
Code integration and validation of
a machine learning based RANS
model

Tesi di Laurea Magistrale in
Mathematical Engineering - Ingegneria Matematica

Author: Davide Repetto

Student ID: 990543
Politecnico di Milano Advisor: Prof. Marco Verani
Sorbonne Université Advisor: Prof. Corrado Maurini
CEA/CNRS Advisors: Pierre-Emmanuel Angeli, Didier Lucor
Academic Year: 2022-23

i

Abstract

Turbulence presents a complex modeling challenge in fluid dynamics simulations. Tra-
ditional approaches rely on Reynolds-averaged Navier-Stokes (RANS) equations paired
with closure models, but often lack accuracy and universality. This thesis investigates
integrating machine learning into RANS frameworks to enhance turbulence modeling.

Both high-Reynolds and low-Reynolds neuronal models are proposed and validated on
the canonical turbulent channel flow configuration. Preliminary tests injecting explicit
Reynolds stresses from direct numerical simulations (DNS) into RANS equations reveal
ill-conditioning concerns. The high-Reynolds neuronal k − ε model demonstrates com-
parable performance to the standard k − ε model, while requiring over twice the com-
putational expense. However, the low-Reynolds neuronal models exhibit promising ca-
pabilities, with neural network outputs significantly outperforming analytical closures in
predicting Reynolds stress anisotropy.

This research clarifies ambiguities in prior approaches and validates a generalized ten-
sor formulation to address limitations. Code integration in the TRUST/TrioCFD solver
enables practical usage for academic and industrial simulations. Overall, the physics-
informed machine learning techniques presented strong potential to enhance turbulence
modeling. Although limitations exist, the improved accuracy and reliability constitute
valuable contributions towards advancing RANS capabilities.

Keywords: CFD, RANS, Turbulence, Machine Learning, k − ε models, Low-Reynolds
models.

iii

Abstract in lingua italiana

La turbolenza rappresenta una sfida complessa nella modellistica delle simulazioni di
dinamica dei fluidi. Gli approcci tradizionali si basano sulle equazioni Reynolds-Averaged
Navier-Stokes (RANS) abbinati a modelli di chiusura del tensore di Reynolds, ma spesso
presentano problemi di precisione e universalità. Questa tesi investiga l’integrazione del
machine learning nei modelli di chiusura delle RANS per migliorare la modellazione della
turbolenza.

Vengono proposti e validati modelli neurali sia ad alto che basso numero di Reynolds
sulla configurazione di flusso turbolento in un canale piano. I test preliminari in cui il
tensore Reynolds è trattato esplicitamente mostrano problemi dovuti al cattivo condizion-
amento delle equazioni RANS. Il modello neuronale k − ε ad alto numero di Reynolds
dimostra una performance comparabile al modello standard k− ε, richiedendo però oltre
il doppio del costo computazionale. D’altra parte, i modelli neurali a basso numero di
Reynolds mostrano capacità promettenti. In particolare gli output della rete neurale sono
significativamente migliori dei valori relativi alle stesse grandezze ottenuti dai modelli
tradizionali.

L’integrazione del codice nel solver TRUST/TrioCFD consente un utilizzo del modello
neuronale a basso Reynolds per simulazioni accademiche e industriali. Nel complesso, le
tecniche di apprendimento automatico presentano un forte potenziale per migliorare la
modellazione della turbolenza. Nonostante le limitazioni, l’aumentata precisione e affid-
abilità costituiscono contributi preziosi per l’avanzamento delle capacità RANS.

Parole chiave: Fluidodinamica Computazionale, RANS, Turbolenza, Machine Learning,
Modelli k − ε, Modelli a basso numero di Reynolds.

Resumé en français

La turbulence représente un défi complexe dans la modélisation des simulations de dy-
namique des fluides. Les approches traditionnelles sont basées sur les équations de Navier-
Stokes moyennées dans le temps (RANS) associées à des modèles de fermeture du tenseur
de Reynolds, mais elles présentent souvent des problèmes de précision et d’universalité.
Cette thèse explore l’intégration de l’apprentissage automatique dans les modèles de fer-
meture RANS afin d’améliorer la modélisation de la turbulence.

Des modèles neuronaux sont proposés et validés pour des nombres de Reynolds haut et bas,
sur la configuration d’écoulement turbulent dans un canal plan. Les tests préliminaires
dans lesquels le tenseur de Reynolds est traité explicitement révèlent des problèmes liés au
mauvais conditionement des équations RANS. Le modèle neuronal k−ε à haut nombre de
Reynolds montre des performances comparables au modèle standard k− ε, mais nécessite
plus du double du coût de calcul. En revanche, les modèles neuronaux à bas nombre
de Reynolds montrent des capacités prometteuses. En particulier, les sorties du réseau
neuronal sont nettement meilleures que les valeurs correspondantes obtenues à partir des
modèles traditionnels.

L’intégration du code dans le solveur TRUST/TrioCFD permet l’utilisation du mod-
èle neuronal à bas Reynolds pour des simulations académiques et industrielles. Dans
l’ensemble, les techniques d’apprentissage automatique présentent un fort potentiel pour
améliorer la modélisation de la turbulence. Malgré les limitations, l’augmentation de la
précision et de la fiabilité apporte des contributions précieuses à l’avancement des capac-
ités RANS.

Mots clés: CFD, RANS, Turbulence, Machine Learning, Modèles k − ε, Modèles bas
Reynolds.

vii

Contents

Abstract i

Abstract in lingua italiana iii

Resumé en français v

Contents vii

1 Context of Study 3
1.1 Navier-Stokes equations for incompressible fluids 3
1.2 Computational modeling . 4

1.2.1 DNS modeling . 4
1.2.2 RANS modeling . 5

1.3 Turbulence Models based on LEVM . 7
1.3.1 Mixing length model . 8
1.3.2 Standard k − ε model . 9
1.3.3 Low-Reynolds Number k − ε Models 10

1.4 General eddy viscosity model . 12
1.5 Turbulent Plane Channel Analysis . 13
1.6 Generalized T∗(0) . 17

2 Neural Networks in Turbulence Modeling 21
2.1 Introduction to Machine Learning approaches for turbulence modeling . . 21

2.1.1 Multi-Layer Perceptron . 22
2.1.2 Convolutional Neural Network . 23
2.1.3 Tensor Basis Neural Networks . 23

2.2 Training of low-Reynolds number model Neural Network 24
2.2.1 Data Set . 25
2.2.2 Pre-processing . 27

2.2.3 Input parameters choice . 29
2.2.4 Neural networks . 29

3 Turbulence Models 33
3.1 Explicit Treatment of the Reynolds tensor 33
3.2 Implicit Treatment of the Reynolds tensor 34

3.2.1 A High-Reynolds number neuronal model 34
3.2.2 A low-Reynolds number neuronal model 35

4 TRUST/TrioCFD code integration 39
4.1 TRUST/TrioCFD solver introduction . 39
4.2 Plane Channel Problem . 40

4.2.1 Domain Discretization and Boundary Conditions 40
4.2.2 Problem Definition . 42

4.3 Code Integration . 45

5 Results validation 53
5.1 Explicit treatment of the Reynolds tensor 54
5.2 Validation of the high-Reynolds neuronal k − ε model 56
5.3 Validation of the low-Reynolds neuronal k − ε model 59

5.3.1 Grid Independence . 60
5.3.2 Results . 61

6 Conclusions and future developments 71

Bibliography 73

A Validation Plots 77

List of Figures 85

List of Tables 87

Listings 89

Acknowledgements 91

| Contents 1

Introduction

Turbulence constitutes one of the most complex unsolved problems in classical physics.
The chaotic and stochastic nature of turbulent flows poses immense challenges for compu-
tational modeling and simulation. Precisely predicting turbulence remains a goal difficult
to reach despite decades of research.

In the field of computational fluid dynamics (CFD) simulation, the use of machine learn-
ing has experienced significant growth in recent years, partially driven by the increase
in available computational resources. Machine learning allows for the improvement of
turbulence models that are often ineffective for complex flow situations by leveraging sim-
ulated data or experimental measurements. This involves utilizing functional structures
such as neural networks, which are flexible and adaptable, to learn models from reference
numerical data obtained through Direct Numerical Simulations (DNS). However, such
data-driven learning presents a major drawback: it can produce models that do not con-
form to the laws of physics, resulting in predictions that are not guaranteed beyond the
training domain. In fluid mechanics, a turbulence model must adhere to several invari-
ances, notably Galilean and rotational invariances. Therefore, the functional structure
must ensure these invariances independently of the data to advance towards a trusted
form of Artificial Intelligence (AI). Undoubtedly, this represents one of the challenges in
applying machine learning to CFD.

This document presents the continuation of the work on machine learning of the Reynolds
tensor for Reynolds-Averaged Navier-Stokes (RANS) calculations, building upon the work
of Cai et al. [3]. The focus of this work is on the closure of the Reynolds tensor, particularly
the k−ε model. The RANS equation, obtained by applying a statistical averaging opera-
tor, introduces an unknown object known as the Reynolds stress tensor. The challenge lies
in establishing how the Reynolds tensor depends on the deformations of the mean velocity
field. Historically, this dependence is expressed through explicit mathematical functions
of varying complexity. However, these models are not sufficiently generic to guarantee
their applicability to all flow cases. The limitations become particularly pronounced for
flows involving curvature, separation, rotation, and swirl [4]. Machine learning now offers
an alternative to these closure laws based on physical expertise.

This master’s thesis, conducted in the LMSF laboratory of the French Atomic Energy
Commission (CEA), aims to perform an a posteriori validation of the Reynolds tensor
predicted through the neural networks trained by Cai et al. [3]. The advantage of this
approach is to benefit from a functional structure proposed by Pope [17], which ensures
all invariances on the Reynolds tensor, and to leverage the learning capabilities of a neural

2 | Contents

network. The combination of the tensor basis and a neural network is referred to as TBNN
(Tensor Basis Neural Network). The training of TBNN was conducted on databases de-
rived from DNS calculations on turbulent flows in plane channels. The neural models
obtained were then integrated into the TrioCFD computation code. This significant step
allowed for the first RANS simulations with TrioCFD using machine learning-based mod-
els.

This document provides a detailed description of the project’s progress and its various
stages. It is structured as follows. Chapter 1 describes the physical modeling of fluid
mechanics and analyzes the TBNN model in the case of the flat channel to evaluate its
validity. Chapter 2 is dedicated to the machine learning method for the Reynolds tensor
and their training. Chapter 3 presents the machine learning based RANS closure models
object of validation in this work. Chapter 4 provides details on the integration of the
low-Reynolds neuronal model in the TRUST/TrioCFD solver. Chapter 5 is dedicated to
the a posteriori validation of the neural models through simulations with TrioCFD. Fi-
nally, Chapter 6 concludes the note, discussing the encountered challenges and presenting
numerous prospects for the future.

CEA: The French Alternative Energies and Atomic Energy Com-

mission

The French Atomic Energy Commission (CEA) was created in 1945 by Charles de Gaulle,
headed by Frédéric Joliot-Curie (High Commissioner for Atomic Energy) and Raoul
Dautry (General Administrator). The organization’s purpose is to pursue scientific and
technical research into the use of nuclear energy in science (particularly medical applica-
tions), industry (electricity) and national defense. With more than 20,000 employees -
technicians, engineers, researchers, doctoral and post-doctoral students, and research sup-
port staff - the CEA is involved in numerous collaborative projects alongside its academic
and industrial partners. The four main departments are: Direction of Energies (DES),
Direction of Militar Applications (DAM), Direction of technological research (DRT/CEA
tech) and Division of Fundamental Research (DRF). CEA’s main research centers are
in Saclay (Essonne), Fontenay-aux-Roses (Hauts de Seine), Marcoule (Gard), Cadarache
(Bouches du Rhône), Grenoble (Isère) and Le Ripault (Indre-et-Loire).

The present work has been developed in the Direction of Energies and more precisely in
the Service de Thermohydraulique et de Mécanique des Fluides (STMF). The goal of this
service is to develop thermal-hydraulics and fluid mechanics simulation software applied
to low-carbon energy technologies, mainly for nuclear reactors and facilities.

3

1| Context of Study

In this chapter the theoretical framework of this master thesis is discussed. Section 1.1
presents the Navier-Stokes equations for incompressible fluids, Section 1.2 delves into
their computational modeling, Section 1.3 exhibits various turbulence models based on
the Boussinesq assumption, Section 1.4 is dedicated to the discussion of the Pope’s model
as an alternative to the Boussinesq assumption, Section 1.5 analyzes the simplifications
of the Pope’s model in the plane channel problem, Section 1.6 presents the generalized
T∗(0) tensor proposed by Cai et al. within the framework of the Pope’s model.

1.1. Navier-Stokes equations for incompressible flu-

ids

The Navier-Stokes equations constitute a fundamental framework for characterizing the
dynamic behavior of fluids, playing a pivotal role in the study of fluid mechanics. Specif-
ically, when considering a Newtonian fluid that is both incompressible and isothermal,
such as water for the purposes of this investigation, the Navier-Stokes equations take the
following form:


∇ · u = 0

∂u
∂t

+ (u · ∇)u = −1

ρ
∇p+ ν∆u

(1.1a)

(1.1b)

Here, the vector field u represents the velocity field in the Cartesian coordinate system,
while p stands for the pressure, ρ denotes the fluid density, and ν the kinematic viscosity
of the fluid.

Equation 1.1a expresses the mass equation, ensuring that the rate of mass flow into any
given region is equal to the rate of outgoing mass flow. This conservation of mass principle
is crucial in understanding the behavior of fluid flows.

Equation 1.1b captures the essence of fluid motion. It accounts for the temporal evolution

4 1| Context of Study

of the velocity field u, incorporating the effects of advection (the convection of fluid
properties by the velocity field), pressure gradients, and viscosity. The left-hand side
of the equation represents the acceleration of the fluid particles, while the right-hand
side encompasses the influence of pressure and viscosity. The presence of the Laplacian
operator ∆ on the velocity field signifies the diffusion of momentum due to viscosity.

The Navier-Stokes equations hold a critical place in many scientific and engineering ap-
plications. From understanding natural phenomena like ocean currents and atmospheric
flows to designing complex systems such as aircraft aerodynamics and fluid transport
networks, these equations provide a foundational framework for analyzing and predicting
fluid behavior.

In the subsequent chapters, we will delve into the mathematical properties, analytical
solutions, and numerical methods associated with the Navier-Stokes equation.

1.2. Computational modeling

The Computational Fluid Dynamics (CFD) is the study of the flows through numerical
methods. Three main methods are employed: Direct Numerical Simulation (DNS), Large
Eddy Simulation (LES) and Reynolds-Averaged Navier-Stokes (RANS). In this section,
the DNS and RANS methodologies are exhibited, as they will subsequently be employed
throughout the course of this thesis.

1.2.1. DNS modeling

The Direct Numerical Simulation (DNS) method stands as a powerful approach within
fluid dynamics for studying complex flow phenomena in remarkable detail. In DNS, the
Navier-Stokes equations, as introduced Section 1.1, are solved directly, without resorting
to any simplifying approximations or turbulence model. This enables a comprehensive
examination of fluid flow at the smallest scales, providing insights into intricate behaviors
that might be missed when relying on coarser approximations.

DNS aims to capture the complete range of spatio-temporal scales present in a fluid flow,
from the large-scale structures down to the smallest turbulent eddies. By numerically
solving the governing equations on a discretized grid, DNS reveals the evolution of the
velocity and pressure fields at each point in space and time. This meticulous level of
detail allows for the investigation of phenomena such as vortex shedding, boundary layer
interactions, and turbulence dynamics with high precision.

However, it’s important to acknowledge that DNS comes at a significant computational

1| Context of Study 5

cost. Due to the vast number of grid points required to accurately capture the smallest
turbulent scales, DNS simulations demand substantial computational resources and time.
The computations involve solving differential equations over a three-dimensional grid,
often with hundreds of millions to billions of grid points, making DNS one of the most
computationally intensive methods in fluid dynamics. This substantial computational
cost originates from the need to resolve a wide range of scales, which pushes the limits of
available computational technology.

1.2.2. RANS modeling

The Reynolds-Averaged Navier-Stokes (RANS) modeling approach presents a framework
that provides a computationally affordable approach to capture turbulent effects while
serving as a bridge between the computational cost of Direct Numerical Simulation (DNS)
and the practical demands of computational resources. The fundamental concept under-
lying RANS modeling involves a decomposition of the flow field u into a time-averaged
component u and smaller, local fluctuations u′. This approach allows us to separate the
mean behavior of the flow from the turbulent fluctuations, leading to a simplified rep-
resentation of the governing equations. With the RANS modeling the aim becomes to
determine the averaged field u, therefore the expected output for time-dependent prob-
lems, such has the ones involving turbulence, differs from the one obtained from a DNS.
This difference is displayed in Figure 1.1.

