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Abstract

In the last few years interest in Federated Learning systems has increased dramatically:
they have been proven to be effective and efficient in all those scenarios where a safe dis-
tributed training mechanism is needed, allowing to overcome the privacy and performance
limitations that standard techniques face. The growing adoption of this kind of system
has also led to the development of many attacks against it to achieve different adversarial
objectives, ranging from backdooring the learned model to leaking the private information
owned by the participants of the training process.
This thesis’ objective is to study the current state-of-the-art of such techniques, providing
a complete overview and categorization of the most effective ones; this could be beneficial
not only to further improve them, overcoming their limitations, but also to help Federated
Learning systems’ designers to develop more robust and secure architectures.
To do this, several papers discussing adversarial attacks have been deeply analyzed and
a Systematization of Knowledge - SoK - has been created using a number of parameters
to provide an easy way to compare each technique against each other. Moreover, some
possible future developments of the considered works have been proposed, taking into
consideration their main weaknesses and the less analyzed scenarios. In conclusion, a
comparison with similar surveys has been created to highlight how this thesis can provide
a more comprehensive overview of Federated Learning attacks.
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Abstract in lingua italiana

Negli ultimi anni l’interesse per i sistemi di Federated Learning è aumentato significati-
vamente: questi si sono dimostrati particolarmente efficaci in tutti quei contesti in cui
è necessario un meccanismo di training distribuito sicuro, che permetta di affrontare le
limitazioni in termini di privacy e performance che le tecniche standard non permettono
di superare. La crescente adozione di questa tipologia di sistemi ha portato allo sviluppo
di numerosi attacchi con lo scopo di raggiungere diversi obiettivi avversariali, che vanno
dalla creazione di backdoor nel modello prodotto alla divulgazione di informazioni private
possedute dai partecipanti del processo di training.
L’obiettivo di questa tesi è quello di studiare l’attuale stato dell’arte di tali tecniche, for-
nendo una completa panoramica e categorizzazione delle migliori; questo può risultare
utile non solo per lo studio di eventuali migliorie degli attacchi considerati ma anche per
fornire un supporto ai progettisti nel creare sistemi di Federated Learning più robusti e
sicuri.
Per fare ciò, sono stati analizzati numerosi paper riguardanti attacchi avversariali e una
Systematization of Knowledge - SoK - è stata creata tenendo in considerazione vari
parametri con lo scopo di fornire un modo rapido e intuitivo di comparare le diverse
tecniche studiate. Sono stati inoltre riportati diversi possibili sviluppi futuri dei lavori
considerati, con lo scopo di superare le loro principali debolezze e aumentare il numero
di applicazioni negli scenari meno studiati. Infine, una comparazione con studi simili a
quello proposto è stata realizzata per evidenziare come questa tesi sia in grado di fornire
una overview più completa sugli attacchi ai sistemi di Federated Learning.

Parole chiave: Federated Learning, attacchi, avversariali, SoK
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Introduction

Federated Learning is a novel branch of artificial intelligence that overcomes the limita-
tions that traditional centralized machine learning approaches face in distributed settings
by enabling multiple devices, such as smartphones, personal computers or IoT appara-
tus, to collectively train a model without needing to share their private information. In
Federated Learning systems the training phase changes drastically: it is pushed back to
the devices owning the used datasets, which will contribute in an iterative process to the
generation of the global model by only exchanging small bits of data, either in the form
of gradients or parameters, not containing any private information.
The lack of sample sharing with a central entity or other clients is crucial in guaran-
teeing privacy and ownership of the datasets belonging to each participant. Moreover,
this aspect helps to satisfy the requirements of the latest data policies, like the European
General Data Protection Regulations - GDPR - or the Cybersecurity Law of the People’s
Republic of China, which pose new challenges in the data elaboration field that are diffi-
cult to overcome with standard centralized machine learning techniques.
It is also important to note that conducting the training phase on huge heterogeneous
datasets, that would otherwise not be easily accessible, makes it possible to produce
models which can achieve higher performances than the ones trained following classi-
cal centralized paradigms. Several variations to the original Federated Learning concept
have been and are still being developed to adapt it to the various scenarios where its
characteristics are needed: while this type of distributed learning is commonly adopted
in smartphones and other personal devices thanks to its privacy features - for example,
think of the way GBoard, Google’s mobile keyboard, uses it to improve its word prediction
capabilities [12] -, some variants are also used by organizations in contexts where there is
the need to train a model combining their datasets without disclosing them.

Their distributed nature exposes Federated Learning systems to a completely new set
of security threats compared to traditional machine learning settings: the increased com-
plexity of these paradigms creates several new attack surfaces that can be exploited by
internal and external adversarial agents; malicious parties may now leverage new ap-
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proaches to tamper with the learning process and its privacy guarantees. While many
defense and prevention techniques have been developed to secure Federated Learning,
several novel attacks exploiting different weaknesses are being studied and presented.
This thesis’ main objective is to create a comprehensive overview of the state-of-the-art
of adversarial attacks against Federated Learning systems, classifying the most relevant
works to understand the concepts behind them and to compare them against each other.

Approach overview

What follows is an overview of the approach that has been adopted to realize this thesis.

• Different papers analyzing the Federated Learning paradigm have been studied to
understand the main concepts behind it.

• Other existing surveys on attacks against Federated Learning systems have been
considered to understand which are the main attack surfaces and techniques cur-
rently known and used; they have also been used to gather an initial set of papers
to analyze.

• Once the attacks linked to the analyzed surveys have been studied, I proceeded to
search for other correlated papers.

• The collected material has then been filtered to keep only the most relevant works
and thoroughly analyzed to understand the current state-of-the-art.

• A Systematization of Knowledge - SoK - table has been created to categorize all the
considered attacks.

Results of the proposed analyses

The analyses carried out in this thesis highlights which are the most relevant and effective
adversarial attack types against Federated Learning systems:

• Free-rider attacks

• Poisoning attacks, divided into data and model poisoning attacks

• Inference attacks, divided into features, labels, membership and properties inference
attacks

Many of the considered attacks are applicable even in realistic scenarios where robust
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defenses or aggregation mechanisms are deployed, taking advantage of a variety of tech-
niques, ranging from optimization algorithms to Generative Adversarial Networks, to
achieve their adversarial objectives. Some common weaknesses have also been pointed
out, like for example the need for prior knowledge about the data distribution of the
clients’ private datasets or the need for the adversarial devices to be selected at each
round of the training process: it is fundamental to understand how these limitations may
affect the applicability of the studied techniques to evaluate in which cases they can and
cannot be applied.
Moreover, the proposed Systematization of Knowledge highlights which are the most cov-
ered scenarios and how each considered attack compares against similar ones: it is possible
to note how most of the analyzed papers study poisoning and inference attacks, focusing
on HFL scenarios and client adversarial devices. It is also highlighted how it is usually
required to have at least access to the data belonging to the controlled devices and to be
able to participate during the training process of the Federated Learning system.
Thanks to the comparison between this thesis and other similar surveys, it has been un-
derlined how many of them aren’t providing an intuitive way of comparing each attack
technique against each other; it should also be noted how most of these papers don’t
consider free-rider attacks, don’t give a complete overview of the analyzed techniques
and/or don’t highlight their weak points, providing only a partial overview of the current
state-of-the-art of adversarial attacks against Federated Learning systems.

