
POLITECNICO DI MILANO

Scuola di Ingegneria Industriale e dell’Informazione

Master of Science in Computer Science and Engineering

A Comparative Study on Streaming Machine Learning

Algorithms for Binary Classification Under

Concept Drift and Class Imbalance

Supervisor: Prof. Emanuele Della Valle

Co-supervisor: Dr. Alessio Bernardo

Master Graduation Thesis

Enrico Voltan

928681

Academic Year 2019/2020

Abstract

Nowadays, data coming from electronic devices, such as smartphones, credit cards,

televisions, and cars, surround us. The ability to analyze all the data generated

in real-time is the future challenge and the starting point to understand where to

innovate. The research for new solutions opened a new branch of machine learning

called Streaming Machine Learning (SML). This new approach focuses on data

streams, sequences of data, possibly infinite, arriving in sequential order, once at

a time. The two difficulties appearing in the real-world are concept drift and class

imbalance. The former refers to the changes in the characteristics of the data,

while the latter refers to an unequal distribution between the classes. Focusing

on the binary classification task, I studied and implemented various state-of-art

algorithms able to deal with both the concept drift and class imbalance problems.

The result is an easy-to-reuse benchmarking environment that we exploited to

conduct a wide experimental campaign. I tested the algorithm on artificial and

real data streams with different imbalance levels and various kinds of concept drift.

I collected empirical evidence that rebalancing data streams significantly improves

the performances during different concept drift types.

Sommario

Al giorno d’oggi, dati provenienti da dispositivi elettronici come smartphones, carte

di credito, televisioni e automobili, ci circondano. La capacità di analizzare tutti

questi dati in tempo reale è la sfida del futuro e il punto di partenza per capire

dove innovare. La ricerca di nuove soluzioni ha aperto un nuovo ramo di apprendi-

mento automatico chiamato ”Streaming Machine Learning” (SML). Questo nuovo

metodo analizza sequenze di dati, chiamate ”data streams”, potenzialmente infi-

nite, che arrivano in ordine temporale. Le due maggiori difficoltà che appaiono

in situazioni reali in questo campo sono il ”concept drift” e lo sbilanciamento di

classe. La prima si riferisce a possibili cambiamenti nelle caratteristiche dei dati,

mentre la seconda a disparità di rappresentazione tra le classi di dati. Concen-

trandomi sulla classificazione binaria, ho studiato e implementato gli algoritmi

dello stato dell’arte che affrontano entrambi i problemi. Il risultato è un ambiente

di valutazione che ho usato per condurre una estesa campagna sperimentale. Ho

testato gli algoritmi usando ”data streams”, sia artificiali sia reali, aventi diversi

livelli di sbilanciameto di classe e vari tipi di ”concept drift”. Le prove sperimen-

tali raccolte dimostrano che affrontare il problema dello sbilanciamento di classe

migliora significativamente le prestazioni durante i diversi tipi di ”concept drift”.

Acknowledgements

I wish to express my gratitude to Prof. Emanuele Della Valle for giving me the

opportunity of working on such an interesting research. I am grateful for his

availability and support.

I wish to extend my special thanks to Dr. Alessio Bernardo for his supervision

and guidance during all the phases of the research and for overseeing the writing

of my thesis.

I wish to express my profound gratitude to my parents for all the sacrifices they

have always made for me. I am truly thankful to them for always encouraging me

to be the best version of myself.

Contents

1 Introduction 1
1.1 Big Data . 1
1.2 Streaming Machine Learning . 2
1.3 Contributions of the thesis . 4
1.4 Document Structure . 5

2 State of the Art 7
2.1 Traditional Machine Learning . 7
2.2 Streaming Machine Learning . 8

2.2.1 Hoeffding Tree . 9
2.3 Concept Drift . 11

2.3.1 Speed of Drift . 13
2.3.2 Severity of Drift . 14
2.3.3 Concept Drift detection . 14

2.4 Class Imbalance . 16
2.4.1 Minority class distributions 17
2.4.2 Offline Algorithms to deal with Class Imbalance 17

2.5 Evaluation Methodology . 18
2.5.1 Error Estimation . 18
2.5.2 Performance Measures . 19

3 Problem Setting 23
3.1 SML Algorithms to deal with Class Imbalance and Concept Drift . 23

3.1.1 C-SMOTE . 23
3.1.2 RebalanceStream . 24
3.1.3 Online Bagging . 26
3.1.4 Ensemble of Online Sequential Extreme Learning Machine . 29

3.2 Problem Statement . 32
3.2.1 Benchmarking environment 32
3.2.2 Replication Study . 34
3.2.3 Data streams . 34
3.2.4 Performances evaluation . 35
3.2.5 Problem Recap . 35

4 Problem Solving 37
4.1 Technologies adopted . 37

4.1.1 Implementing and running the algorithms 37
4.1.2 Tracking memory requirements 39
4.1.3 Visualizing the results . 39

4.2 Data streams . 39
4.2.1 SEA and SINE1 . 40
4.2.2 Cluster generator . 41
4.2.3 Real Datasets . 46

5 Implementation experience 49
5.1 Cluster drift generation . 49
5.2 Algorithms implementation . 50

5.2.1 Native OOB and UOB . 51
5.2.2 Improved OOB and UOB 52
5.2.3 Ensembles of the improved versions 54

5.3 Benchmarking setup . 57
5.4 Experiments configuration . 58

6 Results 61
6.1 P(X|y) drift . 61
6.2 P(y|X) drift . 64
6.3 P(y) drift . 68
6.4 Resources requirements . 71
6.5 Real datasets . 72

7 Conclusions and Future Work 77

Appendix A 79

Bibliography 95

List of Figures

2.1 An example of decision tree structure. 9
2.2 An example of decision tree classifier 10
2.3 An example of the three sources of concept drift. 12
2.4 Possible temporal characteristics of a drift, src: [1]. 13
2.5 Confusion Matrix. 20

3.1 The structure of a Single hidden-Layer Feed-forward Network, src: [2]. 30

4.1 Data stream classification cycle, src: [3]. 38
4.2 The illustrated sequence of the appearing minority drift. 44
4.3 The illustrated sequence of the disappearing minority drift. 44
4.4 The illustrated sequence of the minority share drift. 44
4.5 The illustrated sequence of the cluster movement drift. 45
4.6 The illustrated sequence of the cluster jitter drift. 45
4.7 The illustrated sequence of the appearing cluster drift. 45
4.8 The illustrated sequence of the splitting cluster drift. 46
4.9 The illustrated sequence of the shape shift drift. 46
4.10 The illustrated sequence of the borderline drift. 46
4.11 The distribution of the class probability during the real data streams. 48

5.1 Original stream generation sequence. 50
5.2 Custom stream generation sequence. 50
5.3 The UML class diagram of the Online bagging algorithms. 51
5.4 The experiments workflow. 57

6.1 Mean Recall and Fscore with streams having a P(X|y) drift. 62
6.2 Recall and Gmean during streams having a P(X|y) drift and high

imbalance ratios. 64
6.3 Mean Recall with streams having a P(y|X) drift. 65
6.4 Recall and Fscore during streams having a P(y|X) drift and Imbal-

ance ratio 1:9. 66

6.5 K temporal and Gmean during SEA and SINE1 streams having a
P(y|X) drift. 67

6.6 Recall during streams having a P(y) drift with imbalance ratio 1:9. 69
6.7 Gmean during streams having a P(y) drift 70
6.8 Time and Memory requirements of each algorithm. 71
6.9 Mean Time and Memory requirements of the Online Bagging based

algorithms. 72
6.10 Recall average with real datasets. 74
6.11 Gmean during real datasets. 75

List of Tables

2.1 Main differences between batch and stream learning, src: [4]. 9

4.1 The characteristics of the artificial data streams used in the exper-
iments. 42

6.1 Average statistics with real datasets. 73

List of Listings

5.1 The update of the class sizes method 52
5.2 The update of the class recalls method. 52
5.3 The class imbalance detection. 53
5.4 The native OOB lambda computing 53
5.5 The native UOB lambda computing 53
5.6 The training procedure . 53
5.7 The Improved OOB methods . 54
5.8 The Improved UOB methods . 54
5.9 The updating procedure of the smoothed recall 55
5.10 The prediction procedure of the WEOB1 ensemble 56
5.11 The prediction procedure of the WEOB2 ensemble 56

List of Algorithms

1 Pseudocode of Hoeffding Tree. 11
2 Pseudocode of C-SMOTE . 24
3 Pseudocode of RebalanceStream . 25
4 Pseudocode of the RebalanceStream new learners training 26
5 Pseudocode of Online Bagging methods 28
6 Pseudocode of Improved Online Bagging methods 29
7 Pseudocode of ESOS-ELM . 33

Chapter 1

Introduction

Nowadays, we are generating data through the devices we interact with. This big
amount of information, called BigData, could be analyzed and exploited to make
our lives better.

1.1 Big Data

Data available are becoming ”bigger” everyday. The definition of ”bigger” has
been characterized by Laney et al. [5] with three V and extended by Khan et
al. [6] with seven V:

• Volume: In January 2021, there were 4,2 billion social media users worldwide
and each user, in average, spend almost 7 hours online each day, of which 2
hours and 25 minutes using social media [7]. The size of the data generated
continues to grow but not as much as our tools ability to process it;

• Velocity: Data move fast. For example, it takes seconds to process a credit
card swipe, going through a fraudulent transaction detection system, pay-
ment system, bookkeeping, and so on;

• Variety: Data appear in various unstructured forms like social media updates,
photos, videos, sensors, voice recordings and so, extracting information from
them is not straightforward as in traditional databases;

• Veracity: Data are not always accurate and trustworthy. They need to be
analyzed also in this dimension to extract correct information;

• Validity: Data can be valid for a specific application and then invalid for
another application. Validity measures the correctness of data with respect
to the intended usage;

• Volatility: Data have a retention period after which they are not useful or
the cost of storing them exceeds their value; and

• Value: Data have value as long as they lead to better decisions. This is the
only motivation for processing these large datasets. It’s a trade-off between
costs and benefits.

Traditionally, data are stored in a database and they are analyzed all together.
They are split in two sets, one used for training the model and one used for testing
it. Every time new data are collected, the model is recomputed. When Volume or
Velocity become too big, this process becomes expensive and sometimes unfeasible.
Searching for new solutions that can deal with all these dimensions will lead to
building more useful models increasing the relevance of this science. Streaming
Machine Learning (SML) aims at doing this with a completely new approach.

1.2 Streaming Machine Learning

The research for new solutions has opened a new branch of Machine Learning
called Streaming Machine Learning (SML). This new approach is based on data
streams, sequences of data arriving once at a time. The goal is to get information
in real-time without the need to come back to already seen data and using a
limited amount of resources such as memory and time. Two big challenges in this
new field are the concept drift phenomenon [8] and the class imbalance [9]. Data
streams evolve over time and the distributions from which the data are obtained
can change. Models built on old data can become inconsistent. This is called
concept drift and can happen in various forms and speeds. The second challenge
concerns data streams where there is an unequal distribution between the classes.
Since the instances contained in the minority class(es) rarely occur, the patterns
for classifying these classes tend to be rare, undiscovered, or ignored i.e.fraudulent
transactions or spam emails. These kind of information are rare but important
and models need to take them into consideration. The range of applications of
Streaming analysis is wide, and the problems of concept drift and class imbalance
are always present. Some examples are:

• Internet of Things: every day, new sensors are placed in industries to monitor
processes [10], in houses to improve security [11] or in cities to monitor the
mobility of people [12].

– Concept Drift: sensors’ goals could be the detection of anomalies in
finished products. Defects can change frequency and location in the
product’s surface based on which industrial machine is damaged.

2

– Class Imbalance: following the same example, anomalies are usually
rare events that need to be captured correctly to maintain high quality
standards.

• Social Media: users continuously produce data about their interactions through
photos, likes, comments, tags. These data are exploited to recommend new
and interesting content [13].

– Concept Drift: people’s interests change with time and recommendation
engines need to adapt to it in order to maintain good performances.

– Class Imbalance: recommendation engines are usually based on cate-
gories but content categories have different audience sizes. This will be
a problem if the number of interactions is not artificially rebalanced.

• Health Care: hospitals collect a large amount of real-time data about the
patients that need to be fast and accurately processed [14]. In this type of
environment, being able to process both static data and real-time data can
be game-changing.

– Concept Drift: a patient’s vital sign could change at any moment with-
out any warnings and the algorithm for the classification of the general
health status needs to change accordingly.

– Class Imbalance: hospitals monitor patient’s vital signs and the ma-
chine’s predictions about a particular disease need to be re-balanced
with respect to the frequencies and dangerousness of these diseases.

• Epidemics and disasters: using real-time data to analyze this kind of time-
sensitive information can help with disaster control and prevention [15].

– Concept Drift: during the Covid-19 epidemics, the number of infections
changes rapidly. In Italy, for example, there where three major spreading
periods that differ on both the location of the most affected areas and
the number of infections.

– Class Imbalance: in order to make an accurate prediction, the features
of positives, which come from a minority class, need to be re-balanced
with respect to the negatives which come from the majority class.

3

1.3 Contributions of the thesis

Algorithms proposed to deal with concept drift have been tested on balanced
streams with various types of drifts, while algorithms proposed to deal with class
imbalance have been tested on stable streams or streams where the only change
was on the imbalance ratio. The contributions of my thesis can be summarized as
follows:

• Implementation of the state-of-the-art algorithms for classification with im-
balanced data streams and concept drift, increasing the suite of algorithms
offered by MOA [3], an open-source software library to run machine learning
experiments on data streams;

• Upgrade of a synthetic data streams generator [16] implemented in MOA [3]
adding the possibility to generate concept drifts of various types and speeds
and imbalance ratios;

• The building of a benchmarking environment for algorithm comparison which
allows to reproduce my experiment comparing SML algorithms implemented
in MOA using the developed data stream generator; and

• Comparison of the state-of-the-art algorithms detailing their strengths and
weaknesses, proposing new solutions to enhance them.

4

1.4 Document Structure

The thesis is structed as follows:

• Chapter 1: Introduction - It introduces the streaming approach to ma-
chine learning. It explains which are the main challenges to face.

• Chapter 2: State Of Art - It explains the main characteristics of stream-
ing machine learning. It introduces the concept drift and class imbalance
problems. In the end, it details the model evaluation methodologies.

• Chapter 3: Problem Setting - It details the existing solutions and It
explains why there was a need for a benchmarking environment.

• Chapter 4: Problem Solving - It describes my approach to the problem.
It details the technologies adopted and the characteristics of the data streams
used in the experiments.

• Chapter 5: Implementation Experience - It describes my upgrade of
the data stream generator and how I structured the implementation of the
state-of-the-art algorithms. Finally, it presents the building blocks of the
benchmark environment.

• Chapter 6: Results - It presents the results using detailed tables and plots.
The performances of the algorithms are analyzed from different angles using
various measures.

• Chapter 7: Conclusions and Future Work - It discusses the conclusions
based on the experiments and outlines some directions for future improve-
ments of this work.

• Appendix A: IEBench - It presents the paper submitted to the ECML
PAKDD 2021 conference which summarizes this work.

5

Chapter 2

State of the Art

In this chapter, I present the SML approach detailing its characteristics and its
challenges. Section 2.1 describes the traditional approach to machine learning,
while Section 2.2 explains what changed w.r.t. the Streaming approach. Sec-
tion 2.3 explains concept drift, the first challenge of this field, and it describes the
already existing solutions. Section 2.4 explains the challenge of class imbalance
and the existing approaches in traditional settings. Finally, Section 2.5 describes
the evaluation methodologies detailing the techniques to test the models and to
measures their performances.

2.1 Traditional Machine Learning

Traditional Machine Learning algorithms build models to extract information from
a dataset composed by already collected data. The workflow of a Machine learning
application [17] is composed by phases listed below.

• Data Collection: data are collected through hardware sensors, software ap-
plications, or user surveys and stored in a database.

• Data Pre-processing: data are processed and made suitable for the analysis.
They are transformed in a multidimensional format in which every field is
a different measure. The final result is a structured dataset ready to be
processed by the algorithms.

• Model Construction: during this phase, models are built using only a subset
of the data called training set. In order to choose the most suited algorithm
and its parameters, techniques like cross-validation [18] are adopted.

• Testing phase: during this phase, the chosen model is fitted on the whole
training set and evaluated on the remaining set of data called testing set.
The result is a final score about the model performances with unseen data.

• Prediction phase: finally, the model is used to make predictions on new and
unlabeled data.

The main issues of this approach appear when new labeled data arrive. Every
time this happens, the whole model needs to be retrained in order to use the new
information. When data arrive continuously, it becomes prohibitive with respect
to the available resources to store and analyze them. The streaming learning
approach aims to solve this problem.

2.2 Streaming Machine Learning

Online or Streaming Machine Learning (SML) algorithms learn from a continuous
and possibly infinite data flow. The main advantage of SML models is that they
do not need to be retrained every time new samples arrive but they can learn
incrementally. These streaming algorithms have new time and resource constraints:

• Process one data sample at a time;

• Use a limited amount of time to process each data sample;

• Use a limited amount of memory;

• The update of the model with new data sample must be carried out without
making intensive use of the already considered data;

• Be ready to make new predictions at any time; and

• Adapt to temporal changes.

The streaming setting differs from the traditional one for numerous reasons. It
is not possible to split the dataset into different sets but new approaches need to
be implemented to train and test the models. In Streaming scenarios, new specific
challenges arise. For example, if the task is to detect fraudulent transactions,
when we label one as a fraud it cannot be executed and it will not be possible to
know what it really was. Often labels can be missing or delayed. I list the main
differences in Table 2.1. In this thesis, I will focus on the most widely used binary
classification task where the model needs to assign the correct class label to every
data sample. The experiments are run in a clean way following this workflow:

8

• A new sample (X, y) arrives with both its features and label;

• The model f makes a prediction ŷ = f(X);

• The pair (X, y) is used to train the model f and the pair (ŷ, y) is used to
update the statistics about the classifier performance.

Table 2.1: Main differences between batch and stream learning, src: [4].

Batch learning Stream learning

Offline Real Time

Slow data generation Fast data generation

Persistent data Transient data

Process entire data Process samples of data

Constant availability Limited availability

Fixed size Unbound size

Random access Sequential access

Known data characteristics Unpredictable data characteristics

2.2.1 Hoeffding Tree

In traditional machine learning, a widely used category of classifiers is decision
trees. They are models composed of nodes, branches, and leaves as shown in

Figure 2.1: An example of decision tree structure.

9

Figure 2.2: An example of decision tree classifier, src1.

Figure 2.1. Given a training set in input composed of samples with n features
and a label, the decision tree algorithm splits the set into subsets based on an
attribute value. In this way, it creates a node of the tree. This process is repeated
recursively on each subset until the data in the subset in a node have all the same
label value, an example of this procedure is shown in Figure 2.2.

The Hoeffding Tree [19] is a SML model that builds a tree incrementally. Start-
ing with a root node, once enough data samples have passed through that node,
a test is chosen and the corresponding leaves created. This is done recursively
for every node. A node is split when it has processed enough sample that the
Hoeffding bound proposed by Hoeffding in [20] has been exceeded. This bound
states that, with probability 1-δ, with n independent observations, the true mean
of a random variable with range R (in case of classification it is log(c) where c is
the number of classes for a discrete variable) differs from the empirical mean by
not more than the ε value calculated as in Equation 2.1.

ε =

√
R2ln(1/δ)

2n
(2.1)

This bound is used to compare the Gini index (introduced by Gini in [21]) of
the attributes in a node. The Gini index of a set S measures the error rate of ran-
dom classifier that assigns classes to instances according to their prior frequencies,

10

Algorithm 1 Pseudocode of Hoeffding Tree.

1: function HoeffdingTree(S,HT, δ)

2: while hasNext(S) do

3: X, y ← next(S)

4: leaf ← sortToLeaf(X,HT)

5: updateCounts(leaf,X, y)

6: if data samples at leaf belong to more than one class then

7: i0, i1 ← attributesWithBestGini(leaf)

8: if Gini(leaf, i0) - Gini(leaf, i1) >

√
R2ln(1/δ)

2n then

9: leaf ← newNode()

10: for each value j in i0 do

11: addLeaf(leaf, i0, j)

calculated as in Equation 2.2.

Gini(S) = 1−
n∑
j=1

p2j (2.2)

where n is the number of classes and pj is the frequency of data samples belonging
to class j. The Gini index of an attribute is the difference between the Gini indexes
before and after the split. If the difference of the two best indexes is greater than
the bound, new leaves are generated. Each leaf stores the counts nijk of the
samples processed with attribute i having value j and class k. The pseudocode of
this algorithm is shown in Algorithm 1. S refers to the data stream, HT refers to
a single leaf (root) and δ is the bound parameter.

The more interesting characteristics of this algorithm are the constant time
learning and the fact that, with enough data samples, it converges to the tree that
would be produced by an offline learner.

