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Abstract

In recent years, legged rovers have become more and more relevant in the space applica-
tions. Whether the deployed rovers, are still wheeled ones, their limitations make clear,
that rovers capable to operate on uneven and harsh terrains, are needed. For this reason,
more and more researches are performed to address all the aspects of complex legged
robots.
Nowadays, one of the main problems of legged robots is their high power consumption,
that limits their autonomy. For this reason, multiple researches have been conducted to
optimize the energy consumption, evaluating different gaits, leg trajectories, actuators
and more.
This work aims to expand this branch of research on legged rovers, trying to optimize
the path of the rover on the ground, to reduce the energy consumption needed to reach
a target position. In particular, it aims to determine a cost function, that allows path
planning algorithms to evaluate paths, not based on geometric distances and accessibility
maps, but on the energy required to follow the path.
To test and validate the cost function, some path planning algorithms deriving from the
RRT* are developed, to fit all the cost function and legged robot needs. Furthermore, a
benchmark robot model, with mechanical parts and controllers, is built on Simulink, to
test the quality of the paths generated.
The results shows, that the algorithms are able to find a path and optimize the energy
consumption, yet several improvements are possible, and suggested.

Keywords: path planning, legged robot, RRT, RRT*, RRCT*.





Abstract in lingua italiana

Negli ultimi anni, i rover a zampe sono diventati sempre più rilevanti nel settore spaziale.
Se i rover utilizzati sul campo, sono ancora solo robot a ruote, le loro limitazioni rendono
chiaro, che robot capaci di operare su terreni sconnessi, sono necessari. Per questo motivo,
sempre più ricerche vengono svolte per valutare i molteplici aspetti dei robot a zampe.
Al giorno d’oggi, uno dei maggiori problemi per i robot a zampe, è l’elevato consumo
di energia, che ne limita l’autonomia. Per questo, molte ricerche sono state svolte per
ottimizzare il consumo di energia, valutando differenti andature, traiettorie delle zampe,
attuatori e molto altro.
Questo lavoro mira ad espandere questo ramo della ricerca sui robot a zampe, provando
ad ottimizzare il percorso di un robot sul terreno, per ridurre il consumo di energia nec-
essario per raggiungere la destinazione. In particolare, vuole determinare una funzione di
costo, che consenta agli algoritmi di pianificazione del percorso di valutare i percorsi, non
basandosi su distanze geometriche e mappe di accessibilità, ma sull’energia necessaria per
seguire un percorso.
Per testare e validare la funzione di costo, sono stati sviluppati degli algoritmi di pianifi-
cazione del percorso derivanti dal RRT, per adattarsi alle necessità della funzione di costo
e dei robot a zampe. Inoltre, è stato creato un modello di un robot di prova su Simulink,
simulando parti meccaniche e anche i controllori, per testare la qualità del percorso gen-
erato.
I risultati mostrano, che l’algoritmo è capace di ottimizzare il consumo di energia, ma
parecchi miglioramenti sono possibili e suggeriti.

Parole chiave: pianificazione del percorso, robot a zampe,RRT, RRT*, RRCT*.
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1| Introduction

“The time will come when man will know even what is going on in the other planets and
perhaps be able to visit them.” HENRY FORD, Theosophist Magazine, February 1930.
Even before being able to leave the Earth, humanity has always been curious about its
surroundings, trying to observe worlds far away, and using imagination where the sight
could not reach. Eventually, we broke the barrier above the clouds, getting to space and
moving closer and closer to other celestial bodies, first observing from afar, and then, even
landing on them. Up to now we have “flown by, orbited, smacked into, radar examined,
and rocketed onto, as well as bounced upon, rolled over, shoveled, drilled into, baked and
even blasted. Still to come: ‘stepped on.’ ” BUZZ ALDRIN.

1.1. Background

The rovers sent in space up to now, are wheeled rovers, those are relatively simple, but
very limited. Wheels are made for roads and even terrain, and exploration is not per-
formed on roads. Thus rovers capable to traverse rough terrain are being developed in
the shape of legged rovers, that can lift their leg over rocks, cracks, obstacles; and com-
press a much smaller terrain area under their feet, increasing theoretical efficiency and
reducing the impact on the terrain[1]. Legged robots have been object of studies since
the beginning of robotic, but due to their high complexity, the wheeled ones have always
been preferred in real applications. With the development of computing hardware, con-
trol theories, algorithms; and the increasing requirement for applications in high difficulty
terrain, legged robots are becoming an interesting option[1]. In this environment multiple
aspect related to legged locomotion have been researched, one of them being the path
planning.

1.2. State of the art

Multiples studies have been conducted about robots locomotion, trying to address differ-
ent aspects: leg motion planning, gait planning, path planning; first evaluating feasibility,
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then optimizing energy consumption and other parameters.
Legged robots have an high number of degrees of freedom, multiple state sequences will
be suitable to get a feasible motion between initial and final states, being extremely power
thirsty, legged robots need to use remaining degrees of freedom to reduce power consump-
tion. Studies to estimate the cheapest single leg trajectory have been performed in [2],
while postures efficiencies have been compared in [3]. (Note: in section 1.1, legged robots
have been described as “more theoretically efficient”; while, theoretically, legged locomo-
tion is more efficient than wheeled locomotion, since wheels spend energy to deform long
stripes of terrain, and legged ones just deform small areas; in real applications there are
not motor as efficient as muscles and so, in practice, legged robot are more energy de-
manding [1]).
Motion cost can be greatly affected by the terrain, various studies can estimate the best
gait and leg parameters from terrain stereo observations like [4]. Those methods work
on terrain that have been studied and classified, but often the terrain being explored
can be unknown and maybe different from everything tested before. In these situations
algorithms that allow the robot to estimate the gait motion with optimal consumption,
while walking on the terrain [5, 6] can be useful.
About the path planning, several studies have been conducted to obtain a feasible path,
generally minimizing the distance: starting from a 2D heightmap [7] estimate a coarse
path using an A* method, refining the trajectory and defining all other leg parameters
by running an RRT-based footstep planner, while [8] uses a D* Lite planner. In [9] laser
scanner and stereo vision systems have been used to autonomously drive a big robot in a
very complex terrain as a forest.

Both on Earth and in space wheeled robots are still more developed and used, not only
they have less degrees of freedom, reducing the need to optimize multiple motion parame-
ters, but on-mission experience allows research to be much deeper. Several path planning
algorithms for wheeled robots exist, used in domestic robots, industrial robots, cars etc...
Of particular interest in this work are the wheeled space rovers, that can provide an on-
field expertise that cannot be matched by theoretical research and controlled experiments
on legged robots.
Curiosity and Mars 2020 require an high degrees of autonomy for long-distance au-
tonomous traverse, to cope with this requirement local path planning must find a feasible
path to move in a direction and ensure the safety of this path. To do so, an inverse-
kinematics problem with iterative nonlinear optimization under geometric constraint must
be performed for multiple candidate paths. This computation is unfeasible for the limited
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performance of the rover computer, thus [10, 11] proposed ACE (Approximate Clearance
Evaluation). ACE does not consider the entire kinematic of the rover, but just upper and
lower boundaries, obtaining feasibility boxes that can be used to ensure, in a conservative
way, that the robot limits are not exceeded, obtaining much faster, yet reliable and safe,
computations.
To be more accurate, ENav (Enhanced autoNav), generates a list of paths, shaped like
arcs of circumference, it preliminary sort them to rank them in order of expected feasi-
bility, and then runs ACE to ensure their feasibility. Often, ENav preliminary estimation
feeds to ACE paths that it will evaluate as unfeasible, thus forcing ENav to rank again
the paths and call ACE until a solution is found. Despite being cheaper than full kine-
matic ACE is still computationally expensive, therefore [12] proposed two alternatives to
quickly and more reliably rank the paths, one using Sobel operators and convolution, the
other using machine learning to predict areas that will be deemed untraversable by ACE.
Other studies like [13] have added onto a feasibility evaluation, also a terrain slippage
evaluation, to better estimate the traversability on different terrains.

1.3. Scope of the thesis

As seen before, several studies have been performed for optimizing energy consumption of
leg and gait motion, and many addressed the path planning accounting for path feasibility,
but there is a lack of studies concerning path planning of legged robots estimating and
minimizing energy consumption. In particular, path planning for legged and wheeled
robots, is performed through a graph technique, where some robot states are connected
to each other. This theory is flexible and can be applied to any robot, if can be provided
an adequate way to estimate the cost to pass from a state to another. This thesis objective
is to develop a cost function, that can estimate this cost, based on the energy consumption
of a legged robot. In this way, existing literature on wheeled robots path planning, could
be extended to legged robots. Furthermore, hybrid legged-wheeled robots will be able to
use the same path planning algorithm in wheel and leg mode, by just changing the cost
function.

1.4. Structure of the thesis

After seeing the introduction of the thesis in this chapter, in chapter 2 basic concepts on
path planning and legged robots are presented, concluding the "established knowledge"
introduction. The main work will start in chapter 3 where the cost function is discussed,
and in chapter 4 some variants of path planning algorithm are presented. To validate the
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study, a simulation environment has been set up in chapter 5 and the result for a case
study rover are presented in chapter 6. The work results and future work are summarized
in chapter 7.
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2| Fundamentals

To ensure for any reader to have some foundations before discussing the research per-
formed, and to make clear the terminology used in the following chapters, here are pre-
sented some fundamentals of path planning and legged robots. Note that all the topics are
introduced just for what is strictly necessary for this thesis discussion, this is not meant
to be an extensive introduction.

2.1. Path planning fundamentals

Path planning is often performed though graphs, therefore graphs are introduced.

2.1.1. Graphs

Graphs are very useful structures, used in (but not limited to) path planning. Are com-
posed of a set of points (vertex or nodes) connected each other through edges fig. 2.1a.
Those edges express a relation between the nodes, for path planning purpose this relation
is usually a "path" between two nodes. Considering edges as paths, can be easily seen
that they can be directional and weighted fig. 2.1b, where the direction indicates in which
direction the motion is allowed and the weight the cost to move between the nodes along
the edge.
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(b) Directed and weighted graph example.

Figure 2.1: Graph examples.

Is clear that, in the examples, is possible to move between any vertex in the graph, passing
through other vertices if necessary. The final cost to move between the vertices, is the
sum of the edges weights. Assuming to define an initial point A and a target point G, for
each vertex a cost to reach from the initial point can be defined, and can be computed
as the cost to reach the previous point from the initial point plus the edge cost between
this vertex and the previous fig. 2.2a. Is easy to note, that vertices can be reached from
different vertices and paths with different cost. In these cases, the vertex retains the
cheapest cost and is considered reached with the cheapest path fig. 2.2b.
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Figure 2.2: Paths examples.

A graph where each vertex has just one parent, is called a tree fig. 2.3 and is in general
much cheaper to access.
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Figure 2.3: Tree example.

Exist different techniques to generate and search in graphs, but they will not be discussed
here. In path planning, graphs are generally generated over a terrain splitting the terrain
in cells and placing vertices systematically in cells (Search-based algorithms), or by placing
them randomly (Sampling-based algorithms)[14]. For the scope of this thesis, just the
sampling-based algorithms and in particular the RRT family will be introduced.

Note that in path planning, vertices can be any type of state, not necessarily points in
a 2D or 3D space, therefore, while here they will be introduced assuming states as (x,y)
positions, in general they are not limited to it.

2.1.2. RRT

RRT (Rapidly-exploring Random Trees) is a sampling-based algorithm, where the nodes
positions are determined randomly.
It starts defining a starting point S and a target point T (or a target area) (fig. 2.4a), the
objective is to build a path from S to T. To do so, at any generic iteration, the algorithm
works in this way:

1. A random point X in the search space is selected (fig. 2.4b).

2. The closest node N to X is identified and N is extended to X. In other words, a new
vertex V is placed on the line that connect N to X, at a distance from N that can be
called Extension Distance dextend (fig. 2.4c). (If the XN distance is smaller than
dextend, the new vertex V is placed in X.)
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(a) Starting problem.

S

T

N

X

(b) Find closest point.

Figure 2.4: RRT algorithm pt1.
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(c) Add new vertex.
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(d) Find neighbour vertices and evaluate connection edges.

Figure 2.4: RRT algorithm pt2.

3. V is then connected as child to the cheapest neighbouring vertex. To do so all
the vertex Nx, that have a distance from V smaller than a Connection Distance
dconnect, are selected (fig. 2.4d), and all Nx are connected to V with edges. A cost
function is used to compute the weight and the feasibility of each edge, then the cost
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to reach V from S can be computed for each Nx. The cheapest one is maintained,
while all the others are pruned away (fig. 2.4e).

4. If the VT distance is smaller than dconnect, an attempt to connect T with V is
performed (fig. 2.4g), if is successful, a feasible path is obtained (fig. 2.4h).

This procedure is iterated until a vertex can directly be connected to the target. Some-
times the random point X can be chosen as positioned in the target T (fig. 2.4f), to force
the planner to explore in the direction of the target, instead of in a random direction. The
ratio of iteration where X is selected as T over the total number of iterations, is called
Exploration Bias [15, 14, 16].

S

T

V

(e) Connect new vertex to the tree.

S

T

V

(f) X selected as target point.

Figure 2.4: RRT algorithm pt3.
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S
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(g) Connect to target.

S

T

(h) Path found.

Figure 2.4: RRT algorithm pt4.

As can be seen in fig. 2.4h a path can be found, but is not optimal. In particular, in
this example, if we assume that there are no obstacles and that the cost function is the
geometric distance, the optimal solution would be a straight like from S to T, while the
path found takes a longer route. The algorithm can keep running after a solution is found,
possibly finding a better solution, but is very inefficient in finding an optimal solution,
therefore more advanced algorithms are required.

2.1.3. RRT*

RRT* is an evolution of the RRT where a rerouting step is added.
The iterations are the same as for RRT, but a step is appended at the end. After the new
vertex has been added to the tree (fig. 2.5a), all vertices at distance smaller than dconnect

from the vertex, are considered as possible children of the vertex; evaluating the edges
as in step 3 of the RRT method, but in this case moving from V to the neighbouring
vertices, the cost to reach them from the start passing from V can be computed, if this
cost is cheaper than the previous one, V become the new parent and consequently the
path is rerouted (fig. 2.5b). All variation happening in this area, must be propagated to
the descendant vertices.



2| Fundamentals 11

S
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(a) Find neighbour vertices and evaluate connection
edges.

S

T

(b) Tree and path updated.

Figure 2.5: RRT* algorithm, rerouting step.

As can be clearly noted in fig. 2.5b, the RRT* can optimize the path and can be shown
that RRT* guarantees asymptotic optimality [17]. While RRT* can guarantee cheaper
and more reasonable paths, the numbers of calls to the cost function is highly increased,
so RRT* has generally slower iterations respect to RRT [17, 14, 16].

2.1.4. Dubins-curve based RRT

As shown until now, the base RRT is used for a point moving on a plane, and connects
two positions through a segment. For some robots this can be a possible way of generating
a feasible path, this is the case if the robots are able to turn on spot, but some robots,
as car-like robots, cannot do that. They have a limit minimum radius of curvature, they
can approach while steering. Those mobile robots usually have less action variables then
degrees of freedom. This kind of robots is called non-holonomic, or underactuated[18].
To account for this behaviour, some modified RRT algorithms have been developed.
First of all, the explored state space is the Dubin state space, accounting for (x,y) position
and (ϑ) orientation. Any state q = [x, y, ϑ] can be connected to another state trough a
curve, imposing a minimum curvature radius to the curve; can be demonstrated, that the
geometrically shortest path connecting the two points, is composed just by straight lines
and circumference arcs, having radius equal to the minimum curvature radius [18]. The
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resulting connection curve, is called a Dubin curve (fig. 2.6).

Figure 2.6: Examples of three doubin curves.