Upon applying the statistical mean operator to the Navier-Stokes equations (Equations 1.1),
and introducing the decomposition u = u+ u′, the resulting equations, called Reynolds-
Average Navier-Stokes (RANS) equations, take the form:


∂ūi

∂xi

= 0

∂ūi

∂t
+ ūj

∂ūi

∂xj

= −1

ρ

∂p̄

∂xi

+
∂

∂xj

[
ν

(
∂ūi

∂xj

+
∂ūj

∂xi

)
− u′

iu
′
j

] (1.2a)

(1.2b)

In these equations, an additional component emerges: the Reynolds tensor, denoted as
Rij = u′

iu
′
j. This tensor represents turbulent fluctuations in the flow. This variable

assumes a null value in laminar flow conditions. A challenge that must be addressed is
the necessity to close the Equations 1.2 by representing the Reynolds tensor using average
field values. To overcome this, the turbulent viscosity concept is introduced.

Analogous to the Newtonian hypothesis relating viscous stresses to strain rates, Boussi-
nesq proposed a simple assumption. Turbulent motions are assimilated to viscous effects

6 1| Context of Study

(a) DNS. (b) RANS.

Figure 1.1: Comparison between DNS and RANS simulation outputs in the turbulent
square channel [1].

but with a turbulent viscosity coefficient νt. This hypothesis, known as the Linear Eddy
Viscosity Model (LEVM) or Boussinesq assumption, provides an avenue to tackle the
RANS closure problem [2]. It is represented as:

Rij = −2νtSij +
2

3
kδij (1.3)

Where Sij is defined as:

Sij =
1

2

(
∂ūi

∂xj

+
∂ūj

∂xi

)
(1.4)

and k is the turbulent kinetic energy, k =
1

2
u′
iu

′
i .

In scientific literature, it is conventional to utilize the dimensionless anisotropy tensor bij,
as a replacement for the Reynolds tensor. It is defined as:

bij =
Rij

2k
− 1

3
δij (1.5)

By combining the equations 1.3 and 1.5, the Boussinesq hypothesis becomes:

1| Context of Study 7

bij = −νt
k
Sij (1.6)

1.3. Turbulence Models based on LEVM

In this section, the concept of turbulence and the most relevant turbulence models based
on the Boussinesq Hypothesis are discussed. Turbulence is a complex phenomenon ob-
served in fluid flows where small-scale eddies emerge as the flow rate increases. These
eddies introduce spatial and temporal oscillations, making it computationally infeasible
to directly solve, by means of DNS, the Navier-Stokes equations for turbulent flows. To
address this challenge, the RANS formulation is employed.

One approach to turbulence modeling involves using supplementary transport equations to
describe turbulence-related variables. In one- and two-equations models, such additional
equations are incorporated to estimate turbulence intensity. By employing these models,
a more manageable set of equations can be used to represent turbulence.

Alternatively, algebraic models adopt a different approach by introducing algebraic equa-
tions that depend on the velocity field to characterize turbulence intensity. This is
achieved by calculating an eddy viscosity, which augments the molecular viscosity of
the fluid. The turbulent viscosity accounts for the momentum that would be carried by
small-scale eddies, effectively attributing it to a viscous transport process. Throughout
most of the flow domain, turbulence dissipation largely dominates over viscous dissipa-
tion, except in the vicinity of solid walls. In these cases, turbulence models must adapt by
continually attenuating the turbulence level, as observed in low-Reynolds number models,
or by calculating new boundary conditions through the application of wall functions.

Figure 1.2 presents the concept of turbulence through the example of a uniform flux over
a flat plate. As the distance from the leading edge increases, the Reynolds number grows,
leading to a transition from laminar to turbulent flow.

8 1| Context of Study

Figure 1.2: Development of the boundary layer for flow over a flat plate.
Courtesy of University of Delaware.

To estimate the value of turbulent viscosity (νt) more accurately, various turbulence mod-
els have been developed over the years. These models are classified based on the number
of additional transport equations that need to be solved alongside the RANS flow equa-
tions. In the following subsections, the most widely used turbulence models based on the
Boussinesq Hypothesis are discussed in detail, as a summary of the ones presented in the
work of Versteeg and Malasekara [23].

1.3.1. Mixing length model

The mixing length model proposed by Ludwig Prandtl [19] belongs to the category of
the zero equation models, that are the models that add zero transport equations to close
the RANS problem. Indeed, νt is directly computed by means of a dimensional analysis.

Since νt has dimensions
[
m2

s

]
it can be expressed as the product of a velocity

[m
s

]
and

a length [m]. Thus, one can write the expression of νt as function of a velocity ϑ and a
length ℓ as:

νt = cϑℓ (1.7)

where c represents a dimensionless constant. By assuming that there is a strong connection
between the mean flow and the behavior of the largest eddies, one can attempt to link
the characteristic velocity scale of the eddies with the mean flow properties. Therefore,

by further assuming that the only significant mean velocity gradient is
∂U

∂y
, one has:

ϑ = Cℓ

∣∣∣∣∂U∂y
∣∣∣∣ (1.8)

1| Context of Study 9

with ℓ that represents the characteristic length of the larger eddies.
By combining Equations 1.7 and 1.8 the equation of the mixing length model is obtained
and reads:

νt = ℓ2m

∣∣∣∣∂U∂y
∣∣∣∣ (1.9)

where the mixed length, ℓm, is obtained from ℓ and the two constants c and C. It has to
be noticed that when the turbulence changes, this model has to adapt by changing ℓm,
but when the structure of the flow is simple, ℓm is obtained from algebraic formulas.

1.3.2. Standard k − ε model

The k− ε model introduces two additional transport equations to represent the turbulent
properties of the flow. These are the turbulent kinetic energy, k, and its rate of dissipation,
ε.

The equations for the turbulent kinetic energy, k, and for the rate of dissipation, ε, are
given by:


∂k

∂t
+ ūi

∂k

∂xi

=
∂

∂xi

[(
ν +

νt
σk

)
∂k

∂xi

]
+ P − ε

∂ε

∂t
+ ūi

∂ε

∂xi

=
∂

∂xi

[(
ν +

νt
σε

)
∂ε

∂xi

+
ε

k
(Cε1P − Cε2ε)

] (1.10a)

(1.10b)

where µt is the turbulent viscosity, and ρ is the fluid density, while σk, σε C1ε and C2ε are
constants.

The two quantities introduced by the model, k and ε, are then used to define the velocity
and length scale by means of a dimensional analysis, respectively ϑ and ℓ:

ϑ = k
1
2 , ℓ =

k
3
2

ε
(1.11)

By following the same procedure of section 1.3.1 one obtains that the turbulent viscosity,
µt, is computed from k and ε as:

µt = ρCϑℓ = ρCµ
k2

ε
(1.12)

where Cµ is a model constant. Therefore, since µt = ρνt, νt is given by:

10 1| Context of Study

νt = Cµ
k2

ε
(1.13)

The standard k− ε model is a semi-empirical model, with constants derived from experi-
mental data. The commonly used values are σk = 1.00, σε = 1.30, Cµ = 0.09, C1ε = 1.44,
and C2ε = 1.92.

Despite its simplicity and robustness, the standard k−ε model has limitations. It assumes
isotropic turbulence, which is not accurate for flows with strong streamline curvature or
swirl, near-wall flows, and flows with rapid strain rates [4]. Nevertheless, it remains a
popular choice for initial studies and engineering applications due to its ease of imple-
mentation and computational efficiency.

Since the standard k− ε model does not provide a good estimation of k and ε in the near
wall region, this model has to be used always paired with a wall function. Wall functions
are employed to approximate the flow characteristics in the buffer region and analytically
determine a non-zero fluid velocity in proximity to the wall. Adopting a wall function
approach presumes an analytical solution for the flow within the viscous layer, leading to
substantially reduced computational demands for the resultant models.

1.3.3. Low-Reynolds Number k − ε Models

The term "Low-Reynolds number model" may appear paradoxical, as turbulent flows
typically occur at high Reynolds numbers. However, this denomination does not pertain
to the flow on a global scale; rather, it pertains to the near-wall region where viscous
effects dominate, specifically the viscous sublayer as depicted in the figure above. A low-
Reynolds number model is one that accurately captures the limiting behaviors of various
flow parameters as the distance to the wall approaches zero. The accurate representation
of these limiting behaviors enables the turbulence model to simulate the entire boundary
layer, encompassing both the viscous sublayer and the buffer layer.

Low-Reynolds number models often provide remarkably precise descriptions of the bound-
ary layer. Nonetheless, the sharp gradients near walls necessitate extremely high mesh
resolutions, resulting in a substantial computational cost associated with achieving this
high accuracy.

The Low-Reynolds number k − ε model, an extension of the conventional k − ε model,
shares many advantageous characteristics while eliminating the need for wall functions,
as it can adequately resolve the flow throughout the entire domain. Consequently, a finer
mesh, and therefore a higher computational cost, is typically required in proximity to

1| Context of Study 11

walls.

The equations for the turbulent kinetic energy, k, and for the rate of dissipation, ε, are
given by:



∂k

∂t
+ ūi

∂k

∂xi

=
∂

∂xi

[(
ν +

νt
σk

)
∂k

∂xi

]
+ P − ε−D

∂ε

∂t
+ ūi

∂ε

∂xi

=
∂

∂xi

[(
ν +

νt
σε

)
∂ε

∂xi

+
ε

k
(Cε1f1P − Cε2f2ε)

]
+ E

νt = Cµfµ
k2

ε

(1.14a)

(1.14b)

(1.14c)

In red are highlighted all the terms introduced in the Low-Reynolds number k− ε model
that were not there in the Standard one (Equation 1.10). Due to the empirical nature of
the parameters involved in this formulation, Table 1.1 presents an overview of their values
in two popular models.

Jones-Launder [9] Launder-Sharma [11]

Cµ 0.09 0.09

σk 1.0 1.0

σε 1.3 1.3

D 2 ν

(
∂
√
k

∂y

)2

2 ν

(
∂
√
k

∂y

)2

E 2 ν νt

(
∂2u

∂y2

)2

2 ν νt

(
∂2u

∂y2

)2

Cε1 1.45 1.44

Cε2 2.0 1.92

fµ exp
−2.5

(1 +Ret/50)
exp

−3.4

(1 +Ret/50)
2

f1 1.0 1.0

f2 1− 0.3 exp (−Re2t) 1− 0.3 exp (−Re2t)

Ret k2/νε k2/νε

Table 1.1: Low-Reynolds Models Parameter Selection

The utilization of the Low-Reynolds number k − ε model enables more accurate compu-
tations of lift and drag forces, as well as improved predictions of heat fluxes compared
to the standard k − ε model. Additionally, the model demonstrates commendable per-

12 1| Context of Study

formance in predicting separation and reattachment phenomena across various scenarios.
These valuable attributes render it a powerful tool for investigating fluid dynamics prob-
lems involving Low-Reynolds number flows, where traditional turbulence models may lack
precision and reliability.

1.4. General eddy viscosity model

It has been shown that for complex flows, involving curvature, impingement and separa-
tion, the linear relationship proposed by Boussinesq (Equation 1.3) between the Reynolds
stress tensor and the mean velocity gradient turns out to be inaccurate [4]. Moreover,
Tracey et al. demonstrated that the LEVM does not capture the correct Reynolds stress
anisotropy in many flows, including simple shear flows [21].

For this reason, a variety of Non-Linear Eddy Viscosity Models (NLEVM) have been
developed to ensure the capture of these more complex effects. For the sake of example,
the Quadratic Eddy Viscosity Model introduced by Craft et al. [4] can be cited.

Pope proposed one of the most widely used Nonlinear Eddy Viscosity Models (NLEVM)
to extend the applicability of Reynolds-Averaged Navier-Stokes (RANS) closure models
[17]. Pope’s approach is based on the Reynolds stress anisotropy tensor b and postulates
that it can be expressed as a function of normalized strain-rate S∗ and rotation-rate R∗

tensors for homogeneous flows:

b = b (S∗,R∗) (1.15)

Where the tensors S∗ and R∗ are normalized using a turbulent timescale formed with the
turbulent kinetic energy and dissipation rate, and they read as follows:

S∗
ij =

1

2

k

ε

(
∂ūi

∂xj

+
∂ūj

∂xi

)

R∗
ij =

1

2

k

ε

(
∂ūi

∂xj

− ∂ūj

∂xi

)
Assuming a polynomial form for the function 1.15 and applying the Cayley-Hamilton
theorem, Pope obtained a closure model for b in the form of n a series of finite tensor
polynomials:

1| Context of Study 13

b (S∗,R∗) =
∑
n

g(n)(λ∗
1, λ

∗
2, ...)T

∗(n) (1.16)

Here, g(n) are coefficient functions dependent on physical independent invariants λ∗
i ,

while T∗(n) are basis tensors dependent on S∗ and R∗. In the general case, there are five
invariants and ten tensors defined as:

λ∗
1 = tr

(
S∗2) , λ∗

2 = tr
(
R∗2) , λ∗

3 = tr
(
S∗2) , λ4 = tr

(
R∗2(S

)
, λ∗

5 = tr
(
R∗2S∗2)

(1.17)



T∗(1) = S∗ T∗(2) = S∗R∗ −R∗S∗

T∗(3) = S∗2 − λ∗
1

3
I3 T∗(4) = R∗2 − λ∗

2

3
I3

T∗(5) = R∗S∗2 − S∗2R∗ T∗(6) = R∗2S∗ + S∗R∗2 − 2λ∗
4

3
I3

T∗(7) = R∗S∗R∗2 −R∗2S∗R∗ T∗(8) = S∗R∗S∗2 − S∗2R∗S∗

T∗(9) = R∗2S∗2 + S∗2R∗2 − 2λ∗
5

3
I3 T∗(10) = RS∗2R∗2 −R∗2S∗2R

(1.18)

It is worth noting that Pope’s model can be seen as a generalized form of the Linear Eddy
Viscosity Model (LEVM) and the Quadratic Eddy Viscosity Model (QEVM) in specific
approximations. For example, in the first-order approximation, the coefficient function
g(1) can be identified with −Cµ.

1.5. Turbulent Plane Channel Analysis

From the Pope’s model it has been demonstrated that for flows where the mean velocity
and variation of mean quantities in a specific direction are zero, only two invariants and a
basis of three tensors are sufficient (0 ≤ n ≤ 2). The choice of the tensors T∗(n) depends
on the flow’s characteristics, such as the direction of invariance. For instance, if the flow
exhibits invariance and zero mean velocity along the x3 direction, the identity tensor I2 is
set to be equal to diag(1,1,0). Therefore, now b reads:

b = g(0)(λ∗
1, λ

∗
2)T

∗(0) + g(1)(λ∗
1, λ

∗
2)T

∗(1) + g(2)(λ∗
1, λ

∗
2)T

∗(2) (1.19)

with

14 1| Context of Study


T∗(0) =

1

2
I2 −

1

3
I3

T∗(1) = S∗

T∗(2) = S∗R∗ −R∗S∗

(1.20)

It should be observed that the invariants and basis tensors in this simplified case are the
same as those in the general model presented in 1.17 and 1.18, except for the choice of
T∗(0) instead of T∗(3). It can be easily demonstrated that T∗(3) = −λ∗

1T
∗(0) under the

restricted conditions of this simplified case.

Like the Navier-Stokes equations, the RANS equations and other closure models, Pope’s
model, presented in Equation 1.16, satisfies Galilean and rotational invariances. This
means that the model remains invariant under translation and rigid-body rotation, which
are fundamental properties of the fluid. However, it is important to consider that Pope’s
model may have limitations, especially in regions such as the near-wall region where
additional parameters are needed to represent b [18]. This is often referred to as a
multivalue problem [14] and will be addressed in subsequent discussions.

Figure 1.3: Sketch of the turbulent channel flow configuration.

The turbulent channel flow under consideration in this study refers to the flow between
two parallel plates separated at a distance of 2h. The streamwise direction is denoted as
x1, while the wall-normal and spanwise directions are denoted as x2 and x3, respectively.
Figure 1.3 provides a sketch of the flow configuration. Previous investigations in the
literature have extensively examined this configuration, and high fidelity simulation data
can be found [7, 10, 16]. Researchers commonly use this flow as an academic case to
validate newly developed models, including machine learning closure models proposed
in recent years [5, 20]. Hence, a thorough investigation of this flow configuration is
undertaken in the present work. Due to geometric invariance along the streamwise and

1| Context of Study 15

spanwise directions, the velocity statistics of this flow can be considered independent of x1

and x3 and therefore solely dependent on x2. Consequently, their derivatives with respect
to x1 and x3 are all zero. The mean continuity equation, as expressed in Equation 1.2a,
can be simplified to:

∂ū2

∂x2

= 0

This simplification implies that ū2 = 0, as ū2(x2 = 0, x2 = 2h) = 0 at the walls. Consid-
ering the physical invariance in the x3 direction, one has that ū3 = 0 . Assuming that the
system has evolved sufficiently for the flow to reach statistical stationarity, independent
of time t, the momentum equations in 1.2b can be further simplified as :



x1-direction: 0 = −1

ρ

∂p̄

∂x1

+ ν
∂2u1

∂x2
2

− ∂u′
1u

′
2

∂x2

x2-direction: 0 = −1

ρ

∂p̄

∂x2

− ∂u′
2u

′
2

∂x2

x3-direction: 0 = −∂u′
2u

′
3

∂x2

(1.21a)

(1.21b)

(1.21c)

It is worth noting that the mean pressure gradient
∂p

∂x1

is non-zero, unlike the velocity

statistics, as it serves as the driving force of the flow. From the above equations, it can
be observed that only closure is required to determine the streamwise velocity profile
ū1(x2). This explains the focus of most researchers on predicting the primary component
of the Reynolds stress anisotropy tensor in this flow configuration [5, 20, 25]. However,
in contrast to their approach, the present study aims to fully predict the Reynolds stress
anisotropy tensor. The inclusion of all non-zero statistics of the Reynolds stress would
be highly beneficial in practical Reynolds-Averaged Navier-Stokes (RANS) simulations,
particularly in the near-wall region and at the beginning of the calculation in terms of
convergence. Furthermore, as presented in Equation 1.21, the b22 component is necessary
to determine the pressure profile p̄(x1, x2).