Main contributions

The main contributions of this thesis are the following:

• Review of the current state-of-the-art of adversarial attacks against Federated Learn-
ing systems, taking into account all the major system and attack types.

• Categorization of the studied works using a complete yet synthetic approach to un-
derstand how the analyzed attacks are implemented and provide a way of comparing
them.

• Proposal of possible future development directions with respect to the analyzed
works.

• Creation of a brief analysis and comparison against similar surveys to show what
are the main advantages of this thesis.





5

1| Approach

What follows is the approach that has been adopted to collect, analyze and classify all the
relevant studies related to adversarial attacks against Federated Learning systems. Most
of the considered papers have been found using either Google Scholar or ACM Digital
Library.

• Given an already good understanding of the theory behind machine learning, several
papers analyzing the Federated Learning paradigm have been studied in order to un-
derstand how it works, what problems it solves and how it is currently implemented
and used in the existing systems.

• From this starting point, other existing surveys on adversarial attacks against Fed-
erated Learning systems have been studied to understand the main attack surfaces
and techniques currently known and used. Moreover, these surveys have been used
to gather an initial set of papers to be analyzed.

• Once the attacks linked to the considered surveys have been studied, I proceeded to
search for pertinent works by looking at the ones in their citations lists: this process
has been repeated for each newly considered paper until I wasn’t able to find any
other interesting study regarding Federated Learning attacks.

• After creating a first categorization of the found attacks, further research has been
done to look for less-represented attack categories and to ensure that every relevant
work has been included. This allowed obtaining papers that were not related to
the ones considered in the initial phases; their citation lists have been analyzed as
previously discussed.

• The collected material has then been filtered by removing all the studies which
weren’t sufficiently documented, didn’t include enough details on how the attack
was tested or did consider scenarios that were too unrealistic. I avoided considering
the number of citations since I found it to be not representative of the actual quality
of the papers.

• The remaining attacks have been grouped by category and thoroughly analyzed to
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highlight their key concepts.

• Eventually, I created a Systematization of Knowledge - SoK - table comprising 32
different parameters to categorize and compare the studied attacks.

Overall, a total of 51 sources have been used to write this thesis, with 42 different papers
regarding adversarial attacks of three different types:

• 3 regarding free-rider attacks

• 17 regarding poisoning attacks, describing:

– 12 data poisoning techniques

– 6 model poisoning techniques

• 22 regarding inference attacks, describing:

– 5 features inference techniques

– 5 labels inference techniques

– 8 membership inference techniques

– 5 properties inference techniques

In Table 1.1 are summarized the above values:

Table 1.1: Number of analyzed techniques for each attack type

Number of
analyzed attacks Free-rider attacks

Poisoning attacks Inference attacks

data
poisoning

model
poisoning feature labels membership properties

Per sub-category 3 12 6 5 5 8 5

Per category 3 18 23

Overall 44 - some papers discussed more than one attack type

By looking at the number of analyzed attacks it is possible to understand how inference
and poisoning ones are the most covered: given the current implementations of Federated
Learning systems, they pose the biggest threats to the fundamental assumptions of this
paradigm, allowing attackers to waste participants’ resources, to modify the produced
model or to steal private information that would otherwise be inaccessible.
While less studied and generally more difficult to apply, also free-rider techniques are
worth being analyzed to have a complete understanding of how non-participating clients
may be able to obtain the global model: this is an important threat to consider in all
those scenarios where the produced model has a very high commercial or strategic value.
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In Figure 1.1 is depicted a graph showing the number of publications related to the key-
words "Federated Learning" and "Attacks" while in Figure 1.2 a timeline representing
how many of the analyzed papers have been presented in each year is proposed. These
graphs help to visualize how the interest in adversarial attacks against Federated Learning
systems has increased over time.

Figure 1.1: Total number of publications regarding Federated Learning and attacks
against it - data taken from [29]

Figure 1.2: Number of analyzed papers per year
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While the final objective is similar, Federated Learning paradigm and standard centralized
machine learning have a key difference that is to be found in the training phase: it is
decentralized and delegated to the devices actually owning the data, which do not share
any information with each other.
This characteristic creates systems that are far more structured and complex to manage
than classical ones, involving coordination algorithms and usually requiring the presence
of a central server that manages all the participants and aggregates their updates.

2.1. Phases of the Federated Learning process

The learning process of the most common Federated Learning systems, the ones compris-
ing a central server that coordinates several client devices, is an iterative mechanism that
is run until the global model converges to a desired level of performance.
It is possible to identify four main phases in this process:

• Data collection: as a preliminary step, each participant needs to collect the data
that will be used in the training phase. Data may then be pre-processed and/or
filtered, based on some rules agreed upon between participants, to optimize it for
the training process, for example removing duplicates or reducing the noise present
in each one of the samples.

• Model selection and initial training: a proper model needs to be chosen to solve
the task we are interested in and training with a sample dataset takes place in the
central server to set a starting point for the learning process; the produced model’s
parameters are then broadcasted to all the participants as a baseline for future
updates.

• Local model training: at each training round every client receives the global model
from the central server; then a randomly selected subset of participants will update
the shared model using their private dataset and communicate their updates to the
coordinator, either by sharing the computed models’ parameters or their gradients.
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The central server then proceeds to combine the received information using the
chosen aggregation algorithm.

• Global model finalization and prediction phase: once the training process is finished
the aggregated global model is sent to all the clients that took part in it; the model
is then used locally by the participants to make predictions.

Figure 2.1: Graphical representation of the Federated Learning process’ phases. Image
taken from [44]

Those phases slightly change when the considered architecture is a fully decentralized
one, in which a central server is not needed to make the learning possible and clients
coordinate themselves using consensus protocols; anyhow, the main concepts behind the
process remain similar.

2.2. Types of Federated Learning

Federated Learning systems can be classified in several ways depending on the considered
aspect of the framework; the main classification that helps visualize how the process is
carried out is based on the distribution of data samples, features and labels among the
participants:

• Horizontal Federated Learning - HFL: clients’ datasets share the same feature and
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label spaces while comprising different samples; this is the most common scenario
in general applications of Federated Learning, deployed for example on phones or
on IoT devices to train their machine learning models without compromising users’
privacy.