These Dubin curves can be used to connect two states, and so two vertices, in the RRT
algorithm. Or alternatively can be used to connect a Dubin state q = [x, y, ϑ] to a position
p = [x, y], generally exiting from the q with an arc of circumference having the minimum
curvature radius, and entering p with a straight line, then assigning to p an orientation
based on the arrival direction of the straight line, thus making it a Dubin state [18].

Must be noted that this algorithm adds a degree of freedom to explore ϑ, and performs
all the curves with the minimum possible curvature radius.

2.2. Legged robots fundamentals

The most common way in nature to move on ground is legged locomotion. As several
species moves using legs, as many architectures are present in nature, and consequently
in robotic.

2.2.1. Legs

For the vehicle to move in a kinematically correct way on an arbitrary trajectory on
uneven ground, each foot must have, independently from the leg configuration chosen,
a minimum of three degrees of freedom [1]. Three is the minimum, but often in nature
more are present. For example, humans have one fundamental degree of freedom in the
knee and two in the hip, while an additional one is in the ankle and more in foot fingers.
These additional degrees of freedom helps to optimize the contact to the ground. In the
rover used as benchmark, based on SpaceClimber [19], there are five joints, as can be
seen in fig. 2.7b. The tree fundamental joints are between B and C (Distal), D and E
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(Basal), E and F (Thorax), while an additional joint is added between F and G (lean)
and a prismatic passive joint (a spring) is between A and B.

(a) Robot isometric view from behind. (b) Robot leg detail.

Figure 2.7: Rover scheme: each color represent a rigid body, therefore at every color
discontinuity there is a joint.

Leg motions is generally split in two phases. The first one is the Stance Phase or
Support Phase, where the leg is in contact with the ground, sustaining the weight of
the body and standing still, while moving the body forward. Conceptually, after the leg
has reached it maximum extension in stance phase, the Swing Phase or Return Phase
is triggered, where the leg is lifted and moved forward, to then start a new stance phase
(fig. 2.8a).
For each phase can be defined a duration: Swing Time (tswing) and Stance Time
(tstance), while the time for the leg to perform a swing plus stance cycle is called Cycle
Time (tcycle). The Duty Factor β can be defined:

β =
tstance
tcycle

=
tstance

tstance + tswing

(2.1)

Defining a reference frame fixed on robot body, where y is parallel to the motion direction,
z parallel and opposite to the gravity vector and x is to form a right-hand orthogonal frame,
a side view of the foot trajectory in this frame can be defined as in fig. 2.8b. During the
swing phase, the trajectory can have any feasible shape: triangle, rectangle, parabola,
n-grade polynomial etc..., while the stance trajectory will be determined by the desired
body trajectory, in the simple case of a forward motion, the foot will move backward in a
straight line relatively to the body frame. Some parameters can thus be defined: Stride
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(a) Side view of robot motion during tripod gait,
showing legs in swing and stance phase.
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(b) Foot trajectory side view.

Figure 2.8: Legs and foot motion.

Length Lstride, distance covered by the leg during swing phase; Stride Height hstride,
height of the foot in the highest point of swing phase respect to a plane fitted to the
ground; Stride Slant (σstride), angle between the horizontal line and the tangent to the
swing trajectory at the end or the beginning of the contact.[1]
The velocity of the robot will be the opposite of the velocity of the feet in stance phase
an thus:

v =
Lstride

tstance
(2.2)

2.2.2. Legs and gaits

Legged robots can have any number of legs higher than zero, the most relevant categories
are 3: biped, quadruped and hexapod (or any robot with more legs). The classification
is based on the stability, the capability of the robot to not overturn. The static stability
is determined by the position of the vertical projection of the center of gravity, onto the
vertical projection of the polygon being convex hull of the contact points with the ground
(Support Polygon) (fig. 2.9a). If the said center of gravity, is inside the support polygon
and the robot is still, it is guaranteed to not overturn. The smallest distance between
the projected center and the projected border is often used as a parameter to quantify
the static stability, and is called Static Stability Margin Sm (fig. 2.9a). The static
stability does not ensure the dynamic stability, since the first does not account for inertia
forces, that are present during motion. On the other hand, lack of static stability do
not implies the lack of dynamic stability, in fact, biped do not generate any polygon and
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thus the center of gravity will always be outside the boundary, yet humans are able to
walk and stand still; a mix of inertia forces and control actions grants the balance. If
biped robots never ensure static stability, quadrupeds ensure it when still, but generally
not while moving, while robots with six or more legs can potentially ensure it in both
conditions. While adding legs improves the static stability and reduce the complexity of
the balance control, it also reduce the speed and increase the overall complexity. [1]

(a) Robot bottom view, with support polygon,
in still condition.

(b) Legs nomenclature: in black labels, in red
pure indices.

Figure 2.9: Support polygon and leg nomenclature.

Presence of multiple legs, implies the need of a coordination between them. The pattern
that determines the alternation between swing and stance phases in the legs, is called
Gait. If the duty cycle is the same for all legs, the gait is a Regular Gait. The Leg
Phase is a measure of the delay, with which each leg contact the ground respect to a
reference leg (to not be confused with the use done until now of the word "phase").
From now on, is useful to focus on the sole example of the hexapod, and we can define a
notation for the legs as in fig. 2.9b.
For hexapods exist several gaits: free gaits, precision footing, equal phase, wave, etc...
The scope of this thesis is to work with a robot using regular and periodic gaits, and a
very basic case. Gait patterns can be easily generated by assuming a cycle 12 units long,
and a swing phase long 1, 2, 3 and 6 units. In this way, applying the proper phasing, 4
gaits are obtained, respectively Slow Wave, Fast Wave, Ripple and Tripod (fig. 2.10).
Those are the only ones considered, because are the ones evaluated in the benchmark of
this work.

To generate the motion, a controller will generate swing-stance pulses like in fig. 2.10 (see
section 5.5.6), that will be delivered to the legs, the leg will determine a foot trajectory
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(d) tripod.

Figure 2.10: Gait diagrams: on x axis an adimensional time of 12 units, on the y the legs
referred as fig. 2.9b: Where colored, the leg is in stance phase, where white, the leg is in
swing phase.

like in fig. 2.8b (see section 5.5.1), thus generating a coordinated motion.
Needless to say, that in any of this gaits, if a lateral foot motion is added to the legs, the
robot can steer and follow a path.

2.2.3. Posture parameters

A legged robot has still others degrees of freedom to be defined, in particular the ones
regarding the posture. While in fig. 2.8b the foot trajectory in a body-attached frame
has been defined, it is not obvious where this frame is placed, is clear that the same
trajectory can be followed by the foot, while the robot can have different legs apertures
or body heights. To define this parameters, we can define a reference frame of the foot
trajectory in fig. 2.8b placed along y in the median point between the foot most anterior
position and the rearmost one, along z to be placed on the ground, and along x to to
belong to the foot trajectory plane.
For example, for this benchmark robot, the foot trajectory reference frame, can be placed
(for each leg) referred to the E point (fig. 2.7b). Since the posture parameters are meant
to be defined for the whole robot and not for a single leg, an E’ point is constructed. In
fact, as can be noted in fig. 2.11, the four front legs and the two rear ones have motors
mounted in the opposite way, and middle legs G points (fig. 2.7b,2.11) are placed higher
than the others. Therefore E’ will be shifted by the length due to the actuators (BC +
DE) and the height due to different joints height ∆zMJ (fig. 2.11). From E’ are defined
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3 parameters: xoffset, yoffset and zoffset, determining the displacement between the foot
trajectory reference frame and E’ along x,y and z, in the local horizon frame (fig. 2.11).
Must be clarified that the frames referred to the left legs have an inverted x axis, being
thus left-handed frames, but maintaining the same x,y and z offsets.

E
E E

E'E' E'

BC + DE

y

z

y

x

E

E'

Figure 2.11: Posture parameters: Indicates the positions of E and E’ nodes. In black
parameters due to structure geometry, in red the foot trajectory reference frame of leg R2
and parameters referring to its position.

xoffset determines the leg aperture, increasing it increases the lateral stability, but reduce
the maximum stride length and height allowable. yoffset determines the center of gravity
position on the support polygon, adjusting this value with changing longitudinal slope,
can be beneficial for the stability. zoffset determines the body height, higher value allows
to pass higher obstacles, but increases consumption and reduce maximum stride length
and leg aperture allowable. For the benchmark robot zoffset is properly the E Height
hE, the height of the lowest E point respect to the ground, while the Body Height is
determined by the E height. In fact the additional degree of freedom between F and G
(fig. 2.7b) is used to maintain the legs aligned to the vertical, therefore modifying the
relation, but without adding other parameters.
This construction is specific for this rover, but can be extended to any legged robot by
defining a Body Height, a Legs Aperture, a Center Of Gravity Alignment, and
defining relations that can grant the values to be fulfilled based on the specific kinematic
of the robot.

2.2.4. Reflexes

Determining foot trajectories based on predefined shapes and centralized pulses, so not
evaluating each footstep position based on terrain map, brings some limitations. Regular-
gait-driven leg motion is simple and effective on regular and flat terrain, but on rough
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terrain with slopes, obstacles and holes, the robot is subject to deviations, blocking and
overturning. To improve the reliability, some reflexes are generally added. Here some
examples:

• If the rover is moving downhill or the foot is falling in a hole, the time to reach
the ground after swing phase will be higher, therefore, the swing motion should be
extended, to ensure ground contact and the rise of other legs should be prevented,
to avoid unstable conditions.

• On the contrary, if is moving uphill, the time to reach the ground will be shorter
than expected, so the motion could be stopped at contact.

• If an obstacle is hit during swing phase, the rover should be able to adjust the foot
trajectory to avoid it.

• If the gait and trajectory controllers demand a motion that does not satisfy the
mechanical constraints, like elongating too much the leg or moving it to pass through
a part of the robot, the motion shall be modified or temporarily halted.

What must be clear, is that to actually work in a real environment, the full motion will be
affected by much more complex controllers than the simple gait pulses described before.
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3| Cost function

The scope of this thesis is to enable a path planning, minimizing energy consumption
for a legged rover. In particular to develop a cost function, that can map terrain data
and a trajectory into an energy consumption along the trajectory. Furthermore, it has
also to select the robot parameters described in section 2.2 to ensure path feasibility and
minimum consumption.
The cost function could be applied to any graph edge, but here the path planning tech-
niques considered are of the RRT family. Because they allow a variety of directions, that,
since the consumption and feasibility are strongly affected by the direction at which the
terrain is traversed, allows better optimization and higher success rate.

3.1. General concept

The fundamental idea is simple, build a robot model able to simulate the robot motion
and compute the energy consumption (chapter 5), test this model on different terrains
and build a matrix of results so that for any combination of terrain and robot parame-
ters, can be interpolated the consumption. When evaluating an edge cost, a rectangular
oriented window slides along the edge (section 3.3), similarly to ACE (see section 1.2), it
maps the terrain in few synthetic parameters (section 3.4), and use them to access the
matrix (section 3.5). The cost of each feasible parameter combination is evaluated and
then the parameters combination with the lowest consumption is selected, thus obtaining
parameters and estimated consumption.
Clearly an approach of this type is quite brute force, and is very computationally expen-
sive, thus the problem must be formulated to reduce the matrix dimensions.

3.2. Parameters definition

The matrix will be evaluated with as many dimensions as parameters to evaluate, includ-
ing terrain parameters and robot parameters, as said before, the number of parameters
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must be reduced to the strictly necessary.

For the benchmark robot the parameters to be determined are: xoffset, yoffset, zoffset,
σstride, hstride, Lstride, tcycle, tswing, tstance, β and other gaits parameters. All the gait pa-
rameters can be condensed into a gait type, that contains all coordination parameters, for
example, for the benchmark robot have been used four gaits as described in section 2.2.2.
tcycle, tswing, tstance are at this point related to each other though β and eq. (2.1), so any
of them can be selected as a single parameter. Using eq. (2.2) the times can be replaced
with the Forward Velocity of the robot (vforward). σstride adds more complexity while
not actually improving performances, thus has been set to maximum feasible value, and
removed from the free parameters. zoffset can be substituted by hE, yoffset is computed
by the controller based on slope and gait (section 5.9), and xoffset has been set to a fixed
value. In this way the robot parameters that can be tuned during the path planning are
5: hstride, hE, Lstride, gait, vforward.

The terrain complexity must be reduced to few synthetic parameters, mainly the slopes,
obstacles heights and rocks coverage. The one selected are:

1. Longitudinal Slope α|: while climbing a slope, the potential gravitational energy
increase and for sure the consumption increase.

2. Transversal Slope α_: that causes a deviation in the trajectory and so an higher
consumption from the control action, or even an unfeasibility due to mechanical
constraints.

3. Max Obstacles Height hobstacle,max: that force the robot to increase the body
height and the stride height, to avoid hitting obstacles.

4. the Missing Contact Coverage Factor ρMCC : percentage of the terrain having
local slope unable to grant the adherence of the leg, causing its slippage and loss of
stability.

Assuming that obstacles do not affect the consumption, since they are avoided, so their
presence is not perceived, the max obstacle height can be used to directly determine the
stride height and E height. This does not entirely hold, since the feet can hit obstacles
and graze them, but is still considered reasonable. Instead, the percentage of terrain with
high local slope can be used to determine the gait, ensuring enough feet to have stable
foothold, shown exhaustively in section 5.10.
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Therefore the parameters independently affecting the consumption are 7:

1. longitudinal slope

2. transversal slope

3. stride height

4. E height

5. stride length

6. gait

7. forward velocity

The results of the wide evaluation will be stored in the form of a Cost Of Transport
Matrix, where the Cost Of Transport is defined as the energy consumption per space
traversed:

COT =
E

L
(3.1)

where E is the energy consumption and L the length of the trajectory covered by the robot.
The Cost Of Transport Matrix will thus be COT (α|, α_, hstride, hE, Lstride, gait, vforward),
meaning that accessed with a combination of these 7 parameters, returns a COT (Infinite
value if combination not feasible).

This selection is reasonable for any legged robot, but if other parameters are present,
they can be added to the matrix with similar criteria, increasing computational cost, but
maintaining validity.

3.3. Sliding window

The sliding window is conceptually a rectangle that crops the terrain, obtaining the por-
tion of terrain, oriented in robot local horizon frame, where the robot will stand. To make
unambiguous this procedure, robot frames and terrain must be defined.

The main reference frames used in most of this document, are the frames RB and RH
(fig. 3.1a), both are fixed to the robot body, and placed at the middle point between
the two back actuators attached to the body along their cylindrical symmetry axis. RB
(body frame) has y oriented as the vector connecting point G of leg R3 to point G leg R1
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(fig. 2.7b,2.9b), x oriented as the vector connecting point G of leg L3 to point G of leg
R3 and z is the cross product between x and y. RH (local horizon frame) has z oriented
as opposed to gravity, x is the cross product between y of RB and z of RH, y is the cross
product between z and x.

(a) RB and RH reference frames (b) Tearrain example.

Figure 3.1: Frames and terrain.

The terrain is modeled as a heightmap Zterrain(x, y) (fig. 3.1b), a rectangular matrix con-
taining for each x,y combination inside its ranges, a z value elevation of the ground (x,y
in terrain frame). A Limit Contact Slope can be defined as the maximum slope at
which the foothold is stable, this value depends on the foot-terrain contact type. From
Zterrain(x, y), the local terrain slope in each point can be computed. All the terrain points
with slope higher than the said value, are highlighted into a boolean Missing Contact
Matrix Γterrain(x, y), useful for later access. (more details on terrain data and genera-
tions in section 5.6).

