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Abstract

In the rapidly evolving field of space exploration, CubeSats are becoming increasingly
prominent due to their cost-effectiveness and operational efficiency. However, the current
satellite communication paradigm struggles to keep up with this growth. The ERC-funded
EXTREMA project aims to address this gap by enhancing CubeSats with autonomous
capabilities, eliminating certain communication steps. To realize this visionary project,
rigorous ground testing is imperative to manage the associated risks. Thus, STASIS, the
platform crafted at the DART laboratory in Polytechnic of Milan, was designed to ensure
reliable validation of autonomous GNC algorithms. However, to establish a dependable
basis for simulations, STASIS shall accurately replicate a micro-gravity environment.
The thesis delineates the development and testing of an automatic mass balancing al-
gorithm for STASIS, aimed to generate a micro-gravity environment for the simulator,
pivotal for the success of the EXTREMA project. The balancing process employs a set
of shifting masses, wireless controlled to modify the system’s internal mass distribution
until the offset between the center of mass and the center of rotation is canceled. These
masses generate a torque within a plane orthogonal to the gravity vector, introducing an
under-actuated control challenge. Therefore, a two-step procedure is proposed.
The first step involves achieving planar balancing through the application of a non-linear
feedback control technique. Following, the residual vertical offset is estimated using a
constrained batch least squares method. This estimation feeds the platform’s inertia pa-
rameters to a Kalman filter, potentially refining the accuracy of the balancing procedure.
Comprehensive simulations on the platform’s digital twin authenticated these algorithms,
paving the way for real-world tests. Results proved how reduced is the spectrum of viable
strategies to achieve unbiased balancing. Hence, this step was pivotal, pinpointing and
addressing possible concerns, and bolstering the algorithms resilience.
Experimental results demonstrate a 10−5 m precision for automatic planar balancing.

Keywords: Automatic balancing, Hardware-in-the-loop, Satellite simulator, Experimen-
tal testing, Micro-gravity, Autonomous GNC.
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Sommario

Nel campo dell’esplorazione spaziale, i CubeSat stanno diventando sempre più importanti
grazie alla loro economicità ed efficienza operativa. Tuttavia, l’attuale paradigma di co-
municazione satellitare fatica a tenere il passo con questa crescita. Il progetto EXTREMA
mira a colmare questa lacuna potenziando i CubeSat con capacità autonome, eliminando
alcune fasi di comunicazione. Per realizzare questo progetto innovativo, sono indispens-
abili rigorosi test a terra atti a mitigare i rischi. Con tale fine, STASIS è stato sviluppato
presso il laboratorio DART, nel Politecnico di Milano. Per stabilire una base valida per
le simulazioni, STASIS deve replicare accuratamente un ambiente di microgravità.
A tale scopo, la tesi presenta l’implementazione e i test sperimentali di un algoritmo di
bilanciamento per STASIS. Il processo di bilanciamento impiega un insieme di masse mo-
bili, controllate via wireless per modificare la distribuzione di massa del sistema fino a
compensare la differenza tra centro di massa e centro di rotazione. Tuttavia, le masse
generano una coppia necessariamente ortogonale al vettore gravitazionale, introducendo
un problema di sotto-attuazione, che viene risolto tramite una procedura a due fasi.
La prima fase prevede il conseguimento del bilanciamento planare attraverso l’applicazione
di una tecnica di controllo non lineare. In seguito, l’offset verticale residuo viene stimato
utilizzando un metodo dei minimi quadrati vincolato. Questa stima, avendo come risul-
tato l’inerzia del simulatore, permette di un’osservazione del sistema basata sulla teoria
di Kalman, potenzialmente affinando l’accuratezza della procedura di bilanciamento.
Numerose simulazioni sul gemello digitale della piattaforma hanno autenticato questi al-
goritmi, aprendo la strada ai test nel mondo reale. I risultati delle simulazioni hanno
dimostrato quanto sia ridotto lo spettro delle strategie praticabili per ottenere risultati
robusti. Pertanto, questo passaggio è stato fondamentale, permettendo di individuare e
affrontare possibili criticità e rafforzando, quindi, la resilienza degli algoritmi.
I risultati sperimentali dimostrano una precisione di 10−5 m per il bilanciamento planare.