• Vertical Federated Learning - VFL: clients’ datasets share the same sample space
but have different feature and label spaces; this scenario happens whenever two or
more organizations own different features of the same samples (for example, different
information about the same set of people) and they need to combine them, without
disclosing any private information, to train a global model that will be useful to all
the participants.

• Federated Transfer Learning - FTL: feature, label and sample spaces are not shared
among clients; this is used to fine-tune pre-trained models in a distributed way with
clients’ private datasets when this allows for much better results with respect to
standard techniques. It is important to note that in this case the initial model may
be trained on similar datasets to the one owned by the participants but with a
completely different problem to solve.

It is also worth mentioning a categorization that takes into account data availability and
the number of participants in the learning process:

• Cross-Silo Federated Learning: client devices are typically a small number (a few
hundred at most), they are indexed and should always be available to participate
during the training process; these devices are usually servers with high data storage
and computing capabilities (referred as silos) owned by organizations which may
also choose to deploy custom Federated Learning algorithms to fit their specific
needs and constraints, removing, for example, the necessity of a central authority.
It is important to note that the training data may still be organized horizontally or
vertically as previously presented.

• Cross-Device Federated Learning: clients’ count can exceed the thousands of units
and they are small devices with limited computing capabilities, such as smartphones,
personal computers or other smart objects like IoT devices. In this setting, clients
can only process small quantities of data and they may not be available for the
entire training process due to unstable internet connection or other intrinsic aspects
of their nature; this needs to be taken into account when deploying a Federated
Learning process since these characteristics may affect how the training is carried
out: for example, we may need Byzantine-robust aggregation mechanisms to cope
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with clients’ low dependability.

The last classification that should be taken into consideration is based on the logical
organization of the devices taking part in the learning process:

• Centralized Federated Learning: the system is organized in a star topology where
several decentralized clients are used to train the global model leveraging their
private datasets, while a central entity manages and aggregates the received model’s
updates and eventually performs the final distribution to the participants. This
architecture is mostly utilized in cross-device scenarios, that usually involve several
heterogeneous devices.

• Decentralized Federated Learning: these architectures deploy a decentralized con-
sensus protocol to aggregate the model’s updates coming from every single device,
which can only communicate with its neighbors. This approach has several advan-
tages, mainly in cross-silo scenarios or in applications where the devices are highly
trusted and can leverage low latency connections, since it removes both the central
server, which constitutes a single point of failure, and the communication overhead,
needed to interface all the clients with it.

2.3. Weak points and attack surfaces

The complexity of the Federated Learning framework and the number of different par-
ticipants involved in the process introduces a lot of possible attack surfaces that can be
exploited by adversarial parties to tamper with the model training and its delivery to the
involved devices.
The following is a list of the most relevant ones exploited in the analyzed papers:

• Training data: being the training data not often subjected to validation by a single
authority, an adversarial party controlling one or more clients or their data sources
may try to modify the used samples to manipulate the training process into pro-
ducing a modified global model or preventing its convergence.

• Participants: an adversary controlling one or more clients may try to modify the
updates computed locally or craft them entirely to mimic legitimate ones, aiming to
poison the global model or receive it without providing any meaningful contribution
to the training process. Clients can also be exploited to infer private information
owned by benevolent participants.

• Central server: Federated Learning architectures involving a single central coordi-
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nator are subject to a single point of failure which could give an attacker complete
control over the learning process. An adversarial party controlling the server may
not only be able to tamper with the produced global model, modifying it, but could
also target clients’ updates trying to infer information about a specific participant’s
dataset.

• Communication between parties: the communications taking place during the Fed-
erated Learning process may be subject to eavesdropping or tampering of the ex-
changed information with the objective of overcoming possible defenses implemented
by the participants.

• Aggregation algorithm: being the aggregation algorithm the central part of the
Federated Learning framework, its vulnerabilities can be exploited by attackers to
tamper with the entire learning process.





15

3| Attacks against Federated
Learning - Current
state-of-the-art

The amount of attack surfaces exposed by the Federated Learning paradigm allows the
development of various adversarial techniques with different objectives and peculiarities;
to properly classify and compare them against each other a comprehensive list of param-
eters is needed.
What follows is a description of each one of them and of the possible values they can take.

• Federated Learning type: important to understand how the considered system is
constituted; for example, in horizontal Federated Learning scenarios there are com-
monly several clients which can be targeted by an adversarial party usually aiming
to backdoor the global model, to obtain it without contributing to the process or to
gain some sort of information about the participants’ datasets.
On the other hand, in vertical Federated Learning scenarios the number of partici-
pants is way lower, even as low as two, and the attack’s goal is usually to infer data
owned by a specific client.

– Horizontal Federated Learning - HFL: clients’ datasets share the same feature
and label spaces while having different sample spaces.

– Vertical Federated Learning - VFL: clients’ datasets share the same sample
space but have different feature and label spaces.

– Federated Transfer Learning - FTL: clients’ datasets have different feature,
label and sample spaces.

• Type of interaction: helpful to understand how the adversarial party interacts with
the system and which capabilities are needed to carry out the attack.

– Active: the adversary will modify the global model by injecting maliciously
crafted updates to reach its goal or to amplify the effect of the attack.
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– Passive: the adversary will only analyze the shared updates (from the global
model and/or the single clients, if it is capable of doing so) or the shared global
model, without modifying it or interfering with the learning process.

• Attacker party: represents which participant of the Federated Learning system is
partially or completely controlled by the attacker.

– Client: the attacker is able to control one or more clients independently or to
coordinate a set of them, orchestrating a more structured attack (sibyls attack).

– Server: the attacker is able to control the central server and, therefore, can
also interfere with every single client’s learning process by targeting specific
updates.

• Model knowledge: important to understand how much information the attacker has
about the used model; it is particularly relevant in inference attack scenarios where
the adversarial party can take advantage of any prior knowledge to make the attack
more efficient.

– White-box: the attacker has full knowledge about the model, including not
only its structure but also its parameters and outputs.

– Black-box: the attacker is only able to query the model, without having any in-
formation about its architecture or parameters, usually using predefined queries
exposed by some kind of API.

– Gray-box: similar to the black-box scenario, the attacker can access the model
with predefined queries while also having partial knowledge of it.

• Data knowledge: helpful to understand if the attacker has any insights or access to
the participants’ datasets; for example, it may have the ability to sample data from
them or to know their underlying data distribution.

– None: the attacker knows nothing about the clients’ datasets nor has access to
them.

– Partial knowledge: the attacker only has partial pieces of information about
clients’ datasets; for example, it can access some samples, understand the data
distribution or some other characteristics that may turn useful for the attack’s
success.

– Knowledge of compromised devices’ datasets: the attacker can access the com-
promised devices’ datasets without any limitation, understanding underlying



3| Attacks against Federated Learning - Current state-of-the-art 17

characteristics of the used data that can be useful also to make assumptions
about legitimate participants’ data. This is usually the case whenever an ad-
versarial party controls a client in its entirety.

