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Sommario

Mai come nell’ultimo anno l’uomo ha compreso l’importanza della ricerca in campo
medico. Molte malattie rare a causa della loro bassa incidenza non hanno ricevuto
una tecnologia adeguata e moderna a supporto, una di queste è il Mieloma Multiplo.
Questa patologia copre l’1 % di tutti i casi di tumore e per questo ancora oggi i medici
non dispongono di strumenti che possano facilitare e accelerare il processo di diagnosi
e follow-up .
L’obiettivo di questo studio è quello di proporre moderne metodologie di Image Pro-
cessing a supporto del medico per l’individuazione di decorsi su lesioni causate da
Mieloma Multiplo, queste lesioni infatti sono la caratteristica più efficace per valutare
il decorso della malattia così da guidare e sostenere il paziente in modo appropriato.
I punti cardine di questa tesi sono quindi lo sviluppo di algoritmi avanzati capaci di
semplificare il processo di diagnosi fino ad ora limitato dalla natura stessa dei processi
adottati, tali processi sono delle analisi effettuate dall’operatore su ogni sezione del
paziente visionando singolarmente ogni slice delle scansioni TC. Questo ovviamente
provoca un’enorme richiesta di tempo con un risultato comunque limitato dall’occhio
del medico e dal supporto visivo che adotta per il controllo delle TC. Gli algoritmi
proposti sono quindi in grado di aumentare le capacità della valutazione offrendo la
possibilità di identificare anche le più piccole variazioni altresì impossibili da notare
con le attuali metodiche anche per l’occhio del medico più esperto.
Gli algoritmi sviluppati sono due, l’algoritmo di sezionamento e l’algoritmo di allinea-
mento. Il primo ha un duplice scopo, quello di automatizzare il processo di selezione di
specifiche parti del corpo dalle scansioni TC totali così da essere applicate all’algoritmo
di allineamento e quello di supportare il processo di creazione di uno specifico set di
dati sul mieloma multiplo per una futura applicazione di algoritmi basati su deep
learning. Il secondo invece, l’algoritmo di allineamento, ha lo scopo di effettuare
un perfetto allineamento tra i volumi ossei ottenuti da scansioni TC appartenenti
allo stesso paziente ma effettuate in tempi diversi in modo da poterne effettuare il
confronto e fornire informazioni visive sullo sviluppo delle lesioni causate dal Mieloma
Multiplo. L’applicazione di questi algoritmi ha quindi confermato l’efficacia dei metodi
proposti, infatti è stato possibile realizzare un processo di sezionamento automatico in
grado di isolare volumi specifici in modo da poter essere forniti in input all’algoritmo
di allineamento e produrre dati in grado di indicare se si è verificato un decorso della
lesione e in che estensione.
Questi risultati pongono le basi per sviluppi futuri in quanto rappresentano sia un
risultato applicativo già performante ma anche strumenti finalizzati allo sviluppo di
un data set specifico da utilizzare per lo sviluppo di algoritmi automatici basati su
deep learning per futuri studi e applicazioni relative al Mieloma Multiplo.
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Abstract

The pivotal role of research in the medical field has been profoundly highlighted
by recent events. Many rare diseases due to their low incidence have not received
adequate and modern technology to support them, one of which is Multiple Myeloma.
This pathology covers 1% of all cancer cases and for this reason doctors still do not
have tools capable of facilitate and accelerate the diagnosis and follow-up process.
The aim of this study is to propose modern Image Processing methodologies to support
the physician for the identification of courses on lesions caused by Multiple Myeloma,
these lesions are in fact the most effective feature to evaluate the course of the disease
so as to guide and support the patient appropriately. The key points of this thesis are
therefore the development of advanced algorithms to simplify the diagnosis process
which has been limited until now by the nature of the processes adopted. These
processes consist in analysis carried out by the operator on each section of the patient,
viewing each slice of the CT scans individually. This obviously causes an enormous
investment of time with a result however limited by the doctor’s eye and by the visual
support he adopts for the control of CT scans. The proposed algorithms are therefore
able to increase the resolution of the evaluation allowing the possibility of spotting
even the smallest variations which could be impossible to notice with current methods
even by the eye of the most experienced doctor.
The method developed in this work could be split in two main contributions, the
sectioning algorithm and the alignment algorithm. The first has a dual purpose,
to automate the process of selecting specific body parts from total CT scans to be
applied to the alignment one and to support the process of creating a specific multiple
myeloma dataset for a future application of deep learning based algorithms. The
second algorithm, the alignment algorithm, has the purpose of making a perfect
alignment between the bone volumes obtained from CT scans belonging to the same
patient but carried out at different times in order to be able to compare them and
provide visual information on the development of the lesions caused by Multiple
Myeloma.
The application of these algorithms has therefore confirmed the effectiveness of the
proposed methods, in fact it has been possible to create an automatic sectioning
process capable of isolating specific bone volumes in order to be supplied as input
to the alignment algorithm. We have succeeded in producing data able to indicate
whether a course of the lesion has occurred and to what extent.
These results lay the foundations for future developments as they represent both an
already performing application result but also tools aimed at developing a specific data
set to be used for the development of automatic algorithms based on deep learning
for future studies and applications related to Multiple Myeloma.

vii





Contents

Acknowledgements iii

Sommario v

Abstract vii

Contents x

List of Figures xii

List of Tables xiii

1 Introduction 1
1.1 Introduction to Multiple Myeloma . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Types of Myeloma . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.2 Multiple Myeloma’s main causes . . . . . . . . . . . . . . . . . 6
1.1.3 Symptomatology . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.4 Diagnosis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.5 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 State of The Art 15
2.1 Main Methods of Biomedical Imaging . . . . . . . . . . . . . . . . . . 15

2.1.1 Computed Tomography . . . . . . . . . . . . . . . . . . . . . 15
2.1.2 Other Imaging Methods . . . . . . . . . . . . . . . . . . . . . 17

2.2 Co-Registration definition and base concepts . . . . . . . . . . . . . . 23
2.2.1 Algorithms for Images Co-registration . . . . . . . . . . . . . 24
2.2.2 Measurement of Similarity and Metrics for Co-registration . . 26
2.2.3 Transformation Classes for Co-registration . . . . . . . . . . . 28
2.2.4 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3 Methods 33
3.1 Data Analysis and Preprocessing . . . . . . . . . . . . . . . . . . . . 36

3.1.1 Data characteristics . . . . . . . . . . . . . . . . . . . . . . . . 36
3.2 Sectioning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.3 Alignment Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Results 57
4.1 Sectioning Algorithm Results . . . . . . . . . . . . . . . . . . . . . . 58
4.2 Alignment Algorithm Results . . . . . . . . . . . . . . . . . . . . . . 64

ix



Contents

4.2.1 Thresholding Volumes Approach . . . . . . . . . . . . . . . . . 64
4.2.2 Transformation Types Evaluation . . . . . . . . . . . . . . . . 66

4.3 Clinical case 1: Femur . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.4 Clinical case 2: Head . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Conclusions 77

Bibliography 82

x



List of Figures

Figure 1.1 Workflow of the actual process for assessing Multiple Myeloma
lesions course. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Figure 1.2 General process workflow proposed with this thesis work. . . . 3
Figure 1.3 Bone Marrow . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
Figure 1.4 Immoglobulin structure . . . . . . . . . . . . . . . . . . . . . . 6
Figure 1.5 3d view of the patient’s humerus with visible lesions . . . . . . 7
Figure 1.6 2d view from the z axis of the patient’s humerus with visible

lesions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 2.1 Examples of CT scan . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 2.2 CT Scan Example with different slices representing a 3d volume 17
Figure 2.3 Radiography Examples . . . . . . . . . . . . . . . . . . . . . . 18
Figure 2.4 PET brain image . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 2.5 Typical magnetic resonance images of the brain. From left to

right, it is respectively shown the axial, sagittal and coronal reconstruction 21
Figure 2.6 Image Registration . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 2.7 General Framework for Image Registration . . . . . . . . . . . 25
Figure 2.8 Rigid Transformation . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 2.9 Similarity Transformation . . . . . . . . . . . . . . . . . . . . 30
Figure 2.10 Affine Transformation . . . . . . . . . . . . . . . . . . . . . . 30

Figure 3.1 General workflow . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 3.2 Resampling of a Bone Volume . . . . . . . . . . . . . . . . . . 35
Figure 3.3 2019 data report of clinical case 1 . . . . . . . . . . . . . . . . 37
Figure 3.4 2020 data report of clinical case 1 . . . . . . . . . . . . . . . . 37
Figure 3.5 Results of the section algorithm applied to the femur. 1: Tem-

plate Volume, 2: Total Volume, 3: Algorithm Output Volume . . . . . 40
Figure 3.6 Human body proportion w.r.t. human head . . . . . . . . . . 41
Figure 3.7 Workflow of the Sectioning Algorithm . . . . . . . . . . . . . . 43
Figure 3.8 Volumes sectioned with the Sectioning Algorithm from a Total

volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Figure 3.9 Example of the Alignment Algorithm application . . . . . . . 46
Figure 3.10 Caption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 3.11 Difference between aligned volumes . . . . . . . . . . . . . . . 48
Figure 3.12 Workflow of the Aligning Algorithm, blue squares are the Vol-

umes or subvolumes, orange ovals are the Preprocessing step, green
part are the Registration step and the red part is the final Difference
Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xi



List of Figures

Figure 3.13 Section 1 and Section 2 with a tresholding applied to extract
the bone portion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 3.14 Difference Results with and without the application of the
Aligning Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 4.1 workflow for evaluating the accuracy of the Sectioning Algorithm 58
Figure 4.2 Example of voxel Labeling in the sectioning of the hip bone,

the red-tinted voxel are labeled as False Positive while the green-tinted
voxel are labeled as True Positive . . . . . . . . . . . . . . . . . . . . 59

Figure 4.3 Improvement of Sectioning Algorithm with a volume expansion 61
Figure 4.4 Example of Sectioning Algorithm with hip section. . . . . . . . 62
Figure 4.5 Example of Sectioning Algorithm with Rib Cage section. . . . 62
Figure 4.6 Thresholding Result. . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 4.7 Workflow to obtain results on the Thresholding method . . . . 65
Figure 4.8 Workflow for computing Ideal Results . . . . . . . . . . . . . . 66
Figure 4.9 Workflow for computing the Difference Volume with a Volume

expansion added in one of the input sections . . . . . . . . . . . . . . 67
Figure 4.10 Results of the different alignments between volumes based on

the Transformation Type. Left: Rigid ; Center: Affine; Right: Similarity. 68
Figure 4.11 Lesions presented in the 3d volume . . . . . . . . . . . . . . . 69
Figure 4.12 Lesions presented in the Coronal, Sagittal and Axial planes . . 70
Figure 4.13 Volumes sectioned . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 4.14 Final Difference of femur sections . . . . . . . . . . . . . . . . 71
Figure 4.15 Head Lesion reported in the blue circle . . . . . . . . . . . . . 72
Figure 4.16 Sectioned Frontal head volumes . . . . . . . . . . . . . . . . . 73
Figure 4.17 Difference of head sections in 3d volumes . . . . . . . . . . . . 74
Figure 4.18 Difference of head sections . . . . . . . . . . . . . . . . . . . . 75

xii



List of Tables

Table 3.1 Clinical Case 1 Volumes data . . . . . . . . . . . . . . . . . . . 38
Table 3.2 Clinical Case 2 Volumes data . . . . . . . . . . . . . . . . . . . 39
Table 3.3 Clinical Case 3 Volumes data . . . . . . . . . . . . . . . . . . . 39

Table 4.1 Sectioning Algorithm Results . . . . . . . . . . . . . . . . . . . 60
Table 4.2 Sectioning Algorithm Results with a 10% volume expansion . . 61
Table 4.3 Thresholding in Aligning algorithm Results . . . . . . . . . . . 66
Table 4.4 Results of Alignment with different Transf. Types with controlled

inputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 4.5 Results of Alignment with different Transf. Types with different

input Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

xiii





Chapter 1

Introduction

Nowadays, providing adequate technical support to medical personnel is a key point
for timely and effective diagnosis. The presence of specific tools is essential to facilitate
the process of diagnosis and control, tools that must be carefully modeled around the
needs of doctors and the nature of the medical condition to be studied.
At present, only the trained and experienced eye of a specialist doctor can be relied
upon to diagnose and monitor developments in patients with Multiple Myeloma. In
fact, for this specific condition, described in more detail in Chapter 1.1, there are no
specific tools as for other more common diseases and, unfortunately, problems can
still arise for which making visual assessments accurately can be difficult even for an
experienced doctor.
For a correct and in-depth diagnosis it is necessary to identify in the patient the bone
lesions typical of Multiple Myeloma, lesions ranging from a size comparable to 1 mm
to a larger area and which can affect substantial parts of the bone portion. Given the
nature of these lesions, it is very difficult for a doctor to locate and correctly evaluate
the evolution of these lesions over time, this comparison is a fundamental step to
evaluate the course of the disease.
The method currently used by doctors it is shown in Figure 1.1 where the blue squares
are the CT scans, in orange all the steps carried out by the doctor. It can be easily
see that this workflow is mainly based on operations performed manually by the
doctor himself, in fact the doctor after having acquired at different times two CT
scans belonging to the same patient must check the different bone sections in each
slice of the scan in search of lesions. Subsequently, the doctor has the task of reading
the lesions belonging to the same bone sections of two different scans, the comparison
must be performed in a meticulous way and relying only on the capabilities of the
doctor’s eye.
This process is obviously limited by several factors such as the experience and ability
of the doctor who operates on the scans, the resolution of the visual support adopted
and the size of the lesions that may be imperceptible to the human eye.
All these limitations are not only the cause of a final result that can be further
improved, but also are the cause of the doctor’s use of an enormous amount of time
due to the repetitiveness of the process especially in high resolution scans. Furthermore,
the process cannot be carried out by any doctor but only by specialized doctors with
years of experience.
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Chapter 1. Introduction

Figure 1.1. Workflow of the actual process for assessing Multiple Myeloma lesions course.

With these considerations, this thesis work was developed with the main purpose
of providing the physician with image processing tools that facilitate and speed up
the evaluation phases of the Multiple Myeloma course previously described.
These tools can be adopted by the physician to analyze and classify specific bone
portions thanks to advanced automatic algorithms, so that the physician has at his
disposal an easy-to-use tool capable of expanding and improving the capabilities and
results of a process hitherto limited by the current image viewing tool but also by the
manual nature of the method that must therefore be performed on each slice of each
scan by the operator himself.
The Figure 1.2 shows the workflow and methods proposed in this thesis work in order
to replace the current manual processes with advanced automatic processes so as to
cover all the necessary steps. The blue squares represent CT scans or sub-volumes of
them, the green ovals represents the automatic algorithms, the orange oval represent
the part involving directly the doctor, the red oval represent tha usage of deep learning
algorithms
Finally, an advantage in the application of the methods proposed in this thesis is the
creation of data sets to support the future development of artificial intelligence methods
based on deep learning. These applications can further improve the performance of the
diagnoses, artificial intelligence and machine learning algorithms are revolutionizing
and reinventing the world we know, including the medical field.
AI consists in the creation of intelligent behavior models on which a computer bases
automated actions that require minimal human intervention. The models are based
on algorithms able to self-learn and improve over time.
This “intelligent automation” allows to analyze data and make decisions very quickly,
which is crucial in the medical field, especially in emergency and urgent situations.
The advantages of AI applied to medicine are of interest not only to medical staff, but
also to patients. In fact, an efficient therapeutic model with three actors is introduced:
the medical staff (1) who manages the tools enhanced by Artificial Intelligence (2) to
assist and support the patient (3) along the path of therapy or treatment.
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Figure 1.2. General process workflow proposed with this thesis work.

