
Executive Summary of the Thesis

Adaptive guidance via Meta-Reinforcement Learning: ARPOD for an
under-actuated CubeSat

Laurea Magistrale in Space Engineering - Ingegneria Spaziale

Author: Gaetano Calabrò

Advisor: Prof. Pierluigi Di Lizia

Co-advisor: Michele Maestrini PhD

Academic year: 2022

1. Introduction
The evolution of space industries is, currently,
headed towards the application of small satel-
lites for the accomplishment of very complex
missions, such as on-orbit servicing, debris re-
moval and the deployment of large constellation
for global services. To cope with the complexity
of such space missions, autonomous and small
spacecrafts solutions are making inroads in
almost every space industry.

This Executive Summary aims at briefly describ-
ing a solution for an Autonomous Rendezvous,
Proximity Operations and Docking (ARPOD)
problem for a highly constrained CubeSat, pro-
posed in [1], through the implementation of a
Deep Meta-Reinforcement Learning algorithm.
Moreover, the scope of this work is to demon-
strate that Deep Meta-Reinforcement learning
provides a powerful technique for solving com-
plex problems, where uncertainties are consid-
ered. In particular, the adaptability and robust-
ness of such algorithm is proved by the results
that will be summarized on this document.

2. Problem formulation
Typically, a rendezvous, proximity operations
and docking mission ConOps can be divided into
three main phases:
• An initial phase, defined as rendezvous

phase, during which a spacecraft, called
Chaser, approaches another one, named as
Target. It ranges from 10 km to 1 km of
relative distance between the two.
• A second phase, the proximity operations

one, that goes from 1 km to 100m of sepa-
ration between the two spacecrafts.
• The docking phase, in which final manoeu-

vres are performed to dock the two space-
crafts. It can be identified between 100m
and 0m of separation.

With this in mind, the problem here consid-
ered assumes a planar Autonomous Rendezvous,
Proximity Operations and Docking between an
Earth-orbiting spacecraft, the Target, and an
autonomous spacecraft, the Chaser.
The high level objectives of this mission are:
• The chaser must reach less than 10m of sep-

aration from the Target, with a maximum
absolute relative velocity of 0.2m/s and an
absolute relative angle lower than 5 deg.
• The entire manoeuvre must satisfy some

1

Executive summary Gaetano Calabrò

safety requirements, that are introduced as
constraints.
• The docking is considered successful if the

Chaser reaches less than 1m of relative dis-
tance with respect to the Target.

2.1. Chaser Model and Dynamics
The Chaser is modelled as a 6U CubeSat,
provided with a set of two thrusters, aligned
with the body axis xb and a reaction wheel,
used to control the angle about the zb axis.
The docking port of the Chaser is assumed
to be on the surface with normal aligned to
the body axis [1], as illustrated in green in Fig. 1.

Figure 1: Model of the Chaser. The thrusters
and the reaction wheel are indicated in red and
blue, respectively. Taken from [2].

The Target is on a circular Earth orbit a 500 km
of altitude. To simplify the equations of mo-
tion that describe the rendezvous, a non-inertial
frame is attached to the Target: the Hill’s
frame. In this frame, the relative position be-
tween the Target and the Chaser is denoted as
r = {x y z}T . Hence, the planar equations of
motion [3] can be written as:

ẍ− 2nẏ − 3n2x = 0
ÿ + 2nẋ = 0

(1)

Where n is the mean motion of the Target, that
is constant for a circular orbit. As a conse-
quence, since all the coefficients of the differ-
ential equations are constant, an analytical so-
lution there exists. The same holds for the ro-
tational equations of motion eq. (2), where Izz
and D are the mass moments of inertia of the
spacecraft and the reaction wheel, respectively,
θN is the attitude angle and ψ̇ is the angular
acceleration provided by the reaction wheel.

Izz θ̈N = −Dψ̇ (2)

For the scopes of this work, the analytical so-
lution of the equations of motion is then dis-

cretized in a recursive form.

2.2. Constraints
A set of constraints is implemented to assure
safety and feasibility of the trajectory, following
the guidelines for an assured satellite proximity
operations, given by [1].
For the sake of clarity, the constraints are briefly
explained hereafter, where they are mathemati-
cally formalized.