To achieve this objective, the Pope’s model will be applied to the turbulent channel flow.
It should be noted that the characteristics in the x3 direction of this flow satisfy the
conditions of Pope’s simplified model presented in Equations 1.19 and 1.20. To express
the Reynolds stress anisotropy tensor, the normalized mean strain-rate, rotation-rate, and
Reynolds stress anisotropy tensors are provided as follows:

16 1| Context of Study

S∗ =
1

2

 0 α 0

α 0 0

0 0 0

 ,R∗ =
1

2

 0 α 0

−α 0 0

0 0 0

 and b =

 b11 b12 0

b12 b22 0

0 0 b13

 (1.22)

where α =
k

ε

∂ū1

∂x2

is a normalized mean velocity gradient, also the only nonzero mean

velocity statistics.

By substituting 1.22 into 1.17 and 1.20 one obtains:

λ∗
1 = tr

(
S∗2) = α2

2
, λ∗

2 = tr
(
R∗2) = −α2

2
(1.23)



T∗(0) =
1

2
I2 −

1

3
I3 =


1

6
0 0

0
1

6
0

0 0 −1

3



T∗(1) = S∗ =


0

α2

2
0

α2

2
0 0

0 0 0



T∗(2) = S∗R∗ −R∗S∗ =


α2

2
0 0

0 −α2

2
0

0 0 0



(1.24)

Since it is important to notice that λ∗
1 = −λ∗

2, it is enough to keep only λ∗
1 in the following.

From now on T∗(0) will be denoted as T∗(03) to keep track of the location of the zero in the
I2 tensor. Therefore, the expression of the Reynolds stress anisotropy tensor b presented
in Equation 1.19 can be rewritten as:

b = g(0)(λ∗
1)T

∗(0) + g(1)(λ∗
1)T

∗(1) + g(2)(λ∗
1)T

∗(2) =

= g(0)(α)T∗(0) + g(1)(α)T∗(1) + g(2)(α)T∗(2)
(1.25)

The first persistent ambiguity surrounding the application of Pope’s approach to the

1| Context of Study 17

turbulent channel flow has been addressed in the study of Cai et al. [3]. It has been
clarified that only one invariant and three tensors are necessary, and they solely depend
on parameter α. Specifically, within the domain of interest, it has been observed that
researchers attempted to apply a general model, as presented in equation 1.16, involving
five invariants and ten tensors, for predicting the Reynolds stress anisotropy tensor in the
turbulent channel flow using deep neural networks [5].

1.6. Generalized T∗(0)

In this section it is presented a summary of the work of Cai et al. [3] on the generalized
T∗(0) tensor, that is the theoretical basis of the model validation performed in this work.

Addressing another concern linked to the selection of the constant tensor T∗(0), an iden-
tification has been made. It has been discovered that two alternative permutations of I2
can yield T∗(0) configurations that also establish an integrity basis alongside T∗(1) and
T∗(2). This assertion is evidenced by the following relations:

T∗(01) = diag(−1/3, 1/6, 1/6) = −1

2
T∗(03) − 1

4λ∗
1

T∗(2)

and

T∗(02) = diag(1/6,−1/3, 1/6) = −1

2
T∗(03) +

1

4λ∗
1

T∗(2)

Substituting Equation 1.24 into Equation 1.25, we obtain the expression of the Reynolds
stress anisotropy tensor components as follows, the three systems of equations using
T∗(01),T∗(02) and T∗(03), respectively:



b11 = −1

3
g(0) − α2

2
g(2)

b12 =
α

2
g(1)

b22 =
1

6
g(0) +

α2

2
g(2)

b33 =
1

6
g(0)

(1.26)

or

18 1| Context of Study



b11 =
1

6
g(0) − α2

2
g(2)

b12 =
α

2
g(1)

b22 = −1

3
g(0) +

α2

2
g(2)

b33 =
1

6
g(0)

(1.27)

or



b11 =
1

6
g(0) − α2

2
g(2)

b12 =
α

2
g(1)

b22 =
1

6
g(0) +

α2

2
g(2)

b33 = −1

3
g(0)

(1.28)

An arising question then concerns an optimal choice of T∗(0), among these three alterna-
tives, in the context of statistical learning. One may observe from the bij values obtained
from the DNS data [7, 10, 16] that b12 ≈ 0 and b22 ≈ b33 ≈ −b11/2 at the channel center.

This holds for various Reτ =
uτh

ν
values, where uτ =

√
ν
dū1

dx2

. It turns out that only

T∗(01) is proportional to the Reynolds stress anisotropy tensor at the channel center, and
physically makes sense by including it in the basis tensors. To this end, a new generalized
T∗(0) has been proposed by Cai et al..

Indeed, to circumvent an arbitrary selection of one among the three potential T∗(0) con-
figurations, a novel formulation for T∗(0) is proposed. This new expression generalizes
T∗(0) as a linear combination of each of the alternative forms, denoted as T

∗(0)
gen :

T∗(0)
gen = g01T

∗(01) + g02T
∗(02) + g03T

∗(03) (1.29)

where g01, g02 and g03 are coefficient functions depending on α, instead of some fixed con-
stants, in order to make the generalization as broad as possible under Pope’s framework.
A more concise formulation of Equation 1.29 can be obtained as:

1| Context of Study 19

T∗(0)
gen =


−1

3
g01 +

1

6
g02 +

1

6
g03 0 0

0
1

6
g01 −

1

3
g02 +

1

6
g03 0

0 0
1

6
g01 +

1

6
g02 −

1

3
g03


=

 f01 0 0

0 f02 0

0 0 f03


(1.30)

where f01, f02 and f03 are functions of α as g01, g02 and g03 are, with f01 + f02 + f03 = 0 to
preserve the zero-trace of the Reynolds stress anisotropy tensor.

It’s interesting to mention that the information about α in T∗(2) is actually contained in
T

∗(0)
gen . Because of this, one can get rid of T∗(2), and only needs to consider T∗(0)

gen and T∗(1)

for the tensor basis. In the scenario of turbulent channel flow, the modified Equation 1.25
becomes:

b = T∗(0)
gen (α) + g(1)(α)T∗(1) (1.31)

which can be developed into the following system of equations, giving the expression of
T

∗(0)
gen shown in Equation 1.30:



b11 = f01

b12 =
α

2
g(1)

b22 = f02

b33 = − (f01 + f02)

(1.32)

Consequently, four distinct representations of the Reynolds stress anisotropy tensor have
been established: Equations 1.26, 1.27, 1.28, and 1.32. These formulations utilize either
one of the three constant T∗(0) tensors or the newly introduced T

∗(0)
gen . Subsequently,

the intention is to study each of these representations of Pope’s model, examining the
potential advantages of T∗(0)

gen in the model validation.

21

2| Neural Networks in Turbulence

Modeling

2.1. Introduction to Machine Learning approaches

for turbulence modeling

In recent years, there has been a growing interest in the integration of machine learn-
ing techniques to enhance the development of Reynolds stress closures in fluid dynam-
ics. Notably, Tracey et al. [21] employed kernel regression to construct models for the
eigenvalues of Reynolds stress anisotropy. However, this method exhibited limitations in
terms of generalization to new flow scenarios and scalability with extensive training data.
Subsequently, Tracey, Duraisamy & Alonso [22] utilized neural networks featuring a soli-
tary hidden layer to represent source terms originating from the Spalart-Allmaras RANS
model. This application of neural networks demonstrated their proficiency in accurately
reconstructing these source terms, thereby showing their potential utility in turbulence
modeling. Another significant contribution was made by Zhang & Duraisamy [26], who
employed neural networks to predict correction factors associated with turbulent produc-
tion terms, influencing the magnitude, albeit not the anisotropy, of projected Reynolds
stress tensors.

While certain attempts have been made to incorporate machine learning approaches in
turbulence modeling, deep learning, specifically employing deep neural networks, emerges
as an appealing alternative for Reynolds stress modeling. Deep neural networks constitute
a subset of machine learning techniques wherein input features undergo transformation
through multiple layers of nonlinear interactions. Despite their success in intricate prob-
lem domains, the integration of deep learning methodologies into turbulence modeling has
been relatively limited. Previous efforts, such as those by Tracey et al. [21] and Zhang
& Duraisamy [26], employed neural networks featuring only one or two hidden layers.
Moreover, Milano & Koumoutsakos [15] leveraged neural networks with multiple hidden
layers to replicate near-wall channel flows, although these neural networks were not em-

22 2| Neural Networks in Turbulence Modeling

ployed as forward models for predicting turbulent flows. This study aims to establish that
leveraging deep neural networks can yield enhanced Reynolds stress closures.

A salient advantage of neural networks lies in their architectural flexibility. Unlike ran-
dom forests, which face challenges in preserving Galilean invariance for tensor quantities,
neural networks can be easily adapted to enforce such invariance. Ling, Jones & Tem-
pleton [12] demonstrated the potential of neural networks in predicting Reynolds stress
anisotropy eigenvalues by incorporating rotationally invariant input features. Their find-
ings underscored the paramount significance of embedding invariance properties into the
machine learning framework to achieve heightened predictive performance.

In the following subsections, the architecture of the most widely used Neural Networks
in the domain of Turbulence modeling are presented. Subsequently, the neural networks
employed for the validation subjects within this study will be introduced. Specifically,
the neural networks for the low-Reynolds model will be elaborated upon in Section 2.2.

2.1.1. Multi-Layer Perceptron

The Multi-Layer Perceptron (MLP) represents the fundamental building block of the
neural networks. Specifically, it embodies a densely interconnected architecture designed
for feed-forward operations. The term "feed-forward" signifies the absence of feedback
loops among the nodes, ensuring a unidirectional flow of information. Furthermore, the
label "densely connected" implies that every node within a given layer maintains direct
links with all nodes in the subsequent layer. As illustrated in Figure 2.1, an MLP assumes
this structural configuration.

For instance, Fang et al. [5] employed the Fully-Connected Feed-Forward (FCFF) neural
network, also known as Multi-Layer Perceptron (MLP), with five hidden layers and 50
nodes per layer. They used the normalized velocity gradient as a basis input to predict bij
and attempted to incorporate more physical information into the model. They achieved
the best performance by embedding a constraint function depending on y+ in the model
to enforce the no-slip boundary condition at the channel wall, and the Reτ in the input
feature, which also outperformed the TBNN.

2| Neural Networks in Turbulence Modeling 23

Figure 2.1: MLP architecture [13].

2.1.2. Convolutional Neural Network

Sáez de Ocáriz Borde et al. [20] designed a Convolutional Neural Network (CNN) archi-
tecture with five one-dimensional convolution layers to better capture non-local effects for
the prediction of bij. Unlike earlier models which gave one-point predictions, the newly
proposed CNN takes an array containing all the normalized velocity gradients as inputs
and predicts an array of bij at all vertical locations. The same boundary condition en-
forcement and friction Reynolds number incorporation techniques proposed by Fang et
al. [5] were used. This model yielded even better results when evaluating the R2 score.

2.1.3. Tensor Basis Neural Networks

The Tensor Basis Neural Network (TBNN), designed by Ling et al. [13], is based on Pope’s
general model. This innovative architecture, as illustrated in Figure 2.2, incorporates
two input layers: one for the invariants λi, λj and another one for the tensors T∗(n) for
n = 1, ..., 10. The network consists of eight hidden layers, each with 30 nodes, which
are used to learn the ten coefficient functions gn in the final hidden layer. The output
of this layer is then combined with the basis tensors input layer through element-wise
multiplications to predict the Reynolds stress anisotropy tensor. The TBNN architecture
ensures Galilean invariance and rotational invariance, as Pope’s model does.

24 2| Neural Networks in Turbulence Modeling

Figure 2.2: TBNN architecture.

Ling et al. [13] trained, validated, and tested the TBNN on a high-fidelity database
comprising nine diverse flow cases. These ranged from duct flows and channel flows
to a jet in a cross-flow for training, and from a wall-mounted cube in a cross-flow for
validation to flow over a wavy wall for testing. Despite the diversity of the flow cases, the
TBNN outperformed traditional RANS models and a generic neural network that did not
incorporate invariance properties, both in terms of a priori predictions on the Reynolds
stress anisotropy tensor and a posteriori results on mean velocity.

Inspired by the work of Ling et al., several studies have been conducted to further explore
and improve upon the TBNN. Zhang et al. [25] simplified the TBNN for the case of
turbulent channel flow, focusing on predicting only one component of the Reynolds stress
anisotropy tensor, b12. They used a smaller network structure with four hidden layers and
20 nodes per layer to avoid overfitting. They introduced regularization and focused on
variable selection, embedding the dimensionless wall distance y+ =

yuτ

ν
in the input for

better predictions in the near-wall region, and using only two invariants and three tensors
considering the 2D nature of turbulent channel flow in a RANS modeling framework.
These models were trained with Moser et al.’s DNS database [16] for channel flows at four
turbulent Reynolds numbers, with the data set at Reτ = 2000 reserved for testing. These
simplified and adapted TBNN models outperformed the original model in predicting bij.

2.2. Training of low-Reynolds number model Neural

Network

In this section are presented the data and architecture of the neural networks trained by
Cai et al. [3], which are the object of a posteriori validation in Section 5.3.

Despite these successes in predicting the Reynolds stress anisotropy tensor in the case
of turbulent channel flow, there is still a need for a more profound physical explanation

2| Neural Networks in Turbulence Modeling 25

regarding the selection of input features. In the current era of physics-based machine
learning, it is crucial to understand not only why some models fail, but also why they
succeed. To this end, Cai et al. extended previous studies on simpler MLP architectures
with different combinations of input features used in the past, to understand the role of
each feature in the neural networks.

Having previously clarified some persisting ambiguities concerning the application of
Pope’s model for turbulent channel flow in Section 1.6, Cai et al. examine the per-
formance of the TBNN model for this specific case and propose the augmented TBNN
architectures with additional input features other than Pope’s representation.

Unlike previous studies on turbulent channel flow focusing only on b12 component, the aim
is to provide predictions for all terms with nonzero statistics, that is b11, b12, b22 and b33.
Furthermore, models in previous studies were only evaluated at one turbulent Reynolds
number Reτ at a time, either in an interpolation case, which means that the tested Reτ

is within the range of the learning database, or on the contrary in an extrapolation case.
In the present study, thanks to newly available DNS databases [7, 10], Cai et al. assess
both interpolating and extrapolating predictability of the neural networks simultaneously.
This step is challenging but critical since the prediction model should be accurate in both
scenarios for practical use.

2.2.1. Data Set

The dataset utilized in their study comprises DNS data obtained at seven distinct fric-
tional Reynolds numbers, namely Reτ = [550, 1,000, 2,000, 4,000, 5,200, 8,000, 10,000],
pertaining to turbulent channel flow [7, 10, 16]. Among these data corresponding to Reτ =
[550, 10,000] were exclusively reserved for the test set, while the data for Reτ = 5,200 were
randomly partitioned into 80% for test data and 20% for validation data. The remaining
dataset was then randomly divided, allocating 80% for training data and reserving 20%
for validation data. The test set was used to assess how well our neural network models
can make predictions. This assessment covered scenarios where the models had to es-
timate values within known ranges (interpolation) and also predict values outside those
ranges (extrapolation). An overview of the dataset sizes is provided in Table 2.1.

26 2| Neural Networks in Turbulence Modeling

550 1000 2000 4000 5200 8000 10000

Data size 191 255 383 1023 767 2047 1050
Reference [16] [16] [16] [10] [16] [10] [7]

Table 2.1: Data size at each friction Reynolds number (Reτ).