Parole chiave: Bilanciamento automatico, Hardware-in-the-loop, Simulatore di assetto,
Test sperimentali, Micro-gravità, GNC autonomo.
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1| Introduction

In the ever-evolving realm of space technology, CubeSats represent a significant paradigm
shift, emblematic of the modern age’s penchant for miniaturization and cost-effectiveness.
Originally conceptualized to provide affordable access to space for university students,
CubeSats have transcended their educational origins to become pivotal assets in both
commercial and scientific arenas.
Indeed, the advent of advanced microelectronics and miniaturized subsystems has allowed
for the creation of robust satellite capabilities in considerably smaller form factors. In
conjunction with streamlined satellite structures, this ensures that CubeSats are not just
affordable but also efficient.
Furthermore, the standardization of interfaces between launchers and payloads has opened
up a new world of launch opportunities. Standardization reduces complexities involved
in launch configurations, making it more feasible for multiple CubeSats to hitch a ride
on a single rocket1. This shared approach to launching not only minimizes costs but also
accelerates the frequency of launches, ensuring rapid deployment of satellite constellations.
As a result, CubeSats are now at the forefront of space exploration and observation,
democratizing space access and catalyzing innovations in various domains, from Earth
observation to deep space exploration [1].

1.1. The paradigm shift: towards self-driving inter-

planetary CubeSats

The exploration of distant celestial bodies, while captivating to both public and private
sectors, presents notable operational challenges. Reference [1] highlights that the actual
standard procedure mostly utilizes the Deep Space Network (DSN) to communicate with
distant spacecrafts, emphasizing the limitations inherent in this approach. Indeed, the
DSN is designed to employ the minimum number of ground stations to ensure that at
least one station is in line of sight with any point in space at any time instant [1] (Fig-

1European Space Agency, "CubeSats", https://www.esa.int/Enabling_Support/Preparing_for_
the_Future/Discovery_and_Preparation/CubeSats, last accessed: 9/11/2023.

https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/CubeSats
https://www.esa.int/Enabling_Support/Preparing_for_the_Future/Discovery_and_Preparation/CubeSats
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ure 1.1). Consequently, the DSN operates on a highly regimented timetable and may not
be equipped to handle the rapid expansion similar to what has been observed in more
proximate applications. Additionally, the vast distances separating Earth from deep-
space missions probes may lead to asynchronous communication. This, in turn, escalates
operational expenses due to human personnel and the need for specialized hardware.

Figure 1.1: DSN ground stations locations.

In this scenario, the European Research Council (ERC)-funded Engineering Extremely
Rare Events in Astrodynamics for Deep-Space Missions in Autonomy (EXTREMA) project,
seeks to revolutionize current practices [2]. By enhancing interplanetary CubeSats with
autonomous capabilities, the project aims to address the limitations posed by the lim-
ited access to ground stations and drastically reduce the operational expenses associated
with deep-space probes. To realize this captivating and ambitious vision, the EXTREMA
project is anchored on three fundamental pillars:

1. Autonomous Navigation. The development of CubeSats-safe navigation algo-
rithms enabling autonomous reconstruction of their position in the deep-space by
exploiting the information from the surrounding environment [3–6].

2. Autonomous Guidance and Control. The implementation of lightweight guid-
ance algorithms efficiently operating given the on-board computational constraints,
enabling the computation of a time-definite thrust profile [7–9].

3. Ballistic Capture. The exploitation of the multi-body dynamics of the Solar
System to maintain prolonged proximity to a celestial body [10–12].
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For the success of this complex and ambitious project, ensuring reliability for the Guidance,
Navigation and Control (GNC) algorithms is pivotal. As such, rigorous performance and
robustness testing of these autonomous algorithms is imperatively required.

1.2. Spacecraft attitude simulators

Spacecraft simulators play a pivotal role in the field of aerospace engineering. They pro-
vide a physical environment to test and validate the design, performance, and operational
capabilities of a spacecraft before its actual deployment. By replicating the conditions of
outer space, these simulators offer invaluable insights into potential challenges and con-
tingencies, thereby enhancing the safety and success of space missions.
Their integration into space mission design has gained significant prominence in recent
decades, paralleling the marked escalation in the complexity of GNC algorithms. Indeed,
complex GNC strategies, while augmenting the autonomy and efficiency of space mis-
sions, may result in elongated simulations that might not consistently mirror real-world
performances. Thus, the pre-flight performance evaluation via comprehensive hardware
and software in-the-loop ground testing is of utmost importance, resulting in the rising
popularity of the spacecraft simulators in recent decades [13].
Reference [14] provides a throughout of the technological solutions until the year 2003.
The paper represents an historical review of the precedent 50 years development of air-
bearing supported facilities, which have the advantage of minimizing the friction with
respect to other mechanical arrangements for spacecraft simulators. Based on specific
simulation needs and fidelity criteria, various configurations can be integrated, each with
different Degree Of Freedoms (DOFs).

