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Chapter 1 

Introduction 
 

In recent years, with the rapid development of microwave technologies, 

wireless communication systems have developed vigorously. As a frequency 

selection device, microwave filter is a very important part of modern 

microwave communication systems. The performance of microwave filters 

directly affects the entire communication systems. As the electromagnetic 

environment becomes more and more complex and frequency congestion 

becomes more and more serious, higher and stricter requirements are set for 

microwave filters. Therefore, how to design a filter with high stopband 

suppression, wide frequency band, in-band flatness and narrow transition 

band has become a topic of concern. 

Microwave filters can be generally divided into two kind: all-pole filters and 

filters with transmission zeros. All-pole filters include Butterworth filter, 

Chebyshev filter, ellipse filter, etc. Filters with transmission zeros mainly 

include cross-coupling filters and extracted-pole filters. 

Extracted-pole filters are widely used nowadays for several reasons. Firstly, as 

a filter with transmission zeros, an extracted-pole filter can introduce 

transmission zeros in the stop band, which could lead to a steep out-of-band 

suppression and a narrow transition band. Secondly, compared with cross-

coupling filters, extracted-pole filters become especially good when we need 

many transmission zeros. It is because that when the number of transmission
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zeros is large, a cross-coupling filter will have problem with geometrical 

control, complex layout and spurious coupling. Thirdly, it is important that an 

extracted-pole filter has an inline (quasi-inline) configuration, which has 

opposite input and output, reducing the direct feedthrough and making it easy 

to realize channel filters in combiners and multiplexers. 

In conclusion, the thesis will introduce a design approach of extracted-pole 

filters based on coaxial technology. It is then divided as follows: 

In chapter 2, the general concepts of microwave filters are introduced, 

including the definition and main parameters of a microwave filter, 

classifications of filters by different means, all-pole filters and filters with 

transmission zeros from the initial technical specification.01 

In chapter 3, firstly the Chebyshev transfer function polynomials 

approximation is introduced. Then details about the synthesized extracted-

pole prototype filters are shown, including general configuration, basic 

components, transformation algorithm. Finally the de-normalization 

procedure is introduced step by step, until we get the equivalent circuit suitable 

for physical implementation. 

In chapter 4, we will discuss all the steps taken in order to realize an extracted-

pole band-stop filter in a coaxial cavity structure, from the initial requirements 

to the geometrical dimension of final physical filter. A general method of 

geometrical dimension is introduced particularly. 

In chapter 5, the discussion of the results obtained is reported.  
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Chapter 2 

Generality on Microwave Filters  

 

In this chapter, we will discussion the general concepts of microwave filters, 

including necessary basics of filters, different kinds of microwave filters, 

structure and design of all-pole filters and filters with transmission zeros. 

 

2.1      Two-Port Networks 

A microwave circuit can be represented as a network. Considering a microwave 

filter, it can be considered as a 2-port junction network, which operates on 

signals in the gigahertz frequency ranges [1], as shown in Fig.2.1. 

 

 

Figure 2.1: The parameter of two-port networks 
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To analyse microwave circuits, the most commonly used parameter matrices 

are[𝑍] impedance matrix,[𝑌] admittance matrix, [𝑆]scattering matrix, and [𝑇] 

transmission matrix. Actually, though these four kinds of parameter matrix are 

defined by different physical meanings, they can be transformed into each 

other. We discuss mainly [𝑍] impedance matrix and [𝑆] scattering matrix of a 

two-port network in the following.  

Referring to the figure of two-port network above, we can describe the 

relationship between voltage and current through [𝑍]impedance matrix:  

 

[
𝑉1

𝑉2
] = [

𝑍11 𝑍12

𝑍21 𝑍22
] [

𝐼1

𝐼2
]                                           (2.1) 

 

The corresponding physical meaning are: 

 

𝑍11 =
𝑉1

𝐼1
|

𝐼2=0
𝑍12 =

𝑉1

𝐼2
|

𝐼1=0
𝑍21 =

𝑉2

𝐼1
|

𝐼2=0
𝑍21 =

𝑉2

𝐼1
|

𝐼2=0
               (2.2) 

 

scattering matrix describes the relationship between incident and reflected 

normalized voltage/current waves at two ports. Considering the 2-port 

network in the figure above, we have: 

 

[
𝑉1

−

𝑉2
−] = [

𝑆11 𝑆12

𝑆21 𝑆22
] [

𝑉1
+

𝑉2
+]                                        (2.3) 

 

The corresponding physical meaning are
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𝑆11 =
𝑉1

−

𝑉1
+|

𝑉2
+=0

𝑆22 =
𝑉2

−

𝑉2
+|

𝑉1
+=0

𝑆12 =
𝑉1

−

𝑉2
+|

𝑉1
+=0

𝑆21 =
𝑉2

−

𝑉1
+|

𝑉2
+=0

          (2.4) 

 

[𝑆]  scattering matrix is the most commonly used matrix in the design of 

microwave filter since it is easy to measure from network. What’s more, when 

we have already got [𝑆] scattering matrix, it is convenient to compute the other 

parameter matrix from [𝑆]. 

The main technical parameters for the design of filter are listed as following: 

Return loss: Return loss is defined as the ratio of the reflected wave power to 

the incident wave power at the port of the transmission line. For simplicity, 

return loss is often expressed as a ratio in decibels(𝑑𝐵) 

 

𝑅𝐿(𝑑𝐵) = 10 𝑙𝑜𝑔10
𝑃𝑖

𝑃𝑟
= 10𝑙𝑜𝑔10|𝑆11|2                         (2.5) 

 

Insertion loss: Insertion loss is defined as the loss due to the insertion of a 

device into a transmission line.  For simplicity, insertion loss is often expressed 

as a ratio in decibels (𝑑𝐵). 

 

𝐼𝐿(𝑑𝐵) = 10 𝑙𝑜𝑔10
𝑃𝑇

𝑃𝑅
= 10𝑙𝑜𝑔10|𝑆21|2                      (2.6) 

 

Bandwidth: It is usually defined as the difference between upper and lower 

frequency within a passband (or stopband). 

Quality factor: It is usually defined as the ratio of the energy stored in the 

resonator to the energy dissipated per cycle. 

Group delay: We define group delay to quantify the requirements on the phase 

linearity. Group delay is the deviation from the linear phase dependence, it is 

defined with 𝜙 phase of 𝑆21: 
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𝜏𝐺𝐷 = −
𝑑𝜙(𝜔)

𝑑𝜔
                                              (2.7) 

 

Then we can translate the specification of phase linearity in requiring a 

maximum percentage variation of group delay within the band. 

Central frequency: It is usually defined as the midpoint between two 3dB 

points of a band-pass filter (or band-stop filter) and is usually represented by 

the arithmetic average of the two 3𝑑𝐵 points. 

 

2.2      Classification of Filters 

There are different ways to classify microwave filters, for example, 

classification by structure, classification by the width of passbands, 

classification by operation ways. 

2.2.1      Classification by Amplitude-Frequency Characteristic 

Considering amplitude-frequency characteristic, we can classify microwave 

filters into four general categories which are shown in the following: 

• Low-pass filter: allows signal below cut-off frequency pass, otherwise large 

signal attenuation exists, as shown in Fig.2.2. 

• High-pass filter: allows signal above cut-off frequency pass, otherwise 

large signal attenuation exists, as shown in Fig.2.3. 

• Band-pass filter: allows signal in a specific band pass, otherwise large 

signal attenuation exists, as shown in Fig.2.4. 

• Band-stop filter: allows signal except a specific band pass, while large 

signal attenuation exists in this specific band, as shown in Fig.2.5.
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Figure 2.2: Type of filters by amplitude-frequency characteristic 

 

Figure 2.3: Type of filters by amplitude-frequency characteristic 

 

Figure 2.4: Type of filters by amplitude-frequency characteristic 

 

Figure 2.5: Type of filters by amplitude-frequency characteristic
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2.2.2     Classification by Structure and Technology 

Considering filter structures and technology, several kinds of microwave filters 

are shown in the following 

（1）Lumped-element LC filter 

When the physical dimension of a circuit network is much smaller than the 

electrical wavelength of signal, which means the signal frequency is not too 

large, a lumped-element LC filter can be used. To be more specific when the 

signal frequency is larger than 1GHz, which means the physical dimension is 

comparable with electrical wavelength, distribution parameter effect will 

significantly decrease the performance of the filter. 

（2）Planar filter 

Planar filters are created with flat 2D resonators with pattern of strip on a 

dielectric substrate. Considering different transmission lines to make 

resonators, there are different kinds of planar filters, such as stripline, 

microstrip and coplanar waveguide. Planar filters have operating frequency 

among MHz to GHz, and Q factor is related with filter materials. 

（3）MEMS (Micro-Electro-Mechanical System) filter 

MEMS filter is a microwave filter manufactured based on MEMS technology. 

MEMS technology can realize the integration of microwave passive devices 

without sacrificing device performance. Microwave filters based on MEMS 

technology not only have excellent frequency selection ability and low 

insertion loss, but also have much smaller size than traditional microwave 

filters. 

（4）Cavity filter 

A cavity filter is a filter based on resonant cavity, which can be considered as a 

capacitor in parallel with an inductor. There are several kinds of cavity filters 

due to their different structures and materials. 
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• Coaxial cavity filter 

Coaxial cavity filters are widely used since they have advantages of high Q 

value, good electromagnetic shielding, low loss and small size. The design of a 

coaxial cavity filter has large freedom. For example, the structure of resonant 

cavity could be either round or square. Also coaxial cavity filters can easily 

achieve cross-coupling between non-adjacent cavities to get multiple 

asymmetrical out-of-band attenuation poles. 

• Waveguide filter 

Waveguides are hollow metal conduits, in which electromagnetic waves can be 

transmitted. The resonant cavities in waveguide filters are based on a short 

length of waveguide blocked at both ends. Waveguide filters have high Q 

values, low insertion loss, and they are easy to be manufactured. However, as 

a kind of transmission line filters, waveguide filters have multiple passbands 

due to the intrinsic property of transmission line filters, but usually only the 

lowest frequency passband is useful, and the other passband may damage the 

performance of the filter. 

• Comb filter 

In a comb filter, the resonators are made of capacitive load metal rods of 

various wavelengths. The comb filter is usually implemented by a Chebyshev 

function. Its main characteristics are small size, low loss, moderate Q value, 

and the parasitic passbands are usually far away from the lowest passband. 

