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1. Introduction
Vertebral osteotomy is a surgical procedure that
involves cutting and reshaping a vertebral bone,
with an osteotom or a drill, to correct a spinal
deformity or to improve spinal alignment (Fig-
ure 1). Due to the presence of delicate struc-
tures, such as the spinal cord and blood ves-
sels, in the vicinity of the vertebrae, there is a
high risk of patient injury during the procedure,
as damaging these tissues may lead to serious
complications [1]. Robotic systems can bring
great benefits in these operations, such as en-
hancing surgeons’ technical skills and preventing
surgical instruments from unintentional damage
[2]. However, robotic-assisted spinal procedures
are currently limited to pedicle screw placement,
while vertebral osteotomies are assessed only at
a research level. Key factors in robotic-assisted
vertebral osteotomies include the interactions
between the robot, patient, and surgeon. While
the robot is not fully autonomous and requires
the surgeon to guide its movements, precise con-
trol of these interactions is essential to achieve
the desired outcome. Numerous impedance con-
trol approaches have been studied for Human-
Robot Interaction (HRI) and hands-on control,
which is a method for controlling the interaction

between the robot and its environment, by ad-
justing the robot’s stiffness, damping, and iner-
tia. A velocity-based approach is more suitable
for reaching and positioning tasks [3], whereas
a force-based approach is more appropriate for
achieving co-manipulation accuracy or compli-
antness based on human intention [4]. Introduc-
ing the human force in the control loop repre-
sents an advantage, as it allows to change the
robot parameters to improve system effective-
ness. Several approaches exploit the electromyo-
graphic signals (EMG) from forearm muscles to
estimate the user force [5]. The most recent
approach is the use of Deep Neural Networks
(DNNs) which can handle non-linear relation-
ships between the EMG features and force [6].
The proposed study is focused on the develop-
ment of a control strategy for Human-Robot
Interaction. A new adaptive law is proposed,
based on the reaction force measured on the
robot end-effector and an estimate of the human
force. The aim is to provide a safety measure to
support the surgeon when contact is made with
critical tissues and to keep a compliant behavior
otherwise. The contact force is also exploited to
generate a safety position command, that pre-
vents damaging soft materials. In Figure 2, a
representation of the overall system is shown.
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Figure 1: Example of vertebral osteotomy. On
the left a side view of the spine is presented, with
the area of the vertebra that requires removal
indicated in red. On the right, the improvement
in the spine curvature is depicted.

2. Materials and methods
2.1. Hardware components
Robotic system:
A KUKA Light-weight Robot 4+ (LWR4+) was
used, which is characterized by m = 7 Degrees
of Freedom (DOFs), position sensors on the
motor sides, and joint torque sensors. The robot
was controlled using Robotic Operating System
(ROS) on Ubuntu 16.04, which communicated
with the Fast Research Interface (FRI).

Force sensor:
The equipped force sensor was a M3815C six axis
force/torque load cell (Sunrise Instruments),
mounted on the seventh joint of the robot. The
sensor provided a raw signal with a sampling
rate of 1000 Hz which was filtered with an ex-
ponential smoothing filter, characterized by the
following equation:

Ffiltt = αfFrawt + (1− αf )Ffiltt−1
(1)

where Ffilt and Fraw represents the filtered and
raw force values respectively, t denotes the cur-
rent time step, and αf is the smoothing factor.
The value of αf was determined empirically and
set to 0.05, resulting in a cutoff frequency of 50
Hz. To align the reference frame of the last joint
with the sensor’s reference frame, a rotation of
θr = 20 ◦ was applied around the z-axis (Figure
3). Then, to obtain only the contribution of the
interaction forces on the force sensor readings, a
compensation of the tool weight was performed.
Since this contribution depends on a non-linear
relationship with the end effector orientation, a

Figure 2: Scheme of the overall system:
impedance parameters are adapted based on the
EMG signals and the measured contact force be-
tween the robot and the environment.