2.3 Concept Drift

Learning from data streams means being able to accurately model the underlying
data distribution but also to be flexible and adapt to changes as fast as possible.
The data streams have a temporal nature and therefore their characteristics and
distribution can change over time. This characteristic of a data stream is named
concept drift [8]. The drift can occur with different speeds, sizes, and severities.
As described in [22], a concept drift between time t0 and time t1 can be defined
by Equation 2.3.

∃ X : pt0(X| y) 6= pt1(X| y) (2.3)

11

Figure 2.3: An example of the three sources of concept drift.

Where pt0 and pt1 are the joint distribution, at time t0 and t1 respectively, between
the set of input variables X and the target variable y. Bayes theorem dissects
P (X| y) into different terms, each one can be a cause of change. The theorem is
stated mathematically by Equation 2.4.

P (y|X) =
P (X| y)P (y)

P (X)
(2.4)

Each one of the four probability can change, the resulting drifts are detailed in
the following list.

• Pt(X) 6= Pt+1(X): in this case, it is possible to see changes in the overall
distribution of data and it could also mean that the decision boundary is
shifting. Being an independent change from the class labels, it is insufficient
to define a concept drift.

• Pt(X| y) 6= Pt+1(X| y): in this case, the probability of seeing a data sample
X is changing but its label y is not. It shows that we are seeing new data
samples from the same environment and the drift does not affect the decision
boundary. An example of his particular drift, known as virtual concept drift,
is shown in Figure 2.3.

12

Figure 2.4: Possible temporal characteristics of a drift, src: [1].

• Pt(y) 6= Pt+1(y): in this case, the probability of seeing any data example from
a particular class y is changing. This will cause the class ratio to change and
possibly the switch between minority and majority class. It can affect the
performances of the algorithms due to a change in the class imbalance status
but It does not necessary shift the decision boundary.

• Pt(y| X) 6= Pt+1(y| X): in this case, the probability of a data example X
of belonging to a particular class y is changing. This drift will cause the
decision boundary to shift, and, as a consequence, it will lead algorithm’s
performances to deteriorate. An example of this particular drift, known as
real concept drift, is shown in Figure 2.3.

2.3.1 Speed of Drift

Concept drifts are also classified for their speed of change [1]. As shown in Fig-
ure 2.4, we can classify them as:

• Sudden: it occurs when the data distribution changes completely in a few
steps to a significantly new one;

• Gradual probabilistic: it occurs when the change in the data distribution takes

13

some samples to complete and, during the shift, the samples come from both
the distributions;

• Gradual continuous or Incremental : it occurs when the data distribution
changes unnoticeable step by step but the accumulated change becomes sig-
nificant over time;

• Recurring or Periodic: it occurs when an already seen data distribution comes
back later in time. It can be a great advantage for the algorithm to notice it
and adapt accordingly; and

• Noise: is a non-informative fluctuation that should not be mistaken for a
real drift and it should be filtered in order not to affect the algorithm’s
performances.

2.3.2 Severity of Drift

Drifts can also differ for their severity [23], meaning the amount of change caused
by it. They can be distinguished as Local or Global.

• Local : it occurs when only some areas of the instance space are affected by
the drift. Such drifts are more difficult to catch due to the scarcity of data
representing the drift.

• Global : it occurs when changes affect all or the major part of the instance
space. This drifts have a strong effect on the algorithm’s performance thus
they are easier to catch.

2.3.3 Concept Drift detection

Learning algorithms for classification need to be trained to correctly classify each
arriving sample as a function of its feature. Every time this function change, the
learners need to detect it and adapt as fast as possible. Drift detection methods
can be categorized as either statistical-based, window-based, or ensemble-based [4].

The following list details them.

• Statistical-based approach detect concept drifts through monitoring model
statistics like the prediction accuracy, correlations between features, or the
frequency of class labels. The most famous drift detectors using a statisti-
cal method are CUSUM Test [24], Page-Hinckley Test [25], Ddm [26] and
LFR [27].

14

• Window-based methods, rather than monitoring arriving instances from a
stream individually, use one or more sliding windows to monitor statistics.
Larger windows can compute the performances with higher accuracy, but
they can miss small concept drift within themselves, while smaller windows
have a faster concept drift detection. A fundamental problem when designing
this type of algorithms is the sizing of the window.

• Ensemble-based learners are a group of simple classifiers, called base learn-
ers, that combine the predictions in order to achieve greater performance.
The loss of predictive performance of base classifiers can be exploited to deal
with concept drift. An example of such algorithms is Dynamic Weighted Ma-
jority (DWM) [28] which updates the weight of the base learners’ predictions
after each sample, based on their correctness. The algorithm deal with con-
cept drifts adding a new base learner to the ensemble when it makes a wrong
prediction and removing base learners having the weight under a threshold.

2.3.3.1 Adaptive Sliding Windows

The Adaptive Sliding Window (ADWIN) [29] algorithm is a drift detector that
avoids the sizing problem of window-based algorithms. ADWIN keeps the recently
seen data samples in a variable-length window. Every time new data are collected,
It computes the average of different “large enough” slices of the window. When an
older slice’s average differs from the one of the rest of the window of more than a
threshold, ADWIN drops the old slice and a concept drift is detected. Therefore,
the window has the property that it has the maximal length statistically consistent
with the hypothesis ”There is no change with the average value inside the window”.
The only hyper-parameter of this algorithm is the statistical confidence bound for
the drift δ. The algorithm compares the averages of two sub-windows W0 and W1

with the test presented in Equation 2.5 and decides whether they are likely to
come from the same distribution.

Test : |µw0 − µw1| > εcut (2.5)

The parameter εcut is computed as explained in Equation 2.6.

m =
1

1/n0 + 1/n1

εcut =

√
1

2m
∗ ln

4n

δ

(2.6)

Computing this test for every “large enough” sub-window can become computa-
tionally expensive. A new version of this algorithm called ADWIN2 was proposed

15

in the same study [29]. The main idea was to compress the window in buckets
using a variant of the exponential histogram technique presented in [30]. The
memory requirements are reduced to O(logW) and the worst-case time to process
a new data sample is O(log2W).

2.3.3.2 Hoeffding Adaptive Tree

An effective application of the ADWIN technique was proposed to make the Ho-
effding Tree able to deal with concept drifts because making new leaves is not
enough in order to deal with this challenge.

The new algorithm is called Hoeffding Adaptive Tree [31] and it uses ADWIN2
as a change detector and error estimation. An ADWIN drift-detector is assigned
to every node. Each time a change is detected, an alternate tree is created starting
from the detector’s node. As soon as there is evidence that an existing alternate
tree is more accurate, it replaces the sub-tree having as root the starting node.

2.4 Class Imbalance

In real-world scenarios [9], data samples coming from different classes have different
frequencies and the ratio of class probabilities can be significantly skewed. The
challenge is to make the learner focus its attention on the less represented class
which is more difficult to learn but usually more important. This condition is
referred to as the class imbalance problem. A dataset is said to be imbalanced
when one of the classes, named minority class, is heavily under-represented in
comparison to the other, named majority class. This problem is present also in
multi-class scenarios in which there are three or more classes. In such cases it is
possible to reduce the multi-class classification problem to multiple binary ones.

The following list details the most famous approaches.

• One vs one: presented by Hastie et. al. [32], it consist in training a learner
for each pair of classes. The number of binary problems will be K(K − 1)/2
and a new instance is labeled with the class receiving the majority of the
votes.

• One vs all: as described by Joshi et. al. [33], a binary problem is associated
to each class, seen as the positive class, while all the other classes will form
the negative class. The number of binary problems will be K and a new
instance is labeled with the class having the higher value of the corresponding
predictor.

16

• Error Correcting Output Codes: presented by Dietterich et. al. [34]
consist in associating a binary code of lenght L to each class. L binary
classifiers are trained and the prediction will be a binary code. The prediction
is the class having the code most similar to the predicted one.

In this work, I focus on the binary classification problem.

2.4.1 Minority class distributions

Measures to define the level of imbalance are the percentage of minority class data
samples and the size ratio between classes. Class imbalance ratio is not the only
main difficulty related to class imbalance. The drop in classification performance
is also related to another important factor i.e. the minority class distribution in
the feature space. This concerns how the minority class samples are located in the
instance space with respect to the majority class ones. The study [35] propose 4
different categories of minority class data samples:

• Safe: If it is located in regions mostly populated by samples belonging to the
same class;

• Borderline: If it is placed in the boundary regions between classes, where the
samples from both classes overlap;

• Rare: If it is placed in regions populated by data samples of a different class;
and

• Outlier : If it is distant from the corresponding class clusters.

2.4.2 Offline Algorithms to deal with Class Imbalance

The algorithms proposed to solve the imbalance problem in traditional settings are
the starting points for the proposed solutions on imbalanced data streams. These
solutions can be classified into the three different categories listed below.

• Data-level methods: this family of approaches aims at solving the prob-
lem by filtering training data to rebalance the class distributions. This can
be achieved by oversampling the minority class samples, undersampling the
majority class samples, or combining both. The simplest and most popular
resampling techniques are random oversampling and random undersampling,
where data samples are randomly chosen to be added or removed until a
balanced dataset is obtained. There are also more elaborated resampling
techniques. The most famous oversampling one is SMOTE [36]. This al-
gorithm consist in generating new minority class samples starting from the

17

similarities between original ones in the feature space. In order to generate a
new synthetic sample the algorithm randomly select a minority class sample
and one of its k nearest neighbors. The new sample is placed on the line that
connect the selected data points. An important undersampling technique is
One-sided selection (OSS) [37], which has two phases: during the first one,
it consider all the minority class samples and adds one majority class sample
at a time, only if they would be misclassified by a 1-NN until there are not
any misclassifications. The second phase consists of removing all the data
samples that lie in the border of the two classes. Resampling techniques have
been widely tested on real-world applications which have proved their effec-
tiveness. They do not depend on the classifiers thus are more versatile than
algorithm-level methods.

• Algorithm-level methods: these methods are applied during the algorithm
training and they aim at solving the class imbalance problem by penalizing
more a prediction error on a minority class data sample. This family of al-
gorithms includes cost-sensitive learning, where the cost of making a wrong
prediction on a minority class sample is weighted with the class ratio, and
threshold methods, which consist on tuning the threshold used to map prob-
abilities to class labels. For example, in binary classification, instead of the
standard 0.5, the algorithm could just decrease the threshold for labeling
samples as belonging to the minority class.

• Ensemble methods: they become the most used approaches to handling
class imbalance. Ensembles are groups of base learners that need to be
trained with different datasets in order to have different ”points of view”
for the prediction. This can be done with techniques such as Bagging [38] or
Boosting [39]. Ensembles can be easily integrated with different resampling
techniques in order to emphasize the minority class.

2.5 Evaluation Methodology

One of the fundamental tasks in machine learning processes is the model evaluation
since it decide which model is the more appropriate to solve the problem at hand.
In particular, the evaluation process is composed, firstly, by an error estimation
and then by an evaluation of the performance measures.

2.5.1 Error Estimation

In traditional machine learning, with a static training set, usually, the perfor-
mances of the models are evaluated with a procedure known as cross-validation [18].

18

However, this split cannot be performed on a data stream where data are un-
bounded and evolving. The following list explains the main approaches for model
evaluation on data streams [40].

• Holdout: with this approach, a testing set is created periodically to test the
performances of the model. Holdout is useful when data are abundant and
testing on all the data would be computationally expensive. Two parameters
need to be set: i) the size of the window for testing purposes and ii) the
frequency of testing. This evaluation method is fast but it is not suggested
to use when concept drift is expected.

• Interleaved test-then-train: with this approach, each data sample is
firstly used to test the model and then it is used for training. The model
performance is being continuously evaluated and all the data samples are
used to train the model. This method is more precise than Holdout but more
computationally expensive.

• Prequential: this approach is similar to the previous one but the recent
samples are considered more important, using a sliding window or a decaying
factor whose sizes are parameters of the evaluation.

2.5.2 Performance Measures

In binary classification, the instances belong to two different classes which are
called, for simplicity, ”positive” and ”negative”. In order to evaluate the perfor-
mances of a model, the predictions are reported in a table called confusion matrix
presented in Figure 2.5. After every evaluation, the instances predicted as positive
are labeled with ”P” and the instances predicted as negative are labeled with ”N”.
The correct predictions are labeled as ”T” and the wrong ones are labeled as ”F”.
The counting of each label combination forms a confusion matrix, where:

• True Positives (TP): samples correctly classified as positives. They belong
to the positive class;

• False Positives (FP): samples wrongfully classified as positives. They be-
long to the negative class;

• True Negatives (TN): samples correctly classified as negatives. They be-
long to the negative class; and

• False Negatives (FN): samples wrongfully classified as negatives. They
belong to the positive class.

19

Figure 2.5: Confusion Matrix.

Different measures can be computed using this table. Accuracy is one of the most
used metric in classification problems and it is computed as TP+TN

TP+TN+FP+FN
.

In data streams, data is evolving and the number of instances per class is
changing. Accuracy does not take into account this important factor and therefore
is not well suited for stream classifiers. Furthermore it does not take into account
the class distribution of the dataset [41]. For example, if the instances belonging
to the positive class are only 5% of the dataset, a classifier predicting everything as
negative will reach a 95% accuracy, but it will miss all the positive instances. Useful
measures for data stream classification that take the class imbalance problem into
account are Recall, Fscore, Gmean and Kappa statistics.

2.5.2.1 Recall and Fscore

To better evaluate the models that focus on class imbalance, it’s not possible to
base our evaluation metric only on the accuracy, but we need measures that focus
on each class separately. These measures are the Recall, meaning the fraction of
instances of a particular class correctly predicted, and the Precision, meaning the
fraction of predictions of a particular class that are correct.

Positive Recall or Sensitivity =
TP

TP + FN

Negative Recall or Specificity =
TN

TN + FP

Positive Precision =
TP

TP + FP

20

Negative Precision =
TN

TN + FN

The combination of these two metrics, Precision and Recall, is called Fscore
and it is defined by Equation 2.7 as the harmonic mean of the two.

Fβ = (1 + β2)× Recall × Precision
Recall + (β2 × Precision)

(2.7)

The parameter β is used to decide if one of the two measures is more important
than the other. When β = 1, this measure is named F1score and it weights
equivalently the two measures. It is defined by Equation 2.8.

F1 = 2× Recall × Precision
Recall + Precision

(2.8)

2.5.2.2 Gmean

A measure that takes into account the performances of the model on both the two
classes was presented by Kubat et. al. [42]. It is called Gmean and it measures the
balance between classification performances on the majority and minority classes.
It is defined by Equation 2.9 as the geometric mean of the recall on each class.

Gmean =
√
Sensitivity × Specificity (2.9)

2.5.2.3 Kappa statistics

The original Kappa statistic, also called Cohen’s Kappa [43], is based on the
accuracy score, but it re-scales it with respect to the accuracy that would have
happened through random predictions. It is defined by Equation 2.10.

κ =
p0 − pr
1− pr

(2.10)

p0 is the prequential accuracy of the classifier, and pr is the probability to make a
correct prediction of a random classifier, one that assigns to each class the same
number of samples. In case of very imbalanced class distributions the Kappa M
statistic κm, proposed by Bifet [44] can perform better and it is defined as in
Equation 2.11:

κm =
p0 − pm
1− pm

(2.11)

where pm is the probability to make a correct prediction of a majority class clas-
sifier, one that assigns to the majority class all the new samples. This type of
measure fails on evaluating change detectors with data streams that have tempo-
ral dependence on the class distributions. Another version of the kappa statistics

21

has been evaluated in order to exclude any inaccuracy in the previous metrics
and take this type of drift into account, the Kappa-Temporal statistics [45]. This
metric considers the presence of temporal dependencies in data streams and it is
computed as in Equation 2.12.

κtemp =
p0 − pnc
1− pnc

(2.12)

where pnc is the probability to make a correct prediction of a no-change classifier,
one that assigns to the samples the class label observed on the sample before.

The κtemp and κm measure different aspects of the performance and they can
be used jointly.

22

Chapter 3

Problem Setting

This chapter presents the problem that this thesis aims to solve. In particular, Sec-
tion 3.1 details the existing solutions to the class imbalance problem in streaming
scenarios, presenting each algorithm’s pseudocode. Section 3.2 describes why there
is a need for a benchmarking environment for the class imbalance and concept drift
solutions.

3.1 SML Algorithms to deal with Class Imbalance and

Concept Drift

The algorithms proposed to solve the imbalance problem in online scenario refer
to the respective offline scenario solutions. The studied approaches are Data-level,
based on SMOTE [36], and Ensembles, based on the online bagging technique [46].
In the following sections I present the pseudocode of the algorithms.

3.1.1 C-SMOTE

C-SMOTE [47] is an online version of SMOTE [36] where the minority samples are
collected in a window managed by ADWIN [29]. The algorithm keeps 4 counters:
S0 and S1 count the arriving samples of each class, while S0 and S1 count the
generated synthetic samples of each class. To rebalance the data stream, the
algorithm uses two windows, one called W which keeps the samples related to
the current concept and one called Wlabel which keeps the corresponding labels.
Every time a new sample arrives, the class ratio is checked and, if it is less than a
certain threshold t, an online SMOTE version is applied until the minority sample
ratio is greater than the threshold. In order to generate the synthetic samples,
the real ones are selected randomly and only once for each rebalance phase. A

Algorithm 2 Pseudocode of C-SMOTE

1: function C-SMOTE(minSizeMinority, learner, t, S)

2: W,Wlabel ← ∅
3: S0, S1, S0, S1 ← 0

4: Sgen ← ∅
5: adwin← ∅
6: while hasNext(S) do

7: X, y ← next(S)

8: train(X, y, learner)

9: Wlabel ← add(y)

10: W ← add(X, y)

11: updateCounters(y, S0, S1)

12: adwin← add(y)

13: if getChange(adwin) then

14: resizeWindows(adwin,W,Wlabel, S0, S1, S0, S1, Sgen)

15: Wmin, Smin, Smin ← selectMinorityClass(W,Wlabel, S0, S1, S0, S1)

16: Wmaj , Smaj , Smaj ← selectMajorityClass(W,Wlabel, S0, S1, S0, S1)

17: if checkMinSize(minSizeMinority, Smin) then

18: imbalanceRatio← ratio(Smin, Smaj , Smin, Smaj)

19: while t > imbalanceRatio do

20: X̂, ŷ ← newSample(Wmin, Sgen)

21: Smin ← Smin + 1

22: train(X̂, ŷ, learner)

23: imbalanceRatio← ratio(Smin, Smaj , Smin, Smaj)

sample will be selected more than once only when the amount of rebalance needed
is greater than the size of the minority window. The count of artificially generated
samples is done using an array called Sgen which, for each sample in W , counts
how many times it is used to introduce synthetic samples. When ADWIN detects
a change, the two windows are resized and all the counters updated. The complete
pseudocode is presented in Algorithm 2. l refer to the base learner, t refers to the
class ratio to achieve and minSizeMinority refers to the minimum number of
minority samples in the window to start the rebalancing procedure.

3.1.2 RebalanceStream

RebalanceStream is another data-level solution based on SMOTE [48]. This algo-
rithm uses ADWIN and multiple models to deal with class imbalance.
It starts with a single base learner. Incoming data are collected in a batch and

24

Algorithm 3 Pseudocode of RebalanceStream

1: function RebalanceStream(S, learner)

2: adwin, confusionMatrix← ∅
3: batch, resetBatch← ∅
4: while hasNext(S) do

5: X, y ← next(S)

6: eval← prequentialEvaluation(learner,X, y)

7: confusionMatrix← add(eval)

8: adwin← add(y)

9: train(X, y, learner)

10: batch← add(X, y)

11: if getWarning(adwin) then

12: w ← true

13: if w == true then

14: resetBatch← add(X, y)

15: if getChange(adwin) then

16: kStatLearner ← k-statistics based on confusionMatrix

17: kStatBal, lBal← trainLearner(batch, True)

18: kStatReset, lReset← trainLearner(resetBatch, False)

19: kStatResetBal, lResetBal← trainLearner(resetBatch, True)

20: max← max(kStatLearner,kStatBal,kStatReset,kStatResetBal)

21: learner ← model having max

22: confusionMatrix← confusionMatrix of model having max

23: Reset other models, batch and resetBatch

24: w ← false

the corresponding class labels are collected in a window managed by ADWIN.
When it detects a drift warning, the algorithm starts collecting samples in a new
batch called reset-Batch. When ADWIN confirms the change, three new learners
are trained in parallel: i) one only with the reset-Batch, ii) one with the reset-
Batch balanced with SMOTE, and iii) one with the original Batch rebalanced with
SMOTE. The one with the better k-statistic is chosen to be the new learner and
will replace the active model. Then, the other models and both the Batch and the
reset-Batch are resetted. The pseudocode of the main algorithm is presented in
Algorithm 3. The procedure to train the three temporary learners is detailed in
Algorithm 4.

25

Algorithm 4 Pseudocode of the RebalanceStream new learners training

1: function trainLearner(batch, rebalance)

2: newLearner ← newClassifier()

3: confusionMatrix← ∅
4: if rebalance then

5: batch← SMOTE(batch)

6: for each (X, y) ∈ batch do

7: eval← prequentialEvaluation(newLearner,X, y)

8: confusionMatrix← add(eval)

9: train(X, y, newLearner)

10: kStat← k-statistics based on confusionMatrix

11: return kStat,newLearner

3.1.3 Online Bagging

Bagging [38] is one of the most used machine learning technique to build ensembles.
It consists on training each base learner with a different dataset with the same size
as the original one, but created by sampling with replacement from the original
training set.