– Full knowledge: the attacker knows the data distribution and can access the
samples of each client’s dataset, even without necessarily having access or con-
trol of those devices. This is clearly an unrealistic scenario that gives the
attacker a lot of power.

• Phase in which the attack takes place: represents the phase of the Federated Learn-
ing process in which the attack is executed.

– Training time: the attack is carried out during the training phase of the global
model; this also comprises all those scenarios where the attacker injects mali-
cious samples into the clients’ datasets before the actual training begins.

– Inference time: the attack is carried out after the model’s training ends; this
kind of attack is usually studied in a more generic machine learning setting but
is possible to find some applications even in the Federated Learning one.

• Number of interactions needed: helpful to understand how many interactions with
the Federated Learning process the attacker needs to reach its goal. This is strictly
related to how easy it could be for a training time poisoning attack to be successful
since not all the clients are selected at each round to update the global model.

– One-shot: the attacker only needs one interaction with the system to reach its
goal, leading to a more effective attack which, on the other hand, may also
be easier to detect since it usually involves a bigger perturbation of the global
model.

– Multiple interactions: the attacker needs more than one interaction with the
system to reach its goal, facing problems like the degradation of the injected
modifications or the possibility of not being selected for enough training rounds.

• Type of attack: represents the objective of the attack carried out by the adversary;
further subclasses are proposed and better described in the following sections.

– Free-rider attacks: the adversarial goal is to get the global model without
actually participating in the training phase, either because it does not own any
meaningful data or because it does not have enough computing power.

– Model poisoning: the adversarial goal is to poison the global model, either to
prevent its convergence or to modify its behavior during the inference phase.
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For example, a backdoor can be inserted in the model to make it misclas-
sify some samples when they contain some predefined characteristics, called
triggers, or belong to a given class.

– Inference: the adversarial goal is to infer some kind of information about the
participants’ datasets, without actually having access to them nor having much
information related to them to begin with.

• The last parameters resume the datasets used to test the proposed attacks and if
they are publicly available or not; this information is important to understand if
the results shown in the considered papers can be compared against each other or
not and if they are replicable. Moreover, i.i.d. or non-i.i.d. assumptions on the
considered data are noted.
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3.1. Free-rider attacks

Free-rider attackers can be defined as adversarial individuals whose goal is to benefit from
the Federated Learning process without having any useful data nor enough computational
resources to be able to contribute to it, stealing the trained global model which may have
high commercial or intellectual value. This clearly compromises the fairness of the learn-
ing mechanism which uses the global model as a reward or incentive for the participants
to share their resources during the training process.
In this kind of scenario, the attacker wants to avoid any possible interference with the
learning procedure to not be detected as an outlier and, most importantly, to obtain the
best possible global model produced by legitimate participants.

3.1.1. Plain free-rider attacks

This is the simplest of the analyzed techniques where malicious clients return the same
model parameters received during the training process without altering them in any way,
as discussed in [8]; while not modifying these values ensures that the global model con-
verges to the best possible one, it is quite easy to detect devices implementing this kind
of attack by verifying that they are not contributing to the current global model in any
meaningful way (i.e., the difference between subsequent updates is zero).

3.1.2. Random weights attacks

Attackers implementing this technique, proposed in [17], return arbitrarily generated up-
dates by copying the received global model ones and replacing some of their components
with random values; the main challenge in this scenario is to craft realistic parameters that
mimic real ones, without having access to a legitimate dataset or any other participant’s
updates. This technique has been shown to be effective against autoencoder detection,
although it can be detected with DAGMM - Deep Autoencoding Gaussian Mixture Model
- method, whether each client has a similar local data distribution or not.
Another similar approach is described in [8] and consists in adding Gaussian white noise
to the received global updates, tuning it to adopt a noise structure similar to one of the
fair clients and to be also time-varying to produce more credible updates; this approach
has been tested to prove it can make the global model converge but no data about its
effectiveness against any defense has been provided.
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3.1.3. Delta weights attacks

Delta-weights and advanced delta-weights attacks, proposed in [17], are the most advanced
techniques regarding free-rider scenarios where honest clients’ behavior is reproduced
using the last two global model updates, either by simply exploiting their plain difference
or by adding to it a Gaussian noise term. While these methods are resilient against
DAGMM defense, they are not effective against the proposed STD-DAGMM - Standard
Deviation Deep Autoencoding Gaussian Mixture Model - one.
A similar technique that also implements a decay factor, represented by the l2 norm of the
previous two updates with respect to the ones considered in the difference, to simulate
the local updates’ decadence to zero as the learning process converges, is discussed in
[51]. Moreover, also in this case an advanced version of the attack with the addition of
a Gaussian noise term is proposed; effectiveness against DAGMM is proven but no other
defense technique has been tested.

3.1.4. Free-rider attacks SoK

In Table 3.1 the categorization of the considered free-rider attacks is proposed; it highlights
how all of them share the same main features, which are expected given the setting and
the objective they are studied for: every technique is developed considering a passive
scenario where the adversary controls only client devices with no access to the data used
by legitimate participants. Moreover, all these attacks are carried out at training time. It
is also worth noting how all these techniques take into consideration horizontal Federated
Learning scenarios, where it may be simpler for a non-contributing device to go undetected
by a central aggregator server deploying a secure aggregation mechanism.
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3.2. Poisoning attacks

Poisoning attacks are meant to interfere with the Federated Learning process by trying
to modify the learned global model; this could be done in a targeted way, trying to leave
the overall performance of the learned model unaffected while introducing a predefined
perturbation that pursues a given goal, or randomly (untargeted), aiming at reducing
the general global model’s accuracy or directly preventing its convergence wasting other
participants’ resources.
Usually, this kind of attack is carried out by the clients and, intuitively, the proportion
between compromised and uncompromised participants plays a key role in the attack’s
effectiveness due to how the clients are randomly selected to participate in the training
process of Federated Learning systems.

Figure 3.1: Graphical representation of poisoning attacks. Image taken from [29]

3.2.1. Data poisoning attacks

Data poisoning attacks try to effectively alter the dataset used by one or more clients
during the training phase to be able to modify the global model or prevent the learning
process to converge [10]; this can be done by either directly altering the data samples
owned by the participants or by controlling their data sources.
They can be classified into two main categories:

• Dirty-label attacks: the adversary can directly modify the data and is also able to
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change the samples’ labels.

• Clean-label attacks: the adversary can only partially modify the training data,
poisoning the samples by adding noise or other patterns, but cannot change any
label. This kind of technique can be adopted in scenarios where, for example,
a dataset validation process takes place and therefore labels cannot be modified
without it being noticed.