• Helical filter 

Helical filters are based on helical resonators, which is similar to 1 4⁄  

wavelength coaxial line resonator. The spiral resonator is actually a special 

kind of coaxial cavity. The difference between them is that the inner conductor 

of helical resonator is a spiral, while the one of the coaxial cavities is straight. 

The main characteristics of helical filters are small size, high Q value, and they 

are easy to be manufactured.  
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2.3      Normalized Low-pass Frequency Domain 

Actually, we perform the synthesis of filter in a normalized low-pass domain, 

which is defined by frequency transformations. Then we can de-normalize the 

circuit synthesized in the low-pass domain through appropriate circuit 

transformation. Consequently, we should firstly transform the specification of 

filters in the initial frequency domain to that in the normalized low-pass 

domain. 

We define Ω as the frequency variable in the normalized low-pass domain, 𝜔 

as the frequency variable in the initial frequency domain, the frequency 

transformation of four basic filters is reported as follows: 

• Low-pass filter 

Ω =
𝜔

𝜔𝑐
                                                        (2.8) 

• High-pass filter: 

Ω =
𝜔𝑐

𝜔
                                                        (2.9) 

• Band-pass filter: 

Ω =
𝜔0

Δ𝜔
(

𝜔

𝜔0
−

𝜔0

𝜔
)                                           (2.10) 

• Band-stop filter: 

Ω =
1

𝜔0
Δ𝜔

(
𝜔

𝜔0
−

𝜔0
𝜔

)
                                             (2.11) 

 

Where 𝜔𝑐  represents unnormalized cut-off frequency, 𝜔0 = √𝜔1𝜔2  

represents band centre frequency, ∆𝜔 = 𝜔2 − 𝜔1  represents 

passband/stopband bandwidths. 

With the frequency transformation equation above, we can easily derive the 

frequency characteristics in the normalized low-pass domain. The next step is 

to choose an approximant function that satisfying the frequency 

characteristics in the normalized low-pass domain.
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𝐴(Ω) = 1 + 𝜀2𝐶𝑛
2(Ω)                                          (2.12) 

 

Where 𝐴(Ω) is attenuation in the normalized low-pass domain, 𝜀 defines the 

maximum losses ( Ω = ±1, |𝐶𝑛| = 1, 𝐴𝑚𝑎𝑥 = 1 + 𝜀2) , 𝐶𝑛  is characteristic 

function of filter that defines the approximation of ideal filter response 

(specification).  

With 𝑠 = 𝑗Ω,  𝐶𝑛(𝑠) can be expressed as the ratio of two polynomials: 

 

𝐶𝑛(𝑠) =
𝐹(𝑠)

𝑃(𝑠)
                                                (2.13) 

 

The roots of 𝐹(𝑠) are called reflection zeros, deriving 𝐴 = 1.The roots of 𝑃(𝑠) 

are called transmission zeros. When 𝑃(𝑠) = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, which means there is no 

transmission zeros, we call them all-pole filters. 

 

2.4      All-Pole Filter 

（1）Butterworth filter 

Butterworth filter is also called maximally flat filter. It is due to that 

Butterworth filter requires the maximum flatness in the passband with no 

ripple. The characteristic function is defined as: 

 

𝐶𝑛(Ω) = Ω𝑛                                               (2.14) 

 

（2）Chebyshev filter 

Chebyshev filter is a filter with equal ripple fluctuations in the passband. The 

characteristic function is defined as: 
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𝐶𝑛(Ω) = {
cos(𝑛 ∙ cos−1(Ω))                   |Ω| ≤ 1

cosh(𝑛 ∙ cosh−1(Ω))               |Ω| > 1
                  (2.15) 

With |𝐶𝑛(±1)|2 = 1. 

 

As shown above, the order of filter is needed to be determined, which is related 

with the filter specification. 

 

𝑛 ≥
𝐴𝑀+𝑅𝐿

20 log(Ω𝑠)
                 𝐵𝑢𝑡𝑡𝑒𝑟𝑤𝑜𝑟𝑡ℎ 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐             (2.16) 

𝑛 ≥
𝐴𝑀+𝑅𝐿+6

20 log(Ω𝑠)+6
          𝐶ℎ𝑒𝑏𝑦𝑐ℎ𝑒𝑓𝑓 𝑐ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐                (2.17) 

 

where RL is passband return loss, 𝐴𝑀  is stopband minimum attenuation,  Ω𝑠  

is cut-off frequency in the normalized low-pass domain.  

 

2.5      Synthesis and De-normalization of Low-Pass 

Prototype 

After determining the type and order of low-pass prototype, we can easily derive 

the corresponding characteristic function. Then we can perform the synthesis 

of low-pass prototype, as shown in Fig.2.6. 

 

Figure 2.6: Synthesized filter of low-pass prototype
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For Butterworth filter, we have: 

 

𝑟𝑛 = 1                                                       (2.18) 

𝑔𝑞 = 2𝑎𝑞 √𝜀
𝑛

                                                 (2.19) 

𝑎𝑞 = sin (
(2𝑞−1)𝜋

2𝑛
)                                          (2.20) 

 

For Chebyshev filter, we have: 

 

𝑟𝑛 = 1(𝑛 𝑜𝑑𝑑)                                               (2.21) 

𝑟𝑛 = [√1 + 𝜀2 − 𝜀]
2

 (𝑛 𝑒𝑣𝑒𝑛)                                (2.22) 

𝑔1 =
2𝑎1

𝛾
                                                   (2.23) 

𝑔𝑞 =
4𝑎𝑞−1∙𝑎𝑞

𝑏𝑞−1∙𝑔𝑞−1
                                              (2.24) 

𝑎𝑞 = sin (
(2𝑞−1)𝜋

2𝑛
)                                       (2.25) 

𝛾 = sinh (
1

2𝑛
ln (

√1+𝜀2+1

√1+𝜀2−1
))                                 (2.26) 

𝑏𝑞 = 𝛾2 + sin2 (
𝑞𝜋

𝑛
)                                      (2.27) 

 

Compared to Butterworth filters, Chebyshev filters are sharper and have better 

selectivity index. With the same filter order, the most important advantage is 

that Chebyshev filters minimize the error between the ideal and the actual filter 

characteristic over the range of the filter. Then we choose Chebyshev filters in 

the following analysis.
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It is necessary to have only series or shunt resonators and it is obtained by the 

introduction of impedance(admittance) inverters. The two models (which 

actually are equivalent) are successively shown in Fig.2.7: 

 

 

Figure 2.7: Low-pass prototype containing only series/shunt resonators 

 

In figure (a), it contains only impedance inverters and series inductance. 

 

𝐾0,1 = √
𝑅0𝐿𝑎1

𝑔0𝑔1
, 𝐾𝑖,𝑖+1 = √

𝐿𝑎𝑖𝐿𝑎,𝑖+1

𝑔𝑖𝑔𝑖+1
(𝑖 = 1 ⋯ 𝑛 − 1), 𝐾𝑛,𝑛+1 = √

𝐿𝑎𝑛𝑅𝑛+1

𝑔𝑛𝑔𝑛+1
    (2.28) 

In figure (b), it contains only admittance inverters and shunt capacitance. 

 

𝐽0,1 = √
𝐺0𝐶𝑎1

𝑔0𝑔1
, 𝐽𝑖,𝑖+1 = √

𝐶𝑎𝑖𝐶𝑎,𝑖+1

𝑔𝑖𝑔𝑖+1
(𝑖 = 1 ⋯ 𝑛 − 1), 𝐽𝑛.𝑛+1 = √

𝐶𝑎𝑛𝐺𝑛+1

𝑔𝑛𝑔𝑛+1
      (2.29) 

 

What’s more, the introduction of inverters brings an increase in degrees of 

freedom (inverters or resonators parameter). There are usually two particular 

solutions.
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All inverter parameters are the same value, then all resonators parameters are 

different from each other. 

All resonator parameters are the same value, then all inverters parameters are 

different from each other. 

The next step is de-normalization of the low-pass prototype shown above. At 

circuit level, we can transform the components (capacitor, inductor) in the 

normalized low-pass prototype into the components in the de-normalized 

frequency domain, as shown in Tab.2.1. 

 

 

Table 2.1: Transformation of components at circuits level 

 

Until now we have got the equivalent circuit suitable for implementation. In 

Fig.2.8 we take a band-pass filter as an example. 

 

Figure 2.8: Equivalent circuits containing inverter of a de-normalized band-

pass filter
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The last step is to choose a suitable implementation technology and translate 

the equivalent circuit into a physical filter.  

For more clarity, a flow chart about a general process from requirements to a 

final physical microwave filter is shown in Fig.2.9. 

 

 

Figure 2.9: A general process from requirements to a final physical 

microwave filter (all-pole filters) 

 

2.6      Filters with Transmission Zeros 

When we need to satisfy very strict requirements, we have two choices. The first 

choice is to increase the filter order, but it will increase the number of 

resonators at the same time. Consequently, this choice will increase the filter 

volume, and insertion loss, which damages the filter performance.  

The second choice is to introduce transmission zeros in the stop band, in 

proximity of the passband. These transmission zeros will increase the slope of 

the in-band attenuation curve and reduce the transition domain, which allow 

engineers to satisfy strict requirements with lower filter order. 
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However, Butterworth and Chebyshev filters characteristics do not exhibit 

transmission zeros. So we introduce two kinds of filter called cross-coupled 

filter and extracted-pole filter. They allow the introduction of transmission 

zeros in the stop band. 

What’s more, we cannot apply the synthesis method of all-pole filters directly 

in this kind of filters. The reason is that the synthesis method of all-pole filters 

is based on the symmetry in the bandpass domain, while filers with 

transmission zeros presents an asymmetric response. Consequently, a new 

synthesis method is needed. 

 

2.6.1      Cross-Coupled Filter 

It is called cross-coupled filter because this kind of filter introduces 

transmission zeros through suitable coupling between non-adjacent nodes, 

which allows the signal of particular frequencies to reach the output nodes, as 

shown in Fig.2.10. 

 

Figure 2.10: Cross-coupling network 

 

For simplicity, we can represent s cross-coupled filter with “nodes” and “lines”. 