Here’s how Artificial Intelligence optimizes healthcare:

• It allows doctors to save time and focus on the therapeutic process and patient
care;

• Improves prognosis thanks to early diagnosis and immediate medical intervention;

• Promotes more accurate diagnoses, based solely on data analysis;

• It allows you to insert robotics systems within complex procedures or operations;

• Reduces unnecessary hospitalizations and hospitalizations;

• Reduces treatment costs thanks to a greater accuracy of the therapeutic ap-
proach;

• It favors new discoveries in the medical field, as a result of the analysis of huge
amounts of data.

For the development of these advanced methods it is necessary to have a very large
labeled dataset available to train and test the models. The extension of the data set
is as important as the correct labeling, so the possible application of the developed
methods can play a key role as it automates all those steps that would otherwise have
to be done manually.
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Chapter 1. Introduction

1.1 Introduction to Multiple Myeloma
Myeloma, also known as Multiple Myeloma, is a type of bone marrow cancer that
originates from plasma cells, normally found in the bone marrow, which are cells that
are part of the immune system.
Multiple Myeloma is a disease that accounts for 1% of all cancers and about 10% of
hematological malignancies. It mainly affects adults and elderly people (average age
of onset 60 years). Normal plasma cells produce antibodies (or immunoglobins) to
help fight infections. In Myeloma, the abnormal plasma cells produce only one type of
antibody known as paraprotein (Monoclonal Component or Component M), which does
not perform any useful function, but whose dosage allows diagnosis and monitoring
of Myeloma. In addition to producing Component M, plasma cells release a large
amount of particular substances, called "cytokines", which through the stimulation or
blocking of different cells can cause bone destruction, interfere with the production
of bone marrow cells, including the production of red blood cells causing anemia,
promote the growth of plasma cells at the expense of surrounding healthy cells. The
bone marrow is the "spongy" material present in the central part of the largest bones
of the body (see Figure 1.3).

Figure 1.3. Bone Marrow

In addition to being the site of origin of plasma cells, the bone marrow is the center
for the production of blood cells (red blood cells, white blood cells and platelets).
In Myeloma, because the DNA of a plasma cell is damaged, it transforms into a
malignant or cancerous cell, known as a Myeloma cell. Unlike many cancers, Myeloma
does not form a mass. On the contrary, Myeloma cells multiply and spread within the
bone marrow. Myeloma affects parts of the body (hence the term Multiple Myeloma)
where the bone marrow is normally active in an adult, for example, in the bones of
the spine, skull, pelvis, rib cage, and areas around the shoulders and at the hips. The
areas usually not affected are the extremities: hands, feet and the most distal parts of
these. This aspect is very important as the functionality of these areas is preserved
intact. Most medical problems related to Myeloma are caused by the accumulation
of Myeloma cells in the bone marrow and the presence of paraprotein in the blood
or urine. Common symptoms that occur in a patient with Myeloma are: bone pain
(most often localized to the spine), bone fractures, fatigue (due to anemia), frequent
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1.1. Introduction to Multiple Myeloma

or recurrent infections (such as bacterial pneumonia, urinary tract infections and
herpes zoster), renal insufficiency (often asymptomatic, it is discovered with blood
tests without the patient presenting specific disorders) and hypercalcemia (which
can give the patient drowsiness, muscle weakness, changes in the heart rhythm and
constipation).
Some people may initially be diagnosed with MGUS (monoclonal gammapathy of
uncertain significance), a benign condition, before developing Myeloma. The term
indicates the presence of the abnormal protein (paraprotein) that is observed in the
case of Myeloma, but the absence of other characteristic signs of the disease (less than
10% of plasma cells in the bone marrow and no evidence of bone disease). The risk of
progression to active Myeloma from MGUS is very low: only 1% of patients for each
year of observation of the disease. Although Myeloma cells are in higher numbers,
between 10 and 30% of the total bone marrow, the growth rate can be very slow
and represent the condition of silent or asymptomatic Myeloma. Both pathologies
can change very slowly over the years and do not require any active treatment. It
is very important to establish the correct diagnosis, distinguishing MGUS and silent
Myeloma from active or symptomatic Myeloma, which instead requires therapeutic
intervention. In recent years, we have seen new developments in Myeloma therapies
and management that have significantly impacted how this disease is treated. Several
studies are underway to develop new treatments and use existing ones better and more
effectively. This guide illustrates and discusses many recently developed therapies
in addition to existing ones. In addition to the treatment prescribed by the doctor,
there are numerous measures that patients can take to improve the quality of life.

1.1.1 Types of Myeloma

Myeloma is often described as a disease that has individual characteristics, both in
terms of complications reported by patients and in the way they respond to therapies,
highlighting very significant differences. Some of these differences are due to the dif-
ferent types and subtypes of Myeloma. The diversity of Myeloma types and subtypes
depends on the type of immunoglobin (paraprotein) produced by Myeloma cells. Each
immunoglobin consists of a specific structure containing two main components: heavy
chains and light chains. Inside the aforementioned components there are two heavy
chains and two light chains (see Figure 1.4). There are five possible types of heavy
chains defined by the letters G, A, D E and M and two possible types of light chains
defined by the Greek letters kappa (κ) and lambda (λ).
Each individual immunoglobin (Ig) can only consist of one of the five possible types
of heavy chain and only from one of the two types of light chain.
Most people with Myeloma, around 65%, are suffering from IgG type Myeloma, that
is, Myeloma with immunoglobulin type G (one of five possible heavy chains) with
kappa or lambda light chain component.
The other most common type of Myeloma is IgA type Myeloma with kappa or lambda
light chains. Myelomas of type IgM, IgD and IgE are all quite rare. In addition to
producing complete immunoglobins, 30% of patients it also produces at the same time
isolated light chains (such as e.g. kappa light chains), detectable in urine or blood.
In about 20% of patients, Myeloma cells producelight chains only).
In this case we speak of “chain Myeloma light ”or“ Bence Jones ”(BJ).
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Chapter 1. Introduction

Figure 1.4. Immoglobulin structure

More rarely, in about 1-2% of cases, Myeloma cells produce very few or no im-
munoglobins at all; Yes therefore speaks of "non-secreting" Myeloma, making the
diagnosis and monitoring very difficult. However, thanks to a recently developed test
called the Freelite ™ test, it was possible to identify small amounts of light chains in
most urine patients traditionally referred to as "non-secreting" patients, thus making
diagnosis and monitoring easier. There are subtle differences between the different
types of Myeloma. Like predictably, IgG Myeloma, which is the most widespread
form, possesses all common features of Myeloma. On the other hand, sometimes the
IgA type can be characterized by tumors outside the bones, while the IgD type can
be accompanied by leukemia of the plasma cells and is more likely to cause kidney
damage. Light chain or Bence Jones Myelomas involve a more likely to cause kidney
damage and / or lead to deposits of light chains in the kidneys and / or nerves and
other organs, resulting in a condition known as amyloid or light chains.

1.1.2 Multiple Myeloma’s main causes

Although numerous studies have been conducted to identify possible causes of Myeloma,
to date there are still no certain demonstrations.
It is believed that exposure to certain chemicals, smoking, high levels of pesticides,
radiation, viruses and a weakened immune system (individual genetic trait), may be
potential causes or triggers of the disease. It is likely that the Myeloma develops when
a susceptible person has been exposed to one or more of the above factors. Since the
onset of Myeloma is more common in old age, it is believed that this susceptibility
may increase with the process of aging and consequent decrease in the functionality
of the immune system, or that Myeloma may be the result of a accumulation of toxic
insults or protracted antigenic exposures for long years.
Although unfamiliarity exists regarding the onset of Myeloma, the probability of it
occurring is very low and there are currently no tests available that can predict this.
Even when more than one case occurs in the same family of Myeloma, it is much
more likely that the phenomenon is attributable to exposure to environmental factors
rather than to the component hereditary.

6



1.1. Introduction to Multiple Myeloma

1.1.3 Symptomatology

All medical problems related to Multiple Myeloma are caused by formation of malignant
plasma cells and the monoclonal component. The consequences of this production
are both local effects within the bone marrow where Myeloma cells are located, both
extramedullary effects due to the M component, which is released into the circulation.
The damage caused is classified with the abbreviation "CRAB" which indicates:
Calcium, Renal, Anemia and Bone [1].
Myeloma cells release a whole series of cytokines which favor their adhesion at the
level of the medullary environment; moreover they interfere with the bone remodeling
process, where two types of cells that are normally in balance with each other
participate: osteoclasts (which promote bone resorption) and osteoblasts (which
instead produce constituents necessary for the formation of the bone matrix). The
Myeloma cells will alter this balance, in favour of the activity of osteoclasts to the
detriment of osteoblasts: what is obtained is bone damage with osteolytic lesions
Fig.1.5; the bones most affected are the ribs, the pelvis and the spine while the areas
that are usually not affected are the extremities i.e. the bones of the hands, feet, lower
regions of the arms and legs.

Figure 1.5. 3d view of the patient’s humerus with visible lesions

Therefore the bones become more fragile and can fracture even in the absence of
trauma or more frequently with minor trauma this is know us as a pathological
fracture. The bone destruction involves another consequence, the progressive loss of
the mineral portion of the bone resulting in a large amount of calcium released into
the blood causing hypercalcemia.

7



Chapter 1. Introduction

A third problem due to the presence of malignant cells in the bone marrow is the
reduction of the function of the bone marrow in producing blood cells, i.e. red blood
cells, white blood cells and platelets: consequences of a decreased production are:
anemia (decrease in red blood cells), leukopenia (decrease in white blood cells) and
thrombocytopenia (decrease in platelets). Moreover, the M component released by
Myeloma cells into the blood can reach the kidney, altering and reducing the filtration
capacity of the kidney: therefore the M component will pass into the urine forming
the so-called Bence-Jones proteinuria.
Despite the presence of these problems, Multiple Myeloma often remains asymptomatic
in the early stages and is perhaps discovered through a routine blood test showing
a higher concentration of protein; otherwise it manifests itself with some symptoms
which, however, are not specific symptoms that immediately link to the diagnosis of
this pathology: therefore it is often diagnosed at an advanced stage. Initially, the
first symptom that occurs in 70% of patients is bone pain especially in the lumbar
and dorsal spine or in the hips; in 30% of patients, bone pain is accompanied by
spontaneous pathological fractures (an example is vertebral compression fractures
which can cause decreased muscle strength and a sense of tingling and numbness in
the lower limbs, i.e. so-called paresthesias) [2].
The deficiency in the production of blood cells manifests itself in different ways: anemia
is generally associated with a feeling of general sickness (tiredness and weakness) with
lacking of breath and dizziness; thrombocytopenia is manifested by serious bleeding
following small cuts, scrapes or bruises or with abnormal bleeding (from the nose or
gums); leukopenia and the lack of functional antibodies capable of protecting our
body from pathogens, manifests itself with an increased risk of infections and there is
a greater manifestation of repeated colds, cough, bladder and kidney infection, the
appearance herpes zoster and pneumonia.
Hypercalcemia is partially responsible for kidney damage, plus it can break the normal
balance between electrolytes, with negative consequences both in the brain (mental
confusion and difficulty in thinking) and in other organs, causing nausea, loss of
appetite, dehydration, fatigue, weakness. Kidney damage can occur immediately, but
very often it appears in further stages, during the progression of the disease, due to
the accumulation of the monoclonal component in the blood and calcium released
from the bones: thus there is a slower circulation, mental confusion and a decreased
filtration capacity; if the M protein is able to pass the renal filter it can accumulate in
the urine, leading to an increased concentration of protein in the urine (Bence-Jones
proteinuria). Other type of changes are fever (as an initial symptom, but it is rare),
venous thrombosis induced by a hyperviscosity of the blood or blood hyperviscosity
syndrome (caused by an excess of monoclonal component in the blood) and peripheral
neuropathy (the most frequent the carpal tunnel).

1.1.4 Diagnosis

Diagnosing Multiple Myeloma is not an easy task, precisely because many patients
have no symptoms up to an advanced stage or present only generic symptoms which
could be caused by other diseases. However, in an elderly patient with low back
pain or bone pain, associated with fatigue and weakness, present for several weeks
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Figure 1.6. 2d view from the z axis of the patient’s humerus with visible lesions

despite symptomatic painkilling treatment, he must prompt the doctor to undertake
diagnostic evaluations to check for the presence of more serious diseases including
Multiple Myeloma [2]. Therefore, the doctor first of all carries out to the patient
classical primary tests, i.e. blood tests and urinalysis in order to check the general
state of health and renal functioning: on the blood sample CBC (Complete Blood
Count) and blood chemistry tests (important for assessing creatinine, albumin and
calcium levels) are required. Subsequently, more specific tests are required to verify
the presence of the monoclonal protein of Myeloma: electrophoresis of serum and
urinary proteins is done to evaluate the amount of Myeloma proteins present, followed
by an immunofixation test to demonstrate the exact type of altered immunoglobulin .
In the blood sample is also searched the presence of Beta-2-microglobulin, a protein
produced by the malignant cells of Myeloma: this in itself it does not cause particular
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problems, but calculating the quantity is useful for evaluating how advanced the
cancer is; the level of this protein is therefore a tumor marker and gives clues to
the aggressiveness of the tumor. If these tests reveal the presence of the monoclonal
component in high quantities (greater than 3 g / dl), it is necessary to take a small
sample of bone marrow blood (bone marrow aspirate) and a bone fragment to be
biopsied: for the collection, a local anesthesia is administered through the skin above
the sampling point (sternum or iliac bone). [2]. The samples will be analyzed to
determine the number of malignant plasma cells within the bone marrow: in Multiple
Myeloma the percentage of plasma cells exceeds 30% in the bone marrow.
Other tests can then be performed on the bone marrow sample [3]:

• Immunohistochemistry: technique that uses special antibodies that attack only
a specific type of cell; their binding causes color changes, which can be observed
under a microscope: this test is useful for finding and identifying the types of
Myeloma cells.

• Flow cytometry: test similar to immunohistochemistry, which allows to identify
the presence of abnormal cells and to identify their type. Special antibodies
are used which will bind to cells only if a certain substance is present on the
surface of these cells; these cells are passed in front of a laser beam and if the
cells are bound by antibodies, the laser will cause them to emit a light that can
be analyzed and measured by a computer.

• Cytogenetic examination: this test allows doctors to evaluate changes in the
chromosomal structure in Myeloma cells, compared to normal bone marrow
cells: the sample is observed under a microscope to verify these changes such
as translocations, deletions, etc. Finding these alterations can help to estimate
the patient’s prognosis. The results of this test do they get it after 2-3 weeks
because the cells have to grow on plates in the lab for a couple of weeks so they
are ready to be analyzed.

• FISH (Fluorescent In Situ Hybridization): technique similar to cytogenetic
examination and fluorescent dyes are used that attack only specific parts of
chromosomes. It is a technique that can find even smaller chromosomal changes,
so it is a more accurate test, plus the results are obtained in a few days because
growth in the laboratory is not necessary.

• Imaging tests and documentation: with this kind of information it is possible to
assess the presence, severity and location of bone lesions:

1. X-ray of the skeleton: This exam mainly involves x-rays of the skull, spine,
humerus, ribs, femur and pelvis (i.e. the bones most frequently affected
by injuries and fractures). Bone damage appears in the form of "spots" or
"holes"; it is not immediately visible in all patients, but can be observed
after a 50% loss of bone.

2. Magnetic Resonance: technique that allows us to obtain a more detailed
image than radiography; it is used when x-rays show no lesions but the
patient still has bone pain. It therefore serves to reveal the presence and
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distribution of the disease in the bone marrow and, in addition, it can be
useful when spinal compression is suspected.