Figure 3.2: Graphical representation of clean and dirty-label poisoning attacks. Image
taken from [46]

Most of the analyzed attacks belonging to this category are implemented in a horizon-
tal Federated Learning setting and can be classified as label-flipping attacks (dirty-label
scenario), where the training sets samples’ labels are changed from their true value to
another one to reach the attack’s goal.
Simply exchanging the labels of a source class into ones of another target class, as pro-
posed in [35], can effectively lead the global model to misclassify the samples belonging
to the source class. In the analyzed paper it is highlighted how this kind of attack is not
only easy to perform and energy-efficient, but also does not require the knowledge of the
global data’s distribution among participants, the architecture of the model or any other
characteristic of the overall system. A defense named PCA is also proposed to protect
against it and is shown to be effective.
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A similar approach is considered in [34], where besides the possibility for an adversary to
train and inject into the learning process a backdoored model that misclassifies a chosen
category of samples, it is also shown how a boosting technique can be implemented to
optimize the outcome of the attack; this is done by trying to perform model replacement
in order to be able to amplify, as much as possible, the effect that the poisoned updates
have on the global model during every single interaction with the attacker.
This paper also discusses how to norm-bound the generated updates to avoid them be-
ing marked as malicious using norm thresholding techniques; it is then shown how weak
differential privacy is effective in reducing the impact of such attacks by adding a certain
quantity of Gaussian noise to clients’ updates, partially disrupting the effect of the attack.
Label flipping can be also used to perform what is called an edge-case backdoor attack,
as shown in [37], where the adversary focuses on the input data points that are rare
and/or underrepresented in fair participants’ training data. While this technique can
achieve better results than traditional data poisoning and is also proven to be resilient
against defenses like NDC and RFA, it can be effectively prevented by adopting KRUM
and Multi-KRUM aggregation mechanisms.
A similar concept to the ones mentioned above has been explored in [27]: the poisoning
attack is in this case implemented by injecting maliciously crafted data samples into the
training dataset instead of flipping the labels of already existing ones; this technique has
been proposed considering the IoT setting, where data is not ready beforehand and is
collected from local devices by a gateway that will also train the local model. Therefore,
it may be interesting to consider this approach in all those scenarios where the used data
is generated from external sources during the training process.
The focus of the described technique is to avoid the injected traffic to be detected as
malevolent and avoid the poisoned global model from deviating too much from what
would be its optimal performance level. Moreover, this is done by only gaining control of
the devices generating the used samples while leaving the ones actually training the local
models unaffected.
GAN networks can also be deployed to implement data poisoning attacks generating
malicious data, as studied in [45] and [46]: the adversary initially acts like a benign par-
ticipant and trains a generative adversarial network - composed of two separate models,
a generator and a discriminator - to generate samples that mimic legitimate ones using
as discriminator the shared models, basically trying to reproduce benign clients’ private
datasets; after this initial phase, the wrong labels are attached to the crafted data and
the generated gradients are shared with the central server to poison the global model.
In order for the attack to be successful, the crafted updates need to be amplified using a
scaling factor that will allow it to survive the averaging phase implemented by the central
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aggregator. For both papers, the attacks have been shown to be able to successfully affect
the model reaching a good accuracy on the poisoning task. Some defense techniques have
been cited but no experimental result on their effectiveness is proposed.

Clean-label data poisoning attack approaches usually allow the backdooring of the global
model by inserting triggers into the training samples; these are patterns embedded into
the data that will activate a backdoor in the model when present.
In [40] it is shown how a trigger can be decomposed into local patterns distributed to
multiple adversarial parties: each one of them will train its local model independently,
without knowing the global trigger, and this allows the attack to be undetected by ro-
bust aggregation mechanisms or clustering-based anomaly detection techniques. It is also
shown how it is more effective in pursuing the adversarial goal with respect to standard
backdooring attacks.
Clean-label techniques can also be used to create a covert channel to utilize the Federated
Learning system as a stealth communication infrastructure to transmit single bits of data,
as shown in [6]; in this case, the effect of the model’s poisoning is not visible to the benign
participants and, moreover, the overall performance level of the model is not affected.
The key concept behind this attack consists in training the adversarial clients’ local mod-
els with malicious samples that are able to induce a perturbation in the global model
which can be tested by other malevolent participants; by using it to make predictions on
the same set of samples and interpreting the outcome, it is possible to deduce whether
the transmitted bit is either a 0 or a 1. It should be noted how the process requires a cali-
bration phase during which the receiver observes the global model updates and computes
the channel parameters - like the number of training rounds to transmit a single bit or the
crafted samples to be used - that are needed to implement the communication channel
and are required to be shared with the sender (hard coding them before deploying the
sender or transmitting them through a secondary channel). It is also discussed how to im-
plement multiple parallel communication channels, although this may cause interferences
and poor performances in general.

3.2.2. Model poisoning attacks

Model poisoning attacks aim to modify the local model’s updates produced by one or more
clients, either controlling them singularly or coordinating them, before sending them to
the central server to induce a predefined effect on the generated global model.
While this technique is more complex to implement compared to data poisoning ones and
requires deeper access to the learning process and the participating systems in general, it
gives the attacker more control over the adversarial objective and allows for better results,
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especially in Byzantine-robust Federated Learning systems.
The main challenges faced by the adversarial parties are related to the updates’ crafting
process to prevent them from being detected as malevolent and rejected by a robust
aggregation mechanism.

One of the possible objectives of a model poisoning attack is increasing the global model’s
error rate and slowing down its convergence (untargeted attack): in [7] it is studied how
to craft local updates on the compromised clients to deviate the aggregated global model
towards the inverse of the update direction it would normally follow without any adver-
sarial interaction.
The updates’ creation is formulated as an optimization problem to be solved at each it-
eration of the learning process where the objective is maximizing the deviation obtained
from the standard model; the attack is shown to be successful in both full and partial
knowledge scenarios - with the only difference being the knowledge of the local models and
datasets of other clients - against Krum, Trimmed-Mean and Median based aggregation
techniques, with the last two shown to be more robust against the attack. In any case,
it is important to note that the full knowledge setting may have limited applicability in
real scenarios.
Explicit boosting may be used also in this scenario and in similar ones, like targeted mis-
classification, to be able to influence the global model as much as possible in each round
where the adversary is selected. As shown in [3], this is done by multiplying the crafted
weights’ updates by a given factor to increase the perturbation of the global model, al-
lowing the poisoning effect to better survive the averaging phase done by the coordinator.
It is also analyzed how to avoid the updates being detected as malevolent by the central
server: it is proposed to add two terms to the objective function of the considered opti-
mization problem to make the generated weights as close to real ones as possible; one will
take into account the accuracy on the validation data, which can be accounted for using
the training data loss, and the other will consider some weights statistics to limit the
distance between crafted and real ones (l2 norm is used as an example). This should be
enough in real applications to mislead the aggregator mechanism into classifying crafted
weights as legitimate. The proposed technique is again proven to be effective and well-
performing in systems using Krum and Median based aggregation algorithms.
Assuming that the parameters produced by all the participants involved in the learning
process are i.i.d. and therefore expressible by a normal distribution, which may be a
strong assumption to fulfill in real scenarios, it is possible to obtain a range in which the
values of the weights can be crafted to fool the system into classifying them as benign. As
proposed in [2], this is done by taking into consideration all the values between the mean
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of all the updates and the ones of the honest clients that are pushing in the direction the
adversary needs to pursue its goal.
This concept is crucial to hide Byzantine workers’ updates within the variance of the
benign ones, while still being able to reach the attack’s objective which may be backdoor-
ing the model or preventing its convergence; an optimization process similar to the one
adopted by the above attacks is still involved to produce the desired updates.
Similar considerations are made in [32], where the adversary computes a benign reference
weight vector using some updates it observed and, then, crafts a malicious perturbation in
the opposite direction; particular attention is given to selecting the most appropriate per-
turbation vector for the given Federated Learning setting to maximize the attack’s impact
allowing it to go undetected from robust aggregation mechanisms. Different techniques
to compute the vector are discussed (inverse unit vector, inverse standard deviation and
inverse sign) and is also discussed how to tackle the most used aggregation mechanisms
and how to deal with the case of the adversarial not knowing which algorithm is used by
the central server. The attacks are shown to achieve good performances in the conducted
tests, even if it should be considered that knowing the used aggregation mechanism in a
Federated Learning system may not be trivial. A dimensionality reduction defense using
random sampling followed by outliers removal is proposed to defend against the detailed
technique.