A node represents a capacitor in parallel with a frequency-invariant 

susceptance. A line represents an admittance inverter. In Fig.2.11 an example 

is shown. 
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Figure 2.11: Conventional representation of a cross-coupled prototype 

network 

 

To determine the maximum number of transmission zeros, it is necessary to 

introduce a concept called “minimum path rule”: The maximum number of 

transmission zeros (nz) is equal to the prototype order (n) minus the number 

of nodes touched for going from the source to the load (np).  

 

𝑛𝑧 = 𝑛 − 𝑛𝑝                                             (2.30) 

 

In the example shown above, n=8, n=4, so nz=4. The maximum number of 

transmission zeros is 4. 

To satisfy a very strict requirement or get a good performance, we can increase 

the number of introduced transmission zeros. The maximum number is equal 

to the number of poles, which is also the filter order. When it happens, we call 

this kind of filter “fully canonical filter”. 

In Fig.2.12 the most important canonical prototypes.
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Figure 2.12: Different kinds of canonical prototypes 

 

It is worth to mention that not all the couplings are different from zero except 

transversal prototype. As shown in the figure above, there are two kinds of 

couplings: the ones connecting sequential nodes called direct-couplings, and 

the ones connecting not-consecutive nodes called cross-couplings. 

Concerning the synthesis of canonical prototypes, we can perform direct 

synthesis of canonical prototypes with the help of coupling matrix. Coupling 

matrix can also help us transform one kind of canonical prototype to another. 

However, canonical prototypes are not used in the practice due to several 

reasons. One important reason is that there are too many couplings from load 

or source and there are too many couplings affecting transmission zeros.  

Actually, we can refer to non-canonical prototypes. There are different kinds 

of non-canonical prototypes, for example, cascaded-block, box section, cul-de-

sac, etc.   

For cascaded-block technology, the main blocks shown in Fig.2.13 are the 

triplet (extracting 1 transmission zero) and quadruplet (extracting 2 

transmission zeros). When cascading the blocks, we should pay attend that 

each block can only share one node. 
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Figure 2.13: Main blocks of cascaded-block technology 

 

The maximum number of transmission zeros allowed by cascaded-technology 

depends on whether source and load are used for cross-coupling. 

Source and load are not used for cross-coupling 

 

𝑛𝑧𝑚𝑎𝑥 =
𝑛

2
(𝑛 𝑒𝑣𝑒𝑛), 𝑛𝑧𝑚𝑎𝑥 =

𝑛−1

2
(𝑛 𝑜𝑑𝑑)                 (2.31) 

 

Source and load are used for cross-coupling. 

 

𝑛𝑧𝑚𝑎𝑥 =
𝑛+2

2
(𝑛 𝑒𝑣𝑒𝑛), 𝑛𝑧𝑚𝑎𝑥 =

𝑛+1

2
(𝑛 𝑜𝑑𝑑)                 (2.32) 

 

For box section configuration shown in Fig.2.14, the maximum number of 

allowed transmission zeros is (𝑛 − 2)/2. 

 

 

Figure 2.14: Box section technology 
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For cul-de-sac configuration shown in Fig.2.15, the maximum number of 

allowed transmission zeros is (𝑛 − 3). 

 

 

Figure 2.15: Cul-de-sac technology 

 

2.6.2      Extracted-Pole Filter 

This technology becomes especially good when we need many transmission 

zeros. For cross-coupled filters, when we need many transmission zeros (larger 

than half of order), each transmission zero will be affected by many other 

couplings, which is hard to control.  

It is worth to mention that extracted-pole filter is a essentially in-inline 

topology. With an inline topology, input and output is opposite, then we can 

reduce the direct feedthrough and make it easy to realize channel filters in 

combiners and multiplexers. 

Extracted-pole filters realize transmission zeros through the use of non-

resonant nodes connecting with resonators. Each pair of a non-resonator node 

and a resonator will realize a transmission zero, as shown in Fig.2.16. 

 

 

Figure 2.16: Conventional representation of an extracted-pole prototype 

network 
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The black one is a resonator, another is NRN, and the line represents an 

inverter. In the figure shown above, there are obviously three transmission 

zeros. 

NRN is frequency-invariant reactance (susceptance). On one hand, it brings 

convenience because the synthesis of filters with NRN can be performed in low 

pass domain and de-normalization will not change the values of NRNs. Then 

we can directly perform synthesis method on lowpass prototype.  

One the other hand, since the coupling between NRNs cannot be related to the 

eigenmodes of the coupled physical structure, the existence of NRN makes the 

coupling matrix not meaningful. Consequently, the synthesized method 

through reconfiguration of coupling matrix cannot be used. We need to use 

some typical synthesized methods. 

The number of synthesized equivalent circuits could be infinite, which is 

intrinsically redundant. But the filter response is determined by a set of 

universal parameters whose number is lower than the circuits variables. 

Generalized coupling coefficients (GCC) represents these universal parameters 

[2]: 

 

𝑘𝑖,𝑗 =
𝐽𝑖,𝑗

√𝐵𝑖⋅𝐵𝑗
,  𝑘𝑆1 =

𝐽𝑆1
2

𝐵1
,  𝑘𝑁𝐿 =

𝐽𝑁𝐿
2

𝐵𝑁
                            (2.33) 

Where 

 

𝐵𝑖 = {
|𝐵𝑁𝑅,𝑖|              (𝑁𝑜𝑛𝑟𝑒𝑠𝑜𝑛𝑎𝑛𝑡 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒)

𝐵𝑒𝑞,𝑖                     (𝑅𝑒𝑠𝑜𝑛𝑎𝑛𝑡 𝑠𝑢𝑠𝑐𝑒𝑝𝑡𝑎𝑛𝑐𝑒)
              (2.34) 

It is worth mentioning that 𝐵𝑒𝑞, 𝑖 is defined as usual. i.e. 

 

𝐵𝑒𝑞,𝑖 = (1 2⁄ )(𝜕𝐵𝑟𝑖𝑠,𝑖 𝜕𝜔⁄ )|
𝜔=𝜔0

                            (2.35) 

 

𝐵𝑟𝑖𝑠,𝑖(𝜔) represents the total susceptance of the i-th resonator. 



2.6 Filters with Transmission Zeros 

29 

 

GCC links the synthesized equivalent circuit with the geometric dimensions of 

the physical structure. 

So far, we have a general approach to design an extracted-pole filter with non-

resonating nodes. The flow chart is shown in Fig.2.17: 

 

 

Figure 2.17: A general process of the design of an extracted-pole filter 
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Chapter 3 

Design of extracted-pole prototype 

filters 

 

In this chapter, firstly the evaluation of characteristic polynomials is 

discussed. Then details about the synthesized extracted-pole prototype 

filters are introduced, including general configuration, basic components, 

transformation algorithm. Finally the denormalization procedure is 

introduced step by step, until we get the equivalent circuit suitable for 

physical implementation. 

 

3.1      Evaluation of Characteristic Polynomials 

To start the design of filter, we use generalized Chebyshev function to have 

equal ripple. Actually when the filter order and transmission zeros are 

determined (for a bandpass filter), the response of a generalized 

Chebyshev filter is determined. For a bandstop filter, filter order and 

reflection zeros will determine the filter response (which will be discussed 

in chapter 4, here we take bandpass filter as an example). Consequently
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 the first step is to derive the filter order and transmission zeros from the 

initial requirements in the normalized low pass domain. Then with the 

filter order and required transmission zeros suitably assigned, we can 

compute the characteristic polynomials of the normalized low-pass 

prototype. This step is called “synthesis of characteristic polynomials”. The 

detailed algorithm is introduced in the literature [6]. Here we will make a 

brief introduction to the general concept. 

The generalized Chebyshev characteristic function is: 

 

𝐶𝑛(Ω) = {
cos [(𝑛 − 𝑛𝑧) cos−1(Ω) + ∑ |𝑅𝑒 {cos−1 (

1−Ω∙Ω𝑧,𝑘

Ω−Ω𝑧,𝑘
)}|

1,𝑛𝑧
𝑘 ]          |Ω| ≤ 1

cosh [(𝑛 − 𝑛𝑧) cosh−1(Ω) + ∑ |𝑅𝑒 {cosh−1 (
1−Ω∙Ω𝑧,𝑘

Ω−Ω𝑧,𝑘
)}|

1,𝑛𝑧
𝑘 ]   |Ω| > 1

(3.1) 

 

Ω𝑧,𝑘 are the assigned transmission zeros. 

For a bandpass filter, firstly we assign the filter order n and number and 

location of transmission zeros. Then we could get the generalized 

Chebyshev filtering function 𝐶𝑛(Ω). Given 𝐶𝑛(Ω), we can now perform the 

evaluation of the characteristic polynomials: 

 

𝐶𝑛(𝑠) =
𝜀

𝜀′

𝐹(𝑠)

𝑃(𝑠)
                                             (3.2) 

 

Where the constant 𝜀′ is computed by RL: 

 

|𝜀′|2 =
10−𝑅𝐿 10⁄

1−10−𝑅𝐿 10⁄                                           (3.3) 

 

Assuming the polynomials 𝑃(𝑠) and  𝐹(𝑠) monic (max degree coefficient 

equal to one), the constant 𝜀 is given by: 
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𝜀 = 𝜀′|𝑃(±𝑗)/𝐹(±𝑗)|                                      (3.4) 

 

Since 𝑧𝑃𝑘 = 𝑗Ω𝑧,𝑘, 𝑧𝑃𝑘 are the roots of 𝑃(𝑠), which must be imaginary or 

complex pairs with opposite real part. Then 𝐶𝑛(Ω) can be expressed in 

terms of the roots of  𝑃(𝑠) and  𝐹(𝑠) 

 

𝐶𝑛(Ω) =
𝜀

𝜀′

∏ (Ω−𝑧𝐹𝑘 𝑗⁄ )𝑛
𝑘=1

∏ (Ω−𝑧𝑃𝑘 𝑗⁄ )
𝑛𝑧
𝑘=1

                                    (3.5) 

 

Then we can generate the vector: 

 

𝐹′(Ω𝑖) = 𝐶𝑛(Ω𝑖) ∙ ∏ (Ω𝑖 − 𝑧𝑃𝑘 𝑗⁄ )𝑛𝑧
𝑘=1                      (3.6) 

 

We can find the coefficient of polynomial 𝐹′(Ω) by fitting 𝐹′(Ω𝑖) with a 

polynomial of order n. Then we could find the roots Ω𝐹,𝑘 of 𝐹′(Ω) with the 

following equation: 

 

Ω𝐹,𝐾 =
𝑧𝐹𝐾

𝑗
→ 𝑧𝐹𝐾 = 𝑗Ω𝐹,𝐾                               (3.7) 

 

Finally, we can generate the characteristic polynomials from their roots 

(𝑧𝑃𝑘, 𝑧𝐹𝑘). What’s more, it is worth mentioning that if 𝑛 − 𝑛𝑧 is even, 𝑃(𝑠) 

must be multiplied by 𝑗. 

