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1. Introduction
In recent years mechanical oscillators have been
proposed as an alternative for the implementa-
tion of quantum computing. One of the proposal
for a nanomechanical qubit is a suspended car-
bon nanotube in which a double quantum dot
is integrated using gate voltages. In this work
we study one of the possible read-out methods
of this mechanical oscillator, exploiting a single
electron transistor (SET). The SET, composed
of a metallic island isolated by tunneling junc-
tions from the rest of a circuit, allows the tunnel-
ing of one electron at a time, thus in principle
being suitable for high sensitivity detection of
the oscillator displacement. Here, we compute
the back action of the SET on the oscillator,
presenting the oscillator excitation in terms of
an effective temperature. We show the exponen-
tial dependence of the effective temperature on
the voltage bias applied at the SET electrodes.
The dependence of the back action on the energy
level of the SET metallic island is displayed too.
Then, we compute the expression of the cur-
rent of the SET, retrieving the dependence on
the oscillator displacement. This computation is
done both semiclassically and with a full quan-
tum description of the oscillator-SET coupling.

We formulate the sensitivity of the SET with the
derivative of the SET conductance with respect
to the oscillator displacement. We express this
figure of merit as a function of the metallic is-
land energy level and the tunneling rates, thus
allowing to estimate the behaviour of the device
in different operational regimes, defined by pa-
rameters such as the applied voltage on the SET
and by the physical values of the oscillator-SET
system.

2. Oscillator description
Mechanical oscillators are attractive for encod-
ing information due to a variety of features.Since
any force leads to a mechanical displacement,
they show to be sensitive to a wide range of
fields. Also, they show long coherence times.
This opens up to the possibility of developing
circuits of multiple qubits, as usually the coher-
ence time collapses when multiple qubit are en-
tangled. The scaling problem is indeed one, if
not the biggest, challenge in the physical imple-
mentation of quantum circuits. In this work we
begin from the structure proposed in [1], con-
sisting of a suspended carbon nanotube whose
flexural modes are coupled to the charge state of
an integrated double quantum dot. The double
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dot is obtained thanks to multiple gates gener-
ating electrostatic potential along the nanotube
and is a key element, introducing the anhar-
monicity necessary to isolate energetically the
two lower oscillating modes. These are the two
states needed for the realization of the qubit.
The harmonic oscillator has discrete modes of
oscillations all separated by the same energy. By
introducing anharmonicity, exploiting the dou-
ble dot in this case, the energy separations be-
tween the levels are changed. In this way, the
two first modes of oscillation are made accessible
to be read-out an manipulated, thus allowing the
encoding of information in their superposition.
Note that the stronger the coupling between the
double dot and the oscillator, the stronger the
anharmonicity.
The anharmonicity also takes part in driving the
coupling between the oscillator and the read-out
method proposed by this paper. Being a charge
present in the double dot, it is suitable to in-
teract trough Coulomb’s force, coupling capaci-
tively with the SET performing the read-out.

2.1. Read-out device
A SET is composed by a metallic island, sepa-
rated by two tunneling junctions from the rest
of the circuit. Here the island is micrometric,
thus obtaining a quantum dot whose energy lev-
els are going to be discrete. The dimensions of
the dot can be adjusted in a way that only one
level is accessible to the electrons, thus allow-
ing for single electron tunneling, because of the
Pauli exclusion principle. Other than the size of
the island, one can act on the SET by chang-
ing the gate voltage that will change the energy
level of the island. Furthermore, bias voltage
can be applied to the leads of the SET inducing
different current regimes. The SET tunneling
rates describing the transport properties are in-
deed dependent on the gate and bias voltages,
and on the energy level of the central dot. One
can start from the Fermi golden rule describing
the transition rate from an initial to a final state
corresponding to a one electron transfer from the
left contact to the island, and obtain the follow-
ing tunneling rate:

Γ+
L =

2π

h̄
ρ|M |2fF [ϵ1 − ecg(Vg − VL)− ecR(VR − VL)]

(1)
Here ρ is the density of states at the Fermi level,
assumed constant and equal for both the metal
leads and M is the matrix element associated to
tunneling from the left contact to the island. fF

is the Fermi distribution function that incorpo-
rated the dependence on the energy level of the
island trough ϵ1 = ϵD + e2−2Qe

2CΣ
, where the first

term is the island energy level and the second
term is the difference in Coulomb energy of the
SET before and after the tunneling event. The
Fermi distribution also contains the dependence
on the voltage bias and the gate voltage. cg and
cR are adimensional constant relative to the ca-
pacitance in the circuit, Vg is the gate voltage,VR

and VL are the right and left lead voltages with
their difference being the bias voltage. In the
following we are going to group the constants in
Γ = 2π

h̄ ρ|M |2.
The single electron transistor is assumed to be
working in sequential tunneling regime i.e. with
the charges allowed only to go from the left lead
to the central island and then to the right lead.
To realize this configuration the gate and bias
voltage can be chosen in a suitable way.
As already stated, due to capacitive coupling be-
tween the charge in the island and the charge in
the double quantum dot, one can expect that
the device could be very sensitive to any change
in the charge of the double dot. Since any dis-
placement of the oscillator leads to a variation
of the balance between the charge of the double
quantum dot, one can detect in this way the dis-
placement of the carbon nanotube. The Hamil-
tonian of the oscillator will be:

HS = ϵDn̂− F0n̂x̂+ gcn̂σz +
ϵDD

2
σz+

t

2
σx + h̄ωma†a+ gσzx̂

(2)

where a is the destruction operator for the dis-
placement of the mechanical oscillator, ωm its
frequency, n̂ the charge operator for the single
dot, ϵD is the energy level of metallic island,
ϵDD the energy of the double dot σz and σx are
the Pauli matrices associated to the two level
system composed by the double dot, with t the
hopping energy needed for the transition from
one to the other via tunneling. Furthermore F0

and gc are the coupling of the charge state in the
SET dot with the mechanical displacement and
the charge of the single dot respectively. Lastly
g is the coupling between the double dot and the
displacement.

3. SET back action
To study the back action of the SET on the os-
cillator we started from the Langevin equation
of the oscillator [2] taking in to account the os-
cillator interaction with the SET. Exploiting the
results of the quantum linear response theory [3],
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we write the quantum noise, w.r.t. the oscilla-
tor, associated to the charge state of the dot as:

Sn(ω) =

∫ +∞

−∞
⟨n(t)n(0)⟩e−iωtdt. (3)

From this we retrieve the expression for the
damping and the fluctuations induced in the mo-
tion of the oscillator by the charge state n̂ of the
island. Once again via quantum linear response
theory we put together these results to obtain
an expression for the effective temperature pro-
voked by the back action on the oscillator.
We considered two leads being at a voltage dif-
ference V , leading to the Fermi levels being at
an energy difference −eV . Fermi distributions
in the leads will read:

fR(ϵD, V ) =
1

eβ(ϵD+eV/2) + 1
=

1

eR + 1
(4)

fL(ϵD, V ) =
1

eβ(ϵD−eV/2) + 1
=

1

eL + 1
(5)

Note that in this paper we are going to con-
sider implicit the dependence of the Fermi dis-
tributions on energy. With this assumptions we
retrieved the following equations, respectively
for damping, fluctuations and effective temper-
ature:

γ =
γ1
2
(fL(1− fL) + fR(1− fR)), (6)

SF =
S1

2
(fL + fR)(2− fL − fR), (7)

Teff

T
= 1 +

1

2

(fL − fR)
2

fL + fR − f2
L − f2

R

. (8)

where S1 = F 2
0 /4ΓmkBT and γ1 = F 2

0 /4Γ, with
m the mass of the oscillator and T the tempera-
ture. The damping is characterized by two peaks
coinciding with the Fermi levels of the two metal
leads, i.e. when at ϵD = ±eV/2, displaying a lo-
cal minimum for ϵD = 0. This local minimum
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Figure 1: Fluctuations for V1 = 2, 3.5, 5, 6.
FWHM is proportional to eV
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Figure 2: Damping for V1 = 2, 3.5, 5, 6

appears just below a certain value of the bias
voltage. Both in Figures 2 and 3 dependence of
damping and effective temperature on the en-
ergy of the dot is displayed for different values
of the adimensional parameter V1 = eV/kBT re-
lated to the bias voltage. We see that for high
voltage the damping narrows and loses the local
minimum, which turns in to a maximum. On
the other hand the effective temperature broad-
ens and its maximum increases exponentially.
Both damping and fluctuations go to zero for
|ϵD| >> eV/2. One can see that the fluctua-
tions max value does not depend on the bias
voltage applied (see Figure 1), while the FWHM
is eV . The function increases like 1 − (fR)

2 for
ϵD → −(eV/2)− and decreases like fL(2 − fL)
for ϵD → (eV/2)+. Near the zero this term
increases more or less slowly depending on V ,
reaching the maximum for ϵD = 0. The effec-
tive temperature starts from the limiting value
of T and reaches a maximum for ϵD = 0 showing
exponential behaviour around ±eV/2. We un-
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Figure 3: Teff/T for V1 = 2, 3.5, 5, 6. FWHM
here is given by kBT
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derline that the dependence of the effective tem-
perature on the voltage has an exponential na-
ture, therefore in experiments one would want to
limit the bias voltage. For eV > kBT the effec-
tive temperature rapidly increases reaching high
value at its maximum, since for energy among
zero the damping term reaches very low values,
while the fluctuation for ϵD = 0 is constant.

4. Sensitivity to displacement
4.1. Current expression
In order to evaluate the device sensitivity to dis-
placement we first had to evaluate the current
trough the SET as a function of displacement.
In doing so we carried out both a semiclassical
computation and a full quantum treatment of
the problem, both actually yielding in the end
the same result:

I =
g⟨x⟩
kBT

∫
dω

2π

ΓLΓR

ω2 + Γ
4

2 (fL(ω)(fL(ω)− 1)−

fR(ω)(fR(ω)− 1)).