A visual representation of the data splitting process is depicted in Figure 2.3. The Neural
Network is designed with three specific input features: firstly, the normalized parameter α,
which according to Pope’s model applied to turbulent channel flow, serves as the singular
parameter on which bij relies. Additionally, the dimensionless wall distance y+ and the
turbulent Reynolds number Reτ constitute the other two input parameters. The reason
behind the selection of these features is discussed in Subsection 2.2.3. The targets for the
learning process encompass all non-zero elements of the Reynolds stress anisotropy tensor
b, namely b11, b12, b22, and b33.

Figure 2.3: Diagram of data split and test process performed by Cai et al. [3]. The size
of each bubble is proportional to the data size.

2| Neural Networks in Turbulence Modeling 27

2.2.2. Pre-processing

Data quality significantly influences the performance of deep learning frameworks. During
training, neural networks tend to assign greater importance to inputs with larger value
ranges, particularly when significant differences in scales exist. This situation is less
than ideal, as smaller inputs might also hold importance for predictions. As depicted in
Figure 2.4a, two scale-related issues become apparent: firstly, the range of α is notably
smaller compared to that of y+ and Reτ ; secondly, the distribution and range of y+ varies
across different Reτ values. This variation stems from the definition of y+, which is given
by:

Reτ = max(y+)

In order to tackle these concerns, it is necessary to pre-process the input data before
providing it to the model. This increases the robustness of the neural network training.
A widely used normalization method known as "max normalization" is utilized for this
purpose. This technique involves dividing a feature by its maximum value. While this
normalization is directly applied to α and Reτ , a log-transformation is initially applied to
y+ to mitigate the impact of the long tail distribution. Consequently, the pre-processed
input features, denoted as α̃, ỹ+, and R̃eτ , are expressed as follows:

α̃ =
α

max(α)

ỹ+ =
log (y+)

max (log (y+))

R̃eτ =
Reτ

max (Reτ)

where max(x) refers to the maximum value of x in the training set.

The distributions of the pre-processed input features are presented in Figure 2.4b, show-
casing effective resolution of the earlier issues, especially since the three input features
are rescaled to comparable ranges.

28 2| Neural Networks in Turbulence Modeling

(a) Before pre-processing

(b) After pre-processing

Figure 2.4: Distribution of the input features before and after preprocessing, for various
DNS experiments with different Reτ [3].

On the contrary, it is generally preferable to normalize each regression target of a neural
network separately, in order to prevent the dominance of any single target within the loss
function. However, Cai et al. have chosen not to adopt this approach, with the intention
of preserving the zero trace of the Reynolds stress tensor. Instead, they perform a global
reduction based on the Frobenius norm of bij:

σb =

√√√√ 1

m

[
3∑

k=1

b2kk + b212

]

b̃ =
b

σb

(2.1)

where m is the number of training samples.

2| Neural Networks in Turbulence Modeling 29

2.2.3. Input parameters choice

The anisotropy components bij, obtained from DNS, are shown plotted against individual
features post pre-processing in Figure 2.5. This representation reveals the limitations of
Pope’s model since it asserts that, in the context of turbulent channel flow, bij solely
depends on α. However, a closer examination of the four sub-figures in the first row
of Figure 2.5 reveals the presence of a multi-value phenomenon: bij does not exhibit
a singular dependence on α. Instead, for a given α value, multiple bij values can arise.
Furthermore, the four sub-figures in the second row of Figure 2.5 illustrate that bij exhibits
some sensitivity to the turbulent Reynolds number, particularly when y+ approaches its
upper threshold, where this nuance, not accounted for in Pope’s model, becomes evident.

As a result, to overcome these difficulties, it is necessary to include other representative
input features into the deep neural networks in order to forecast bij accurately. Cai et al.
rely on y+ and Reτ . Firstly, one can see from Figure 2.5 that bij are functions of y+ at
one given Reτ ; secondly, Reτ was included as a classifier of data originating from flows
with different turbulent levels.

Figure 2.5: Visualization of b̃ij as a function of α̃ and ỹ+, for various DNS experiments
with different Reτ [3].

2.2.4. Neural networks

Cai et al. propose two different architectures of neural networks to fully predict the
Reynolds stress anisotropy tensor for turbulent channel flow. In this work it is presented
only one of these two, since the other one is not object of validation.

30 2| Neural Networks in Turbulence Modeling

It is an augmented TBNN model specially designed for the channel flow configuration
with only one invariant and three tensors, as previously clarified in Section 1.6. Two
slightly different models are proposed: the first one using the three alternative constant
T∗(0) and the other using the newly proposed generalized T

∗(0)
gen . In particular the Neural

Networks called Case 5, Case 6 and Case 7 refer respectively to the choice of T∗(01),
T∗(02), T∗(03) as T∗(0) tensor, while for the Case 8 Neural Network, T

∗(0)
gen is selected.

As two new features are included into the augmented TBNN model apart from α, the
expression of the Reynolds stress anisotropy tensor shown in Equations 1.25 and 1.31 can
be reformulated as:

b = g(0)
(
α, y+,Reτ

)
T∗(0) + g(1)

(
α, y+,Reτ

)
T∗(1) + g(2)

(
α, y+,Reτ

)
T∗(2)

for the first model, and

b = T∗(0)
gen

(
α, y+,Reτ

)
+ g(1)

(
α, y+,Reτ

)
T∗(1)

for the generalized one.

To form the Neural Network, Cai et al. use three hidden layers with 10 nodes per layer,
which are activated by hyperbolic tangent function (tanh). The output layer contains
three nodes for the three corresponding coefficient functions. Except for the output node
of g(1) which is activated by the Softplus Linear Unit (SLU) to assure that the predicted
g(1) is negative (as explained in Section 1.4), the others are linearly activated by default.
Illustrations of these two augmented TBNN models can be seen in Figures 2.6a and 2.6b,
respectively.

The model is implemented by calling an open-source library, named TensorFlow, in the
language of Python. The loss function is defined as the Mean Squared Error (MSE) based
on the Reynolds stress anisotropy tensor components:

MSE =
1

4m

m∑
i=1

[
3∑

k=1

(
bkk − b̂kk

)2
+
(
b12 − b̂12

)2]

where the predicted outputs are denoted with a hat.

As evaluation metrics, the coefficient of determination R2 is used:

2| Neural Networks in Turbulence Modeling 31

R2 = 1−
∑

(yi − ŷi)
2∑(

yi − Ȳ
)2

where ŷi is the predicted ith value, ȳi is the actual ith value and Ȳ is the mean of the
true values.

A weighted R2 error is defined to evaluate the global predictive performance:

R2
test =

∑
mtest ,i ×R2

test ,i∑
mtest ,i

where mtest ,i and R2
test ,i are respectively the size and the R2 error of the ith test set.

A summary of hyperparameter setting is shown in Table 2.2.

Hyperparameter Value

Number of hidden layers 3

Number of nodes per hidden
layer

10

Loss function MSE

Optimization algorithm Adam

Maximum learning rate 0.0001

Batch size Truncated normal distribution

Weight initialization function 64

Table 2.2: Hyperparameter setting.

32 2| Neural Networks in Turbulence Modeling

(a) Cases 5,6,7

(b) Case 8

Figure 2.6: Diagrams of the neural network architectures used in the work [3].

33

3| Turbulence Models

This brief chapter aims to present from a theoretical point of view the three turbulence
models object of the RANS simulations showcased in Chapter 5. In particular, the explicit
treatment of the Reynolds tensor will be discussed in Section 3.1, while the two machine-
learning based turbulence models are presented in Section 3.2: the High-Reynolds number
neuronal model in Subsection 3.2.1 and the Low-Reynolds number neuronal model in
Subsection 3.2.2. It has to be remarked that the two machine-learning based models work
with an implicit treatment of the Reynolds tensor.

3.1. Explicit Treatment of the Reynolds tensor

The first model object of validation consists in the explicit treatment of the Reyolds
tensor. The explicit treatment does not provide any model to estimate the value of the
Reynolds tensor Rij = u′

iu
′
j. Instead, the values of u′

iu
′
j are obtained directly from the

DNS simulations [7, 10, 16]. Here are reported the equations resolved in this problem:


∂ūi

∂xi

= 0

∂ūi

∂t
+ ūj

∂ūi

∂xj

= −1

ρ

∂p̄

∂xi

+
∂

∂xj

[
ν

(
∂ūi

∂xj

+
∂ūj

∂xi

)]
+ S

(3.1a)

(3.1b)

One can observe that the Reynolds tensor is substituted by a source term, denoted as S. In

order to solve the RANS problem, Equation 1.2, it has to be ensured that S = − ∂

∂xj

u′
iu

′
j .

To do so, the terms of u′
iu

′
j are firstly derived and summed on the j component as provided

for by the Equation 3.1b. Afterwards, the three-components vector obtained in the pre-
vious step is injected in the solver as source term. One can observe that Equation 3.1b is
in fact three distinct equation since i is intended to be equal to x, y and z. Therefore, one
has that the first component of the source vector is added to the Equation 3.1b relative
to the x coordinate, the second one to the equation relative to the y coordinate and the
third one to the z one.

34 3| Turbulence Models

3.2. Implicit Treatment of the Reynolds tensor

The implicit treatment of the Reynolds tensor is based on the following definition of the
Reynolds stress anisotropy tensor:

b = −νt
k
S+ bNL

where νt is the turbulent viscosity and S the strain-rate tensor. One can observe that the
non-linear term bNL appears which was not there in the models based on the Boussinesq
assumption, which is indeed a linear approximation. In the two models presented in this
section, this term is computed by means of a neural network.

3.2.1. A High-Reynolds number neuronal model

The first implicit model investigated in this section is the Neuronal k− ε model proposed
by Angeli et al. [1]. This model is based on the Standard k − ε model discussed in
Subsection 1.3.2. Compared to the standard model, certain modifications are set up as a
result of incorporating the Neural Network integration. In particular, this modifications
concern not only the momentum equation (Equation 1.2b), but also the transport equa-
tions for turbulent kinetic energy k, Equation 1.10a and dissipation rate of turbulence ε,
Equation 1.10b, due to the presence of turbulent viscosity and turbulent kinetic energy
production. The Neuronal k − ε model read as follows:



∂ūi

∂xi

= 0

∂ūi

∂t
+ ūj

∂ūi

∂xj

= −1

ρ

∂p̄

∂xi

+
∂

∂xj

[
(ν + ν̃t)

(
∂ūi

∂xj

+
∂ūj

∂xi

)
− 2kbNL

ij

]
∂k

∂t
+ ūi

∂k

∂xi

=
∂

∂xi

[(
ν +

ν̃t
σk

)
∂k

∂xi

]
+ P̃ − ε

∂ε

∂t
+ ūi

∂ε

∂xi

=
∂

∂xi

[(
ν +

ν̃t
σε

)
∂ε

∂xi

+
ε

k

(
Cε1P̃ − Cε2ε

)]
.

ν̃t = C̃µ
k2

ε

(3.2a)

(3.2b)

(3.2c)

(3.2d)

(3.2e)

The terms C̃µ, ν̃t and P̃ are expressed with the tilde to highlight the difference with
respect to the standard model, while bNL

ij is not expressed with a tilde since it is not
found in the standard model. In Table 3.1 these modifications are displayed:

3| Turbulence Models 35

bNL
ij Cµ νt P

Standard k − ε 0 0.09 0.09k2/ε 2νtSijSij

Neuronal k − ε
∑
k ̸=1

gkT
∗(k)
ij −g1 −g1k

2/ε −2kbijSij

Table 3.1: k − ε Models: Differences between Standard and Neuronal.

The values of the empirical constants of the standard k − ε model are maintained, they
are indeed: σk = 1.00, σε = 1.30, Cε1 = 1.44 and Cε2 = 1.92

3.2.2. A low-Reynolds number neuronal model

In this thesis, it is proposed a low-Reynolds number k − ε model. The requirement for a
low Reynolds number neural model arises from the intention to fully leverage the neural
network trained by Cai et al., presented in Section2.2, which is capable of predicting the
Reynolds stress anisotropy tensor, b, across the entire domain, including the near wall
region. The rationale behind the definition of the model is to adapt the neuronal k − ε

model introduced by Angeli et al., introduced in Subsection 3.2.1, to the Launder-Sharma
low-Reynolds k − ε model, discussed in Subsection 1.3.3.



∂ūi

∂xi

= 0

∂ūi

∂t
+ ūj

∂ūi

∂xj

= −1

ρ

∂p̄

∂xi

+
∂

∂xj

[
(ν + ν̃t)

(
∂ūi

∂xj

+
∂ūj

∂xi

)
− 2kbNL

ij

]
∂k

∂t
+ ūi

∂k

∂xi

=
∂

∂xi

[(
ν +

ν̃t
σk

)
∂k

∂xi

]
+ P̃ − ε−D

∂ε

∂t
+ ūi

∂ε

∂xi

=
∂

∂xi

[(
ν +

ν̃t
σε

)
∂ε

∂xi

+
ε

k

(
Cε1f1P̃ − Cε2f2ε

)]
+ Ẽ

ν̃t = C̃µ
k2

ε

(3.3a)

(3.3b)

(3.3c)

(3.3d)

(3.3e)

As in the previous neuronal model, the terms C̃µ, ν̃t and P̃ are expressed with the tilde to
highlight the difference with respect to the standard model, while bNL

ij is not expressed with
a tilde since it is not found in the standard model. Table 3.2 summarizes the differences
between the classical low-Reynolds models and the model proposed above.

36 3| Turbulence Models

bNL
ij Cµ νt P

Low-Reynolds
Classical Models

0 0.09fµ 0.09fµk
2/ε 2νtSijSij

Low-Reynolds
Neuronal Model

∑
k ̸=1

gkT
∗(k)
ij −g1 −g1k

2/ε −2kbijSij

Table 3.2: Low-Reynolds k − ε Models: Differences between Classical and Neuronal.

Among the possible coefficients sets of the Low-Reynolds k − ε models, the one of Jones
and Launder has been chosen to perform this validation. The parameters σk, σε, D,
Cε1, Cε2, f1, f2 and Ret are taken as in the Launder-Sharma model; E and νt keep the
same formulas of the Launder-Sharma model but with their terms affected by the neural
network; Cµ and bNL are directly obtained from the neural network while fµ is excluded
from the model since the adaptation of the value of Cµ close to the wall is no more
needed thanks to the neural network. The Equations 3.3 and the Table 3.3 present the
Low-Reynolds number neuronal k − ε model used to perform the validation.

C̃µ -g1
σk 1.0

σε 1.3

D 2 ν

(
∂
√
k

∂y

)2

Ẽ 2 ν ν̃t

(
∂2u

∂y2

)2

Cε1 1.44

Cε2 1.92

fµ -

f1 1.0

f2 1− 0.3 exp (−Re2t)

Ret k2/νε

Table 3.3: Low-Reynolds number Neuronal k − ε Model Parameters Selection

In summary, the distinctions between this model and the High-Reynolds neuronal k − ε

model discussed in Subsection 3.2.1 can be synthetically described as follows. The present
model incorporates additional terms to adjust values in the vicinity of the wall, specifically:

3| Turbulence Models 37

f1, which is generally set to 1 in most widely-used models and thus does not significantly
influence the results; f2, D and Ẽ. However, it is important to note that fµ has no bearing
in the low-Reynolds neuronal model, as Cµ is determined through the utilization of the
Neural Network.

This model employs two distinct neural networks. To perform the subsequent validation
using the low-Reynolds model, the neural networks presenting the most promising results
in the a priori validation by Cai et al. [3] were selected. These networks are denoted as
follows, maintaining the notation from Cai et al. discussed in Section 2.2: Case5 which
corresponds to the selection T∗(0) = T∗(01), and Case8 corresponding to T∗(0) = T

∗(0)
gen .

39

4| TRUST/TrioCFD code

integration

4.1. TRUST/TrioCFD solver introduction

TRUST is an open-source software developed by the Thermohydraulics and Fluid Me-
chanics Department (STMF) of the Nuclear Energy Division at CEA. It is specifically
designed for conducting fluid dynamics simulations on Linux environment. The genesis of
this project dates back to 1994 when Trio_U was launched, the software kept this name
until 2015 when it was split in TRUST e TrioCFD. Over time, TRUST has undergone
extensive development, incorporating diverse numerical schemes, a parallel version, and
turbulence models. It serves as the foundational framework for TrioCFD. The latter is
used to conduct simulations for incompressible or quasi-compressible single-phase flows,
as well as local-scale two-phase flows. Primarily tailored for application in the nuclear
industry, TRUST plays a vital role in simulating flows within nuclear power plant cores.

Implemented in C++, TRUST follows an object-oriented paradigm that ensures inheri-
tance and polymorphism relationships. The code consists of about 1600 classes, organized
based on the nature of the problems considered or the type of discretization employed. Ad-
ditionally, TRUST supports parallel processing on distributed memory systems through
the use of MPI.

TRUST offers multiple spatial discretization methods, namely:

• Finite Differences Volumes (VDF) method

• Finite Elements Volumes (VEF) method

• PolyMAC method (arbitrary polygonal mesh)

The VDF method employs finite differences to approximate partial derivatives and as-
sumes that the mesh conforms to a Cartesian grid. On the other hand, the VEF method
relies on a variational approximation of the problem.