3. Computed tomography (also commonly called CT): used when the x-rays
are negative or to obtain more detailed images. Instead of obtaining a
single image, as in radiography, with the CT scan multiple figures of the
part of the body being analyzed are obtained. All these ’slices’ will be
combined into a single 3d-image so as to have a more detailed evaluation.
The CT scan can also be useful to perform a biopsy and therefore identify
the precise point where to perform it.

4. Positron Emission Tomography (PET): more sensitive diagnostic technique
for evaluating the interior of the organism; it is not a standard exam, but
is used for patient staging and follow-up.

All these imaging techniques are essential for the doctor who will be able to
accurately assess the location and extent of bone damage caused by Multiple
Myeloma

Among all the methodologies for Multiple Myeloma diagnosis, the visual one through
the use of a CT scan it is currently the most effective and therefore the most important.
In fact, the presence of bone lesions is a characteristic symptom of the disease while
other data that can be evaluated by other types of analyzes may be caused by other
pathologies.
The method currently used to diagnose Multiple Myeloma, is mainly based on op-
erations performed manually on CT scans, this Biomedical Imaging method ranks
as one of the top five medical developments in the last 50 years, according to most
medical surveys. CT has proven so valuable as a medical diagnostic tool that the 1979
Nobel Prize in Medicine was awarded to the inventors. Both CT and conventional
x-rays take pictures of internal body structures. In conventional x-rays, the structures
overlap. For example, the ribs overlay the lung and heart. In an x-ray, structures
of medical concern are often obscured by other organs or bones, making diagnosis
difficult. In a CT image, overlapping structures are eliminated, making the internal
anatomy more apparent.
During CT imaging, an x-ray tube rotates around the patient so that multiple images
are collected from many angles. These images are stored in a computer that analyzes
them to create a new image with the overlying structures removed. CT images allow
radiologists and other physicians to identify internal structures and see their shape,
size, density, and texture. This detailed information can be used to determine if there
is a medical problem, provide the extent and exact location of the problem, and reveal
other important details that can help the physician determine the best treatment.
The images may also show if no abnormality is present. A CT scan that shows no
abnormality still provides useful data.
The information aids the health care provider by focusing attention away from unnec-
essary medical concerns. Modern CT scanners acquire this information in seconds,
sometimes in fractions of a second, depending on the examination. Benefits of CT in-
clude more effective medical management by determining when surgeries are necessary,
reducing the need for exploratory surgeries, improving cancer diagnosis and treatment
reducing the length of hospitalizations, guiding treatment of common conditions such

11



Chapter 1. Introduction

as injury, cardiac disease and stroke improving patient placement into appropriate
areas of care, such as intensive care units.
CT scanning provides medical information that is different from other imaging exami-
nations, such as ultrasound, MRI, SPECT, PET or nuclear medicine. Each imaging
technique has advantages and limitations. The principal advantages of CT are its
abilities to rapidly acquire images, provide clear and specific information, image a
small portion or all the body during the same examination.
No other imaging procedure combines these advantages into a single session.
To assess Multiple Myeloma lesions nowadays doctors must check each slice of the
CT scan for each boy part in search of lesions. Subsequently, in follow-up phases, the
doctor has the task of checking new CT scans of the patient carried out after one or
more years. In these phases, after having identified the lesions previously noted in the
medical report, the physician must visually compare each lesion slice by slice to assess
whether these have undergone changes with consequent extension of bone absorption.
This process is obviously limited by several factors such as the experience and ability
of the doctor who operates on the scans, the resolution of the visual support adopted
and the size of the lesions that may be imperceptible to the human eye.
Another limitation that arises with current methods is due to the machinery used
by the doctor and its ordinary replacement, in fact many institutes update their
machinery frequently and this does not only involve a difficulty due to the fact that
the doctor must learn the use of a new machine, but also and above all by the fact
that the output provided by the machine has different characteristics as regards the
display support. Current machines to perform CT scans offer different views of the
acquired data in terms of image processing of the data, these differences are of great
impact for the visual evaluation of the doctor who, when replacing the machine used
for a long period, must retrain the their ability to search for lesions by adapting to
the characteristics of the new support.
Furthermore, the possibility of evaluating the lesions with advanced algorithms, ca-
pable of discerning even the smallest spatial characteristics, and the ability to check
the evolution of these lesions is a game changer feature as it could help the doctor to
find lesions that would be impossible to find with the naked eye in diagnosis process
which is a crucial moment.
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1.1.5 Thesis Structure

• Chapter 2 reports the State of the Art of biomedical imaging methods as
well as the state of the art of the algorithms used.

• Chapter 3 introduces and describes the developedMethods. In the initial part
of this chapter, section 3.1, data analysis and adopted preprocessing are described
starting from data provided by the National Cancer Institute (INT) which were
analyzed and its structure and specific format of the biomedical imaging file
were studied. Then the main methods developed are discussed, these are the
Sectioning Algorithm and the Alignment Algorithm. The Sectioning Algorithm
3.2 is a method which has the the goal of identifying and extracting specific parts
of the body from a general volume. The Alignment Algorithm, presented in
section 3.3 is an algorithm whose goal is that of aligning two volumes extracted
by the Sectioning Algorithm containing the same bone portions acquired from
different scans obtained in different periods in order to compare them and
highlight their difference.

• Chapter 4 reports the most significant Results on various use cases developed
of the previously mentioned methods.

• Chapter 5 reports the Conclusions of this work and potential paths for future
works are described.
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Chapter 2

State of The Art

2.1 Main Methods of Biomedical Imaging
In recent years there has been a real explosion of new acquisition techniques of images
representing the most diverse aspects of human anantomy and possible pathologies
connected to them. Each type of acquisition is referred to as “Imaging Methods” .
Some modalities have become in common use and their impact on clinical practice
and diagnostic has been extensively validated.
For others, however, it cannot yet be considered completed the phase of clinical/diag-
nostic validation, other than the development of algorithms that make the information
acquired or produced on a large scale more easily accessible visually, or scale at low
cost so that most medical facilities can have access to this technology.
Generally, the methods for acquiring medical images can be divided in two main cate-
gories: on the one hand there are structural images (anatomical imaging) characterized
by High Resolution (think, for example, Computed Tomography (CT) and Magnetic
Resonance Imaging (MR)) and used to describe anatomical morphology. On the other
hand there are the functional images, with Low Resolution (PET, SPECT or fMRI), to
study the metabolic functionality associated with anatomical structures. Biomedical
imaging provides non-invasive diagnostic means, which provide information on the
internal parts of the bodies. Theirs functioning is based on the different behavior of
the atoms, contained in the bodies, when they are subjected to external stresses, or
rather when they absorb energy. Among the imaging modalities on which the research
activity is focusing in medical image analysis there are the following.

2.1.1 Computed Tomography

Computed tomography (CT) was the first fully digital imaging technique.
In the early 1970s, Godfrey N. Hounsfield designed and built the first CT device,
revolutionizing medical diagnostics. He was awarded the Nobel Prize for Medicine in
1979, with Allan M. Cormack, who in previous years had defined the theoretical basis
for the reconstruction of tomographic images. CT is also referred to as CT (Computed
Axial Tomography) as it produces images of transverse or axial layers of the body.
The CT device is equipped with an X-ray tube that rotates around the patient emitting
X-rays which, after passing through the body, are intercepted by solid or gas-state
detectors (detectors). In this way, multiple projections of sections of the body are
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obtained, i.e. X-ray attenuation data from different points of view.
Like radiography, CT obtains transmission images. However, unlike radiography, CT
obtains measurements of tissue densities and, thanks to the tomographic representation
and greater contrast, highlights structures not visible on radiography. The CT image
is reconstructed with mathematical algorithms that require complex calculations that
can be quickly achieved only by a computer. The reconstruction algorithms are of the
iterative or analytical type. The former calculate the densities of the voxels with a
series of hypotheses and checks of the values based on the measured data: the higher
the number of iterations (repetitions), the more accurate the calculations. An iterative
algorithm was used by the first CT apparatus; subsequently, the fastest analytical
algorithms based on the preliminary processing of the acquired data were introduced,
followed by the rear projection in the final image (FBP, Filtered back projection).

Figure 2.1. Examples of CT scan

CT apparatuses were progressively equipped with more advanced X-ray tubes and
more numerous and efficient detectors. At the beginning of the nineties, the first CT
devices with helical scanning (helical spiral CT) were introduced, which allow the
acquisition of data during a continuous rotation of the X-ray tube-detector complex,
with simultaneous advancement of the patient bed. The examination time has been
significantly reduced with multisection (multilayer) spiral CT, which can now acquire
up to 256 data sets (i.e. body layers) simultaneously.
Today, the study of the whole body of an adult can be performed in less than a
minute, while a CT study of the skull alone with the first CT devices required more
than an hour. The reduction of the dimensions of the detectors allows to obtain thin
layers and above all voxels of cubic shape (i.e.of equal dimensions in all directions,
isotropic voxels). This allows for spectacular three-dimensional reconstructions. The
extraordinary 3D anatomical representation of skeletal structures, heart (cardio-CT)
and vascular structures (angio-CT) is of considerable impact in multisection CT. CT
data, as well as for diagnostic purposes, are useful for planning surgical therapy and
radiotherapy.
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Figure 2.2. CT Scan Example with different slices representing a 3d volume

2.1.2 Other Imaging Methods

Radiodiagnostics (radiography and radioscopy)

Radiography is the two-dimensional representation of a structure crossed by X-rays,
some of which are stopped or deflected (attenuated). The denser and thicker the
structure, the more likely the rays are attenuated. The X-rays that pass through the
body intercepting a sensitive target determine the formation of an image, which reflects
the density and thickness of the structures under examination. In the conventional
radiographic technique the X-ray target is a photographic film placed in a container
(radiographic cassette) which protects it from exposure to light and which contains
reinforcement screens, fluorescent panels capable of enhancing the effect of the rays
by reducing their quantity. needed to produce the image.
The visualization of radiographic images on film requires a chemical treatment (devel-
opment) similar to the photographic one, after which the denser structures, such as
bones, are displayed in white / light gray, while those less dense, which contain air
such as lungs, have dark shades. After development, the no longer editable image can
be analyzed on a backlit surface (diaphanoscope or negativoscope).
In the radioscopic technique, the X-ray target is a screen of fluorescent material which
gives real-time images of the structures under examination. Radioscopy is used, among
other things, to identify the areas on which to perform radiographs, to guide the
execution of biopsies and the placement of catheters, to monitor surgical interventions,
and also to evaluate the functionality of the digestive tract.
Radiography and radioscopy visualize structures that contain high (bone) or low
density (air / gas) materials well, but are not very effective for the study of soft
tissue of intermediate density. But the natural ability of body structures to attenuate
X-rays can be increased or decreased by administering high and / or low density
materials (contrast media or contrast medium). These materials, to the development
of which pharmaceutical research has made a great contribution, help to visualize
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Figure 2.3. Radiography Examples

structures that are not directly or at all visible and are used above all to study blood
vessels (with the investigation called angiography), the urinary and digestive systems.
. Contrast media with different chemical characteristics are routinely used to increase
diagnostic information also in CT and MRI and, less frequently, in ultrasound.
In the last twenty years, computer advances and the development of new materials
sensitive to X-rays have allowed the birth and diffusion of digital radiology, which
is achieved with approaches essentially attributable to two categories: Computed
radiography (CR) and Direct digital radiography ( GDR).
CR with photo-stimulable phosphor computed radiography (PPCR) that capture
X-ray energy and can be analyzed with light radiation, has been widely used, as it
uses devices that can be incorporated into containers similar to radiographic cas-
settes traditional. CR can therefore be performed with all conventional radiographic
equipment. DDR more expensive but faster than PPCR, uses panels of selenium or
amorphous silicon, integrated into the X-ray table and connected to a reading device
that allows immediate transmission of data to monitors and PACS.
Digital radiology has biological and environmental advantages, as: (a) it reduces
the cases that require repetition of the examination and, consequently, decreases the
overall dose of rays to patients; (b) eliminates the chemical treatment procedures of
the films and the consequent production of toxic waste. Digital images are typically
studied on monitors where they can be processed and analyzed in detail.

Densitometry (computerized bone mineralometry)

Densitometry (DXA, Dual energy X-ray absorptiometry) is the radiographic derivation
technique that allows you to measure the mineral content of the body. By measuring
the absorption of X-rays of two different energies, it is in fact possible to obtain data
such as: (a) BMC (Bone mineral content); (b) BMD (Bone mineral density); (c) fat
mass and lean body mass. The examination, which is performed on the whole body
or on body segments (limbs, spine), is indicated for the diagnosis of osteoporosis and
osteopenia. Osteoporosis is more common in postmenopausal women and involves
an increased risk of fractures. Due to the possibility of measuring fat and lean
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mass, densitometry can also be used to monitor dysmetabolic diseases diet programs
in particular situations (eg, anorexia, obesity). Even with CT, if the X-ray tube
can produce X-rays of two different energies, it is possible to perform bone density
measurements (usually limited to the vertebrae).

Nuclear Medicine

Nuclear medicine studies the diagnostic (imaging and laboratory) and therapeutic
(metabolic radiotherapy) applications of radioactive atoms (radionuclides). The funda-
mentals of the discipline are linked to the discovery of radioactivity and the production
of artificial radionuclides with particle accelerators such as the cyclotron (built in 1931
by Ernest O. Lawrence).
In nuclear medical imaging, molecules defined as radiopharmaceuticals (without any
pharmacological effects), labeled with γ-ray emitting radionuclides, are administered
(usually intravenously). Then, with equipment such as γ cameras, images of the
distribution of radiopharmaceuticals that reflect biological functions are obtained.
The nuclear-medical image is of the emissive type because the patient is the source of
the signal. The γ rays are detected by scintillation detectors consisting of NaI [Tl]
(sodium iodide with thallium impurities) or other materials capable of emitting flashes
of light (scintillations) when they intercept the γ rays. The name scintigraphy for
nuclear-medical investigations derives from the scintillations.
Different organs and functions are studied with different radiopharmaceuticals. For
thyroid scintigraphy that produces iodinated hormones, for example, it is possi-
ble to administer radioactive iodine or other radioactive anions such as 99mTcO4
(pertechnetate) that can be taken up by thyroid cells. With the aid of computers,
scintigraphic examinations can measure tissue functions, based on the knowledge of
the biodistribution mechanism of the radiopharmaceutical used and the availability of
a mathematical model that describes its distribution. The radiopharmaceuticals used
in quantitative functional analyzes are defined tracers (of biological functions) and the
set of knowledge underlying the quantitative studies is the theory of tracers. Among
the most widespread quantitative analyzes in clinical practice are the measurement
of glomerular filtration and renal plasma flow with renal scintigraphy and the mea-
surement of cardiac output and the ejection fraction of the left heart ventricle, with
angiocardioscintigraphy. Functional data can be presented as parametric images, in
which the grayscale or color scale displays the different levels of the studied parameter.
Example of a parametric image is the phase map of cardiac contraction obtained
with angiocardioscintigraphy, in which the heart walls that contract synchronously
(in phase) are displayed with the same color, while the areas that do not move in
synchrony (dyskinetic or akinetic) have a different color. In nuclear medical imaging,
radionuclides are used with short radioactivity halving times (usually minutes or
hours). The 99mTc (Metastable Technetium99, γ-ray emitter) and the 18F (Fluorine-
18) positron emitter are the most used.
The main instrumental evolution of nuclear-medical imaging has been the development
of tomographic techniques (SPECT and PET). SPECT uses the radionuclides used
in traditional scintigraphy (such as 99mTc), and ad hoc devices or, more often, rotating
gamma cameras, which can acquire data from different points of view, necessary for
the reconstruction of tomographic images. PET, on the other hand, uses positron-
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emitting radionuclides (positively charged particles which, interacting with electrons
in a process called annihilation, transform into pairs of γ rays) and devices with a
similar appearance and size to those of CT, equipped with surround the part of the
body under examination.