(9)

Here ΓL and ΓR are the left and right lead
tunneling rates, ⟨x⟩ is the expectation value of
the position operator associated to the oscilla-
tor. Hereafter we are going to consider fL(ω) =
fR(ω) = f(ϵD − µ0 − ω) where µ0 is the chem-
ical potential of the unperturbed right and left
electrodes.

4.2. Sensitivity
From Equation 9 it was possible to evaluate the
conductance obtaining:

G = G0 − xg

∫
dω

2π

ΓLΓR

ω2 + Γ
4

2 f
′′(ϵD − µ0 − ω)

(10)

where G0 =
∫

dω
2π

ΓLΓR

ω2+Γ
4

2 f
′(ϵD − µ0 − ω), and f ′

and f ′′ are respectively the first and the second
derivative of the Fermi distribution function. To
have a measure of sensitivity we proceeded by
analyzing the derivative of conductance with re-
spect to displacement, i.e.:

∂G

∂x
= −F0

∫
dω

2π

ΓLΓR

ω2 + Γ
4

2 f
′′(ϵD − µ0 − ω) (11)

Applying the following changes in variables: y =
ω

Γ/2 , ϵ1 = ϵD−µ0

kBT ,Γ1 = Γ
kBT , so to have adimen-

sional parameters, we got:

∂G

∂x
= −F0ΓLΓR

πΓ3
Γ2
1

∫
dy

1

y2 + 1
f ′′(ϵ1 −

Γ1

2
y).

(12)

In this way have an expression composed by a
constant, S0 = −F0ΓLΓR

πΓ3 (which has the dimen-
sions of a conductance divided by a displace-
ment) times an adimensional function ∂G

∂x =
S0S(ϵ1,Γ1), with :

S(ϵ1,Γ1) = Γ2
1

∫
dy

1

y2 + 1
f ′′(ϵ1 −

Γ1

2
y). (13)

Via numerical calculation we obtained the re-
sults displayed in Figure 4, where the sensitivity
is normalized on S0. Also, we show just half
of the function since it is anti symmetric. The
maximum value of the function increases with
higher values of Γ1. This means that the lower is
the temperature the higher will be the sensitiv-
ity in detecting the fluctuations of the current.
Nonetheless, we note that for values of Γ1 higher
than 10 the increase in the maximum sensitiv-
ity steadily slows down. To better understand
this behaviour we approach the problem analyti-
cally distinguishing between two cases. It can be
calculated that for high temperatures the above
expression will be reduced to:

∂G

∂x

∣∣∣∣
Γ1≪1

= S0πΓ
2
1f

′′(ϵ1), (14)

in these conditions the Fermi distribution func-
tions appearing in the integral can be consid-
ered smooth with respect to the Lorentzian.
The maximum of this function is obtained for
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Figure 4: Device Sensitivity as a function of the
dot energy, for values of Γ1 = 1, 2, 4, 7, 12, 20, 28
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Figure 5: Max sensitivity of the device for values
of Γ1 from 0 to 1 with a 0.01 step

ϵ1 = log(2−
√
3), therefore:

∂G

∂x

∣∣∣∣
Max

= F0
ΓLΓR

Γ3

Γ2
1

6
√
3
=

ΓLΓR

Γ(kBT )2
F0

6
√
3
,

(15)

Note that for very high temperature the absolute
value of the max sensitivity follows a quadratic
relation with respect to Γ1 (see Figure 5). This
case in interesting because it corresponds to con-
ditions realized experimentally.
For very low temperatures, on the other hand,

the Fermi distribution functions could be con-
sidered peaked and, integrating per parts, we
obtain:

∂G

∂x

∣∣∣∣
Γ1≫1

= S0
8(ϵ1/

Γ1
2 )

(1 + (ϵ1/
Γ1
2 )2)2

(16)

A scent of the behaviour of sensitivity for low
temperature can be obtained from Figure 6, in
the region for which Γ1 > 10. This expression
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Figure 6: Max sensitivity of the device for values
of Γ1 from .5 to 28.5 with a 1 step

has its global maximum for ϵ1 = Γ1/2
√
3, lead-

ing to:

∂G

∂x

∣∣∣∣
Max

=
3
√
3

2
S0 =

3
√
3

2π
F0

ΓLΓR

Γ3
(17)

The value of the maximum sensitivity does not
depend on temperature in agreement with the
behaviour of the sensitivity function for high val-
ues of Γ observed in numerical results. The max-
imum sensitivity achievable therefore depends
on physical values characteristic of the system
i.e. the coupling F0 and the tunneling rates.
As expected, the max sensitivity is also propor-
tional to the coupling constant in both the lim-
iting conditions.

5. Conclusions
In conclusion we studied the sensitivity and the
back-action, of the oscillator-SET system. This
will allow for the tuning of the main parame-
ters, so to obtain any configuration at will. Fu-
ture developments could include the study of the
noise associated to conductance. Another possi-
ble development is the study of the second order
quantum treatment which may lead to a differ-
ent expression for current with respect to the
semi classical one.
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