40 4| TRUST/TrioCFD code integration

For temporal discretization, various schemes are available, including explicit, semi-implicit,
and implicit schemes. The code also accommodates different boundary conditions, such
as periodic boundary conditions and Neumann conditions. To solve the differential sys-
tems resulting from the discretization of the Navier-Stokes equations, TRUST provides
iterative linear solvers (Conjugate Gradient, GMRES, etc.) as well as integrated solvers
from the PETSc library.

To initiate computations, the user must create a data file defining the mesh, spatial
discretization, temporal discretization, the nature of the problem and the post-processing
requirements.

4.2. Plane Channel Problem

In this section it is discussed the problem setting of the plane channel from the point of
view of the domain, its discretization and the RANS model employed to solve the problem.

4.2.1. Domain Discretization and Boundary Conditions

The numerical domain used to represent the plane channel in this work is the cube.
Indeed, by properly assign to every boundary a condition of periodicity, symmetry or wall
one can obtain a numerical approximation of the infinite plane channel as represented in
Figure 1.3. In particular, the conditions imposed to every face of the cube have to be the
followings:

• Faces perpendicular to the x-axis: Periodicity, which means that the out-going flux
on one face is imposed as in-going flux on the other face, in order to guarantee the
infinite length of the channel along the x direction.

• Faces perpendicular to the y-axis: Wall conditions for the bottom face in order to
impose the contact with the bottom wall of the channel; Symmetry conditions for
the upper face in order to avoid replicating the domain in the upper half of the
channel since it is identical to the lower one.

• Faces perpendicular to the z-axis: Periodicity in order to guarantee the infinite
length of the channel along the z direction

4| TRUST/TrioCFD code integration 41

(a) DNS mesh. (b) High-Reynolds model mesh.

(c) Low-Reynolds model mesh.

Figure 4.1: Meshes of the simulations performed in this work for Reτ = 180, displayed
thanks to the software VISIT.

In the case of explicit treatment of the Reynolds tensor, the domain refinement used
corresponds to one used in the DNS simulations [7, 10, 16]. In Table 4.1 are presented
the mesh refinements given by the DNS simulations for every problem studied in this
work, i.e. every Reτ . The choice to keep the same refinements is due to the fact that
the values of the Reynolds tensor obtained from the DNS are given according to the DNS
mesh presented in Figure 4.1a. Therefore, the same mesh has been kept, in order to avoid
a possible source of error given by the interpolation of the values.

42 4| TRUST/TrioCFD code integration

Reτ Nx ×Ny ×Nz

180 4× 97× 4

550 4× 194× 4

1000 4× 257× 4

2000 4× 385× 4

4000 4× 1024× 4

5200 4× 767× 4

8000 4× 2047× 4

10000 4× 1051× 4

Table 4.1: DNS mesh: Number of nodes along the three directions for every Reτ .

For what concerns the high-Reynolds models, that are standard k−ε model and neuronal
k− ε model, the mesh refinement has to be coherent with the presence of a wall function
and therefore must respect the condition y+ ≥ 30 in the first cell to ensure that the first
element includes the viscous sublayer as well as the buffer layer, as explained in Section 1.3.
The mesh used for the high-Reynolds models is the one presented in Figure 4.1b. On the
other hand, the low-Reynolds models, that is Launder-Sharma low-Reynolds k− ε model
and low-Reynolds neuronal k−ε model, are forced to have a highly refined mesh, especially
in the vicinity of the wall so that the condition y+ ≤ 1 in the first element is respected.
For this reason this mesh looks similar to the one of the DNS simulations but in most of
the treated cases the number of elements is however significantly smaller, contributing to
a drop of the computational cost of the simulations. The mesh used for the low-Reynolds
models is the one presented in Figure 4.1c.

4.2.2. Problem Definition

In the case of the explicit treatment of the Reynolds tensor, the data file of the prob-
lem is presented in Figure 4.2. In this file, the problem is defined with the keyword
Navier_Stokes_Standard and not Navier_Stokes_Turbulent. This means that the
equation solved in this problem are the RANS equations, 1.2, without the contribution of
the Reynolds tensor Rij = u′

iu
′
j, because its value is equal to zero in case of absence of tur-

bulence. Since every problem that has been studied presents turbulence, the contribution
of this element of the equation is substituted by the source term source_DNS_180.dat

that contains the information of the Reynolds tensor as explained in Section 3.1.

4| TRUST/TrioCFD code integration 43

Navier_Stokes_standard
{

Projection_initiale 0
Solveur_pression PETSC Cholesky { }
Convection { quick }
Diffusion { }
Conditions_initiales { vitesse champ_fonc_xyz dom 3 3/2*y*(2-y) 0 0 }
Conditions_limites {

periox periodique
perioz periodique
wall paroi_fixe
sym symetrie
}

Sources {
canal_perio { bord periox debit_impose 1 } ,
source_qdm champ_som_lu_VDF dom 3 1e-6 source_DNS_180.dat
}

}

Figure 4.2: Explicit treatment of the Reynolds tensor: Data file of the problem definition.

In Figure 4.3 the data file of the Standard k− ε model is shown. One can notice that the
keyword of this problem is "Navier_Stokes_turbulent", this means that the contribu-
tion of the Reynolds tensor is taken into account. For this purpose a turbulence model is
required; in particular the k − ε one is used.

In Figure 4.4 it is presented the data file of the low-Reynolds neuronal k − ε model. One
can remark two differences with respect to the data file of the Standard k − ε model,
Figure 4.3: on one side the model has to include the neural network; on the other side
some features have to be adapted to the low-Reynolds model.

The changes due to the neural network are highlighted with the green color. In particular,
the two keywords tenseur_Reynolds_externe have two different purposes:

• In the diffusion term the keyword is needed to compute the terms bNL
ij , Cµ, νt and

P as in Table 3.1, and not as the Standard case.

• In the "sources" term it aims to provide the name of the neural network used in the
problem, in this case it is Cas8.

The modifications due to the Low-Reynolds model are highlighted with the red color. In
particular:

• with_nu is set equal to "yes" in order to consider the contribution of the viscosity ν

that plays a pivotal role in the near wall region. The default setting for this value is
"no" because when the distance from the wall is significant, the value of ν becomes
negligible compared to νt. Consequently, in cases where a wall function is applied,
the contribution of ν is not significant.

44 4| TRUST/TrioCFD code integration

Navier_Stokes_turbulent
{

Solveur_pression PETSC Cholesky { }
Convection { quick }
Diffusion { }
Conditions_initiales { vitesse champ_fonc_xyz dom 3 3/2*y*(2-y) 0 0 }
Conditions_limites {

periox periodique
perioz periodique
wall paroi_fixe
sym symetrie
}

Modele_turbulence k_epsilon
{
transport_k_epsilon
{

convection { amont }
diffusion { }
conditions_initiales { k_eps champ_uniforme 2 0.1 0.1 }

conditions_limites {
periox periodique
perioz periodique
wall paroi
sym symetrie
}

sources { source_transport_k_eps { C1_eps 1.44 C2_eps 1.92 } }
}

turbulence_paroi loi_standard_hydr
}

Sources { canal_perio { bord periox debit_impose 1 } ,
canal_perio { bord perioz debit_impose 0 } }

}

Figure 4.3: Standard k − ε model: Data file of the problem definition.

• Modele_Fonc_Bas_Reynolds is the keyword to set a low-Reynolds number model
for the resolution of the problem, in this case the one proposed by Launder and
Sharma is chosen, as discussed in Subsection 1.3.3.

• The keyword turbulence_paroi is responsible for the choice of the wall function.
Since in the low-Reynolds number models there is no wall function, this keyword is
set to be "negligible".

In the case of a neuronal model, that is Neuronal k−ε model and low-Reynolds Neuronal
k − ε model, the keyword "tenseur_Reynolds_externe" it is added as one can see in
Figure 4.4. Thanks to this keyword, the values of bNL, Cµ and P as in Table 3.1 and not
as the Standard case. One can The name of the neural network used in the model is CP3
for the Neuronal k−ε model while varies from Cas5 to Cas8 included for the low-Reynolds
Neuronal k − ε model.

4| TRUST/TrioCFD code integration 45

Navier_Stokes_turbulent
{

Solveur_pression PETSC Cholesky { }
Convection { quick }
Diffusion { tenseur_Reynolds_externe }
Conditions_initiales { vitesse champ_fonc_xyz dom 3 3/2*y*(2-y) 0 0 }
Conditions_limites {

periox periodique
perioz periodique
wall paroi_fixe
sym symetrie
}

Modele_turbulence k_epsilon {
transport_k_epsilon
{

with_nu yes
convection { quick }
diffusion { }
conditions_initiales { k_eps champ_fonc_xyz dom 2 0.1 0.1 }

conditions_limites {
periox periodique
perioz periodique
wall paroi_fixe
sym symetrie
}

sources{ source_transport_k_eps { C1_eps 1.44 C2_eps 1.92 }
}

}
Modele_Fonc_Bas_Reynolds Launder_Sharma { }
k_min 1e-40
turbulence_paroi negligeable
}

Sources { canal_perio { bord periox debit_impose 1 } ,
canal_perio { bord perioz debit_impose 0 } ,
tenseur_Reynolds_externe { nom_fichier Cas8 } }

Figure 4.4: Low-Reynolds Neuronal k − ε model: Data file of the problem definition.

It has to be noticed that while for the CP3 neural network the code architecture was
already fully implemented in the solver, for the neural networks associated to the low-
Reynolds Neuronal k − ε model various functions had to be adapted. This topic will be
extensively discussed in Section 4.3.

4.3. Code Integration

The methodology of the neural networks training underwent significant modifications
in transitioning from the CP3 framework to the neural networks associated with the low-
Reynolds neural k−ε model. The work presented in this thesis fits into the context of this
transition. For this reason, the main aim of this project is to integrate the TRUST/Tri-
oCFD code so that it can treat low-Reynolds models based on neural networks. These
alterations cover two principal branches. Firstly, due to the shift from a high-Reynolds
regime to a low-Reynolds one, two extra variables, that are y+ and Reτ necessitated in-

46 4| TRUST/TrioCFD code integration

corporation into the neural network architecture. Consequently, their computation had
to be integrated in the class treating the neural network. Secondly, adaptations were
introduced to the code to facilitate the execution of the neural network. This transition
involved the adoption of a new library, frugally-deep [6], designed to streamline the use
of the neural network within a C++ environment.

The code implementation consists of the modification of three classes in the TRUST/Tri-
oCFD solver. They are the following:

• PrePostNN has the role of reading from an external file which variables have to be
pre-treated and post-treated, and to get the relative pre- and post-treatment values.

• TBNN has the role of pre-treating the inputs, applying the neural network and post-
treating the outputs.

• Tenseur_Reynolds_Externe_VDF_Face has the role of computing the tensor bNL

from the Post-treated neural network outputs and injecting bNL into the rest of the
code.

Every aspect of the code implementation is treated in detail in the following subsections.

Neural network inputs

As explained in Section 1.5, a low-Reynolds model requires more information than a high-
Reynolds model. This is due to the impact that the quantities that depend on the distance
from the wall have on the whole model. In particular, for the neural network used for the
low-Reynolds model presented in this work, whose training is presented in Section 2.2,

the quantities y+ =
uτy

ν
and Reτ =

uτh

ν
are added as inputs of the neural network; where

uτ =

√
ν
dū1

dx2

∣∣∣∣
y=0

.

The framework of the class Tenseur_Reynolds_Externe_VDF_Face before the beginning
of this work was thought only for high-Reynolds models, therefore the only quantity
computed was the λ vector. In order to provide the values of the input quantities of the
neural network presented in Section 2.2, α, y+ and Reτ have to be computed for every cell
of the domain inside the class Tenseur_Reynolds_Externe_VDF_Face. Since the λ vector
contained the information of α, it was effortless to adapt to the new model. For what
concerns y+ and Reτ , they are computed as follows. As first, a for cycle is performed

in order to compute
dū1

dx2

∣∣∣∣
y=0

for each of the nine mesh columns, see Figure 4.1, and save

the x and z values of the mesh element to keep track of the column. The code reads as

4| TRUST/TrioCFD code integration 47

follows:
1 for (int num_face=ndeb; num_face <nfin; num_face ++)
2 {
3 elem_paroi = le_dom_VDF ->face_voisins(num_face ,1);
4

5 xpx[num_face -ndeb] =le_dom_VDF ->xp(elem_paroi , 0) ; // x=0
6 xpz[num_face -ndeb] =le_dom_VDF ->xp(elem_paroi , 2) ; // z=2
7

8

9 y_maille_paroi =le_dom_VDF ->xp(elem_paroi , 1) ;
10 dudy_max = gij(elem_paroi ,0,1,0);
11 u_t = sqrt(nu* dudy_max);
12 y_plus_wall[num_face -ndeb] = y_maille_paroi * u_t / nu;
13 }

Listing 4.1: Wall Derivative

Successively, a for cycle on every element of the mesh is performed. For every element
the value y_plus_wall refers to the element next to the wall of the same column, this is
done by comparing the x and z values of the element with the ones of the nine elements
next to the wall. The values of y+ and Reτ are therefore obtained from the value of y+

on the first cell thanks to the linearity on y of the y+ function and the definition of Reτ :
Reτ = max(y+) = y+(y = h). In the code, h_maille_paroi represents the distance of
the center of the first mesh element from the wall, while h_elem is the distance of the
center of the current element from the wall. It has to be noticed that h = 1.0 according
to the domain settings.

1 double Tenseur_Reynolds_Externe_VDF_Face :: compute_y_plus(double y_plus_wall , double
h_maille_paroi , double h_elem)

2 {
3 double y_plus;
4 y_plus = y_plus_wall / h_maille_paroi * h_elem;
5

6 return y_plus;
7 }

Listing 4.2: Compute y+.

1 double Tenseur_Reynolds_Externe_VDF_Face :: compute_Re_t(double y_plus_wall , double
h_maille_paroi)

2 {
3 double Re_t;
4 Re_t = y_plus_wall / h_maille_paroi * 1.0;
5

6 return Re_t;
7 }

Listing 4.3: Compute Reτ .

48 4| TRUST/TrioCFD code integration

Pre- and post-processing values file

As a consequence of the changes in terms of input and output quantities of the neural
network used to perform the validation of the low-Reynolds model, the pre- and post-
processed quantities present the same modifications. The file where the pre- and post-
processing values and functions are stored, in .ppp extension, keeps the same structure
for the neural networks of high- and low-Reynolds models, therefore the only modification
in the PrePostNN class consists of adapting the keywords of the C++ function to read and
store the new values. As an example, here it is presented the function implemented to
read the pre-processing function of y+ which is indeed the maximum of the logarithm of
the value.

1 enum pp_y_plus PrePostNN :: ReadPPYPlusFromLine(string buffer ,string tag ,size_t npos)
2 {
3 string tmp;
4 size_t ltag;
5 enum pp_y_plus ret = INDEFY_PLUS;
6

7 ltag = tag.length ();
8 tmp = buffer.substr(npos+ltag ,buffer.length ()-ltag);
9 tmp.erase(remove(tmp.begin (), tmp.end(), ' '), tmp.end());

10 if(tmp.compare("MAXLOG") == 0) ret = MAXLOG;
11

12 return(ret);
13 }

Listing 4.4: Read the pre-treating function of y+.

For what concerns the effective pre- and post-treatment of the values, some modifications
had to be done in the TBNN class. In particular, the pre-treatment of y+ is presented as
an example.

1 void TBNN:: process_y_plus(double y_plus)
2 {
3 switch(_ppNN ->get_ppy_plus ())
4 {
5 case MAXLOG:
6

7 if(_ppNN ->get_y_plus_max_log () > 0)
8 _pp_y_plus = log10(y_plus) / _ppNN ->get_y_plus_max_log ();
9 else

10 _pp_y_plus = log10(y_plus);
11 break;
12

13 default:
14 cerr << "Mauvaise methode de pre traitement des y_plus" << endl;
15 break;
16 }
17 }

Listing 4.5: Pre-treatment of the value of y+.

4| TRUST/TrioCFD code integration 49

Neural network upload

The neural network upload has radically changed due to the introduction of the library
frugally-deep. Indeed, while the old uploading procedure relied on the upload of ev-
ery feature of the neural network, with this new library the upload can be done in one
command. The new uploading procedure is implemented in the TBNN class. It has to be
observed that the library frugally-deep can not be included due to a conflict of class
inclusions in another class of the solver. To upload the neural network two remaining
options were therefore available: upload it in the .cpp every time that a prediction is
needed, that is for every mesh element; otherwise the neural network could have been
defined in the header file through a pointer to a class not defined in the header file but
only in the implementation file. The second option have been considered more computa-
tionally costly since it allows uploading the neural network only once every time step and
for every element for each time step. The upload and the prediction read as follows:

1 _model_uploaded = std:: make_unique <fdeep::model >(fdeep:: load_model(_model_file));

Listing 4.6: neural network Upload.