In offline Bagging, each base model is trained with a data set containing K
copies of each of the original training data sample where K is extracted from a
binomial distribution as detailed in Equation 3.1.

P (K = k) =

(
N

k

)
(

1

N
)k(1− 1

N
)N−k (3.1)

An online version has been proposed in [46] and It is based on the fact that a
data stream is an infinite size dataset.

Applying the limit as N →∞ to the above binomial distribution will result in
a Poisson distribution with lambda equal to 1 as detailed in Equation 3.2.

P (K = k) = lim
N→∞

N !

k!(N − k)!
(

1

N
)k(1− 1

N
)N−k

lim
N→∞

1

k!

N !

(N − k)!
(

1

N
)k =

1

k!

lim
N→∞

(1− 1

N
)N = e−1

lim
N→∞

(1− 1

N
)−k = 1

P (K = k) =
e−1

k!

(3.2)

26

In Online Bagging each base learner is trained with each data sample k times, with
k drawn from a Poisson(1) distribution.

3.1.3.1 Native OOB and UOB

Wang et. al. [49] proposed a solution to the problem of class imbalance based on
online bagging. The idea is to make an ensemble of base learners where, for each
one of them, the classes are balanced. This is achieved by adapting the lambda of
the Poisson distribution based on each sample’s class.

The class balancing can be done in two ways: undersampling the majority class
or oversampling the minority class. In the original Oversampling Online Bagging
(OOB) and Undersampling Online Bagging (UOB) there are two important time
decaying variables for each class: wk which denotes the size percentage of class k
and Rk which denotes the accuracy of the model on class k.

When two classes have the wk difference greater than a threshold δ1 (0 < δ1 < 1)
and the R(k) difference greater than a threshold δ2 (0 < δ2 < 1), the small class is
labeled as the minority and the large class is labeled as majority. After comparing
all the classes, the unlabeled ones are treated as normal. This procedure leads to
three label sets: minority class set Ymin, majority class set Ymaj and normal class
set Ynor.

OOB will update each learner one time if the sample is from a majority class,
otherwise, the number of updates will be chosen from a Poisson distribution with
lambda λ = 1/wk.

UOB instead will update each learner 1 time if the sample is from a minority
class, otherwise, the number of updates will be chosen from a Poisson distribution
with lambda λ = 1− wk.

The pseudocode is presented in Algorithm 5, the input variable Over is True
to denote the oversampling version and it is False to denote the undersampling
version.

The main advantages of these Online Bagging based algorithms are:

1. Since resampling is algorithm-independent, it allows any type of online clas-
sifier to be used;

2. Time-decayed class size used in OOB and UOB dynamically estimates im-
balance status without storing old data or using windows;

3. Being ensembles of classifiers, they are expected to be more accurate than a
single classifier.

27

Algorithm 5 Pseudocode of Online Bagging methods

1: function OnlineBagging(S,Ensemble,Over)

2: Ymin, Ymaj , Ynor ← ∅
3: Sizes← ∅
4: Recalls← ∅
5: while hasNext(S) do

6: X, y ← next(S)

7: eval← prequentialEvaluation(Ensemble,X, y)

8: Recalls← updateRecalls(Recalls, eval, y)

9: Sizes← updateSizes(Sizes, y)

10: Ymin, Ymaj , Ynor ← updateClassSets(Sizes,Recalls)

11: wk ← Sizes[y]

12: if y ∈ Ymin and Over then

13: λ← 1/wk
14: else

15: if y ∈ Ymaj and not Over then

16: λ← 1− wk
17: else

18: λ← 1

19: for each learner in Ensemble do

20: K ← Poisson(λ)

21: train(X, y, learner) K times

3.1.3.2 Improved Online Bagging

These algorithms have been proposed by a more recent study [50] of OOB and
UOB focusing on the two class problem. The original online bagging algorithms
compute lambda with a formula that takes into account only the class size of the
class the current data sample belongs to. This can be a problem in the case of
P (y) drift when the classes become balanced and λ will not be equal to 1 for both
classes. Also, wk depends on the number of classes and so will λ, this makes λ
greater when there are more classes but with the same imbalance rate.

The paper proposes a new method to set λ based on the size ratio of the two
classes. The pseudocode is presented in Algorithm 6. Considering only two classes,
and naming wmaj the size of the majority class and wmin the size of the minority
class, λ will be set as follow:

• The improved OOB will set it to wmaj/wmin for the minority class and 1 for
the majority class;

28

Algorithm 6 Pseudocode of Improved Online Bagging methods

1: function ImprovedOnlineBagging(S,Ensemble,Over)

2: Sizes← ∅
3: while hasNext(S) do

4: X, y ← next(S)

5: Sizes← updateSizes(Sizes, y)

6: wk ← Sizes[y]

7: if Over then

8: wmax ← max(Sizes)

9: λ← wmax/wk
10: else

11: wmin ← min(Sizes)

12: λ← wmin/wk

13: for each learner in Ensemble do

14: K ← Poisson(λ)

15: train(X, y, learner) K times

• The improved UOB will set it to wmin/wmaj for the majority class and 1 for
the minority class.

The same paper which proposed the improved versions also presented two en-
semble strategies to combine the strength of OOB and UOB. These ensembles need
a new parameter, called Smoothed Recall. It is a moving average of the recall of
each class to smooth out its short-term fluctuations. To weight the predictions
of the OOB and UOB, their Gmean values are computed using their Smoothed
Recalls. WEOB1 uses the normalized Gmean values of OOB and UOB as their
weights to compute a weighted sum of their predictions, while WEOB2 compares
the Gmean values and uses only the prediction of the model with the higher one.

3.1.4 Ensemble of Online Sequential Extreme Learning Machine

This very interesting algorithm has been proposed in [51] and it is a bagging ensem-
ble of OS-ELM [52] networks plus a WELM [53] which act as long-term memory
to deal with recurrent concepts. In this section, I will use small letters (eg. g) to
denote scalar values (eg. w), bold letters to denote arrays, and bold capital letters
to denote matrices (eg. H).

29

Figure 3.1: The structure of a Single hidden-Layer Feed-forward Network, src: [2].

3.1.4.1 ELM

Extreme learning machine (ELM) [54] is a single-step learning algorithm for single
hidden-layer feed-forward network (SLFN). An example of these networks is shown
in Figure 3.1. A standard SLNF with L hidden nodes, N samples (xi,yi), and
activation function g(x) can be modeled as in Equation 3.3.

L∑
i=1

βigi(wi · xj + bi) = yj

j = 1, ..., N

(3.3)

In order to train the SLFN the goal is to find the values wi, bi, βi which
minimize the cost function defined by Equation 3.4.

E =

j=1∑
N

(
i=1∑
L

βig(wi · xj + bi)− yj)2 (3.4)

The input weights w and biases b connecting input layer to the hidden layer
(hidden node parameters) are assigned randomly, computing the activation matrix
H with size (N × L).

Then, a solution can be computed with a Moore-Penrose generalized matrix
inversion as in Equation 3.5

H† = (HTH)−1HT

β = H†T
(3.5)

30

The solution has the property of being a least-square solution of the linear
system Hβ = T , more specifically it is the unique least square solution with the
smallest norm.

3.1.4.2 OS-ELM

The online sequential version of this algorithm, called OS-ELM, has been proposed
in [52] and it updates the ELM with data chunks. The algorithm works following
these phases:

1. Initialization phase: the learner need to be initialized with a chunk of data,
assigning random input weight, bias and computing the matrix H0 and the
output weights β0 as a standard ELM. The matrices P0 = (HT

0H0)−1 and
T0 =

[
y1, ...,yN0

]
are initialized. The chunk counter k is set to 0;

2. Sequential learning phase: when a new chunk arrives,the counter k is incre-
mented and the matrices Hk and Tk are computed.
The output weights βk are updated using Equation 3.6.

Pk = Pk−1 − Pk−1H
T
k (I +HkPk−1H

T
k)−1HkPk−1

βk = βk−1 + PkH
T
k (Tk −Hβk−1)

(3.6)

Weighted extreme learning machine (WELM) has been proposed along with
its online version WOS-ELM [53] to make the ELM address the class imbalance
with a cost-sensitive approach. They correct the β computation using a ma-
trix W = W− + W+ where W− = diag(1/m−, ..., 1/m−, 0, ..., 0) and W+ =
diag(0, ..., 0, 1/m+, ..., 1/m+), m− and m+ are the sizes of the negative and posi-
tive class. The samples are ordered with respect to their class, first all the negative
class samples and then the positive class ones. This matrix is applied in the WOS-
ELM equations as shown in Equation 3.7.

P0 = (HT
0W0H0)−1

β0 = P0H
T
0W0T0

Pk = Pk−1 − Pk−1H
T
k (Wk +HkPk−1H

T
k)−1HkPk−1

βk = βk−1 + PkH
T
kWk(Tk −Hβk−1)

(3.7)

The main drawback of WOS-ELM is that it is suited only for stationary data
streams and it cannot handle concept drift learning.

31

3.1.4.3 ESOS-ELM

Ensemble of Subset Online Sequential Extreme Learning Machine (ESOS-ELM) [51],
has been proposed as an OS-ELM based ensemble able to handle both the class
imbalance and the concept-drift problems. The idea is to keep two sorted lists of
the classifiers, one ordered with respect to the number of minority data samples
processed and one ordered with respect to the number of majority data samples
processed. When a new chunk of data is ready for the training, the imbalance
ratio m is computed, the first m classifiers of the first list will process all the mi-
nority class data samples, while the top m classifiers of the second list will process
1/m of the majority class data samples each. Every learner will have a balanced
training chunk. In cases in which m is greater than the number of learners in the
ensemble, only the misclassified majority data samples will be kept. In order to
handle concept drift, the Dynamic Weighted Majority technique is used. When
the ensemble misclassifies a sample, a new OS-ELM learner is added and it will be
initialized using the WELM initialization. A long-term buffer, called ELM-Store,
is used to save past concepts. When a concept drift is detected from the Gmean
of the ensemble falling under a threshold θ, a WELM is trained and stored. When
a stored classifier performs better than the main ensemble it is introduced with
weight 1. This store has a limited resource requirement because the matrices to
store are only dependent on the number of neurons and the matrix inversion is
done only one time when the drift is detected, also the number of WELMs to
store is proportional to the number of drifts detected and not to the number of
samples processed. The pseudocode of the algorithm using batch size equal to one
is presented in Algorithm 7, M refers to the ensemble size, p refers to the number
of time step between new classifiers addition, θ refers to the threshold for change
detection and n−0 and n+

0 are the class sizes in the initialization set.

3.2 Problem Statement

After studying the problems of class imbalance and concept drift in data streams
and researching for solutions, I felt the lack of a well-defined environment to com-
pare the proposed algorithms. The main difficulties to replicate the experiments
concerned the data streams generation and the evaluation procedure.

3.2.1 Benchmarking environment

The studies presenting the algorithms did not report a common well-defined bench-
marking of their experiments. According to [55], a benchmark needs to measure all
the important features, using broadly accepted and easy understandable metrics.

32

Algorithm 7 Pseudocode of ESOS-ELM

1: function ESOSELM(M,p, θ, βu, n
+
0 , n

−
0 , S)

2: ir0 ← floor(n−0 /n
+
0), c← floor(n−0 /M)

3: a← 1, b← c, d← 1, e← c, count← 0

4: for each u in 1...M do

5: OS-ELM ← Initialize using βu = (x−a , ..., x
−
b , x

+
d , ..., x

+
e)

6: Ensemble← add(OS-ELM)

7: wu ← 1

8: a← a+ c, b← b+ c

9: count← count+ 1

10: if count = ir0 then

11: d← d+ c, e← e+ c, count← 0

12: initialize ELM-store

13: while hasNext(S) do

14: Indexp ← sortAscend(Ensemble,+) . sort with respect to positive class

15: Indexn ← sortAscend(Ensemble,−) . sort with respect to negative class

16: X, yi ← next(S)

17: O ← Classify(Ensemble,X)

18: if ChangeDetectionTest(θ) then . Change detected

19: train(ELM -Store,WELM)

20: initialize ELM-store

21: else

22: ELM -store← add(X, yi)

23: if yi = ”+” then . minority class sample processed by ir n. of classifiers

24: for each u in 1, ..., ir with indexp order do

25: o← Classifyu(X)

26: WeightUpdate(o, yi, p)

27: train(X, y,OS-ELMu)

28: else . majority class sample processed by single classifier

29: u← indexn(0)

30: o← Classify(OS-ELMu, X)

31: WeightUpdate(o, yi, p)

32: train(X, y,OS-ELMu)

33: if O 6= yi and i mod p = 0 then

34: OS-ELM ← initialize OS-ELM with Equation 3.7

35: Ensemble← add(OS-ELM)

36: M ←M + 1

37: wM−1 ← 1

33

All systems need to be fairly compared. Moreover, the experiments needs to be
cost-effective and easy repeatable.

Important measures when comparing algorithms’ performances are the resource
requirements, both time and memory. The algorithms were not tested from this
point of view on any study. A problem I faced with MOA was the retrieval of the
exact memory requirements of the experiments. MOA is developed in java thus
it executes in a Java Virtual Machine. This makes the single process’ resources
hidden. In order to solve this problem I run each experiment in a different Docker1

container as detailed in Section 4.1.2.
I present the developed environment used to run the experiments in Section 5.3.

3.2.2 Replication Study

Most of the algorithm implementations were not directly available in MOA. The
online bagging based algorithms still needed an implementation in this framework.
The implementation is detailed in Section 5.2. C-SMOTE and RebalanceStream
were already available in MOA2, while ESOS-ELM was implemented in an inde-
pendent repository3. Furthermore, a problem faced to replicate the experiments
was understanding all the details and all the settings used during the tests. The
configuration settings are not all entirely described in the papers. I define all the
parameters used during the experiments in Section 5.4.

3.2.3 Data streams

A problem that I met when I tried to replicate the experiments exactly as described
was that both artificial and real data streams were not well defined and difficult
to reproduce or retrieve. Each study uses different data streams as detailed in the
following list.

• Native online bagging [49]: The only data stream used to test the algorithms
was composed of randomly extracted samples from a real dataset manually
setting the imbalance ratios. The dataset was the one used in the 2009 fault
detection competition of the PHM society [56] which is not available anymore
from the official website. Moreover, the data streams’ lenght was relatively
short, limited to 1000 steps, with the drift happening at the 500th step. The
drifts on all these data streams were only of the P (y) kind.

• Improved online bagging [50]: These algorithms have been tested with artifi-
cial data streams generated from a multivariate Gaussian distribution. The

1https://www.docker.com/
2https://github.com/Waikato/moa
3https://github.com/dabrze/imbalanced-stream-generator

34

https://www.docker.com/
https://github.com/Waikato/moa
https://github.com/dabrze/imbalanced-stream-generator

parameters of this distribution are not specified and the data streams are
not available. Here too, the data streams’ lenght is 1000 steps, with the
drift happening at the 500th step. These algorithms have also been tested
with two real datasets, one was the same unavailable dataset of the previous
study [49]. The drifts on all these data streams were only of the P (y) kind.

• RebalanceStream [48]: This algorithm was tested on artificial data streams
created with only one generator. It was not tested on any real data stream.
Also here, only P (y) drifts has been considered.

• C-SMOTE [47]: This study tested both C-SMOTE and RebalanceStream on
numerous real data streams but It did not defined the drifts happening on
these streams.

• ESOS-ELM [51]: This study was the most detailed from a data stream point
of view. It was the only one not restricted to P (y) drifts.

In Section 4.2, I define a precise way to generate each one of the data streams used
for testing the algorithms in order to make it possible to exactly reproduce the
experiments.

3.2.4 Performances evaluation

The studies regarding the class imbalance problem lack a standard way of eval-
uating the performances. Both the online bagging studies [49] [50] reported the
Gmean evaluation only at specific time-steps; while the ESOS-ELM study [51] re-
ported evaluations based only on the Gmean measure with a lack of class-specific
measures. This study is the only one using a Holdout evaluation and not a pre-
quential evaluation. The testing sets are extracted with different strategies for
each data stream. Furthermore, no study reported the resource requirements to
run the experiments. In Section 5.4, I describe the evaluators’ settings used in
the experiments and in Chapter 6 I compare the results using both Gmean and
class-specific. In Section 6.4 I report the different resource requirements of each
algorithm.

3.2.5 Problem Recap

To sum up, the problems faced during the progress of the thesis are:

1. Implement all the algorithms with the MOA framework;

2. Retrieve all the settings used on the studies;

35

3. Define a set of data streams which is complete w.r.t concept drifts and imbal-
ance levels. It need to be composed of both real and artificial data streams;

4. Define an evaluation strategy in order to fairly evaluate the algorithms during
the artificial and real data streams.

36

Chapter 4

Problem Solving

This chapter presents the proposed approaches to the problem detailed in the previ-
ous Chapter. In particular, Section 4.1 presents the technologies I used to conduct
my research, while Section 4.2 details the characteristics of the data streams used
during the experiments

4.1 Technologies adopted

The technologies I choose to build the environment and run the experiments were
different for each phase. I used MOA [3] to implement and test the algorithms,
Docker and InfluxDB to collect the information about the memory requirements
and Tableau to build an effective visualization.

4.1.1 Implementing and running the algorithms

I implemented the algorithms and run the experiments with MOA1. Massive On-
line Analysis is an open-source software library developed by the University of
Waikato. It implements numerous SML techniques divided for the respective tasks
(Classification, Regression, Clustering, Recommender systems, Pattern mining).

It is written in Java which gives it large portability and compatibility with a
lot of well-supported libraries. The experiments are called Tasks. They are defined
by a string and they can be set and run through a Graphical User Interface (GUI)
or a Command Line Interface (CLI). The MOA workflow starts with choosing a
data stream, which can be generated or read from a file, a learner, for example, a
classifier, and an evaluation method.

1https://moa.cms.waikato.ac.nz/

https://moa.cms.waikato.ac.nz/

Figure 4.1: Data stream classification cycle, src: [3].

The learning cycle follows three fundamental steps which are illustrated in
Figure 4.1:

• Input : the next example of the stream is passed to the algorithm, one at a
time (requirement 1);

• Learning : the algorithm processes the new example and updates the model
as fast as possible (requirement 2) and with a limited amount of memory
(requirement 3); and

• Model : the algorithm can supply a model which is ready to predict the class
of the next unseen example (requirement 4).

38

4.1.2 Tracking memory requirements

A problem faced with MOA was the retrieval of the memory requirements of the
running algorithms because MOA executes in a Java Virtual Machine. It loads,
verifies and executes the code and manages the memory of any java process making
them indistinguishable. The solution I adopted was running each experiment in a
different docker container and monitor the memory requirements with InfluxDB.
A Docker container2 is a unit of software that incubates a process using a prede-
fined system configuration. It allows to packages up code and all its dependencies
so that the application can runs quickly and reliably from one computing environ-
ment to another. InfluxDB3 is an open-source data store for time-stamped data,
running docker with InfluxDB allows monitoring the resource requirements of each
container thus the ones of each experiment.

4.1.3 Visualizing the results

In order to build an effective visualization of the results and compare the algo-
rithms, I used Tableau4. It is a data analytic and visualization tool widely used
in the industry today. It has a graphical drag and drop interface where it easy to
build different types of plots aggregating data in different dimensions.

4.2 Data streams

I tested the algorithms with different drifts, class imbalance levels, and data dis-
tributions but always with two classes. For convenience, in all data streams, the
minority class is always the class 1, while the majority one is the class 0.

The artificial data streams generated with the SEA [57] and SINE1 [26] gener-
ators have the three different types of drift mentioned in Section 2.3 with gradual
and sudden speeds and four imbalance ratios.

Nine data streams, each with a different drift, have been generated with a
cluster generator. It generates the minority class distribution with a cluster shape
and the drifts consist on making the clusters appear, move, change the shape
and split. These data streams have been generated with incremental, sudden
and periodic speeds with four imbalance ratios. Every artificial data stream has
100, 000 instances. The gradual, incremental, and periodic drifts start at the
time step 45, 000 and takes 10, 000 time steps to complete, while the sudden drift
happens at time step 50, 000.

2https://www.docker.com/
3https://www.influxdata.com/
4https://public.tableau.com/

39

https://www.docker.com/
https://www.influxdata.com/
https://public.tableau.com/

The last tests have been performed on the real data streams PAKDD’09 [58],
KDDCup’99 [59] and Elec [26].

4.2.1 SEA and SINE1

In order to reproduce each of the different types of concept drifts shown in Sec-
tion 2.3, I choose two widely used artificial data generators: SINE1 [26] and
SEA [57]. SINE1 instances are composed of two attributes (x1, x2) uniformly dis-
tributed in [0, 1]. The class is determined by x2−sinx1 6 θ, where θ is a threshold
value. SEA instances, instead, are composed by three attributes (x1, x2, x3) uni-
formly distributed in [0, 10]. Only two of them are used to compute the label, while
the third one is just noise. The equation to determine the class label is x1+x2 6 θ,
where θ is a threshold value. The concept drifts generated are explained in the
followings list.