Constraint Expression
1 F ∈ [Fmin : Fmax]
2 |ψ| ≤ ψmax

3 |ψ̇| ≤ ψ̇max

4 |ẋ| ≤ vxmaxand|ẏ| ≤ vymax

5 ||v|| ≤ vdock + fs

√
Fmax
2m ||r||

6 |θ̇N | ≤ θ̇Nmax

7 |θ̈N | ≤ θ̈Nmax

8 αC ≤ αLoS

Table 1: Mathematical expression of the con-
straints

In particular:
• Constraint 1 - Asymmetric bounded

thrust : physical limitation of the thrusters
in terms of maximum and minimum avail-
able thrust, Fmax and Fmin.
• Constraint 2 - Maximum reaction wheel

velocity : physical limitation of the reaction
wheel in terms of maximum angular veloc-
ity ψmax.
• Constraint 3 - Maximum reaction wheel

acceleration: physical limitation of the re-
action wheel in terms of maximum angular
acceleration ψ̇max.
• Constraint 4 - Recoverable relative velocity

limit : maximum threshold for the relative
velocity of the chaser, in order to maintain
recoverable relative motion.
• Constraint 5 - Bounded relative velocity

limit : links the speed and the relative dis-
tance, meaning that the Chaser should not
be traveling exceedingly fast when it is get-
ting closer to the Target. The maximum
final velocity is thus constrained to fulfill a
threshold to ensure a safe docking. In the
mathematical expression, fs is a safety co-
efficient.
• Constraint 6 - Maximum angular velocity :

2

Executive summary Gaetano Calabrò

limit to the maximum angular velocity of
the Chaser.
• Constraint 7 - Maximum angular acceler-

ation: maximum angular acceleration that
the structure of the Chaser spacecraft can
sustain without serious damages.
• Constraint 8 - Docking cone: imposed to

force the Chaser to remain inside the Line-
of-Sight (LoS) αLoS of the Target docking
port sensors during the docking phase.

3. Deep Meta-Reinforcement
Learning

In the Reinforcement learning framework, an
Agent learns through repeated interaction
with an environment to complete a certain
task. A Markov Decision Process (MDP) is an
abstraction of this environment, which can be
represented, in a continuous form, by a state
space S, an action space A, a state transition
distribution P(xt+1 | xt,at) and a reward
function r = R(xt,at), where x ∈ S, a ∈ A and
r is a scalar reward signal. The Agent interacts
with the environment, selecting a certain action
at based on the state st it is currently in,
receiving then a reward rt+1 and ending up
in the next state st. The optimization of the
learning process consists in maximizing the
sum of potentially discounted rewards over the
trajectories generated from the interaction with
the environment.

Deep Meta-Reinforcement learning is a rein-
forcement learning based algorithm that embeds
a particular kind of Artificial Neural Networks,
called Recurrent Neural Networks (RNN). The
Meta-RL Agent is trained over multiple Markov
Decision Processes. At the beginning of a new
episode, a new MDP environment is generated
and the initial state of the Agent neural network
is reset. Afterwards, the Agent performs an
action-selection strategy thus exploring the new
environment. Finally, the networks are trained
to maximize the sum of observed rewards,
obtained during the exploration at each episode.

After the training process, the testing phase be-
gins. The Agent’s policy is fixed, which means
that the parameters of its neural network, the
weights and biases, are frozen. Since the pol-
icy is fixed, the Agent is now history-dependent.

In other words, the adaptability of Meta-RL
Agents lies on the use of Recurrent Neural Net-
works, that are able to store data from earlier
events and propagate them to current process-
ing steps, building so a memory of time series
events [4] that are recalled when dealing with a
new environment. In this work, a Long Short-
Term Memory (LSTM) network is adopted as
the Recurrent Neural Network that builds up the
Agent. For the sake of brevity, its main struc-
ture is illustrated in Fig. 2.

LSTM

1 2 3
𝐶𝑡−1 𝐶𝑡

𝐻𝑡𝐻𝑡−1

Pass updated
information

Forget irrelevant
information

Add or update new
information

Figure 2: Common subdivision of an LSTM
module into three main parts, respectively the
Forget gate, the Input gate and the Output gate.
Each of them plays a particular and unique role.
Ct is called as cell state and stores long term
dependecies, while Ht is the hidden state, that
catches short term dependencies.

Along the Recurrent Network, a standard Feed
Forward Neural Network is considered for the
implementation of the Agent.

3.1. Actor-Critic and Proximal Policy
Optimization

The two kinds of neural networks are used
to build up the Agent, that can be divided
in two different parts: an Actor and a Critic.
The Actor consists in a neural network that
tries to learn the adaptive policy πθ, which is
a probability distribution of possible actions
conditioned on the state the Agent currently
is, by optimizing the networks parameters θ.
The Critic network, instead, learns the so-called
value function, V π,γ

w (st), parameterized in w,
that, dependently on the current policy and
the current state, estimates how good is a state
assuming to start from that state and reach
a future one in a horizon determined by the

3

Executive summary Gaetano Calabrò

discounting factor γ.