1 const auto result = _model_uploaded ->predict ({ fdeep :: tensor(fdeep:: tensor_shape(
static_cast <std::size_t >(3)), vector <float >{ static_cast <float >(_pp_alpha),
static_cast <float >(_pp_y_plus), static_cast <float >(_pp_Re_t)}) });

2

3 _g.resize(result [0]. to_vector ().size());
4 for (unsigned int i =0; i < result [0]. to_vector ().size(); i++)
5 _g[i] = result [0]. to_vector ()[i];
6 _g[1] *= -1;

Listing 4.7: neural network Prediction.

One can observe that the value of g1 is forced to change sign. This is due to the fact that
at the time of the training of the neural network, in order to force g1 not to change sign
(it must be always negative since g1 = −Cµ), the SLU activation function was chosen for
this node to guarantee the positivity of the output. In this way, the negative sign of g1 is
ensured by changing its sign.

Reynolds stress anisotropy tensor bNL

The structure of bNL has deeply changed due to the introduction of the different versions
of the tensor T∗(0) in the low-Reynolds model. The formula to compute the components
of the bNL tensor depends on the neural network used. For sake of simplicity, in the code
the values assigned to the components of the tensor depend on the name of the neural
network used, i.e. Cas5, Cas6, etc. .

50 4| TRUST/TrioCFD code integration

As an example, the definition of the bNL tensor in the Cas5 neural network reads as
follows in the TBNN class:

1 _pb [1] = 0.0;
2 _pb [2] = 0.0;
3 _pb [4] = 0.0;
4

5 if (_model_file.find("Cas5") != string ::npos) {
6

7 _pb [0] = -1.0 / 3.0 *_g[0] - 0.5* _pp_alpha*_pp_alpha*_g[2];
8 _pb [3] = 1.0 / 6.0 *_g[0] + 0.5* _pp_alpha*_pp_alpha*_g[2];
9 _pb [5] = 1.0 / 6.0 *_g[0];

10 }
11

12 for(unsigned int i=0;i<nbb;i++)
13 _b[i] = _ppNN ->get_bsigma () * _pb[i];

Listing 4.8: bNL computation with Cas5 neural network.

One can notice that the post-treatment of bNL is the one presented in Equation 2.1.
The b vector computed in TBNN is assigned to the Tenseur_Reynolds_Externe_VDF_Face
table containing the values of the b matrix for every element as it follows:

1 b = tbnn ->predict(alpha , y_plus , Re_t);
2

3 resu(elem ,0,0) = b[0];
4 resu(elem ,0,1) = b[1];
5 resu(elem ,0,2) = b[2];
6 resu(elem ,1,0) = b[1];
7 resu(elem ,1,1) = b[3];
8 resu(elem ,1,2) = b[4];
9 resu(elem ,2,0) = b[2];

10 resu(elem ,2,1) = b[4];
11 resu(elem ,2,2) = b[5];

Listing 4.9: bNL assignement.

Cµ computation

In order to compute the value of Cµ, the output of the neural network g1 must be post-
treated. The most effective way to do it, since no post-treating parameters are available
for g1, is to use the definition of b12. Indeed, by post-treating b12 as in Equation 2.1 and
using the value of α, one can invert the formula of b12 in the Equations 1.26 and followings
in order to obtain the value of g1. This computation is performed in a dedicated function
in the TBNN class, and reads as follows:

1 double TBNN:: get_g1(double b12 , double alpha)
2 {
3 return 2 * b12/ alpha; //-c_mu
4 }

Listing 4.10: g1 computation.

4| TRUST/TrioCFD code integration 51

Production term

The production term is computed in the Calcul_Production_K_VDF class. As explained
in Table 3.1, the old computation of the production term, P = 2νtSijSij is subject to a
change. For this reason, a new function called calculer_terme_production_K_neuronal

in the Calcul_Production_K_VDF class has been created. Thanks to this function, the
production term can now be computed as P = −2kbijSij .

1 DoubleVect& Calcul_Production_K_VDF :: calculer_terme_production_K_neuronal(const
Domaine_VDF& domaine_VDF , const Domaine_Cl_VDF& domaine_Cl_VDF , DoubleVect& S,
const DoubleTab& K_eps , const DoubleTab& vitesse ,const Champ_Face_VDF& vit , const
DoubleTab& visco_turb , const DoubleTab& bij) const

2 {
3 int nb_elem = domaine_VDF.domaine ().nb_elem ();
4 int elem;
5 S = 0. ;
6 DoubleTab gij(nb_elem ,Objet_U ::dimension ,Objet_U ::dimension , vitesse.line_size ());
7 vit.calcul_duidxj(vitesse ,gij ,domaine_Cl_VDF);
8 for (elem =0; elem <nb_elem; elem ++)
9 {

10 //P= -2*k*bij*Sij
11 for (int i=0; i<Objet_U :: dimension; i++)
12 for (int j=0; j<Objet_U :: dimension; j++)
13

14 S(elem) -= K_eps(elem ,0)*bij(elem ,i,j)*(gij(elem ,i,j,0) + gij(elem ,j,i,0));
15

16

17 file_ecrire_prod << domaine_VDF.xp(elem , 1) << " " << S(elem) << std::endl;
18 }
19 return S ;
20 }

Listing 4.11: Production term computation.

53

5| Results validation

This chapter presents the outcomes of the validation process, where various case stud-
ies were employed to assess the accuracy and reliability of the proposed models. Sec-
tion 5.1 describes the preliminary validation procedure conducted by directly injecting
the Reynolds Tensor obtained from the DNS simulation into the RANS equations. Sub-
sequently, Section 5.2 presents the results of the analysis of the high-Reynolds neuronal
k− ε model. Finally, in Section 5.3, the validation of the low-Reynolds turbulence model
is showcased, considering the two most promising selections of the tensor T∗(0), that is
T∗(01) and T∗(0)

gen . For the matter of readability, for every model studied in this work the
plots of the velocity profiles are reported only for four problems out of eight studied. The
four most representative problems selected to be displayed are the ones corresponding to
the values of the friction Reynolds number, such that Reτ = [550, 2000, 4000, 5200]. This
choice comes from the will to display two cases in interpolation, that is Reτ = [2000, 4000],
and two in extrapolation, that is Reτ = [2000, 4000], with respect to the training of the
neural networks used for the low-Reynolds neuronal model (see Section 2.2). The velocity
profile of every problem studied are displayed in Appendix A.

Eight problems

Eight case studies are performed in this work. The geometry and the settings of the
problems are described in Section 1.5 and 4.2. The only parameter that differs from one
case to the other is the viscosity, ν, this yields to a difference also in the friction Reynolds
number since it depends on ν. In Table 5.1 the viscosity values relative to the different
Reτ are showcased. The variety of cases presented in this work allows drawing more
precise conclusion based on more data.

54 5| Results validation

Reτ ν

180 3.5 · 10−4

550 1.0 · 10−4

1000 5.0 · 10−5

2000 2.3 · 10−5

4000 1.06945 · 10−5

5200 8.0 · 10−6

8000 5.00814 · 10−6

10000 3.88613 · 10−6

Table 5.1: Viscosity values, ν, relative to every Reτ .

Error definition

To evaluate the accuracy of the results, two different metrics are used in this work. The
error is always intended as the difference between the velocity profile obtained from the
RANS simulation and the one obtained from the DNS. For the plane channel problem,
the only non-zero component of the velocity is along the x-axis and depends only on y,
thus it is noted as U(y). The first metric, called Eq, computes the squared relative error
on the entire domain and reads as follows:

Eq =
1

h

√√√√Ny−1∑
i=1

(
UDNS(yi)− URANS(yi)

UDNS(yi)

)2

(yi+1 − yi) (5.1)

where h is half of the height of the canal, yi is the y coordinate of the node i, Ny is equal
to the number of nodes of the mesh along the y direction. The other metric aims to
evaluate the maximal relative error and reads as follows:

Emax = max

(
∥UDNS(yi)− URANS(yi)∥

∥UDNS(yi)∥

)
(5.2)

5.1. Explicit treatment of the Reynolds tensor

As first, it is conducted a RANS simulation utilizing the Reynolds tensor acquired from
DNS [7, 10, 16]. The results presented in this section refer to the model setting elaborated
in Section 3.1. This preliminary result has been performed in order to demonstrate the

5| Results validation 55

inadequacy of the explicit treatment of the Reynolds tensor to predict the velocity profile.
Indeed, Wu et al. [24] proved that due to the ill-conditioning of the RANS equations,
even a minor error less than 0.5% in the Reynolds stress tensor can lead to variations up
to 35% in the velocity profile.

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 550

DNS
Explicit RANS

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 2000

DNS
Explicit RANS

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 4000

DNS
Explicit RANS

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 5200

DNS
Explicit RANS

Figure 5.1: Superposition of Velocity Profiles for Reτ = [550, 2000, 4000, 5200]: RANS
with Explicit Treatment of the Reynolds Tensor vs. DNS.

The plots exhibited in Figure 5.1 align with Wu et al.’s findings for two reasons. As first,
it is evident that while the Reynolds tensor, acquired through DNS, is reliable and precise,
there exists a notable discrepancy in the velocity profile. Moreover, it can be noticed in
Table 5.2 that the velocity profiles of the explicit treatment of the Reynolds tensor tend
to be less accurate while Reτ grows, notably for what concerns Eq. This result represents
the second result in accordance to Wu et al. that state that the RANS equations become
the more and more ill-conditioned with growing values of Reτ . The case Reτ = 4000

represents a case against the trend, since its velocity profile turns out to be very accurate.
A possible explanation can be drawn by observing that a more refined mesh grid can lead
to a more accurate result of the Reynolds tensor. Indeed, considering that the refinement

56 5| Results validation

required has to grow with Reτ , for cases Reτ = [4000, 8000] Moser et al. [16] used a mesh
grid that was more refined than for the other cases (see Table 4.1).

Error Analysis

180 550 1000 2000 4000 5200 8000 10000

Eq 0.012 0.0185 0.0197 0.0801 0.0082 0.0687 0.0297 0.0722

Emax 0.4157 0.1153 0.0684 0.1481 0.0856 0.141 0.0688 0.2311

Table 5.2: Explicit treatment: Eq and Emax for every Reτ .

To conclude, it has been proven that the explicit treatment of the Reynolds tensor does
not represent a reliable method to obtain accurate velocity profiles. Therefore, in order
to provide a model able to produce solid results in terms of velocity profile, the implicit
treatment of the Reynolds tensor has been employed in this work. The validation of the
two implicit models studied is presented in the following sections.

5.2. Validation of the high-Reynolds neuronal k − ε

model

In this section, it is presented the validation of the high-Reynolds neuronal k − ε model,
presented in Subsection 3.2.1. In particular, the results of this neuronal model are com-
pared with the results obtained from the standard k−ε model, both from the point of view
of the accuracy of the results and the computational cost. The analysis of this model was
thought as a preliminary result of this thesis, since its validation was already performed
in [8]. However, while performing this study, an error in the code TRUST/TrioCFD has
been found and solved, therefore a new validation has been performed.

Grid refinement

This neuronal model is based on the neural networks able to predict the flow only out-
side the near-wall region. For this reason, the training of the neural network has been
performed only in a region far from the wall. In particular, since the lowest Reτ that has
been used to perform the training was Reτ = 1000, the region taken into account to train
the neural network was 0.07996 ≤ y ≤ 1. One can indeed observe that for Reτ = 1000,
the value of y+ at y = 0.07996 is greater than 30, in particular it is 42.9 . The con-
dition y+ ≥ 30 is therefore automatically verified for every Reτ ≥ 1000 in the region

5| Results validation 57

0.07996 ≤ y ≤ 1, but it had to be proven a posteriori for the cases Reτ = [180, 550]. In
Table 5.3 it is displayed the result of this study. One can observe that the region of the
wall function, that is the first cell, it has to be expanded in the first two cases in order to
verify the necessary condition of a high-Reynolds model: y+ ≥ 30 .

Reτ y y+

180 0.35 35.0

550 0.15 35.2

1000 0.07996 42.9

2000 0.07996 79.7

4000 0.07996 154.4

5200 0.07996 191.6

8000 0.07996 301.8

10000 0.07996 338.1

Table 5.3: High-Reynolds models: first element height, y, and dimensionless height, y+,
relative to every Reτ .

Velocity profiles

The velocity profiles of the RANS simulation performed with the high-Reynolds neuronal
model are displayed in Figure 5.2. These profiles are compared with the ones of the DNS
and of the standard k− ε model. It can be observed that for Reτ = [2000, 4000, 5200] the
velocity profiles of the two k − ε are comparable with the one of the DNS. In particular,
the standard model is more able to capture the velocity profile of the DNS in the region
0.07996 ≤ y ≤ 0.5 while the neuronal one performs better in the region 0.5 ≤ y ≤ 1 . For
what concerns the case Reτ = 550, which is in extrapolation with respect to the neural
network training, it can be noticed that while the neuronal model captures the shape of
the profile of the DNS but never reaches its values, the standard model provides a profile
which is more adherent to the one of the DNS, especially for y ≥ 0.3 .

58 5| Results validation

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 550

DNS
k- neuronal
k- standard

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 2000

DNS
k- neuronal
k- standard

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 4000

DNS
k- neuronal
k- standard

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2
U

 [m
s

1]
Re = 5200

DNS
k- neuronal
k- standard

Figure 5.2: Superposition of Velocity Profiles for every Reτ : RANS with high-Reynolds
k − ε models vs. DNS.

Error analysis

In Figure 5.3 are presented the results of the error comparison between the standard k−ε

model and the neuronal k−ε model. One can observe that the neuronal k−ε model does
not outperform the standard k − ε model in any of the two metrics. For Reτ = 180 any
of the two models is able to provide a good estimate of the velocity profile; for the other
cases presented in this work the neuronal model approaches the standard one in terms of
quadratic error and maximal error.

5| Results validation 59

180 550 1000 2000 4000 5200 8000 10000
Re

0.00

0.02

0.04

0.06

0.08

0.10

E q

Neuronal k-
Standard k-

(a) Eq .

180 550 1000 2000 4000 5200 8000 10000
Re

0.02

0.04

0.06

0.08

0.10

E m

Neuronal k-
Standard k-

(b) Emax .

Figure 5.3: Standard and neuronal k − ε models: Eq and Emax for every Reτ .

Computational cost

In Table 5.4 the time needed to reach the convergence is showcased. One can observe
that also for what concerns the computational cost, the standard model outperforms the
neuronal one. Namely, the time required from the simulation is more than double for
every Reτ studied.

Convergence Time

180 550 1000 2000 4000 5200 8000 10000

Standard k − ε 24 128 38 123 476 1020 1857 1858
Neuronal k − ε 81 322 84 245 1328 2215 3806 3910

Table 5.4: Convergence time: Comparison between different high-Reynolds models for
every Reτ . Times are expressed in seconds.

5.3. Validation of the low-Reynolds neuronal k − ε

model

In this section, it is presented the validation of the low-Reynolds neuronal model proposed
in Subsection 3.2.2. This model is based on the neural networks proposed by Cai et al.
[3] and discussed in Section 2.2. In their work, a validation of the anisotropic Reynolds
tensor b was already performed. The aim of the present work is to exhibit the results
of the a posteriori validation, this is after the RANS simulation, of the low-Reynolds
neuronal model.

60 5| Results validation

5.3.1. Grid Independence

The first step in validating the model involved performing a grid independence study.
This study aims to identify the least refined mesh that ensures that the results remain
unaffected by its excessive coarseness, in order to minimize the computational cost.

To determine the optimal mesh refinement, various simulations were conducted for each
Reτ value. Each simulation differed solely in the number of mesh elements along the
y direction of the domain, ranging from 75 to 250 elements, with an increment of 25
elements for each test.

The grid independence analysis includes both qualitative and quantitative assessments.
For the quantitative aspect, the quadratic error, Equation 5.1, was plotted against the
mesh grid resolution on the x-axis. The choice of the quadratic error metric was motivated
by its ability to facilitate a quantitative comparison between similar velocity profiles. To
consider the qualitative aspect and avoid relying solely on quantitative value congruence
for similarity, it was crucial to evaluate how closely the velocity profiles resembled each
other across different mesh refinements in identical simulations.

By combining the qualitative and quantitative analyses, the mesh refinement that ensures
independence for each Reτ value was identified and marked with a magenta dot on each
graph in Figure A.3. For matter of readability, the values of the mesh refinement are also
reported in Table 5.5. Together with the selected number of nodes for every Reτ it is
reported also the scale factor chosen for the mesh refinement. This value, if different from
1, allows changing the size of every element while keeping the number of elements fixed.
In particular, a scale factor greater than 1 yields to a more refined mesh in the near-wall
region and a coarser one in the middle of the channel, while a scale factor smaller than
1 refines the mesh more in the middle of the channel. For the low-Reynolds models the
main concern is to refine the mesh in the near-wall region, for this reason a scale factor
greater than one has been selected. The default choice of 1.03 has been relaxed to 1.02
for the case Reτ = 180 since the gradients in the near-wall region are not as high as in
the other cases, therefore a high refinement was not needed. The condition y+ ≤ 1 has
been verified a posteriori for every case.