MultiLayer Perceptron Regressor was trained.
A dataset of 14.926 data points was collected
with the robot in gravity compensation mode
and divided into a training set (70%) and a
testing set (30%). The training was performed
using the orientation of the end effector as input
and the filtered force sensor readings, Ffilt, as
output. After the training, the network was
able to predict the force read by the force sen-
sor, Fee, without the tool’s gravity contribution.

EMG sensor:
In order to measure the EMG signals com-
ing from the human arm, the MyoWristband
(Thalmic Lab) was used. The bracelet was
equipped with 8 channels and communicated
with a remote computer via bluetooth. The 8
EMG raw signals with a sample rate of 200 Hz
were processed by the sensor itself: the absolute
value of the signal was obtained with a full wave
rectification and a low pass filter with 50 Hz cut-
off frequency was applied to extract the envelope
of the original signal. In order to extract the
human force Fh, a model Φ : Fh = Φ(EMGf )
was required. First, a dataset of approximately
14,000 data points was collected and divided into
a training set (80%) and a testing set (20%).
The dataset was first normalized using Min-
MaxScaler so that all data fell within the same
range, i.e. between 0 and 1. Next, a linear re-
gression was used to weigh the contributions of
the EMG channels. Finally, an LSTM neural
network was trained, using the normalized EMG
sensor readings of the human forearm muscles as
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Figure 3: Representation of the calibration. In
green, the reference frame of the seventh joint
is shown. In red, the sensor frame of the force
sensor is shown, rotated by an angle θr around
the z-axis.

input, and the force measured by the force sen-
sor when the user grabbed the robot from the
tooltip, as output.

2.2. Control strategy
The overall control strategy is shown in Figure
4. The main control loop was represented by a
Cartesian impedance controller: given as input
a position setpoint, xref ∈ Rn, in the Cartesian
space, with n = 6, a torque command τcmd ∈
Rm in the joint space is generated:

τcmd = J−1
pin(K(xref − xcurr)+

+D(Dn, ẋcurr)) + fd(q, q̇, q̈)
(2)

with J−1
pin ∈ Rm×n the pseudo-inverse of the

Jacobian matrix. K ∈ Rn×n is the Carte-
sian stiffness, Dn ∈ Rn×n is the Cartesian
normalized damping, xref is the Cartesian
reference pose, given by the difference between
the position displacement imposed by the
human, xh ∈ Rn, and the additional feedback,
xs ∈ Rn. xcurr ∈ Rn is the current Cartesian
pose and q, q̇, q̈ ∈ Rm×m are the vectors of
robot joint position, velocity, and acceleration,
respectively. The Cartesian damping contribute
D(Dn, ẋcurr) and the inertial contribute in
the joint space fd(q, q̇, q̈) are computed by
the robot internal controller. According to the
value of matrices K and Dn, the robot can be
more or less compliant with respect to the user’s
intention. The goal of this study was to develop
a strategy that changed the stiffness based on
both the force measured on the end-effector
and the estimated force of the human. For

simplicity, the strategy focused on changing the
stiffness on a single axis, which is the z-axis
of the seventh joint (refer to Fig. 3). The
variable stiffness parameter will be denoted as
kz. For the development of the control strategy,
the Young’s modulus of the involved tissues
was considered. In particular, the Young’s
modulus of a cortical bone is estimated between
15−20 GPa , while for structures such as blood
vessels, it is estimated in the range 2− 6 MPa.