Figure 2.4. PET brain image

Positron-emitting radionuclides decay rapidly and are usually produced by cyclotrons
placed near the PET device. PET is a relatively complex and expensive technology
that allows accurate measurements of tissue radioactivity, and is the most powerful
molecular imaging technique today.
PET investigations have wide application in oncology for biological characterization,
staging (extent assessment) and tumor monitoring. A glucose analogue radiophar-
maceutical, [18F] -fluorodeoxyglucose (FDG) is mainly used in these tests. Since
malignant tumor cells uptake more glucose than normal ones, PET-FDG studies
highlight tumors that uptake more glucose in proportion to their malignancy and can
evaluate the effectiveness of ongoing therapies, which is generally associated with a
reduction in accumulation of glucose.
The consumption of glucose is only one of the evaluable functions. Blood flow, protein
and lipid metabolism, oxygen consumption, DNA synthesis are studied with other
radiopharmaceuticals; molecular markers (antigens, receptors) can also be identified
and neurotransmission processes examined. Furthermore, PET can be used in phar-
maceutical and preclinical research to study the body distribution and functional
effects of new drugs, and advanced gene therapy applications.
PET has also clinical use in cardiology for the study of ischemic heart disease and in
neurology, for the characterization of neurodegenerative diseases, such as Alzheimer’s
and Parkinson’s, and for epilepsy.
An important technological advance has been the development of hybrid devices
in which PET and SPECT are integrated with CT systems; it is thus possible to
perform CT and functional SPECT or PET morphological examinations in the same
session, accurately locating the functional activities investigated with SPECT and
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PET. Hybrid PET-MRI appliances are also in advanced development.

Magnetic Resonance Imaging (MRI)

The phenomenon of nuclear magnetic resonance (NMR, Nuclear magnetic resonance)
discovered in 1944 by Felix Bloch and Edward M. Purcell (Nobel Prize winners
in Physics in 1952) is the basis of one of the major advances in imaging since the
discovery of X-rays . NMR occurs only in the presence of high intensity magnetic fields
(thousands of times higher than Earth’s), in atomic nuclei with odd number of protons
and / or neutrons. Different nuclei have different resonance frequencies, according to
the Larmor equation: ω = γH0 where ω is the resonant angular frequency, H0 is the
intensity of the magnetic field and γ is the gyromagnetic ratio, a constant characteristic
of each nucleus. Resonance (nuclear excitation) is obtained with oscillating magnetic
fields, created by electrical circuits (coils), at the resonant frequency of the nuclei to
be studied, and is characterized by minimal variations in nuclear energy levels that do
not cause molecular modifications. The techniques based on this phenomenon are non-
invasive for biological structures and do not expose the patient to ionizing radiation.
Magnetic resonance imaging (MRI) devices use superconducting or permanent magnets
and, to obtain images, excite the nuclei of the hydrogen atoms of water molecules, the
most abundant chemical species in the body. Once the excitation is over, the nuclei
relax, releasing the acquired energy, inducing weak electric currents in the device
circuits whose analysis allows the reconstruction of the images. For the localization
(spatial coding) of the signal, circuits (gradients) are used, which gradually vary the
intensity of the main field so that the voxels have slightly different resonant frequencies.
With MRI scans are obtained in all possible spatial directions, without changing the
patient’s position and it is possible to acquire data in 3D mode.

Figure 2.5. Typical magnetic resonance images of the brain. From left to right, it is
respectively shown the axial, sagittal and coronal reconstruction
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Several physical phenomena influence the relaxation of nuclei and the resulting
signal. In MRI images can be created weighted on different parameters, such as T1
relaxation time (spin-lattice), T2 relaxation time (spin-spin), proton density, magnetic
susceptibility and molecular diffusion (Brownian motions) . The MRI signal is also
influenced by blood flow, the presence of ferromagnetic materials, and changes in
the vascular concentration of oxy- and deoxyhemoglobin which can act as markers
of tissue perfusion. The analysis of diffusion and perfusion phenomena allows the
study of functional aspects especially in the nervous system (fMRI, functional MRI)
for research applications in cognitive neuroscience, and for diagnostic use in neurology
and psychiatry.
Since the introduction of the first commercial devices in the 1980s, the applications
of MRI have continually increased. With the improvement of hardware (magnets
with higher fields, better circuits, faster computers) and software (pulse sequences,
data processing), high-detail images of all anatomical structures are obtained, with
excellent results for the system central nervous system and the musculoskeletal system
but also for the heart and abdominal organs. The high contrast and multiparametric
characteristics are very useful for tissue classification procedures, necessary for mea-
suring the volumes of normal and pathological structures (morphometry).
In research and diagnostic applications, MR spectroscopy (MRS, Magnetic resonance
spectroscopy), used in chemistry well before the introduction of MR imaging, also
plays an important role. Chemical analyzes with MRS are possible because each
nucleus has a slightly different resonance frequency depending on the shielding of
the main magnetic field by the surrounding electrons; therefore nuclei of the same
atom in different molecular positions have slightly different resonance frequencies.
By processing MRS data it is possible to create spectra whose peaks correspond to
specific molecules. MRS can be applied to stable nuclei of biological interest (1H, 31P,
13C, 19F) and, with high intensity magnets, can contribute to the in vivo molecular
characterization of various diseases - in particular tumors and diseases of the nervous
system. central - forming an integral part of molecular imaging.
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2.2 Co-Registration definition and base concepts
Both Sectioning Algorithm and Alignment Algorithm further discussed in Chapter 3
are based on the co-registration process. The term image co-registration refers to the
process of estimating a optimal spatial transformation that allows to superimpose two
or more images of the same scene taken at different times, from different points of
view or with different sensors [4].
In other words, the goal of a co-registration algorithm is to determine the spatial
transformation which maps the points of an image to the corresponding points of the
image we want co-register as schematically shown in Figure 2.6.
In the context of Computational Vision, co-registration is a widely used technique
used for many applications including, for example, creating panoramic images [5],
remote sensing [6], microscopy [7], robotics [8] and, obviously, the medical imaging
area. In general, beyond the specific objective pursued in the particular application,

Figure 2.6. Image Registration

it is possible to group the different co-registration algorithms according to how they
capture the input images.
Therefore, we have optimized algorithms to work on pairs of images depicting the
same scene but acquired:

• from different points of view (multi-view analysis)

• at different times (multi-temporal analysis)

• through different types of sensors (multi-modal analysis)

Finally, it is important to remember a fourth category, in which we try to co-register
an image with a synthetic model (atlas-based analysis).
For the diversity of the images to be co-registered and for the multiple situations
where co-registration is required, there is no (and probably cannot be) a universal
method applicable at all circumstances. What we have witnessed, therefore, is the
affirmation of different methods, each of which proved to be efficient in a specific area.
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Such methods differ in some fundamental architectural and algorithmic choices.
For example, a first distinctive element concerns the type of geometric deformation
between the images that we try to estimate; other elements are the similarity measure
used to determine how much close to the expected result, the interpolation technique
to assign a value to the image pixels which, following the transformation, do not
appear to belong to the bi or three-dimensional output image grid. Finally, the choice
of the method of exploration of the parameter space during the estimation of the
optimal ones(which is associated with the desired co-registration transformation) is
crucial.
In order to find one’s way within this possible infinite range of solutions, the following
breakdown it has become standard into distinct sub-problems of co-registration:

• Estimate of the transformation

• Measure of the distance (called metric) between images

• Interpolation

• Optimization

All co-registration algorithms are distinguished from each other by the particular
solution used to solve the four previous sub-problems. These choices are made basing
on the particular mode of acquisition of the pair of images, the type of noise e the
desired accuracy in estimating the optimal transformation.
To properly summarize the previous subdivision, the algorithmic flow of a generic
co-registration method is represented schematically in Figure 2.7. The literature refers
to the two input images to be co-registered as a reference image (the one between the
two that remains fixed) and template image (i.e. the one on which the transformation
is applied). This task can be deal both with bidimensional data (images) or three
dimensional data (volumes/voxels). In Figure 2.7, the Transformation block represents
the transformation of the points from space of the fixed image to that of the movable
image. Metrics is a measure which quantify how well the reference image is aligned
with the transformed template image. This measure is the quantitative criterion
used for the Space Optimization procedure search defined by the parameters of the
transformation.
Finally, Interpolation is used to evaluate the intensity of the points of the moving
image in the off-grid points. In the light of this algorithmic schematization, it is
immediately clear that co-registration is ultimately an optimization problem whose
goal is to find the spatial mapping by which the template image is transformed until
it is aligned with that fixed one.

2.2.1 Algorithms for Images Co-registration

One of the most used criteria for the classification of co-registration methods refers to
the method in which the two input images are compared [9]. From this point of view,
it is possible to identify four main categories of algorithms.

• Manual co-registration. In this context, the user (for example a radiologist)
is requested to align images visually using image processing software tools
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Figure 2.7. General Framework for Image Registration

with a particularly sophisticated graphic interface to the point of allowing
easy data manipulation. Many medical applications (see e.g. [10]) provide the
means for manual co-registration to align several types of images. This type
of co-registration, however, has important limitations. Among these, the most
important concerns accuracy, which depends on judgment and experience of the
user as, in general, different users get different results.

• Landmark-based co-registration. Co-registration based on landmarks (i.e.
markers fixed a priori) essentially consists in identifying the positions of points
corresponding in the two images and in the subsequent determination of the
transformation which aligns the pairs of these points. In the medical field, there
are two types of markers: internal and external ones. The internal markers,
known commonly as anatomical markers, they are detectable anatomical features
and identifiable in the images. Their identification and cataloging is done by
experts thanks to a software that allows the definition of the corresponding
anatomical structures. The external markers, on the other hand, are objects
attached to the patient during acquisition of the images, must be visible and
easily identifiable objects. The procedure for carrying out a landmark-based
co-registration essentially consists of of two steps:

1. identification and coupling of the landmark (anatomical or external) in the
reference images and template
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2. calculation of the geometric transformation that minimizes the distance
between the coordinates of landmark

Another more formal definition of landmark-based co-registration is the following:
Given two sets of N corresponding points, P = pi and Q = qi (the points of
the landmark pairs), we look for a transformation T that minimizes the square
root of the spatial distance between corresponding points.

• Surface-based Co-Registration. Surface-based co-registration involves the
extraction of surfaces of (anatomical) objects in images and the determination
of transformations which minimize the distance between corresponding surfaces.
Unlike landmark-based co-registration where markers are identified manually,
surface-based techniques require the reconstruction of surfaces from a set of
segmented contours in the various images. The success of these methods depends
essentially from the segmentation stage. Besl and Mckay [11] presented a co-
registration strategy general-purpose known as "Iterative Closest Point (ICP)".
For each iteration of the process of co-registration, the closest point on a surface
is determined by all the points relative to the corresponding surface. The
correspondences of these points then are used to align the images optimizing
the transformation.

• Intensity-based co-registration. Co-registration based on the intensity of
the images/volumes is perhaps the most used in literature. From a statistical
point of view, an image/volume can be seen as a distribution of a random
variable (the intensity of the images). Intensity-based co-registration is based
on the measure of similarity, or metric, of the images to be aligned and on
the optimization of this measure, obtained changing the parameters of the
transformation.

2.2.2 Measurement of Similarity and Metrics for Co-registration

As anticipated, the intensity-based co-registration method is the most widespread
and is based on the assumption that it is possible to define a metric between im-
ages/volumes. For example in the two-dimensional case the metric must be un-
derstood as a generic quantitative measure that tells how well the reference and
template(transformed) images are aligned. It can be based, for example, on the
differences between the intensities of images (cross correlation, ssd), on statistical
information (mutual information), on relationships in the space of image frequencies
(phase correlation) or on other information. The selection of the type of metric to
be use is highly dependent on the type of co-registration that it needs to be fixed.
Some metrics have a broad capture spectrum, others require one initialization close
to the optimal position. Some metrics are suitable for captured images with the same
modality, others for different modalities. Ultimately, there is no well defined rule to
decide which metric to use. The following are the most used and are the ones that
turned out to be more versatile and efficient from the point of view of the results
obtained.
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Sum of Squares of Intensity Differences (SSD)

The SSD metric (acronym deriving from the English expression Sum of Squared
Differences), is used for co-registrations of images that share the same modality
(intra-modality). Examples of application of such metrics are: [12]. To estimate this
metric, it is computed the average of the sum of the squares of the differences between
intensity of corresponding pairs of points of the images to be co-registered. Give the
pictures A and B the SSD value is defined as:

SSD(A,B) =
1

N

N∑
i=1

(
Ai −BT

i

)2
where Ai is the i-th pixel of image A, Bi is the i-th pixel of image B, N is the number
of pixels of the image A.

Cross-correlation coefficient (CC)

The cross-correlation coefficient, as the SSD metric, is used for intra-modality co-
registrations. Given two images A and B the coefficient CC is given by the following
expression:

CC(A,B) = −1 ×

∑N
i=1

((
Ai − Ā

)
·
(
Bi − B̄

)T)√∑N
i=1

(
Ai − Ā

)2 ·∑N
i=1

(
Bi − B̄

)2
where Ai is the i-th pixel of image A, Bi is the i-th pixel of image B, Ā and B̄ are
the mean values of the intensities of images A and B respectively, N is the number
of pixels of the image A and T is the transformation.Some examples of applications
using this metric could be found in [13].

Mutual Information

Mutual Information (MI) calculates the information in "common" between two images
A and B. It measures the information that a random variable (an intensity of the
image reference) carries with respect to another random variable (an intensity of the
template image). The major advantage of using the MI is that there is no need to
specify the form of dependence between variables and this makes MI suitable for
multi-modal co-registration. Works and pubblications that led to the affirmation of
the MI for the co-registration of images are: [14].
More formally, mutual information is defined in terms of entropy [15]. Let consider

H(A) = −
∫
pA(a) log pA(a)da

the entropy of a random variable A, and H (B) the entropy of a random variable B
and let

H(A,B) = −
∫
pAB(a, b) log pAB(a, b)dadb
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the joint entropy of A and B.
If A and B are independent then

pAB(a, b) = pA(a)pB(b)

and

H(A,B) = H(A) +H(B)

If between A and B there is a dependency it will be instead

H(A,B) < H(A) +H(B)

The difference
I(A,B) = H(A) +H(B) −H(A,B)

It is called Mutual Information.
If the reference and template imagese are alligned the MI reach its highest value.

2.2.3 Transformation Classes for Co-registration

A fundamental distinction between the different co-registration techniques is between
techniques that make use of transformations based on rigid models (or rigid trans-
formation) and those which, instead, are based on deformable models (or non-rigid
transformation). The term non-rigid co-registration refers to a class of methods in
which images have differences that cannot be modeled by similarity transformations
(rotation, translation and scale transformation). The model, rigid or deformable,
taken into consideration, however, takes into account the characteristics (physical or
optical) inherent in the transformation that transforms one image onto another. A
transformation can be stiff if it keeps the lengths and angles unchanged (isometry),
not rigid if it causes deformations. Another distinction can be that of consider linear
and non-linear transformations (nature of the transformation).
Transformation function models can also be divided into two broad categories depend-
ing on the amount of image data they use as their support. We’ll have global models
if the transformation function is applied to the whole image, we will have local models
if the transformation will apply differently for different areas of the image (domain of
transformation).
The choice of transformation for co-registration should be dictated by the presumed
transformations or any deformations that exist between the images and that you want
recover, from the types of images we are considering and the kind of accuracy that we
seek.
Much of the initial work done in the field of medical image co-registration has con-
cerned the co-registration of brain images of the same subject acquired according
to different modalities (MRI, CT or PET) [16]. For these applications the use of a
rigid transformation model is sufficient, given that the shape and position changes of
the brain are negligible in the relatively short time between acquisitions. However,in
many types of medical images, the type of deformation cannot be treated as rigid
transformation.
In general this can happen in three different cases:
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1. intra-patient registration but at different times with possible morphological
changes in the part on which the analysis is performed;

2. inter-patient registration, due to the natural anatomical differences between
different subjects;

3. registration aimed at correcting any artifacts and distortions.

