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1. Introduction

Deep Neural Networks have transformed ma-
chine learning, with Convolutional Neural Net-
works leading the way in image classification.
However, the decision-making process of these
models has become increasingly complex and
less transparent. Consequently, they are re-
ferred to as black-boxr models since their inter-
nal workings are too intricate for humans to un-
derstand. This opacity poses a serious concern
as it leads to an absence of trust in Al deci-
sions. Moreover, debugging black-box models is
challenging without insights into their reason-
ing, which is necessary to address and fix er-
rors and biased predictions. Recognizing this
need for transparent and explainable Al, a new
research area called Explainable Artificial In-
telligence (XAI) has emerged. State-of-the-art
XATI techniques for image classification produce
heatmaps that highlight the pixels of an im-
age that contribute the most towards the out-
put. While these heatmaps offer insight into
whether the Al is looking at the "right thing",
they don’t explain its decision process. Fur-
thermore, such techniques provide local expla-
nations (i.e., explanations for a specific predic-
tion) that are difficult to generalize because the

highlighted pixels are meaningful only in the
context of the analyzed image. Consequently,
heatmaps alone are difficult to aggregate for pro-
viding global explanations (i.e., explanations of
the model’s overall behaviour). In order to ad-
dress these limitations, we propose a technique
named Abstract Network Visualizations (ANV).
ANVs are comprehensive local explanations for
CNN-based image classification that provide a
detailed view of the image features and patterns
extracted by the CNN at each stage of execu-
tion, thereby providing an overview of the Al
decision process. Moreover, these features, pre-
sented as heatmaps, are associated with a weight
(i.e., the importance) towards the output and
are described by a set of labels collected by
means of a gamified crowdsourcing activity. The
presence of labels improves the interpretability
of heatmaps while allowing the production of
global explanations by aggregating similarly la-
beled maps across multiple images.

2. Related Works

First, we present a summary of the state-of-the-
art explainability techniques for image classifi-
cation. Following that, we provide an overview
of how human knowledge has been effectively in-



corporated into this field.

2.1. Explainability

While there is no universal agreement on the
definition of explainability, it can be described
as a method of building an interface between
humans and the Al system that can provide ac-
curate explanations of the Al decisions that are
also comprehensible to humans. There are two
main categories of explainable Al: ante-hoc (i.e.,
redefining the architecture of a black-box model
to improve its transparency) and post-hoc (i.e.,
providing explanations after the model has al-
ready been trained and deployed). The focus
of this work is on post-hoc explainability, which
can be further classified into model-agnostic and
model-specific techniques. In the context of im-
age classification, model-agnostic approaches fo-
cus on studying the input-output relationship of
a model to compute an estimate of the impor-
tance of each region of the image. Therefore,
they can be applied to any model regardless of
its architecture or type. On the other hand,
model-specific approaches are techniques for ex-
plaining the decisions made by a specific ML
model. These methods try to "open the black-
box" and reverse engineer its internal structure
to provide insights into the model’s decision-
making process. Class Activation Map (CAM)
is a model-specific XAI technique that can gen-
erate heatmaps highlighting the most important
regions of an image for a particular class. This
is achieved by replacing the fully connected lay-
ers with a Global Average Pooling (GAP) layer
to reduce the feature maps into a single scalar
value. Then, the class-specific weights of the
GAP layer, which represent the feature maps’
importance, are used to perform a weighted lin-
ear sum of the feature maps which results in a
class-specific CAM (i.e., an heatmap highlight-
ing where the network identified the class). Sel-
varaju et al. [3] later introduced a generalized
version of CAM called Gradient-weighted Class
Activation Mapping (Grad-CAM) which can be
applied to any CNN architecture, without in-
troducing a GAP layer. The main idea behind
Grad-CAM is that the weights needed to com-
bine the feature maps can be calculated by ap-
plying a global average pooling on the gradients
of the score (before the softmax) for a given
class with respect to the feature maps. The fi-

nal maps for a specific class are then generated
by applying a ReLU to the weighted sum of the
feature maps, ensuring that only features that
positively impact the prediction are taken into
consideration. Grad-CAM was a big step for-
ward thanks to its computational efficiency and
wide applicability. However, it lacks an explana-
tion of why the highlighted regions are relevant
since heatmaps interpretation is highly subjec-
tive. For example, if Grad-CAM highlights the
region of a cat’s nose as being important for
the prediction "cat", this might suggest that the
network is using information about the nose to
make the prediction, although it is impossible to
know for certain. Following on the cat’s image
example, it could be that the network is using
information about the texture of the fur near the
nose, or about the presence of whiskers, to make
its prediction (see Figure 1).

(a) Cat input image.

(b) Grad-CAM.