The sliding window will not have a continuous motion, but will be called at Lsampling

(Trajectory Sampling Length) intervals along the trajectory, thus building a discrete
series of terrain evaluations.
The sliding window is defined starting from RH, that define the position and orientation
of the robot. The window must be large enough to include all possible terrain traversed
by the robot, from the actual sampling point to the next one. The window will have a
Window Length, Window Width to determine it size and a Window Back Offset to
determine its position along yRH , while along xRH is positioned to be symmetric (fig. 3.2).
The window is actually composed by a series of bands (fig. 3.2), A-band must include ev-
ery position in the plane that can be reached by any foot, E-band every position that the
basal actuators in D and E can reach (fig. 2.7b), and T-band comprise the gap between
the two E-bands. A and E bands can intersect each other (fig. 3.2). The reasoning is that
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Figure 3.2: Sliding widow parameters and subdivision in bands. Specific data and com-
putations in section 5.3.

the terrain characteristics in A-band will affect foothold and foot behavior, the ones in
E-band (just obstacles heights) can hit the lower actuator, while the ones in F-band can
hit the rover torso. Must be noted that if the robot is steering, the feet will move along
x, increasing the width of the A-bands. To have a simple code, the function select one of
just two A-band widths, depending if the path is a straight line or a curve one. The union
of these bands determines the sliding window. For window parameters computations for
benchmark rover see section 5.3.

The cropping process generates a new terrain (x,y)-points matrix, relative to the sliding
window, positions and rotates it as for RH frame, and through linear and nearest interpo-
lation obtains respectively a corresponding window-relative heightmap Zwindow(x, y) and
missing contact matrix Γwindow(x, y). If the window goes outside the terrain boundaries,
its considered as an unfeasible position.

3.4. From terrain to synthetic parameters

The portion of terrain obtained in the previous section, must be synthesized in few pa-
rameters as described in section 3.2. To do so, the points of the Zwindow(x, y) can be
grouped as the bands described in fig. 3.2, obtaining points sets that can be called: A-set,
E-set and T-set.
The first step is to fit a plane to the terrain, since this is meant to represents the slopes
perceived by the rover, the plane is fitted to the A-set. In fact, if the rover were to
walk on a loading ramp, for example, A-set will have a positive slope while T-set a zero
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slope, but the robot will be unaffected by gap between the ramps, which presence is to-
tally irrelevant. Thus the fitting plane obtained including both the sets, will be more
computationally expensive and less accurate in estimating the slopes felt by the body.

A plane in 3D space can be expressed as

z(x, y) = ax+ by + c (3.2)

Therefore, for a set of n points with x,y,z coordinates, an over-constrained system can be
set up in the form: 

x1 y1 1

x2 y2 1
...

...
...

xn yn 1


ab
c

 =


z1

z2
...
zn

 (3.3)

Solving it with a least-square method, results in the plane coefficients a, b, c. Putting
eq. (3.2) into implicit form

αx+ βy + γz + δ = −ax− by + z − c = 0 (3.4)

a vector normal to the plane V and its versor v are then

V = [α, β, γ] = [−a,−b, 1] (3.5)

v = [vx, vy, vz] =
V

||V||
(3.6)

Since the coefficient in z of V is always 1, and the plane cannot be vertical, the vector is
always exiting the ground. From the component of this versor, the slopes can be obtained:
Defining the Longitudinal Slope α| and Transversal Slope α_ relatively to the RH
frame as in fig. 3.3, they can be computed using the relations:

α| = − arcsin (vy) (3.7)

α_ = − arcsin (vx) (3.8)

Obtained the slopes, the next objective are the obstacle heights. To compute these, a
new plane can be generated, having same longitudinal slope of the fitted plane, but zero
transversal slope. This can be done using eq. (3.2) with b and c of the fitted plane and
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Figure 3.3: Scheme of the terrain slopes and their relations with the plane versor.

a = 0, obtaining a Zplane(x, y). An heightmap of the obstalces can be created:

Hobstacles(x, y) = Zwindow(x, y)− Zplane(x, y) (3.9)

Hobstacles(x, y) points can be grouped according to A, E and T bands and the maximum ob-
stacle height can be computed for each band obtaining: a Maximum Obstacles Height
for each band (hobstacle,A,max, hobstacle,E,max, hobstacle,T,max).
Finally the Γwindow(x, y) can be reduced to points in the A-band ΓA−band(x, y) and a
Missing Contact Coverage Factor ρMCC can be computed as the number of points
where the ΓA−band(x, y) is true over the total number of points in ΓA−band(x, y). ρMCC

indicates the likelihood of a robot foot to step on a steep slope point.
Note: ρMCC is computed including both A-bands, but in this way if the rover passes with
a band over a rough terrain full of small rocks and cracks, while the other on a plain
terrain, it programs a gait for a terrain moderately rough. This cause the robot to label
very rocky terrain as untraversable, but instead of avoiding it entirely, it just avoid it
with one train of legs, passing on with the other. A more reasonable procedure for future
works, would be to compute ρMCC for each A-band and retain the worse value.

Therefore the terrain is synthesized in: α|, α_, hobstacle,A,max, hobstacle,E,max, hobstacle,T,max

and ρMCC .
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3.5. From terrain parameters to robot parameters

and consumption

To access the COT matrix the required parameters are: α|, α_, hstride, hE, Lstride, gait,
vforward; while the computed data are: α|, α_, hobstacle,A,max, hobstacle,E,max, hobstacle,T,max,
ρMCC and the Curvature Radius of the trajectory RC is assigned. Must be remembered
that COT is a matrix evaluated through simulation, and thus for each dimension will be
evaluated for a list of values of a parameter. To avoid a seven-dimensional interpolation,
just the two slopes are kept as real values doing a 2D interpolation, while the other 5
parameters, since they can be selected by the function, can be chosen as coincident with
evaluated values, making the 7D space not continuous, but easier to explore.
To select those parameters, first must be discarded all unfeasible cases, to do so, a series
of checks are performed:

1. The COT matrix already by itself is made of finite and infinite or NaN (not a
number) values, the non-finite values are considered unfeasible.

2. For each parameter a feasibilty check is performed (since the exact computations
are dependent on the kinematic of the specific robot they are discussed in detail in
the later chapters):

(a) The hstride must allow the feet to overcome any obstacle, thus just values higher
than the hobstacle,A,max plus a margin are maintained (section 5.3).

(b) The hE must allow the basal actuator and the body to not hit any obstacle,
thus just the values that allow a certain clearance between the lower actuator
an the hobstacle,E,max and between the body and the hobstacle,T,max are maintained
(section 5.2.2 and section 5.3).

(c) The gait is considered feasible if is able to keep under a certain value, the time
percentage where just two feet are in stable contact to the ground. Each gait
has a limit ρMCC after which cannot grant the value to be respected (those
values are computed in section 5.10) and gaits not suited for the terrain ρMCC

are discarded. Furthermore tripod gait is allowed just on flat terrain, therefore
if the terrain slopes exceed the arbitrary value of 5°, tripod gait is discarded.

(d) hstride not only must allow the feet to overcome obstacles, but also to overcome
the terrain slope, thus to have the foot trajectory highest point, higher than
the starting and final position of the foot plus a margin. The combinations
of hstride and Lstride, that cannot grant this for the terrain α| and α_ are
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discarded(section 5.2.1).

(e) The combination of Lstride, hstride, vforward and gait, must avoid quick leg mo-
tion causing high torques, oscillations and tripping of the rover (section 5.2.3).

(f) The combinations of hE and Lstride allowing a minimum radius of curvature
higher than RC are discarded (section 5.2.4).

3. Selecting a combination of robots parameters, the COT matrix is reduced to the
form COT (α|, α_), thus allowing a 2D interpolation using (α|, α_) of the terrain.
Being it a grid of points in the α| − α_ plane, the terrain point can be interpolated
only if all the four matrix points delimiting the tile where the terrain (α|, α_) point
is contained, are feasible. If that is the case, is reasonable to consider all the points
in the tile to be feasible. Thus all the parameters not able to grant the four tile
vertices for the interpolation are discarded.

After the unfeasible cases have been discarded, the parameters are selected based on
different criteria, in succession and reducing the cases to evaluate: (for "feasible" is meant:
"having at least one full feasible combination of parameters")

1. Since has been deemed not reasonable to have a robot keeping all the time the
slowest and safest gait (slow wave), when the terrain allows it, is selected a fast
gait. In particular, the feasible gait with lowest duty factor β (so the fastest), is
selected.

2. Higher hstride intuitively increase the consumption, requiring a longer foot path and
thus higher speeds and accelerations, therefore is selected the lowest feasible hstride.

3. As for hstride also hE intuitively increase the consumption, plus it limits other pa-
rameters due to leg kinematic, therefore is selected the lowest feasible hE.

4. For all the remaining combinations, the COT is interpolated and the combination
of Lstride and vforward with the lowest COT is selected. The interpolation process is,
in general, bilinear, but since the COT function along α| has a parabolic behaviour,
to improve the accuracy, if an adjacent tile along α| is feasible, the interpolation is
modified. First are performed two parabolic interpolations along α|, than a linear
one along α_.

At the end of this process, the robot parameters hstride, hE, Lstride, gait, vforward are
defined and the COT has been estimated.
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3.6. From trajectory to consumption

The computations performed until now are on a single point, in general an edge is com-
posed by a trajectory of an arbitrary shape. To estimate the cost of a trajectory a
possibility is to sample it. Defining a Sampling Length Lsampling, a point can be placed
along the trajectory every arc of curve of length Lsampling. Each point will have an (x,y)
position, an orientation and a curvature radius RC . The process showed in section 3.3,
3.4, 3.5 can be performed for each point, and multiplying the COT by the distance to the
next sampled point, can be computed the estimated power consumption to travel that arc
of curve. The sum of all the arc cost, results in the total edge costs, while the concatena-
tion of all the robot parameters results in the parameters profile along the trajectory.

Must be noted that the impact of RC to the consumption has been considered limited
and thus does not enters the computations, except in limiting the parameters, changing
A-bands width and in modifying the way to compute the length to the next point, since
it is computed along the trajectory and not as shortest distance between the points.

3.7. Cost function restrictions

This way of building the cost function cause some limitations.
Is clear that this algorithm can work only if the robot is able to determine its position and
to follow a trajectory relatively tightly. If the robot controller is not able to compensate
perturbations and uncertainties, the robot will be driven outside of the path scanned by
the sliding window, reaching areas not evaluated. For the purpose of the path planning of
a robot of this type, a path planner based on the propagation of uncertainty is necessary.
Furthermore, for how is simulated and evaluated the terrain, with a simple hightmap, all
the terrain analysis must be considered on rigid terrain and with rocks perfectly fixed on
the terrain. Is likely possible to extend the algorithm including a relation for different
types of terrains, like sandy terrains or with rocks that can slip when hit or stepped on
by the robot, but this work has limited the study to the rigid terrain case.
The terrain generated and the terrain observed by the robot are, in this work, identical,
in reality it would not be the case. The resolution would be much lower for further
away terrain and terrain behind rocks and hills would be unknown. Nevertheless, in a
real environment, big objects, like hills and rocks, positions and sizes, can be identified
even in a low resolution; and since small rocks that affect the ρMCC are used just to
estimate a synthetic value, exact position and shape might not be necessary and a direct
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ρMCC estimation could be performed from images. While ways to roughly estimate the
terrain characteristic where is not observable, are needed also for any other path planning
algorithm.
With all those premises, the algorithm can be expanded, and can be considered relevant
also for real applications, not limited to the situations studied in this thesis.
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4| Path planning algorithms

As seen in section 2.1, RRT* can be used for path planning, and, computing the edge
cost using the cost function defined in chapter 3, the scope of the thesis is reached. In
practice, some modifications to the RRT* must be performed, to allow proper use of the
cost function and to fulfill other needs.
In particular, the main issue regards the curvature radius. In fact, even if being a legged
robot, with degrees of freedom that would allow the robot to steer on spot, is not actually
the case. For how is programmed the gait pattern generator (section 5.5), the gaits are
generated with some fixed parameters and aided by some reflexes. When the robot is
steering, the legs will have a transversal motion, that will bring them far from the body
or close to it. Obviously, there are some limits to this motion, in general, the leg cannot
be stretched infinitely, and cannot penetrate the robot body. Therefore, some action must
be performed, when one of this limits is approached. The more effective idea, would be
to start a swing phase to move the leg away from the limits and continue the motion, still
ensuring enough foothold for stability. The controller used, instead is a very simple one
(it was not the scope of the thesis, thus limited resources have been allocated to it), and
when a leg reach its limit, the whole stance phase motion is stopped, preventing the reach
of unfeasible or unstable positions. Must be noted, that the robot consumes even while
being still, so a consumption with a zero travel distance will invevitably increase the COT.
As said before, the motion restarts when the legs at limit are brought far from the limit
with a swing phase, but since the leg coordination of the controller keep following the
gait pattern, might be necessary to wait for the cycle to reach the leg that is at the limit.
This cause the robot to stop for some time, causing a huge increase of COT. Therefore,
this condition must be avoided, and since sharpest the turn, the bigger the legs lateral
motion, and higher the chances of reaching the limits, the robot have imposed a minimum
curvature radius. This radius is affected by the vforward, smaller speed implies smaller
radius, therefore, to perform sharp turns, it has to slow down increasing the consumption
(section 5.2.4). This shows that, not only there are some limits to the minimum curvature
radius, but also that the sharper the turn, the higher the COT. Therefore the algorithm
must be able to put limits for turns and to explore different curvature radii, to use big radii
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when possible, reducing the consumption, and to use small radii when needed, increasing
manoeuvrability. Also, despite for different reasons, is a more natural motion to steer
with high curvatures at high speeds.
This curvature considerations, also affect the path optimization process. When a feasible
path is found, often it contains not needed curves, due to the sampling nature of the RRT.
RRT*, increasing the samples, can make the path smoother, but might be desirable to
perform this process quicker than with pure random sampling.
Furthermore, this planner is meant to work on a short range, so if the final destination
is 100 m ahead, and the planning is for 5 m, is pointless to put a single target in the
planning, but might be better to plan for a direction. So, if a particular point is unfeasible
or expensive, the robot can still get closer to the final destination.

4.1. RRT*

The simplest idea to add the curvature constraint, would be to just replace each edge-edge
corner with a curve. This would introduce some problems, in particular the connection
between vertex will be dependant on a third vertex. This is relevant especially in the
rerouting; where to check if the connection to a vertex is better, would normally be done
just evaluating the vertex; but in this case would need also the children (fig. 4.1a). For
this reason, the first algorithm, directly neglects the curvature radius and works as the
base RRT*, but a feasibility condition on the limit angle between edges is added. If the
new generated edge cannot fulfill this condition, it is immediately discarded, before run-
ning the expensive cost function.
This process runs the cost function just on straight lines, thus is not able to estimate cost
due to steering, and turn parameters. To at least obtain a trajectory followable by the
robot and with proper parameters, a post processing of the path must be performed.

The algorithm will connect an initial Dubin state i = [x, y, ϑ](section 2.1.4), to some
target positions t = [x, y]. As already said, if the succession of states to reach the target
must be defined, the target is not necessarily a precise state. It could be a position or
a generic direction. In these algorithms, the target has been assumed as a list of target
points t. While the algorithms accepts any list of points, they have been selected as points
onto a line, positioned in the desired target direction (fig. 4.1b). Must be remembered,
that the states are referred to the RH frame of the robot, thus the target line cannot be
at the edge of the terrain, because while RH will be in the target, must be granted that
the robot has feasible terrain to step on (fig. 4.1b).
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(a) Curvature connections between three
child nodes, changing the parent node.

(b) Starting point and target points.

Figure 4.1: Curvature and target nodes examples.

4.1.1. Feasibility function

The feasibility function, defined tree points I,V,F, the IV and VF edges and a minimum
allowed curvature radius Rc,min; checks if between IV and VF, a curve with curvature
radius bigger than Rc,min, can connect the middle points of the two segments (fig. 4.2a).
Since the curves are built in this algorithm by cutting corners, each segment will be
affected in its first half by the curve to get to the precedent segment, and in its second,
by the curve to reach the next segment. Therefore, just half segment length is available
for the curve.