Deformations of the first type occur, for example, in the case of variations due to
growth (of anatomical parts, for example bones) or to surgical interventions, or to
degenerative processes, such as in the case of diseases such as Alzheimer’s, multiple
sclerosis or malignant tumors [17]. In case of growth or degenerative processes,
the changes are incremental and in the most of the cases can be represented by a
differentiable transformation. In some conditions this may also be true in the case of
changes due to surgical operations.
Type 2 deformations are encountered when comparing the anatomy of different people.
For example, the neuro-anatomical differences between the brains of two different
people are usually many, particularly in the cerebral cortex. To compare structural
variations between individuals one can proceed by co-registering the images of each
individual to an image atlas, in order to bring everything back to a single reference
system to be used for the comparison [18].
Deformations of the third type are found, for example, in the case of resonance images
magnetic (MR). For example, images acquired with EPI (Echo Planar Image) protocol,
they can have severe geometric distortion. The distortion depends on the type of fabric,
from the orientation of the subject with respect to the sensor and from the acquisition
process itself of the MR image. Knowledge of the physics of the acquisition process
can provide constraints to the estimate of the deformation. Clearly, the hypothesis
that the optimal transformation is ’rigid’ or ’affine’ is very restrictive and in many
cases it is not verified. Therefore, much of the recent work on the co-registration
of medical images he was involved in the development of techniques non-rigid for
applications ranging from correction of deformations of soft tissues, which may occur
during the imaging process or an operation, to the modeling of the neuro-anatomy of
the elderly and of the young [19].

Rigid transformation

The rigid body model includes only translations and rotations. Objects do not change
shape, the distance between two points in the template image is preserved after the
transformation that co-registers it to the reference image.

Figure 2.8. Rigid Transformation
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Similarity

The similarity model [20]includes translation, rotation and scaling. The parallelism
will be preserved if straight lines of the image reference will be mapped to straight
lines in the template image.

Figure 2.9. Similarity Transformation

Affine

Affine transformation consisting of translation, rotation, scale, and shear. Affine
transformation, or an affinity (from the Latin, affinis, "connected with"), is a geometric
transformation that preserves lines and parallelism but not necessarily distances and
angles.

Figure 2.10. Affine Transformation

2.2.4 Optimization

Regardless of the type of representation chosen and the class of transformations used,
the co-registration process basically consists in minimizing a cost function. After
selecting the characteristics through which to represent the information content of the
image, the choice of the cost function is substantially equivalent to defining a metric in
the space of such characteristics. Furthermore, the choice of the cost function has some
heavy repercussions on the type of minimization technique that can be used in the
resolution of problem. For example, we often tend to define the cost function in such
a way as to obtain a least squares problem, the solution of which, except for technical
problems due to the number of the variables, is relatively simple and above all has
a single global solution. Finding the maximum of the metric is a multidimensional
optimization problem where the number of dimensions corresponds to the degrees
of freedom of the expected geometric transformation. This task is entrusted to the
optimizer whose choice therefore depends on the type of transformation used. More
generally, if the cost function is sufficiently regular, there is a large number of standard
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optimization techniques (see eg [21]). In the list below we list the methods in our
opinion of more general applicability, with the reference to some of the works in which
the method is applied to the problem of co-registration of images:

• Gradient Descent and its various modifications or adaptations to make it more
efficient (used, for example, in [22]);

• Pseudo-Newton methods, in which the gradient components are rescaled with
terms dependent on the Hessian matrix, such as the Levenberg-Marquardt
gradient descent method;

• Stochastic gradient descent, where the gradient is estimated and not calculated
exactly;

• Simulated annealing;
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Methods

The purpose of this thesis work is to provide new and more advanced supports to
physicians specializing in Multiple Myeloma. Offering tools that base their operation
on advanced algorithms is of fundamental importance for a more correct, faster and
more refined final result.
At the moment there are no specific tools for the study of lesions caused by Multiple
Myeloma so the following proposed methods were developed by me after analyzing
the specific processes adopted today by doctors in order to assess their criticalities.
The main obstacle is the manual nature of most of the steps that make up the process.
In fact, in order to evaluate the course of lesions caused by Myeloma, the doctor
must manually extract the affected bone portions from two different CT scans and
then check slice by slice the size and shape of the lesions in each of their sections to
diagnose where there are differences and then make a volumetric estimate.
Another major obstacle to this process is the misalignment of the portions examined
due to the position the patient assumes during CT scans. In fact it is not currently the
practice to suggest the patient to maintain the same position every time he undergoes
a CT scan and it may happen that sometimes the positions of portions such as the
limbs or the direction of the head are in different positions.
This implies that even when the areas in which the same lesion is present are identified,
this volume of interest is not split into the CT slices in the same way between the two
temporal scans, and even if the lesions are identical their projections for each slice of
the CT scan will be different and their comparison will be further compromised.
The methods developed were created and tested with data provided by the National
Cancer Institute (INT), we were provided with 3 clinical cases, each containing CT
scans performed one or two years later and in different resolutions.
Thanks to the use of these data it was possible to simulate real use cases, in fact the
medical records containing the diagnoses and the description of the location of the
lesions for each clinical case were provided, therefore it was possible to develop and
verify the methods in optimal way.
This made it possible to optimize certain parameters such as the application of
threshold values for the extraction of the bone component, or the optimization of the
co-registration algorithm, based on data characteristics that comply with what will
then be reported in real use cases.
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The proposed methods replace the part of the work that the doctor must perform
manually with advanced automatic algorithms, the Figure 3.1 shows the workflow
for the study of the course of lesions caused by Multiple Myeloma with the proposed
methods.

Figure 3.1. General workflow

The first step involves the definition and extraction of the volume portions to be
analyzed, these sections can be areas already noted in a previous medical record if
there is a patient history or, if it is a patient’s first visit, can be areas containing bone
portions definitely at high risk like flat bones.
This process is carried out by the Sectioning Algorithm, discussed in section 3.2
which is able to identify and extract the portions indicated by the doctor during the
setup phase from total CT scans. Once the algorithm has been applied to a total
volume of the patient’s body, it will output subvolumes appropriately divided and
isolated from the rest of the body to be analyzed individually.
This phase is of fundamental importance because it allows the isolation of the bone
portions to be analyzed so that they can be aligned in the next phase.
To align the bone portions it is necessary to isolate the volumes because, again due
to the position assumed by the patient during the acquisition phase of the CT scan,
trying to align the entire body volume or large portions of it would be impossible.
This process is carried out by the Alignment Algorithm discussed in section 3.3
which, taking as input the same volume belonging to different total scans, therefore
positioned differently in the space for example a forearm that in a first scan was along
the hips in the second scan is above the chest, returns the two volumes in the same
position in the 3D space. The algorithm does this by estimating the directions in
which to move and rotate one of the two volumes to match the other.
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Once the volumes have been extracted and aligned in a totally automatic way, it will
be possible to calculate the difference, so as to highlight whether there are differences
between the two portions, such as an increase in the volume of a lesion.
Thanks to this data it will be possible for the doctor to immediately identify the areas
with the highest probability of having undergone changes so that he can subsequently
make a more accurate visual comparison as well as a more precise study on the size
and shape of the lesion. This could also be aimed at a further analysis in order to
evaluate in time if a further course could compromise adjacent anatomical structures
or the functionality of the same bone structure in which the lesion is located.
Both the Alignment and Sectioning algorithm are based on the Co-Registration
process discussed in section 2.2, a robust and widely used image processing method.
Furthermore, both algorithms implements a Coarse-to-Fine approach which refers
to applying two consecutive methods to the same data, respectively to a low resolution
and high resulting version of them. A method to a low-resolution version of the image
as reported in Figure 3.2 with a resampling of 50% of the Total volume. In this
case the volume’s dimension before resampling was (512,512,534), after resampling it
became (256,256,267).
All the computational processes can be applied to the low resolution volume and then
the results can be applied to the high resolution volume after the conversion to the
high resolution volumes coordinates.
The ability to choose the degree of resampling allows us to adapt the algorithms
based on the type of volume to be studied, smaller volumes will not necessarily need
resampling, larger volumes can be processed with resampling of different degrees based
on the their extension.

Figure 3.2. Resampling of a Bone Volume

The reduction of calculation times is fundamental for an application perspective
because it allows an almost real-time calculation.

35



Chapter 3. Methods

3.1 Data Analysis and Preprocessing
The preprocessing carried out on the data provided will be described in the next
paragraph. This is a process of inspecting, cleansing, transforming, and modeling data
with the goal of discovering useful information, informing conclusions, and supporting
decision-making
The data provided to us are CT acquisitions in dicom format of different patients and
on different dates. DICOM (Digital Imaging and COmmunications in Medicine) is a
standard that defines the criteria for the communication, visualization, storage and
printing of biomedical information such as radiological images. [23]
At first a data discovery process was carried out where 6 different acquisitions were
examined, these acquisitions belong to 3 different patients with 2 acquisitions per
patient made 12 or 24 months apart.
By doing this, it was possible to extract the most significant information from the
metadata and carry out the drafting of the first Data Processing codes in order to
work in Matlab environment on a file format generally used by specific software aimed
only for the visual analysis. In particular, all the data provided to us, for each patient,
contained multiple acquisitions with different characteristics and different points of
view with respect to the patient’s body.
These scans were acquired for an analysis aimed at studying Multiple Myeloma and
the lesions caused by it with the methods described in the chapter 1.1.4. Therefore,
the possibility of using imaging algorithms had not yet been evaluated and certain
protocols that would have improved the obtainable results as well as extending the
possibilities of the algorithms were not adopted.
An example of a protocol to be adopted is the choice of replicating the patient’s
position on the bed of the CT scan machine as closely as possible in the two time
acquisitions. For example, the patient should be advised to keep his arms and legs
always at his sides and his head facing the same direction. The radiologist on the
other hand must try to place the patient in the same position with respect to the
coordinates of the scan and carry out acquisitions for the same patient with the same
step or the same resolution as those already present in the same patient’s archive.

3.1.1 Data characteristics

A first approach was carried out with the managing of the data, these were provided
to us without an appropriate directory as they were generated and stored with a
proprietary method of the manufacturer of the machinery used for the acquisition of
the scan.
Reorganizing the data is a step that has allowed us to speed up all subsequent phases
and to proceed with data discovery.
From the metadata it was possible to trace the spatial characteristics of the scans,
the dimensions of the voxels and other useful information for the development of the
subsequent steps.
The individual dicom files have been analyzed and their metadata read, each dicom
file belongs to a precise scan defined by the resolution (slice pitch) and by the portion
of the body analyzed.
Finally, an algorithm was created that reorganized the data. In this step the raw
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dicom files have been repositioned in subfolders, each of which contains all the files
belonging to the same section. This part made it possible to load in the further steps
the 3d volumes directly by selecting the specific volume to be processed, optimizing
loading times.
Another important information was the compatibility between the different acquisi-
tions for the same clinical case.

Figure 3.3. 2019 data report of clinical case 1

Figure 3.4. 2020 data report of clinical case 1

In Figure 3.3 and Figure 3.4 it is shown the data characteristics summaries of the
clinical case 1, acquired respectively in 2019 and 2020.
In the column named Series Description the name of the acquisition type is shown,
the most important ones are the testa-femore followed by a number 3, 2 or 1. The
first part refers to the body part that are included in the volume scan so in this case
the volume start from the head(testa) and finish to the femur(femore), the number
instead refers to the size (in mm) of the space between the individual slices that make
up the 3-D volume.
Consequently it is possible to see in the column Frames the number of slice composing
the entire 3D Volumes while in the columns Rows and Columns the x and y dimension
of each single slice.
Theese kind of informations allows us to proceed with our study with the knowledge
that the voxel size (in mm) is the same for both the acquisitions of each patient, in
fact, both cases shown in Fig.3.3 and Fig.3.4 contain the volumes testa-femore 3.0
and testa-femore 1.0.
In other words we know that the spatiality of each slice is respected and further
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comparison can be done, otherwise if their components weren’t dimensionally equal
we weren’t allowed to compare the volumes unless they are brought to the same size
by resampling.
With the aim of checking the size of the slices making up the volumetric acquisitions
without spatial resampling, a check was carried out on each individual volume in
different ways based on the type of information provided together with the data.
In some cases reading the specific field in the metadata was sufficient to check the
correct voxel dimensions values, in other cases, perhaps due to different machine
used to acquire the volume, this metadata field was absent so the Matlab tool Vol-
umeViewer3D [24] was used.
VolumeViewer3D is a Matlab tool aimed to visualize, read and apply some calculations
to 3d medical volumes in dicom format, for our case it was used for compute and
show the voxel dimensions values.
For the usage of VolumeViewer3d a preprocessing on the data with the Dicom Manager
Function Listing was mandatory, the function itself was not able to select and read the
correct volumes between all the different Series present in the folder so the relocation
of all the dicom file by SeriesDescription was needed.
In conclusion, it was verified that all three clinical cases provided to us contain at
least one volumetric acquisition with equal spatial dimensions for both acquisition
dates, in the following tables are reported all the data provided to us.
It will be specified the Clinical Case which to they belong and the names which we
will refer to these volumes. Furthermore the acquisition year, the section name and
the voxel size in mm is reported.

1. Clinical Case 1:

Volume Name Year Section Size (mm)

Volume 1.1 2018 Head-Knees 3.0 0.97x0.97x3
Volume 1.1 2018 Head-Knees 1.5 0.97x0.97x1
Volume 1.2 2020 Head-Femur 3.0 0.97x0.97x3
Volume 1.2 2020 Head-Femur 1.0 0.97x0.97x0.8

Table 3.1. Clinical Case 1 Volumes data

38



3.1. Data Analysis and Preprocessing

2. Clinical Case 2:

Volume Name Year Section Size (mm)

Volume 2.1 2019 Bone 0.97x0.97x1.25
Volume 2.1 2019 Bone 0.97x0.7x0.625
Volume 2.2 2020 Bone 0.97x0.97x1.25

Table 3.2. Clinical Case 2 Volumes data

3. Clinical Case 3:

Volume Name Year Section Size (mm)

Volume 3.1 2019 Head-Femur 3.0 0.97x0.97x3
Volume 3.1 2019 Head-Femur 1.0 0.97x0.97x0.8
Volume 3.2 2020 Head-Femur 3.0 0.97x0.97x3
Volume 3.2 2020 Head-Femur 2.0 0.97x0.97x2
Volume 3.2 2020 Head-Femur 1.0 0.97x0.97x0.8

Table 3.3. Clinical Case 3 Volumes data
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3.2 Sectioning Algorithm
This algorithm is able to automatically extract the skeleton portion of the volume
supplied as input within a total volume, making the process of sectioning the volumes
for the comparison of the individual parts automatic.
Isolating the portions of the body is the first step for the study proposed in this thesis
work, the precision of this process is therefore essential for an accurate and precise
comparison of parts of the patient’s body acquired in different scans and it would be
impracticable to propose a method in which the doctor selects each time the portion
to be evaluated within the volume.

Figure 3.5. Results of the section algorithm applied to the femur.
1: Template Volume, 2: Total Volume, 3: Algorithm Output Volume

Automating the process of recognizing the parts of the body within the volume was
therefore created to speed up and facilitate the doctor’s work but can have other
purposes.
In fact, the real big obstacle that did not allow us to implement deep learning algo-
rithms is the absence of a proper labeled dataset for training a deep learning model.
However, the creation of an appropriate dataset is a long process and, without the
use of adequate tools, almost impossible to achieve. With the use of the sectioning
algorithm it will therefore be possible, starting from total body scans, to build a
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labeled dataset of body parts quickly and efficiently for future developments.
The algorithm is based on the volume registration function, a Template Volume is
provided, which is the volume to search for, and a Total Volume in which to find
the Template Volume, these two volumes belong to different reference systems which
we refer to as spaces A and B.