Figure 1: Grad-CAM highlights the region near
the nose, but it’s hard to understand whether
the network learnt to recognize the nose specifi-
cally or possibly the fur or whiskers.

A different approach for identifying features
learnt by a neural network is Testing with Con-
cept Activation Vectors (TCAV). The method
works by inputting example images containing
only one specific feature and observing the net-
work’s predictions. Both Grad-CAM and TCAV
are very effective in detecting biases and explain-
ing AI decisions but, at the same time, they may
introduce bias in the explanations. For Grad-
CAM, this happens when humans misinterpret
why a region is highlighted due to biased as-
sumptions, while for TCAV the bias can be in-
troduced by the images that are selected for rep-
resenting a feature.

2.2. Human-in-the-Loop

Despite the multitude of techniques and ad-
vancements in Al explainability, there are still



limitations in ensuring that explanations are
fully accurate and understandable from a human
perspective. For this reason, many researchers
have turned to human-centered (i.e., human-
in-the-loop) techniques that utilize human in-
sight and reasoning to improve explanations of
machine-learning models. Among these, Lu et
al. [2] employed human knowledge to evaluate
visual explanations generated by different XAI
techniques such as Grad-CAM. They proposed
a gamified crowdsourcing activity based on the
game "Peek-a-Boom". In their implementation,
only a small part of an image is initially shown,
starting from the region deemed the most im-
portant by an explainability method. If the
player cannot guess the image, more pixels are
revealed. The number of pixels needed for the
player to guess correctly determines a score for
each explainability method. Another approach
that focuses on global explainability was intro-
duced by Balayn et al. [1]. They suggested aug-
menting the heatmaps generated by explainabil-
ity methods by incorporating semantic concepts
through crowdsourcing annotations. The main
advantage of their approach is that the annota-
tions can be aggregated, allowing the use of dif-
ferent statistical mining techniques to generate
global explanations about the model behaviour.
Overall, their method demonstrated the value of
incorporating human knowledge in the explain-
ability of ML models, hence foreseeing a promis-
ing direction for advancing the field of XAI.

3. Methodology

State-of-the-art XAI methods can provide ex-
planations for image classification predictions by
identifying the most important region of the im-
age that contributed to the prediction, but they
do not offer a complete understanding of the ma-
chine rationale. Hence, we need to examine the
feature extraction process that happens through
multiple layers in order to understand the entire
Al decision-making process. Striving to cover
such a need, we developed a process to gener-
ate post-hoc local explanations in the form of
Abstract Network Visualizations (ANV) which
provide a detailed view of the image features
and patterns the CNN identifies at each stage
of its execution. An ANV is composed of layers,
each consisting of heatmaps that represent the
areas of the input image where important fea-

tures were identified. These heatmaps represent
groups of feature maps clustered by similarity
(i.e., feature maps focusing on the same region
of the image are grouped together). For each
heatmap, the final visualization also includes the
relative importance of its corresponding group of
feature maps with respect to the final predicted
class and a set of crowdsourced labels that in-
dicate the human concepts it represents. The
ANYV can be built considering all layers of the
CNN, as well as a selected subgroup of interest.
In particular, shallow layers usually focus on de-
tecting basic shape information (e.g., edges, out-
lines, corners, etc.). Hence, it might be more
efficient to focus on deeper layers which should
contain more semantic concepts as their recep-
tive fields are bigger. A significant advantage
of using crowdsourced labels to describe the ex-
tracted features is the ability to aggregate mul-
tiple local explanations, thereby extending the
explanation from a local to a global perspective.
By analyzing the features extracted by a CNN
to recognize a particular class across multiple
images, we can develop a global explanation of
how the network generally identifies that class.
Building ANVs requires three steps. The first
step is Feature Maps Analysis, in which feature
maps are clustered and merged. The second is
Human Knowledge Collection in which labels are
collected through crowdsourcing and the last is
Label Analysis in which the collected labels are
post-processed to make them structured and free
of errors.

3.1. Feature Maps Analysis

Feature maps are extracted after applying the
activation function for each convolutional layer.
Next, feature maps are associated with their
corresponding class-specific weights towards the
predicted class, computed using a local explain-
ability method. For this purpose, we used Grad-
CAM as it is a straightforward approach that
works with any CNN architecture. We per-
formed unit normalization to enhance the in-
terpretability of these weights. This technique
guarantees that the total weight for each layer
sums up to one, allowing for the importance of
feature maps to be visualized as percentage per
layer. Since the number of feature maps per
layer can often be in the order of hundreds or
more, which can be an overwhelming amount