Furthermore, since the curve used is an arc of circumference tangent to the two segments,
the tangent points distances to the corner point (V T1,V T2), are equal (fig. 4.2b). So, just
the minimum of the two segments half length is used and called Lhalf .
Trying to define a maximum absolute turn angle between segments |∆ϑ|max, can be
constructed fig. 4.2b. In the limit case |∆ϑ| = |∆ϑ|max, R = Rc,min and V T1 = V T2 =

Lhalf . Therefore, can be obtained |∆ϑ|max using equations:

αmin = arctan

(
Rc,min

Lhalf

)
(4.1)
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I

VF

(a) Allowed curvatures (green), not allowed cur-
vatures (red).

(b) Curve construction.

Figure 4.2: Curvature feasibility between edges.

|∆ϑ|max = π − 2αmin (4.2)

Obtained |∆ϑ|max, if it is bigger than |∆ϑ| between the edges, the curve is feasible,
otherwise is not.

4.1.2. Algorithm

In Algorithm 4.1 can be seen the high level code.
For brevity, in the pseudo-code, the symbols e refer to the cost to reach a vertex from
the parent (edge cost), while $ to the cost to reach it from the start.

As said in section 4.1.1, the feasibility function is able to evaluate the feasibility of the
transition between two edges, therefore when adding a first edge, another segment must
exist. For this purpose in (Algorithm 4.1 line 1) "Define first vertex", a first edge is gen-
erated. It will simply connect the starting position to a next position at small distance
dstart along the initial direction. The new point will be the real initial position for the
tree. This is just a trick to start the code, without having a node that must be treated
differently.
Then, the proper RRT* begins, entering in a while cycle (line 2), and so doing each in-
struction at each RRT* iteration.
At line 3 "Generate new point", a new point is generated in three possible ways. Two
use a random point as for normal RRT*(section 2.1), in one case selecting it as a random
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Algorithm 4.1 RRT*
1: Define first vertex
2: while Searching do
3: v = Generate new vertex
4: Evaluate possible connections of v to the tree
5: if Any connection possible then
6: Connect v to the tree
7: Try to reroute some paths through v
8: Try to connect v to target nodes
9: end if

10: if Any target node $ changed then
11: Update path
12: end if
13: end while
14: Retrieve path
15: Post process trajectory

point in the plane, in the other selecting it as one of the targets points. The third way
directly generates a point in an exact position (Algorithm 4.2).
The Optimization Bias σopt determines the probability of each iteration to be used for

the optimization process, while Exploration Bias σexp determines the probability of the
exploration iteration to use a target point instead of a random point. Since the optimiza-
tion process is enabled after a first path is found, it will described later in section 4.1.3.
If the iteration is selected as an exploration one, can randomly use a target point or a
random point. In the first case, x is selected to be the target point. If the target points
are a list, it is selected using a weighted probability, to make more likely a selection of a
nearer, and so, likely cheaper to reach, target. In the second case, a random point on the
terrain is selected.
Obtained the random point x, the closest neighbouring point nclosest of the tree can be
identified (fig. 4.3a) and a the new point v is placed on the line linking the two points, at
distance dextend (fig. 4.3b). If dextend is bigger than the distance between the two points,
v is set equal to x.
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Algorithm 4.2 Generate new vertex
1: if Optimization iteration then
2: n = Optimization process
3: else
4: if Target point as random point then
5: x = Select random point as target
6: else
7: x = Random point in range
8: end if
9: nclosest = Get closest point of the tree to v that can establish a feasible connection

10: if No feasible point then
11: Discard x and start a new iteration
12: end if
13: dclosest = x− nclosest

14: if dclosest < dextend then
15: v = x
16: else
17: d̂closest =

dclosest

||dclosest||
18: v = dextend · d̂closest + nclosest

19: end if
20: end if

S

T

N

X

(a) Find closest point.

S

T

N

X

V

(b) Add new vertex.

Figure 4.3: RRT*: extension.
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Next step, in algorithm 4.1 line 4 "Evaluate possible connections of v to the tree" , obtains
all the point around v in a radius of dconnect (fig. 4.4a), and evaluates the connection to
v. For each neighbouring point, the feasibility function (section 4.1.1) is run, and if
successful, the cost function is run(chapter 3), computing the e-costs and $-costs.

S

T

N1

N2V

(a) Find neighbour vertices and evaluate connection edges.

S

T

V

(b) Connect new vertex to the tree.

Figure 4.4: RRT*: connection.

If any connection is feasible, in line 5 the new vertex v is maintained, and is connected
to the tree (line 6) (fig. 4.4b), through the neighboring point granting the cheapest path
to the start.
Then, the rerouting of existing points is attempted (line 7). The selected parent node is
removed from the nclose list. Feasibility and costs are recomputed but this time from v

to nclose (fig. 4.5a). If any of the $-cost through v is cheaper than the current $-cost for a
nclose, its parent is modified to v (fig. 4.5b). Then all the children must have their $-cost
updated.
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S

T

V

(a) Find neighbour vertices and evaluate connection
edges.

S

T

(b) Tree and path updated.

Figure 4.5: RRT*: reroute.

Must be noted that, as seen in fig. 4.1a, the new connection might generate an edge di-
rection, that makes unfeasible some children. If this is the case, and the path through v

is cheaper, then the vertex to update is split in two. The nodes unfeasible with the new
vertex v are left connected to the old node nclose, while the others became children of a
new vertex, that will be in the same position as nclose and will have as parent v.
A connection (or rerouting) is attempted also to the target nodes (line 8). As for the tree
nodes, the neighbouring target points tclose are identified (fig. 4.5c), feasibility and costs
from v to tclose are evaluated, and if a path is cheaper, the nodes are updated.
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S

T

V

(c) Connect to target.

S

T

(d) Path found.

Figure 4.5: RRT*: connect to target.

After all the nodes affected by v have been updated, if the cheapest $-cost between the
target nodes has changed, the path is updated to the cheapest (fig. 4.5b) (line 9). If is
the first feasible one, $-cost of targets (defined as initial value +infinite), changes and a
first path is created.
The iterations (line 2) are terminated after the optimization process has finished (see
section 4.1.3) or the execution time has exceeded the limit.

At this point, the data relative to the path are retrieved (line 13). Among them the
(x,y)positions of the path vertices. Must be remembered that this algorithm does not store
the computed robot parameters. In fact, this data are post processed (see section 4.1.4)
to obtain full data trajectory, that will be the final output of the algorithm.

4.1.3. Optimization process

Al discussed in section 2.1, RRT* is an algorithm that can optimize the path continuing
the iterations after a path is found. But just keeping sampling is nor granting an efficient
optimization, nor giving any stop criteria. Therefore, a simple method to try to optimize
the path has been developed.
The idea at the base is to sample in proximity if the path, so to possibly generate a
shortcut, removing unnecessary bights; and sliding the path toward a free-from-obstacles
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region, like sliding the path left or right until an expensive or unfeasible region is found.

In detail, when a path is updated (Algorithm 4.1 line 10), two sets of points are generated
as the offset, distanced of dextend, to the left and to the right of the path points. When an
iteration is selected to be for the optimization process (Algorithm 4.2 line 1), the vertex
v is selected as one of the offset points and the dconnect is increased (doubled) to help the
new point to not just connect to the point from which has originated. The algorithm
starts from the points of the left offset, from the one created by the first path point, and
proceeds toward the last. Each time a cheaper path is found, the offset are redefined and
restarted from the first offset point (Algorithm 4.1 line 10).
When the algorithm evaluates the last point of the left offset set of points, founding no
better path, it concludes that is pointless to move toward left, and disables the use of the
left offset set, starting using the right one. As for the left one, once the right has reached
the end, the algorithm is considered terminated.

Must be noted that the optimization process runs parallel to the exploration one. A "dice
is rolled" each iteration and it determines if the new vertex must be generated as for
optimization rules or for exploration rules. For example, if σopt = 0.5, the algorithm will
alternately create an optimization point and an exploration point. If the σopt is 0, then
the optimization process is not performed and the algorithm is stopped at the first path
found.
In fig. 4.5 is shown an example of the optimization process.

(a) First path found. (b) First improvement.
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(c) Second improvement. (d) Final improvement.

Figure 4.5: RRT*: optimization example. In green the tree, in red the best path found.

The initial position is in the center pointing toward south-east. Can be seen that the
code start trying pushing the path toward left, making the path the straighter possible.
The result is much straighter respect to the initial path, with just one fundamental turn
in the path. The result shown, is at the end of the left phase. After is no more possible
to push it further left, it start pushing right; but since in this case would cause a longer
path, the algorithm quickly discard the option.

4.1.4. Trajectory post processing

After the path planning is done, the output must be refined, to add turns to the trajectory
and to re-estimate the cost. The turns are added with the objective of being with the
highest possible curvature radius, so to reduce the cost (see chapter 4 introduction).
First the corners are cut. For each corner (vertex) of the path, two points are generated on
the adjacent edges at distance from the corner that is half of the shortest edge (following
the reasoning in section 4.1.1), removing the vertex at the corner.
Then, the new generated points couples are connected with an arc of circumference passing
through the points and tangent in them. The resulting trajectory is sampled each Lsampling

obtaining an array of (x, y, ϑ) points.
For each element of this list the cost function is run (chapter 3), obtaining a new estimation
of the cost accounting for turns and a list of robot parameters in each point of the
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trajectory.
An example of post processing output can be seen in fig. 4.6, where is shown a detail from
the post processing of the path in fig. 4.5

Figure 4.6: RRT*: post processing example (detail).

4.2. RRCT*

The RRT* shown in section 4.1, is able to find a solution, but with several limitations.
It does not actually evaluates turns, thus even if the vertex are built to not generate
curvature radius under a certain value, the turns themselves are not actually accounted
for. The cost estimated by the post processed path is significantly different, than the
one obtained from the RRT* optimization. That means that, while running the path
planning, the optimization function will constantly have a big estimation error, reduc-
ing the capability to select the optimal path. Furthermore, the feasibility granted by
the feasibility function is limited to the geometry of the path, but does not account for
the terrain. Since not actually evaluated, the curves generated by the RRT* are not only
much more expensive, but might be even unfeasible for the terrain. The robot is generally
able to overcome the feasibility problems, but that cause a massive consumption, some
unsafe motion and, anyway, does not grant the safety margin needed in space applications.

An algorithm able to evaluate the curves must be used, but the algorithm shown in
section 2.1.4, has some limitations too. In particular:
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1. It is not a RRT* algorithm, so it cannot asymptotically optimize the path.

2. It adds a third degree of freedom of the sampling state (ϑ), increasing the complexity.

3. It cannot explore the curvature radius state, it is in fact limited to the minimum
feasible radius, that is exactly what is less desirable (chapter 4 introduction). And
adding a degree of freedom on the curvature would mean adding other 2 degrees of
freedom on each point or edge.

4. It is generally used with a pseudo distance d =
√

∆x2 +∆y2 +∆ϑ2 [18], that is
nor a geometric distance, nor comparable to a consumption estimation. There is a
concern about the way it generates the points and compute the edges. Each point
is connected to another through an independent edge, evaluating several curves and
straight lines even for similar paths. This is not a problem using the said pseudo-
distance, but might be a very relevant problem for using a much expensive cost
function, as done in this work. A way to bundle and recycle computed edges might
be helpful.

In an attempt to tackle this problems, an alternative algorithm called RRCT* has been
drafted.

4.2.1. Base idea

The main idea of RRCT* consists in splitting the tree used to generate the path, from
the actual paths of the robot. A tree is built similarly to the RRT* concept, but instead
of generating points, it generates circles. Those circles works like roundabouts, and the
paths are computed as passages between the roundabouts. In this way, the turns are
defined and evaluated, plus, passing on the same roundabout, the cost to perform a curve
is already available, recycling the turn cost.
A first tree is used just to build the set of roundabouts, while a second tree is the path
tree as for the RRT*. In this case, the sampling adds elements to the circles tree, and the
path tree is developed, with some constraint, onto the first one.

4.2.2. Circles definition

For the purpose of the RRCT*, the Circle object must be defined.
A circle is characterised by a position expressed as center position c = [x, y] and by a
circle radius R. Furthermore, since they are used to express a motion, they are oriented,
so they can be skirted only clockwise or counterclockwise.
Each point belonging to the circumference of the circle, can be expressed by a single pa-
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rameter ϑa
c , representing the central angle, oriented counterclockwise between a reference

axis (in this work the vertical one), and the point on the circumference (fig. 4.7a). An-
other angle can be defined as ϑo

c, that is as ϑa
c , but its orientation is the same of the circle

orientation.
The circle is sampled with points along its circumference at each distance Lsampling

(fig. 4.7b). These points defined with ϑo
c angle, can be evaluated with the cost func-

tion (chapter 3) and can store the resulting robot parameters, COTs and cost to reach
the next point on the circle. When the an edge between two vertices A and B must be
created on the circle, computing ϑo

c of A an B, the sampled point on the circles affecting
the path can be easily identified, and the cost of the edge can be evaluated knowing the
COT of each sampling point (fig. 4.7b). If the values of a sampling point, are already
known, the cost function is not called, an interpolation of the cost on the arc is enough.
In this way, the cost function is called only if a point is requested for a computation and
maximum one time for each point. Generating new connections on the same circle, is in
this way very cheap.

P

(a) Circle angle.

A

B

(b) Circle sampling points.

Figure 4.7: RRCT*: circle.

4.2.3. Tangent connections between oriented circles

The best way to connect two geometrical circles, is through common tangents, so to have
a smooth transition between circumference arcs and straight lines.
Two circles have up to four tangents. Depending on their radius and reciprocal distance,
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five configurations are possible. Defining the radius of the bigger as Rbig, the one of the
smaller one as Rsmall and the distance between the centers D (fig. 4.9), their summation
and difference are ΣR = Rbig +Rsmall and ∆R = Rbig −Rsmall.

• D > ΣR, the two circles are external to each other (fig. 4.8a), 4 tangents exist, of
which two internal and two external.

• D = ΣR, externally tangent circles (fig. 4.8b), the internal tangents degenerate in
a point.

• ∆R < D < ΣR secant circles (fig. 4.8c), and the internal tangents are unfeasible.

• ∆R = D internally tangent circles (fig. 4.8d), also the external tangents degenerate
in a point.

• ∆R < D one circle is internal to the other (fig. 4.8e), no feasible tangents.

clockwise to clockwise
counter-clockwise to counter-clockwise
clockwise to counter-clockwise
counter-clockwise to clockwise

(a) External circles.

Figure 4.8: Tangents between circles pt1.

(b) Externally tangent circles. (c) Secant circles.

Figure 4.8: Tangents between circles pt2.
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(d) Internally tangent circles. (e) Internal circles.

Figure 4.8: Tangents between circles pt3.

The tangent points between two circles can be easily computed in the form of ϑa
c (sec-

tion 4.2.2).
ϑa
c is very easy to compute drawing two supports circles, concentric to the bigger circle

and having radii ∆R and ΣR (fig. 4.9). The tangents to this circles passing to the small
circle center, have tangent points with the same ϑa

c as the tangents to the two circles.
Furthermore, for the external tangents the angle will be the same on both circles, while
for the internal ones a π must be added (fig. 4.9).

(a) External tangents construction. (b) Internal tangents construction.

Figure 4.9: Tangents construction.

If the circles are considered oriented (section 4.2.2), can exist maximum one tangent
segment that can crate a transfer from the starting circle to the arrival one (fig. 4.8). If
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the tangent for the transfer is one of the unfeasible ones, then the transfer is unfeasible.
If the tangents for the transfer degenerates in a point, then, in that point, the ϑa

c can still
be computed in the same way, and the resulting zero length segment will be the transfer
point between the two circles.

4.2.4. Vertices connection

Seen as two circles can be connected through tangents, to actually generate a path, must
be connected the vertices on the circles.

The vertices of the path tree can belongs to three categories: Entry points, Exit points
and Target points (fig. 4.10). The entry and exit points must belong to a circle. En-
try points are connected to exit points of the same circle through a curved edge. Exit
points are connected to Entry point of different circles, through a straight edge. Target
points are as in section 4.1 and, exit points are connected to them through a straight edge.