• p(y) Concept Drift : these streams involve only a the p(y) type of concept drift
(see Figure 2.3), without p(X|y) and p(y|X) changes. Data streams generated
by SINE1 have a severe class imbalance change, in which the imbalance ratio
of the first half is reversed on the second half. Data streams generated by
SEA have a less severe change, in which the data streams are balanced during
the first half and become imbalanced during the latter half. In the gradual
drifting cases, p(y) is changed linearly during the concept transition period
(time step 45, 000 to time step 55, 000).

• p(X|y) Concept Drift : these streams focus on the p(X|y) type of concept
drift (see Figure 2.3), without p(y) and p(y|X) changes. The data stream
is constantly imbalanced. The concept drift in each data stream is defined
by a change on a constraint on the x1 parameter for the negative class (0)
instances. During the first half of the stream the probability is p(x1 < n) =
0.9 while during the second half, it is p(x1 < n) = 0.1. In the gradual drifting
cases, it is changed linearly during the concept transition period.

• p(y|X) Concept Drift : these streams focus on the p(y|X) type of concept
drift (see Figure 2.3), without p(y) and p(X|y) changes. The data stream
is constantly imbalanced. Data streams generated by SINE1 have a concept
swap, while data streams generated by SEA have a concept drift due to a
θ value change making it is less severe than the change in SINE1 because
some of the data samples from the old concept are still valid under the new
concept after the threshold moves completely.

Sixteen data streams have been generated for every concept drift. Eight of them
have been generated with SEA and eight with SINE1. Each one has a different

40

combination of imbalance ratio, 1:9, 2:8, 3:7, or 4:6, and speed, sudden or gradual.
I also classified the distribution of the minority class in each dataset into safe,
borderline, rare and outlier, following [35]. This study proposes to assess the type
of a sample by analysing its local neighbourhood. For each minority samples, its
five nearest neighbours samples has been analyzed. The proportion of neighbours
from the same class against neighbours from the opposite class can range from 5:0
(all neighbours are from the same class as the analysed data sample) to 0:5 (all
neighbours belong to the opposite class). Depending on this proportion, the labels
are assigned to the examples in the following way:

• 5:0 or 4:1 : the sample is labelled as safe;

• 3:2 or 2:3 : the sample is labelled as borderline;

• 1:4 : the sample is labelled as rare; and

• 0:5 : the sample is labelled as outlier.

All the datasets characteristics are detailed in Table 4.1.

4.2.2 Cluster generator

This stream generator was originally implemented by Dariusz Brzeziński 5 and it
is composed by an imbalance generator that manages how the data are distributed
in the feature space and a drift generator which manages how to perform the drifts
from one distribution to the next one. The main characteristic of the imbalance
generator is the data distributions of the two classes. The majority class data
points spread over all the feature space except in the areas where the minority
class clusters are located. These clusters can vary in number, shape, and size.
After deciding the location of the centroid of each cluster, the minority samples
are randomly extracted from four regions of the feature space:

• Safe zone: this is the region near the centroid of the cluster where there is
not any majority class example;

• Borderline zone: this is a zone defined by a radius bigger than the one of the
safe zone and there can be examples from both classes;

• Outlier zone: a point resides in this zone if it is at least far from the center
of every cluster by double of each the borderline radius;

• Rare zone: this is a zone composed of minority class examples distant from
the core of the minority class that form small groups of two-three samples.

5https://github.com/dabrze/imbalanced-stream-generator

41

https://github.com/dabrze/imbalanced-stream-generator

Table 4.1: The characteristics of the artificial data streams used in the experiments.

Type Data Speed Min Class Type Class +1 Class 0

Before CD After CD Old Concept New Concept Old Concept New Concept

SINE1

SINE1g

Sudden

Gradual

Safe

Safe

Safe

Safe

x2 − sinx1 < 0

p(y) = 0.1

x2 − sinx1 < 0

p(y) = 0.9

x2 − sinx1 ≥ 0

p(y) = 0.9

x2 − sinx1 ≥ 0

p(y) = 0.1

SINE1

SINE1g

Sudden

Gradual

Safe

Safe

Safe

Safe

x2 − sinx1 < 0

p(y) = 0.2

x2 − sinx1 < 0

p(y) = 0.8

x2 − sinx1 ≥ 0

p(y) = 0.8

x2 − sinx1 ≥ 0

p(y) = 0.2

SINE1

SINE1g

Sudden

Gradual

Safe

Safe

Safe

Safe

x2 − sinx1 < 0

p(y) = 0.3

x2 − sinx1 < 0

p(y) = 0.7

x2 − sinx1 ≥ 0

p(y) = 0.7

x2 − sinx1 ≥ 0

p(y) = 0.3

p(y)
SINE1

SINE1g

Sudden

Gradual

Safe

Safe

Safe

Safe

x2 − sinx1 < 0

p(y) = 0.4

x2 − sinx1 < 0

p(y) = 0.6

x2 − sinx1 ≥ 0

p(y) = 0.6

x2 − sinx1 ≥ 0

p(y) = 0.4

SEA

SEAg

Sudden

Gradual

Safe

Safe

Safe

Safe

x1 + x2 ≤ 7

p(y) = 0.5

x1 + x2 ≤ 7

p(y) = 0.1

x1 + x2 > 7

p(y) = 0.5

x1 + x2 > 7

p(y) = 0.9

SEA

SEAg

Sudden

Gradual

Safe

Safe

Safe

Safe

x1 + x2 ≤ 7

p(y) = 0.5

x1 + x2 ≤ 7

p(y) = 0.2

x1 + x2 > 7

p(y) = 0.5

x1 + x2 > 7

p(y) = 0.8

SEA

SEAg

Sudden

Gradual

Safe

Safe

Safe

Safe

x1 + x2 ≤ 7

p(y) = 0.5

x1 + x2 ≤ 7

p(y) = 0.3

x1 + x2 > 7

p(y) = 0.5

x1 + x2 > 7

p(y) = 0.7

SEA

SEAg

Sudden

Gradual

Safe

Safe

Safe

Safe

x1 + x2 ≤ 7

p(y) = 0.5

x1 + x2 ≤ 7

p(y) = 0.4

x1 + x2 > 7

p(y) = 0.5

x1 + x2 > 7

p(y) = 0.6

SINE1

SINE1g

Sudden

Gradual

Safe

Safe

Safe

Safe

x2 − sinx1 < 0

p(y) = 0.1

x2 − sinx1 < 0

p(y) = 0.1

x2 − sinx1 ≥ 0

p(x1 < 0.5) = 0.9

x2 − sinx1 ≥ 0

p(x1 < 0.5) = 0.1

SINE1

SINE1g

Sudden

Gradual

Safe

Safe

Safe

Safe

x2 − sinx1 < 0

p(y) = 0.2

x2 − sinx1 < 0

p(y) = 0.2

x2 − sinx1 ≥ 0

p(x1 < 0.5) = 0.9

x2 − sinx1 ≥ 0

p(x1 < 0.5) = 0.1

SINE1

SINE1g

Sudden

Gradual

Safe

Safe

Safe

Safe

x2 − sinx1 < 0

p(y) = 0.3

x2 − sinx1 < 0

p(y) = 0.3

x2 − sinx1 ≥ 0

p(x1 < 0.5) = 0.9

x2 − sinx1 ≥ 0

p(x1 < 0.5) = 0.1

p(X|y)
SINE1

SINE1g

Sudden

Gradual

Safe

Safe

Safe

Safe

x2 − sinx1 < 0

p(y) = 0.4

x2 − sinx1 < 0

p(y) = 0.4

x2 − sinx1 ≥ 0

p(x1 < 0.5) = 0.9

x2 − sinx1 ≥ 0

p(x1 < 0.5) = 0.1

SEA

SEAg

Sudden

Gradual

Borderline

Borderline

Safe

Safe

x1 + x2 ≤ 7

p(y) = 0.1

x1 + x2 ≤ 7

p(y) = 0.1

x1 + x2 > 7

p(x1 < 5) = 0.9

x1 + x2 > 7

p(x1 < 5) = 0.1

SEA

SEAg

Sudden

Gradual

Borderline

Borderline

Borderline

Safe

x1 + x2 ≤ 7

p(y) = 0.2

x1 + x2 ≤ 7

p(y) = 0.2

x1 + x2 > 7

p(x1 < 5) = 0.9

x1 + x2 > 7

p(x1 < 5) = 0.1

SEA

SEAg

Sudden

Gradual

Safe

Safe

Safe

Safe

x1 + x2 ≤ 7

p(y) = 0.3

x1 + x2 ≤ 7

p(y) = 0.3

x1 + x2 > 7

p(x1 < 5) = 0.9

x1 + x2 > 7

p(x1 < 5) = 0.1

SEA

SEAg

Sudden

Gradual

Safe

Safe

Safe

Safe

x1 + x2 ≤ 7

p(y) = 0.4

x1 + x2 ≤ 7

p(y) = 0.4

x1 + x2 > 7

p(x1 < 5) = 0.9

x1 + x2 > 7

p(x1 < 5) = 0.1

SINE1

SINE1g

Sudden

Gradual

Safe

Safe

Safe

Safe

x2 − sinx1 < 0

p(y) = 0.1

x2 − sinx1 ≥ 0

p(y) = 0.1

x2 − sinx1 ≥ 0

p(y) = 0.9

x2 − sinx1 < 0

p(y) = 0.9

SINE1

SINE1g

Sudden

Gradual

Safe

Safe

Safe

Safe

x2 − sinx1 < 0

p(y) = 0.2

x2 − sinx1 ≥ 0

p(y) = 0.2

x2 − sinx1 ≥ 0

p(y) = 0.8

x2 − sinx1 < 0

p(y) = 0.8

SINE1

SINE1g

Sudden

Gradual

Safe

Safe

Safe

Safe

x2 − sinx1 < 0

p(y) = 0.3

x2 − sinx1 ≥ 0

p(y) = 0.3

x2 − sinx1 ≥ 0

p(y) = 0.7

x2 − sinx1 < 0

p(y) = 0.7

p(y|X)
SINE1

SINE1g

Sudden

Gradual

Safe

Safe

Safe

Safe

x2 − sinx1 < 0

p(y) = 0.4

x2 − sinx1 ≥ 0

p(y) = 0.4

x2 − sinx1 ≥ 0

p(y) = 0.6

x2 − sinx1 < 0

p(y) = 0.6

SEA

SEAg

Sudden

Gradual

Safe

Safe

Borderline

Borderline

x1 + x2 ≤ 7

p(y) = 0.1

x1 + x2 ≤ 13

p(y) = 0.1

x1 + x2 > 7

p(y) = 0.9

x1 + x2 > 13

p(y) = 0.9

SEA

SEAg

Sudden

Gradual

Safe

Safe

Borderline

Borderline

x1 + x2 ≤ 7

p(y) = 0.2

x1 + x2 ≤ 13

p(y) = 0.2

x1 + x2 > 7

p(y) = 0.8

x1 + x2 > 13

p(y) = 0.8

SEA

SEAg

Sudden

Gradual

Safe

Borderline

Safe

Borderline

x1 + x2 ≤ 7

p(y) = 0.3

x1 + x2 ≤ 13

p(y) = 0.3

x1 + x2 > 7

p(y) = 0.7

x1 + x2 > 13

p(y) = 0.7

SEA

SEAg

Sudden

Gradual

Safe

Safe

Safe

Safe

x1 + x2 ≤ 7

p(y) = 0.4

x1 + x2 ≤ 13

p(y) = 0.4

x1 + x2 > 7

p(y) = 0.6

x1 + x2 > 13

p(y) = 0.6

42

The parameters of this generator are:

• Number of attributes : the number of features for each data point;

• Number of clusters : the number of clusters where the minority class data
points can be located;

• Positive share: the number between 0 and 1 which specify the ratio of positive
class examples with respect to the total number;

• Safe ratio: probability weight of a minority sample to be from the ”safe”
zone;

• Borderline ratio: probability weight of a minority sample to be from the
”borderline” zone;

• Outlier ratio: probability weight of a minority sample to be from the ”outlier”
zone;

• Rare ratio: probability weight of a minority sample to be rare. These points
are generated near an outlier, forming small groups of minority samples out-
side the clusters;

• Uniform or normal distribution: the minority samples can have these two
types of distribution inside the clusters; and

• standard deviations : Number of standard deviations fitting in clusters with
a normal distribution.

The drift generator can generate nine different types of drift. Experiments
have been performed with each one of them with four imbalance rates (1:9, 2:8,
3:7, 4:6) and three different drift speeds: sudden with the drift happening at the
50,000th time step, incremental starting at 45,000th time step and ending at the
55,000th time step, recurrent starting at the 45,000th time step, going to the next
distribution until the 50,000th time step and coming back at the original one at
the 55,000th time step. An illustrative sequence that explains what the each type
of drift consist on is shown in the following list.

• Appearing minority : this drift, presented in Figure 4.2, starts with zero posi-
tive instances. the minority clusters start appearing as it progress to its end,
increasing both the clusters’ radius and the minority samples probability.

43

Figure 4.2: The illustrated sequence of the appearing minority drift.

• Disappearing minority : this drift, presented in Figure 4.3, consists on making
the minority clusters radius and the minority samples probability decrease
to zero as the drift progress to its end.

Figure 4.3: The illustrated sequence of the disappearing minority drift.

• Minority share: this drift, presented in Figure 4.4, is similar to the appearing
minority because the minority appears as the drift progress but the clusters
are already there.

Figure 4.4: The illustrated sequence of the minority share drift.

• Cluster movement : this drift, presented in Figure 4.5, ends with the minority
clusters in a different random position. The movement progress follows the
line from the original to the target position.

44

Figure 4.5: The illustrated sequence of the cluster movement drift.

• Cluster jitter : this drift, presented in Figure 4.6, consists on making the
minority clusters center move randomly, giving the clusters a shaking effect.

Figure 4.6: The illustrated sequence of the cluster jitter drift.

• Appearing cluster : This drift, presented in Figure 4.7, consists on making a
new cluster appear without any modification to the one already there.

Figure 4.7: The illustrated sequence of the appearing cluster drift.

• Splitting cluster : this drift, presented in Figure 4.8, consists on making the
minority cluster split in two which will move to two different target position.

45

Figure 4.8: The illustrated sequence of the splitting cluster drift.

• Shape Shift : this drift, presented in Figure 4.9, consists on making the mi-
nority clusters change shape, increasing the radiuses and producing longer
shapes.

Figure 4.9: The illustrated sequence of the shape shift drift.

• Borderline shift : this drift, presented in Figure 4.10, consists on making the
borderline radius of the minority clusters grow through the center making
the safe radius shrink.

Figure 4.10: The illustrated sequence of the borderline drift.

4.2.3 Real Datasets

I tested the algorithms on the following real datasets in order to confirm the results
achieved on the artificial data streams. In all these datasets, the positive class is

46

the minority one as it was in the artificial ones. Their class distribution is shown
in Figure 4.11.

• PAKDD: The 13th Pacific-Asia Knowledge Discovery and Data Mining Con-
ference (PAKDD 2009) [58] presented a competition focused on the problem
of credit risk assessment.
The models need to be robust against performance degradation caused by
gradual market changes along a few years of business operation. This dataset
contains 50000 instances composed by twenty seven features, thirteen cate-
gorical and fourteen numerical. The percentage of positive class instances is
20%.

• Electricity: Electricity [26] is another widely used dataset for imbalanced
classification. This data were collected from the Australian New South Wales
Electricity Market. In this market, prices are not fixed and are affected by
the demand and supply of the market. They are set every five minutes. The
class label identifies the change of the price relative to a moving average of
the last 24 hours. This dataset contains 45,312 instances dated from 7 May
1996 to 5 December 1998. Each instance is composed of eight numerical
features and the percentage of positive class instances is 42%.

• KDDCup: The KDDCup [59] is the dataset used for The Third Inter-
national Knowledge Discovery and Data Mining Tools Competition. The
competition task was to build a classifier able to distinguish intrusions from
normal connections. This database contains a wide variety of intrusions sim-
ulated in a military network environment and it contains 494,021 instances
with twenty seven features, seven categorical and twenty numerical. The
percentage of positive class instances is 20%.

47

Figure 4.11: The distribution of the class probability during the real data streams.

48

Chapter 5

Implementation experience

This chapter presents the structure of my work towards the experiment execu-
tion. Section 5.1 describes my upgrade at the data stream generator, Section 5.2
describes my implementation of the online bagging based algorithms, while Sec-
tion 5.3 describes the building blocks of the benchmarking environment. Finally,
Section 5.4 details the algorithm parameter and the evaluation configuration of
the experiments.

5.1 Cluster drift generation

The original implementation of the cluster generator makes the drift start from
the start instance and end at the end instance. A variable called progress is
incremented in order to keep track of how much drift has been already made.
When the data stream reaches the 45, 000th time step, the base distribution enters
the ”drift phase” in which it is modified as the drift requires, starting from a
progress of 0 and ending at a progress of 1.

This implementation was not exactly as I planned to perform the drifts. For
example, an incremental appearing minority drift starting at the 45, 000th time
step and ending at the 55, 000th was starting with the base distribution with the
minority class clusters present and only at the 45, 000th time step the progress was
set to zero making the minority clusters disappearing and reappearing gradually
until the 55, 000th time step when the drift was completed and the distribution
was back to the base one. In order to solve this problem, I extended the drift
class adding two variables: Realstart and Realend. These variables indicate when
to start increasing the progress counter. The original start instance and end
instance are set at the start and end of the data stream respectively. In this way
the drift starts when the stream begins but with progress 0 until the Realstart

Figure 5.1: Original stream generation sequence.

Figure 5.2: Custom stream generation sequence.

instance is reached. The difference between these two drift generation strategies
are illustrated in Figure 5.1 and Figure 5.2.

5.2 Algorithms implementation

I integrated the ESOS-ELM [51] algorithm available in this repository1 and I im-
plemented the algorithms based on Online Bagging. The C-SMOTE [47] and
RebalanceStream [48] algorithms were already available in MOA2.

The implementation of the Online Bagging algorithms follows the paper struc-
ture. As shown in Figure 5.3, they are extensions of the OzaBag algorithm which
is the online version of a simple bagging algorithm where each instance is trained
by the classifiers with a weight extracted from a Poisson with lambda equal to 1.
Firstly, I implemented the native OOB and UOB with the second being an exten-
sion of the first. Then I implemented the improved versions and the ensembles.

1https://github.com/dabrze/imbalanced-stream-generator
2https://github.com/Waikato/moa

50

https://github.com/dabrze/imbalanced-stream-generator
https://github.com/Waikato/moa

Figure 5.3: The UML class diagram of the Online bagging algorithms.

5.2.1 Native OOB and UOB

As described in the corresponding study [49], the first step of the training procedure
is to group the class in the majority, minority and normal sets. This is done by
keeping track of the size and recall of each class with a decaying factor. A decay
factor is useful to deal with concept drift in order to give more weight to the
recent statistics w.r.t what happened far back in the stream. The oversampling or
undersampling is activated only if the difference between recalls is greater than a
threshold. This avoids useless corrections that could deteriorate the performances.
The implementation code of the updating methods is shown below in Listing 5.1
and 5.2.

51

Listing 5.1: The update of the class sizes method

1 protected void updateClassSize(Instance inst) {

2 // Set the same weight for all the classes at the beginning of the stream

3 if (this.classSize == null) {

4 classSize = new double[inst.numClasses ()];

5 Arrays.fill(classSize , 1d / classSize.length);

6 }

7 // update the class size with the decaying factor theta for all the classes

8 for (int i=0; i<classSize.length; ++i) {

9 classSize[i] = theta.getValue () * classSize[i] + (1d - theta.getValue ()) * ((int) inst.classValue ()

== i ? 1d:0d);

10 }

11 }

Listing 5.2: The update of the class recalls method.

1 protected void updateClassRecall(Instance inst){

2 // Start with the same recall for all the classes at the beginning of the stream

3 if (this.classRecall == null) {

4 classRecall = new double[inst.numClasses ()];

5 Arrays.fill(classRecall , 1d);

6 }

7 int classk = (int)inst.classValue ();

8 // update the recall of the instance class

9 classRecall[classk] = theta.getValue () * classRecall[classk] + (1d - theta.getValue ()) * (

correctlyClassifies(inst) ? 1d:0d);

10 }

The method invoked by MOA when a new instance is ready for the classifier
training is the trainOnInstanceImpl method. This method starts with updating
the class sizes and recalls with the new instance class. Then, it assigns each class
to a set as detailed in Listing 5.3. Finally, It computes the corresponding lambda.

The OOB lambda is computed by the method shown in Listing 5.4. It will
return a value greater than 1 if the instance’s class belongs to the minority set
and 1 otherwise. The class corresponding to the UOB algorithm overrides only
the method relative to lambda computation. The lambda of the UOB will be less
than 1 in case of the instance’s class belonging to the majority set and 1 otherwise.
It is computed by the method shown in Listing 5.5.