An interesting approach that avoids compromising the global model’s performance while
causing target misclassification is analyzed in [49]; since only small sets of neurons are
activated and used during the model’s training phase, it is proposed to inject adversarial
neurons, crafted to accomplish the attacker’s objective, into the redundant space of the
neural network: this allows to leave the other useful neurons, used for the primary task,
untouched avoiding the degradation of the model’s performance. An optimization process
is still involved, composed of the main task and the adversarial one that has the goal of
understanding which are the unused neural paths that can be exploited for the attack.
Both single-shot and multiple-shot versions of the attack are tested and shown to be effec-
tive and more persistent than normal attacks. It is important to note that the malicious
client is assumed to be chosen at each round, which may be an unrealistic scenario con-
sidering normal Federated Learning systems.
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3.2.3. Poisoning attacks SoK

In Table 3.2 the categorization of the considered poisoning attacks is presented; it helps to
visualize how all the analyzed techniques are meant to be applied in a horizontal Federated
Learning scenario where the adversary controls one or more clients and deploys an active
attack during the learning process, which is expected given that the final objective is to
modify the global model. Most of the studied attacks are applied in a white-box scenario,
requiring deeper access to the model trained by the adversarial clients; the majority of
them also only requires access to the data belonging to the controlled devices and needs
more than one training round to reach the final objective, which is found to be one of the
most common limitations given how the training process works in HFL systems.
It is important to note that there are still some data-poisoning attacks that can be carried
out in a black-box scenario; moreover, some considered techniques are able to affect the
global model with just one interaction, creating more powerful attacks which on the
other hand face and higher probability of being detected and prevented by the central
aggregator.
In conclusion, it can be highlighted how most of the included attacks are targeted with only
a few model-poisoning ones aiming at reducing the global model’s accuracy or preventing
its convergence.
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3.3. Inference attacks

Inference attacks’ main goal is to compromise the privacy characteristics and guarantees of
the Federated Learning paradigm, enabling the attacker to reconstruct some information
or even some samples from clients’ private datasets that would otherwise be inaccessible
to third parties. This is made possible thanks to the analyses of the updates shared by the
participants during the training phase of the Federated Learning process or by querying
the final shared model.
The attacks falling in this category are worth being analyzed under both HFL and VFL
settings: based on the case we are in, the attacker may leverage different peculiarities
of the training process to reach its goal, either by controlling one or more clients or the
central server.

Figure 3.3: Graphical representation of inference attacks leveraging the shared gradients.
Image taken from [24]

3.3.1. Features inference attacks

Feature inference attacks aim at reconstructing part of the datasets of the participants
in the Federated Learning process, generating samples that are likely to have been used
by the clients to train their local models; while this, in most cases, will not recover the
exact same samples used, it may be useful to infer some particular information or general
characteristics about them.
Gradient inversion can be used to uncover private users’ data from the parameters’ gradi-
ents: in [11] it is shown how an honest-but-curious server may be able to use a numerical
reconstruction method to implement a multi-image recovery starting from the gradients
received from the clients. The described technique consists in implementing an optimiza-
tion process that maximizes the similarity between the received gradients and the ones
generated by the considered possible inputs, iteratively creating more realistic data.
In this study the analyzed gradients are the result of local training on multiple images;
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the server only needs to know the number of participating samples, even though this can
be inferred by running the reconstruction process over a range of candidate numbers,
choosing the one that leads to the smallest error. While with this technique most of the
recovered images will be non-recognizable, a few samples may be recovered with enough
precision to reveal important information about the used datasets.
A completely different approach is discussed in [13] where the adversary pretends to be
an honest participant in the Federated Learning process while also deploying a generative
adversarial network - GAN - to generate samples of given classes using the shared models
as the discriminators of the network; given that the attacker needs to know the data labels
of other participants, it will also influence their training phase by sharing specially-crafted
gradients to trick them into leaking more information about their local samples.
This attack is shown to be effective against differential privacy and other obfuscation algo-
rithms, being able to recover better and clearer samples than model inversion techniques
that tend to be able to output only prototypical examples of the real data.
A similar attack, where the adversary controls the server instead of the clients, is analyzed
in [39]: also in this case the attacker deploys a GAN to recover the data samples and it
will target a single specific client; the model updates coming from the victim are used to
train the GAN into generating more specific samples.
With respect to similar approaches, in this case, the attacker also aims at compromising
the client-level privacy represented by specific properties, identifying each client, by de-
ploying a multitask discriminator; this is able to not only recover the data used during the
training phase but also to associate it with a specific participant of the learning process.
It is important to note that the server needs to have samples representative of the targeted
client’s dataset, which can be recovered starting from a testing set - usually provided to
the central server - and the updates received from the participant.
Moreover, this attack is both proposed in a passive setting, where the attacker does not
interfere with the learning procedure, and in an active one, where the server isolates the
victim sending it a model which will not be shared with anyone else; in both cases, the
attack does not interfere with the global training procedure and it is shown to produce
more accurate results compared to model inversion techniques. No defenses are analyzed.