Until now, the evaluation of polynomials is done and we have already 

obtained the characteristic polynomials that defines the required response 

in the normalized low-pass domain.  
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To get the scattering parameters, we should additionally define another 

polynomial through Feldtkeller equation, 𝐸(𝑠)  is defined once 𝑃(𝑠)  and 

𝐹(𝑠) are known: 

 

𝑃(𝑠)𝑃(𝑠)∗

𝜀2
+

𝐹(𝑠)𝐹(𝑠)∗

𝜀𝑟
2 = 𝐸(𝑠)𝐸(𝑠)∗                     (3.8) 

 

Then we can derive the scattering parameters from the characteristic 

polynomials. 

 

𝑆11(𝑠) =
𝐹(𝑠) 𝜀𝑅⁄

𝐸(𝑠)
, 𝑆21 =

𝑃(𝑠) 𝜀⁄

𝐸(𝑠)
, 𝑆22(𝑠) =

𝐹2(𝑠) 𝜀𝑅⁄

𝐸(𝑠)
             (3.9) 

 

When 𝑛𝑧 < 𝑛: 𝜀𝑅 = 1  

When 𝑛𝑧 = 𝑛(𝑓𝑢𝑙𝑙𝑦 𝑐𝑎𝑛𝑜𝑛𝑖𝑐𝑎𝑙 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) 

 

𝜀𝑟 =
𝜀

√𝜀2−1
                                            (3.10) 

 

With obtained scattering parameters of the characteristic polynomials, 

since we have chosen to realize an extracted-pole filter, we could now 

perform the synthesis of inline extracted-pole topology. 

 

3.2      General Configuration of Extraction with 

NRN 

Actually the synthesis of the low-pass prototype called “extracted-pole 

filters” is based on the subsequent extraction of the circuit elements from
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 the [ABCD] matrix evaluated by the characteristic polynomials obtained 

from the requirements, as shown in Fig.3.1. 

 

 

Figure 3.1: Subsequent extraction of the circuit elements from the 

[ABCD] matrix 

 

It is worth mentioning that extraction of transmission zeros (what we call 

“extracted poles”) must be suitably prepared by extracting before a 

frequency invariant component.  

Then we have generally two basic approach for the synthesis of the low-

pass prototype of the extracted-pole filter: extraction of zeros by phase 

shifters and extraction of zeros by non-resonating nodes (NRN). 

Actually, a NRN is a node connected to ground through a frequency-

invariant reactance. Obviously a NRN can be also represented as a 

frequency-invariant susceptance with value 𝐵𝑛𝑟𝑛  (positive or negative). 

The introduction of NRNs in circuits brings several benefits, as shown in 

Fig.3.2.  

 

 

Figure 3.2: frequency-invariant susceptance with value 𝐵𝑛𝑟𝑛 
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Firstly, there is not a typical limit on the number of NRNs in a circuit since 

it will not affect the filter order, which means that NRNs allows to increase 

the number of transmission zeros for a given number of resonators (given 

order of a filter). Secondly, since NRNs are frequency-invariant, de-

normalization will not change the value of NRNs. Consequently, the 

synthesis of filters with NRNs can be performed in the low pass domain. 

However, we should pay attention that the coupling matrix is not 

meaningful with the introduction of NRNs. 

The general configuration of extraction with NRN is shown in Fig.3.3: 

 

 

Figure 3.3: General configuration of extraction with NRN 

 

𝐵𝑛𝑟𝑛 represents non-resonating elements, 𝑅𝑒𝑠 represents resonators, the 

coupling elements are phase shifters 

 The resonators in the figure can be either series resonators or shunt 

resonators. They are represented with equivalent slope parameter: 

 

𝑋𝑒𝑞 = 𝜔𝑟𝑖𝑠𝐿(𝑠𝑒𝑟𝑖𝑒𝑠)               （3.10） 

𝐵𝑒𝑞 = 𝜔𝑟𝑖𝑠𝐶(𝑠ℎ𝑢𝑛𝑡)                               （3.11） 

 

and resonating frequency 𝑓𝑟𝑖𝑠. 
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The phase shifters are approximated by a transmission line with 

characteristic impedance 𝑍𝑐 and electrical length 𝜙 = 𝛽𝐿. When 𝜙 = 90°, 

the phase shifters become impedance inverters for series models with 𝐾 =

𝑍𝑐 , which can be also considered as an admittance inverter for shunt 

models.  

 

3.3      Synthesis of the Low-Pass Prototype 

There are several methods to perform synthesis of the extracted-pole low-

pass prototype, generally based on subsequent elements extractions. These 

methods are however affected by inaccuracies due to the accumulation of 

round off errors. To overcome these limitation, a very accurate synthesis 

method has been recently introduced in the literature [3]. Here we will give 

a brief introduction to this theory, which provides a simpler and more 

accurate synthesis method for inline extracted-pole low-pass prototype. 

This method could be generally divided into two basic steps. The first step 

actually is the coupling-matrix synthesis (CM synthesis) method for 

canonical cross-coupled configuration, no matter which configuration is 

used. The literature [4] takes transversal network as an example. Based on 

the method introduced in the literature [4], we could get the synthesized 

result including 𝑛 + 2 CM and capacitance matrix of the same dimension 

𝐶 = 𝑑𝑖𝑎𝑔(0,1,1, … ,1,1,0).  

The second step is to transform the synthesized prototype obtained  into 

the wheel form and then convert matrices 𝑀𝑤ℎ𝑒𝑒𝑙  and 𝐶  to the inline 

extracted-pole topology. Actually, no matter which kind of prototype is 

used, we can transform it into a wheel prototype based on the algorithm in 

the literature [4], which is briefly shown in the following: 

Assuming that 𝑀𝑓𝑢𝑙𝑙  is a generic 𝑛 + 2  CM, (0 (𝑠𝑜𝑢𝑟𝑐𝑒), 1, … , 𝑛, 𝑛 +

1(𝑙𝑜𝑎𝑑)) are the indexes for its rows and columns and 𝑀𝑤ℎ𝑒𝑒𝑙 is the needed 

wheel matrix.  
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𝑀 = 𝑀𝑓𝑢𝑙𝑙   

𝑓𝑜𝑟 𝑘 = 1: 𝑛 − 1  

𝑓𝑜𝑟 𝑗 = 𝑘 + 1: 𝑛  

𝐴𝑛𝑛𝑖ℎ𝑖𝑙𝑎𝑡𝑒 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑀𝑘−1,𝑗 𝑢𝑠𝑖𝑛𝑔 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑀𝑘,𝑗 𝑎𝑠 𝑝𝑖𝑣𝑜𝑡:    (3.11) 

𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑎𝑛𝑔𝑙𝑒 𝜗𝑟 = − tan−1 (
𝑀𝑘−1,𝑗

𝑀𝑘−1,𝑘
) 

𝑁𝑒𝑥𝑡 𝑗  

𝑁𝑒𝑥𝑡 𝑘  

𝑀𝑤ℎ𝑒𝑒𝑙 = 𝑀 

 

Note that, matrix 𝐶  is not changed by the transformation from 𝑀𝑓𝑢𝑙𝑙  to 

𝑀𝑤ℎ𝑒𝑒𝑙, which means it is equal to the synthesized result in the coupling-

matrix synthesis. With matrices 𝑀𝑤ℎ𝑒𝑒𝑙  and 𝐶 , we could transform the 

wheel topology into the inline extracted-pole topology through the  

algorithm in the literature [3], which is based on the triplet extraction 

method. The algorithm of transformation from wheel prototype to inline 

extracted-pole topology is shown in Fig.3.4. 

 

 

Figure 3.4: Transformation from wheel prototype to inline extracted-pole 

topology 
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This algorithm consists of 𝑛 − 𝑥  matrix rotation and one Delta-to-star 

(D2S, described in the literature [9]) transformation for each finite 

transmission zeros (𝑥 represents 𝑥𝑡ℎ resonant node). The matrix rotation 

is used to obtain a triplet [𝑥 + 𝑥, 𝑥, 𝑡]contains a transmission zero 𝑓𝑥
𝑖. Node 

t could be the resonant node 𝑥 − 1 , source node, or the NRN of an 

extracted-pole block created in the previous extraction. The obtained 

triplet is shown in Fig.3.5. 

 

 

Figure 3.5: Obtained triplet from 𝑛 − 𝑥 matrix rotation (resonant node x-

1, source node, NRN of an extracted-pole block created in the previous 

extraction) 

 

Then we could perform D2S transformation to derive inline extracted-pole 

topology from obtained triplets above, which is shown in Fig.3.6: 

 

 

Figure 3.6: D2S transformation 
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𝐵𝑡
′ = 𝐵𝑡 −

𝑀𝑡,𝑥𝑀𝑡,𝑥+1

𝑀𝑥,𝑥+1
（3.12） 

𝐵𝑥
′ = 𝐵𝑥 −

𝑀𝑡,𝑥𝑀𝑥,𝑥+1

𝑀𝑡,𝑥+1
                           （3.13） 

𝐵𝑥+1
′ = 𝐵𝑥+1 −

𝑀𝑡,𝑥+1𝑀𝑥,𝑥+1

𝑀𝑡,𝑥
                         （3.14） 

𝑀𝑡 = 𝑀𝑡,𝑥 + 𝑀𝑡,𝑥+1 +
𝑀𝑡,𝑥𝑀𝑡,𝑥+1

𝑀𝑥,𝑥+1
                （3.15） 

𝑀𝑥 = 𝑀𝑡,𝑥 + 𝑀𝑥,𝑥+1 +
𝑀𝑡,𝑥𝑀𝑥,𝑥+1

𝑀𝑡,𝑥+1
               （3.16） 

𝑀𝑥+1 = 𝑀𝑡,𝑥+1 + 𝑀𝑥,𝑥+1 +
𝑀𝑡,𝑥+1𝑀𝑥,𝑥+1

𝑀𝑡,𝑥
         （3.17） 

𝑏𝑡 = −𝑀𝑡 − 𝑀𝑥 − 𝑀𝑥+1                      （3.18） 

 

Perform the D2S conversion for each triplet, then we can get the required 

inline extracted-pole topology, as shown in Fig.3.7. 