The workflow, shown in Figure 3.7, can be divided in three big steps:

• Pre-Processing (Orange):

1. The start and end point of the body in the z axis is calculated and divided
into proportions.

2. the Total volume is processed with respect to the area to be extracted, a
cutout of the total volume is made based on the proportions of the adult
human body shown in Figure 3.6, for example the head is 1/8 of the total
body height or the legs are 1/2 of the total body height so extracting the
corresponding part with a certain extent will include these portions.
Once this process has been carried out, the portion of the body where we
know the template volume is present is extracted. For example, in the
case of the right femur, the right portion of the first half of the volume is
extracted so the first 50% of the z-axis and the last 50% of the y-axis of
the total volume is taken out.

Figure 3.6. Human body proportion w.r.t. human head

41



Chapter 3. Methods

• Registration (Green):

1. The registration process is applied to the previously sectioned Total Body
volume as Fixed volume and the Template Volume as Moving Volume.

2. After the Template volume is aligned with the corresponding part the
Rototranslation Matrix is computed, this is the matrix representing the
instruction to align the Moving Volume with the Fixed volume.a11 a12 a13 tx

a21 a22 a23 ty
a31 a32 a33 tz


This Matrix is composed by the Rotation 3x3 matrix and the 3x1 Transver-
sal Vector.

3. The Rototranslation is applied to the Template Volume to align it, doing
so the Volume will be moved in the Total Volume space coordinates.

a11 a12 a13 tx
a21 a22 a23 ty
a31 a32 a33 tz
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This means that a voxel previously belonging to the reference system Space
1 is mapped in the reference system Space 2 in the appropriate location
generated after the application of the roto-translation matrix.

• Coordinates Extraction (Red):

1. The coordinates of the Aligned Volume are retrieved and stored.

2. The original Total Volume is sectioned in the coordinates extracted in the
previous point, in doing so the final Volume is extracted containing the
Total Volume portion we were looking for.

To further improve the method other steps are are carried out:

• Course to Fine process: In this case the registration process is applied to
the entire TC volume, consisting of about 1500 slices in the case of the 1mm
resolution. With this dimension it would take too long to iterate the process so
the volumes were first re-sampled by scaling them by a value that range from
50% to 80% of the total resolution.
Once the template volume location process is finished, and Coordinates of Final
volume are computed it is applied an up-scaling to map the coordinates into
the space of the original Total volume .
Thus it is possible to obtain the Final volume in original resolution but facilitating
the algorithm through the use of resampling.
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• Optimization of the registration: as previously discussed in chapter 2.2.4:
A fine tuning of co-registration parameters is carried out. These parameters have
been suitably calibrated such as values that manage the number of maximum
cycles, minimum value of the gradient and others. A fine tuning of these
parameters was carried out for each specific case as different volumes portions
have different sizes and a different number of slices as well as a different bone
conformation that requires different settings to obtain an optimal result.

In Figure 3.7 it is possible to visualize each steps of the algorithm workflow described
previously.

Figure 3.7. Workflow of the Sectioning Algorithm

Below is reported an example of the Matlab language implementation of the sectioning
algorithm with motivated choice of the chosen parameters.

• Input Volumes are imported and the resampling value is set, this value can be
chosen according to the size of the volume to be studied. If the volume is small
it can also be equal to one to mean no resampling, if the volume is large these
could cause a high computation time and a value as in the reported case of 0.5
can be chosen to mean a resampling of the 50 %.

−−Se t t i ng input volumes−−

r e s = 0 . 5 ;

f i x e d = Total_Volume ;
moving = Template_Volume ;

−−Resampling f o r Coarse−to−Fine approach−−
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moving_rs = imre s i z e 3 (moving , R) ;
f ixed_rs = imre s i z e 3 ( f i xed , R) ;

• The parameters of the co-registration function have been optimized with a
maximum number of 500 cycles and an initial radius value equal to 1/10 of the
standard one.
These parameters can be chosen to refine the recording process, a higher number
of cycles and a lower Initial Radius represent a finer and more accurate recording
process at the expense of computation time.

−−Reg i s t r a t i on Optimization−−

[ opt imizer , metr ic ] = imregcon f i g ( ’monomodal ’ ) ;
opt imize r . MaximumIterations = 500 ;
opt imize r . I n i t i a lRad i u s = opt imize r . I n i t i a lRad i u s /10 ;

• Then the Registration function is applied to the resampled volumes and the
rototranslation matrix is computed.

−−Apply co−r e g i s t r a t i o n funct ion−−

tform = imregtform (moving_rs , f ixed_rs , ’ r i g i d ’ ,
opt imizer , metric , ’ DisplayOptimizat ion ’ , 1 ) ;
tform .T;

• The rototranslation matrix is applied to the moving volume which is aligned
and moved to the Total Volume coordinates space.

−−Align moving volume−−

Rout = aff ineOutputView ( s i z e ( f ixed_rs ) , tform ,
’ BoundsStyle ’ , ’ SameAsInput ’ ) ;
moving_reg = imwarp (moving_rs , tform , ’ b i l i n e a r ’ ,
’ outputView ’ , Rout ) ;

• The coordinates of the aligned volume are extracted and reported to the original
resolution. This process is carried out by calculating the minimum and maximum
values of the coordinates of the non-zero voxels in the three dimensions.

−−Compute Fina l Coordinates−−
upsca l e = 1/ r e s
ind= f i nd (moving_reg ) ;
[ i , j , k ] = ind2sub ( s i z e (moving_reg ) , ind ) ;
min_i = (min ( i ) )∗ upsca l e ;
max_i = (max( i ) )∗ upsca l e ;
min_j = (min ( j ) )∗ upsca l e ;
max_j = (max( j ) )∗ upsca l e ;
min_k = (min (k ) )∗ upsca l e ;
max_k = (max(k ) )∗ upsca l e ;
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• The Final volume is extracted by sectioning the Total Volume with the coordi-
nates computed before.

−−Extract F ina l Volume−−

f inal_volume = Total_volume (min_i :max_i ,
min_j :max_j ,
min_k :max_k ) ;

Figure 3.8. Volumes sectioned with the Sectioning Algorithm from a Total volume
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3.3 Alignment Algorithm
As anticipated, the main object of this thesis work is to provide support to the doctor
in the search for changes in bone lesions due to Multiple Myeloma. The basic concept
is to compare two CT scans and evaluate the bone components finding differences
between them, especially in the areas where Multiple Myeloma lesions has been
identified in a first diagnosis made by the doctor.
In order to compare two volumetric regions it is necessary to align them as applying
the difference between non-aligned volumes produces an incorrect and uninterpretable
result. The misalignment between these volumes is caused by the position that the
patient assumes during the CT scans which cannot be perfectly replicated especially
when scans are acquired one or more years apart. The components that contribute to
the misalignment are two:

• the position that the patient assumes with respect to the space of the CT scan,
for example the position along the z axis

• how the patient places himself on the bed, for example the arms are sometimes
brought back to the sides and sometimes on the chest or the head turned slightly
up or down.

Figure 3.9. Example of the Alignment Algorithm application
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The algorithm is based on the volume registration function, in this case the volumes
supplied as input to the registration algorithm are two bone volumes extracted from
different total volumes with the Sectioning algorithm discussed previously, we will
refer to these two bone volumes as Sections 1 and 2. The general algorithm workflow,
described in Figure 3.12 can be divided into three big steps:

• Pre-Processing(Orange):

1. The two CT scans to be compared are selected;

2. Once the portion to be compared is known, a volume template of the
portion is used and through the use of the sectioning algorithm the Sections
to be compared are extracted from the two total volumes;

Figure 3.10. Caption
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• Registration (Green):

1. The two sections are supplied to the recording algorithm, one as Moving
Volume and the other as Fixed Volume, the first will be the volume that
the algorithm will "move" in order to be aligned with the corresponding
part of the Fixed Volume.
Once the alignment is done, the Roto-Translation matrix is produced, this
is the matrix that represents the instructions for aligning the two volumes
of the sections. a11 a12 a13 tx

a21 a22 a23 ty
a31 a32 a33 tz



2. The roto-translation matrix is applied to the Section Volume previously
used as Moving Volume so as to align it with the other Section Volume
and the Aligned Section Volume is produced.

a11 a12 a13 tx
a21 a22 a23 ty
a31 a32 a33 tz



x
y
z
1

 =

a11 a12 a13
a21 a23 a23
a31 a32 a33

xy
z

+
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tz



• Difference Computation (Red):

1. The difference between the aligned Section Volumes is calculated and the
representative volume produced.

Figure 3.11. Difference between aligned volumes
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With this type of data the differences between the two volumes will be
enhanced and these portions will be labeled as having higher priority. These
could be more likely to represent changes in lesions caused by myeloma, it
is up to the doctor to analyze the points individually and diagnose their
nature.

2. The spatial dimension of the volume is calculated, using the metadata
related to the ct scans it is possible to calculate the size in mm of the
identified portions. This is also very useful for the doctor to evaluate a
future course and future compromises of the bone system.

To further improve the method other steps are are carried out:

• Course to Fine process: In this case, in the preprocessing phase, to optimize
the process of extracting the portion from the total volume, a resampling of the
volumes is carried out. In fact if the registration process is applied to the entire
TC volume, this volume consist of about 1500 slices in the case of the 1mm
resolution. With this dimension it would take too long to iterate the process so
the volumes were first re-sampled by scaling them by a value that range from
50% to 80% of the total resolution.
Once the template volume location process is finished, and Coordinates of Final
volume are computed it is applied an up-scaling to map the coordinates into
the space of the original Total volume.
Thus it is possible to obtain the Final volume in original resolution but facilitating
the algorithm through the use of resampling.

• Optimization of the Registration: as previously discussed in chapter 2.2.4:
A fine tuning of co-registration parameters is carried out. These parameters have
been suitably calibrated such as values that manage the number of maximum
cycles, minimum value of the gradient and others. A fine tuning of these
parameters was carried out for each specific case as different volumes portions
have different sizes and a different number of slices as well as a different bone
conformation that requires different settings to obtain an optimal result.
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Figure 3.12. Workflow of the Aligning Algorithm, blue squares are the Volumes or
subvolumes, orange ovals are the Preprocessing step, green part are the
Registration step and the red part is the final Difference Computation
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Below is reported an example of the Matlab language implementation of the
sectioning algorithm with motivated choice of the chosen parameters.

• For the Pre Processing step:

1. the two Total Volumes are both thresholded and resampled by chosen
values, in this case 0.8 as threshold and 0.5 as resampling. This is done to
respectively optimize the registration function by filtering only the bone
portion of the volume and exploit the coarse to fine process by reducing
the overhall dimension of the volume.

−−Se t t i ng input volumes−−

r e s = 0 . 5 ;
th r e sho ld = 0 . 8 ;
f ixed_1 = Total_Volume_1 ;
f ixed_2 = Total_Volume_2 ;
moving = Template_Volume ;

f ixed_1 ( fixed_1<thre sho ld )=0;
f ixed_2 ( fixed_2<thre sho ld )=0;
moving (moving<thre sho ld )=0;

moving_rs = imre s i z e 3 (moving , r e s ) ;
f ixed_1_rs = imre s i z e 3 ( fixed_1 , r e s ) ;
f ixed_2_rs = imre s i z e 3 ( fixed_2 , r e s ) ;

2. The parameters of the co-registration function have been optimized with
amaximum number of 500 cycles and an initial radius value equal to 1/10
of thestandard one.These parameters can be chosen to refine the recording
process, a higher numberof cycles and a lower Initial Radius represent a
finer and more accurate recordingprocess at the expense of computation
time.

−−Reg i s t r a t i on Optimization−−

[ opt imizer , metr ic ] = imregcon f i g ( ’monomodal ’ ) ;
opt imize r . MaximumIterations = 500 ;
opt imize r . I n i t i a lRad i u s = opt imize r . I n i t i a lRad i u s /10 ;

3. Then the Registration function is applied to the resampled volumes and
the rototranslation matrix is computed.

−−Apply co−r e g i s t r a t i o n funct ion−−

tform_1 = imregtform (moving_rs , fixed_1_rs , ’ r i g i d ’ ,
opt imizer , metric , ’ DisplayOptimizat ion ’ , 1 ) ;

tform_2 = imregtform (moving_rs , fixed_2_rs , ’ r i g i d ’ ,
opt imizer , metric , ’ DisplayOptimizat ion ’ , 1 ) ;
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4. The rototranslation matrix is applied to the moving volumes which are
aligned and moved to the Template Volume coordinates space.

−−Align moving volumes−−

Rout_1 = aff ineOutputView ( s i z e ( fixed_1_rs ) , tform_1 ,
’ BoundsStyle ’ , ’ SameAsInput ’ ) ;
moving_reg_1 = imwarp (moving_rs , tform , ’ b i l i n e a r ’ ,
’ outputView ’ , Rout ) ;

Rout_2 = aff ineOutputView ( s i z e ( fixed_2_rs ) , tform_2 ,
’ BoundsStyle ’ , ’ SameAsInput ’ ) ;
moving_reg_2 = imwarp (moving_rs , tform , ’ b i l i n e a r ’ ,
’ outputView ’ , Rout ) ;

5. The coordinates of the aligned volume are extracted and reported to the
original resolution, then volume is extracted by sectioning the Total Volume
with the coordinates computed.

−−Compute Fina l Coordinates−−

upsca l e = 1/ r e s ;
ind_1= f i nd (moving_reg_1 ) ;
[ i , j , k ] = ind2sub ( s i z e (moving_reg_1 ) , ind_1 ) ;
min_i_1 = (min ( i ) )∗ upsca l e ;
max_i_1 = (max( i ) )∗ upsca l e ;
min_j_1 = (min ( j ) )∗ upsca l e ;
max_j_1 = (max( j ) )∗ upsca l e ;
min_k_1 = (min (k ) )∗ upsca l e ;
max_k_1 = (max(k ) )∗ upsca l e ;

ind_2= f i nd (moving_reg_2 ) ;
[ i , j , k ] = ind2sub ( s i z e (moving_reg_2 ) , ind_1 ) ;
min_i_2 = (min ( i ) )∗ upsca l e ;
max_i_2 = (max( i ) )∗ upsca l e ;
min_j_2 = (min ( j ) )∗ upsca l e ;
max_j_2 = (max( j ) )∗ upsca l e ;
min_k_2 = (min (k ) )∗ upsca l e ;
max_k_2 = (max(k ) )∗ upsca l e ;

−−Extract f i n a l Sect ion−−

Section_1 = Total_volume (min_i_1 :max_i_1 ,
min_j_1 :max_j_1 ,
min_k_1 :max_k_1) ;

Section_2 = Total_volume (min_i_2 :max_i_2 ,
min_j_2 :max_j_2 ,
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min_k_2 :max_k_2) ;

• for the Registration step:

1. The Registration function is applied to the resampled volumes and the
rototranslation matrix is computed.

−−Apply co−r e g i s t r a t i o n funct ion−−

f i x e d = Section_1 ;
moving = Section_2 ;

tform_1 = imregtform (moving , f i xed , ’ r i g i d ’ ,
opt imizer , metric , ’ DisplayOptimizat ion ’ , 1 ) ;
tform .T;

2. The roto-translation matrix is applied to the Section Volume previously
used as Moving Volume so as to align it with the other Section Volume.

moving_reg = imwarp (moving , tform , ’ b i l i n e a r ’ ,
’ outputView ’ , Rout ) ;

• for the Difference Computation the difference of the volumes is computed and
plotted.

d i f f = f ixed−moving_reg ;
volumeViewer ( abs ( d i f f ) ) ;
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Finally, a visual demonstration of the importance of using the alignment algorithm
is reported. Below is a visual example of the difference between two volumes with
and without using the alignment algorithm.
The Figure 3.13 shows the two volumes "Section 1" and "Section 2" with the
application of a threshold to extract the bone component.