5| Results validation 61

Reτ Nx ×Ny ×Nz Scale Factor

180 4× 126× 4 1.02

550 4× 151× 4 1.03

1000 4× 176× 4 1.03

2000 4× 201× 4 1.03

4000 4× 226× 4 1.03

5200 4× 226× 4 1.03

8000 4× 226× 4 1.03

10000 4× 226× 4 1.03

Table 5.5: Low-Reynolds models mesh: Number of nodes along the three directions for
every Reτ .

5.3.2. Results

The results of the validation are separated in two parts: the analysis of the error of the
velocity profile compared to the one of the DNS and computational time required to
reach the convergence of the simulation. The aim of this study is to understand whether
the model proposed outperforms the existing model in terms of exactness of the RANS
solution and computational cost. As in the previous sections, the graphs reported concern
the problems with Reτ = [550, 2000, 4000, 5200]; the graphs of the other problems can be
seen in Appendix A. Among the four neural network proposed in the work of Cai et al.
that could have been used for the low-Reynolds neural model validated in this section,
only the neural network Case5 and Case8 are the object of study. This choice is due to
the fact that in the validation of the anisotropy Reynolds tensor performed in the work
of Cai et al. these two neural networks had the most promising results.

Velocity Profile

The analysis of the validation begins with the neural network Case 5, that is with the
tensor T∗(0) = T∗(01). The velocity profile of this RANS simulation is presented in Fig-
ure 5.4. One can observe that as the friction Reynolds number Reτ increases, the Launder-
Sharma model provides a more accurate velocity profile. This is due to the nature of the
model, which is design specifically for the highly turbulent plane channel case. The better
performance of the Launder-Sharma model goes together with a better accuracy of the
low-Reynolds neuronal model performed with the Case 5 neural network, as it can be

62 5| Results validation

seen for cases Reτ = [550, 2000, 4000, 5200] in Figure 5.4. The velocity profile for every
Reτ performed with this neural network are showcased in Figure A.4.

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 550

DNS
TBNN_Case5
Launder-Sharma

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 2000

DNS
TBNN_Case5
Launder-Sharma

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 4000

DNS
TBNN_Case5
Launder-Sharma

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 5200

DNS
TBNN_Case5
Launder-Sharma

Figure 5.4: Superposition of Velocity Profiles for Reτ = [550, 2000, 4000, 5200]: RANS
with case 5 neural network vs. DNS Simulations.

In Figure 5.5 the velocity profiles of the low-Reynolds neuronal model based on the Case

8 neural network is compared to the ones coming from the DNS and the Launder-Sharma
model. One can observe that this neuronal model provides a velocity profile similar to the
one based on the Case 5 neural network. Indeed, in both cases one can observe that while
the Launder-Sharma model provides a slightly greater velocity in the region 0.2 ≤ y ≤ 0.5

and a slightly lower one in the region 0.5 ≤ y ≤ 1.0, the neural method, which is based
on the Launder-Sharma one, emphasizes this same error. This behavior of the Launder-
Sharma model is in accordance to the observation regarding the better performance with
highly turbulent problems done previously, since for high values of Reτ the velocity profile
tends to be higher in the region 0.2 ≤ y ≤ 0.5 and lower in 0.5 ≤ y ≤ 1.0.

5| Results validation 63

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 550

DNS
TBNN_Case8
Launder-Sharma

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 2000

DNS
TBNN_Case8
Launder-Sharma

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 4000

DNS
TBNN_Case8
Launder-Sharma

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 5200

DNS
TBNN_Case8
Launder-Sharma

Figure 5.5: Superposition of Velocity Profiles for Reτ = [550, 2000, 4000, 5200]: RANS
with case 8 neural network vs. DNS Simulations.

The analysis of the velocity profiles regarding the low-Reynolds models ends with the
study of the near-wall region. This study is performed, in the scientific literature, with a
plot of the dimensionless velocity, U+, against the dimensionless distance from the wall,
y+, in a logarithmic scale on the x-axis. The dimensionless variables are defined as follows:

U+ =
U(y)

uτ

y+ =
yuτ

ν

where uτ =

√
ν
dū1

dx2

∣∣∣∣
y=0

.

In Figure 5.6 the results of this analysis are presented. Both the Launder-Sharma and
neuronal models are able to provide a profile of U+(y+) that follows the one of the DNS
on the region 0 ≤ y+ ≤ 10 for every Reτ . In the region y+ ≥ 10 the Launder-Sharma
model is able to capture the dimensionless velocity profile of the DNS, while the values
provided by the neuronal models are higher than the ones of the DNS. This is due to

64 5| Results validation

the fact that the values of uτ provided by the Launder-Sharma model and the DNS are
comparable, while the ones of the neuronal models are smaller. Between the two neural
networks one can observe that for Reτ > 500 the differences are undetectable, while for
the cases Reτ = [180, 550] the Case8 neural network is able to provide slightly more
accurate values of the velocity in the region y+ ≥ 10.

10 1 100 101

y +
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

U
+

Re = 550

DNS
TBNN_Case5
TBNN_Case8
Jones-Launder

10 1 100 101

y +
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

U
+

Re = 2000

DNS
TBNN_Case5
TBNN_Case8
Jones-Launder

10 1 100 101

y +
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

U
+

Re = 4000

DNS
TBNN_Case5
TBNN_Case8
Jones-Launder

10 1 100 101

y +
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

U
+

Re = 5200

DNS
TBNN_Case5
TBNN_Case8
Jones-Launder

Figure 5.6: Superposition of Velocity Profiles for Reτ = [550, 2000, 4000, 5200]: RANS
with case 8 neural network vs. DNS Simulations.

Error analysis

In Figure 5.7 is reported the errors Eq, Equation 5.1, and Emax, Equation 5.2, of the
simulations performed with the neural networks 5 and 8 compared to the error obtained
from the simulations performed with the Launder-Sharma model. One can observe that
for low values of the friction Reynolds number, Reτ ≤ 1000, the two errors are significantly
higher for the models based on the neural networks. This can be explained by recalling
that the problems with Reτ = [180, 550] are in extrapolation with respect to the training
of the two neural networks. On the other side it can be observed that, for values of

5| Results validation 65

Reτ greater than 2000, the two models based on machine learning provide similar velocity
profiles and their Eq error follows the same trend of the one of the Launder-Sharma model.
This might suggest that since the machine learning based model does not provide every
coefficient by means of the neural network but utilizes some coefficient of the model.

180 550 1000 2000 4000 5200 8000 10000
Re

0.00

0.02

0.04

0.06

0.08

E q

Launder-Sharma
TBNN Case_5
TBNN Case_8

(a) Eq .

180 550 1000 2000 4000 5200 8000 10000
Re

0.05

0.10

0.15

0.20

0.25

0.30

E m

Jones-Launder
TBNN Case_5
TBNN Case_8

(b) Emax .

Figure 5.7: Low-Reynolds models: Eq and Emax for every Reτ .

Computational Cost

In Table 5.6 are presented the results of the analysis on the time required by every
simulation to reach convergence. The Launder-Sharma model significantly outperforms
the neuronal models proposed in this work in terms of computational cost. Indeed while
around 100 seconds are required to reach convergence in the Launder-Sharma model, the
time required for the neuronal models was approximately 5 to 10 times higher. Likely,
this occurred because the architecture of the solver necessitated the neural network to be
uploaded at each time step, leading to a substantial increase in computational time.

Convergence Time

180 550 1000 2000 4000 5200 8000 10000

Launder-Sharma 103 51 71 39 63 90 146 103

TBNN Case 5 1126 570 503 353 583 758 811 454
TBNN Case 8 627 277 712 337 500 744 889 475

Table 5.6: Convergence time: Comparison between different low-Reynolds models for
every Reτ . Times are expressed in seconds.

66 5| Results validation

Model Evaluation and Comparative Analysis

This section examines the reasons contributing to the less precise outcomes of the machine
learning-based model in comparison to those of the Launder-Sharma model. Additionally,
a potential explanation for this situation is proposed.

From the previous results, one can deduce that the low-Reynolds neuronal k−ε model does
not outperform the existing Launder-Sharma model neither in the accuracy of the velocity
profile nor in the computational time required to reach the converge point. Despite this
statement is true, it does not necessarily mean that the machine learning based models
perform worse than the standard ones in estimating the Reynolds tensor. In Figure 5.8
one can observe the Reynolds tensor computed by the neural network at the convergence
point of the simulation performed with the low-Reynolds neuronal model. It has to be
recalled that, since the Launder-Sharma model is based on the linearity assumption of
Boussinesq the only non-zero component of the tensor is b12. Therefore it is evident
that the prediction of b performed by the neuronal model outperforms the one of the
Launder-Sharma model for Reτ = 5200.

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.2

0.0

0.2

0.4

b i
j

Re = 5200

b11 DNS
b12 DNS
b22 DNS
b33 DNS

b11 TBNN_Case8
b12 TBNN_Case8
b22 TBNN_Case8
b33 TBNN_Case8

Figure 5.8: Anisotropic Reynolds tensor components, bij, for Reτ = 5200: Case 8 low-
Reynolds neuronal model vs. DNS .

It is a strong belief of the author that the main weakness of the low-Reynolds neuronal
k− ε model proposed in this work is to be based on a classical low-Reynolds k− ε model.
As shown in Table 3.3, most of the parameters are either kept identical to the Launder-
Sharma model, either slightly changed by substituting the old νt with the ν̃t computed

5| Results validation 67

from the neural network. These changes are not sufficient because the rationale behind
the choice of the parameters of the classical models does not come from the physics of
the problem, but it is led by the necessity to reach a velocity profile as close as possible
to the real one. The aim of the model is indeed to provide a good estimate of νt, which
is the only quantity involved in the RANS equation for the linear models, thus based on
the Boussinesq assumption. For the non-linear models it is crucial to provide also a good
estimate for the value of k since it is involved in the computation of the factor bNL.

The inadequacy of the existing k− ε models to provide a good estimate for the turbulent
kinetic energy, k, is clearly shown in Figure 5.9. One can observe that the neuronal model
outperforms the Launder-Sharma model regarding the shape of k with respect to y both
in the near-wall region and in the entire domain. On the other side, the neuronal model
pays its dependency from the classical model for what concerns the magnitude of the
values that are similar to those of the latter model.

0.00 0.01 0.02 0.03 0.04 0.05
y [m]

0.000

0.002

0.004

0.006

0.008

0.010

k
[m

2
s

2]

Re = 5200

DNS
TBNN_Case8
Launder-Sharma

(a) Near-wall region.

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.000

0.002

0.004

0.006

0.008

0.010

k
[m

2
s

2]

Re = 5200
DNS
TBNN_Case8
Launder-Sharma

(b) Entire domain.

Figure 5.9: Low-Reynolds models: k comparison for Reτ = 5200. General behavior and
focus on the near-wall region. k is expressed in [m2 · s−2] and y in [m].

The rate of dissipation of turbulent kinetic energy, ε, is strongly linked to k in the frame-
work of the k − ε models. Its values are displayed in Figure 5.10. One can observe that
apart from the small region 0 ≤ y ≤ 0.05, where ε is forced by the model to reach 0
at y = 0, the values obtained from the Launder-Sharma model coincide with the ones
obtained from the DNS. The values of ε obtained from the neuronal model are not dis-
similar to the good values obtained from the Launder-Sharma model. The only difference,
particularly visible in the region 0.05 ≤ y ≤ 0.1 is a slightly lower value probably due to
a higher value of k in the corresponding area. Following this consideration one can think
that the parameters of the equation regarding ε, Equation 3.3d, can be left unchanged;
it has to be kept in mind that this differential equation is dependent from the value of k,
therefore some adjustments have to be made in order to maintain the values of ε close to

68 5| Results validation

the ones of the DNS while fixing the values of k.

0.00 0.01 0.02 0.03 0.04 0.05
y [m]

0.00

0.02

0.04

0.06

0.08

0.10

 [m
2

s
3]

Re = 5200

DNS
TBNN_Case8
Launder-Sharma

(a) Near-wall region.

0.2 0.4 0.6 0.8 1.0
y [m]

0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

 [m
2

s
3]

1e 3 Re = 5200

DNS
TBNN_Case8
Launder-Sharma

(b) Complementary region of the domain.

Figure 5.10: Low-Reynolds models: ε comparison for Reτ = 5200.

The analysis proceeds with the assessment of the values of Cµ in the two low-Reynolds
models, classic and neuronal, compared to the ones of the Direct Numerical Simulation
(DNS) presented in Figure 5.11. It is self-evident to observe that the value of Cµ directly
obtained from the neural network - in the neuronal model Cµ = −g1 - significantly outper-
forms the analytical model proposed by Launder and Sharma where Cµ is set to be equal
to 0.09 times a function, called fµ, that aims to adjust its value in the near-wall region.
From the analysis of Cµ it is clear that while the classical model only aims to provide a Cµ

such that the model can give a good final result in terms of velocity profile, the neuronal
model aims to keep the model linked to the physics and therefore is able to provide a Cµ

similar to the one obtained from the DNS. It has to be observed that the values proposed
for the neuronal model do not correspond to the best values that this model can achieve
but to the ones related to the convergence point reached with the low-Reynolds neuronal
model, the problems of which have already been discussed.

5| Results validation 69

0.00 0.01 0.02 0.03 0.04 0.05
y [m]

0.00

0.02

0.04

0.06

0.08

0.10

C

Re = 5200

DNS
TBNN_Case8
Launder-Sharma

(a) Near-wall region.

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.00

0.02

0.04

0.06

0.08

0.10

C

Re = 5200

DNS
TBNN_Case8
Launder-Sharma

(b) Entire domain.

Figure 5.11: Low-Reynolds models: Cµ comparison for Reτ = 5200.

The analysis ends with the study of the behavior of the turbulent viscosity νt = Cµ
k2

ε
.

One can remark that even if the neuronal model is able to provide a more accurate profile
of Cµ than the one given by the Launder-Sharma model, the profile of νt presents the
opposite behavior. This is probably due to the fact that, given an analytical formula for
Cµ, the parameters of the equations of k and ε(σk, σε, D, E, Cε1, Cε2, f1, f2 and Ret),
are adapted to obtain the k and ε profiles that provide a good value of νt. For what
concerns the neuronal model, the values of νt are far from the ones of the DNS because
of the wrong estimate of k and ε given by the equations of the model. In particular, in
the region 0 ≤ y ≤ 0.6 νt is more influenced by the low values of k while in the region
0.6 ≤ y ≤ 1 k approaches the DNS values and therefore the lower values of ε influence
the final result.

0.00 0.01 0.02 0.03 0.04 0.05
y [m]

0

1

2

3

4

t [
m

2
s

1]

1e 3 Re = 5200
DNS
TBNN_Case8
Launder-Sharma

(a) Near-wall region.

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0

1

2

3

4

t [
m

2
s

1]

1e 3 Re = 5200

DNS
TBNN_Case8
Launder-Sharma

(b) Entire domain.

Figure 5.12: Low-Reynolds models: νt comparison for Reτ = 5200

71

6| Conclusions and future

developments

The central focus of this thesis was placed on assessing machine learning techniques to
enhance Reynolds stress closures. Both high-Reynolds and low-Reynolds neuronal models
were evaluated on the turbulent channel flow configuration.

The preliminary explicit treatment of the Reynolds stress tensor obtained from DNS high-
lighted concerns regarding the ill-conditioning of the explicit treatment of the Reynolds
tensor in the RANS equations. Subsequently, the proposed high-Reynolds neuronal k− ε

model demonstrated comparable performance to the standard k − ε model, while requir-
ing over twice the computational expense. The low-Reynolds neuronal model, assessed
thanks to the TRUST/TrioCFD code integration, exhibited very promising results. In-
deed, the values of the quantities directly predicted by the neural network, that is Cµ and
bij, strongly outperform the existing k−ε model. Even if this result already represents an
achievement itself, the perspectives of application of this neural network to new models,
able to take advantage of these results to provide better estimates of the other quantities
involved in the flow, are impressive.

A primary research objective was assessing whether machine learning techniques could en-
hance turbulence closures. The analysis revealed that specifically tailored neural network
architectures possess distinctive advantages. Additionally, this work clarified ambiguities
surrounding the application of Pope’s model for the turbulent channel flow configuration.
The generalized tensor formulation addressed limitations of prior approaches.

Despite the encouraging findings, some limitations remain. The full intricacies of turbu-
lence continue to pose modeling challenges. Furthermore, mapping complex fluid behav-
iors through neural networks involves persistent difficulties in ensuring generalizability
across diverse scenarios. Significant data requirements persist, necessitating reliance on
DNS databases. The high computational cost also remains an issue, but it can be reduced
by adapting the code to upload only once the neural network for the entire simulation.