(a) Path example. (b) Adding a new circles and rerouting.

Figure 4.10: RRCT*: example. Round: entry point, square: exit point, blue: original
path, orange: rerouted path, dotted lines: tree relation edges.

In this way each circle might be populated by several vertices, but each time a tangent con-
nection between two oriented circles is attempted, since exist only one possible solution,
only the connection between two vertices must be evaluated (section 4.2.3). Plus, edge
parts on the circles might be partially in common with other connections (es fig. 4.10),
and thus there is no need to reevaluate them (section 4.2.2).
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Given two oriented circles C, to connect from C1 to C2, they can be connected with
maximum one tangent segment (or degenerate point). This segment and the tangent
points can be computed as seen in section 4.2.3, obtaining the ϑa

c (fig. 4.11a). Then the
first precedent entry point on C1 can be identified and called E1, same on C2 obtaining
E2 (fig. 4.11b). An exit point will be generated in the tangent point T1 on C1 and an
entry point will be generated in the tangent point T2 on C2 (fig. 4.11b). A curved edge
is evaluated between E1 and T1 (as in section 4.2.2), and a straight edge between T1 and
T2 (as in RRT* section 4.1) (fig. 4.11b).

(a) Tangent segment and points identified. (b) Exit and entry points of interest identified and
path between circles generated.

Figure 4.11: Circles connection: point definition.

If T2 is the only entry point of C2 the path is immediately generated, otherwise the curved
edge between E2 and T2 is computed too, and the $-cost to reach T2 passing through E1

and E2 are compared. If the first is higher than the second, the path is not improving,
thus is deactivated (fig. 4.12a). If the second is the higher one, than the new path is
activated and all the children exit nodes of E2 after T2 and before E2 are passed to T2

(new path) (fig. 4.12b).

Then is estimated the cost between T2 and the next entry points on C2, if any is cheaper to
rach from T2, all its children are passed to T2 and the relative path deactivated (fig. 4.13b).
The first entry point to not be rerouted blocks the procedure (fig. 4.13a).

All the descendant vertices of updated vertices are updated, and if a deactivated branch
is updated, it performs an evaluation like this one in C2, checks if the deactivated entry
point is now a cheaper way. If it is not, keeps the branch deactivated, if it is, reactivate
the branch and updates the children fig. 4.14.

When the connection must be performed between a circle C1 and a target node t2 = [x, y],
the procedure it the same, except that the connection is tangent to C1 and passing through
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(a) The new path is less efficient, deactivated. (b) The new path is more efficient, activated and
children updated.

Figure 4.12: Circles connection: $-costs comparison with previous entry point.

(a) The new path is less efficient. (b) The new path is more efficient, old deactivated
and children updated.

Figure 4.13: Circles connection: $-costs comparison with next entry points.

t2 (see fig. 4.9a concept) and the others paths to compare are connected directly into t2

and not to a circle.

Is clear that a counterclockwise circle can be approached to steer left, while a clockwise
circle to steer right. Nevertheless is possible to steer also in the opposite direction by
performing a loop. It is very unlikely that a loop in a path is going to reduce consumption,
therefore the loops must be avoided. The rule to avoid them is simply to forbid the
connection of an entry point to an exit point, if the center angle between them is higher
than π.
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A

B

C

(a) The path to reach C through B is less
efficient than through A, thus is inactive.

A

B

C

(b) Path change before B, make the path
through B more efficient, thus is reactivated.

Figure 4.14: Circles connection: path reactivation.

4.2.5. Algorithm

Conceptually the algorithm (Algoritm 4.3) is similar to the RRT* (Algorithm 4.1), but
with building blocks seen in section 4.2.2, 4.2.3, 4.2.4. The algorithm will explore also the
curvature radius dimension, therefore is defined a sampling space for Rc bounded by an
Rc,min and an Rc,max. Rc,min is the generally a limiting value as described before, while
Rc,max is determined by usefulness. Is true that the sharper the turn the more expensive it
is, but a turn is meant to change the direction of the robot, thus too big radii of curvature
add complexity while not generating better paths. Therefore Rc,min and Rc,max are input
parameters for the algorithm.

Since it operates with circles, but start from the initial state i = [x, y, ϑ], the initial po-
sition i must be added to some circle to start the algorithm. In Algorithm 4.3 line 1,
6 starting oriented circles are defined as tangent to the oriented point i and with radii
Rc,min , mean(Rc,min,Rc,max) and Rc,max. 3 on the left of the point oriented clockwise, 3
on the right oriented counterclockwise (fig. 4.16a).
Then, at each iteration new circles are generated (line 3). More in detail (Algorithm 4.4)
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Algorithm 4.3 RRCT*
1: Define initial circles
2: while Searching do
3: C = Generate new circles
4: Try to connect C to the tree
5: if Connection success then
6: Try to reroute some paths through C
7: Try to connect C to target nodes
8: end if
9: if Any target node $ changed then

10: Update path
11: end if
12: end while
13: Retrieve path

as for RRT* if the iteration is an optimization one, the generation is optimization based
(see section 4.2.6), if is an exploration one it generates x identically to RRT* and generate
a random curvature radius R. The distance with all the other circles is measured. This
can be done in three ways, by computing the center-center distance, by computing the
circumference-circumference distance or by computing the distance along the tangent seg-
ment. The result of this work have been computed using the circumference-circumference
distance.
Obtained the distances, the closest circle can be obtained and from its center is extended
the new circle center c. Two new circles are generated in the new center position c having
radius R and opposite orientation. Created the new circles, both independently follow a
procedure like in section 4.1 (Algorithm 4.3), so they are connected to circles in range,
first from neighbouring circles to the new ones, then the opposite and finally to targets
points, updating the path if a new minimum is found. The differences with RRT* are in
the connection procedures described in section 4.2.2, 4.2.3, 4.2.4. Furthermore, the circles
are actually just a support for the vertices. So, while the vertices itself can have just a
parent, and so a tree shape, the circles will appear to have multiple parents and to be
parent and child of the same circle.
To avoid a too high complexity is not shown, but if no circle can create a curved edge to
start, a path to reach the new circles, probably the circle used to generate the new circles,
is "hard to leave" (maybe there is an obstacle on the circumference), therefore to avoid
it to stuck the code, with the same x other circles are generated from the second nearest
circle (and so on).

After the end of the iterations, the path is retrieved. This time, since RRCT* stores all
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Algorithm 4.4 Generate new circles
1: if Optimization iteration then
2: C = Optimization process
3: else
4: if Target point as random point then
5: x = Select random point as target
6: else
7: x = Random point in range
8: end if
9: R = Random radius in range

10: Nclosest = Get closest circle of the tree to x
11: dclosest = Get x-Nclosest distance
12: if dclosest < dextend then
13: c = x
14: else
15: c = Extend new center from Nclosest center
16: end if
17: C = Circles with center in c with radius R
18: end if

the parameters computed and generate fully feasible paths, no post processing is needed.

The algorithm shape on some terrains is prone to look like a particular tree fig. 4.15.

(a) (b)

Figure 4.15: RRCT*: on a flat plane.

Therefore, this variant of the Rapidly-exploring Random Trees is called Rapidly-exploring
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Random Christmas Trees.

4.2.6. Optimization process

The idea is similar to the optimization process of section 4.1.3, with some modifications.
This optimization works in two ways: by adding circles or by connecting circles.
First it tries to connect differently path circles: all circles traversed in the optimal path
are identified (both them and they opposite twin) and, starting from the first one, is
attempted a direct connection to the nephew. In other words, for node ordered 1st, 2nd
and 3rd, a direct connection from 1st to 3rd is attempted. If it generates a new path and
it is cheaper, the path is updated. This is performed for all circles until the second last,
that has no nephews, then the optimization type changes.
The second optimization type works similarly to section 4.1.3 one, but perform a simple
oversampling. A path trajectory is computed as the union of all the Dubin states q =

[x, y, ϑ], belonging to the straight edges of the path. For each of this trajectory points is
computed the number of circles at distance closer than dextend on the left side and on the
right side. If the number is lower than a input value n, a circle is added in the region. This
is performed for each point of the path trajectory, until all of them satisfy the condition.
This impose the creation of circles around a straight line, opening to alternative paths
that moves around expensive terrain.
After both the optimizations have finished, the iteration are terminated.

(a) Starting circles generated. (b) First path found.

Figure 4.16: RRCT*: search.

In fig. 4.17 can be observed an example of optimization process. Starting from the first
path found in fig. 4.16b it first tries connecting circles (fig. 4.17a, 4.17b, 4.17c), making
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the path a lot more straight.

(a) Optimize reconnecting circles. (b) Optimize reconnecting circles.

Figure 4.17: RRCT*: Optimization pt1.

(c) Optimize reconnecting circles. (d) Optimize adding circles.

Figure 4.17: RRCT*: Optimization pt2.

Then it tries to add circles nearby the path to search for different ways. And in fig. 4.17d
and fig. 4.19a an alternative path is found, as expected since the terminal part of the path
in fig. 4.17c is intuitively not efficient.
Every time a new path is found, the optimization path restart again, obtaining the final
path in fig. 4.19b.
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(e) Optimize adding circles. (f) Optimize reconnecting circles.

Figure 4.17: RRCT*: Optimization pt3.

4.3. RRHT*

In section 4.1 and section 4.2 have been shown the RRT* algorithm and its evolution in
RRCT* to include the steering evaluations. The RRCT* still presents some limitations.
In particular, for it to evaluate big radii of curvature, long straight edges must be present.
In fact, big radii of curvature with small straight edges, would mean that the circles does
intersect, and if it happens, the tree start taking the shape of a palm tree fig. 4.18.

This happens, because, starting from the initial circles, each new circle couple, being se-
cant to an oriented circle, will have just on possible connection. And adding the clause
that forbid loop connections, it will be oriented to steer the path as for circle direction.
This is an extreme problem, since it cause the path to steer when there is no need, like
when the target is in front of the robot on a flat ground in fig. 4.18.
This limitation, while with easy or medium terrain complexity is good, since reduce the
complexity of the path and its cost; is a problem on hard terrain complexity, since it
forbid complex paths with several small trajectory adjustments, or at least is slower at
evaluating them.
To overcome this limitation, a variant of the RRCT*, the RRHT* has been quickly drafted
for a preliminary evaluation.

The RRHT* algorithm is identical to the RRCT* except in the generation of the circles.
The idea is, working in the conditions that cause the palm behaviour, to add a tangent
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Figure 4.18: Palm behaviour.

circle, in the opposite direction, that counteract the will of the algorithm to steer in a
single direction.

Practically, it is performed by adding a modification in Algorithm 4.4 after line 17. After
the concentric circles C have been extended from the tree, the two can be connected
with tangents to the circle that originated them. Since they are secant, only one circle
will have a feasible connection, this circle will be maintained while the other will be
discarded. A new circle can be generated from the remaining C, having same radius,
opposite orientation and being placed to be tangent to C in the tangent point found
before. The two circles are connected to each other through a degenerate segment, so to
allow the passage from one to the other, and the algorithm can continue as for RRCT*.
Note that the tangent connection evaluation, is just to build the new circles, is not creating
any connection to the path tree.
Some path result can be seen in fig. 4.19.

This algorithm, probably, has the behaviour of a Dubin curve based RRT, since it can
be seen as generating sampling points that can be connected by Dubin curves. It adds a
rerouting, making it an RRT*, possibility to explore different curvature radii, and recy-
cling of the cost of the curves to reach a point.

Therefore should be possible to directly use re-adapted Dubin curve based RRT, as algo-
rithm for path planning.
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(a) First path. (b) After some optimizations.

Figure 4.19: RRHT*: example.

For the RRHT*, the algorithm shape, looks like an holly three fig. 4.20. Hence its name
Rapidly-exploring Random Holly Trees.
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Figure 4.20: RRHT* on a flat plane.
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5| Simulation framework

After the thesis has been tackled from the theoretical point of view, in a general way; the
discussion must be reduced to a particular case to perform simulations, experiments and
validate the procedure.
The model built in this chapter, will be used both to estimate the performance of the
particular robot, and to validate the estimations performed by the path planner.
Most of the discussion in this chapter will be valid for a particular robot and simulation
instrument, since is meant to clarify the instruments used to validate the path planner.
That does not mean, that the path planner works only for this robot and models.

5.1. Robot mechanical model

The robot mechanical model is strongly based on the SpaceClimber rover [19, 20]. The
idea is to have a robot with performance similar to a rover meant for space, so to have a
more fitting analysis. This does not imply, that other legged robots cannot use the path
planning discussed, but the thesis is focused on space rovers.
Note: the data taken from the rover are approximate, because some were missing. Since
the objective is just to have a reasonable rover, they are not a problem. This work is not
meant to be a reference for SpaceClimber.
The rover is an hexapod robot with insect-like posture (fig. 5.1a), the configuration is as
the most common for these robots, with the exception of a fourth joint (lean joint) in G
(fig. 5.1b).

The robot would originally have a body joint and a prismatic joint between tarsus and
tibia (fig. 5.2a), both have been deactivated making the body and the tibia+tarsus a
single rigid body.
The foot is shaped like a sphere, tibia and tarsus like cylinders, the femur like a prism,
and the actuators are modeled as two cylinders with an adjacent faces, that can rotate
relatively, around their axis (fig. 5.2b).
In the model the solids intersects. In particular: tarsus ends are positioned at the foot
center and inside the tibia, tibia ones are at the distal rotor center and encapsulate the
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(a) Rover isometric view. (b) Leg detail.

Figure 5.1: Rover geometry.

tarsus, while the femur ends are in distal stator and basal rotor fig. 5.2a. Furthermore,
each actuator is connected side-way to a bone end or another actuator end. The distance
at which this component is positioned from the joint face fig. 5.2b, is defined as ρ, S for
the stator and R for the rotor.
A list of the measures of the body can bee seen in fig. 5.3 and table 5.1, while in table 5.2
are reported the masses.
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(a) Leg nomenclature: bones in black, joints in light
blue.

Stator

Rotor

(b) Joint actuator nomenclature.

Figure 5.2: Legs nomenclature.
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Figure 5.3: Rover body measures in mm.
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Measure Value [mm]

Foot radius 20

Tarsus length 142

Tarsus radius 15

Longer tarsus* 10

Tibia length 174

Tibia radius 24

Tarsus-Tibia penetration 52

Femur length 225

Femur width 15

Femur thickness 15

Actuator stator length 65

Actuator stator radius 64

Actuator rotor length 45

Actuator rotor radius 48

ρR distal 21

ρS distal 7.5

ρR basal 37.5

ρS basal 36

ρR thorax (tangent on face)

ρS thorax 22

ρR lean (tangent on face)

AB 264

BC 40.5

CD 225

DE 73.5

EF 99

FG 142
*The middle legs have a longer tarsus, to partially compensate the higher lean joint.

Table 5.1: Rover lengths parameters. See section 5.1 fig. 5.1b, 5.2a, 5.2b. [19, 20, 21]
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Part Value [g]

Body 8 000

Stator 378

Rotor 147

Femur 80

Tibia 133

Tarsus 107

Foot 80

Totsl 23 000

Table 5.2: Rover mass parameters.[19, 20, 21]
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5.2. Robot mechanical boundaries

As discussed in section 3.5, the robots parameters cannot assume any value, but must
belong to feasible combinations, respecting some constraints due to robot mechanics.

5.2.1. Stride height

To make sure the foot leaves and touches the ground without sliding, the top point of the
swing trajectory must be the highest point (fig. 5.4). Therefore, assuming the terrain to
have a constant slope:

hstride ≥
Lstride

2
tan |α||+ δSH (5.1)

E
E'

Figure 5.4: Foot trajectory on slope, reference frame solidal in E. In red quantity referred
to stride height, in blue referred to E height.

