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1. Introduction
The large spectrum of active matter, from molecular
scale with colonies of bacteria to macroscopic scale
with bird flocks has attracted the interest of several
researchers coming from different scientific fields.
In an active system, a collection of self-driven units
is able to continuously exchange energy with the
environment and create a collective behavior.
It is difficult to model this phenomenon, because
of the numerous degrees of freedom, the lack of
reversibility and the fact that molecules are out
of the thermodynamic equilibrium. For many
active systems, there are similarities with nematic
liquid crystals whose dynamic is described by the
Eriksen-Leslie theory [2]. Classic theories of active
matter are based on this model, with the addition
of term to the stress tensor. However, this choice
is not universally accepted due to some problems
with a clear interpretation in terms of irreversible
thermodynamics.
In this thesis, we study an alternative model pre-
sented in[4]. We focus on the fluid approximation in
a two-dimensional channel. Indeed, the spontaneous
flow presents a two-fold degeneracy which is not
usually observed in other theories or can only be
found under very specific conditions.
By contrast, we show that this two-fold bifurcation
is a generic feature and it is due to symmetry. To
this end, we first present the model and the bifur-
cation in §2. Then in §3, we study the robustness of
the instability to changes in the model parameters.
To have a complete picture of the bifurcation
diagram, we perform a Lyapunov-Schmidt reduction

§4. Finally, we show using symmetry arguments
that the bifurcation is general in §5.

2. Alternative model and bifur-
cation

Figure 1: Scheme of the studied channel geome-
try (source: "Active nematic gels as active relaxing
solids" [4]).

In classic theories, the consideration of the active
term leads to some incoherences with respect to the
irreversibility of active systems and the active effects
are difficult to differentiate from the passive effects.
The model presented in [4] is developed in order to
avoid these incoherences. The existence of the spon-
taneous flow in a two-dimensional channel (see Fig-
ure 1) is a characteristic behavior of active nematics.
Here we consider no-slip boundary condition for the
velocity and horizontal orientation of the particles at
the confining walls.
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Two important equations have to be recalled to un-
derstand the model. First the model is based on
an energy which is derived from nematic elastomer
theory. The free-energy density per unit of mass is

σ(ρ,Be,n,∇n) =
1

2
µ[tr(Ψ−1Be − I)

− log(det(Ψ−1Be))] +
1

2
k|∇n|2, (1)

where n is the director or preferred orientation of
the molecules, Ψ is the shape tensor representing
the volume-preserving uniaxial stretch along the
director, measured by a shape parameter a0, k is
the Frank constant, ρµ is the shear modulus, and
Be is the effective left-Cauchy-Green deformation
tensor.

A second key equation describes the microscopic re-
modeling,

D(B∇
e ) + ρ

∂σ

∂Be
= Ta, (2)

where D is the dissipation tensor, containing in-
formation about the relaxation times and viscosity
coefficients, B∇

e is the codeformational derivative of
the effective left-Cauchy-Green deformation tensor,
and finally, Ta is the active tensor , proportional to
an activity coefficient ζ.

We consider the governing equations within the ac-
tive fluid approximation. Furthermore, we make the
following nondimensionalization,

z = Lξ, vx(z) =
LV (ξ)

τ
, θ(z) = q(ξ), (3)

and we introduce a dimensionless ratio between the
length of the channel and the "elastic length"

r =
µL2

k
= (

L

Le
)2. (4)

After this transformation, the new equations depend
only on three key parameters, the anisotropic ratio
a0, r and the activity ζ

4(a3
0 − 1)q′(ξ)

{
2V ′(ξ) sin(2q(ξ))

[(a3
0 − 1) cos(2q(ξ))− 2a0ζ cos(2q(ξ))]

}
− V ′′(ξ)

{
4(a6

0 − 1) cos(2q(ξ))− 5a6
0

+ (a3
0 − 1)2 cos(4q(ξ)) + 2a3

0 − 5
}
= 0, (5a)

(a3
0 − 1)rV ′(ξ)

{
(a3

0 + 1) cos(2q(ξ))

− a3
0 + 1

}
+ 2a2

0q
′′ = 0. (5b)

By defining an operator F (V, q, ζ), our problem (5a)
and (5b) is equivalent to

F (V, q, ζ) = 0. (6)

The linearized equations in the neighborhood of the
trivial solution (V, q) = (0, 0) is

8V ′′ − 8a0(a
3
0 − 1)ζq′ = 0, (7a)

2(a3
0 − 1)rV ′ + 2a2

0q
′′ = 0. (7b)

We call the corresponding linear operator L and its
adjoint L∗. The kernel of the linear operator is two
dimensional when ζ takes the critical value.

ζc =
4a0π

2

(a30 − 1)2r
. (8)

The kernel of L is generated by the vectors u1 and
u2

V (ξ) = α(1− cos(2πξ)) + β(sin(2πξ)),

q(ξ) =
r(a3

0 − 1)

2πa2
0

(α sin(2πξ) + β(cos(2πξ)− 1),

(V, q) = αu1 + βu2.