The present work can be developed by performing further analysis with the low-Reynolds

72 6| Conclusions and future developments

model proposed. The validation of the model on more complex geometries, such as the
square channel, is a crucial next step to understand whether the model is able to confirm
or even meliorate its results with respect to the existing models. This work opens the
way to various scenarios in the field of machine learning based turbulence models. In
particular, the main work is to provide a model entirely adapted to the neural networks.
This model can be obtained starting from the low-Reynolds neuronal k−ε model proposed
in this work by tailoring the empirical constants of the old models to the machine learning
based one. Another valuable possibility can be to directly estimate the values of k and ε

by means of a neural network.

In summary, this thesis has undertaken an extensive investigation into machine learning
augmented turbulence modeling. The merits of data-driven closures have been systemat-
ically assessed. While limitations exist, the outlook remains highly promising.

73

Bibliography

[1] P.-E. Angeli, N. Leterrier, J.-M. Martinez, and B. Secher. Modélisation et intégra-
tion d’un modèle du tenseur de Reynolds par réseaux de neurones dans TrioCFD.
Technical report, CEA, 2020.

[2] J. Boussinesq. Théorie de l’Écoulement tourbillonnant et tumultueux des liquides
dans les lits rectilignes à grande section. Gauthier-Villars et fils (Paris), 2:64–76,
1897.

[3] J. Cai, P.-E. Angeli, J.-M. Martinez, G. Damblin, and D. Lucor. Reynolds stress
anisotropy tensor predictions for turbulent channel flow using neural networks. 2023.

[4] T. Craft, B. Launder, and K. Suga. Development and application of a cubic eddy-
viscosity model of turbulence. International Journal of Heat and Fluid Flow, 17(2):
108–115, 1996.

[5] R. Fang, D. Sondak, P. Protopapas, and S. Succi. Neural network models for the
anisotropic Reynolds stress tensor in turbulent channel flow. Journal of Turbulence,
21:1–19, 2019.

[6] T. Hermann. frugally-deep, 2016. URL https://github.com/Dobiasd/

frugally-deep. MIT Licence.

[7] S. Hoyas, M. Oberlack, F. Alcántara-Ávila, S. V. Kraheberger, and J. Laux. Wall
turbulence at high friction Reynolds numbers. Phys. Rev. Fluids, 7, 2022.

[8] S. Janati. Intégration d’un modèle neuronal du tenseur de Reynolds dans le logiciel
de simulation en mécanique des fluides TRUST/TrioCFD. Master’s thesis, INP
Bordeaux, 2022.

[9] W. Jones and B. Launder. The calculation of low-Reynolds-number phenomena
with a two-equation model of turbulence. International Journal of Heat and Mass
Transfer, 16(6):1119–1130, 1973.

[10] Y. Kaneda and Y. Yamamoto. Velocity gradient statistics in turbulent shear flow:

https://github.com/Dobiasd/frugally-deep
https://github.com/Dobiasd/frugally-deep

74 | Bibliography

an extension of Kolmogorov’s local equilibrium theory. Journal of Fluid Mechanics,
929:A13, 2021.

[11] B. Launder and B. Sharma. Application of the energy-dissipation model of turbulence
to the calculation of flow near a spinning disc. Letters in Heat and Mass Transfer, 1
(2):131–137, 1974.

[12] J. Ling, R. Jones, and J. Templeton. Machine learning strategies for systems with
invariance properties. Journal of Computational Physics, 318:22–35, 2016.

[13] J. Ling, A. Kurzawski, and J. Templeton. Reynolds average turbulence modelling
using deep neural networks with embedded invariance. Journal of Fluid Mechanics,
807:155–166, 2016.

[14] W. Liu, J. Fang, S. Rolfo, C. Moulinec, and D. R. Emerson. An iterative machine-
learning framework for RANS turbulence modeling. International Journal of Heat
and Fluid Flow, 90, 2021.

[15] M. Milano and P. Koumoutsakos. Neural network modeling for near wall turbulent
flow. Journal of Computational Physics, 182(1):1–26, 2002.

[16] R. D. Moser, J. Kim, and N. N. Mansour. Direct numerical simulation of turbulent
channel flow up to Reτ = 590. Physics of Fluids, 11(4):943–945, 1999.

[17] S. B. Pope. A more general effective-viscosity hypothesis. Journal of Fluid Mechanics,
72(2):331–340, 1975.

[18] S. B. Pope. Turbulent Flows. Cambridge University Press, 2000.

[19] L. Prandtl. Bericht uber untersuchungen zur ausgebildeten turbulenz. Journal of
Applied Mathematics and Mechanics, 5(2):136–139, 1925.

[20] H. Sáez de Ocáriz Borde, D. Sondak, and P. Protopapas. Convolutional neural
network models and interpretability for the anisotropic Reynolds stress tensor in
turbulent one-dimensional flows. Journal of Turbulence, 23(1-2):1–28, 2021.

[21] B. Tracey, K. Duraisamy, and J. Alonso. Application of Supervised Learning to
Quantify Uncertainties in Turbulence and Combustion Modeling. AIAA Aerospace
Sciences Meeting, 2013.

[22] B. D. Tracey, K. Duraisamy, and J. J. Alonso. A Machine Learning Strategy to Assist
Turbulence Model Development.

[23] H. K. Versteeg and W. Malalasekera. An introduction to computational fluid dynam-
ics : the finite volume method. Pearson Education Ltd., second edition, 2007.

6| BIBLIOGRAPHY 75

[24] J. Wu, H. Xiao, R. Sun, and Q. Wang. Reynolds-Averaged Navier–Stokes equations
with explicit data-driven Reynolds stress closure can be ill-conditioned. Journal of
Fluid Mechanics, 869:553–586, 2019.

[25] Z. Zhang, X. Song, S. Ye, Y. Wang, C. Huang, Y. An, and Y. Chen. Application of
deep learning method to Reynolds stress models of channel flow based on reduced-
order modeling of DNS data. Journal of Hydrodynamics, 31:58–65, 2019.

[26] Z. J. Zhang and K. Duraisamy. Machine Learning Methods for Data-Driven Turbu-
lence Modeling.

77

A| Validation Plots

78 A| Validation Plots

Explicit Treatment of the Reynolds Tensor

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 180

DNS
Explicit RANS

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 550

DNS
Explicit RANS

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 1000

DNS
Explicit RANS

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 2000

DNS
Explicit RANS

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 4000

DNS
Explicit RANS

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 5200

DNS
Explicit RANS

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 8000

DNS
Explicit RANS

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 10000

DNS
Explicit RANS

Figure A.1: Superposition of Velocity Profiles: RANS with Explicit Treatment of the
Reynolds Tensor vs. DNS Simulations.

A| Validation Plots 79

High-Reynolds: Neuronal k − ε Model

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 180

DNS
k- neuronal
k- standard

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 550

DNS
k- neuronal
k- standard

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 1000

DNS
k- neuronal
k- standard

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2
U

 [m
s

1]

Re = 2000

DNS
k- neuronal
k- standard

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 4000

DNS
k- neuronal
k- standard

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 5200

DNS
k- neuronal
k- standard

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 8000

DNS
k- neuronal
k- standard

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 10000

DNS
k- neuronal
k- standard

Figure A.2: Superposition of Velocity Profiles: RANS with neuronal k−ε model vs. DNS
Simulations.

80 A| Validation Plots

Low-Reynolds: Grid Independence

100 150 200 250
mesh elements

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E q

1e 2 Re = 180

Eq

100 150 200 250
mesh elements

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E q

1e 2 Re = 550

Eq

100 150 200 250
mesh elements

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E q

1e 2 Re = 1000

Eq

100 150 200 250
mesh elements

0.0

0.5

1.0

1.5

2.0

2.5

3.0
E q

1e 2 Re = 2000

Eq

100 150 200 250
mesh elements

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E q

1e 2 Re = 4000

Eq

100 150 200 250
mesh elements

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E q

1e 2 Re = 5200

Eq

100 150 200 250
mesh elements

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E q

1e 2 Re = 8000

Eq

100 150 200 250
mesh elements

0.0

0.5

1.0

1.5

2.0

2.5

3.0

E q

1e 2 Re = 10000

Eq

Figure A.3: Grid independence: quantitative results.

A| Validation Plots 81

Low-Reynolds: TBNN Case 5

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 180

DNS
TBNN_Case5
Launder-Sharma

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 550

DNS
TBNN_Case5
Launder-Sharma

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 1000

DNS
TBNN_Case5
Launder-Sharma

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2
U

 [m
s

1]

Re = 2000

DNS
TBNN_Case5
Launder-Sharma

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 4000

DNS
TBNN_Case5
Launder-Sharma

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 5200

DNS
TBNN_Case5
Launder-Sharma

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 8000

DNS
TBNN_Case5
Launder-Sharma

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 10000

DNS
TBNN_Case5
Launder-Sharma

Figure A.4: Superposition of Velocity Profiles: RANS with case 5 Neural Network vs.
DNS Simulations.

82 A| Validation Plots

Low-Reynolds models: TBNN Case 8

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 180

DNS
TBNN_Case8
Launder-Sharma

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 550

DNS
TBNN_Case8
Launder-Sharma

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 1000

DNS
TBNN_Case8
Launder-Sharma

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 2000

DNS
TBNN_Case8
Launder-Sharma

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 4000

DNS
TBNN_Case8
Launder-Sharma

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 5200

DNS
TBNN_Case8
Launder-Sharma

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 8000

DNS
TBNN_Case8
Launder-Sharma

0.0 0.2 0.4 0.6 0.8 1.0
y [m]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

U
 [m

s
1]

Re = 10000

DNS
TBNN_Case8
Launder-Sharma

Figure A.5: Superposition of Velocity Profiles: RANS with case 8 Neural Network vs.
DNS Simulations.

A| Validation Plots 83

Low-Reynolds models: Near wall region velocity comparison

10 1 100 101

y +
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

U
+

Re = 180

DNS
TBNN_Case5
TBNN_Case8
Jones-Launder

10 1 100 101

y +
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

U
+

Re = 550

DNS
TBNN_Case5
TBNN_Case8
Jones-Launder

10 1 100 101

y +
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

U
+

Re = 1000

DNS
TBNN_Case5
TBNN_Case8
Jones-Launder

10 1 100 101

y +
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5
U

+
Re = 2000

DNS
TBNN_Case5
TBNN_Case8
Jones-Launder

10 1 100 101

y +
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

U
+

Re = 4000

DNS
TBNN_Case5
TBNN_Case8
Jones-Launder

10 1 100 101

y +
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

U
+

Re = 5200

DNS
TBNN_Case5
TBNN_Case8
Jones-Launder

10 1 100 101

y +
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

U
+

Re = 8000

DNS
TBNN_Case5
TBNN_Case8
Jones-Launder

10 1 100 101

y +
0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

U
+

Re = 10000

DNS
TBNN_Case5
TBNN_Case8
Jones-Launder

Figure A.6: Superposition of Velocity Profiles: Dimensionless velocity U+ against dimen-
sionless wall distance y+ for every Reτ .

85

List of Figures

1.1 Comparison between DNS and RANS simulation outputs. 6
1.2 Development of the boundary layer for flow over a flat plate. 8
1.3 Sketch of the turbulent channel flow configuration. 14

2.1 MLP architecture. 23
2.2 TBNN architecture. 24
2.3 Diagram of data split process . 26
2.4 Pre-processing of input data . 28
2.5 Visualization of b̃ij as a function of α̃ and ỹ+, for various DNS experiments

with different Reτ . 29
2.6 Diagrams of the neural network architectures 32

4.1 Meshes of the simulations performed in this work for Reτ = 2000 41
4.2 Explicit treatment of the Reynolds tensor: Data file of the problem definition. 43
4.3 Standard k − ε model: Data file of the problem definition. 44
4.4 Low-Reynolds Neuronal k − ε model: Data file of the problem definition. . 45

5.1 Superposition of Velocity Profiles for Reτ = [550, 2000, 4000, 5200]: RANS
with Explicit Treatment of the Reynolds Tensor vs. DNS. 55

5.2 Superposition of Velocity Profiles for every Reτ : RANS with high-Reynolds
k − ε models vs. DNS. 58

5.3 Standard and neuronal k − ε models: Eq and Emax for every Reτ 59
5.4 Superposition of Velocity Profiles for Reτ = [550, 2000, 4000, 5200]: RANS

with case 5 neural network vs. DNS Simulations. 62
5.5 Superposition of Velocity Profiles for Reτ = [550, 2000, 4000, 5200]: RANS

with case 8 neural network vs. DNS Simulations. 63
5.6 Superposition of Velocity Profiles for Reτ = [550, 2000, 4000, 5200]: RANS

with case 8 neural network vs. DNS Simulations. 64
5.7 Low-Reynolds models: Eq and Emax for every Reτ 65
5.8 Anisotropic Reynolds tensor components, bij, for Reτ = 5200: Case 8 low-

Reynolds neuronal model vs. DNS . 66

86 | List of Figures

5.9 Low-Reynolds models: k comparison for Reτ = 5200. General behavior
and focus on the near-wall region. 67

5.10 Low-Reynolds models: ε comparison for Reτ = 5200. General behavior
and focus on the near-wall region. 68

5.11 Low-Reynolds models: Cµ comparison for Reτ = 5200. General behavior
and focus on the near-wall region. 69

5.12 Low-Reynolds models: νt comparison for Reτ = 5200. General behavior
and focus on the near-wall region. 69

A.1 Superposition of Velocity Profiles: RANS with Explicit Treatment of the
Reynolds Tensor vs. DNS Simulations. 78

A.2 Superposition of Velocity Profiles: RANS with neuronal k − ε model vs.
DNS Simulations. 79

A.3 Grid independence: quantitative results. 80
A.4 Superposition of Velocity Profiles: RANS with case 5 Neural Network vs.

DNS Simulations. 81
A.5 Superposition of Velocity Profiles: RANS with case 8 Neural Network vs.

DNS Simulations. 82
A.6 Superposition of Velocity Profiles: Dimensionless velocity U+ against di-

mensionless wall distance y+ for every Reτ 83

87

List of Tables

1.1 Low-Reynolds Models Parameter Selection 11

2.1 Data size at each friction Reynolds number (Reτ). 26
2.2 Hyperparameter setting. 31

3.1 k − ε Models: Differences between Standard and Neuronal. 35
3.2 Low-Reynolds k − ε Models: Differences between Classical and Neuronal. . 36
3.3 Low-Reynolds number Neuronal k − ε Model Parameters Selection 36

4.1 DNS mesh: Number of nodes along the three directions for every Reτ 42

5.1 Viscosity values, ν, relative to every Reτ . 54
5.2 Explicit treatment: Eq and Emax for every Reτ 56
5.3 High-Reynolds models: first element height, y, and dimensionless height,

y+, relative to every Reτ . 57
5.4 Convergence time: Comparison between different high-Reynolds models for

every Reτ . 59
5.5 Low-Reynolds models mesh: Number of nodes along the three directions

for every Reτ . 61
5.6 Convergence time: Comparison between different low-Reynolds models for

every Reτ . 65

89

Listings
4.1 Wall Derivative . 47
4.2 Compute y+. 47
4.3 Compute Reτ . 47
4.4 Read the pre-treating function of y+. 48
4.5 Pre-treatment of the value of y+. 48
4.6 neural network Upload. 49
4.7 neural network Prediction. 49
4.8 bNL computation with Cas5 neural network. 50
4.9 bNL assignement. 50
4.10 g1 computation. 50
4.11 Production term computation. 51

91

Acknowledgements

Here you might want to acknowledge someone.

	Abstract
	Abstract in lingua italiana
	Resumé en français
	Contents
	Context of Study
	Navier-Stokes equations for incompressible fluids
	Computational modeling
	DNS modeling
	RANS modeling

	Turbulence Models based on LEVM
	Mixing length model
	Standard k-e model
	Low-Reynolds Number k- Models

	General eddy viscosity model
	Turbulent Plane Channel Analysis
	Generalized T0

	Neural Networks in Turbulence Modeling
	Introduction to Machine Learning approaches for turbulence modeling
	Multi-Layer Perceptron
	Convolutional Neural Network
	Tensor Basis Neural Networks

	Training of low-Reynolds number model Neural Network
	Data Set
	Pre-processing
	Input parameters choice
	Neural networks

	Turbulence Models
	Explicit Treatment of the Reynolds tensor
	Implicit Treatment of the Reynolds tensor
	A High-Reynolds number neuronal model
	A low-Reynolds number neuronal model

	TRUST/TrioCFD code integration
	TRUST/TrioCFD solver introduction
	Plane Channel Problem
	Domain Discretization and Boundary Conditions
	Problem Definition

	Code Integration

	Results validation
	Explicit treatment of the Reynolds tensor
	Validation of the high-Reynolds neuronal k- model
	Validation of the low-Reynolds neuronal k- model
	Grid Independence
	Results

	Conclusions and future developments
	Bibliography
	Validation Plots
	List of Figures
	List of Tables
	Listings
	Acknowledgements