Where δSH is the margin of how much the top point must be higher than any contact
point.
In this work δSH = 1cm.

5.2.2. E height

The foot is considered not allowed to go above the basal joint (point E), because that
would cause a too quick motion of the leg and the distal actuator, to follow the foot
trajectory. The E height hE must grant this condition both while the foot is on the
ground with a lateral slope (fig. 5.5a), and when it is swinging especially at the top point
(fig. 5.4). Therefore, defining xfoot,middle as the x position in RH of the foot of the middle
leg:

xfoot,middle = xoffset + FG+ xRB
G,R2 (5.2)



5| Simulation framework 65

hE ≥ xfoot,middle tan |α_|+ δEA (5.3)

hE ≥ (+(BC +DE) + yoffset) tanα| + hstride + δEA (5.4)

hE ≥ (−(BC +DE) + yoffset) tanα| + hstride + δEA (5.5)

Where xRB
G,R2 is the x position of the G point of the R2 leg in RB and δEA is the margin

between A and E heights to be satisfied.
In this work δEA = 1cm.

RB

G F

E

A

(a) Lateral slope.

A

B

C
D

E
 

 

 

 

(b) Extended rear leg.

Figure 5.5: E height boundaries.

It also must be ensured that hE is low enough to guarantee the legs to be able to touch
the ground. Therefore defining lmiddle leg, lrear leg as approximate lengths of the middle and
rear legs; yproj,middle, yproj,rear as the distance along y between A and E; and xfoot,rear as
the x position of the G point of the R2 leg in RB (fig. 5.5b).

lmiddle leg = AB + CD + longer tarsus (5.6)

lrear leg = AB + CD (5.7)

yproj,middle =

(
Lstride

2
+BC +DE

)
+ yoffset (5.8)

yproj,rear = −
(
Lstride

2
+BC +DE

)
+ yoffset (5.9)
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xfoot,rear = xoffset + FG+ xRB
G,R3 (5.10)

hE ≤
√

l2middle leg − x2
offset − y2proj,middle − xoffset tan |α_|+ yproj,middle tanα| (5.11)

hE ≤
√
l2rear leg − x2

offset − y2proj,rear − xoffset tan |α_|+ yproj,rear tanα| (5.12)

5.2.3. Forward velocity

When the rover is lifting a leg, it generates a torque on its body. If the lift speed is
significantly high, the torque might be high enough to cause oscillations in the rover,
even detaching some foot from ground. This happens at high forward velocities, with low
tswing (high β), small Lstride and high hstride; generating frequent and quick leg rise and
fall. Therefore, being the other parameters defined by the environment, the velocity must
be limited:

vforward ≤
(
1

β
− 1

)
Lstride

hstride

ν (5.13)

This derives remembering

tswing = (1− β)tcycle (5.14)

tstance = βtcycle =
Lstride

vforward

(5.15)

and assuming a limiting parameter

ν =
hstride

tswing

=
hstride

(1− β)tcycle
=

hstride

(1− β)
Lstride

βvforward

(5.16)

Must be noted that in this work has been used a wrong formula (eq. (5.13) with a plus
in place of the minus and with ν = 0.0167). While this is a problem, because introduce
unacceptable parameters in the COT matrix analysis; it is counteracted by the simulations
to compute the COT matrix, that fails, creating NaN COT elements, that will be discarded
by the cost function, not affecting the results.

5.2.4. Curvature radius

While steering, the objective is to not reach the mechanical limit of the legs in extension,
and to not hit the body in contraction. The rotation, for how the controller is built,
happens around the zRH axis, therefore the legs experiencing the biggest lateral motion,
are the front ones. The most limiting condition is the extension of the leg, while passing



5| Simulation framework 67

from a linear trajectory to a curve. In fact, in this condition the leg is placed in about
the middle of its operative range along x, and so has just half of the max lateral motion
available (fig. 5.6a and similarly to fig. 5.5b). The limits of the allowed lateral distance
can be approximated with:

lfront leg = AB + CD (5.17)

yfront rear = −Lstride

2
+BC +DE + yoffset (5.18)

∆xmax =
√

l2front leg − h2
E − y2front rear − xoffset (5.19)

E

(a) Steering top view. (b) Cicular motion. (c) Beam rotation.

Figure 5.6: Steering boundaries.

Then, to compute the minimum radius: the forward velocity is defined and on a circular
motion (fig. 5.6b)

vforward =
Lstride

tstance
= Rcωyaw (5.20)

assuming the body as a bar (fig. 5.6c), the lateral velocity at the front legs joints will be
about

vlateral front = yRB
R1 ωyaw (5.21)

and to obtain it, the foot must have a lateral velocity of

vlateral front ≈
∆x

tstance
(5.22)

obtaining

Rc ≥ Rmin = yRB
R1

Lstride

∆xmax

(5.23)

This value is margined by 20% in the path planning algorithms, to make sure the limit is
avoided.
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The slope are not accounted for, because, if the slope is low is negligible, if is not, the
robot rotation will put it into an high transversal slope condition, making the motion
already unfeasible since there are very strict limits on it.

5.3. Robot window bands definition

As described in section 3.3 the sliding window is made of different bands. For the bench-
mark rover they are defined as follows:

A A
A A

E E 
E E T

T

window width

w
in

do
w

 le
ng

th

window back offset

Figure 5.7: Sliding widow parameters and subdivision in bands.

Their limits along y are the same for all the bands and are determined by the furthest dis-
tance a foot can get forward and backwards plus a margin δy = 5cm (Must be remembered
the reference frame is RH).(fig. 5.8a)

ymin = −
(
DE +BC +

Lstride

2
+ δy

)
(5.24)

ymax = yRB
G,R1 +DE +BC +

Lstride

2
+ δy (5.25)

The width of an E-band is determined by the position the basal joint can reach (fig. 5.9b).
The internal boundary is determined by the front and rear legs basal joints, while the
external limit by the middle legs ones(fig. 5.9b). Defining ledge as the longest distance
from E to any point of the basal joint actuator (fig. 5.9a):

ledge = max
(√

R2
actuator,big + (Lactuator,big − sE)2,

√
R2

actuator,small + (DE + wDE/2)2
)

(5.26)
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RB

(a) Bands length. (b) A-band.

Figure 5.8: Bands definition.

xE,min = xRB
G,R1 + FG− ledge − δx,E (5.27)

xE,max = xRB
G,R2 + FG+ ledge + δx,E (5.28)

with margin δx,E = 1cm.

Similarly, the width of an A-band is determined by the positions the feet can reach
(fig. 5.8b).
In straight path:

xA,straight,min = xRB
G,R1 + FG+ xoffset − δx,A (5.29)

xA,straight,max = xRB
G,R2 + FG+ xoffset − δx,A (5.30)

While steering is assumed directly the maximum allowed condition for any curvature
radius xlim,up, xlim,down.

xA,steering,min = xRB
G,R1 + FG+ xoffset − δx,A + xlim,down (5.31)

xA,steering,max = xRB
G,R2 + FG+ xoffset − δx,A + xlim,up (5.32)
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E

D

(a) Basal actuator. (b) E-band.

Figure 5.9: E bands definition.

Finally, the T-band will be defined comprised between the two E-bands.
The resulting values can be see in table 5.3.

Lower limit [mm] Upper limit [mm]

y -289 933

xE 63.5 342.5

xA,straight 308 498

xA,steering 118 655

Table 5.3: Band limits result.

Bands heights can be defined, considering them compatible with Hobstacles(x, y) in sec-
tion 3.4. So, as vertical distances from a plane with same α| of the terrain fitting plane.
The bands height will be the maximum height an obstacle can have in the band.

Therefore, the A-band will be simply of height hstride accounting for a margin:

hA−band = hstride − δz,A (5.33)

The other parameter used in the cost function is the height of the E point hE, but the
criteria to pass an obstacle is the clearance between it and the basal joint actuator,
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therefore the actuator dimensions must be accounted for (fig. 5.10a):

hE−band = hE −
(
Ractuator,big + ledge tan |α||+ δz,E

)
(5.34)

Similarly for the T-band, where a line parallel to the slope can be traced form the lowest
point of the torso (fig. 5.10b), and its distance along zRH is used as hT−band:

hT−band = hE + EF +
zRB
LBP

cos |α||
− δz,E (5.35)

Where the margins are δz,A = 1cm, δz,E = 1cm and the lowest point of the body in RB
frame zRB

LBP = −44mm.

E

(a) E-band height.

E

F

(b) T-band height.

Figure 5.10: Bands heights.

Alternatively, the criteria on hstride and hE can directly be written, using the maximum
obstacle height in the band Hmax,band:

hstride > Hmax,A + δz,A (5.36)
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hE > Hmax,E +Ractuator,big + ledge tan |α||+ δz,E (5.37)

hE > Hmax,T −
(
EF +

zRB
LBP

cos |α||

)
+ δz,E (5.38)

5.4. Robot mechanics simulator

The robot is simulated in Simulink using Simscape Multibody. Several components are
introduced, modeled using built-in blocks of the simulator. The rover is thus modeled as
a series of rigid bodies, connected by rotational joints. To make a simpler simulation, the
joints are controlled imposing the kinematic (angles and derivatives), instead of dynami-
cally (imposing torques); in this way the simulation of the motor is avoided. Nonetheless
the joints torques are computed by the simulator, to provide in post processing a mea-
surement of the energy consumption (section 5.7).

If most of the component blocks were built-in in Simscape, the simulation of the contact
force with the terrain had to be built for the simulation, since the built-in contact force
block can just simulate convex hulls, while a terrain is generally highly concave.
The simulation of the block used in this work, is a re-adaptation of the stick-slip model
in [22] for the use on a terrain heightmap Z(x, y).

The center position of the foot p
A

is determined by the simulator, and considering the
contact point to be in the same (x,y), its z can be determined interpolating the heightmap
Z(x, y) and the local slopes in x and y interpolating the slope-maps along x and y Sx(x, y)

Sy(x, y). This approximation is not true, since higher the slope further the contact point
will be from the center of the foot, but has been considered acceptable to improve the
speed and numerical stability of the simulation.
Determined the contact point and the versor normal to the terrain, the penetration depth
(pfoot) and speed (p̊foot)of the foot can be determined.
The reaction force equation is

Freaction = kpfoot + bp̊foot (5.39)

with Freaction oriented exiting normal the terrain and pfoot and p̊foot entering it. kpfoot,
the stiffness force, is present only if the the penetration is positive, so do not act if the
foot is outside the terrain. bp̊foot, the damping force, is present only if the velocity is
entering the terrain, so to avoid an effect of the terrain dragging the foot when its lifting.
The slip velocity (vslip) at the contact point can be computed considering foot velocity
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and rotation, and thus the friction force will be

Ffriction = µ(vslip)Freaction (5.40)

With Ffriction opposite to vslip and µ determined as a function of the vslip (fig. 5.11) can
then be computed and applied to the foot.

0 1 2 3-1-2-3

Figure 5.11: Stick-slip model.

The final contact force

Fcontact = Freaction + Ffriction (5.41)

The parameters of the contact force model have been selected to grant a reasonable terrain
deformation and damping for a rigid terrain (k and b) and to grant the capability of the
rover to climb the prescribed 40°limit degrees slope (µs, µd, vtrans) [19][23].
To greatly reduce the simulation time, due to ill-conditioning, the friction parameters
have been doubled; and to evaluate if the rover has stepped on a terrain slope, that would
cause slip, an analysis have been performed in post processing just based on the limiting
slope of 40° (see section 5.10).
The gravity has been selected as the martian one, an all the parameters can be seen in
table 5.4.
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Parameter Value

k[N
m
] 11500

b[Ns
m
] 1150

µs[ ] 2

µd[ ] 1.8

vtrans[
m
s
] 0.01

g[m
s2
] 3.721

Table 5.4: Mechanical simulation parameters.

5.5. Robot controller model

For the robot to traverse a virtual terrain successfully, and so perform a simulation until
the goal, the controller must be able to handle different situations.
The controller programmed in Simulink generates a main motion using parameters as
described in section 2.2.1, 2.2.2, 2.2.3, 3.2, but this motion is not robust to uncertainties,
thus is aided with some reflexes and controls (fig. 5.12).

ROBOT
CONTROLLER

ROBOT
MECHANICAL

MODEL

Trajectory  
&  

parameters

measured data

Figure 5.12: Simulation scheme.

5.5.1. Foot trajectory generator

The primary objective of the control system, is to generate the trajectory of each robot
foot pRH

A,i
(t) in swing and stance phase.

In swing phase (swing controller) the motion is generated as a 3rd grade polynomial.
The starting point is the current position of the foot cRH

A ; the final position fRH
A , is the

rest position plus a translation along y of y+ = Lstride/2, a z translation z+ approximately
accounting for the longitudinal slope, and a x translation x+ determined by the steering
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control (section 5.5.5).
Can be determined the vertical plane containing cRH

A and fRH
A , and in this plane can be

placed the top point of the trajectory tRH
A , with x and y as mean of the two points and z

to grant the hstride.
The three points can be connected in the vertical plane with two polynomial arcs, imposing
zero derivative at tRH

A and maximum slopes in the extreme points, avoiding stationary
points in the arc.
The resulting curve will have a relation z(x, y) = z(s), with s curvilinear coordinate on
the xy-projection line connecting cRH

A to fRH
A . Determining a velocity along the line

vs =
Lprojection

tswing

(5.42)

the z coordinate and the entire foot position pRH
A

(t) time relation can be determined.

In stance phase (stance controller) the foot will follow a prescribed velocity vstance,
determined by the desired body linear and rotational velocities (section 5.5.3).

To this two basic motions are added two reflexes: one to search for contact and one to
avoid obstacles.

The first one (search controller) works as the stance trajectory generator, but with a
vsearch = [0, 0,−vsearch] purely vertical. vsearch = 0.1m

s
.

This is done to improve stability: while others controllers prevents the start of new swing
phases of other legs, to avoid an unexpected unstable position; searching as quick as
possible a foothold, is needed to avoid the blocking of the rover and to reduce the time
spent in this condition.

The second one (avoidance controller), instead use vavoid = vavoidn̂− vy,stance, where n̂

is the versor normal to the ground at the contact point. vavoid = 0.05
m

s
.

It allows, when hitting an obstacle, to move away from it, giving the foot room to rise
without sliding on the rock. −vy,stance compensates the motion of the rover moving for-
ward, so to avoid to go near to the obstacle, because dragged by the body. The clearance
with the obstacle is fundamental for the type of simulation performed. Since the high
attrition coefficients and the motion of the leg controlled kinematically, make a foot quick
slide on a rock, able to generate massive forces, both dragging the robot in unwanted
positions and generating unfeasible motor torques.

The use of this 4 trajectory generators is regulated by a selector.
If the phase pulse P , indicates that the leg is in swing phase, then use the swing controller,
attempting to lift and lower the leg.



76 5| Simulation framework

When the leg hits the ground, the swing phase is suppressed and the stance controller is
selected.
If at the end of the swing phase the contact is still missing, the search controller is selected,
vertically lowering the height of the leg until contact is found, then starting the stance
phase.
If a contact is detected before the leg reached the top point, probably there is an obstacle
on the path, thus the avoidance controller is selected for 0.2s to give space to the leg to
lift without sliding on the rock. (fig. 5.13)

SWING CONTROLLER

STANCE CONTROLLER

SEARCH CONTROLLER

AVOIDANCE CONTROLLER

SELECTOR OUTIN

FOOT TRAJECTORY GENERATOR

Figure 5.13: Foot trajectory generator.

5.5.2. Joints angles controller

While the foot trajectory generator in section 5.5.1 can generate a geometrical trajectory
pRH
A

(t) of the point A; the rover is actuated by revolute joints. Since the joints are
actuated kinematically, the quantity to be provided to the joints are the angles of each joint
and their derivatives. For this purpose, the obtained pRH

A
(t) is converted to joint space

pJ
A
(t) = [φD(t), φB(t), φT (t)] (Distal, Basal, Thorax) through an inverse kinematic

module. Must be noted that the lean joint is not present, since is used just to keep the
leg aligned vertically and is controlled separately.