 

 

Figure 3.7: Synthesized equivalent circuit of the extracted pole filter 
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𝑀𝑘,𝑚  are ideal admittance inverter, 𝑀𝑘,𝑘  are frequency-invariant 

susceptances, 𝐶𝑘 are capacitors. 

It is worth mentioning that the obtained synthesis equivalent circuits are 

intrinsically redundant, which means we could have infinite possible 

solutions. Thanks to the introduction of Generalized Coupled Coefficients 

(GCC) [5], we have the tools to deal with the redundancy. Actually the 

number of GCC is lower than the number of circuit variables, and GCC 

could determine the filter response.  

 

3.4      De-normalization of the Low-Pass Prototype 

Before the de-normalization of the prototype, we should set a 

characteristic value for each pole-zero-pairs (PZP) 

It is important that GCC can exploit the available degrees of freedom 

during the process of prototype de-normalization. Here we mainly discuss 

about the following two cases 

（1）Inverter parameters as prior parts 

（2）Resonator parameters as prior parts 

In the first case, we firstly assign the parameters of inverts. Since there are 

only 𝑁 degrees of freedom while there are actually 𝑁 + 1 inverters, we can  

only set the value of N inverters. We set the values of all the inverters to 𝑌0, 

except the central one, as shown in Fig.3.8. 

 

 

Figure 3.8: De-normalized filter with all the inverters equal to 𝐾0 except 

the central one 
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Note that 𝐵𝑘  can be either a resonant node or a non-resonant node, as 

shown in Fig.3.9.  

 

 

Figure 3.9: 𝐵𝑘 as resonant nodes and 𝐵𝑘 as non-resonant nodes 

 

With the computed GCC from the synthesized filter, we can get the value 

of all the unknown parameters in the de-normalized filter.  

For resonant nodes: 

 

𝐵𝑒𝑞 = 𝐵𝑘                                             (3.19) 

 

For non-resonant nodes: 

 

𝐵𝑛𝑟𝑛,𝑘 = 𝐵𝑘 ∙ 𝑠𝑖𝑔𝑛(𝐵𝑛𝑟𝑛,𝑘)                          (3.20) 

𝑋𝑒𝑞,𝑘 = 1/(𝑘𝑧,𝑘
2 ∙ |𝐵𝑛𝑟𝑛,𝑘|)                           (3.21) 

 

Where 𝑖 = 1,2, … . . 𝑛 ,  𝑛 = 𝑁 2⁄  for 𝑁  even, 𝑛 = (𝑁 + 1) 2⁄  for 𝑁  odd. The 

sign of susceptance 𝐵𝑖  representing the i-th NRN is a result of the 

synthesized filter. Finally the value of the central inverter is also computed: 

 

𝐽𝑛,𝑛+1 = 𝑘𝑛,𝑛+1
′ √|𝐵𝑛𝐵𝑛+1|, {

𝑛 = 𝑁 2⁄   (𝑁 𝑒𝑣𝑒𝑛)

𝑛 = (𝑁 + 1) 2⁄   (𝑁 𝑜𝑑𝑑)
          (3.23) 
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According to the obtained results, we can notice that all the inverters 

except the central one (𝐽𝑛,𝑛+1) can be represented as 90° phase shifters with 

characteristic impedance equal to 𝑌c. Concerning the value of the central 

inverter 𝐽𝑛,𝑛+1, it can be divided into two cases: 

When 𝐽𝑛,𝑛+1 > 𝐽0, we can transform the central inverter into a phase shifter 

with characteristic impedance 𝐾0 and phase rotation 𝜃 ≠ 90°, as shown in 

Fig.3.10.  

 

 

Figure 3.10: Transformation of the impedance inverter with  𝐽 > 𝐽0 

 

 𝐵 are frequency-invariant susceptances; 𝜃 is the electrical length of the 

transmission line and 𝑌c  is the characteristic impedance of the 

transmission line. The relationship between them is: 

 

𝜙 = 𝑠𝑖𝑛−1 (
𝐽0

𝐽
)                                   (3.24) 

𝐵 =
𝐽0

𝑡𝑎𝑛(𝜙)
                                          (3.25) 

 

It is important that this transformation have interference on the adjacent 

nodes. If the adjacent node is a NRN, an additional 𝐵 will be added in 

parallel to the adjacent 𝐵𝑛𝑟𝑛 (note that the sign of 𝐵𝑛𝑟𝑛 could be changed in 

some cases).  
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Concerning the effect of the transformation of the adjacent resonant node, 

we need to introduce the definition of ∆𝑧 and 𝑘𝑧, which are characteristic 

parameters of a PZP block, as shown in Fig.3.11. 

 

 

Figure 3.11: Configuration of the PZP block (shunt model) 

 

𝑘𝑧
2 =

𝐽𝑧
2

𝐵𝑒𝑞∙|𝐵𝑛𝑟𝑛|
=

1

𝑋𝑒𝑞∙|𝐵𝑛𝑟𝑛|
                          (3.26) 

∆𝑟=
𝑓𝑟

𝑓𝑧
−

𝑓𝑧

𝑓𝑟
                                       (3.27) 

∆𝑧=
1

𝑋𝑒𝑞𝐵𝑛𝑟𝑛
= 𝑠𝑖𝑔𝑛(𝐵𝑛𝑟𝑛) ∙ 𝑘𝑧

2                    (3.28) 

 

If the adjacent node is a resonant node, the effect is to change the 

resonating frequency of the resonant node. Meanwhile the ratio 𝑓𝑝 𝑓𝑧⁄  is 

also changed, which is no longer related to 𝑘𝑧 of PZP blocks. 

When 𝐽𝑛,𝑛+1 < 𝐽0, it is necessary to scale the node to get 𝐽𝑛,𝑛+1 = 𝐽0. We 

define 𝛼 as the scaling coefficient equal to the ratio between  𝐽𝑛,𝑛+1 and 𝐽0: 

 

𝛼 = 𝐽0 𝐽𝑛,𝑛+1⁄ , 𝐽𝑛,𝑛+1
′ = 𝛼𝐽𝑛,𝑛+1 = 𝐽0            (3.29) 

𝐽𝑛−1,𝑛
′ = 𝛼𝐽𝑛−1,𝑛 = 𝛼                          (3.30) 

 𝑋𝑒𝑞,𝑛
′ = 𝑋𝑒𝑞,𝑛/𝛼2, 𝐵𝑛𝑟𝑛,𝑛

′ = 𝛼2𝐵𝑛𝑟𝑛,𝑛               (3.31) 
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When we have got  𝐽𝑛−1,𝑛
′ > 𝐽0, we can apply the transformation reported 

above to obtain a phase shifter from an impedance inverter. 

In the second case, we assign the prior to the resonator parameters, which 

are 𝐵𝑒𝑞and 𝑋𝑒𝑞, as shown in Fig.3.12. 

 

 

Figure 3.12: De-normalized filter with all the resonators assigned (𝐵𝑒𝑞 

and 𝑋𝑒𝑞) 

 

The degree of freedom introduced by GCC is N and the number of 

resonators is also 𝑁. We can therefore assign the parameters 𝐵𝑒𝑞 and 𝑋𝑒𝑞 

of all the resonators. 

If the node i is resonant，  

 

𝐵𝑖 = 𝐵𝑒𝑞                                         (3.32) 

 

If the node i is non-resonant, 

 

𝐵𝑖 = |𝐵𝑛𝑟𝑛,𝑖| =
1

(𝑘𝑖𝑖′
2 ⋅𝑋𝑒𝑞)

                            (3.33) 

 

After determining the parameters of resonators, the inverters can be 

evaluated from 

 

𝐽𝑖,𝑖 +1 = 𝑘𝑖,𝑖 +1√𝐵𝑖 ⋅ 𝐵𝑖+1                           (3.34) 
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Actually this solution is convenient and commonly used for waveguide 

cavity resonators since couplings are realized with irises and rejection 

resonators with stub. 

Until now, we have got the de-normalized filter suitable for physical 

implementation, which will be discussed in the next chapter. 
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Chapter 4 

Realization of An Extracted-Pole 

Filter in Coaxial Technology 

 

In this chapter, we will discuss all the steps taken in order to realize an 

extracted-pole band-stop filter in a coaxial cavity structure, from the initial 

requirements to the geometrical dimension of final physical filter. 

 

4.1      Assignment of the Electrical Specification 

The electrical specifications for the filter are listed as following: 

• Stopband: 905 − 912 𝑀𝐻𝑧, 𝐴𝑚𝑖𝑛 = 45𝑑𝐵 

• Passband: 872.5 − 902 𝑀𝐻𝑧, 𝑅𝐿 = 23𝑑𝐵 

As shown in the specification, the required filter has one passband and one 

single band, which could be called “single sided” filter. For this kind of 

filters, we could both consider it as a bandstop filter or a bandpass filter.  

For a bandpass filter, with the filter order determined (𝑛𝑝), we could assign 

the number and location of transmission zeros, and the number of 

transmission zeros could not be larger than filter order (≤ 𝑛𝑝), and we 
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could determine the location of reflection zeros whose number is equal to 

filter order 𝑛𝑝 and produce equal ripple S11 in the passband. 

For a bandstop filter, with the filter order determined (𝑛𝑝), we could assign 

the number and location of reflection zeros, and the number of reflection 

zeros could not be larger than filter order (≤ 𝑛𝑝), and we could determine 

the location of transmission zeros whose number is equal to filter order 𝑛𝑝 

and produce equal ripple S21 in the stopband. 

Here we determine to choose the bandstop filter. Actually, both the two 

methods could be used to realize a fully canonical filter with the number of 

transmission zeros equal to the filter number. In the first case (bandpass 

filter), assuming the filter order is 4, we will have 4 transmission zeros and 

4 reflection zeros. However, in the second case (bandstop filter), we will 

have 4 transmission zeros, and the number of reflection zeros could be 

adjusted (≤ 4). This means that the first case does not allow any degrees 

of freedom once the filter order is assigned. However, the second case 

allows the free choice of the number of reflection zeros, which could benefit 

procedures. 