For each classifier in the ensemble, it weights the instance with a Poisson ex-
traction with the computed lambda and passes it to the classifier for the training.
The complete code of the training procedure is shown in Listing 5.6.

5.2.2 Improved OOB and UOB

The implementation of the improved versions of the two algorithms will be a
class extension of the OOB class. This will require overriding only the lambda
computing method. These algorithms do no require the classes to be grouped with
respect to the three sets, majority, minority and normal but lambda is computed
only with respect to the bigger or smaller class.

52

Listing 5.3: The class imbalance detection.

1 protected void imbalanceDetection (){

2 // compare the recall and size of the classes to assign them to the correct group

3 for (int i=0; i<classSize.length -1; i++)

4 for (int j=i; j<classSize.length; j++){

5 // if the difference of the class sizes and recalls is above the corresponding thresholds assign

them to the minorities and majorities groups

6 if(classSize[j] - classSize[i] > sizethreshold.getValue () && classRecall[j] - classRecall[i] >

recallthreshold.getValue ()){

7 minorities.add(i);

8 majorities.add(j);

9 }

10 else if(classSize[i] - classSize[j] > sizethreshold.getValue () && classRecall[i] - classRecall[j]

> recallthreshold.getValue ()){

11 minorities.add(j);

12 majorities.add(i);

13 }

14 }

15 for (int i=0; i<classSize.length; i++) {

16 // fill the normal group with the classes in both or none of the other groups

17 if (minorities.contains(i))

18 majorities.remove(i);

19 if (! minorities.contains(i) && !majorities.contains(i))

20 normal.add(i);

21 }

22 }

Listing 5.4: The native OOB lambda computing

1 protected double calculatePoissonLambda(Instance inst) {

2 // increase the lambda if the class is in the minorities group

3 if (minorities.contains ((int)inst.classValue ()))

4 return 1/ classSize [(int)inst.classValue ()];

5 return 1d;

6 }

Listing 5.5: The native UOB lambda computing

1 public double calculatePoissonLambda(Instance inst) {

2 // decrease the lambda if the class is in the majorities group

3 if (majorities.contains ((int)inst.classValue ()))

4 return 1 - classSize [(int)inst.classValue ()];

5 return 1d;

6 }

Listing 5.6: The training procedure

1 public void trainOnInstanceImpl(Instance inst) {

2 // update the class sizes and recalls

3 updateClassSize(inst);

4 updateClassRecall(inst);

5 imbalanceDetection ();

6 // compute the lambda for the poisson extraction

7 double lambda = calculatePoissonLambda(inst);

8 for (moa.classifiers.Classifier classifier : this.ensemble) {

9 // extract the instance weight

10 int k = MiscUtils.poisson(lambda , random_obj);

11 if (k > 0) {

12 Instance weightedInst = inst.copy();

13 weightedInst.setWeight(inst.weight () * k);

14 classifier.trainOnInstance(weightedInst);

15 }

16 }

17 }

53

Listing 5.7: The Improved OOB methods

1 // find the index of the class with the bigger size

2 protected int getMajorityClass () {

3 int indexMaj = 0;

4 for (int i=1; i<classSize.length; ++i) {

5 if (classSize[i] > classSize[indexMaj]) {

6 indexMaj = i;

7 }

8 }

9 return indexMaj;

10 }

11 protected double calculatePoissonLambda(Instance inst) {

12 int majClass = getMajorityClass ();

13 return classSize[majClass] / classSize [(int) inst.classValue ()];

14 }

Listing 5.8: The Improved UOB methods

1 // find the index of the class with the smaller size

2 protected int getMinorityClass () {

3 int indexMin = 0;

4 for (int i=1; i<classSize.length; ++i) {

5 if (classSize[i] <= classSize[indexMin]) {

6 indexMin = i;

7 }

8 }

9 return indexMin;

10 }

11 public double calculatePoissonLambda(Instance inst) {

12 int minClass = getMinorityClass ();

13 return classSize[minClass] / classSize [(int) inst.classValue ()];

14 }

The methods to compute the index of those classes will be invoked by the lambda
computing ones. Their code is shown in Listing 5.7 and 5.8.

5.2.3 Ensembles of the improved versions

Two ensembles of the improved OOB and UOB have been proposed in their same
paper, they are called WEOB1 and WEOB2. These ensembles weigh the predic-
tions of the two algorithms with their Gmean computed with a moving average of
the recall called Smoothed Recall. This new measure explained in the paper is a
moving average of the class recall, the goal is to smooth out the short-term fluc-
tuations of the original measures. It is implemented with a sliding window with
constant updating computing time and memory allocation proportional to the size
of the window, which is a new parameter with a default value equal to 1000. The
code is shown in Listing 5.9

The WEOB1 prediction is a weighted sum of the OOB and UOB prediction,
the weights are the normalized Gmean values of the corresponding algorithms.
The code to get the class prediction is shown in Listing 5.10.

WEOB2 simply uses the Gmean values to choose which prediction to use based
on which one of the two algorithms has the greater one. The code to get the class
prediction is shown in Listing 5.11.

54

Listing 5.9: The updating procedure of the smoothed recall

1 // This method is called during the training of the ensembles and it update the class recalls of one

algorithm

2 public void insertPrediction(int classValue , boolean pred){

3 double r;

4 //array initialization

5 if(this.windowPos == -1){

6 r = pred ? 1d:0d;

7 for(int c = 0; c< recalls.length; c++)

8 if(c == classValue) {

9 recalls[c][0] = r;

10 smoothedRecalls[c] = r;

11 }

12 else {

13 recalls[c][0] = 0;

14 smoothedRecalls[c] = 0;

15 }

16 windowPos = 0;

17 return;

18 }

19 r = this.theta * recalls[classValue][windowPos] + (1d - this.theta) * (pred ? 1d:0d);

20 //newWP -> cursor for the position of the new instance on the window

21 int newWP = windowPos + 1;

22 if(newWP >= recalls[classValue]. length)

23 newWP = 0;

24 // remove the oldest recalls if the window is full

25 for(int c = 0; c< smoothedRecalls.length; c++) {

26 // smoothedRecall become the sum of the saved recall

27 smoothedRecalls[c] = smoothedRecalls[c] * windowSize;

28 smoothedRecalls[c] = smoothedRecalls[c] - recalls[c][newWP];

29 }

30 // increase the size of the window if its not at the maximum

31 this.windowSize = Math.min(windowSize + 1, recalls[classValue]. length);

32 //add the new recalls to the window

33 for(int c = 0; c < smoothedRecalls.length; c++) {

34 if (c == classValue) {

35 recalls[c][newWP] = r;

36 } else {

37 recalls[c][newWP] = recalls[c][windowPos];

38 }

39 smoothedRecalls[c] = (smoothedRecalls[c] + recalls[c][newWP]) / windowSize;

40 }

41 // update the cursor window position

42 windowPos = newWP;

43 }

55

Listing 5.10: The prediction procedure of the WEOB1 ensemble

1 public double [] getVotesForInstance(Instance inst) {

2 double [] oobVotes = oob.getVotesForInstance(inst);

3 double [] uobVotes = uob.getVotesForInstance(inst);

4 double [] finalVotes = new double[oobVotes.length];

5 // initialize the smoothed recalls of UOB and OOB

6 if(classRecallUOB == null){

7 oob.randomSeedOption.setValue(this.randomSeedOption.getValue ());

8 uob.randomSeedOption.setValue(this.randomSeedOption.getValue ());

9 classRecallOOB = new SmoothedRecall(inst.numClasses (),recalltheta.getValue (),

SmoothedRecallWindowSizeOption.getValue ());

10 classRecallUOB = new SmoothedRecall(inst.numClasses (),recalltheta.getValue (),

SmoothedRecallWindowSizeOption.getValue ());

11 }

12 // compute the corresponding gmeans

13 double uobGmean = classRecallUOB.getGmean ();

14 double oobGmean = classRecallOOB.getGmean ();

15 // normalize the gmeans values

16 double alphaO = oobGmean / (oobGmean + uobGmean);

17 double alphaU = uobGmean / (oobGmean + uobGmean);

18 // sum the votes of the OOB and UOB weighted with the normalized gmeans

19 for(int i = 0; i < finalVotes.length; i++){

20 try {

21 finalVotes[i] = alphaO * oobVotes[i] + alphaU * uobVotes[i];

22 }catch (IndexOutOfBoundsException e){

23 finalVotes[i] = 0;

24 }

25 }

26 return finalVotes;

27 }

Listing 5.11: The prediction procedure of the WEOB2 ensemble

1 public double [] getVotesForInstance(Instance inst) {

2 double [] oobVotes = oob.getVotesForInstance(inst);

3 double [] uobVotes = uob.getVotesForInstance(inst);

4 if(classRecallUOB == null){

5 oob.randomSeedOption.setValue(this.randomSeedOption.getValue ());

6 uob.randomSeedOption.setValue(this.randomSeedOption.getValue ());

7 classRecallOOB = new SmoothedRecall(inst.numClasses (),recalltheta.getValue (),

SmoothedRecallWindowSizeOption.getValue ());

8 classRecallUOB = new SmoothedRecall(inst.numClasses (),recalltheta.getValue (),

SmoothedRecallWindowSizeOption.getValue ());

9 }

10 double uobGmean = classRecallUOB.getGmean ();

11 double oobGmean = classRecallOOB.getGmean ();

12 if (oobGmean >uobGmean){

13 return oobVotes;

14 }

15 return uobVotes;

16 }

56

5.3 Benchmarking setup

I built a Benchmarking environment to automate the process of running the exper-
iments and collecting the results. The step sequence is represented in Figure 5.4.

Figure 5.4: The experiments workflow.

It is written in python and each step is done sequentially without needing any
manual operation. Various configurations can be set just by updating the variables
in a Config file, it is possible to set different algorithms and data streams.

The benchmarking environment is public and can be found in this repository3.
It is composed of the phases detailed in the following list.

• Data streams generation: the experiments start with the generation of the
data streams. I saved the data streams into file .arff in order for their gener-
ation not to affect the time and memory statistic of the algorithms. A bash
file will be created and executed in order to interface with the MOAs CLI
and run the tasks. The data streams generated with the cluster generator
have the following parameters:

– Number of attributes: 2;

– Number of clusters: 2;

– positive share: the imbalance ratio of the experiment;

– safe ratio: 0.5;

– borderline ratio: 0.5;

– outlier ratio: 0;

– rare ratio: 0;

– uniform or normal distribution: normal distribution;

– standard deviations: 3.
3https://github.com/08volt/moa-replicationstudy/releases/tag/v1.0.0

57

https://github.com/08volt/moa-replicationstudy/releases/tag/v1.0.0

• Docker setup: as explained in Section 4.1.2, the experiments are run inside a
docker container. A docker image needs to be configured with the description
of the library and software needed. It’s composed by a Dockerfile containing
the java version and the relative path to the working directory, and by a
Dockerfile.yml describing the services and their configuration, in my case
influxDB.

• Experiment execution: during this phase, a bash file is created. It will run
the tests sequentially, each in a different docker container. Each experiment
is run 10 times and the results of each one of them are saved in a different
.csv file which will contain all the output statistics from MOA.

• Result summary : during this phase, a file for each of the statistics selected in
the Config file is created. These files contain the results of all the experiments
at each evaluation step. During the experiments, the evaluation has been
performed every 5, 000 instances. With these summaries, a visualization and
comparison of the performances will be straightforward.

5.4 Experiments configuration

All the data streams and datasets has been tested with the same algorithm con-
figuration. All the algorithms, except ESOS-ELM, has been configured with the
Hoeffding Adaptive Tree as base learner. All the ensemble algorithms are com-
posed by ten base learners and have the other parameter configurations set the
default. All the parameters are detailed in the following list:

• Online Bagging algorithm:

– θ class size: 0.9

– recall threshold: 0.4

– class size threshold: 0.6

• Online Bagging ensembles :

– θ recall: 0.9

– SmoothedRecall window size: 1000

• C-SMOTE :

– k-neighbours: 5

– threshold: 0.5

– minWindowSize: 100

58

• RebalanceStream:

– maxInstanceLimitBatch = -1 (no limit)

– minInstanceLimitBatch = -1 (no limit)

• ESOS-ELM :

– OS-ELM :

∗ neurons: 100

∗ initialBatchSize: 1000

∗ BatchSize: 1000

∗ usePseudoInverse: True

∗ epsilon: 0.001

– WELM :

∗ neurons: 100

∗ initialBatchSize: 1000

∗ usePseudoInverse: True

∗ epsilon: 0.001

Artificial data streams have been tested using a prequential evaluation with a fixed-
length window evaluator. We set the window size to the stream’s length before
the concept drift: 50,000 for abrupt drifts and 45,000 in the other two cases.
This allows restarting measuring when the drift happens without the influence
of the statistics before the drift. Real datasets instead have been tested with a
prequential evaluation with a fading factor evaluator setting the fading parameter
at 0.995. The complete experiment strings are available in this public repository4.

4https://github.com/08volt/moa-replicationstudy/releases/tag/v1.0.0

59

https://github.com/08volt/moa-replicationstudy/releases/tag/v1.0.0

Chapter 6

Results

In this chapter, I show all the results obtained and I compare the performances
of the various algorithms. I proceed by analyzing one type of drift at a time. In
particular, Section 6.1 presents the results on the data streams with a virtual drift,
Section 6.2 presents the results on the data streams with real drifts and Section 6.3
presents the results on the data streams with imbalance ratio drifts. Section 6.4
compares the resource requirements of the algorithms during the experiments.
Finally, Section 6.5 compares the performances on the real datasets.

I used OzaBag, which is the online version of a simple bagging algorithm, as
a baseline for the Online Bagging techniques. Hoeffding Adaptive Tree has been
used as a baseline for C-SMOTE and RebalanceStream. The plot’s legend is always
presented in decreasing order of Gmean and the point size is proportional to the
sum of the recalls’ standard deviation.

6.1 P(X|y) drift

P(X|y) drift makes the examples probability distribution on the instance space
change but the decision boundary does not shift. The artificial data streams with
this kind of drift are only the ones generated with the SEA and SINE1 generators.
In both cases the shift concerns the majority class samples. The majority class
distribution become more dense in a smaller area near the decision boundary as
detailed in Table 4.1. I analyzed the performances of the algorithms w.r.t. a high
imbalance ratio (2:8 and 1:9) and a low imbalance ratio (4:6 and 3:7).
Figure 6.1 compares the Recall and Fscore results of each class. I summarize the
results for each algorithm in the following list.

• native UOB and OOB : these are the best performing algorithms. UOB
achieved the best recall of the minority class with both high and low im-

Figure 6.1: Mean Recall and Fscore with streams having a P(X|y) drift.

62

balance ratios, significantly improving the performances of OzaBag in the
first case. The downside is that it loses a significant amount of recall of the
majority class. OOB mitigates this, achieving a great recall of the minority
class without losing too much of the one of the majority class, thus achieving
the best Gmean. An analysis of the Fscore measures allows noticing that,
with both low and high imbalance ratios, the Fscore of minority class of OOB
is greater than the one of OzaBag while the one of UOB is lower. This means
that OOB increases the recall of the minority class keeping a good precision
while UOB achieves the highest recall along with the worst precision.

• Improved UOB and OOB : in both cases, these algorithms increase the re-
call of the majority class losing on the one of the minority class w.r.t. the
corresponding native versions. The improved UOB is able to improve the
Gmean of its native version but this does not happen with OOB. Interesting
to notice is that both the minority class and majority class Fscore increases.
This could lead to better general performances in multi-class settings. The
performances w.r.t. the Gmean measure are similar to each other, but Im-
proved OOB with better recall of the majority class and Improved UOB with
better recall of the minority class.

• Ensembles : the two ensembles of the improved versions have similar perfor-
mances: WEOB1 performs better on the recall of the minority class while
WEOB2 performs better on the recall of of majority class. Their perfor-
mances are always a mediation between the two base algorithms.

• C-SMOTE and RebalanceStream: C-SMOTE is able to increase significantly
the Hoeffding Adaptive Tree performances on the minority class, losing recall
of the majority class but overall performing better during all the data streams
as shown by the Gmean measure in Figure 6.2. The right plots on Figure 6.1
show that as the imbalance ratio increase this algorithm loses a lot of precision
of the minority class w.r.t. its baseline. RebalanceStream, on the other hand,
is not able to detect any drift and its performances are exactly the same as
the Hoeffding adaptive tree.

• ESOS-ELM : this algorithm needs several instances to pass before being able
to have accurate predictions. This influences the averaging plots like the
ones shown in Figure 6.1, thus its performances are shown only in the plots
in Figure 6.2 where it is possible to see this behavior. The plots focus on
high imbalance ratios where the algorithm performances reach the ones of
C-SMOTE, having a mean recall of the minority class of 86.51 and a mean
recall of the majority class of 95.29 during the second half of the stream.

63

Figure 6.2: Recall and Gmean during streams having a P(X|y) drift and high imbalance ratios.

6.2 P(y|X) drift

P(y|X) drift, also called Real drift, is the one that makes the decision boundary
shift. The artificial data streams with this kind of drift are:

• Borderline shift;

• Shape shift;

• jitter;

• Cluster movement;

• Appearing cluster;

• Splitting clusters;

• SEA P(y|X); and

• SINE1 P(y|X).

This type of drift is the one that more affects the performance of the algorithms
thus it is really important to know how the performances are influenced by the
class rebalance.

64

Figure 6.3: Mean Recall with streams having a P(y|X) drift.

The plots in Figure 6.3 show that, the more the imbalance ratio is high, the
more the characteristics of the algorithms come to light. The speed of the drift
does not affect much the overall performance. Therefore a more detailed plot of
the performances of the algorithm with data streams having imbalance ratio 1:9
is shown in Figure 6.4.

Interesting is the difference of performance between SEA and SINE1 which
have a low and high severity respectively. Their K temporal statistic and Gmean
are shown in Figure 6.5.

I summarize the results for each algorithm in the following list.

• native UOB and OOB : differently from the previous category of drifts, UOB
has a better recall of the minority class than OOB only when the imbalance
ratio is 1:9. Again, OOB is the algorithm with the best Gmean having a
high recall of the minority class and the second higher recall of the majority
after its improved version. The plots in Figure 6.4 show that even when the
imbalance ratio is high and both the mean and final step recall of the minority
class of the UOB are the best ones, during the drift the best performing
algorithm is OOB. This behavior can be noticed also in Figure 6.5 thanks to
the Kappa temporal statistic. The plots in Figure 6.5 regarding the SINE

65

Figure 6.4: Recall and Fscore during streams having a P(y|X) drift and Imbalance ratio 1:9.

stream highlight how the OzaBag performances increase with oversampling
while decrease with undersampling during such a severe drift. Oversampling
increases the importance of some of the new examples, thus making the HAT
learners react to the drift faster. On the other hand, undersampling ”filter”
majority class samples, thus slowing the drift detection and worsening the
algorithm performance w.r.t not applying any resampling. Figure 6.5 shows
the importance of resampling with drifts having low severity as SEA. The
Gmean of the OzaBag drops because the old concept boundary is difficult
to forget if the wrongly classified example are a few (minority class) and the
majority class examples continue to be correctly classified.

• Improved UOB and OOB : the improved version of the algorithms increase
the recall of the majority class losing a bit on the one of the minority class
w.r.t. the corresponding native versions. Again, the improved UOB is able
to improve the Gmean of its native version but this does not happen with
OOB.

66

Figure 6.5: K temporal and Gmean during SEA and SINE1 streams having a P(y|X) drift.

• Ensembles : the ensembles of the improved versions have similar perfor-
mances, the WEOB1 performing better on the recall of the minority class
and the WEOB2 performing better on the recall of the majority class. In
the plots in Figure 6.4 can be seen that with a high imbalance ratio their
performances are always near the best performing algorithm during both the
recalls thus achieving a better Gmean than both the base algorithms.

• C-SMOTE and RebalanceStream: Figure 6.3 shows that C-SMOTE starts
to increase significantly the Hoeffding Adaptive Tree performances on the
minority class only from a 2:8 imbalance ratio. Figure 6.4 highlights that it
is the worst performing with respect to the majority class. A major problem
of this algorithm is shown by its K temporal statistic in figure 6.5, when the
drift is severe like in SINE1 streams, where the class concepts swap, it cannot
recover its accuracy and its Kappa temporal statistic remains under the level
of a no-change classifier. The ADWIN drift detector only looks at the class

67

label of the seen samples thus is aware only of changes in the imbalance ratio
and it is not emptied when a P(y|X) happens. This makes the algorithm
generate synthetic samples with the old concept. RebalanceStream, on the
other hand, is not able to detect any drift and its performances are exactly
the same as the Hoeffding adaptive tree.

• ESOS-ELM : as shown in 6.4 and 6.5 this algorithm needs several instances
to pass before being able to have accurate predictions. The recall plots in
Figure 6.4 show that when the imbalance is 1:9 it is the algorithm with the
best recall of the minority class just after the drift but it has a significant
worsening of the recall of the majority class.