While the above-mentioned attacks are all related to the horizontal Federated Learning
settings, some techniques have also been studied to tackle data privacy in the vertical one,
where multiple parties share the same sample space but have different label and feature
spaces.
Two different attacks have been analyzed in [20] to perform feature inference starting
from a single prediction of the produced model: an equality-solving attack is proposed
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to tackle logistic regression models while a path restriction one is detailed to deal with
decision trees. While the former is based on the resolution of a system of equations, the
latter sees the adversarial party restricting the possible prediction paths in the tree model
based on its own data’s predicted classes.
To cope with more complex models, like neural networks or random forests, an attack
based on multiple predictions has also been proposed. By relying on a set of predictions,
the generator model can be used to minimize the loss between these values and the ones
corresponding to the generated samples. It is worth noting that this attack does not
need the adversary to have any background knowledge of the target’s data distribution
or any intermediate information disclosed during the computation of the ground-truth
predictions. Several defenses against these attacks have been discussed; it is highlighted
how hiding the generated model, preventing the adversary from having access to it in
plaintext, could mitigate this attack as well as the verification of the prediction output of
the model would make it possible for legitimate participants to understand if it could leak
some information or not. On the other hand, differential privacy is shown to be ineffective.

3.3.2. Labels inference attacks

Label inference attacks’ goal is to generate both the samples and the associated labels
used during the training phase of the Federated Learning process.
Deep Leakage from Gradients - DLG - is an approach to this kind of attack, analyzed in
[50], where the adversary controls the central server, randomly generates a sample-label
couple and then computes the derived gradient on the used model; deploying an opti-
mization algorithm, the dummy sample-label pair can be iteratively tweaked to generate
a gradient as close as possible to the real one.
It is worth noting that this technique does not rely on any generative network. Moreover,
the paper proposes two defenses that are shown to be effective against it: gradient per-
turbation and gradient compression. The former adds noise to the gradients, while the
latter prunes all the gradients with small enough magnitudes.
An improvement over DLG, named iDLG, has been studied in [48]: an additional step
has been added to the algorithm above in order to produce better samples, allowing it
to first recover the ground-truth labels from the shared gradients and then to optimize
a random sample, as seen in the base version of the attack. This is proven not only to
be able to extract the exact label for every sample, which is a problem DLG faces, but
also to significantly reduce the mean square error on the tested datasets compared to the
previous attack.
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The adversary can take advantage of a GAN also in this kind of attack, as shown in [30],
where the attacker deploys two separate networks: a generative adversarial network to
generate images using the shared model as a discriminator and a simple fully-connected
layer to produce the labels associated to the considered samples. The generated couples
are then used to compute the gradients given the current global model and the whole ar-
chitecture is trained to minimize the distance between the fake gradients and the shared
ones. Based on the tests run by the authors of the paper, this technique can achieve
better results when compared to DLG and is also proven to be at least partially resilient
to the addition of noise to gradients shared by each client.

Taking into consideration specifically the vertical Federated Learning scenario, a two
phases attack is discussed in [15]. In the first phase, the inputs of the used model’s first
fully-connected layers are recovered and then, in the second step, they are used as a reg-
ularizer to improve the results of the optimization process, where random sample-label
couples are iteratively improved to reduce the reconstruction error. While this attack can
be defeated by clients uploading fake gradients as a defense mechanism, it is shown to be
more effective and provide better overall results compared to DLG and iDLG techniques
overcoming the batch limitation problem affecting other attacks.
Moreover, a gradient inversion technique adopting homomorphic encryption is discussed
in [19]: the adversarial party sets up an internal model aiming at guessing the labels by
training it to reduce the distance between the gradients computed from the generated
labels and the ones received during the Federated Learning process. This technique is
shown to be very effective even if the used gradients are batch-averaged, which is com-
monly associated with a greater security level; a defense technique, where the true labels
are transformed into fake ones using a so-called confusional autoencoder - CoAE -, is
proposed and proven to be effective against the studied attack.

3.3.3. Membership inference attacks

Membership inference attacks try to infer partial knowledge about clients’ private data in-
volved in the Federated Learning process, giving the adversarial the ability to tell whether
one or more samples were used during the training phase.
This category of attacks can take advantage of generative adversarial networks, as de-
scribed in [47], creating fake samples that have the same distribution as the ones in the
legitimate participants’ training datasets by using the aggregated model as a discrimina-
tor; this data is used to enrich the one the attacker has access to in order to train a binary
classification model. This is then used to infer the membership status of the samples
based on the label predicted by the global model.
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Thanks to the augmentation of the used data’s diversity, this attack is shown to be very
effective on the tested datasets and to keep a good accuracy even when the global model
is not overfitted - a characteristic that would make the attack easier.
A slightly richer technique is discussed in [14] where not only the adversary aims to un-
derstand if a given sample is part of one of the participants’ datasets, but will also try to
infer the specific client it belongs to. This is done by controlling the central server and
comparing the loss of every participant’s shared model on the sample of interest, assuming
that the smaller the loss, the higher the probability the sample took part in that specific
model’s training.
This attack has been proven to be more effective when the training datasets of the partic-
ipating clients are heterogeneous; it is worth noting that it can be successfully prevented
using differential privacy techniques.
Similar concepts are also expressed in [36], where membership inference in the machine
learning as a service scenario is discussed: the Federated Learning case is cited as the
most vulnerable one since the adversary is not limited to querying the model but can also
access the learning process as an insider.
A white-box approach is proposed in [26]: the gradients from different layers of the tar-
get model are processed separately and the extracted information is combined, allowing
the attacker to compute the membership status of the analyzed data samples through an
attack model, composed by feature extraction components followed by an encoder one.
Furthermore, an adversary can take advantage of a sequential learning setting, as de-
scribed in [28], where each client trains the model on a small subset of its training dataset
and then passes it to the next participant without the need for a central server; thanks to
the sequential learning setting, an attack model can be used to discriminate if a sample
belongs to the training set of a targeted client or not. It is trained using several shadow
models replicating a realistic behavior.
The assumption behind this concept is that similar models should behave similarly when
the considered data is similar. Therefore, the targeted model can be simulated using other
ones trained on datasets that are close to the ones used by legitimate clients; this clearly
requires the attacker to have access to realistic datasets. A possible way to defend against
this attack consists of adding random noise to the used samples or randomizing the order
of nodes in each training cycle, to reduce the amount of information that the adversarial
party can obtain.
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3.3.4. Properties inference attacks