of information for humans to handle, we de-
cided to cluster and merge them together to gen-
erate representative heatmaps that we refer to
as cluster maps. However, some pre-processing
steps are necessary before proceeding with the
clustering process. More specifically these steps
consist of applying min-max normalization and
dimensionality reduction. For the latter, we
use a combination of two techniques: Principal
Component Analysis (PCA) and t-distributed
Stochastic Neighbor Embedding (t-SNE). After
pre-processing, we apply a clustering algorithm
for each layer. In our method, we use Agglom-
erative Clustering, a widely employed type of
Hierarchical Clustering. The number of clusters
can be different for each layer and is selected
by computing the average silhouette score for a
range of 3 to 8 clusters. Once the clustering pro-
cess is complete, each cluster is merged using a
weighted average approach. This produces clus-
ter maps representing an entire cluster of feature
maps. FEach cluster map is assigned a weight
value that indicates its significance towards the
predicted class. This value is computed by sum-
ming the weights of all feature maps belonging
to that cluster.

3.2. Human Knowledge Collection

The goal of this step is to collect labels through
crowdsourcing, representing the human concepts
highlighted in each cluster map. Before design-
ing the crowdsourcing activity, we need to ad-
dress what precisely participants should see dur-
ing the labeling of cluster maps. The general
approach to obtain an interpretable visualiza-
tion of a feature map is to generate an overlay
of the input image and the feature map, obtain-
ing an image such as the one shown in Figure 2a.
However, making humans aware of the image be-
fore labeling will most likely cause a loss of focus
on the highlighted areas. Hence, it is necessary
to hide the non-highlighted portions to prevent
such behaviours. This can be achieved by com-
puting a mask (i.e., a binary image) that defines
which pixels to show. A masked image is then
obtained by overlaying the mask on top of the in-
put image, as shown in Figure 2b. For what con-
cerns the crowdsourcing activity, we employed a
gamified approach as we wanted to make partic-
ipants behave similarly to the neural network,
by having them observe and analyze features

to guess the correct class. The actual activity
consists in playing an online game we designed
called Deep Reveal in which participants are pre-
sented with the masked image of a cluster map
and are required to guess its class and specify
which features they recognized that helped them
guess. These inputs are then used as labels for
the cluster maps. Similarly to the Peek-a-Boom
game described in Section 2.2, users of Deep Re-
veal can gradually increase the displayed area up
to five times, allowing them to get more clues.

b

(a) Cluster Map

(b) Masked overlay.

Figure 2: An example of an overlay of a clus-
ter map that focuses on a dog’s muzzle, along
with its corresponding masked image that re-
veals only the highlighted area.

3.3. Label Analysis

After collecting sufficient labels for each cluster
map, we proceed with the label analysis step.
First, we perform data cleaning on the collected
labels. More specifically, labels consisting of
multiple words are split into different labels, and
stop-words are discarded. Then, we manually
map labels referring to the same feature to a
single word (e.g., "column", "pillar" and '

laster" all become "pillar") to handle synonyms
and misspellings. The next step is to evaluate
each label by assigning them a score that allows
us to emphasise the most relevant ones within
each cluster. This score takes into account the
label frequency as well as the percentage of the
image revealed to the humans who assigned that
label. Assigning a score to each label allows us
to identify the labels that best describe their
respective cluster maps. However, it is possi-
ble that certain cluster maps may represent the
same feature and, therefore, be labeled in a sim-
ilar manner. This can happen due to imper-
fections in the clustering process, or because the
same feature is present in different regions of the
image. Cluster maps are meant to represent the
different features extracted at each layer, hence



the final step before constructing the ANV is
to merge clusters with the same most relevant
labels. The cluster maps are merged through a
weighted average and the final weight is the sum
of the weights of the merged maps. The labels of
the merged clusters are also combined through
a weighted average of their score. Finally, the
ANV of an image can be generated by organiz-
ing its cluster maps, together with their weights
and labels, into one column for each layer.

4. Experiments and Results

In this section, we describe the experiments we
conducted to validate our methodology and dis-
cuss the final results obtained.

4.1. Experiment Setup

For the experiment, we first selected a CNN
model to analyze. More specifically, we designed
a model based on the standard VGG-16 architec-
ture, which was trained using the Imagenette!
dataset, a small subset of ImageNet consist-
ing of ten classes. Its classes include Cassette
Player, Chainsaw, Church, English Springer,
French Horn, Garbage Truck, Gas Pump, Golf
Ball, Parachute, and Tench. In our experiment,
we analyzed 5 images per class, resulting in a
total of 50 predictions to explain. Moreover,
we focused our analysis on the last 9 convolu-
tional layers since we had limited crowdsourcing
resources and the initial layers primarily extract
shape information (e.g., edges and outlines). Af-
ter extracting, clustering, and merging feature
maps using the methods discussed in Section 3.1,
we obtained a total of 1954 cluster maps to be la-
beled. For the labeling phase, we deployed Deep
Reveal as a web application and shared it with
210 participants. We allowed them to insert la-
bels both in Italian and English to collect more
labels, at the cost of having to perform a trans-
lation step during data analysis. At the end of
this phase, we collected 9968 raw labels evenly
distributed among the cluster maps. These raw
labels were then split into single words and stop-
words were removed. Afterward, the translation
from Italian to English was performed and man-
ually validated. The validation step was espe-
cially important as certain labels held vastly dif-
ferent meanings outside of their original context.
For example, the Italian word "Esso" would typ-

