stimulus, for every training sample, to the one they had before
its elimination. In the ideal case in which we achieve a perfect matching, the model maintains unchanged its
output for every training sample, consequently leaving its performance unvaried. Considering i ∈ Ph, after the
removal of the h-th neuron, the i-th unit will receive its input from Ri\ {h}:

ξ
(µ)
i =

∑
j∈Ri\{h}

wjiy
(µ)
j

Our goal is to determine the corrective variation vector δ̄ such that:∑
j∈Ri

wjiy
(µ)
j =

∑
j∈Ri\{h}

(wji + δji)y
(µ)
j ∀µ ∈ {1, ... ,M}

Equivalently, we need to solve: ∑
j∈Ri\{h}

δjiy
(µ)
j = whiy

(µ)
h ∀µ ∈ {1, ... ,M}

These conditions give rise to M · ph linear equations, where ph indicates the cardinality of Ph. Denoting with
ri the cardinality of Ri, the number of unknowns to be determined is given by:

κh =
∑
i∈Ph

(ri − 1)

In order to obtain a compact formulation, let i ∈ Ph and define:

ȳi = [y
(1)
i , y

(2)
i , ... , y

(M)
i ]T ∈ RM , Yi,h = [ȳj1 , ȳj2 , ... , ȳjri−1

] ∈ RM×(ri−1)

In the expression of Yi,h, the index jk varies in the set Ri\ {h}. Also introduce the quantities:

δ̄i = [δj1i, ... , δjri−1i]
T ∈ R(ri−1) , z̄i,h = whiȳh ∈ RM

Solving the aforementioned problem is equivalent to finding a solution to the following:

Yi,h δ̄i = z̄i,h ∀i ∈ Ph

Fancying the notation even further, set:

δ̄ = [δ̄Ti1 , ... , δ̄
T
iph

]T , Yh =

Yi1,h . . .
Yiph ,h

 , z̄h = [z̄Ti1,h, ... , z̄
T
iph,h

]T

We are now ready to ultimately group these ph independent linear systems into:

Yh δ̄ = z̄h

B.5.2 Algorithm & Features

As a matter of fact, the final system that we retrieved is practically always overdetermined. This leaves us with
no other choice other than solving it using the least squares approach. However, due to its potentially enormous
size, it may well happen that Yh is not full rank, resulting in a multiplicity of solutions for our vectorial equation.
Since no particular meaning is given to the latter, we are ready to accept any of these solutions, regardless of
the way in which they are obtained. As we already remarked, the resolution of our system will be performed
iteratively, by means of an efficient variant of the celebrated Conjugate Gradient method. Concerning the
criterion for the choice of the unit to be pruned at each iteration, we may solve:

h = arg min
q∈VH

||z̄q − Yq δ̄f (q)||2
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With VH we indicate the set containing all available hidden neurons in the Neural Network, while δ̄f represents
the numerical solution reached by the execution of CGPCNE. The rationale behind this choice is pretty straight-
forward: we seek for the unit whose elimination causes the minimum residual in the correction of the weights.
This procedure, by construction, ensures that the model will suffer from the minimal impact concerning its
loss of performance over the training set. Unfortunately, however, an important issue immediately arises. The
mentioned problem resides in the fact that, in order to proceed with this mechanism and find all the solutions
δ̄f necessary for the computation of the residuals, at each step we would need to complete a number of full
CGPCNE cycles that is equal to the cardinality of VH . Since this would be computationally overwhelming,
in the expression above we substitute δ̄f with a rough approximation, which is represented by the null vector.
Hence, in the end, we pinpoint the index of the unit to be pruned by solving:

h = arg min
q∈VH

||z̄q||2

Writing this formulation in an equivalent way (exploiting the expression for z̄q):

h = arg min
q∈VH

∑
i∈Pq

w2
qi||ȳq||2

Let us now provide a heuristical interpretation to the quantity:∑
i∈Ph

w2
hi||ȳh||2

Considering the h-th unit of the model, we can label the expression written above as its synaptic activity, a
simple but meaningful measure of its importance. This observation justifies our heuristic pruning criterion: at
each step, we delete the least active neuron.

Figure 52: CGPCNE algorithm.

As we previously anticipated, this method might be also exploited in its alternative form where we prune a
single parameter at a time. Just by repeating all the conceptual steps that we formerly described, we end up
with an analogous mathematical formulation in which we actually solve a sub-problem of the original scheme.
If whi is the chosen weight to be pruned, we simply resolve:

Yi,h δ̄i = z̄i,h

Analogously, we replace the former selection procedure with the problem of finding:

(h, j) = arg min
(q,i)∈E

w2
qi||ȳq||2

As an alternative route with respect to the two versions of the algorithm that we just described, we can decide
to reduce the size of the network using a coarse to fine approach, in which we initially prune neuron-wise and
then proceed by refining the model with a weight-by-weight elimination process (as for PUR).
Unlike all the other pruning techniques that we presented, CGPCNE does not require the computation of any
kind of derivative. Even more importantly, for this procedure we can appreciate a very strong (but nonetheless
extremely easy) mathematical foundation. On the other hand, a liability that we might expect to encounter,
especially in presence of highly overdetermined systems, concerns the loss of performance caused by the elim-
ination of the units (weights). Under those circumstances, in fact, we cannot have any guarantee that the
corrections brought by this technique will be able to contrast the negative effects of pruning. We finally recall
that, in order to use this method, we need to properly tune the so-called relaxation parameter, that plays a
crucial role in the resolution of the least squares system.
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Abstract in lingua italiana

Oltre che per una moltitudine di branche in cui intervengono tecniche di matematica applicata, i Deep Neural
Networks sono recentemente emersi anche per applicazioni connesse con lo studio e l’analisi delle Equazioni
Differenziali alle Derivate Parziali, diventando noti in questo contesto come Physics-Informed Neural Networks.
In questo lavoro focalizzeremo la nostra attenzione sulle relative performance nell’approssimare la soluzione
esatta per un generico insieme di equazioni differenziali scalari. Durante la nostra esposizione ci aspettiamo
di trovarci ripetutamente di fronte alle loro qualità e, allo stesso tempo, riscontrarne i noti difetti che tuttora
limitano il loro sfruttamento in molte applicazioni reali. In questo senso, uno dei più noti svantaggi ad essi
connesso consiste nel noto problema della scelta di una conveniente architettura per la risoluzione del problema
considerato. Dopo un’analisi approfondita dei risultati riguardanti la versione base del PINN, dove studieremo
la relazione tra l’accuratezza dei modelli ottenuti e le loro caratteristiche strutturali (numero di hidden layers,
quantità di neuroni per layer e cardinalità del training set), daremo una overview generale di alcune tecniche che
vengono accompagnate al loro utilizzo in letteratura. Successivamente proporremo una giustificazione euristica
e la relativa implementazione di un nuovo schema adattivo per i PINN, che affianca il noto metodo di Growing
alla tecnica conosciuta come Residual Adaptive Refinement. Lo strumento tecnologico che verrà sfruttato per la
costruzione di tutti i modelli di questo progetto si basa su una semplice e nuova libreria Python, sviluppata per la
risoluzione di Equazioni Differenziali alle Derivate Parziali su domini iper-rettangolari mediante una procedura
di apprendimento basata sull’impiego combinato degli ottimizzatori ADAM e LBFGS. Il materiale di questo
lavoro è integralmente e pubblicamente accessibile seguendo il link https://github.com/patropolimi/Thesis.

Parole chiave: Intelligenza Artificiale, Reti Neurali, Equazioni Differenziali alle Derivate
Parziali, Adattività
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