Adaptive law:
For the development of this work, the following
scenario for adapting the stiffness was consid-
ered: when the robot interacted with a material
with high Young’s modulus (i.e. vertebra), a low
kz was maintained to ensure compliant behav-
ior. On the other hand, when the robot inter-
acted with a material with low Young’s modu-
lus, kz was increased to reduce the compliant-
ness and the risk of damaging the material. The
stiffness kz was updated at every time instant
according to the following formula:

kz = k0 + γ(k1 − k0) (3)

where k1 and k0 are the limits of range within
which the stiffness parameter can vary. γ is a
variable gain, bounded between 0 and 1 (0 ≤
γ ≤ 1 ∀t) that determines the rate of change
of kz. At each time instant t, γ was changed
according to the user’s estimated force Fh and
the end effector measured force Feez : γ =
γ(Fh,Feez). In order to obtain the desired stiff-
ness behavior, two different γ profiles were used:

γ1(Fh,Feez) =
α|Feez |

α|Feez |+ ||Feez |+ Fh|
(4)

γ2(Fh,Feez) =
1
α |Feez |

1
α |Feez |+ ||Feez | − Fh|

(5)

In the absence of any contact between the tooltip
and the environment, the end-effector measured
force was negligible (Feez ≈ 0) and hence kz

remained close to k0, resulting in a highly com-
pliant robot. When encountering a material
with a high Young’s modulus, γ1 was main-
tained to keep the robot stiffness, kz, low and
compliant during the procedure. In contrast,
when the robot made contact with a material
with a low Young’s modulus, such as a vein
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Figure 4: Scheme of the adaptive impedance control law with safety position feedback: the Cartesian
reference pose xref is obtained as the difference between the position imposed by the human xh and
the safety position feedback xs, generated by multiplying Fee and the gain matrix P . The position
error x̃ is then calculated by subtracting xref and the current Cartesian pose, xcurr. This error is
multiplied by a variable stiffness matrix K, controlled by an adaptive law which receives the human
estimated force, Fh, derived from an EMG signal and the contact force measured by the force sensor,
Fee, as inputs. Fee is measured from the force Fr that the robot exherts on the environment. The
current Cartesian velocity, ẋcurr, is used to compute the damping term D(Dn, ẋcurr), where Dn is
the normalized damping matrix. The torque command in the joint space τcmd is generated by using
the Jacobian pseudo-inverse J−1

pin and summing the inertial term fd(q, q̇, q̈). q, q̇, q̈ are the vectors of
robot joint position, velocity, and acceleration, respectively.

or spinal cord, γ2 was engaged, increasing the
stiffness kz to reduce the risk of material dam-
age. To differentiate between environments with
high/low Young’s modulus, a threshold, Ftresh,
on the contact force was used. However, the
condition |Feez | < Ftreshold was satisfied dur-
ing the initial phase of contact with both ma-
terial types and was insufficient to differenti-
ate between them. The key difference between
the materials was their response to forces. A
material with high Young’s modulus remained
undamaged, while one with low Young’s mod-
ulus started deforming. For this reason, the
displacement ϵ was introduced as the minimum
amount of deformation that occurred when in
contact with a material, given the position of
the end-effector (zcurr) and the contact position
(zcontact). A position treshold ztresh was chosen
such that ϵ > ztresh, and when zcurr > ztresh
and |Feez | < Ftreshold, γ2 was used. In this way,
the stiffness kz was increased in order to reduce
the risk of damage to the material. In Figure
5, a representation of the four possible contact
situations is shown.

Additional position feedback:
In the hypothesis of an error in the surgical pro-
cedure (Fig.5, case 2b), the robotic system needs

to counteract the user’s action. To achieve this,
the controller generated an additional position
command that was proportional to the z com-
ponent of Fee. The relation between the two
signals was expressed as:

zs = ρFeez (6)

As the relation involves only one axis, the gain
matrix P is reduced to the constant scalar
gain ρ. In a real scenario, the surgical tool is
located inside the patient body so the generated
signal must be high enough to provide a solid
constraint, but low enough to avoid the total
loss of control of the robot.

Stability and passivity analysis:
The stability of the system was guaranteed by
implementing a passivity filter. The passivity
conditions obtained from the theoretical analy-
sis were explicitly dependent on the impedance
parameters. Therefore, the relation expressed
in equation (3), with a generic γ(t) profile such
that 0 ≤ γ ≤ 1 ∀t allowed for the development
of a filter that ensured passivity at every time in-
stant. The mathematical details of the analysis
and the development of the filter are discussed
in Chapter 3 of the thesis.