Additionally, we should also consider whether the synthesized filter is 

realistic or not. Assuming the filter order is 4, in the first case, we have a 

bandpass filter with 4 transmission zeros and 4 reflection zeros. To satisfy 

the electrical specifications ( 𝐴𝑚𝑖𝑛 = 45𝑑𝐵  in the stopband), we could 

obtain the synthesized filter, as shown in Fig.4.1: 

 

 

Figure 4.1: Synthesized bandpass filter 
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Note that, although both the return loss in the passband and attenuation 

in the stopband is satisfied, the return loss is much larger than requested, 

which the synthesized filter is not very realistic. An example is shown in 

Fig.4.2: 

 

 

Figure 4.2: Equivalent circuit of a synthesized bandpass filter 

 

From the equivalent circuit, we need to realize 𝑋𝑒𝑞  whose value is very 

large, the maximum 𝑋𝑒𝑞 𝑍0⁄  is 152.1, which is almost unrealistic.  

On the other case, when we choose to use a bandstop filter to realize 

4 transmission zeros, we could freely choose the number of reflection zeros. 

It means that we could assign less reflection zeros in order to have a not 

very large return loss (still satisfy the requirements). For example, Fig.4.3 

shows the response with 2 reflection zeros. 

 

 

Figure 4.3: Synthesized bandpass filter with 2 reflection zeros 
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As shown in the figure above, the return loss is not so large, and it still 

satisfies the specifications. Such a synthesized filter is more realistic than 

the first case. Actually, the maximum  𝑋𝑒𝑞 𝑍0⁄  could be much lower, which 

will be shown in the following chapters. 

In conclusion, we choose to use a bandstop filter with two reflection zeros: 

• Bandstop filter, Filter order 4, reflection zeros 2  

Concerning the synthesis of bandstop filter, the literature [8] introduced a 

direct synthesis of bandstop filters. A bandstop filter can be designed as a 

folded canonical structure that is used to design elliptic bandpass filter. 

We choose a generalized Chebyshev filter with order equal to 4, and assign 

two reflection zeros, 

To start the design, we assign several variables. The stopband is centred at 

𝑤0 and the lower and upper limit of the band are 𝑤1 and 𝑤2. The rejection 

level in the stopband is called 𝐴 and the return loss in the passband is 

called 𝑅𝐿. We could use these parameters to determine the filter order and 

number and location of reflection zeros in the bandstop filter(not 

transmission zeros in the bandpass case). This step of the bandstop filter 

is identical to that of the bandpass filter. To satisfy the requirements in this 

thesis and have equal ripple (use a generalized Chebyshev filter), we have 

the following result. 

Then the generalized Chebyshev filtering function 𝐹𝑁(𝜔) is given by 

 

𝐹𝑁(𝜔) = cosh [∑ cosh−1 (
𝜔−

1

𝜔𝑘

1−
𝜔

𝜔𝑘

)𝑘=𝑁
𝑘=1 ] =

𝑃𝑁(𝜔)

𝐷𝑁(𝜔)
          （4.1） 

  

Note that, it is very important that 𝜔𝑘 are the positions of the reflection 

zeros in the bandstop filter. The denominator 𝐷𝑁(𝜔) is a polynomial of 

degree equal to the number of reflection zeros, equal to 2 in this case. The 

numerator 𝑃𝑁(𝜔) is a polynomial of degree equal to the number of filter 

order. The obtained denominator and numerator is shown in the following: 
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𝐷𝑁(𝜔) = ∏ (1 −
𝜔

𝜔𝑘
)

𝑁𝑧
𝑘=1 = ∑ 𝑑𝑖

(𝑁𝑧)
𝜔𝑖𝑁𝑧

𝑖=0                      （4.2） 

𝑃𝑚+1(𝜔) = ∑ 𝑎𝑖
(𝑚+1)

𝜔𝑖𝑚+1
𝑖=0                                （4.3） 

𝑎𝑖
(𝑚+1)

= −𝑆(𝑚, 𝑚 + 1)𝑎𝑖
(𝑚−1)

− 𝑎𝑖
(𝑚)

× (
1

𝜔𝑚+1
+

𝑆(𝑚,𝑚+1)

𝜔𝑚
) + 2𝑎𝑖−1

(𝑚−1) 𝑆(𝑚,𝑚+1)

𝜔𝑚
+

𝑎𝑖−1
(𝑚)

× (1 + 𝑆(𝑚, 𝑚 + 1)) − 𝑎𝑖−2
(𝑚−1) 𝑆(𝑚,𝑚+1)

𝜔𝑚
2       （4.4） 

𝑆(𝑚, 𝑚 + 1) = √
1−

1

𝜔𝑚−1
2

1−
1

𝜔𝑚
2

                                （4.5） 

 

The coefficient of the two polynomials 𝑃0  and 𝑃1  are 𝑎0
(0)

= 1 , 𝑎0
(1)

=

−1/𝜔1, and 𝑎1
(1)

= 1. 

It is worth mentioning that for a bandpass case with RL, assigned 

transmission zeros and a bandstop case with in-band rejection (equal to 

RL), reflection zeros (same location as transmission zeros in the bandpass 

case), the final filtering function remains the same. 

To be more exact, when we want to perform the evaluation of polynomials 

in a bandstop filter, we firstly perform the evaluation of polynomials of a  

bandpass filter with pass and stop bands exchanged. Then we just need to 

exchange the F and P polynomials obtained in the bandpass filter, so that 

the assigned return loss in the bandpass will become the imposed 

attenuation in the stop band. Consequently the roles of 𝑆11  and 𝑆21  are 

switched when going from bandpass to bandstop. 

After the evaluation of polynomials, we could compute the scattering 

parameters, which is shown in Fig.4.4: 
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Figure 4.4: Obtained final results of scattering parameters 

 

 

4.2      Synthesis and De-normalization of a Low-

Pass Prototype 

Thanks to the software Filines, all the steps of synthesis of a low-pass prototype 

could be done through it, which saves a lot of time. With the scattering 

parameters and transmission zeros known, we need to choose the suitable 

extracted-pole sequence during the synthesis process, since it has huge effects 

on parameters of the final de-normalized circuit. Here we choose the 

extracted-pole sequence with minimum 𝑋𝑒𝑞  in the de-normalized circuit. The 

routing scheme of the synthesized filter is shown in Fig.4.5: 
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Figure 4.5：Routing scheme of the synthesized filter 

 

From the two type of equivalent circuit (shunt/series), in this thesis we 

choose shunt equivalent circuit, which has benefits on the latter physical 

implementation. Regarding the degrees of freedom introduced by GCC, we 

choose to assign all the admittance inverter equal to the external load 

except the middle one, the result is shown in Fig.4.6: 

 

 

Figure 4.6：Equivalent circuit of the filter with assigned inverters 

 

𝐽01 = 𝐽12 = 𝐽34 = 𝐽45 = 1, 𝐽23 = 1.0011                         (4.6) 

𝑏1, 𝑏2, 𝑏3, 𝑏4 = [−0.56536, −1.217, −1.1421, −0.75837]        (4.7) 

𝑋𝑒𝑞,1, 𝑋𝑒𝑞,2, 𝑋𝑒𝑞,3, 𝑋𝑒𝑞,4 = [48.0589, 48.5222, 71.7031, 56.0967]     (4.8) 

𝑓𝑧,1, 𝑓𝑧,2, 𝑓𝑧,3, 𝑓𝑧,4 = [911.5916, 906,3929, 905.0577, 909.0465]     (4.9) 
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We can notice that for each invert, 𝐽 ≥ 1, it is already sufficient to replace 

admittance inverters with phase shifter, so there is no need to scale the 

nodes. Then we can perform the transformation from the admittance 

inverter 𝐽23 to the phase shifter 𝜙23 with two shunt susceptance, imposing 

all the characteristic impedances equal to 1, as shown in Fig.4.7: 

 

 

Figure 4.7：Transformation of the admittance inverter to the phase 

shifter 

 

𝜙23 = sin−1 (
1

𝐽23
) = 87.37°                                (4.10) 

𝑏′ =
1

tan(𝜙23)
= 0.0459                                    (4.11) 

 

Obviously, the adjacent susceptance will be changed: 

 

𝑏2 = −1.217 + 𝑏′ = −1.171, 𝑏3 = −1.1421 + 𝑏′ = −1.0962         (4.12) 

 

Then we can get the final scheme of the synthesized filter and compute 

frequency response (scattering parameters) with a circuit simulator, as shown 

in Fig.4.8 and Fig.4.9:  
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Figure 4.8：Final scheme of the synthesized filter 

 

 

Figure 4.9：Computed frequency response (scattering parameters) 

 

4.3      Physical Implementation with Coaxial 

Technology 

The physical implementation is based on a concept called “Divide and 

Conquer”. Actually we can break the design of the whole filter into several 

pole-zero pairs (PZP) blocks. We dimension each PZP block, and the goal
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 is to get the required parameters (𝑓𝑧 , 𝑋𝑒𝑞, 𝐵𝑛𝑟𝑛) from each block as same as 

that imposed by the filter synthesis. This work is proceeded through HFSS. 

HFSS (high frequency structure simulator) is a finite element method 

solver for electromagnetic structures. It uses the 3D finite element method 

to analyse the electromagnetic field distribution inside the microwave 

devices, and then obtains various required network parameters, i.e. 

scattering parameters. 

The physical structure of a PZP block is shown in Fig.4.10:  

 

 

Figure 4.10：Physical model of the PZP block 

 

The equivalent circuit of this kind of physical PZP block is shown in the 

Fig.4.11: 
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Figure 4.11: Shunt equivalent circuits 

 

In the equivalent circuits, 𝜙𝑝 is the electrical length of the line, 𝐵𝑛𝑟𝑛 is a 

frequency-invariant element, 𝑋𝑒𝑞  and 𝑓𝑧  are the equivalent slope 

parameter and the resonance frequency of the rejection resonator. 

Consequently, the equivalent circuits of the physical PZP block shown 

above is suitable for the realization of obtained synthesized filter. Then we 

could start the geometrical dimension of each block. 

The basic component of the physical circuit is a coaxial rejection cavity. 

The cavity is coupled to the boxed stripline to satisfy the required 

inductance. To get required the negative susceptance of NRN, we have two 

solutions. Firstly, the loop shown in the figure has already creates a 

negative susceptance. Secondly, if the negative susceptance created by the 

loop is not enough, an additional short-circuited port could be added on 

the stripline, which will be discussed in later chapters. 