"https://github.com/fastai/imagenette

ically translate to "it", but in the context of a
gas pump, it referred to a company name. Af-
ter handling synonyms and misspellings, the re-
sult was a refined set of 12082 single-word labels.
Then identical labels are grouped for each clus-
ter and are assigned a score as mentioned in Sec-
tion 3.3. Finally, we merged cluster maps within
the same layer based on their maximum-scoring
labels, resulting in a total of 1192 cluster maps.

4.2. Results and Discussion

We conclude by discussing the resulting ANVs
and their validity as a local explanation method
for our CNN. Subsequently, we discuss the
results obtained by aggregating the labeled
heatmaps across different images to obtain
global explanations. All detailed results for both
the ANVs and the global explanations of the 50
images are available online?.

4.2.1 Abstract Network Visualizations

Based on the structure of the ANV outlined in
Section 3, we organized the cluster maps into a
column for each layer, displaying their respec-
tive weight and highest-scoring label. Moreover,
each feature has a detailed visualization which
includes a plot of all labels with their respec-
tive score, the number of feature maps com-
prising the cluster, and additional game-related
information such as the masked image, wins,
losses, and resigns. From the results obtained,
we observed that ANVs are capable of provid-
ing a comprehensive overview of the features
that contribute to correctly predicting a class
and insight about the identification process of
such features. Furthermore, these visualizations
also offer valuable insights into less obvious fea-
tures. For instance, we found that the network
was able to associate the concept of orange color
with a chainsaw’s motor or the concept of scales
with a tench. On the other hand, we acknowl-
edge the need to incorporate more sophisticated
validation approaches to check the validity of
these labels. This is because the fact that hu-
mans are able to classify an image using a cer-
tain feature suggests that the network may do
the same, but it doesn’t necessarily imply that
it does. Moreover, we noticed that the lack of

2https://github.com/antonio-dee/
abstract-network-visualizations
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domain knowledge may oversimplify the visual-
ization in some cases, hence a combination of
expert and non-expert users could offer different
levels of detail and obtain a broader view. Ad-
ditionally, we showed that another advantage of
ANVs was their capability of showing when the
network utilizes contextual clues to help in its
predictions. For example, the presence of trees
to identify a chainsaw or the presence of a golf
club to classify a golf ball.

4.2.2 Global Explanations

We construct our global explanations in a hi-
erarchical way, grouping layers three by three,
thereby extending the concept of the ANV to
a global perspective. Features are ordered by
their label’s global score (i.e., the sum of the
scores of a label when it appears as the highest-
scoring one), which serves as a measure of label
quality across multiple images. For each fea-
ture, the visualization provides a set of cluster
map examples and an average weight. More-
over, we showed that it is possible to generate
simple and straightforward global explanations
by combining all layers together, as shown in
Figure 3. However, such explanations provide a
lower level of detail compared to the previously
described ones.

TENCH - LAYER [5, 6, 7, 8, 9, 10, 11, 12, 13]
fin person eye
global score: 106.0  global score: 60.53 global score: 57.1
e ettt _

mouth gills hand
global score: 47.7 global score: 26.6 global score: 18.1

Figure 3: A straightforward global explanation

for the class "Tench". Weights are not present as
they may lose meaning if averaged out between
shallow and deep layers.

It is important to note that our experiment was
limited by the relatively small sample size of five
images per class. As a result, our global expla-
nations should be considered a preliminary ap-
proach to the problem rather than a definitive
result. Due to the limited samples, there may
be bias in our findings, since these few images
may not be enough to represent an entire class.

5. Conclusions

We introduced a novel approach named Abstract
Network Visualizations (ANV) to generate local
post-hoc explanations in the context of CNN-
based image classification. Our method clusters
and merges feature maps to produce detailed
visualizations of the extracted features at each
layer. Moreover, we associated each feature with
labels to facilitate human interpretation using
an image-guessing game called Deep Reveal. Fi-
nally, we showed that aggregating these labels
allows for the generation of global explanations.
Our experiments demonstrated the potential of
our explainability method, although open ques-
tions still remain. These include finding tech-
niques to validate the correctness of these labels,
possibly combining our method with TCAV, and
exploring the possibility of associating CNN fil-
ters with labels to allow the generation of ANVs
concurrently with the CNN execution, meaning
that the crowdsourcing step is needed only once
per model.
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