6.3 P(y) drift

The P(y) drift affects the imbalance ratio. Each data stream with this kind of
drift has different level of change. In the list below, I details the different ratios. I
separate the imbalance ratio before and after the drift with ”−” and the positive
and negative class probability with ”:”. Moreover, ”m” identifies the minority
class ratio of the stream and the ”M” the majority one:

• Disappearing minority: m:M - 0:1 ;

• Appearing minority: 0:1 - m:M ;

• Minority share: 0:1 - m:M ;

• SEA P(y): 0.5:0.5 - m:M ; and

• SINE P(y): m:M - M:m.

I present the plots of the average Gmean measure to give a general view of
the algorithms’ performances in Figure 6.7. I show the plots of each class recall
in Figure 6.7 and Figure 6.6, I identify as ”minority” the first class appearing as
minority class on the data streams.

• Online Bagging : Figure 6.7 highlights that, with this kind of drift, the rebal-
ancing algorithms improve the OzaBag performances after the drift only with
an imbalance ratio of 2:8. Figure 6.6 shows that, with streams that start with
a zero probability for the minority class, the rebalancing phase becomes im-
portant for a fast minority class recall when the samples start appearing. In
these cases, which are appearing-minority and minority-share the improved
version of UOB works really well outperforming the other algorithms on the

68

Figure 6.6: Recall during streams having a P(y) drift with imbalance ratio 1:9.69

Figure 6.7: Gmean during streams having a P(y) drift

recall of the minority class after the drift. As already seen before, OOB and
its improved version improve the recall of the minority class w.r.t. OzaBag
without losing too much recall of the majority class. The ensembles achieve
the best performances having a fast recall of the minority class after the drift,
close to the one of the Improved UOB, and keeping a recall of the majority
class similar to the oversampling algorithms thus achieving the best Gmean.

• C-SMOTE and RebalanceStream: C-SMOTE always improves the perfor-
mances of the Hoeffding Adaptive Tree on the minority class. During the
clusters drifts it achieve the recall of the minority class of the undersampling
algorithms but with a better recall of the majority class. RebalanceStream
on the other hand does not seem to improve the Hoeffding Adaptive Tree
performances.

• ESOS-ELM : as shown in Figure 6.7, this algorithm needs time to adjust its
predictions but it is always the worst-performing. More importantly, when
the stream starts without the minority class, this algorithm is not able to

70

Figure 6.8: Time and Memory requirements of each algorithm.

identify any of its samples when they start appearing.

6.4 Resources requirements

Each algorithm needs a different amount of resources. Being able to estimate
the required amount is useful when they are limited. Figure 6.8 shows both the
mean time, measured in seconds, and memory, measured in bytes, of the each
experiments, grouped by algorithm.

The online bagging algorithms outperform the others from the resource point
of view. They do not require saving any sample or label, other than time-decaying
variables. The greater resources are required by the ensemble algorithms which
need the Smoothing Recalls windows but their size is not proportional with the
seen samples thus never becoming too big. ESOS-ELM and C-SMOTE are the
worst-performing from a timing point of view. The slow part of C-SMOTE is
the K-NN search when applying the online smote: the time to generate a new
sample is proportional to the window size, this makes the algorithm stuck when
this size becomes too big. A possible improvement can be limiting the maximum

71

Figure 6.9: Mean Time and Memory requirements of the Online Bagging based algorithms.

number of samples on the window making it more efficient also during the concept
drifts. ESOS-ELM requires completely different mathematical operations than an
Hoeffding Tree thus it is not comparable. The other plot shows a memory problem
of RebalanceStream which requires keeping a batch with all the seen samples since
the last drift.

In order to better compare the online bagging based algorithms I show a plot
restricted to them in Figure 6.9. The higher is the imbalance ratio the more
the undersampling algorithms improve the time and memory requirements with
respect to the others. Improved UOB is the one requiring less time and less
memory. During streams with an imbalance ratio of 1:9 it requires half of the
time needed by the oversampling algorithms. Both the improved versions achieve
better time and memory consumption than the corresponding native versions.

6.5 Real datasets

As explained in Section 4.2.3, in order to confirm the obtained results, I tested the
algorithm with three real datasets.

Figure 6.11 and Figure 6.10 show different algorithm performances with every
dataset. I details the results for each detaset in the following list.

• The Electricity dataset has a constant and low imbalance ratio. In this
case, the undersampling algorithms do not improve the recall of the minority
class but only worst the one of the majority class. RebalanceStream behaves
exactly like a standard Hoeffding Adaptive Tree, which is better than what
C-SMOTE does, worsening both the recalls. The best performing is the
native OOB which has the best Gmean and both the best recalls if we do not

72

Table 6.1: Average statistics with real datasets.

Dataset Algorithm min Recall maj Recall Gmean min Fscore maj Fscore

Electricity OzaBag 82, 5± 8, 9 91, 3± 3, 5 65, 9± 1, 8 84, 9± 6, 9 89, 5± 2, 7

OOB 88,6 ± 5,9 91, 4± 3, 2 67,1 ± 1,3 88,5 ± 4,7 91,4 ± 2,5

UOB 82, 5± 8, 4 90, 5± 3, 8 65, 7± 1, 7 84, 6± 6, 1 89, 0± 2, 8

Improved OOB 87, 1± 6, 9 90, 8± 3, 6 66, 7± 1, 5 87, 3± 5, 3 90, 6± 2, 7

Improved UOB 80, 9± 9, 1 87, 4± 6, 3 64, 8± 1, 6 82, 1± 6, 4 86, 8± 2, 6

WEOB1 84, 7± 7, 6 90, 1± 3, 9 66, 1± 1, 5 85, 7± 5, 7 89, 6± 2, 4

WEOB2 86, 8± 6, 9 90, 4± 4, 5 66, 5± 1, 7 87, 1± 5, 7 90, 4± 3, 3

HoeffdingAdaptiveTree 79, 4± 7, 4 85, 5± 5, 7 64, 2± 2, 1 80, 1± 7, 1 84, 7± 4, 8

C-SMOTE 77, 4± 10, 4 85, 3± 7, 4 63, 7± 2, 5 78, 4± 8, 8 83, 8± 5, 6

RebalanceStream 79, 4± 7, 1 85, 5± 5, 4 64, 2± 2, 0 80, 1± 6, 7 84, 7± 4, 6

ESOS-ELM 1, 4± 1, 5 99,3 ± 0,7 54, 3± 8, 2 2, 6± 2, 7 71, 5, 8± 8, 4

PAKDD’90 OzaBag 0, 2± 0, 3 99,9 ± 0,2 50, 0± 0, 0 0, 4± 0, 6 89, 2± 1, 4

OOB 58, 9± 4, 6 61, 2± 5, 1 54, 8± 0, 9 37, 0± 2, 4 71, 5± 3, 4

UOB 83,0 ± 3,8 34, 2± 5, 3 54, 1± 0, 7 36, 4± 2, 4 49, 2± 5, 3

Improved OOB 39, 8± 6, 1 76, 8± 6, 3 54, 0± 1, 1 33, 6± 2, 8 80, 1± 3, 0

Improved UOB 70, 0± 7, 9 50, 1± 9, 7 54, 8± 0, 9 37,2 ± 2,2 63, 0± 8, 4

WEOB1 58, 9± 8, 0 62, 1± 7, 7 55, 0± 0, 8 36, 9± 2, 1 71,8 ± 5,2

WEOB2 62, 8± 7, 5 55, 8± 8, 6 54, 4± 1, 3 36, 7± 2, 7 67, 5± 5, 8

HoeffdingAdaptiveTree 0, 5± 0, 5 99, 8± 0, 3 50, 1± 0, 1 1, 0± 1, 0 89, 2± 1, 4

C-SMOTE 75, 1± 8, 4 39, 2± 13, 2 53, 4± 2, 1 34, 8± 2, 9 52, 6± 12, 4

RebalanceStream 0, 5± 0, 5 99, 8± 0, 3 50, 1± 0, 1 1, 0± 1, 0 89, 2± 1, 4

ESOS-ELM 45, 1± 23, 1 62, 5± 19, 3 56,0 ± 7,4 25, 9± 13, 2 69, 7± 10, 5

KDDCup’99 OzaBag 99, 8± 0, 2 96, 9± 12, 0 69, 6± 7, 2 96,2 ± 8,7 97, 7± 10, 8

OOB 99, 8± 0, 3 97, 1± 11, 0 69, 8± 6, 0 94, 3± 15, 6 97, 8± 9, 9

UOB 99, 5± 1, 2 94, 3± 18, 5 69, 2± 6, 7 95, 0± 13, 3 94, 0± 18, 0

Improved OOB 99,9 ± 0,2 97, 4± 8, 9 70, 2± 1, 7 93, 9± 14, 6 98,1 ± 7,7

Improved UOB 96, 0± 2, 6 98, 4± 10, 1 69, 2± 7, 0 89, 6± 21, 2 92, 1± 19, 2

WEOB1 99, 1± 0, 9 98, 9± 3, 5 70, 3± 0, 7 91, 1± 22, 6 95, 6± 13, 4

WEOB2 99, 3± 1, 5 97, 7± 9, 7 70, 0± 3, 6 95, 1± 11, 2 96, 0± 12, 9

HoeffdingAdaptiveTree 99, 4± 0, 5 97, 1± 8, 9 70, 1± 1, 6 94, 2± 4, 6 96, 9± 9, 6

C-SMOTE 98, 6± 1, 2 97, 0± 10, 1 69, 9± 1, 8 93, 5± 7, 3 96, 8± 10, 2

RebalanceStream 99, 4± 0, 5 97, 0± 9, 1 70, 1± 1, 7 94, 1± 4, 6 96, 8± 9, 8

ESOS-ELM 0, 0± 0, 0 100,0 ± 0,0 70,7 ± 0,0 0, 0± 0, 0 83, 1± 35, 5

consider ESOS-ELM which predicts everything as belonging to the majority
class. Table 6.1 also clearly shows how OOB is the best algorithm with this
dataset achieving also the best Fscores.

• The PAKDD dataset has a more skewed class imbalance ratio and confirms
that in such cases the UOB outperforms the others with respect to the recall
of the minority class achieving a result of 83, 0. As shown in Figure 6.11
the best Gmean is achieved by WEOB1 which has a good trade-off between
the recalls. C-SMOTE greatly improves the performances of a single Hoeffd-
ing Adaptive Tree which without any rebalancing achieve zero recall of the
minority class.

73

Figure 6.10: Recall average with real datasets.

• The KDDCup dataset is based on anomaly detection and it has high imbal-
ance ratio changes. ESOS-ELM as with this kind of artificial data streams
performs really bad and it is not able to detect any minority class example.
Improved OOB reaches almost a perfect recall of the minority class with a
mean value of 99.899, improving both the recalls w.r.t. OzaBag. The Native
UOB on the other hand worsens both the recalls, the Improved version in-
stead achieve a good recall of the majority class. The best Gmean is again
achieved by WEOB1.

74

Figure 6.11: Gmean during real datasets.

75

Chapter 7

Conclusions and Future Work

This thesis aimed to select the best online learning algorithm able to deal with
imbalanced data streams with concept drifts. I built a benchmarking environment
to make the performed experiment easily repeatable. It is now easy to try other
configurations and expand this study to new settings with the same environment.

The studies [49] and [50] on the online bagging techniques focused only on the
P(y) drift where the undersampling is able to achieve greater performances. This
thesis confirms their results but also shows that, with the other categories of drift,
the undersampling algorithms are the ones that reduce the most the recall of the
majority class. The algorithm that has proved to be the most solid was the original
version of OOB. The two ensembles have always performed well. WEOB2 has been
confirmed to be the best one during P(y) drifts as described in its paper [50] while
WEOB1 has achieved great performances on both classes recall during P(y|X)
drifts. Being the resource requirements really low, new ways to better combine the
two algorithms could be studied. For example, use an adaptive window to compute
the smoothed recalls in order to always choose the best performing algorithm in
the current concept and recovering as fast as possible from every type of drift. As
future work, an ensemble of the original version could be implemented in order to
exploit the highest recall of the minority class of the UOB and the highest Gmean
of the OOB.

Regarding the SMOTE-based algorithms, RebalanceStream wasn’t able to de-
tect almost any drift and thus its performances were identical to a simple Hoeffding
Adaptive Tree except for its worst resource consumption. I think that an improve-
ment could be obtained by using a different drift detection algorithm or using
ADWIN to monitor the predictions’ accuracy. Also keeping a batch of all the seen
samples from the last drift can become too expensive and moreover it doesn’t re-
spect the memory constraint of the streaming algorithms. It can be useless since

it will be used when a new concept has started. I think that using only the reset-
Batch in order to rebalance the data stream could be enough because SMOTE will
generate unique synthetic samples using only the most recent real ones, thus hav-
ing a greater probability of them belonging to the new concept and using less time
and memory to search for the k-nearest neighbors. The performance comparison,
after the drift has been confirmed, can be executed between the base learner, a
copy of the base learner trained with a balanced resetBatch and two new learners
trained one only with the resetBatch and one with the reset batch balanced. This
could achieve similar performances to the existing RebalanceStream algorithm but
it will be for sure less expensive in terms of memory and time resources.

C-SMOTE, on the other hand, has been proven really useful when the imbal-
ance ratio increases more than 2:8, but it has shown difficulties with the P(y|X)
drift. Another problem affecting C-SMOTE is its time requirement. New solutions
like a limited window size or a faster synthetic sample generation could solve these
two problems and make it a great algorithm challenging the online bagging ones.

ESOS-ELM has been the worst for what concerns the resource consumption
and has not been able to exceed any other algorithm in any particular drift and
has been proven slow to reach a good accuracy. The reason could be that it is really
different from the others and it has a greater number of hyper-parameters to set.
Moreover, it is the only one that couldn’t be tested with the Hoeffding Adaptive
Tree algorithm as base learner. I think that more studies and experiments need
to be run with this algorithm.

As future work, it will be important to explore higher imbalance ratios on
the data streams in order to identify the algorithms suited for more difficult but
realistic scenarios. Both this study and the one that presented the online bagging
algorithms used an Hoeffding Adaptive Tree as base learner. I think could be
interesting to study how different base learners reacts to the various resampling
techniques to deal with class imbalance. New algorithms and data streams can be
easily integrated, enlarging the benchmark also to multi-class settings. Moreover,
this benchmark can be improved running the experiments in parallel processes and
extended to automate the hyper-parameter tuning process.

78

IEBench: Benchmarking Streaming Learners on
Imbalanced Evolving Data Streams

Anonymous Author(s)

Anonymous

Abstract. Nowadays, data coming from electronic devices surround us,
and the ability to analyze all of them in real-time is a big challenge and
the starting point to understand where to innovate. A possible solution
is Streaming Machine Learning (SML). This new approach focuses on
data streams, unbounded sequences of data arriving in sequential or-
der, even once at a time. The two challenges to face in the real-world
are concept drift and class imbalance. The former refers to the changes
in the characteristics of the data, while the latter refers to an unequal
distribution between the classes. In this paper, we propose IEBench, an
easy-to-use benchmarking environment for comparing streaming learners
on artificial and real data streams. We implemented various state-of-art
algorithms, and we conducted a comprehensive experimental campaign
with IEBench. We evaluated the algorithms on artificial and real data
streams with different imbalance levels and concept drift types. We col-
lected empirical evidence of the role and impact of existing methods
for rebalancing data streams in improving performances during different
types of concept drift. IEBench eases the practitioners’ task of testing
existing algorithms on a new data stream and the scientists’ one of de-
veloping new algorithms and systematically comparing them with the
state-of-the-art.

Keywords: Streaming Machine Learning · Concept Drift · Class Imbal-
ance · Benchmarking Environment

1 Introduction

The Streaming Machine Learning (SML) approach focuses on data streams,
sequences of data arriving once at a time. Its goal is to i) get information in
real-time without the need to come back to already seen data, and ii) use a
limited amount of resources such as memory and time.

As identified by Krawczyk et al. [20], two significant challenges in this new
field are the concept drift phenomenon [29] and the class imbalance [15]. Data
streams evolve, and the distributions of the data can change. Models built on old
data can become inconsistent. This phenomenon is called concept drift and can
happen in various forms and speeds. The second challenge concerns classification
tasks where data streams have an unequal distribution between the classes. Since
the instances in the minority class(es) rarely occur, the patterns for classifying

Appendix A

79

2 Anonymous Author(s)

these classes tend to be rare, undiscovered, or ignored. This kind of information
is rare but essential, and models need to consider it.

The range of streaming analysis applications, where both the concept drift
and class imbalance challenges appear, is broad. An example is the Internet of
Things (IoT) field. Every day, new sensors are placed in houses to improve secu-
rity [8], in cities to monitor the mobility of people [25], and in industries to watch
processes [18]. As presented by this previous study, sensors’ goal could detect
anomalies in finished products. Defects can change frequency and location in the
product’s surface based on which industrial machine is damaged, causing con-
cept drifts. Moreover, anomalies are usually rare events that require particular
attention from the models to maintain high-quality standards. Another possible
field is real-time healthcare. For example, Kathy Lee et al. [22] proposed a real-
time tweet mining system to monitor the spread of flu and cancer, Hussain et
al. [17] proposed a real-time monitoring system for stroke prognosis, and Hassan
et al. [14] proposed a real-time monitoring system for predicting the health sta-
tus of diabetes patients using wearable sensors. In general, a patient’s vital signs
could change at any moment without any warnings, and the algorithms for the
classification of the general health status need to change accordingly. Besides,
systems predicting multiple diseases need to be rebalanced with respect to these
diseases’ frequencies and dangerousness.

The majority of the SML state-of-art solutions focus on solving only the
class imbalance problem in an online fashion, leaving their pipelined algorithm
the task of handling the concept drift occurrence. However, the impacts that the
rebalance phase has on the concept drift detection are still under investigation.

For these reasons, our research aims to provide empirical answers to the
following research questions:

RQ1 Does rebalancing affect in a different way the performances of the algorithms
for each concept drift type?

RQ2 How do the different state-of-art rebalancing techniques affect the perfor-
mances of the algorithms during evolving data streams?

RQ3 How expensive in terms of time/memory consumed each rebalancing tech-
nique is?

In particular, the contributions of this paper are:

– IEBench, a benchmarking environment for easily and effectively comparing
SML algorithms performances;

– Empirical evidence that applying rebalancing techniques improves the algo-
rithms’ performances during each type of concept drift (answering RQ1);

– An extensive experimental campaign measuring the performances and re-
source requirements of the state-of-art algorithms able to deal with the con-
cept drift and class imbalance (answering RQ2 and RQ3).

The remainder of this paper is organized as follows. Section 2 presents
IEBench, a benchmarking environment for streaming algorithms. Section 3
presents the implemented and tested state-of-art algorithms. Section 4 describes

80

Benchmarking Streaming Learners on Imbalanced Evolving Data Streams 3

the artificial and real data streams used to test the algorithms. Section 5 de-
scribes the algorithms and evaluation settings used during the experiments. Sec-
tion 6 presents the result obtained. Finally, Section 7 discusses the conclusions
and outlines some directions for future improvements of this work.

2 Benchmarking environment

Applying streaming algorithms to real-world scenarios, to choose the one that
better suits the problem at hand, there is the need to have a complete view of
their performances. Benchmarking is a process of comparing algorithms using all
the relevant measures and its development is composed by three phases: design,
execution, and analysis. The design phase consists of choosing the data sources,
the candidate algorithms, and the essential measures, ensuring the experiments’
repeatability. Running the designed experiments in the appropriate computa-
tional environment and collecting all the results is the second phase. The last
phase consists of exploring the gathered data and aggregating them to com-
pare the algorithms under all the relevant aspects. Furthermore, a benchmark’s
economic costs need to be kept under the ”worth of investment” threshold. As
pointed out by Krawczyka et al. [20], there is the need for a framework to evaluate
data stream classifier. We propose IEBench, a benchmarking environment which
allows to automatically test multiple streaming learners on several streams.

The two most common real-world data streams challenges are concept drift
and class imbalance. Studies regarding the state-of-art algorithms dealing with
the class imbalance problem in data streams focus only on the class imbalance ra-
tio changes. We used IEBench to study and compare how the online rebalancing
techniques affect the algorithms’ performances during the various types of con-
cept drifts. We tested them using artificial data streams with thirty-one concept
drifts that differ in type, speed, and severity with four imbalance ratios. Also,
we used three real imbalanced and evolving data streams. We collected evidence
that solving the imbalance problem can significantly improve the performances
during the different concept drift types.

IEBench is developed to compare all the SML algorithms implemented in
MOA and it is publicly available here1.

3 State of Art algorithms

In recent years, different data-level and ensemble-based methods have appeared
to handle class imbalance in data streams. The former refers to algorithms that
manipulate the input data to rebalance the input distribution. In contrast, the
latter refers to exploiting an ensemble of learners to rebalance the data distri-
bution, assigning samples differently to each base learner.

1
https://drive.google.com/drive/folders/1-zGny2FS7VO9vlcOJkSEDrxoiEr-cqQM?usp=sharing

We intend to publish it on Github on paper acceptance.