To get suitable geometrical dimension of each block, we can divide the 

whole work into two general steps. The first step is to size the cavity to 

resonate in the required band (900𝑀𝐻𝑧). The second step is to size the 

blocks one by one, to get required  𝑋𝑒𝑞 , 𝐵𝑛𝑟𝑛, 𝑓𝑧 for each block. The variables 

used in the geometrical dimension process are reported in Fig.4.12 and 

Fig.4.13: 
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Figure 4.12：Dimension parameters of the model of PZP block 

 

Figure 4.13：Dimension parameters of the model of PZP block 
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The main challenge is that the number of variables during the dimension 

process is too large. It is really hard to determine how to change them due 

to the couplings among the variables. So we divide these variables into two 

kinds: global variables and local variables. 

Global variable: variables that used to size the cavity to resonate in the 

required band (900𝑀𝐻𝑧) and cannot be changed during the later process. 

Local variable: variables that used to get required 𝑋𝑒𝑞 , 𝐵𝑛𝑟𝑛, 𝑓𝑧  for each 

block. 

 

4.3.1      Global variables 

We choose 𝐻𝑧, 𝐷, 𝑔𝑎𝑝, 𝑊𝑠𝑡𝑟𝑖𝑝, 𝑏𝑙𝑎𝑛𝑘  as so-called global variables. The main 

reason is that the final filter uses an inline cascaded-block configuration, these 

variables of each block must be same for connection. If the variables are 

different, i.e., blank, the stripline will be misconnected, which will have bad 

effects on the final performance of filter. Then the remaining variables 𝑠, 𝑅𝑠 

are so-called local variables. All the variables are shown in Tab.4.1: 

 

Global 

variables 

𝐻𝑧, 𝐷, 𝑔𝑎𝑝, 𝑊𝑠𝑡𝑟𝑖𝑝, 𝑏𝑙𝑎𝑛𝑘 

Local 

variables 

𝑅𝑠, 𝑠 

 

Table 4.1：Geometrical dimension variables in the design of PZP block 

 

In addition, it is very important that we have not discussed about the 

characteristic impedance of the stripline, and it must be set to 50 𝑂ℎ𝑚. 

Actually, we find that all the local variables almost do not change the value 

of characteristic impedance of the stripline. It is because the change of 

local variables cannot affect the parameters of the stripline. To be exact, 

we analyse the relationship between local variables and characteristic 

impedance of the stripline with HFSS, the result is shown in Fig.4.14: 
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Figure 4.14：Relationship between 𝑠, 𝑅𝑠 and  𝑍0 (characteristic 

impedance of the stripline) 

 

Since the local variables almost do not affect the characteristic impedance, 

we can simply set the required value of characteristic impedance during 

the process of global variables. In conclusion, the local variables are 

determined to obtain a resonating frequency approximately equal to 

900𝑀𝐻𝑧 and characteristic impedance equal to 50 𝑂ℎ𝑚. 

We use HFSS to analyse the relationship between these variables and 𝑓𝑧 

(transmission zero) and the relationship between these variables and 𝑍0 

(characteristic impedance of the stripline), the results are shown in 

Fig.4.15 to Fig.4.19: 

 

 

Figure 4.15：Relationship between 𝐻𝑧 and 𝑓𝑧 (transmission zero), 𝑍0 

(characteristic impedance of the stripline) 
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Figure 4.16：Relationship between 𝐷 and 𝑓𝑧 (transmission zero), 𝑍0 

(characteristic impedance of the stripline) 

 

Figure 4.17：Relationship between 𝑔𝑎𝑝 and 𝑓𝑧 (transmission zero), 𝑍0 

(characteristic impedance of the stripline) 

 

Figure 4.18：Relationship between 𝑏𝑙𝑎𝑛𝑘 and 𝑓𝑧 (transmission zero), 𝑍0 

(characteristic impedance of the stripline) 
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Figure 4.19：Relationship between 𝑊𝑠𝑡𝑟𝑖𝑝 and 𝑓𝑧 (transmission zero), 𝑍0 

(characteristic impedance of the stripline) 

 

As shown in the figures, we can find that 

(1)  𝑓𝑧 increase with the increase of ℎ𝑧, but 𝑍0 remains almost the same 

(2) 𝐷  is opposite to 𝑓𝑧 . When 𝑓𝑧  increases, 𝑓𝑧  remains almost the same 

while 𝑍0 increases. 

(3) With the increase of 𝑔𝑎𝑝, 𝑍0 is unchanged and 𝑓𝑧 is slowly decreasing. 

(4) With the increase of 𝑏𝑙𝑎𝑛𝑘, both 𝑓𝑧 and 𝑍0 is increasing. 

(5) When 𝑊𝑠𝑡𝑟𝑖𝑝  is increasing, 𝑓𝑧  does not change a lot while 𝑍0  is 

decreasing quickly. 

To satisfy the requirements of both 𝑓𝑧 and 𝑍0, firstly we change the value 

of 𝐻𝑧, 𝑔𝑎𝑝 to get required 𝑓𝑧. The reason is that Hz show large effects on 𝑓𝑧 

and almost no effect on 𝑍0 . Concerning the variable 𝑔𝑎𝑝 , although the 

change of 𝑓𝑧 is not very large, but it is more significant than the change of 

𝑍0. Then we change the value of 𝐷, 𝑏𝑙𝑎𝑛𝑘, 𝑊𝑠𝑡𝑟𝑖𝑝 to obtain the required 

value of characteristic impedance (50 𝑂ℎ𝑚).  

It is worth mention that we use 𝐷 for the determination of 𝑍0 rather than 

𝑓𝑧. Actually it comes from the consideration the level of requirements. With 

the dimension of global parameters, we need to obtain an “exact” value of 

𝑍0 and an “approximate” value of 𝑓𝑧. It is obvious because during the latter 

dimension of local parameters, 𝑍0 remains almost unchanged while 𝑓𝑧 will 

definitely changes. So actually we just need a “range” of 𝑓𝑧 and the exact 

value of 𝑓𝑧 will be determined by local parameters.  
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The value of global parameters is reported in Tab.4.2: 

 

𝐻𝑧 𝐷 𝑔𝑎𝑝 𝑏𝑙𝑎𝑛𝑘 𝑊𝑠𝑡𝑟𝑖𝑝 

15 10 5 1.7   5.6 

 

Stable 4.2：Assignment of global parameters 

 

4.3.2      Local variables 

Local variables are used to obtain exact values of 𝑋𝑒𝑞 and 𝐵𝑛𝑟𝑛  for each block. 

In other words, we need to get a pair of (𝑅𝑠, 𝑠) for each pair of (𝑋𝑒𝑞 , 𝐵𝑛𝑟𝑛).  

Actually 𝑋𝑒𝑞 , 𝐵𝑛𝑟𝑛 can be computed from the following relationships: 

 

𝑈 =
1

2
𝐼𝑚 {

𝑆21

𝑆11
}                                         （4.13） 

Φ𝑝 = −
∠(𝑆12−𝑆11)

2
                                     （4.14） 

𝑋𝑒𝑞 = −
1

2
𝑓𝑧

𝜕𝑈

𝜕𝑓
|

𝑓=𝑓𝑧

                                   （4.15） 

𝐵𝑛𝑟𝑛 = [𝑋𝑒𝑞 (
𝑓𝑟

𝑓𝑧
−

𝑓𝑧

𝑓𝑟
)]

−1
                              （4.16） 

 

Here we use shunt model since 𝑋𝑒𝑞 is positive and consequently we should 

compute 𝜙𝑠, 𝑋𝑒𝑞 and 𝐵𝑛𝑟𝑛. 

Then we can use post-process tuning to move the transmission zero 𝑓𝑧 to 

the exact place of each block. Once the 𝑓𝑧 is moved to the right place, the 

final step is to connect the blocks with suitable length, which can be 

computed from the synthesis result but maybe need to be modified due to 

frequency dispersion of the real transmission lines. 



4.3 Physical Implementation with Coaxial Technology 

63 

 

 

The relationship between (𝑅𝑠, 𝑠)  and 𝑋𝑒𝑞  are shown in Fig.4.20 and 

Fig.4.21: 

 

 

Figure 4.20：𝑋𝑒𝑞 𝑣𝑠. 𝑅𝑠 for different values of 𝑠 

 

 

Figure 4.21：𝑋𝑒𝑞 𝑣𝑠. 𝑠 for different values of 𝑅𝑠 

 

The relationship between (𝑅𝑠, 𝑠) and 𝐵𝑛𝑟𝑛  are shown in Fig.4.22 and Fig.4.23:  



4.3 Physical Implementation with Coaxial Technology 

64 

 

 

 

Figure 4.22：𝐵𝑛𝑟𝑛 𝑣𝑠. 𝑅𝑠 for different values of 𝑠 

 

 

Figure 4.23：𝐵𝑛𝑟𝑛 𝑣𝑠. 𝑠 for different values of 𝑅𝑠 

 

According to the analysis above, we know that the solution plane is a plane 

of 𝑅𝑠 𝑣𝑠. 𝑠. Firstly we can find the required 𝑋𝑒𝑞 for each block in the figures 

above. We get the solution pairs (𝑅𝑠, 𝑠) for 𝑋𝑒𝑞, and draw a curve in the 

plane 𝑅𝑠 𝑣𝑠. 𝑠  with constant 𝑋𝑒𝑞 . Similarly, we get the solution pairs 

(𝑅𝑠, 𝑠)for 𝐵𝑛𝑟𝑛, and draw a curve in the plane Rs vs. s with constant 𝐵𝑛𝑟𝑛. 