The learning process of both Actor and Critic
consists in the simultaneous optimization of
their respective network parameters θ and w
through a gradient descent applied to some user-
defined cost functions. In this work, the Prox-
imal Policy Optimization (PPO) algorithm is
adopted for the policy optimization process [5].
It defines a clipped objective function, based on
the advantage function Aπ,γ(st,at), which is a
measure of how much better an action is com-
pared to the expected outcome that can be ob-
tained by following the current policy πθ. In
this work, as done in [6], the advantage func-
tion is calculated as the difference between the
discounted sum of rewards, known as empirical
return, and the predicted state value function,
learned by the Critic. The expression is shown
in eq. (3).

Aπ
w(st,at) =

[∞∑
τ=0

γτrt+τ

]
− V π

w (st) (3)

Finally the two objective functions JPPO
t (θ)

and JV F
t (w) can be written for both the Actor

and the Critic, respectively. The parameters
are then updated through gradient ascent on θ
and gradient descent on w.

Furthermore in the implementation of the PPO
algorithm, the clipping parameter used for the
objective function JPPO

t (θ) and the learning
rates of the neural networks are dynamically ad-
justed to target a Kullback-Leibler divergence
between the old and the new policies. For the
sake of clarity, the Kullback-Leilber divergence
is a measure of the difference between two prob-
ability distributions [6].

3.2. Algorithm
To sum up, the Actor-Critic based PPO algo-
rithm is reported hereafter.

Algorithm 1 PPO algorithm in Meta-RL
1: Initial instructions
2: for episode = 1, 2, ..., E do
3: Reset the environment
4: Generate new environment
5: while not done do
6: Sample at from πθ(at | st)
7: st+1; rt+1; done← Env(st;at)
8: Store the roll-outs
9: for epoch = 1,2, ..., K do

10: Unroll the recurrent layer of each net-
work

11: Compute V π
w and Aπ

w

12: Compute Actor objective function
JPPO
t

13: Compute Critic objective function
JV F
t

14: Perform a gradient ascent on the Ac-
tor parameters θ

15: Perform a gradient descent on the
Critic parameters w

16: Adjust clipping parameter and learn-
ing rates to target a KL divergence

17: end for
18: end while
19: end for
20: Final instructions

4. Implementation
The implementation of the ARPOD problem in
the Meta-RL framework begins with the dis-
cretization of the solution of the equations of
motion and the definition of the action and
state spaces, respectful of the constraints. Af-
terwards, a proper reward logic is introduced
as the combination of two terms: a shaping re-
ward function and a sparse reward logic, that
assigns bonuses and penalties when some user-
defined conditions are met. The shaping reward,
instead, suggests the Agent what actions must
be preferred in order to reach the Target. For
this reason, this term is expressed as a function
of the distance, according to the definition of
a fictitious potential field in the location of the
target, and as a function of the attitude angle.
Hence:

Rshape
t (rt, θNt) = Rshape,r

t +Rshape,θ
t (4)

The distance dependent term is obtained by the
definition of an attractive Artificial Potential

4

Executive summary Gaetano Calabrò

Field (APF) [7] in the location of the Target,
as expressed in eq. (5), where katt is the attrac-
tive coefficient. The Potential is defined as a
positive function that increases as the relative
distance with respect to the Target increases.

Ut =
1

2
katt(||rt||2) (5)

After the definition of the reward function, the
Agent’s networks structure is created and re-
ported in Table 2 and Table 3.

Layer Neurons Activation
Hidden 1 130 tanh
Hidden 2 90 tanh
Hidden 3 60 tanh
Output 2 Linear

Table 2: Actor Neural Network architecture

Layer Neurons Activation
Hidden 1 130 tanh
Hidden 2 90 tanh
Hidden 3 60 tanh
Output 1 Linear

Table 3: Critic Neural Network architecture

Finally the parameters of the Networks and of
the algorithm, usually referred to as hyperpa-
rameters, are selected by the user.

5. Results
Two cases are analyzed in this work:

1. An autonomous Proximity Operations and
Docking manoeuvre from 1km of relative
distance with respect to the Target along
the tangential direction of the Hill’frame
(V-bar approach), with uncertainties on the
initial position of ±50m and on the initial
velocity and attidue.

2. A full ARPOD manoeuvre from 5km of rel-
ative distance along the tangential direc-
tion of the Hill’s frame (V-bar approach),
with uncertainties on the initial position of
±10m and on the initial velocity and atti-
tude.

The first step consists in the training of the
neural networks, that aims at optimizing of the
adaptive policy. For both cases, the learning

curves expressed in terms of rewards are re-
ported in Fig. 3 and Fig. 4.

Figure 3: Optimization of the learning curve for
the first case.

Figure 4: Optimization of the learning curve for
the second case.

It can be seen from the curves that the Agent’s
policy is indeed optimized as the reward col-
lected increases with the episodes.
Finally, the Agent is tested for both the two
cases. The two policies, one for the first case
and the other for the second case, are now
fixed and a simulation of 10000 trajectories is
executed.