(9a)

(9b)

(9c)

The adjoint kernel has the same structure but the
amplitudes are rescaled with a ration depending on
a0, r and ζ. Let us call its generating vectors, ua,1

and ua,2. The basis vectors of ker(L) and ker(L∗)
are orthogonal.

⟨u1,u2⟩ = ⟨ua,1,ua,2⟩ = 0. (10)

As it can be noticed with the previous results, the
linear kernel presents a bifurcation with a two-fold
degeneracy. The work of the thesis is to analyze the
reasons of this bifurcation and try to formulate the
more general results about its existence.

3. Test of the instability robust-
ness

The first step is to test whether the linear bifurca-
tion analysis is robust to the parameter changes. We
consider three changes in the model:

• The active tensor, Ta is no longer Ta ∝ −ζI
but it is now taken to be proportional to the
shape tensor, Ta ∝ −ζΨ.

• New boundary conditions, the no-slip boundary
conditions are changed, we now assume v′x(L) =
0.

• Considering more than one relaxation time, this
change implies a larger class of possible viscos-
ity coefficients: D = (Ψ−1 ⊗ Ψ−1)T, where T
contains the different relaxation times [3].

We re-derive the equations (5a)and (5b) with these
modifications. Then we perform an equivalent
linear analysis. We compare our results with the
original case in terms of the form of the equations,
the critical value, the dimension of the kernel and
the form of its vectors. In the following table we
summarize the different results.(see the thesis for
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the details)

Change (eq) ζc dim
ker(L)

eigen-
vectors

Ta ∝ Ψ c r 2 r
Boundary
conditions
(v′x(L) = 0)

u r 1 r

More relax-
ation times

c u 2 r

(c:changed, u:unchanged, r:rescaled)

These comparisons show that the linear bifurcation
analysis is robust to parameter changes. Indeed, the
two-fold degeneracy is still present, we only observe
a rescaling of the equations, of the critical value and
of the amplitudes of the vectors.
However, using the new boundary condition
v′x(L) = 0, we lose one of the two modes. We will
show that the reason behind this is the breaking of
the symmetries in the system.

4. Lyapunov-Schmidt reduction
and bifurcation diagram

Because the degeneracy is robust, it is pertinent to
look for a complete information about this instabil-
ity and draw a complete bifurcation diagram. We re-
duce the problem to finite dimensional in order to ob-
tain the diagram of bifurcations. To this end, we per-
form a Lyapunov-Schmidt reduction. The method
consists in projecting the general equation to the
range of the linear operator, range(L). By defini-
tion of the adjoint operator, this space is equivalent
to the orthogonal complement of the adjoint kernel

range(L) = ker(L∗)⊥. (11)

To perform the Lyapunov-Schmidt reduction, we
look for a solution of the form(

V (ξ), q(ξ)
)
= αu1(ξ) + βu2(ξ) +

(
wv(ξ), wq(ξ)

)
. (12)

such that

⟨
(
wv(ξ), wq(ξ)

)
,u1⟩ = ⟨

(
wv(ξ), wq(ξ)

)
,u2⟩ = 0. (13)

In other words, the solution is a linear combination
of the linear kernel vectors and a unknown function
which is orthogonal to the linear kernel.

We can define the projector to the range of the lin-
ear operator as the projector to the orthogonal com-
plement of the adjoint kernel, by definition of the
adjoint operator

QF (V, q, ζ) = F (V, q, ζ)− ⟨F (V, q, ζ),ua,1⟩
||ua,1||2

ua,1

−⟨F (V, q, ζ),ua,2⟩
||ua,2||2

ua,2. (14)

Imposing QF = 0, we obtain a unique solution(
wv(ξ), wq(ξ)

)
as a function of α, u1(ξ), β, u2(ξ)

and ζ.
Substituting the obtained relation into (6), we find
the bifurcation equation by solving (I − Q)F = 0
since the vectors, generating the adjoint kernel, are
orthogonal (10), this is equivalent to impose:

⟨F (V, q, ζ),ua,1⟩ = 0, ⟨F (V, q, ζ),ua,2⟩ = 0. (15)

For simplification in the computations, we replace
ζ = ζc(1 + λ).
Finally, the bifurcation equations are the following

β
{
(a30 − 1)2r2

(
(13 + 5a30 + 6a60)α

2

+(25 + a30 + 14a60)β
2
)
− 16a40π

2λ
}
=0,

α
(
(a30 − 1)2r2(5− 3a30 + 6a60)α

2

+(17− 7a30 + 14a60)β
2 − 16a40π

2λ
)
= 0.

(16a)

(16b)

The solutions of the system composed by (16a) and
(16b) are of the form

(α, β) ∈
{
(0, 0), (±α(λ), 0), (0,±β(λ))

}
,

α(λ) =
4a2

0π
√
λ

r
√

6a12
0 − 15a9

0 + 17a6
0 − 13a3

0 + 5
,

β(λ) =
4a2

0π
√
λ

r
√

14a12
0 − 27a9

0 + 37a6
0 − 49a3

0 + 25
.