81

4 Anonymous Author(s)

Bagging [6] is an ensemble technique that trains multiple models with a
data set containing K copies of each of the training data where K is drawn
from a binomial distribution. Oza et al. [26] also proposed an online version
that considers the unbounded nature of data streams. The innovation lies in the
adoption of a bagging method that uses a Poisson(1) distribution. Theoretically,
the Poisson distribution is a limiting case of the binomial distribution that arises
when the number of trials increases indefinitely.

Wang et al. [30] proposed an ensemble solution to class imbalance based
on online bagging. The idea is to make an ensemble of base learners where the
classes are balanced for each of them. The rebalancing is achieved by adapting the
lambda of the Poisson distribution based on each sample’s class. Since the class
balancing can be done undersampling the majority class or oversampling the
minority class, Wang et al. proposed the Oversampling Online Bagging (OOB)
and Undersampling Online Bagging (UOB) techniques. Both of them use two
time-decaying variables for each class: wk, which denotes the size percentage
of class k, and Rk, which denotes the model’s accuracy on class k. When two
classes have the wk difference greater than a threshold δ1 (0 < δ1 < 1) and
the Rk difference greater than a threshold δ2 (0 < δ2 < 1), the small class is
labeled as the minority and the large class is labeled as majority. After comparing
all the classes, the unlabeled ones are treated as normal. This procedure leads
to three label sets: minority, majority, and normal. When a sample belongs to
the minority class, OOB updates each learner a number of times drawn from a
Poisson distribution with λ = 1/wk. At the same time, UOB uses λ = 1 − wk

when a sample belongs to the majority class.

A more recent study proposed the Improved Oversampling Online Bagging
(IOOB) and Improved Undersampling Online Bagging (IUOB) techniques [31].
They use a new method to set λ based on the two classes’ size ratio. Considering
only two classes, and naming wmaj the size of the majority class and wmin the
size of the minority class, IOOB sets λ to wmaj/wmin for the minority class while
IUOB sets λ to wmin/wmaj for the majority class.

Wang et al. [31] also presented two ensemble strategies to combine the
strength of IOOB and IUOB. To weigh the two algorithms’ predictions, the meth-
ods compute their Gmean values using a moving average of the recalls. WEOB1
uses the normalized Gmean values as weights to calculate a weighted sum of
their predictions, while WEOB2 compares the Gmean values and uses only the
model’s prediction with the higher one. All these bagging-based strategies leave
the concept drifts detection in the data distribution to the base learners.

C-SMOTE (CS) [2] is, instead, a data-level method. CS extends the oversam-
pling technique SMOTE [9] and collects the class labels in a window managed by
the ADWIN [3] drift detector. To rebalance the stream, CS uses two windows:
one called W , which keeps the data samples, and one called Wlabel, which keeps
the corresponding labels. Every time a new sample arrives, CS checks the class
ratio and, if it is less than a certain threshold t, a continuous online SMOTE
version is applied until the minority sample ratio is greater than the threshold.
When ADWIN detects a change in the class imbalance ratio, CS resizes the two

82

Benchmarking Streaming Learners on Imbalanced Evolving Data Streams 5

windows. CS leaves the detection of the concept drifts in the data distribution
to the base learner.

RebalanceStream (RS) [1] is another data-level solution based on SMOTE.
RS starts with a single base learner. It collects incoming data in a batch and the
corresponding class labels in a window managed by ADWIN. When it detects a
drift warning in the imbalance ratio, the algorithm starts collecting samples in
a new batch called reset-Batch. When the change is confirmed, RS trains three
new learners in parallel: i) the first one only with the reset-Batch, ii) the second
one with the reset-Batch balanced with SMOTE, and iii) the third one with
the original Batch rebalanced with SMOTE. RS chooses the one with the best
K-Statistic value [10] as the new learner, replaces the active model, drops the
other models, and reset both the Batch and the reset-Batch. RS also leaves the
detection of concept drifts in the data distribution to the base learner.

ESOS-ELM [24], has been proposed as an OS-ELM [23] based ensemble able
to handle both the class imbalance and the concept drift problems. The OS-
ELM is a sequential version of ELM which updates the model with data chunks.
Extreme learning machine (ELM) [16] is a single-step learning algorithm for a
single hidden-layer feed-forward network (SLFN). The ensemble’s idea is to keep
two sorted lists of the classifiers, one ordered w.r.t. the number of minority data
samples processed, and one ordered w.r.t. the number of majority data samples
processed. When a new chunk of data is ready for the training, the imbalance
ratio m is computed, the first m classifiers of the first list will process all the
minority class data samples, while the top m classifiers of the second list will
process 1/m of the majority class data samples each. Every learner will have
a balanced training chunk. To handle the concept drift, it uses the Dynamic
Weighted Majority technique [19]. It adds a new OS-ELM learner initialized
using the WELM initialization when the ensemble misclassifies a sample. A long-
term buffer, called ELM-Store, is used to save past concepts. When it detects
a concept drift from the Gmean of the ensemble falling under a threshold θ, it
trains and stores a WELM. When a stored classifier performs better than the
ensemble, it introduced back the stored classifier with weight 1.

4 Data streams

We tested the algorithms with artificial and real data streams with two classes
and different drift types, class imbalance levels, and data distributions. As artifi-
cial data streams, we used the SEA [27], SINE1 [13], and Cluster [7] generators.
We generated 100, 000 instances for each stream. In particular, the incremental
and periodic drifts start at the time step 45, 000 and take 10, 000 time steps
to complete, while the sudden drift happens at time step 50, 000. As real data
streams, we tested the PAKDD [28], KDDCup [11] and Electricity [13] streams.
SEA and SINE1 To reproduce each of the different types of concept drifts [12],
we choose two widely used artificial data generators: SINE1 [13] and SEA [27].
SINE1 instances are composed by two attributes (x1, x2) uniformly distributed
in [0, 1]. The class is determined by x2− sinx1 ≤ θ, where θ is a threshold value.

83

6 Anonymous Author(s)

SEA instances, instead, are composed by three attributes (x1, x2, x3) uniformly
distributed in [0, 10]. The label is a function of only two of them, while the third
one is just noise. The equation to determine the class label is x1 +x2 ≤ θ, where
θ is a threshold value. We consider the following types of concept drift.

P (y) Concept Drift. The probability of seeing any data example from the class
y is changing. It can affect the algorithms’ performances due to a change in the
class imbalance status, but it does not necessarily shift the decision boundary.
Data streams generated by SINE1 have a severe class imbalance change, in which
the imbalance ratio of the first half is reversed on the second half. Data streams
generated by SEA have a less severe change, in which the data streams are
balanced during the first half and become imbalanced during the latter half.

P (X|y) Concept Drift. The probability of seeing a data sample X is changing
but its label y is not. It shows that we see new data samples from the same
environment, and the drift does not affect the decision boundary. The concept
drift in each data stream is defined by a change on a constraint on the x1
parameter for the negative class (0) instances. During the first half of the stream
the probability is p(x1 < n) = 0.9 while during the second half, it is p(x1 < n) =
0.1. The data stream is constantly imbalanced.

P (y|X) Concept Drift. The probability of a data sample X to belong to
a particular class y is changing. This drift will cause the decision boundary to
shift, and, as a consequence, it will lead the algorithm performance to deteriorate.
Data streams generated by SINE1 have a concept swap. In contrast, data streams
generated by SEA have a concept drift due to a θ value change making it is less
severe than the change in SINE1 because some of the examples from the old
concept are still valid under the new concept.

We generated sixteen data streams for every concept drift: eight of them with
SEA and eight with SINE1. Each one has a different combination of imbalance
ratio, 1:9, 2:8, 3:7, or 4:6, and speed, sudden or incremental.
Cluster generator The study [20] indicate the need for more complex drifts and
class distributions. This stream generator [7], originally implemented by Dariusz
Brzeziński 2, meets these requirements. It consists of an imbalance generator that
manages how the data is distributed in the feature space (two dimensional in the
experiments) and a drift generator that manages how to perform the drifts from
one distribution to the next. The main characteristic of the imbalance generator
is the data distributions of the two classes. The majority class data points spread
over all the feature space except in the areas where the minority class clusters
are. These clusters can vary in number, shape, and size. There are two minority
clusters with a normal distribution inside the cluster in the experiments. The
generator places the minority samples with an equal probability in the ”safe”
and ”borderline” regions. The ”safe” one is near the centroid of the cluster where
only minority samples are. The ”borderline” one, which has radius bigger than
the one of the safe zone, can include majority samples.

The drift generator can cause nine different types of drift. We performed
experiments with each of them using four imbalance ratios (1:9, 2:8, 3:7, 4:6)

2 https://github.com/dabrze/imbalanced-stream-generator

84

Benchmarking Streaming Learners on Imbalanced Evolving Data Streams 7

(a) The illustrated sequence of the appearing minority drift.

(b) The illustrated sequence of the cluster movement drift.

(c) The illustrated sequence of the splitting cluster drift.

Fig. 1: Examples of cluster drifts

and three different drift speeds. In the sudden, the drift happens at the 50,000th

time step. In the incremental, it starts at the 45,000th and ends at the 55,000th

. In the periodic, it starts at the 45,000th , goes to the next distribution until
the 50,000th , and comes back at the original one at the 55,000th . We generated
the following types of concept drift.

– Appearing minority. This drift, presented in Figure 1a, starts with zero pos-
itive instances. The minority clusters start appearing as the drift ends, in-
creasing both the clusters’ radius and the minority samples probability.

– Minority share. This drift is similar to the appearing minority because the
minority appears as the drift progresses. The difference is that the clusters
are already there but empty.

– Disappearing minority. This drift consists of making the minority clusters
radius and the minority samples probability decrease to zero as the drift
progress to its end. It is exactly the opposite of the appearing minority drift.

– Appearing cluster. This drift consists of making a new cluster appear without
any modification to the one already present.

– Cluster movement. This drift, presented in Figure 1b, ends with the minority
clusters in a different random position. The movement’s progress follows the
line from the original to the target position.

85

8 Anonymous Author(s)

– Cluster jitter. This drift consists of making the minority clusters center move
randomly, giving the clusters a shaking effect. The cluster will be in a dif-
ferent position at the end of the drift.

– Splitting cluster. This drift, presented in Figure 1c, starts with one minority
cluster that will split in two while moving to two different target positions.

– Shape Shift. This drift consists of making the minority clusters change shape,
increasing the radiuses, and producing wider shapes.

– Borderline shift. This drift consists of making the borderline radius of the
minority clusters grow through the center, making the safe radius shrink.

Real data streams We tested the algorithms on the following real data streams
to confirm the artificial data streams’ results.

PAKDD [28] stream focuses on the problem of credit risk assessment. It has
50,000 instances composed by twenty-seven features, thirteen categorical and
fourteen numerical. The percentage of positive class instances is 20%.

Electricity [13] stream is collected from the Australian New South Wales
Electricity Market and is widely used for imbalanced classification. It has 45,312
instances dated from 7 May 1996 to 5 December 1998. Each instance consists of
eight numerical features. The percentage of positive class instances is 42%.

KDDCup [11] stream task is to build a classifier able to distinguish intrusions
from normal network connections. It has 494,021 instances with twenty-seven
features, seven categorical and twenty numerical. The percentage of positive
class instances is 20%.

5 Experimental Settings

To empirically compare the rebalancing techniques, we adopted the default con-
figuration. The online bagging algorithms have the class size threshold set to 0.6
and the recall one to 0.4. We set the decaying factors of size and recall to 0.9.
We use two windows having size 1000 to compute the IOOB and IUOB moving
average recalls. CS has three parameters: we set the ”k” of the k-nearest neigh-
bors to 5, the class size threshold to 0.5, and the minimum size of the minority
window to apply SMOTE to 100. RS has two parameters: the minimum and
maximum size of the window. We set them to inactive. We tested ESOS-ELM
using OS-ELMs and WELMs composed of 100 neurons, 1000 samples as batch
size, and epsilon set to 0.001.

We tested all the data streams with the same algorithm configuration. Except
for ESOS-ELM, we use the Hoeffding Adaptive Tree (HAT) [4] as a base learner
able to deal with concept drift. All the ensemble algorithms use ten base learners.
We use HAT and the standard online bagging OzaBag [26] with HAT as a base
learner as baselines to compare the performance without any resampling.

To precisely evaluate the algorithms’ performance during the whole stream,
we tested the artificial data streams using a prequential evaluation with a fixed-
length window evaluator. We set the window size to the stream’s length before
the concept drift: 50, 000 for abrupt drifts and 45, 000 in the other two cases.

86

Benchmarking Streaming Learners on Imbalanced Evolving Data Streams 9

Fig. 2: Mean Recall and F1-score with streams having a P(X|y) drift.

This allows restarting measuring when the drift happens without the influence
of the statistics before the drift. Instead, we tested the real data streams using a
prequential evaluation with a fading factor evaluator setting the fading to 0.995.

To compare the algorithms performances we considered measures that take
the class imbalance problem into account, which are Recall and F1-score of each
class, Gmean [21], and Ktemp [32] statistics. For what concern the resources
consumed, time is measured in CPU seconds, while memory in MB.

IEbench runs the experiments using MOA [5], an open-source software li-
brary developed in Java able to handle Massive Online Analysis3. Notably, MOA
executes in a Java Virtual Machine, making the various processes indistinguish-
able. IEbench tracks each experiment’s memory consumption running it inside
a docker container and collecting metrics using Telegraf and InfluxDB4.

6 Results Discussion

This section presents all the results obtained analyzing, for the artificial data
streams, one type of drift at a time and their resource requirements. We compare
the results over the real data streams separately. Note that the chart legend
presents the algorithm in decreasing order of the average Gmean obtained.
P(X|y) Concept Drift The artificial data streams with this kind of drift are
only those generated with the SEA and SINE1 generators. We analyzed the
performances of the algorithms w.r.t. a high imbalance ratio (2:8 and 1:9) and
a low imbalance ratio (4:6 and 3:7).

3 https://moa.cms.waikato.ac.nz/
4 https://www.influxdata.com/

87

10 Anonymous Author(s)

Figure 2 compares the Recall and F1 results of each class. OOB and UOB
were the best performing algorithms. UOB achieved the best minority class re-
call with both high and low imbalance ratios, significantly improving the perfor-
mances of OzaBag in the first case. The drawback was that it lost a significant
amount of majority class recall. OOB mitigated that by achieving a better mi-
nority class recall without losing too much the majority class one, thus achieving
the best Gmean. An analysis of the F1 measures allows noticing that, with both
low and high imbalance ratios, the minority class F1 of OOB was greater than
the OzaBag’s one while the UOB’s one was lower. Indeed, OOB increased the
minority class recall keeping a good precision, while UOB achieved the highest
recall along with the worst precision. In both cases, the corresponding improved
versions (IOOB and IUOB) increased the majority class recall losing on the mi-
nority class one. Only IUOB was able to improve the Gmean w.r.t. its native
version UOB. Interestingly, both the minority and majority classes F1 increased,
leading to better general performances in multi-class settings.

WEOB1 and WEOB2 had similar performances: the former performed better
on the minority class recall, while the latter performed better on the majority
class one.

CS significantly increased the HAT performances on the minority class, losing
only on the majority class recall, but overall performing better during all the
data streams, as shown by the Gmean measure. As the imbalance ratio increased,
this algorithm lost a lot of minority class precision w.r.t. its baseline. RS, on the
other hand, was not able to detect any drift and its performances are the same
as the HAT.

ESOS-ELM needed to inspect several instances to give accurate predictions.
Hence, its position in Figure 2 was bad, but, after the drift, it achieved a minor-
ity/majority class recall of 86.5/95.3.

P(y) Concept Drift Each data stream with this kind of drift has different level
of change. Data streams generated through the cluster generator present a drift
due to the minority class appearing or disappearing, while the data streams
generated through the SEA and SINE1 generators present a drift due to an
imbalance ratio change.

Figure 3 shows that, when the data stream started without any sample be-
longing to a class, as in the appearing minority and the minority share streams,
there was a significant difference of minority recall between the rebalanced algo-
rithm and their baselines. In these cases, IUOB performed well, outperforming
the other algorithms on the minority class recall after the drift. As already seen
before, OOB and IOOB improved the minority class recall w.r.t. OzaBag without
losing too much majority class recall.

WEOB1 and WEOB2 achieved the best performances having one of the best
minority recalls just after the drift, close to the one of the IUOB, and keeping the
majority class recall similar to the oversampling algorithms ones, thus achieving
the best Gmean.

CS constantly improved the performances of the HAT on the minority class.
It reached the minority class recall of the undersampling algorithms during the

88

Benchmarking Streaming Learners on Imbalanced Evolving Data Streams 11

Fig. 3: Recall during streams having a P(y) drift with imbalance ratio 1:9.

clusters drifts but with a better majority class recall. RS, on the other hand, did
not seem to improve the HAT performances.

ESOS-ELM needed time to adjust its predictions. It was always the worst-
performing. More importantly, if the stream started without the minority class,
this algorithm could not identify any of its samples when they appear.

P(y|X) Concept Drift This kind of drift is the one that more affects the algo-
rithms performances. Data streams with this type of drift are the corresponding
SEA and SINE1 ones and all the ones with cluster movements and reshaping.

Figure 4 shows that, unlike the previous category of drifts, UOB had a better
minority class recall than OOB only when the imbalance ratio was 1:9. Again,
OOB was the algorithm with the best Gmean having the highest minority class
recall and the second higher majority class recall after IOOB. When the im-
balance ratio was high, both the UOB minority class mean and final step recall
were the best ones. However, during the drift, the best performing algorithm was
OOB. Figure 5, which shows SINE1 stream results during such a severe drift,
highlights this behavior thanks to the Ktemp. Indeed, OzaBag’s performance
increased oversampling the minority class and decreased undersampling the ma-
jority class. Oversampling increased the importance of some of the new examples,
making the HAT learners react to the drift faster. On the other hand, under-
sampling removed the majority-class samples, thus worsening the drift detection
and the algorithm performances w.r.t not applying any resampling. Moreover,
Figure 5 shows the importance of resampling also with drifts having low severity
as SEA. The Gmean of the OzaBag dropped because the old concept bound-
ary was difficult to forget if the wrongly classified samples were a few (minority
class), and the majority class samples continued to be correctly classified.

89

12 Anonymous Author(s)

Fig. 4: Mean Recall with streams having a P(y|X) drift.

In Figure 4, IOOB and IUOB increased the majority class’s recall losing a
bit on the minority class one w.r.t. the corresponding native versions. Again,
IUOB improved the UOB Gmean, but this did not happen with OOB.

WEOB1 and WEOB2 had similar performances. WEOB1 performed better
on the minority class recall, while WEOB2 performed better on the majority
class recall. Both classes’ recalls were always near the best performing algorithm,
achieving a Gmean better than both the baselines.

Figure 4 shows that CS significantly increased the HAT minority class per-
formances only when the imbalance ratio was greater than 2:8. Instead, Figure 5
shows a major problem of this algorithm in terms of Ktemp. When the drift was
severe, like in SINE1 streams, and the class concepts swapped, it cannot recover
its accuracy, and its Ktemp remained under the level of a no-change classifier. The
ADWIN drift detector only looked at the seen samples’ class label and did not
detect P(y|X) drifts; thus, it generated synthetic samples with the old concept.

RS, on the other hand, was not able to detect any drift and its performances
were the same as the HAT. As shown in Figure 5, ESOS-ELM needed to see
several instances before having accurate predictions. When the imbalance ratio
was 1:9, it was the algorithm with the best minority class recall just after the
drift. Still, it had a significant worsening of the recall of the majority class.
Real data streams Algorithm performances are different for each of the three
real data streams tested, as shown by Figure 6.

The Electricity data stream has a constant imbalance ratio of 4:6. In this
case, the undersampling algorithms did not improve the minority class recall
but only worst the majority class one. RS behaved exactly like a simple HAT,

90

Benchmarking Streaming Learners on Imbalanced Evolving Data Streams 13

Fig. 5: Ktemp and Gmean during SEA and SINE1 streams having a P(y|X) drift
and imbalance ratio 1:9

which was better than what CS did, worsening both classes’ recall. If we do
not consider ESOS-ELM that predicted everything as belonging to the majority
class, the best performing was OOB, which had the best Gmean, recall, and F1

in both classes.

The PAKDD data stream results confirmed that, with high skewed imbal-
ance ratios, UOB improved the minority class recall better than all the others,
achieving a result of 83, 0. WEOB1, which has a good trade-off between the
recall of both classes, achieved the best Gmean. CS significantly improved the
performances of a single HAT which alone did not learn.

The KDDCup data stream, often used for anomaly detection evaluations,
has high imbalance ratios that change frequently. ESOS-ELM behaved terribly,
and it was not able to detect any minority class example. IOOB reached almost
a perfect minority class recall with a mean value of 99.899, improving the recall
of both classes w.r.t. OzaBag. UOB, on the other hand, worsened the recall of
both classes, while IUOB achieved a good majority class recall. WEOB1, again,
achieved the best Gmean.

Resource Requirements Each algorithm needed a different amount of re-
sources. Table 1 presents the mean and variance of memory and time required
by each algorithm during the experiments with the artificial data streams.