For the Proximity Operations case, 16.58% of
the trajectories are acceptable, see Fig. 5, and
are all illustrated in Fig. 6. The minimum dis-
tance reached by the Agent is 2.74m.

30 20 10 0 10 20 30
Y [m]

30

20

10

0

10

20

30

X
[m

]

End trajectory points in the Hill's frame
Acceptable
Not acceptable
Goal

Figure 5: Terminal points of the 10000 trajecto-
ries. Case 1.

5

Executive summary Gaetano Calabrò

0 200 400 600 800 1000
Y [m]

100

80

60

40

20

0

20

X
[m

]

Trajectories in the Hill's frame

Figure 6: 1658 trajectories for the first case.

For what concerns the second case, all of the
10000 trajectories are acceptable, yet they stops
at 15.8m. The terminal points and the trajec-
tories are illustrated in Fig. 7 and Fig. 8, respec-
tively.

30 20 10 0 10 20 30
Y [m]

30

20

10

0

10

20

30

X
[m

]

End trajectory points in the Hill's frame
Acceptable
Goal

Figure 7: Terminal points of the 10000 trajecto-
ries. Case 2.

0 1000 2000 3000 4000 5000
Y [m]

300

200

100

0

100

X
[m

]

Trajectories in the Hill's frame

Figure 8: 10000 trajectories for the second case.

6. Conclusions
From the results, it can be seen that the Agent
is correctly trained and that the learned behav-
ior brings it closer to the Target, fulfilling the
constraints on the velocities and on the actua-
tors’ physical limitations. The robustness and
adaptability demonstrated in this work justifies
the strength of Meta-RL in the solution of dif-
ferent tasks, without the need of a specific train-

ing for each of the problems. However, even if
the training can be considered successful, the
mission should not be considered as achieved.
In particular, it was shown how the Agent was
able to get very close to the Target spacecraft
yet without reaching the final docking phase.
For future works, a solution to the missing fi-
nal phase must be found, eventually improv-
ing the Meta-RL Agent or implementing new
techniques. In addition, actuator failures or
more uncertainties on the dynamics can bring
to more complex and realistic problems that will
be faced using the promising technique of Meta-
Reinforcement learning.

7. Acknowledgements
I would like to thank my Advisor Professor
Pierluigi Di Lizia and my Co-Advisor Michele
Maestrini PhD. They guided me through all the
problems I encountered in this work, helped me
with their knowledge and experience. I would
like also to acknowledge the creators of the
codes that inspired me for this work, Profes-
sor Roberto Furfaro, Professor Richard Linares
and Professor Brian Gaudet. Alongside them,
also the people who shared their knowledge
through internet free-courses: Professor Sergey
Levine, with his CS285 online course on Rein-
forcement Learning, and Professor David Silver,
from Google DeepMind.

References
[1] Christopher D. Petersen, Sean Phillips, Ke-

rianne L. Hobbs, and Kendra Lang. Chal-
lenge problem: Assured satellite proximity
operations. 31st AAS/AIAA Space Flight
Mechanics Meeting, online, 2021. American
Astronautical Society (AAS) and American
Institute of Aeronautics and Astronautics
(AIAA).

[2] Matthieu Paris. Safe arpod for under-
actuated cubesat via reinforcement learning.
Master’s thesis, Politecnico di Milano, 2021.

[3] Gene W. Sparrow and Douglas B. Price.
Derivation of approximate equations for
solving the planar rendezvous problem.
NASA Technical Note D-4670, 1968.

[4] Jane X Wang, Zeb Kurth-Nelson, Dhruva
Tirumala, Hubert Soyer, Joel Z Leibo, Remi

6

Executive summary Gaetano Calabrò

Munos, Charles Blundell, Dharshan Ku-
maran, and Matt Botvinick. Learning to
reinforcement learn. 2016. doi: 10.48550/
ARXIV.1611.05763.

[5] John Schulman, Filip Wolski, Prafulla
Dhariwal, Alec Radford, and Oleg Klimov.
Proximal policy optimization algorithm,
2017.

[6] Brian Gaudet, Richard Linares, and Roberto
Furfaro. Adaptive guidance and inte-
grated navigation with reinforcement meta-
learning. Acta Astronauta, 2020.

[7] Qingfeng Yao et. al. Path planning method
with improved artificial potential field - a
reinforcement learning perspective. IEEE
Access, 8, 2020. doi: http://dx.doi.org/10.
1109/ACCESS.2020.3011211.

7

	Introduction
	Problem formulation
	Chaser Model and Dynamics
	Constraints

	Deep Meta-Reinforcement Learning
	Actor-Critic and Proximal Policy Optimization
	Algorithm

	Implementation
	Results
	Conclusions
	Acknowledgements