• Planar systems, enabling 2 DOFs planar motion, presented in Figure 1.2a.

• Rotational systems, granting a 3 DOFs rotational dynamics, Figure 1.2b.

• Hybrid systems, 5 DOFs systems which incorporate both the previous systems, as
illustrated in Figure 1.2c.

The last category is employed when high-fidelity simulations of complex algorithms shall
be performed. Furthermore, if necessary, the 6th DOFs can be introduced into the system
by incorporating a counterbalancing mass propelled by electric motors, enabling vertical
motion, therefore culminating in a comprehensive representation of spacecrafts dynamics.



4 1| Introduction

(a) Planar 2 DOFs. (b) Spherical 3 DOFs. (c) Hybrid 5 DOFs.

Figure 1.2: Simulator configurations.

Concerning the 3 DOFs rotational systems, which necessitate meticulous facility design
to attain alignment with the actual spacecraft dynamics, they are categorized into two
primary groups as highlighted in [14] (Figure 1.3).

• Tabletops and umbrellas, providing full freedom in yaw, while roll and pitch motion
are bounded (Figures 1.3a and 1.3b).

• Dumbbells, providing full freedom for both yaw and roll axis, therefore bounding
only the pitch rotation (Figure 1.3c).

(a) Tabletop. (b) Umbrella. (c) Dumbbell.

Figure 1.3: Attitude simulator configurations.

Furthermore, the work [14] discusses the main disturbance torques which may affect the
motion, with reference to the classification presented by Smith in a conference paper in
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1964 [15]. Hence, facility enhancements are proposed through some pragmatical recom-
mendations and disturbance minimization strategies.
Moving to more recent test-beds, reference [16] represents a modern approach for the
replication of spacecrafts rotational dynamics. Besides the great progresses in terms of
hardware and software, the paper offers a valid demonstration of the recent years trend of
the spacecraft simulators: the higher and higher penchant to simulate nano-satellite scale
spacecrafts. References [17, 18] confirm this temporal trend, also highlighting the major
advantages to have a 6 DOFs platform for the testing of formation guidance, relative
navigation and control algorithms.
Even though published in different decades, all of the aforementioned references share a
commonality, that is underscoring the imperative necessity to compensate for the offset
between the Centre of Mass (CM) and the Centre of Rotation (CR) in order to accurately
simulate a micro-gravity environment (i.e., the balancing problem).

1.2.1. The balancing problem

The 3 DOFs satellite simulator cannot replicate micro-gravity in its exact form and ne-
cessitates a meticulous design to satisfy this achievement. Indeed, when the system is
mounted on the air-bearing, there is no assurance that it remains free from torques,
which are virtually non-existent in space.
Reference [15] elucidates the predominant disturbance torques inherent to the air bear-
ing platform, as exhibited within the Table 1.1. It is imperative to note that achieving
precise compensation for all torques remains a challenge. However, Table 1.1 offers a
concise representation, encapsulating the complexity of the balancing procedure. As a
consequence, the spacecraft simulator design involves numerous critical decisions to guar-
antee that the vast spectrum of disturbances does not substantially impact the process.
Indeed, as demonstrated in future chapters, if even a few of these disturbances surpass
the negligible threshold, the entire procedure might be jeopardized.
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Table 1.1: Torque catalogue.

Source Torques Remarks

Platform

• Static unbalance
• Dynamic unbalance
• Anisoelasticity
• Material instability
• Equipment motion
• Gravity gradient

Torques arising from
the CR-CM offset.

Air-bearing
• Aerodynamic turbine effect
• Exhaust air impingement

Non-symmetrical airflow and
imperfect scavenging may be
sources of torques.

Environment

• Aerodynamic Damping
• Air currents
• Magnetic field
• Vibrations
• Radiation pressure

Most troublesome category
of torques to minimize
in a simulator configuration.

Test system

• Electrical wires to base
• Mass shift in bearings
and loose fits
• Battery discharge
• Reaction jet supply discharge
• Replacement of components

Torques arising from the
test system configuration.