4



Executive summary Riccardo Monaco

Figure 5: Scheme of the four possible contact
conditions. In both cases 1a and 2a, the robot is
in contact with a material with a high Young’s
modulus. In a real scenario, these cases corre-
spond to the situations in which the surgeon is
drilling a vertebra. Case 1b represents the first
phase of the contact for both materials, while
case 2b represents the contact with a material
with low Young’s modulus.

2.3. Experimental setup
Experimental protocol:
A User Study was conducted to compare the
performance of a constant impedance hands-on
control (Mode 1) with the proposed impedance
control strategy (Mode 2). The goal was to
demonstrate that the proposed strategy pre-
vented the users from damaging delicate mate-
rials while allowing them to operate on a bone-
like material. 10 users were asked to perform
the task with the two strategies on three dif-
ferent materials: polyurethane (Young’s mod-
ulus ≈ 1 − 10 MPa), PVA (Young’s modulus
≈ 20 − 30 MPa) and a PLA vertebra phantom
(Young’s modulus ≈ 1 − 10GPa) (Figure 6).
The materials were placed inside a box, such
that the user did not have visual feedback on
the contact surface. Users were instructed to
guide the robot through the object, apply a force
as if attempting to perforate the material, and
maintain contact for around 5 seconds. For each
material, the task was repeated three times. All
users gave their informed consent before partic-
ipating in the study. To validate the research
hypothesis, the contact force, Feez , between the
robot end effector and the materials and the dis-
placement zd were analyzed. The displacement
was computed from the contact point, zcontact,
between the end-effector and the material, to the
minimum point reached by the tooltip, zmin:

zd = zcontact − zmin (7)

Figure 6: Experimental setup for the user study.
The user guides the robot, equipped with the
force sensor against different materials, placed
inside a box. In Mode 2, the user is also wearing
the MyoWristband on the forearm.

The average values F̂eez and ẑd were computed
for each material m ∈ [1, 2, 3], according to the
following equations:

F̂m
eez =

∑r
i=1 F

i
eez

r
(8)

ẑmd =

∑r
i=1 |zid|
r

(9)

where r = 3 are the repetitions for each user. A
lower contact force Feez and a lower displace-
ment zd were expected in case of contact with
materials with low Young’s modulus when using
the proposed strategy. In the case of contact
with materials with high Young’s modulus, a
similar performance between Mode 1 and Mode
2 was expected. As for the qualitative analysis,
each user was provided with a questionnaire to
fill out. The details of the questionnaire are
discussed in Chapter 3 of the thesis.

System design:
The experiments were performed using the
LWR4+ (KUKA) as the robotic manipulator
and the MyoWristband for the EMG acquisition.
The main impedance controller and the adaptive
law were written in C++ and they communicate
with the FRI at 100 Hz, using ROS. The sen-
sor force and EMG processed data are acquired
at 50 Hz. Regarding the impedance controller
and the adaptive law, a range of kz between
k0 = 100 N/m and k1 = 1000 N/m was con-
sidered. Since the strategy was focused on the
z-axis, the stiffness component of the other axes
was kept constant. The contact force weight,
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Figure 7: Human force estimated online with the
LSTM trained model.

α, was chosen equal to α = 0.1, as a result of
a compromise between the two required perfor-
mances. Regarding the switching logic, a force
threshold, Ftresh = 15 , N was chosen, as a re-
sult of empirical considerations based on the re-
action force caused by different materials. As
displacement threshold, ztresh = 0.005 m, was
chosen. Considering the safety feedback, a con-
stant ρ = 0.004 m/N was chosen. In this way,
the generated zs was in the range of centime-
ters, which was considered enough to increase
the safety of the operation, but also as small as
needed to not generate unwanted behaviors on
the robot.