The intersection of the two curves is the solution pair (𝑅𝑠, 𝑠)  for each 

(𝑋𝑒𝑞 , 𝐵𝑛𝑟𝑛). 
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We repeat the procedures discussed above for each block, the 

requirements are shown in Tab.4.3 and the intersections of the four blocks 

are shown in Fig.4.24 to Fig.4.27: 

 𝑋𝑒𝑞 𝐵𝑛𝑟𝑛 

Block1 48.059 −0.565 

Block2 48.522 −1.171 

Block3 71.703 −1.0962 

Block4 56.097 −0.758 

 

Stable 4.3：Required (𝑋𝑒𝑞 , 𝐵𝑛𝑟𝑛) for each block 

 

Figure 4.24：𝑠 𝑣𝑠. 𝑅𝑠 for block 1 

 

Figure 4.25：𝑠 𝑣𝑠. 𝑅𝑠 for block 2 
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Figure 4.26：𝑠 𝑣𝑠. 𝑅𝑠 for block 3 

 

Figure 4.27：𝑠 𝑣𝑠. 𝑅𝑠 for block 4 

The intersections in the four figures are the (𝑅𝑠, 𝑠) solutions for the blocks 

are shown in Tab.4.4: 

 

 Block1  Block2  Block3  Block4 

 𝑠 5.3035 8.029 9.3014 7.3326 

𝑅𝑠 1.4877 2.856 2.2794 1.9184 

Stable 4.4：(𝑅𝑠, 𝑠)solution pairs for each block 

With all the obtained parameters, we use HFSS to perform post-processing 

tuning and move the transmission zeros to the right places, and then compare 

the scattering parameters of each block with that of synthesized filter. The 

results are shown in Fig.4.28 to Fig.4.31. 
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Figure 4.28：Scattering parameters of block 1 

 

 

Figure 4.29：Scattering parameters of block 2 

 

 

Figure 4.30：Scattering parameters of block 3 



4.3 Physical Implementation with Coaxial Technology 

68 

 

 

Figure 4.31：Scattering parameters of block 4 

 

To clearly show the interference of tuning on the obtained 𝑋𝑒𝑞and Bnrn, 

the detailed results are shown in Tab.4.5: 

 

 Block 

1 

Block 

2 

Block 

3 

Bloc

k 4 

 𝑋𝑒𝑞 𝐵𝑛𝑟𝑛 𝑋𝑒𝑞 𝐵𝑛𝑟𝑛 𝑋𝑒𝑞 𝐵𝑛𝑟𝑛 𝑋𝑒𝑞 𝐵𝑛𝑟𝑛 

Synthe

sized 

result 

48.059 −0.565 48.522 −1.171 71.703 −1.096 56.097 −0.758 

Before 

tuning 

48.02 −0.576 48.492 −1.17 71.11 −1.08 56.03 −0.761 

After 

tuning 

47.9 −0.568 48.34 −1.19 71.07 −1.11 55.99 −0.76 

 

Table 4.5：Comparison of 𝑋𝑒𝑞 , 𝐵𝑛𝑟𝑛 of synthesized result, before tuning 

and after tuning 

 

Additionally, the lengths 𝜙𝑝 of the equivalent circuit of the dimensioned 

blocks are shown in the Tab.4.6: 
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 Block 1 Block 2 Block 3 Block 4 

         𝜙𝑝 0.275° −0.151° 0.049° 0.174° 

 

Table 4.6：lengths 𝜙𝑝 of the equivalent circuit of the dimensioned blocks 

 

4.3.3      Cascading the Blocks with Suitable Length  

Until now all the blocks are dimensioned correctly, the only remaining work is 

to derive the suitable lengths between blocks. Then the filter is obtained by 

connecting the blocks with transmission lines with suitable lengths. 

With the equivalent circuit of PZP block, the final equivalent circuit of cascade-

blocks is shown in Fig.4.32: 

 

 

Figure 4.32: Final Equivalent Circuit of Cascade-Blocks 

 

We have already obtained the lengths from the synthesized result, as 

shown in Tab.4.7: 

 

𝜃12 𝜃23 𝜃34 

90° 87.31° 90° 

 

Table 4.7: Computed lengths from the synthesized result 
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Then we need to transform the electrical lengths into physical lengths. 

With the tool Wavelength Calculator in HFSS, we could easily compute the 

wavelength 𝜆 with frequency equal to 908𝑀𝐻𝑧., as shown in Fig.4.33  

 

 

Figure 4.33: Wavelength calculator 

Then we transform the electrical lengths 𝜃 in the synthesized filter into 

the lengths 𝑙 in the equivalent circuit, as shown in Tab.4.7. 

 

𝑙 =
𝜆𝜃

360°
                                     （4.17） 

Electrical 

length 

𝜃12

= 90° 

𝜃23 

= 87.31° 

𝜃34    

= 90° 

Physical 

length 

𝑙12

= 82.54198mm 

𝑙23 =

80.07489mm  

𝑙34

= 82.54198mm 

 

Table 4.8: Transformation from electrical lengths to physical lengths 

 

It must be observed that the physical length 𝑑12, 𝑑23 and 𝑑34 is the distance 

between the reference sections of two adjacent blocks, as shown in Fig.4.34. 

However, these distances 𝑑𝑖,𝑖+1 do not coincide with the computed length 

𝑙𝑖,𝑖+1. We have in fact to take into account the loading effects of the PZP 

blocks represented by the lines 𝜃𝑝,𝑖 in the equivalent circuit. 
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Figure 4.34: Physical model of the final filter 

 

Consequently, the physical lengths between the blocks (𝑑𝑖,𝑖+1) are obtained 

as follows: 

 

𝑑𝑖,𝑖+1 = 𝑙𝑖,𝑖+1 − 𝜃𝑝,𝑖/𝛽0 − 𝜃𝑝,𝑖+1/𝛽0                （4.18） 

Then we could derive the distances between the blocks and use them to 

cascade the blocks, as shown in Tab.4.8: 

 

𝑑12 𝑑23 𝑑34 

82.42826𝑚𝑚 80.16844𝑚𝑚 82.33746𝑚𝑚 

 

Table 4.9: Distances between the blocks 

 

However, with these values of lengths, the response of the cascaded blocks 

(the final filter) is not as satisfying as expected. Actually, a retouch of these 

lengths is needed. We use a circuit simulator is do this work, as shown in 

Fig.4.35 and Fig.4.36. 

 

 

Figure 4.35: Retouch of the connection length in the circuit simulator 

AWR 
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Figure 4.36: Scattering parameters of the filter in the circuit simulator 

AWR 

 

The final computed distances 𝑑𝑖,𝑖+1 are shown in Tab.4.9: 

 

𝑑12 𝑑23 𝑑34 

82.54198𝑚𝑚 81.5833𝑚𝑚 82.54198𝑚𝑚 

 

Table 4.10: Final computed distances 𝑑𝑖,𝑖+1 

 

Finally we obtain all the geometrical dimension parameters for the figure, 

and we compute the scattering parameters of the physical structure with 

HFSS. The result is compliant with the assigned requirements everywhere 

and we can say that we have realized our design goal. The final structure is 

shown in Fig.4.37 and the scattering parameters are shown in Fig.4.38: 
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Figure 4.37: Structure of the final filter 

 

 

Figure 4.38: Scattering parameters of the final filter 
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Chapter 5 

Conclusion and Comments  

 

 

In this thesis, we have introduced the whole process of the design of an 

extracted-pole filter in coaxial technology step by step, including the 

assignment of electrical specification, synthesis of characteristic 

polynomials, synthesis of low-pass prototype, de-normalization of low-

pass prototype and physical implementation of the filter.  

Concerning the last point, this thesis introduced a concept called “Divide 

and Conquer”. Actually we can break the design of the whole filter into 

several pole-zero pairs (PZP) blocks. Then we try to obtain suitable 

geometrical dimension for each blocks and finally cascade them with 

suitable lengths. During this process, the thesis also discusses how to 

obtain a feasible equivalent circuit for physical implementation.  

In this thesis, we apply coaxial technology in the physical implementation. 

It is performed through coaxial rejection cavities coupled to the boxed 

stripline, and the loop creates the required negative susceptance of NRN. 

The final scattering parameters shows that this structure is suitable for the 

realization of an extracted-pole filter. 
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Additionally, this thesis introduces a general method suitable for 

geometrical dimension of a PZP block. Since we could derive the scattering 

parameters through HFSS simulation, then we could compute 𝑋𝑒𝑞, 𝐵𝑛𝑟𝑛 

and transmission zero, which makes to found the geometrical dimensions 

easier. Firstly we divide the variable used for geometrical into two 

dimension categories: global parameters and local parameters. Then we 

could use global parameters to obtain a resonating frequency 

approximately equal to 900MHz and characteristic impedance equal to 

50 𝑂ℎ𝑚 . Then next step is to use local parameters to obtain required 

𝑋𝑒𝑞and 𝐵𝑛𝑟𝑛. 

In this step, this thesis introduced a general method, which could obtain 

suitable value of local parameter quickly and correctly. This method helps 

designer save a lot of time.  

However, it is worth mentioning that the solution pair (𝑅𝑠, 𝑠) is obtained 

based on the intersection of two curves. It is possible that there are no 

intersections, or the intersection is out of the feasible range of (𝑅𝑠, 𝑠) . 

Actually the second phenomenon is more common. Fig.5.1 is an example 

(𝑋𝑒𝑞 = 48.522 , which is equal to the second block in chapter 4 , while 

𝐵𝑛𝑟𝑛 = −1.4 not −1.171 in the second block) 

 

 

Figure 5.1: 𝑋𝑒𝑞 = 48.522, 𝐵𝑛𝑟𝑛 = −1.4  

(block 2 with equal 𝑋𝑒𝑞 but larger |𝐵𝑛𝑟𝑛|) 
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Actually the intersection is out of the range of the figure, it means that in 

solution pair(𝑠, 𝑅𝑠), 𝑅𝑠 must be larger than 3𝑚𝑚. But the gap between the 

side wall and the strip must be at least as large as half of the strip width, 

with 𝐴 = 8𝑚𝑚, 𝑅𝑠 = 3𝑚𝑚, the remaining gap is 1mm, which is the best 

condition. If Rs is larger than 3𝑚𝑚, A must be increased to have enough 

gap.   

In the case that 𝐵𝑛𝑟𝑛 = −1.4 , in other words, the required negative 

susceptance is not quite large. We can use the method above, increase both 

A and Rs to try to find a feasible solution. 

However, when the required susceptance is quite large, the method above 

could not be suitable since A will be quite large. At the circuit level, it 

means that the negative susceptance created by the loop is not enough. To 

increase the obtained negative susceptance for NRN, an additional short-

circuit post can be added to obtain the required NRN value, which is shown 

in Fig.5.2: 

 

 

Figure 5.2: Physical implementation of PZP block with addition short-

circuited post 
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This structure will create a much large negative susceptance (become 

larger with the increase of the radius of NRN), and synthesized filters with 

large negative susceptance will benefit from this structure. 
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