A direct kinematic module, instead, performs the opposite operation, working as a
sensor filtering unfeasible geometrical positions and providing measurement of the current
position cRH

A (t) to the trajectory generator.

Another module (limiting module) validates the states in both spaces, and if one of the
limits is reached the robot motion is blocked.

Bundled together, this modules compose the leg controller (fig. 5.14).
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Figure 5.14: Leg controller.

5.5.3. Coordination controller

The 6 legs controllers (one for each leg), must be coordinated to generate a motion with
the desired velocity, direction and rotations. To do so, a coordinator controller is used.

• Knowing the current position of the feet from motor positions, and being able to
detect, if they are in contact or not, through a sensor in the tarsus-tibia prismatic
joint; it can fit a plane through the contact points. This plane can be used to
estimate the current hE, the φpitch and α|. While the φroll can be computed mea-
suring the gravity vector. From this values can be computed the errors and, using
a proportional gain, the desired velocities.

ωpitch = Ppitch (φpitch,desired − φpitch,measured) (5.43)

ωroll = Proll (φroll,desired − φroll,measured) (5.44)

vz = Pz (hE,desired − hE,measures) (5.45)

With the body oriented parallel to the ground in pitch (φpitch,desired = α|), horizontal
in roll (φroll,desired = 0) and gains Ppitch = 1, Proll = 1, Pz = 10.

• The remaining angular velocity contribution is due to the steering. Using prescribed
Rc and vadvance the angular velocity can be computed.

• Including all this computed velocity contributions and the ones due to the prescribed
vforward and vlateral (section 5.5.5), the velocity of the body can be obtained and,
the velocity to be held by each foot in stance phase (vstance) can be computed.

• A module selects the yoffset interpolating IDgait, α| and Lstride (see section 5.9).

• A module selects the height of each leg top point to grand the hstride
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• A module, while steering, estimates the lateral motion needed by the legs, and
determine the x+ in section 5.5.1, so to center the foot lateral motion in xoffset.

• It also aids the search controller (section 5.5.1), by changing the vstance to [0, 0, vsearch],
to block the advancement and lower the body, if after 0.2s in search, a leg has not
found a foothold yet.

• It imposes vstance = 0, if any leg reaches the limits.

This controller plus the 6 leg controllers compose the legs motion generator (fig. 5.15).

LEGS MOTION GENERATOR

LEG CONTROLLERSLEG CONTROLLERSLEG CONTROLLERSLEG CONTROLLERSLEG CONTROLLERSLEGS CONTROLLERS

COORDINATOR
CONTROLLER

legs motion
parameters

stop signals

IN OUT

Figure 5.15: Legs motion generator.

5.5.4. Trajectory follower

As stated in chapter 4, the result of the path planning is a trajectory containing a list of
[x, y, ϑ] positions and the corresponding list of parameters [hstride, hE, Lstride, IDgait, vforward].
The trajectory follower, determines which is the current position of the rover along the
trajectory t = [x, y, ϑ], which point is aiming to reach tnext (next point) and the parame-
ters for this branch. (fig. 5.16)

5.5.5. Steering controller

Two of the parameters required by the leg motion generator, are the curvature radius RC

and the lateral velocity vlateral, that are provided by the steering controller.

The curvature radius is generated to follow a prescribed trajectory in two possible ways:

1. If the current direction of the robot is pointing toward the trajectory (tnext), it
generates a circle passing for the current position, tangent to it and tangent to the
trajectory (tnext direction).
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Figure 5.16: Robot controller.

2. If the current direction is not pointing towards the trajectory (tnext), then a propor-
tional gain is used, with xRB

error being the distance from the trajectory to the rover
RB position:

RC =
1

PsteerxRB
error

(5.46)

with Psteer = 100 1
m2

Using just this controller brings some limitations, in fact, while not pointing toward the
trajectory, it will steer to realign to the trajectory using (2), when it will be parallel
to it, the controller is switched to(1), but the tangent circle will have almost infinite
RC , therefore moving parallel to the trajectory and not closing any eventual gap. To
compensate this, a lateral velocity vlateral is added, when the angle with trajectory is
almost parallel (|angle| < 5°):

vlateral = Pv,lateralx
RB
error (5.47)

with Pv,lateral = 51
s
. (fig. 5.16)

5.5.6. Gait pulse generator

To generate the proper leg motion sequence, and so the proper gaits, a controller must
generate a series of pulses defining swing phases and stance phases for each leg.
The gait pulse generator performs this by modulating a series of predetermined patterns
(section 2.2.2), so to have the required tcycle.
To grant the stability of the robot, each swing phase is started only when all the legs are
in contact with the ground.(fig. 5.16)
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5.5.7. Lean joint controller

The lean joint is directly controlled so to align the leg to the vertical, using a proportional
controller with gain 1.

5.6. Terrain generation

The terrain is generated and used as an heightmap Zterrain(x, y), both for the simulation
and the path planning, wide 5x5m and with resolution of 1cm.
The algorithm must be able to generate the terrain randomly, to repeatedly test the path-
planning on different terrains.
To do so, the terrain is generated by adding randomized features, like hills and rocks.

Hills can be modeled as 2D axially symmetric Gaussian functions:

h(x, y) = Ae
−
(x− x0)

2 + (y − y0)
2

2σ2 (5.48)

Where (x0, y0) denotes the position of the maximum (or minimum) of the curve, A its peak
height (or peak depression) and σ will relate to the slopes of the sides of the hill. Setting
these parameters, is possible to generate a hill (or a pit), defining position, dimension and
slope. The single hill is bounded to not have a maximum slope higher than a limiting
value max allowed slope αmax,hill (20° in this work), to avoid the generation of totally
unfeasible terrains. For this purpose, can be noted that cutting the 2D Gaussian with a
plane perpendicular to the xy-plane and passing for (x0, y0) in any direction, will result
into a 1D Gaussian with the same parameters. For example, imposing y = y0, can be
obtained

h(x, y0) = Ae
−
(x− x0)

2

2σ2 (5.49)

And by computing its second derivative and imposing it to 0, the point with maximum
derivative can be found, resulting x = σ. Using the first derivative, the maximum deriva-
tive can be computed:

h′
max(x, y0) = −A

1

σ
√
e

(5.50)

And since maximum allowed slope must be respected, and the first derivative is the
tangent of the slope, a limiting A can be computed:

Amax =
√
e · σ tan(αmax,hill) (5.51)
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A random A of the hill can be generated between +Amax and −Amax, while the center
(x0, y0) is positioned randomly on the terrain, if the hill is small (2σ <= Lmax,terrain);
otherwise the center is positioned even outside the terrain, but the center of the terrain
must be inside the maximum slope circumference of the hill, so to have a uniform slope
effect. This means that the range to spawn the hill center must be 2σ.
The resulting heightmap of the hill h(x, y) is then summed to the terrain heightmap, and
the lowest point of the map is redefined as z = 0.
This is done for each hill that must be added, in this simulation have been used 12 hills
with σ as 100, 10 and 10 random values between 1 and 3 (the random values change for
each terrain generated).

After the terrain morphology has been generated, rocks must be added.
A rock can be generated as a convex hull of a cloud of random points. Defining the
variables Rmean, npoints and E, a random point in spherical coordinates can be generated
with a random φ in [0, 2π] and ϑ in [−π/2, π/2] (uniform distribution), while the radius
have a probability distribution with as mean Rmean and σ = Rmean · E. E represents
the "edgyness" of the rock, smaller values means the rock will tend to be spherical, with
bigger values will tend to be like a shard.
Generated the points, their convex hull is generated, the upper points of the hull are
obtained(fig. 5.17a) and the rock is converted into an heightmap (fig. 5.17b).
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(a) Rock generated through points. (b) Heightmap of the rock.

Figure 5.17: Rock generation.

Finally the rock is positioned on a random point of the terrain, positioned with its zero
at the height of the point on the terrain, and the union between terrain and rock maps is
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performed (in each (x,y) is kept the highest z).
This operation is performed for several rocks and different groups of rocks.
Each rock Rmean is generated randomly, using a Gaussian distribution with mean Rup,mean

and σup, and is generated a number of rocks nrocks so to approximately cover a certain
percentage of terrain. Assuming that each rock will occupy a an area of about πR2

up,mean

then

nrocks = ρcoverage ·
Aterrain

π
Rup,mean

2 (5.52)

The ρcoverage itself is randomized an and is the absolute value of a number generated with
normal distribution with mean 0 and σ = σρ.
This is performed for 3 groups of rocks: big rocks, rocks that cannot be traversed by the
rover, working as obstacles; medium rocks, that can be hovered by robot E or T bands,
but cannot be stepped on; and small rocks, like pebbles that can be stepped on, but
creates problems for the stability of the rover.
The parameters used on each rock set can be seen in table 5.5.

Small Medium Big

Rup,mean[m] 0.02 0.1 0.2

σup[m] 0.01 0.05 0.2

E[-] 0.1 0.2 0.2

npoints[-] 40 40 40

σρ[-] 0.05 0.05 0.01

Table 5.5: Rocks groups generation parameters.

Generated the terrain heightmap Zterrain(x, y), the local slopes along x and y are computed
in each point of the map (Sx(x, y),Sy(x, y)), is computed also a map of the total local slope,
and is converted into a boolean map of the points, where the slope is higher than the one
that grants foothold stability for the rover Γterrain(x, y).

5.7. Power post processing

Since this work is about energy consumption, after a simulation has been run, the power
consumption must be estimated.
Simulink and Simscape compute during the simulation the torque profile T̃i(t) for each
joint and their angular velocities ω̃i(t). Since the motors are connected to joints through
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an harmonic gear [24, 19, 21] the values must be converted into motor values through

Ti(t) =
T̃i(t)

ngear

ωi(t) = ω̃i(t)ngear (5.53)

Since the motor itself is not simulated in Simulink, and the leg are controlled kinematically,
in can generate any arbitrary force, but in reality motors does have limits. Therefore
defined the max motor torque Tmax, is computed if there are periods where is requested a
force above the limits, and how much they last. If the peaks last less than 0.2 seconds, than
the simulation is considered acceptable. This is done to add a bit of compliance, since,
being controlled in positions, the joints will generates for some instants extremely high
forces, like on impacts. In reality it would not be a problem, because those instantaneous
movement requested for brief instants, are not present.
The Ti(t) is capped with Tmax and its derivative T̊i(t) is computed. The electric motor
equations are L̊i+Ri+Kω = V

Jω̊ + bω −Ki = −TL

(5.54)

Jω̊ can be comprised in TL, since simulink already computes it, and adding P = V i the
power can be computed as 

I =
TL + bω

K

P =

(
L
T̊

K
+Ri+Kω

)
i

(5.55)

Using parameters in table 5.6 and T is the Ti(t). The power is capped to 10kW just to
avoid numerical errors to make explode the intergal. All the joint powers are summed
and is added also the no load power Pnoload, the power consumed by the robot without
generating torques, obtaining the total power Ptot(t). Then, the total power is integrated
to obtain the total energy consumption.
Parameters have been computed from the motor datasheet[25] and the remaining ones
(b), have been estimated to try to obtain the same power profile in [20]. The result
are always similar in behaviour, but in absolute value they are accurate only at high
torques and rotation velocities. This might happen because the data in [20] are referred
to experiments, while the simulation uses only theoretical data. For the purpose of this
work, just a behaviour simulating a motor would be enough, but must be highlighted
one thing: in the working region of the rover, the joints power demand simulated is
approximately half of the one measured in [20], but since must be added the Pnoload, the
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Parameter Values

K[mN/A] 58

R[mΩ] 540

H[µH] 490

b[Nm/s] 0.0017*

Tmax[Nm] 0.96

ngear[−] 100

Vmotor[V ] 48

Pnoload[W ] 66.5**
* Estimated attempting to obtain a profile like in [20].

** For the entire rover.

Table 5.6: Motor and gear parameters [19, 20, 25]

difference is much less significant (like 110W against 130W). But since the experiments
are performed on Earth, while the simulation runs with Mars gravity , this difference is
even higher. This can be a problem, because the power consumption is dominated by the
contribution of the no load power, causing the algorithm to mainly optimize the path by
increasing the speed and reducing the travel time. In fact the only parameters to add a
significant variations to the consumption, are the slopes and the velocity, while the others
despite behave as expected, their effect on the consumption is so marginal that are not
considered for optimization. Probably this algorithm can work with high variation on
joint consumption, but a most relevant benchmark must be created.

5.8. Stability post processing

To evaluate the success and the quality of a path simulation, an other analysis can be
performed on the stability.
The stability of the rover can be measured with the Static Stability Margin Sm (see sec-
tion 2.2.2). During the simulation Simulink measures the position for each foot, if they are
in contact to the ground and computes the position of the varying center of mass (COM)
of the rover, accounting also for legs positions. Furthermore can detect if a contact is
stable or unstable (above the limit slope) and accounts the foot as not in contact. With
this data the support polygon can be computed, and measuring the minimum distance of
the rover COM projection from the support polygon edges, the stability margin can be
computed for each time instant.
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The stability margin profile can be converted into a mean stability margin of the path
with a time-weighted mean.
Furthermore, since Sm ≤ 0, are possible, especially due to unstable contact, and repre-
sent unstable configurations; they can be identified, and the fraction of time during the
simulation when the rover is unstable, can be computed.

5.9. Y offset-slope-gait relation analysis

As said in section 5.5, the yoffset for the robot is evaluated by the controller on the run,
based on the slope and the gait. The controller uses a lookup table to obtain the value.
In this section will be discussed the way to obtain this table.
First is created an exploration grid, made of longitudinal slopes α| = [−40, −35, −30,

−25, −20, −15, −10, −5, 0, 5, 10, 15, 20, 25, 30, 35, 40], stride lengths Lstride = [0.1, 0.25]

and the four gaits described in section 2.2.2: slow wave (1), fast wave(2), ripple(3) and tri-
pod(6). For each combination between the three parameters is run a bisection algorithm.
The algorithm run a simulation at each iteration, trying to find the yoffset that maximize
the mean stability margin (see section 5.8). It works with a tolerance of 1cm and search
in the range of [-3dm,+3dm]. The final result will be a matrix of optimal yoffset. The
matrix is filtered of the spurious non monotonic results, since to in crease stability, with
increasing slope the robot must increase yoffset. And the results will be grouped for each
stride length-gait combination. Will be performed an interpolation along the slope to
convert all slope slamples in m and q parameters of:

yoffset = mα| + q (5.56)

So the final result are table 5.7

Lstride[mm]: 0.1 0.1 0.25 0.25

m[mm/°] q[m] m[mm/°] q[m]

Slow wave (1) 0.5000 0.0160 0.5417 0.0187

Fast wave (2) 0.4688 0.0222 0.6458 0.0299

Ripple (3) 0.1250 0.0389 0.5417 0.0472

Tripod (6) 0.0625 0.0354 0.4375 0.0458

Table 5.7: yoffset lookup table.
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5.10. Gait-roughness relation analysis

As seen in chapter 3, the gaits are selected using a missing contact coverage factor ρMCC .
This result comes from a stability analysis section 5.8.
The idea is that when a foot steps on a rock, it creates an unfeasible foothold, so the leg
is not considered for the support polygon generation. This can cause the stability margin
to become negative, and so the rover to be unstable. If this happens to a foot during
tripod gait, with just 3 footholds, it immediately becomes unstable. Instead, for a wave
gait to become unstable, 3 feet must be unstable. Therefore, a rougher terrain requires a
more stable gait, and this analysis wants to find a criteria to select the gait.
An exploration is performed this time for flat terrain with only small rocks with ρcoverage =

[0, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5, 0.8, 1] (terrain generation parameter described in
section 5.6), and the four gaits described in section 2.2.2: slow wave (1), fast wave(2),
ripple(3) and tripod(6).
A simulation is performed for each combination and, performing the stability analysis (
section 5.8), the percentage of time when the rover is in an unstable position (Sm ≤ 0) can
be obtained. Has been chosen for this value to stay under 5%, so to maintain stability,
yet grant a bit of tolerance to the simulation.
Therefore, for each gait, the highest values of ρcoverage that can stay under 5% are set as
limiting values.
Must be noted that the ρcoverage is the value used to generate the terrain, while ρMCC is the
one used in the cost function. The first does account the entire rock as occupying terrain,
while the second only the part with a steep slope, so, generally, the border. Therefore,
the ρMCC for each test must be computed and on those, must be chosen the limit values.
Values shown in table 5.8.