Figure 3.13. Section 1 and Section 2 with a tresholding applied to extract the bone portion

In Figure 3.14 are shown visual results of the difference of the two Sections volumes
with and without the application of the Aligning Algorithm.

Figure 3.14. Difference Results with and without the application of the Aligning Algorithm
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The importance of applying the alignment algorithm is shown, in the case in which
the algorithm is correctly applied (section 3 of the Figure 3.14) are shown indicative
data of the differences between the two sections, in this case a top area of the femur
resulting due to a not perfect replication of the result obtained by the sectioning
algorithm on the two total volumes.
In fact, one section includes this bone portion more than the other and this is correctly
shown in the volume of the difference, confirming a correct result of the alignment
algorithm.
If the alignment algorithm is not applied before making the difference between the
two sections, the result obtained is a result that cannot be interpreted as shown in
section 4 of the Figure 3.14.
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Results

In this chapter the effectiveness of the proposed method described in Chapter 3 will
be demonstrated and the most important results obtained through the use of the
developed methods will be shown.
For the Sectioning Algorithm what we want to demonstrate is the effectiveness of the
algorithm, the possibility of using generic volumes as template volumes not belonging
to the patient himself and the development of methods aimed at improving the results
obtainable by the algorithm such as the application of a controlled extension of the
sectioned volume.
This result therefore allows the implementation of this algorithm not only in a first
diagnosis of a new patient who therefore does not have an archived scan history but
also in the use for the creation of a specific dataset containing labeled bone volumes
that can be used for the application of advanced deep learning algorithms in future
developments.
The results were collected with the application of the algorithm with the data provided
by the National Cancer Institute (INT), these are real clinical cases so the results
collected represent the real possibilities that these methods can offer in real world
operations.
For the Alignment Algorithm what we want to demonstrate is the precision of the
algorithm, the ability to identify even the smallest differences between the same lesion
that has had a course over time.
The results obtained with different optimization processes such as the application of a
threshold or the resampling of the volumes supplied as input to the algorithm will
also be shown.
Also in this case the data used to test the method are real clinical cases and also in
this case the results collected are representative of the possibilities that this method
would have in real use cases.
Finally, two clinical cases examined will be shown, to which the whole workflow will be
applied starting from the Sectioning Algorithm up to the qualitative and quantitative
assessment of lesions courses.
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4.1 Sectioning Algorithm Results
In this chapter the results related to the Sectioning Algorithm will be discussed and
reported, the purpose of this algorithm is to extract an Output Volume using two
volumes, the Total Volume and the Reference Volume.

• Output Volume: volume of the skeleton section we want to extract;

• Reference Volume: volume used to guide the algorithm in the search, this
volume must be a bone portion similar to the one we want to extract, when
previous CT scans of the same patient are available it is possible to extract the
reference volume from there;

• Total Volume: general volume from which to extract the sections, for example
a new CT scan acquired;

The performance of the algorithm was evaluated with the process shown in Figure 4.1
and explained below:

Figure 4.1. workflow for evaluating the accuracy of the Sectioning Algorithm

1. Extraction of the bone portion of the Reference volume:
The Reference Volume is manually extracted by an operator from the available
Volume which can be a previous scan of the same patient or a generic scan.
Then a threshold is applied so as to extract only the bone portion.
Once the exclusive presence of the bone portion of the reference volume ensured,
a label "Reference Voxels" is applied to the voxels;
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2. Applying the Algorithm and Extracting the Output Volume:
the Sectioning Algorithm is applied to the Total Volume to let the Algorithm
automatically find the Reference Volume as done manually in point 1, in this
case the volume found by the algorithm will be the Output Volume.
This work is carried out using a Template Volume to drive the algorithm.

3. Extraction of the bone portion:
Once the Output Volume has been generated, the bone portion is extracted
by applying a threshold. After checking the presence of the bone portion only,
excluding all soft tissues, an "Output Voxels" label is assigned to the volume
voxels.

4. Statistical Data extraction:
With the collected data and the appropriately classified voxels it is possible to
calculate the number of voxels of the following categories:

• True Positives (TP): Voxels correctly belonging to the Output Volume as
they are part of the desired bone portion.

• False Positives (FP): Voxels mistakenly belonging to the Output Volume
as they belong to different bone portions than the desired one.

• True Negatives (TN): Voxels correctly excluded from the Output Volume
as they do not belong to the desired bone portion.

• False Negatives (FN): Voxels erroneously excluded from the Output Volume
as they belong to the searched bone portion.

Figure 4.2. Example of voxel Labeling in the sectioning of the hip bone, the red-tinted voxel
are labeled as False Positive while the green-tinted voxel are labeled as True

Positive

59



Chapter 4. Results

5. Calculation of statistical descriptors:
Once the statistical data have been collected to describe the results obtained by
the algorithm, the following measures are calculated:

• Sensitivity (True Positive rate) measures the proportion of positives that
are correctly identified (i.e. the proportion between the Reference Voxels
and the totality of the Voxels of the Output volume).

Sensitivity =
TP

TP + FN

It represents the algorithm’s ability to identify the correct portions.

• Specificity (True Negative rate) measures the proportion of negatives
that are correctly identified (i.e. the proportion of the number of voxels
belonging to the total volume and not contained in the output volume and
the totality of the voxels of the total volume).

Specificity =
TN

TN + FP

It represents the algorithm’s ability to exclude incorrect portions.

The following table shows the most significant results obtained from the application
of the Sectioning Algorithm on different parts of the body in different clinical cases.
Furthermore, two types of volumes were used as Template Volume:

• A volume belonging to the same clinical case.

• A volume belonging to another clinical case.

Clinical Case Section Template Volume Sensitivity Specificity
1 Femur Other Patient Template 71% 78%
1 Femur Same Patient Template 85% 92%
2 Hip Other Patient Template 76% 82%
2 Hip Same Patient Template 96% 98%
2 Femur Other Patient Template 85% 88%
2 Femur Same Patient Template 96% 97%

Table 4.1. Sectioning Algorithm Results

It is immediate to notice how the use of a volume belonging to the same patient as
Template Volume produces better results, in any case, using generic template volumes
or from other patients, good results have been obtained.
These results can be further improved with the application of an extension of the
Output Volume coordinates as is shown in Figure 4.3. The value of expansion of the
volumes can be easily tuned for each specific case and in which dimension, in fact,
after the sectioning has been carried out, the doctor can easily evaluate whether the
desired portion is included in the output volume, if this is not the case then he can
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act by applying an extension in one, on two or on all 3 available dimensions so as to
produce an optimal result.
This process improve the Sensitivity value up to results close to 100%, managing to
include all the bone volume sought.
On the other hand, the application of this expansion process cause a decrease in the
Specificity value as with the extension of the volume also unwanted bone portions are
included, however this result is acceptable as the main purpose is to find and select
the searched bone portion in its entirety, which can be a difficult process to achieve
specially in volumes sections composed of multiple moving part such as the cranium
with the jaw or the hip bone with the femur joints.
These sections are particularly problematic due to their structure, in fact they are
composed of several parts with the possibility of moving between them and this
characteristic is the cause of a less precise result.

Figure 4.3. Improvement of Sectioning Algorithm with a volume expansion

The following table shows the results obtained on the volumes presented previously
with an extension of the Output volume of a value of 10%:

Clinical Case Section Template Volume Sensitivity Specificity
1 Femur Other Patient Template 100% 68%
1 Femur Same Patient Template 100% 85%
2 Hip Other Patient Template 98% 75%
2 Hip Same Patient Template 100% 83%
2 Femur Other Patient Template 98% 75%
2 Femur Same Patient Template 100% 92%
Table 4.2. Sectioning Algorithm Results with a 10% volume expansion

In conclusion the results were excellent in relation to the few and the type of data
provided, in fact it was possible to define an algorithm capable of finding and extracting
a very specific portion of the volume with fine results, in Figure 4.4 and Figure 4.5
other qualitative results are shown.
Not only was it possible to extract volume portions of a patient thanks to the use
of Template volumes obtained from previous CT scans but also thanks to the use of
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Template volumes obtained from CT scans of other patients.
This result allows the application of this algorithm even in the case in which the
patient approaches for the first time and does not have previous CT scans available.

Figure 4.4. Example of Sectioning Algorithm with hip section.

Figure 4.5. Example of Sectioning Algorithm with Rib Cage section.
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Another important application of this algorithm is the recognition and automatic
extraction of body parts with the aim of building a specific labeled dataset for Multiple
Myeloma, this would allow the creation and training of algorithms based on deep
learning for further advanced applications.
The process of building a dataset is long and requires a large amount of time, without
appropriate technologies to support this process is almost impossible to perform.
To build a specific dataset for Multiple Myeloma it is necessary to operate on a
very large quantity of CT scans, for each of these scans the doctor must extract the
individual bone sections and provide an appropriate label. Without the support of
the Sectioning Algorithm, this process should be performed manually by the doctor,
identifying the relevant portions for each scan and extracting the volumes. Thanks to
the Sectioning Algorithm, the process could be iterated automatically reducing the
time spent by the doctor into the process. To perform the complete work it would be
sufficient to provide the algorithm with a series of CT scans as input volumes and the
type of section to be extracted. The algorithm automatically extracts the sections
from each volume and assigns a label, iterating the process for several sections the
only obstacle for the construction of the dataset is the availability of the CT scans
itself.
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4.2 Alignment Algorithm Results
In this section, the main results obtained with the Alignment Algorithm will be
presented. First the results obtained with the application of a threshold to the
volumes to be registered to improve the alignment results [4.2.1], then the results
obtained by applying the different types of transformation will be discussed [4.2.2].
In order to demonstrate the validity of these processes, several comparisons were made
between volumes, to report quantitative data the Mean Square Intensity (MSI)
of these volumes was calculated.
This value is the average intensity of the voxels and it is related to the spatial dimension
of the volumes themselves. This parameter is very useful for comparing parts of the
body, especially bone sections. In fact it is an easy to extract index and representative
of the volumetric dimension of the bone component, by calculating the MSI of a bone
section it is possible to subsequently make evaluations and comparisons with parts of
the same section by calculating their MSI.

4.2.1 Thresholding Volumes Approach

In this case we wanted to report and compare the results obtained by thresholding
the volumes before the registration process, this process is done to achieve better
registration results.
The thresholding process is carried out to exclude the soft tissues of the volume while
retaining only the bone structures as shown in Figure 4.6.

Figure 4.6. Thresholding Result.

This test was conducted in different body parts of all three clinical cases with different
resolution and the best results are reported in the Table 4.3.
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For descriptive simplicity, the method used on the Right Femur of Clinical Case 1
previously described in chapter 3.1.1 will be reported in the following to demonstrate
the workflow of this process as well as the workflow steps are reported in Figure 4.7:

1. Mean Square Intensity of the voxels of the femur from Volume 1.1 was calculated
as a Reference of the bone volume (Reference MSI) .

2. the femur Volumes 1.1 and 1.2 were used as input in the Alignment Algorithm
without and with the thresholding applied with different values. The application
of a threshold involves the extraction of the rigid components present in the
volume, in this case the bones excluding the soft tissues..

3. the difference Volume between the femur volume 1.1 and 1.2 after the registration
is computed.

4. the Mean Square Intensity of the voxels of the Difference Volume (Final MSI) is
computed and compared to the Reference MSI.

Figure 4.7. Workflow to obtain results on the Thresholding method

In an ideal registration case the Mean Square Intensity(MSI) of the voxels of the
Difference Volume will be 0, meaning that the 100% of the voxels are aligned. In
our case we already expect a Mean Square Intensity different from zero because of
some factor such as moving parts belonging to the examined volume like joints or
cartilages. In the Reference MSI column it is reported the MSI of the bone volume
taken under examination, in Final MSI column it is reported the MSI of the difference
volume which is an estimate of the alignment error, in the Volume Error column it
is reported the percentage of volume which is not correctly aligned. It is immediate
to evaluate that the application of the thresholding for the volumes has generated a
general improvement in the alignment result, in particular in the volume error column
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Clinical Case Section Threshold Ref. MSI Diff. MSI Volume Error

1 Right Femur No 0.0218 0.0018065 8.2%
1 Right Femur 0.5 0.0218 0.0003204 1.48%
2 Right Femur No 0.0172 0.0081 47%
2 Right Femur 0.5 0.0172 0.000523 3%
2 Hip No 0.0183 0.00026 1.4%
2 Hip 0.5 0.0183 0.00011 0.6%

Table 4.3. Thresholding in Aligning algorithm Results

it is possible to evaluate how the percentage of non-aligned volume is drastically
reduced such as in the Right femur of Clinical Case 2 where without the thresholding
process the 47% of the bone volume was not correctly aligned and with a thresholding
of 50% of the intensity values the bone volume not aligned reduced drastically to 3%.

4.2.2 Transformation Types Evaluation

In this section we want to show which is the best type of transformation to be applied
among the possible ones mentioned in the Chapter 2.2.3 and that in our case adding
degrees of freedom does not lead to better results.
The difference between two manually extracted bone sections containing the same
portions was computed, in this case the difference obtained after alignment is close to
zero for each transformation type, this is because of the input volumes were manually
sectioned so as to be equal and the difference obtained is ideal. This process is visually
reported in Figure 4.8.

Figure 4.8. Workflow for computing Ideal Results

Quantitative results, reported as the Mean Square Intensity (MSI) of the studied
volumes, are shown in the Table 4.4.
Subsequently, one of the two volumes relating to the examined sections is expanded
with an additive portion (of a value reported as Additive Volume), through this
process we want to simulate an error in the Sectioning Algorithm which, as we have
seen, can produce a volume containing portions not belonging to the bone section
under examination. With these conditions what we expect as an optimal result is the
presence of this additive portion also in the Volume of the Difference, this condition
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Clinical Case Section Transformation Type Volume MSI Difference MSI

1 Humerus Rigid 0.0034 0
1 Humerus Similarity 0.0034 0
1 Humerus Affine 0.0034 0
2 Femur Rigid 0.0172 0
2 Femur Similarity 0.0172 0
2 Femur Affine 0.0172 0

Table 4.4. Results of Alignment with different Transf. Types with controlled inputs

would be the confirmation that the alignment occurs correctly and that the real
differences between the two volumes are correctly reported. This process is visually
reported in Figure 4.9.
Results obtained from the difference with the different types of transformation

Figure 4.9. Workflow for computing the Difference Volume with a Volume expansion added
in one of the input sections

applied will be reported below. As reported in the Table 4.5, it can be seen that the

Clinical Case Section Transf. Type Volume MSI Additive MSI Difference MSI

1 Humerus Rigid 0.0034 0.000637 0.000637
1 Humerus Similarity 0.0034 0.000637 0.000637
1 Humerus Affine 0.0034 0.000637 0.000495
2 Femur Rigid 0.0172 0.0074 0.00074
2 Femur Similarity 0.0172 0.0074 0.0074
2 Femur Affine 0.0172 0.0074 0.00059

Table 4.5. Results of Alignment with different Transf. Types with different input Volumes

Transformation Types that reported the best results are ’Rigid’ and ’Similarity’
since the Difference MSI, i.e. the volumetric portion resulting from the difference of
the two aligned volumes, is exactly equal to the Additive MSI, i.e. deliberately added
volume, demonstrating perfect alignment achieved.