3. Results
3.1. Force sensor
The MultiLayer Perceptron Regressor model
was evaluated using the mean square error
(MSE) and the R2 score. The performance of
the network is represented by an R2 score of 0.96
and an MSE of 0.006, demonstrating its ability
to accurately predict the force read by the force
sensor after removing the tool gravity contribu-
tion, regardless of the end-effector orientation.

3.2. Human estimated force
The LSTM model has been validated with 20%
of the collected dataset. The performance of the
network is represented by an R2 score of 0.558
and an MSE of 0.01. These results suggest that
the quality of the trained network is low. Some

improvements may be obtained by including, in
the input data, robot joint-specific information
or by considering alternative EMG sensors. In
Figure 7, a plot of the human estimated force is
shown. When the user applies a force on the
robot and moves it, high peaks are obtained.
When the user removes the hand from the robot
and keeps it at rest, a low force value is obtained.

3.3. User Study
For each material, the average force and dis-
placement among the 10 users were computed
for each modality. The Wilcoxon ranksum test
was used to compare the two modalities with a
statistical significance assessed at 0.05. In Fig-
ure 8 the corresponding boxplots for each mate-
rial are shown. The results showed that the av-
erage displacement was found significantly lower
(p-value < 0.05) in Material 1 with a mean value
of of 0.0074 ± 0.0018 m and 0.019 ± 0.0068 m
for Mode 2 and Mode 1, respectively. Also for
Material 2, a significant difference was found
(p-value < 0.05) when comparing Mode 2 with
Mode 1 with an average displacement of 0.0079±
0.0027 m and 0.0171±0.003 m respectively. The
results in terms of displacement show that the
proposed strategy is able to recognize the type
of material and prevent the user from guiding
the robot through it. Furthermore, a significant
difference was found in the force measured on
the end-effector between Mode 1 and Mode 2 for
both Material 1 and Material 2. In Material 1,
Mode 2 had an average force of −5.065±1.45 N ,
which was significantly lower than the average
force of −13.72 ± 6.52 N measured in Mode 1.
Similarly, for Material 2, Mode 2 had an average
force of −5.65± 2.57 N , which was significantly
lower than the average force of −14.79± 5.15 N
measured in Mode 1. The lower measured force
in Mode 2 when compared to Mode 1 shows
that the system is able to reduce the contact
force between the tooltip and the material. In
this way, the risk of the material being damaged
is successfully reduced. The results for Mate-
rial 3 were not statistically significant, with a
p-value > 0.05 for both displacement and force.
This was expected since Material 3 has a high
Young’s modulus, and the proposed strategy was
designed to keep the robot compliant during
contact with such materials. Therefore, the re-
sults of the study successfully demonstrated that
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Figure 8: Comparison of the end effector contact force and average displacement between the traditional
strategy (Mode 1) and the proposed strategy (Mode 2), for each material: material 1 (polyurethane),
material 2 (PVA), material 3 (PLA). (**, p < 0.01)

the proposed strategy was effective in preventing
damage to delicate materials while still allow-
ing for effective manipulation of materials with
a high Young’s modulus. Regarding the quali-
tative analysis, the questionnaire results are dis-
cussed in Chapter 4 of the thesis.

4. Conclusions
In this study, an adaptive impedance controller
was developed to change the stiffness of the
robot, based on the contact force between the
robot tooltip and the environment and on the
human estimated force. The human force was
obtained from the EMG signals of the user’s
arm. A safety position command was generated
when contact was made with delicate materials.
Results showed that the proposed strategy suc-
cessfully reduces the risk of damaging such ma-
terials, in terms of contact force and displace-
ment. The limitation of this study is the appli-
cability in a real scenario as the analysis requires
a robot equipped with an actual surgical instru-
ment. The force sensor is subjected to measure-
ment noise, which increases in time due to inter-
nal overheating. Finally, the different sponges
used in the experiments did not accurately repli-
cate the properties of the spinal cord and blood
vessels.
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