Properties inference attacks are designed to infer some private information or patterns
about the datasets belonging to the clients involved in the training process.
In a black-box scenario, this kind of attack is possible following the technique described in
[4], where the adversary can interact with the global model using predefined queries and
submitting also some data samples to be used during the learning process. The basic idea
is to poison the model in such a way that its behavior depends on the average of the target
property; doing so makes the adversary able to infer the property of interest by simply
querying the model. This procedure has been developed considering training algorithms
that will output Bayes optimal classifiers, which is an assumption that in practice may
not always hold.
On the other hand, taking into consideration a white-box scenario, the attack analyzed in
[41] aims at recovering some properties of the used data with a passive technique: it uses
the intermediate output generated by the global model on the local datasets during each
iteration of the Federated Learning process to infer the correlation between the used data
and the embedding derived by the intermediate output using a meta-classifier model.
Three different properties inference attacks, built using supervised classification tasks, are
discussed in [38] with the goal of demonstrating that this kind of attack can be carried
out by adversaries that can only control one legal participant of the Federated Learning
process. It is worth noting that the described techniques do not require access to gradient
updates from individual clients but need some prior knowledge about the training process,
for example, the average number of labels owned by each participant.
The first one is a class sniffing attack, which allows the adversary to infer if a particular
class of training data has been used during the learning process. Then a quantity inference
attack is proposed to judge how many clients own data with a particular label. The last
one, denominated whole determination, allows the malicious participant to understand
the composition proportion of the labels present in the dataset used to train the global
model.
Considering the vertical Federated Learning scenario, in [9] it is explained how one of
the parties of a learning process implementing model splitting can exploit its local model
to infer the privately owned labels of another participant; this is possible thanks to the
fact that the updates shared by the global aggregator help the local models to learn a
good feature representation with respect to the labels and can therefore be used in the
attack by adding an inference head and tuning it in a semi-supervised manner. It is
also discussed how to implement an active attack where the adversary boosts its model’s
learning rate, tricking the server into relying more on its local model and indirectly gaining
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more information about the labels. Defenses like noisy gradients and gradient compression
are shown to be effective but, applied with the strength necessary to prevent the attack,
they will also degrade the global model’s performance.

3.3.5. Inference attacks SoK

In Table 3.1 the categorization of the analyzed inference attacks is presented; it highlights
how they are more heterogeneous compared to the other types of attacks: the only com-
mon features that can be underlined are that most of them are carried out during the
training phase and that in many cases it is required to have at least a partial knowledge
about the data owned by the participating devices.
Both the vertical and the horizontal Federated Learning scenarios are equally considered
and most of the proposed techniques operate passively, with only a minority of them
including an active phase to produce better results by making the model leak more infor-
mation. It may also be underlined how features and label inference attacks mainly operate
in a black-box scenario and at a server level, while membership and properties inference
ones mostly require white-box access to the model and are carried out by malicious clients.
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4| Discussion on future possible

directions of work

The analysis of the current state-of-the-art of adversarial attacks against Federated Learn-
ing systems highlights some possible promising directions that may be worth considering,
either to improve the current adversarial techniques or to create more secure systems.
What follows is a list of research paths that have not been explored in detail in the
analyzed papers.

• Most of the analyzed attacks take into consideration the horizontal Federated Learn-
ing scenario, while the vertical and transfer ones are not considered as much. In
particular, I think that attacks regarding the VFL setting can be further developed
considering its peculiarities: for example, they may take advantage of the fact that
the participants are much more likely to be selected at each training round com-
pared to normal HFL scenarios, removing the need of deploying boosting techniques
that can make the adversary easier to detect during the aggregation phase.
Moreover, it might be interesting to consider a scenario where one of the participants
in the learning process tries to implement a free-rider attack; given VFL systems’
structure and functioning, this may be a very difficult attack to carry out but, at
the same time, it may pose a serious threat for all those environments where the
created model has a high economical or strategical value.

• Decentralized Federated Learning attacks have not been studied as much as the
ones for systems that include a central server, probably due to their lower adoption
rate; it may be useful to analyze if the techniques proposed to tackle with the most
common Federated Learning settings can be applied or adapted to work with fully
decentralized systems, taking advantage of their specific characteristics.
This could be an interesting subject to delve into since this kind of paradigm can be
adopted by organizations that may prefer not to rely on a single central aggregator,
either because they need to handle very sensitive data or they want to leverage
low-latency communications to maintain a certain level of performance during the
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training phase. Tampering with this kind of process may produce huge damages to
such organizations.

• Free-rider attacks are less discussed even though they pose a serious threat to Fed-
erated Learning systems: if implemented correctly, they allow an adversarial party
to take possession of the produced global model which may have been trained using
valuable datasets or computing resources.
Also, the analyzed works do not discuss the possible benefits of a generative adver-
sarial network approach: for instance, an attacker could deploy a GAN to generate
samples, following the principles exposed in other works, that can be used to craft re-
alistic updates. From my intuition, this would reduce the possibility of being flagged
as a non-contributing client while also avoiding the degradation of the global model’s
performances and, therefore, it could be an interesting path to explore.

• Most of the studied inference attacks carried out at a server level are much more
effective and powerful than the ones taking into consideration a client adversarial
device. Since being in control of the central aggregator may be a very difficult
assumption to fulfill in real scenarios, where these parties are usually controlled by
organizations that may put in place robust defenses to create secure systems, it may
be worth exploring more powerful techniques deployed at a client level that may find
more practical applications.
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5| Comparison with other surveys

To understand the main advantages of this thesis, Table 5.1 provides a comparison with
similar works presented over the last few years, highlighting their main characteristics
and strengths. It is composed as follows:

• Brief description: a brief description of the analyzed survey, defining its main fea-
tures and structure.

• Introduction to FL: takes as possible values Brief, Partial and Complete based
on how complete the introduction to the Federated Learning framework and the
concepts needed to understand the rest of the survey is.

• Complete overview: checked if a complete overview of the possible attacks’ categories
is given and some attacks are considered for each one of them.

• Comparison: checked if different attacks are compared to each other using a table
or other methods to intuitively show their main differences.

• Weak points: checked if the attacks’ weak points are discussed.

• Datasets: checked if the datasets used in the analyzed works are mentioned.

It is possible to note how all the analyzed surveys lack at least one of the features described
above, leading to an incomplete overview of the state-of-the-art of adversarial attacks
against Federated Learning systems; moreover, many papers do not discuss free-rider
techniques, that represent an important threat in certain scenarios, and do not include
suggestions for future developments, which may be useful to summarize the weaknesses
found in the analyzed attacks and guide possible new studies.
Overall the biggest advantage of this thesis is the presence of a comparison table and the
complete analysis of the included works: these characteristics allow not only to understand
which are the main existing techniques and how they are implemented but also to compare
them against each other considering also the datasets used during their development.
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6| Conclusions and future works

Given the increasing interest in Federated Learning frameworks and their adoption in
contexts where hundreds of thousands of devices are involved, it’s crucial for the de-
signers of such systems to understand what are the most common security threats and
attack techniques they should consider to provide the highest possible level of security
and dependability. This thesis wants to be a starting point for such considerations, mak-
ing easily accessible the current state-of-the-art of adversarial attacks in the Federated
Learning scenario.
As a possible future development of my work, it may be worth refining the attacks’ anal-
yses proposed here, testing each one of the considered techniques against each other on
the same datasets to better understand their limitations, verify the reported performance
levels and compare them more effectively.
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