91

14 Anonymous Author(s)

Fig. 6: Recall average with real data streams.

Table 1: Time and Memory requirements of each algorithm. The best ones are
displayed in bold while the worst ones are displayed in italics.

UOB OOB IUOB IOOB WEOB1 WEOB2 CS RS ESOS-ELM

Memory 374 ± 91 513 ± 74 313± 81 472 ± 89 545 ± 82 545 ± 82 1116 ± 265 2606 ± 639 6014±853

Time 6 ± 6 10 ± 6 5± 6 9 ± 7 13 ± 6 15 ± 8 315±185 23 ± 11 288 ± 32

The results clearly show that the online bagging algorithms outperformed the
others from the resources point of view. One possible reason is that they save
only the time-decaying variables, avoiding keeping any sample or label. WEOB1
and WEOB2 required the most significant resources among the online bagging
algorithms since they need the windows. The windows size is not proportional
to the seen samples, thus never becoming too big. ESOS-ELM and CS were the
worst-performing from a time point of view. The slow part of CS is the K-NN
search when applying the online SMOTE version: the time to generate a new
sample is proportional to the window size; this makes the algorithm slow when
the window size grows. RS has the worst memory consumption after the ESOS-
ELM because it keeps a batch with all the seen samples since the last drift.
ESOS-ELM requires completely different mathematical operations than HAT;
thus, it is not comparable.

7 Conclusions

Addressing the class imbalance is crucial to building models able to solve
real-world problems, particularly in presence of concept drifts. We developed
IEBench, a benchmark that effectively compares SML algorithms performance
on data streams. IEBench allowed us to conduct a comprehensive experimental
campaign on imbalanced and evolving data streams. We implemented and tested
nine state-of-art algorithms over a wide range of artificial and real data streams

92

Benchmarking Streaming Learners on Imbalanced Evolving Data Streams 15

measuring all the relevant statistics. We aggregated the results by concept drifts
types, concept drifts speeds, and imbalance ratios to identify each algorithm’s
weaknesses and strengths.

The experimental campaign’s outcomes showed that applying rebalancing
techniques has improved the algorithm performances during all the concept
drift types (RQ1). In particular, they provided a clear view of where to fo-
cus for each algorithm future improvements (RQ2). The online bagging-based
algorithms have proven to be consistently the best in terms of performances and
resources (RQ3), each in a different situation, opening the way to new ensem-
ble ideas. CS has shown difficulties with the P(y|X) drifts alongside excessive
time requirements (RQ3); future improvement should consider these results. RS
needs a different drift detection technique to improve the performances of the
base learner. Finally, ESOS-ELM is different from the others, and it has a high
number of hyper-parameters to tune. This algorithm requires more studies and
experiments.

As future work, we intend to use IEBench to explore higher imbalance ra-
tios or more severe drifts on the data streams to identify the algorithms suited
for more challenging scenarios. It is easy to integrate new algorithms and data
streams, e.g., enlarging the benchmark to multi-class settings. Moreover, we plan
to improve IEBench to run the experiments in parallel and extend it to automate
the hyper-parameter tuning process.

References

1. Bernardo, A., Della Valle, E., Bifet, A.: Incremental rebalancing learning on evolv-
ing data streams. In: 2020 International Conference on Data Mining Workshops
(ICDMW). pp. 844–850 (2020)

2. Bernardo, A., Gomes, H.M., Montiel, J., Pfahringer, B., Bifet, A., Della Valle, E.:
C-smote: Continuous synthetic minority oversampling for evolving data streams.
In: 2020 IEEE International Conference on Big Data (Big Data). pp. 483–492
(2020). https://doi.org/10.1109/BigData50022.2020.9377768

3. Bifet, A., Gavaldà, R.: Learning from time-changing data with adaptive windowing.
In: SDM. pp. 443–448. SIAM (2007)

4. Bifet, A., Gavaldà, R.: Adaptive learning from evolving data streams. In: IDA.
LNCS, vol. 5772, pp. 249–260. Springer (2009)

5. Bifet, A., Holmes, G., Kirkby, R., Pfahringer, B.: MOA: massive online analysis.
J. Mach. Learn. Res. 11, 1601–1604 (2010)

6. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)
7. Brzezinski, D., Minku, L., Pewinski, T., Stefanowski, J., Szumaczuk, A.: The im-

pact of data difficulty factors on classification of imbalanced and concept drifting
data streams. Knowl. Inf. Syst. (2021), in press

8. Chan, C., Yu, E.W.M.: An abnormal sound detection and classification system for
surveillance applications. In: EUSIPCO. pp. 1851–1855. IEEE (2010)

9. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic
minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

10. Cohen, J.: A coefficient of agreement for nominal scales. Educational and Psycho-
logical Measurement 20(1), 37–46 (1960)

93

16 Anonymous Author(s)

11. Dua, D., Graff, C.: UCI machine learning repository (2017),
http://archive.ics.uci.edu/ml

12. Elwell, R., Polikar, R.: Incremental learning of concept drift in nonstationary en-
vironments. IEEE Trans. Neural Networks 22(10), 1517–1531 (2011)

13. Gama, J., Medas, P., Castillo, G., Rodrigues, P.P.: Learning with drift detection.
In: SBIA. LNCS, vol. 3171, pp. 286–295. Springer (2004)

14. Hassan, F., Shaheen, M., Sahal, R.: Real-time healthcare monitoring sys-
tem using online machine learning and spark streaming. International
Journal of Advanced Computer Science and Applications 11 (09 2020).
https://doi.org/10.14569/IJACSA.2020.0110977

15. He, H., Garcia, E.A.: Learning from imbalanced data. IEEE Trans. Knowl. Data
Eng. 21(9), 1263–1284 (2009)

16. Huang, G., Siew, C.K.: Extreme learning machine: RBF network case. In:
ICARCV. pp. 1029–1036. IEEE (2004)

17. Hussain, I., Park, S.J.: Healthsos: Real-time health monitoring system for stroke
prognostics. IEEE Access 8, 213574–213586 (2020)

18. Kammerer, K., Hoppenstedt, B., Pryss, R., Stökler, S., Allgaier, J., Reichert, M.:
Anomaly detections for manufacturing systems based on sensor data - insights into
two challenging real-world production settings. Sensors 19(24), 5370 (2019)

19. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: A new ensemble method
for tracking concept drift. In: ICDM. pp. 123–130. IEEE Computer Society (2003)

20. Krawczyk, B., Minku, L.L., Gama, J., Stefanowski, J., Wozniak, M.: Ensemble
learning for data stream analysis: A survey. Inf. Fusion 37, 132–156 (2017)

21. Kubat, M., Holte, R.C., Matwin, S.: Machine learning for the detection of oil spills
in satellite radar images. Mach. Learn. 30(2-3), 195–215 (1998)

22. Lee, K., Agrawal, A., Choudhary, A.N.: Real-time disease surveillance using twitter
data: demonstration on flu and cancer. In: KDD. pp. 1474–1477. ACM (2013)

23. Liang, N., Huang, G., Saratchandran, P., Sundararajan, N.: A fast and accurate
online sequential learning algorithm for feedforward networks. IEEE Trans. Neural
Networks 17(6), 1411–1423 (2006)

24. Mirza, B., Lin, Z., Liu, N.: Ensemble of subset online sequential extreme learn-
ing machine for class imbalance and concept drift. Neurocomputing 149, 316–329
(2015)

25. Moreira, J.: Travel Time Prediction for the Planning of Mass Transit Companies:
a Machine Learning Approach. Ph.D. thesis, . (12 2008)

26. Oza, N.C., Russell, S.J.: Online bagging and boosting. In: AISTATS. Society for
Artificial Intelligence and Statistics (2001)

27. Street, W.N., Kim, Y.: A streaming ensemble algorithm (SEA) for large-scale clas-
sification. In: KDD. pp. 377–382. ACM (2001)

28. Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, T.B. (eds.): PAKDD 2009,
Bangkok, Thailand, April 27-30, Proceedings, LNCS, vol. 5476. Springer (2009)

29. Tsymbal, A.: The problem of concept drift: definitions and related work. Computer
Science Department, Trinity College Dublin 106(2), 58 (2004)

30. Wang, S., Minku, L.L., Yao, X.: A learning framework for online class imbalance
learning. In: CIEL. pp. 36–45. IEEE (2013)

31. Wang, S., Minku, L.L., Yao, X.: Resampling-based ensemble methods for online
class imbalance learning. IEEE Trans. Knowl. Data Eng. 27(5), 1356–1368 (2015)

32. Zliobaite, I., Bifet, A., Read, J., Pfahringer, B., Holmes, G.: Evaluation methods
and decision theory for classification of streaming data with temporal dependence.
Mach. Learn. 98(3), 455–482 (2015)

94

Bibliography

[1] Jie Lu, Anjin Liu, Fan Dong, Feng Gu, João Gama, and Guangquan Zhang.
Learning under concept drift: A review. IEEE Trans. Knowl. Data Eng.,
31(12):2346–2363, 2019.

[2] Hong Li, Lin Li, Zi Zhong, Yi Han, LiHong Hu, and Ying Lu. An accurate and
efficient method to predict y-no bond homolysis bond dissociation energies.
Mathematical Problems in Engineering, 2013, 08 2013.

[3] Albert Bifet, Geoff Holmes, Richard Kirkby, and Bernhard Pfahringer. MOA:
massive online analysis. J. Mach. Learn. Res., 11:1601–1604, 2010.

[4] Scott Wares, John Isaacs, and Eyad Elyan. Data stream mining: methods
and challenges for handling concept drift. SN Applied Sciences, 1, 10 2019.

[5] Doug Laney et al. 3d data management: Controlling data volume, velocity
and variety. META group research note, 6(70):1, 2001.

[6] M. Khan, Muhammad Uddin, and Navarun Gupta. Seven v’s of big data
understanding big data to extract value. pages 1–5, 04 2014.

[7] Hootsuite & We Are Social. Digital 2021 global digital overview.
https://datareportal.com/reports/digital-2021-global-digital-overview, 2021.

[8] Alexey Tsymbal. The problem of concept drift: definitions and related work.
Computer Science Department, Trinity College Dublin, 106(2):58, 2004.

[9] Haibo He and Edwardo A. Garcia. Learning from imbalanced data. IEEE
Trans. Knowl. Data Eng., 21(9):1263–1284, 2009.

[10] Klaus Kammerer, Burkhard Hoppenstedt, Rüdiger Pryss, Steffen Stökler, Jo-
hannes Allgaier, and Manfred Reichert. Anomaly detections for manufactur-
ing systems based on sensor data - insights into two challenging real-world
production settings. Sensors, 19(24):5370, 2019.

[11] Cheung-Fat Chan and Eric W. M. Yu. An abnormal sound detection and
classification system for surveillance applications. In EUSIPCO, pages 1851–
1855. IEEE, 2010.

[12] João Moreira. Travel Time Prediction for the Planning of Mass Transit Com-
panies: a Machine Learning Approach. PhD thesis, 12 2008.

95

[13] Shanle Ma, Xue Li, Yi Ding, and Maria E. Orlowska. A recommender system
with interest-drifting. In WISE, volume 4831 of Lecture Notes in Computer
Science, pages 633–642. Springer, 2007.

[14] Iqram Hussain and Se Jin Park. Healthsos: Real-time health monitoring
system for stroke prognostics. IEEE Access, 8:213574–213586, 2020.

[15] Tommaso Alberti and Davide Faranda. On the uncertainty of real-time pre-
dictions of epidemic growths: A COVID-19 case study for china and italy.
Commun. Nonlinear Sci. Numer. Simul., 90:105372, 2020.

[16] Dariusz Brzezinski, Leandro Minku, Tomasz Pewinski, Jerzy Stefanowski, and
Artur Szumaczuk. The impact of data difficulty factors on classification of
imbalanced and concept drifting data streams. Knowl. Inf. Syst., 2021. In
press.

[17] Mowei Wang, Yong Cui, Xin Wang, Shihan Xiao, and Junchen Jiang. Machine
learning for networking: Workflow, advances and opportunities. IEEE Netw.,
32(2):92–99, 2018.

[18] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estima-
tion and model selection. In IJCAI, pages 1137–1145. Morgan Kaufmann,
1995.

[19] Pedro M. Domingos and Geoff Hulten. Mining high-speed data streams. In
KDD, pages 71–80. ACM, 2000.

[20] Wassily Hoeffding. Probability inequalities for sums of bounded random vari-
ables. Journal of the American Statistical Association, 58(301):13–30, 1963.

[21] C. Gini and G. Ottaviani. Memorie di metodologia statistica. Number v. 1 in
Memorie di metodologia statistica. E.V. Veschi, 1955.

[22] Ryan Elwell and Robi Polikar. Incremental learning of concept drift in non-
stationary environments. IEEE Trans. Neural Networks, 22(10):1517–1531,
2011.

[23] Imen Khamassi, M. Sayed Mouchaweh, Moez Hammami, and Khaled Ghédira.
A New Combination of Diversity Techniques in Ensemble Classifiers for Han-
dling Complex Concept Drift: Methods and Applications, pages 39–61. 01
2019.

[24] Albert Bifet. Classifier concept drift detection and the illusion of progress.
In ICAISC (2), volume 10246 of Lecture Notes in Computer Science, pages
715–725. Springer, 2017.

96

[25] E. S. Page. Continuos Inspection Schemes. Biometrika, 41(1-2):100–115, 06
1954.

[26] João Gama, Pedro Medas, Gladys Castillo, and Pedro Pereira Rodrigues.
Learning with drift detection. In SBIA, volume 3171 of Lecture Notes in
Computer Science, pages 286–295. Springer, 2004.

[27] Heng Wang and Zubin Abraham. Concept drift detection for streaming data.
In IJCNN, pages 1–9. IEEE, 2015.

[28] Jeremy Z. Kolter and Marcus A. Maloof. Dynamic weighted majority: A new
ensemble method for tracking concept drift. In ICDM, pages 123–130. IEEE
Computer Society, 2003.

[29] Albert Bifet and Ricard Gavaldà. Learning from time-changing data with
adaptive windowing. In SDM, pages 443–448. SIAM, 2007.

[30] Mayur Datar, Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Maintain-
ing stream statistics over sliding windows. SIAM J. Comput., 31(6):1794–
1813, 2002.

[31] Albert Bifet and Ricard Gavaldà. Adaptive learning from evolving data
streams. In IDA, volume 5772 of Lecture Notes in Computer Science, pages
249–260. Springer, 2009.

[32] Trevor Hastie and Robert Tibshirani. Classification by pairwise coupling. In
NIPS, pages 507–513. The MIT Press, 1997.

[33] Bikash Joshi, Massih-Reza Amini, Ioannis Partalas, Liva Ralaivola, Nicolas
Usunier, and Éric Gaussier. On binary reduction of large-scale multiclass
classification problems. In IDA, volume 9385 of Lecture Notes in Computer
Science, pages 132–144. Springer, 2015.

[34] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning prob-
lems via error-correcting output codes. J. Artif. Intell. Res., 2:263–286, 1995.

[35] Krystyna Napierala and Jerzy Stefanowski. Identification of different types
of minority class examples in imbalanced data. In HAIS (2), volume 7209 of
Lecture Notes in Computer Science, pages 139–150. Springer, 2012.

[36] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip
Kegelmeyer. SMOTE: synthetic minority over-sampling technique. J. Ar-
tif. Intell. Res., 16:321–357, 2002.

97

[37] Miroslav Kubat and Stan Matwin. Addressing the curse of imbalanced train-
ing sets: One-sided selection. In ICML, pages 179–186. Morgan Kaufmann,
1997.

[38] Leo Breiman. Bagging predictors. Mach. Learn., 24(2):123–140, 1996.

[39] Robert E. Schapire. The strength of weak learnability. Mach. Learn., 5:197–
227, 1990.

[40] Albert Bifet, Ricard Gavaldà, Geoff Holmes, and Bernhard Pfahringer. Ma-
chine Learning for Data Streams with Practical Examples in MOA. MIT Press,
2018.

[41] Gary M. Weiss. Mining with rarity: a unifying framework. SIGKDD Explor.,
6(1):7–19, 2004.

[42] Miroslav Kubat, Robert C. Holte, and Stan Matwin. Machine learning for the
detection of oil spills in satellite radar images. Mach. Learn., 30(2-3):195–215,
1998.

[43] Jacob Cohen. A coefficient of agreement for nominal scales. Educational and
Psychological Measurement, 20(1):37–46, 1960.

[44] Albert Bifet, Gianmarco De Francisci Morales, Jesse Read, Geoff Holmes, and
Bernhard Pfahringer. Efficient online evaluation of big data stream classifiers.
In KDD, pages 59–68. ACM, 2015.

[45] Indre Zliobaite, Albert Bifet, Jesse Read, Bernhard Pfahringer, and Geoff
Holmes. Evaluation methods and decision theory for classification of stream-
ing data with temporal dependence. Mach. Learn., 98(3):455–482, 2015.

[46] Nikunj C. Oza and Stuart J. Russell. Online bagging and boosting. In AIS-
TATS. Society for Artificial Intelligence and Statistics, 2001.

[47] A. Bernardo, H. M. Gomes, J. Montiel, B. Pfahringer, A. Bifet, and E. Della
Valle. C-smote: Continuous synthetic minority oversampling for evolving data
streams. In 2020 IEEE International Conference on Big Data (Big Data),
pages 483–492, 2020.

[48] A. Bernardo, E. della Valle, and A. Bifet. Incremental rebalancing learning
on evolving data streams. In 2020 International Conference on Data Mining
Workshops (ICDMW), pages 844–850, 2020.

[49] Shuo Wang, Leandro L. Minku, and Xin Yao. A learning framework for online
class imbalance learning. In CIEL, pages 36–45. IEEE, 2013.

98

[50] Shuo Wang, Leandro L. Minku, and Xin Yao. Resampling-based ensemble
methods for online class imbalance learning. IEEE Trans. Knowl. Data Eng.,
27(5):1356–1368, 2015.

[51] Bilal Mirza, Zhiping Lin, and Nan Liu. Ensemble of subset online sequential
extreme learning machine for class imbalance and concept drift. Neurocom-
puting, 149:316–329, 2015.

[52] Nan-Ying Liang, Guang-Bin Huang, Paramasivan Saratchandran, and
Narasimhan Sundararajan. A fast and accurate online sequential learning al-
gorithm for feedforward networks. IEEE Trans. Neural Networks, 17(6):1411–
1423, 2006.

[53] Bilal Mirza, Zhiping Lin, and Kar-Ann Toh. Weighted online sequential ex-
treme learning machine for class imbalance learning. Neural Process. Lett.,
38(3):465–486, 2013.

[54] Guang-Bin Huang and Chee Kheong Siew. Extreme learning machine: RBF
network case. In ICARCV, pages 1029–1036. IEEE, 2004.

[55] Wei Dai and Daniel Berleant. Benchmarking contemporary deep learning
hardware and frameworks: A survey of qualitative metrics. In CogMI, pages
148–155. IEEE, 2019.

[56] The Prognostics and Health Management Society (PHM So-
ciety). Phm challenge competition data set. In [Online]:
http://www.phmsociety.org/references/datasets, 2009.

[57] W. Nick Street and YongSeog Kim. A streaming ensemble algorithm (SEA)
for large-scale classification. In KDD, pages 377–382. ACM, 2001.

[58] Thanaruk Theeramunkong, Boonserm Kijsirikul, Nick Cercone, and Tu Bao
Ho, editors. Advances in Knowledge Discovery and Data Mining, 13th Pacific-
Asia Conference, PAKDD 2009, Bangkok, Thailand, April 27-30, 2009, Pro-
ceedings, volume 5476 of Lecture Notes in Computer Science. Springer, 2009.

[59] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.
http://archive.ics.uci.edu/ml.

99

100

	Introduction
	Big Data
	Streaming Machine Learning
	Contributions of the thesis
	Document Structure

	State of the Art
	Traditional Machine Learning
	Streaming Machine Learning
	Hoeffding Tree

	Concept Drift
	Speed of Drift
	Severity of Drift
	Concept Drift detection

	Class Imbalance
	Minority class distributions
	Offline Algorithms to deal with Class Imbalance

	Evaluation Methodology
	Error Estimation
	Performance Measures

	Problem Setting
	SML Algorithms to deal with Class Imbalance and Concept Drift
	C-SMOTE
	RebalanceStream
	Online Bagging
	Ensemble of Online Sequential Extreme Learning Machine

	Problem Statement
	Benchmarking environment
	Replication Study
	Data streams
	Performances evaluation
	Problem Recap

	Problem Solving
	Technologies adopted
	Implementing and running the algorithms
	Tracking memory requirements
	Visualizing the results

	Data streams
	SEA and SINE1
	Cluster generator
	Real Datasets

	Implementation experience
	Cluster drift generation
	Algorithms implementation
	Native OOB and UOB
	Improved OOB and UOB
	Ensembles of the improved versions

	Benchmarking setup
	Experiments configuration

	Results
	P(X|y) drift
	P(y|X) drift
	P(y) drift
	Resources requirements
	Real datasets

	Conclusions and Future Work
	Appendix
	Bibliography