Within this vast array of disturbance effects, one particular torque stands out for its
magnitude, being notably greater than the others, i.e. the torque resulting from the CM-
CR offset [17, 18]. Under the effect of this torque, the spacecraft simulators oscillates
around the center of rotation, mirroring the behavior of a 3D pendulum (Figure 1.4).
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Figure 1.4: The 3D pendulum effect for a spacecraft simulator.

Hence, literature historically focused on the compensation of this effect, approaching the
problem through two distinguished methodologies:

1. Mechanical compensation. A set of movable masses is employed to modify the
internal mass distribution of the system, aiming to compensate the offset between
CR and CM [16, 19].

2. Active control compensation. Using actuators (e.g. control moment gyroscopes,
thrusters), external torque is applied to the system to achieve continuous compen-
sation of the disturbance [18].

In general, the trade-off between these methodologies is performed considering the desired
level of complexity of the simulator, the target fidelity of the simulations and the specific
system requirements (e.g., hardware availability or need for distinct balancing and control
hardware). Table 1.3 presents a comparison of the methodologies, emphasizing benefits
and drawbacks of each of them. Captured the primary features of the two methodologies,
in a design process specific weighting factors to their key performance indicators shall
be applied. These weights should reflect the practical challenges and targeted objectives
of a particular spacecraft simulator, enabling a contingent comparison between the two
approaches.
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Table 1.3: Compared mechanical and active control methods.

Method Advantages Drawbacks

Mechanical

Passivity: no power needed to
maintain micro-gravity conditions.
Consistency: unless physically
altered, consistent behaviour
among simulations is achieved.
Conceptual simplicity:
the complexity of micro-gravity
simulations is translated in the
cancellation of a physical vector.

Static reconfiguration: balancing
is performed for any change in
satellite mock-up.
Thrusters incompatibility: CM
shift are not allowed during
attitude dynamics simulations.
Potential for drift: periodical
re-calibrations are recommended to
withstand CM drift.

Active
control

Flexibility: fast adaptation
to different scenarios.
Major simulation capability:
can mimic a broader range
of spacecraft dynamics.
Dynamic re-balancing:
potentiality for a real-time
compensation of a time-variant
disturbance.

Complexity: sophisticated
control systems required.
Power Consumption: actuators
are in continuous operation.
Potential for Errors:
incorrect compensation may
compromise the GNC algorithm
validation.
Wear and Tear: potentiality for
hardware malfunctioning over time.
Saturation: risk for saturation
during simulations.

1.3. The EXTREMA Simulation Hub

The EXTREMA Simulation Hub (ESH) is an integrated infrastructure in the Deep-space
Astrodynamics Research and Technology (DART) laboratory, designed for dynamic sim-
ulations that focus on interactions between deep space probes and their environment
[20, 21]. This ensures precise testing of autonomous GNC systems tailored for CubeSats
in deep-space scenarios. Within this experimental setup, individual subsystems are iso-
lated and tested independently to circumvent the complexities associated with integration.
For this reason, a comprehensive experiment involving all the subsystems is required.
At the core of the facility is the guidance unit, responsible for executing the GNC algo-
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rithms and managing the software tailored to identify and target ballistic capture events.
This unit relies on high-definition optical scene projections, which serve as inputs for
the navigation camera. A cold gas thruster interprets and executes commands from the
guidance unit, with a force transducer gauging thrust magnitude. Furthermore, there is
also an attitude simulation component: the guidance unit will be affixed to a platform,
namely SpacecrafT Attitude SImulation System (STASIS). Inputs such as thrust vector,
magnitude, and external disturbances are then directed to EXTREMA SPace Environ-
ment SImulator (SPESI), an orbital propagator connected to a rendering unit. The whole
setup, depicted in Figure 1.5, effectively emulates the conditions and visuals of deep-space.

Figure 1.5: ESH functional breakdown [21].

It is noteworthy that simulating GNC algorithms for deep-space probes inherently poses
difficulties. Specifically, interplanetary transfers can span years, rendering such dura-
tion impractical for simulation purposes. To address this challenge, dynamic similarity
is employed to condense real-world time scales. Such a strategy involves a set of scaling
parameters to translate conditions from the target world to the laboratory setting. More-
over, these parameters are fine-tuned during different phases to enhance fidelity during
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critical mission phases. The underlying concept of this time-condensation approach is
encapsulated in Figure 1.6, which presents the simulation path employed in ESH.