Gait ρMCC,max[%]

Slow wave (1) 32.56

Fast wave (2) 21.34

Ripple (3) 15.55

Tripod (6) 0.52

Table 5.8: ρMCC boundaries table.
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5.11. Cost Of Transport matrix evaluation

Similarly to section 5.9 and section 5.10, the analysis can be performed to obtain the
COT (α|, α_, hstride, hE, Lstride, gait, vforward).

Several combinations are generated using parameters in table 5.9. The ones respecting
the constraints in section 5.2.1, 5.2.2, 5.2.3 are maintained and are simulated. Each
combination is simulated for a duration of 3 cycles, on smooth terrain, and the data of
the last 2 cycles, are used for post processing (section 5.7, 5.8) obtaining a COT to put
in the matrix. NaN if the simulation was not feasible.

Parameters Values

α| [°] -40 -30 -20 -10 0 10 20 30 40

α_ [°] 0 10 20 30 40

hstride [cm] 5 15 25 35 45

hE [cm] 5 15 25 35 45

Lstride [cm] 5 10 15 20 25

IDgait 6 3 2 1

vforward

[
cm
s

]
1 3 5 7 9

Table 5.9: Parameters to evaluate the COT matrix.

Furthermore, the post processing computes the final error in following the trajectory, and
the presence of torques outside the limits. The few values with an error on the trajectory
higher than 10 cm, have been discarded, while no element presented a torque outside the
limits.

5.12. Algorithms parameters

In table 5.10 are reported the parameters, used to test the algorithms and obtain the
result reported in chapter 6.
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Parameters RRT* RRCT* RRHT*

Lsampling[dm] 1 1 1

dextend[dm]* 5 5 -3

dconnect[dm]* 5 5 4

σexp[−] 0.2 0.5 0.5

σopt[−] 0.8 0.5 0.5

RC,min[dm] 1.5 1.5 1.5

RC,max[dm] inf 5 5

* Remember the distances have a different definition for the algorithms (chapter 4).

Table 5.10: Algorithms parameters.
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Defined the simulation instruments in chapter 5, the validation of the path planning
algorithm can be performed. For this scope, 304 terrains have been generated (section 5.6),
the target direction has been defined as +y, and on each terrain the 3 algorithms in
chapter 4 have been used to to obtain the best path.

The performance have been measured considering:

• The total energy needed to reach the target Etot. This value is the "real" one, the
one simulated as in section 5.7.

• The absolute error between the Etot and the energy estimated by the path planner
Etot,est:

eabs,Etot = Etot,est − Etot (6.1)

so if the error is negative, means that the planner underestimated the energy re-
quired.

• The relative error:

erel,Etot =
eabs,Etot

Etot

(6.2)

• The number of calls to the cost function (single point calls) (chapter 3), to reach a
certain stage.

• The execution time needed, to reach a certain stage.

Their distribution will be shown in fig. 6.1, 6.2, 6.3, while their mean values over the
samples will be shown in table 6.1,6.2, 6.3, 6.4.

A premise is that the mean values are computed over samples, feasible both for RRT* and
RRCT* to be consistently comparable for each terrain, while the fail of RRHT* is not
a criteria to discard a sample, because being it in a very early stage, has some problems
and would reduce too much the number of samples. The resulting comparisons show,
that RRCT* and RRHT* find generally cheaper paths (fig. 6.1a,table 6.1). Precisely, the
difference of the mean Etot between RRT* and RRCT* is of 1447 J, while between RRT*
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and RRHT* of 909 J. While not being huge differences, that means that RRT* paths are
14% more expensive respect to RRCT* paths(in mean), and 8.3% more expensive than
RRHT* paths. This is expected since (as said in section 4.2), RRT* is not actually able
to evaluate curves, while RRCT* and RRHT* can, and so can better optimize the path.
The estimation errors erel,Etot and eabs,Etot are not significantly different (fig. 6.1b, fig. 6.1c,
table 6.1), this is reasonable, since they all use the same cost function (chapter 3).
The difference, instead, is relevant for RRT* before the path post-processing, as can be
seen in fig. 6.1d and table 6.1, where, as already said, the algorithm does not evaluate
turns.
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Figure 6.1: Energy consumption and estimation between the algorithms pt1.

preRRT* RRT* RRCT* RRHT*

mean std mean std mean std mean std

Etot[J ] " " 11845 5606 10398 5161 10936 5952

erel,Etot [−] -0.216 0.136 -0.067 0.125 -0.073 0.184 -0.071 0.190

eabs,Etot [J] 2727 2551 1256 2112 1328 2201 1449 2440

Table 6.1: Total energy consumed simulated data. Including the "real" energy consumed
and the errors on the estimation. preRRT* refers to the RRT* result before the post
processing of the path (see section 4.1.4).

Looking at the number of cost function calls to reach said results, we can measure them
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Figure 6.1: Energy consumption and estimation between the algorithms pt2.

at 4 milestones. Them are: the first path, when a path maximum 20% or 10% more
expensive than the optimal path is found, and the end of the path planning.

At all milestones RRCT* has the lowest mean amount of calls (fig. 6.2, table 6.2), this is
possibly due to the bigger dextend and dconnect parameters forced by the RRCT*, creating
less dense trees. Furthermore, the path optimization algorithm for RRCT* generates a
lot less circles respect to RRT* optimization points, therefore the lighter optimization
terminates first the code. The last point is confirmed by the fact that RRT* has less calls
than RRHT* in all milestones, except the last, since the optimization process is lighter
and and terminates quickly.

Same discussion for the calls can be done for the time.
The analysis is the same as for the calls (fig. 6.3, table 6.3), but must be added that in
this case the partial milestones of the RRT* do not account for the time of path post
processing, causing the RRT* time to find first path to be lower than RRCT*, while
having an higher number of iterations.

These data are useful in the case of path planning while moving. If the algorithm needs
several seconds to compute an optimal path, instead of waiting for the algorithm to finish,
wasting a lot of energy standing still, the rover could start moving before the final path
is found, knowing that the path will not be optimal, but already reasonably cheap.



92 6| Results

First solution calls number

0 500 1000

ncalls

0

0.1

0.2

0.3

0.4

P
ro

b
a
b
il
it
y

RRT
RRCT
RRHT

(a) Number of calls to find a first feasible path

Calls number to go below 20% energy error

0 500 1000

ncalls

0

0.1

0.2

0.3

P
ro

b
a
b
il
it
y

RRT
RRCT
RRHT

(b) Number of callsto find a path with relative er-
ror on the energy lower than 20%.

Figure 6.2: Simulations number of cost function calls distribution comparison between
the algorithms pt1.

RRT* RRCT* RRHT*

Calls to first path 711 564 841

Calls to 20% error 1078 648 1144

Calls to 10% error 1570 803 1432

Calls to end 2767 1251 2678

Table 6.2: Path planning cost function calls. Means of the number of calls to the cost
function for the path planning algorithm. Are computed reported calls of when: the first
path is found, the estimation of the energy has an error lower than 20% and 10% and
when the algorithm terminates.

As last thing, is important to evaluate the ability of the path planner to find a feasible
path.
As seen in table 6.4 the RRT* has the highest planing success rate of 89%. This is
expected, as said in section 4.3, since, thanks to its capability to use small dextend, and
the use of thinner windows (because it does not account steering section 4.1), allows it
to sneak the path in narrower passages. While increasing the ability to find a path, this
reduces the reliability of the path generated. In fact, only 34% of the paths generated
by the RRT*, are able to go through the post processing, without finding unfeasible
positions. While the evaluation is overly conservative and the rover is still able to reach
the destination, in some applications this unrealiablity is not acceptable.
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Figure 6.2: Simulations number of cost function calls distribution comparison between
the algorithms pt2.

RRCT* and RRHT* have more difficulties in finding a path, the success rate is 71%. If is
expected for the RRCT*, the RRHT* fails to reach its goal in improving this parameter.
This might be due to the fact that RRT* does not evaluate curves at all, using slimmer
windows, and so being unreachable by RRHT*; but is likely that since RRHT* has been
drafted hastily, it is badly optimized and retains some errors.

Lastly, can be checked if the stability criteria defined in section 5.10, is respected.
In 10.7% of the terrains RRT* and RRHT*, while RRCT* in 7%, are not able to keep the
unstable time below 5% (table 6.4). This is probably due to the fact that the possibility to
step on a small rock is very statistical, and thus a criteria on it can reduce the probability,
but not make it disappear.
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Figure 6.3: Simulations times distribution comparison between the algorithms pt1.
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RRT* RRCT* RRHT*

mean std mean std mean std

Time to first path [s] 6.3 10.6 7.3 14.7 10.1 15.9

Time to 20% error [s] 10.7 - 8.16 - 13.5 -

Time to 10% error [s] 15.4 - 9.9 - 16.6 -

Time to end [s] 30.0 16.1 14.7 16.6 30.3 15.2

Table 6.3: Path planning time. Mean and standard deviation of the execution times for
the path planning algorithm. Are computed reported times of when: the first path is
found, the estimation of the energy has an error lower than 20% and 10% and when the
algorithm terminates. Some data are not reported for low relevance.

preRRT* RRT* RRCT* RRHT*

Planning success [%] 89* 34* 71 71

Paths over 5% of instability [%] " 10.7 7.0 10.7
*The RRT* is often able to find a solution, but during the path post processing some
unfeasibilities are found, the path generally still works, but the safety estimation is not

conservative (section 4.1.4).

Table 6.4: Other data. Including the percentage of terrain that the algorithm was able
to plan and the percentage of simulation, where the criteria of the instablity during the
par must be lower than 5% is not respected (section 5.10).



96 6| Results

Performed an analysis on the statistic of all the simulations, another analysis can be per-
formed on some of the terrain samples, to evaluate if some unexpected problems appear
and check the behaviour of the planners fig. 6.4.

(a) Terrain with multiples medium rocks, the rover can pass
over them.

(b) RRCT* uses bigger radii of curvature, re-
spect to RRT*, thus reducing the consump-
tion.

Figure 6.4: Simulation on terrains examples pt1.

(c) Terrain with multiples medium rocks, the rover
can pass over them.

(d) RRCT* and RRHT* have less and softer
turns, reducing consumption.

Figure 6.4: Simulation on terrains examples pt2.

What the terrain shows are just confirmations of what already said, just one think must
be added.
Often the terminal part of the path does have a small sudden and pointless curve, can be
clearly seen on flat terrain in fig. 6.4i and fig. 6.4m or with slopes in fig. 6.4e. This is due
to the rough way selected to determine a target. In fact, the direction has been modeled
ass a series of points, that can be possible targets. While this works nicely in the areas
far from the goal line, it creates problems near the targets points, because the arrival
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(e) Medium-high slope. (f) Very harsh terrain due to medium rocks, RRHT*
fails.

Figure 6.4: Simulation on terrains examples pt3.

(g) Harsh terrain due to medium rocks and slopes, only RRT*
successful.

(h) Harsh terrain due to medium rocks and
slopes, only RRT* successful.

Figure 6.4: Simulation on terrains examples pt4.

condition is to exactly pass for those point, therefore causing the path to turn. Putting
an area as a target position, as in common RRTs, probably would solve the problem.
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(i) Almost flat terrain, with several small rocks. (j) Impossible terrain due to excessive slope, all fails.

Figure 6.4: Simulation on terrains examples pt5.

(k) Terrain with several medium rocks. (l) Terrain with some medium rocks and a gap that
can be exploited.

Figure 6.4: Simulation on terrains examples pt6.

(m) Almost flat terrain, yet the trejectories are not
pointing to the goal with straigh lines.

(n) Harsh terrain.

Figure 6.4: Simulation on terrains examples pt7.
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7| Conclusions and future

development

This thesis presents a path planning algorithm for legged robots, able to optimize paths
to reduce energy consumption.
The result shows that the main goals are reached. The path planning is correctly per-
formed, the energy consumption is estimated with reasonable error and the developed
algorithms works better than others.

Must be remembered, that the cost function use a cost matrix that has been evaluated by
simulations (section 5.11). The computation of a wider matrix, with more dense samples
and some statistic evaluation, could allow higher prediction accuracy and accessibility to
much more terrains.

While being promising for multiple applications, the validity of this work is still limited,
since has been tested and validated just in certain conditions.
As said in section 3.7, the rover must be able to determine its position and to follow a
trajectory relatively tightly. Furthermore, the validation has been performed on rigid and
monolithic terrain, measurement errors of the terrain and state are not considered, and
line of sight obstruction has been neglected.
Nevertheless, as explained in section 3.7, this limitations can possibly be lifted by further
validations and modules additions.

The first effort in validating different benchmark robots or models, should be directed to
have a robot with more variable power consumption. The possibility of this work to be
flawed by low energy consumption in the actuators, is the first to be addressed.

The algorithms studied, retains some limitations, therefore must be improved. In partic-
ular, the RRHT* needs a deeper study and optimization, and could be developed in the
direction of becoming a Dubin curve-based RRT* algorithm, adding procedures developed
in this thesis, to the Dubin curve-based RRT, making it the most interesting alternative
at the moment.
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This work is just a preliminary exploration of the topic, it gave some answers on the
energy-based path planning, but they are not resolutive and all aspects must be expanded.
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COT cost of transport J/m
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Z(x, y) heightmap m

Sx(x, y) slope along x map rad

Sy(x, y) slope along y map rad

H(x, y) relative heightmap m

Γ(x, y) missing contact matrix -

Lsampling trajectory sampling length m

dstart starting distance m

σopt optimization bias -

σexp exploration bias -

e cost from parent J

$ cost from start J

ϑa
c point absolute angle rad

ϑo
c point oriented angle rad

ρS stator welding distance m

ρR rotor welding distance m

xE E-band boundaries m

xA,straight A-band boundaries on straight line m

xA,steering E-band boundaries on curve m

δx, δy, δz margin along x,y,z direction m

pfoot penetration depth m

p̊foot penetration velocity m/s

vslip slip velocity m/s

k stiffness coefficient N/m

b damping coefficient Ns/m

µs static friction coefficient -

µk dynamic friction coefficient -

vtrans transition velocity m/s

g gravitational acceleration m/s2

pRH
A

position of A in RH m

pJ
A

position of A in joint angles space rad

vstance stance velocity m/s

IDgait gait index -

Pxx proportional gain of xx -
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E edginess -

ρcoverage rock coverage factor

T̃i joint torque of joint i Nm

ω̃i joint rotational velocity of joint i rad/s

Ti motor torque of joint i Nm

ωi motor rotational velocity of joint i rad/s

L motor equivalent inductance H

R motor equivalent resistance ω

K motor constant N/A

b damping rotational coefficient Nm/s

TL load torque

Tmax maximum motor torque Nm

ngear gear ratio -

V voltage V

i current A

Pnoload no load power

Etot total energy consumption J

Etot,est estimated total energy consumption J

eabs,Etot absolute error on energy estimation J

erel,Etot relative error on energy estimation -
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List of Abbreviations

Abbreviation Description

ACE Approximate Clearance Evaluation

ENav Enhanced AutoNav

COT Cost Of Transport

MCC Missing Contact Coverage

RRT Rapidly-exploring Random Trees

RRCT Rapidly-exploring Random Christmas Trees

RRHT Rapidly-exploring Random Holly Trees
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