(17a)

(17b)

(17c)

We obtain the two modes, they exist for all the
values of the parameters when λ > 0. Indeed,
the parameters only rescale the amplitudes of the
solutions. However, there is no possible mixing
of the modes. Indeed, if we plot the contourlines
(Figure 2), the only intersection point is at the
critical activity, ζc (λ = 0).
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Figure 2: Bifurcation diagram, as given in (16a) and
(16b) with a0 = 2 and r = 1.
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5. Symmetries and generalized
branching lemma

We can notice three symmetries of the system.
(i)The nematic symmetry, n 7→ −n does not influ-
ence our problem. Our model automatically satis-
fies by construction the head-tail symmetry of the
molecules.
(ii) The symmetry with respect to the ex axis, thanks
to the homogeneous boundary conditions, the bot-
tom and the top of the channel cannot be distin-
guished.
(iii) The symmetry with respect to the ez axis,
thanks to the transversal invariance along the ex
axis, left and right cannot be distinguished.
In the following table we show the transformation
on the dimensionless space variable ξ, the dimen-
sionless variables V and q, the amplitudes, and the
corresponding action Tg:

Sym ξ̂ V̂ q̂ α̂ β̂ Tg

(i) ξ V q+π α β

(
1 0
0 1

)
(ii) 1− ξ V −q α −β

(
1 0
0 −1

)
(iii) ξ −V π−q −α −β

(
−1 0
0 −1

)
(iv) 1− ξ −V π+q −α β

(
−1 0
0 1

)
The fourth symmetry is obtained by the composition
of the symmetries (ii) and (iii). It can be easily
demonstrated that the four symmetries form an
abelian group which can be identified as the Klein
four-group K4

∼= Z2 × Z2.
In addition, it can be checked that (5a) and (5b),
(16a) and (16b) are K4-equivariant. This means for
the system defined by (5a) and (5b),

∀Tg ∈ K4, TgF (V, q, ζ) = F (Tg(V, q), ζ) = 0. (18)

A key notion in this analysis is that of fixed-point
space, for a subgroup Σ of K4,

Fix(Σ) = {x ∈ V, Tgx = x, ∀ Tg ∈ Σ}. (19)

And the equivalent notion of a stabilizer subgroup
for a vector x ∈ V .

Stab(x) =
{
Tg ∈ K4, Tgx = x

}
. (20)

Because F (·, ζ) is K4-equivariant, it maps Fix(Σ) to
Fix(Σ), and the bifurcation analysis can be restricted
to Fix(Σ) space.
For our problem, we have the following fixed-point
spaces in the plane (α, β):
(i)All points are fixed by Σ0 = {T(i)} = {I}. So
Fix(Σ0) = Span

{
e1, e2

} ∼= R2.
(ii)All points of the form (α, β) = (1, 0) are fixed by
Σ1 = {I,T(ii)}. So Stab

(
(1, 0)

)
= Σ1 andFix(Σ1) =

Span
{
e1
} ∼= R.

(iii)No point is fixed by Σ2 = {I,T(iii)}. So
Fix(Σ2) =

{
0
}
.

(iv)All points of the form (α, β) = (0, 1) is fixed
by Σ3 = {I,T(iv)}. So Stab

(
(0, 1)

)
= Σ3 and

Fix(Σ3) = Span
{
e2
} ∼= R.

(v)Only the origin is fixed by K4. We have only two
proper subgroups of K4 of dimension 1, Σ1 and Σ3.
We can now use the following theorem[1].
Theorem 5.1 (Generalized equivariant branching
lemma). Let Γ be a finite group or a compact Lie
group acting on a real vector space, V, with Fix(Γ) =
{0}.
Let

F (U, λ) = 0, (21)

be a Γ-equivariant bifurcation problem with
DF |(0,λc)W = 0 and DFλ|(0,λc)W ̸= 0 for
nonzero W ∈ Fix(Σ), where Σ is a stabilizer
subgroup of Γ. Then, if Σ satisfies:

dim(Fix(Σ)) = 1, (22)

there is a smooth solution branch U = sW, λ = λ(s)
to F (U, λ) = 0.
Since we only have two one-dimensional fixed-point
subspaces, our model has two independent branches
and this is a general results for any system which
has the K4-symmetries.

6. Conclusions
In this thesis, we studied the spontaneous flows
arising in an alternative model for active nematics in
the existence of a spontaneous flow. As it has been
noticed in [4], the system has a two-fold degeneracy.
We tested the robustness of this instability and
showed that it is robust to material changes but not
to new boundary condition which break the Z2 ×Z2

symmetry
Applying the Lyapunov-Schmidt reduction to make
the study bifurcation, a finite-dimensional problem,
we were able to draw the bifurcation diagram. This
allowed us to see that the existence of the two
modes does not depend on the material parameters
which only rescale their amplitudes. In addition,
we saw that no mixing of the mode is possible in a
stationary state.
Finally, with the generalized equivariant branching
lemma we explained the presence of the two-fold
degeneracy by the fact that the system is equivariant
under the transformations of the Klein four-group.
When the boundary conditions are changed, the
symmetries are broken, leading to the lost of the
degeneracy.
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