It can be noted that the similarity method has further reduced the difference value
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Chapter 4. Results

Figure 4.10. Results of the different alignments between volumes based on the
Transformation Type. Left: Rigid ; Center: Affine; Right: Similarity.

MSI, this result, although ideal in order to obtain a final error as low as possible, does
not reflect an optimal result in our case. In fact, the final purpose of this algorithm is
not to generate a difference close to zero, but to align two volumes in their general
structure to highlight the differences, where present.
Further digressions can be made on the choice between rigid transformation and
similarity as these two methods produced identical results.
As described in the paragraph 2.2.3, the difference between the two transformations
lies in their degrees of freedom, the rigid transformation applies a translation and
rotation of the volume while the similarity transformation applies both translation and
rotation with the addition of scaling. In our case the volumes have a priori an equal
spatial dimension, specified by the step with which the CT scans were performed. In
any case, even if the two CT scans to be compared had a different step, a re-sampling
of the general volumes would be carried out in previous phases to bring them to
same spatial dimensions. With these considerations, therefore, the use of Similarity
Transformation is further excluded as scaling would never be applied and adding this
degree of freedom would not lead to better results.
In Figure 4.10 it is possible to see visually the difference between volumes obtained
with the Rigid, the Affine and the Similarity Transformation type registration. The
top portion present in the first and last image is the Additive Volume that is correctly
present in the Rigid and Similarity case while it is totally absent in the Affine case.
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4.3. Clinical case 1: Femur

4.3 Clinical case 1: Femur
In this section the entire proposed workflow applied in a real clinical case will be
presented, the parameters used for each step and the results obtained will be displayed.
In this case we will examine Clinical Case 1 reported in section 3.1.1, in the medical
record provided to us there were lesions recorded in the distal pre epiphyseal site of
the right femur.
It is possible in a first moment to evaluate the presence of lesions in the 3d represen-
tation of the volume shown in the Figure 4.11 inscribed in the orange circle.

Figure 4.11. Lesions presented in the 3d volume

Later, the extent of the lesion is evaluated with more precision thanks to the Coronal
(Y-Z plane), Sagittal (X-Z planes) and Axial (X-Y plane) as reported in Figure 4.12.
The lesions in the x, y and z sections are marked in red, a healthy area is marked in
blue in order to understand the difference between a lesion and its ideal density. In this
case the lesions appear as areas in which the bone is grainy and with a non-continuous
surface, it is easy to understand how meticulous the doctor’s work is in visually finding
these lesions one by one their structure.
Once the lesions have been identified, the doctor then proceeds with the recovery of
the patient’s CT scans, in this case we have Volume 1.1 and Volume 1.2, acquired
one year apart. These two volumes are supplied as input to the Sectioning Algorithm
together with a Template Volume, in this case the section of interest is the right femur,
therefore a Template Volume of a femur present in the archive is retrieved.
The total volumes used are the high resolution ones, with a spatial size of the slices of
1mm, the 3d volumes have a size of (512,512,1528) for Volume 1.1 and of (512,512,1573)
for Volume 1.2.
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Chapter 4. Results

Figure 4.12. Lesions presented in the Coronal, Sagittal and Axial planes

Before being supplied to the Sectioning Algorithm, the volumes are preprocessed
with an extraction of the area of interest based on the volume to be searched. In
this case we are looking for the right femur so the lower half of the body is dissected
by taking the first 754 slices (1528/2) for the Volume 1.2 and the first 787 (rounded
1573/2) slices for the Volume 1.2.
In this case the Sectioning Algorithm used a Rigid transformation with a maximum
number of 500 cycles, with a thresholding of the input volumes of the 0.5% of the
maximum intensity values and without any resampling.
Once the Sectioning Algorithm has been applied, it will pick up the two femurs from
the two total volumes, then a threshold is applied to extract only the bone component
of the volumes. These final volumes are shown in section 1 and 2 of the Figure 4.13.

Figure 4.13. Volumes sectioned
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4.3. Clinical case 1: Femur

The two single sections obtained are then supplied as input to the alignment algorithm,
in this case, given the low complexity of the sections, the algorithm has been set with
a maximum value of 300 cycles without the use of resampling.
Once the roto-translation matrix has been obtained, this is used to align the two
volumes and, once the alignment has been carried out, the difference of the two
volumes is produced as shown in Figure 4.14.

Figure 4.14. Final Difference of femur sections

In this case in the difference volume there is no element in the lesions area to represent
that these lesions did develop further in the time span of the two acquisitions.
The only differences between the two volumes are related to a top area of the bone
portion, this is because one of the two volumes of the femur included a larger part
due to an error in the Sectioning Algorithm output.
The result obtained is therefore a confirmation of the correct alignment and overlapping
of the two volumes.
From this overall result it is possible to deduce that in the course of the time passed
between the acquisition of the two scans, the lesions relating to this bone portion did
not undergo a course but remained stationary.
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Chapter 4. Results

4.4 Clinical case 2: Head
This section, on the other hand, reports a case in which from the analysis of the
difference volumes we are able to find an area of interest.
For this case we started from the medical report which included lesions belonging
to the cranium site. In Figure 4.15 is shown the Axial plane of the cranium in
correspondence of a portion which could be a bone anomaly such as a lesion described
in the blue circle.

Figure 4.15. Head Lesion reported in the blue circle

Once the lesions have been identified, the doctor proceeds with the recovery of the
patient’s CT scans, in this case we have Volume 1.1 and Volume 1.2, acquired one year
apart. These two volumes are supplied as input to the Sectioning Algorithm together
with a Template Volume, in this case the section of interest is the head, therefore a
Template Volume of a head present in the archive is retrieved.
The total volumes used are the high resolution ones, with a spatial size of the
slices of1mm, the 3d volumes have a size of (512,512,1528) for Volume 1.1 and of
(512,512,1573) for Volume 1.2.
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4.4. Clinical case 2: Head

Before being supplied to the Sectioning Algorithm, the volumes are preprocessed
with an extraction of the area of interest based on the volume to be searched. In this
case we are looking for the head so the upper 1/8th of the body is dissected by taking
the first 191 slices (1528/8) for the Volume 1.2 and the first 197 (rounded1573/8)
slices for the Volume 1.2.
Further processing was carried to the Sectioned Volumes because we are interested in
the frontal area of the head, so in order to improve the Alignment result the mandible
and part of the maxillary area were removed. This was done because the mandible
being a mobile portion could have two different positions in the two acquisitions with
respect to the skull, also the removal of the oral cavity with the consequent removal
of the teeth improves the process for the same reasons.
The final sectioned Volumes are shown in Figure 4.16.

Figure 4.16. Sectioned Frontal head volumes
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The two single sections obtained are then supplied as input to the alignment al-
gorithm, also in this case, given the low complexity of the sections, the algorithm has
been set with a maximum value of 400 cycles without the use of resampling.
Once the roto-translation matrix has been obtained, this is used to align the two
volumes and, once the alignment has been carried out, the difference of the two
volumes is produced as shown in Figure 4.17.

Figure 4.17. Difference of head sections in 3d volumes

In this case it is evident how the position taken by the patient has influenced the
Sectioning Algorithm, in fact the volume of the difference shows an area at the base
of the volume to indicate that in a CT acquisition the patient has turned his head
upwards with respect to to the other CT scan.
This result presented in the volume of the difference, however, is a further confirmation
of the precision of the alignment algorithm that has managed to correctly align the
most important parts.
In this case in the difference volume there is also an element in the area previously
identified to represent that lesions may have developed in the time span of the two
acquisitions. This portion is a white area described in Figure 4.18 in the red circle
and it correspond to the area where lesions might have developed.
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4.4. Clinical case 2: Head

After evaluating the exact position of the area of interest, it was confirmed that
this was in the vicinity of the lesions previously found, therefore a thorough study
of this area is carried out. In fact, from the metadata it is possible to trace the
dimensions in mm of each voxel, in this case 0.97x0.97x0.8mm. So it was possible to
accurately calculate the extent of this volume which is approximately 6.77448 mm3.
Finally, it is up to the doctor to carefully evaluate this portion and make further and
more in-depth diagnoses. However, this tool has proven effective in finding differences
even in very small portions effectively proposing to the doctor areas with a higher
priority to be examined.

Figure 4.18. Difference of head sections
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Conclusions

This thesis work was developed with the aim of creating advanced automatic method-
ologies to support the physician for the analysis of lesions related to Multiple Myeloma.
Even today, technological development in the medical field has not reached all sectors,
excluding many rare diseases such as Multiple Myeloma.
The availability of advanced technologies is essential so that the doctor can collect ever
more precise data in order to make a correct and accurate diagnosis. The presence of
specific tools is essential to facilitate the process of diagnosis and control, tools that
must be carefully modeled around the needs of doctors and the nature of the medical
condition to be studied.
Currently, only the trained and experienced eye of a specialist doctor can be relied
upon to diagnose and monitor developments in patients with Multiple Myeloma. In
fact, for this specific condition, there are no specific tools as for other more common
diseases and, unfortunately, problems can still exist for which making visual assess-
ments accurately can be difficult even for an experienced doctor. Multiple Myeloma is
a type of bone marrow cancer that originates from plasma cells, normally found in the
bone marrow, which are cells that are part of the immune system. Multiple Myeloma
is a disease that accounts for 1% of all cancers and about 10% of hematological
malignancies. It mainly affects adults and elderly people (average age of onset 60
years).
For a correct and in-depth diagnosis it is necessary to identify in the patient the bone
lesions typical of Multiple Myeloma, lesions ranging from a size comparable to 1 mm
to a larger area and which can affect substantial parts of the bone portion. Given the
nature of these lesions, it is very difficult for a doctor to locate and correctly assess
the evolution of these lesions over time, this comparison is a fundamental step to
evaluate the course of the disease.
This process is obviously limited by several factors such as the experience and the
ability of the doctor who operates on the scans, the resolution of the visual support
adopted and the size of the lesions that may be imperceptible to the human eye. All
these limitations are not only the cause of a final result that can be further improved,
but also are the causes of the doctor use of an enormous amount of time due to the
repetitiveness of the process especially in high resolution scans.
Furthermore, the process cannot be carried out by any doctor but only by specialized
doctors with years of experience
To this end, two main algorithms have been developed that can help the doctor
both by reducing the time taken to carry out a total analysis, and by improving the
accuracy with which it is possible to identify if a course of the lesion has occurred
and to what extent.
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Conclusions

These algorithms were designed, optimized and tested by me on clinical cases pro-
vided by the National Cancer Institute (INT) simulating a real use case. The ability
to develop and test the proposed methods with data such as those provided to us
is certainly a great advantage because we were able to simulate real use cases by
replicating step by step the work that the doctor should perform.
Furthermore, even the results obtained characteristics are not different from what
might occur after the application of these methods in real cases and this confirms the
validity of the processes.
The methods developed are aimed at supporting the physician in the phases of section-
ing and aligning the volumes so as to be able to evaluate the difference, automating a
process that until now must be carried out manually by the physician on each slice of
CT scans.
Both methods are based on the application of the co-registration process, a process
widely used in image processing. Through co-registration it is possible to align two
volumes so as to create a perfect match between the two.
The first method proposed is the sectioning algorithm, this algorithm has the purpose
of automatically identifying the sections under examination within total volume scans
in order to extract them. This process is of fundamental importance as it allows to
focus on subsections so as to improve the accuracy of the studies carried out and
speed up the calculation times by working on smaller volumes.
The algorithm receives two volumes as input, the Total Volume in which we want
to search and a Template Volume representative of the area of interest. Through a
preprocessing the Total Volume is processed to optimize the results based on the area
to be searched, in fact a pre-sectioning is carried out using the proportions of the
human body as a guide. For example, if the point of interest is the head, the first 1/8
in the z-axis of the volume is extracted.
Other preprocessing carried out on the volumes are Resampling and Thresholding,
the former being carried out to exploit the Coarse-to-fine process where necessary.
This provides for the resampling of very large volumes to reduce the dimensionality
and therefore facilitate the calculation times of the subsequent processes, once the
results are obtained, they are remapped on the dimensions of the original volumes
and applied to them.
In this way, high resolution results are obtained by exploiting low resolution volumes
to carry out processes.
The second preprocess carried out is the application of thresholding, this process
allows to extract only the most significant components of the volumes such as the
bone parts excluding the soft tissues, in fact the latter are not suitable for comparing
two volumes as they can undergo radical changes over time. Spent between the two
CT scans acquisitions thresholding therefore improves the general results obtained by
making both sectioning and alignment processes more precise.
The Template Volume can be extracted from a CT scan of the same patient available
or it can be a generic template volume belonging to another patient, in fact good
results have been obtained with both types of volumes and thanks to the use of a
degree of expansion of the volumes also the results obtained with generic templates,
previously lower, have reached satisfactory levels.
The Alignment Algorithm, on the other hand, aims to align two volumes belonging
to different scans of the same patient and then make the difference. The volumes
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supplied as input are two body portions obtained from two different CT scans of the
same patient, for example two femurs or two pelvises. This is because through the
algorithm with two scans carried out one or more years apart, we will be able to assess
whether in specific areas where lesions have been appropriately identified these have
undergone a significant course.
At first the Sectioning Algorithm is used to extract from two CT scans of the same
patient carried out in different years the same bone portion where a lesion caused by
Multiple Myeloma has been identified, subsequently these two portions are suitably
processed with a resampling or a thresholding discussed above. Once these portions
have been extracted, they are aligned with a co-registration process suitably optimized
based on the size of the volumes, the available computing power and the desired
accuracy.
Once the volumes are aligned, their difference is produced and a graphic representation
developed, in this case the areas where there are differences will be easily identifiable.
If in the areas of the volumes of the differences in which lesions were found, the
presence of any portion is evaluated then this is examined as it could represent a
course of the lesions themselves.
Thanks to the use of the metadata provided with the CT scan files it is possible to
calculate the volume of these areas and in which direction they have developed, all
this information will be useful to the doctor to evaluate the speed with which Multiple
Myeloma develops and also the direction where lesions are developing so as to predict
and prevent further compromise of the affected bones.
The results of all proposed methods have been verified and reported, in general the
validity of the algorithms has been verified and it has been demonstrated how they
could be substituted for the current manual methods followed by doctors.
In fact, two complete cases of use have been reported, the first without evidence of
injury developments and the second with evidence of an area of interest. In the second
case, a clinical case study was developed by analyzing the extent of lesion growth.
However, both the sectioning algorithm and the alignment algorithm found a perfor-
mance reduction when the volumes under examination had particularly compromised
or complicated conformations, specifically areas with multiple levels of mobility such
as the head with the mandibular appendix or the hands with finger components.
This shows that it is not possible to generalize the application of the methods to all
parts of the body and the presence of an operator to optimize and rectify the processes
is still a necessary condition. The results obtained, however, are not algorithms capable
of making diagnoses, but are only tools at the service of the doctor to facilitate the
patient’s study and diagnosis process.
The possibility of extending these methods with deep learning algorithms able to
classify and make decisions is not excluded in the future, at the moment it was not
possible to proceed in the development of systems on artificial intelligence since it was
not possible to recover a suitably labeled dataset containing volumes specific with
bone lesions typical of Multiple Myeloma. For this purpose, one of the two proposed
methods, the sectioning algorithm, can also be used to facilitate the construction of
this data set. The process of building a data set is long and requires a large amount
of time and for this reason having an algorithm suitable for this purpose is essential,
in fact with the proposed sectioning algorithm the only limit is availability CT scan
as it automates every aspect of the component extraction and labeling process.
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Conclusions

This thesis work was developed in the year we really realized how important in the
medical field research and development is. The development of specific and optimized
methods for certain pathologies does not exclude the possibility of extending the field
of application. For this reason this thesis proposes the purpose and the hope that it
can be a first step towards the development of solutions that can one day make a
difference.
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