Figure 1.6: ESH simulation path [19].

During the simulations, the capabilities of the attitude control shall be rigorously verified.
Indeed, in the closed-loop guidance approach proposed in the EXTREMA project, implies
two primary requirements on the spacecrafts attitude control [19]:

1. In the cruising phase, minimal discrepancy between the thruster pointing direction
and nominal thrust vector direction, determined by the guidance algorithms, shall
be imperatively guaranteed.

2. In the navigation phase, the capability of performing a sequence of slew maneuvers is
required. Indeed, in this phase, the spacecraft attitude orientation shall guarantee
the target planets to appear in the navigation camera Field Of View (FOV), to
retrieve optimal information for the autonomous navigation algorithms.

The validation of these high-level requirements is the primary role of STASIS in the
EXTREMA project.

1.3.1. STASIS

STASIS [19] is the satellite simulator assembled in the ESH of the DART laboratory, with
the primary objective of simulating the rotational dynamics inherent to deep-space probes.
Operating based on the principles of air-bearing simulators, STASIS specifically classifies
within the tabletop category. In this configuration, it permits unrestricted rotation around
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the yaw axis, imposing constraints on the pitch and roll, limiting them to an angle of
±30◦. STASIS is planned to be balanced with the mechanical compensation strategy, a
design choice strictly related to the simulation of deep-space GNC algorithms inherent
to the EXTREMA project. Specifically, actuators’ compensation presents inadmissible
limitations when considering deep-space autonomous GNC algorithms, as the extended
duration required for the simulations ensures the likelihood of saturation. It is noteworthy
the the problem of potential gargantuan simulation times, briefly reported in Section 1.3,
have been rigorously engineered and addressed through parameters adimensionalization,
allowing to compress the simulations time-scales [19–21]. Nonetheless, simulations and
experiments might span several days, which is still impractical for an active compensation
technique. Hence, STASIS configuration is presented in Figure 1.7.

Figure 1.7: STASIS CAD model.

While the platform remains in continuous development, by the designated period of ex-
perimentation, it is projected to be constituted of:

1. Attitude Determination and Control Subsystem (ADCS): STASIS is equipped
with a LED-based attitude reconstruction system, namely ground truth, which em-
ploys an optical camera to sense the position of an array of LEDs mounted on the
upper face of the platform. Figure 1.8 presents schematically the LED system,
which is mounted in a axial symmetric configuration, except for a reference LED
which is employed to remove any ambiguity on the body-fixed frame orientation.
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The captured images are processed to determine the attitude of the simulator re-
ferring to a known arrangement, therefore the reconstruction is totally unaffected
by bias instability. However, being an off-board system, the attitude determination
algorithm is heavy. Hypothetically angular rates may be derived from differenti-
ation of attitude knowledge. Nonetheless, this procedure may result in extremely
noisy measurements. For this reason, STASIS is also equipped with onboard ADCS
hardware, the inertial measurement unit Bosch BNO0552. The platform, currently
under development, is intended to be outfitted with Reaction Wheels (RWs) for
future attitude control. However, at the time of the experiment’s execution, only a
single wheel was available.

Figure 1.8: Schematic representation of the ground truth system, with a reference LED
on one edge to remove ambiguities on attitude reconstruction.

2. Movable Mass Units (MMUs): The set of MMUs represents the specific hard-
ware to modify the internal mass distribution of STASIS [19, 22]. The complete set
is composed of 8 masses, 4 horizontal masses, devoted to planar compensation of
the offset, and 4 out-of-plane vertical masses (Figure 1.9).

2BOSCH, "Smart Sensor BNO055" https://www.bosch-sensortec.com/products/
smart-sensors/bno055/, accessed: 19/09/2023

https://www.bosch-sensortec.com/products/smart-sensors/bno055/
https://www.bosch-sensortec.com/products/smart-sensors/bno055/
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Figure 1.9: MMU CAD model.

Each mass is moved by a permanent magnet stepper motor, adopting screw driven
transmission to convert the rotational into translational motion. The received com-
mand contains the number of steps and the buffering time between following steps.
The command is processed by the motor controller, devoted to feed the Enable port
voltage (ENA) and Reverse port voltage (REV) of the driver. The driver toggles
the phase winding in a sequence to move the rotor step by step. As a result, the
driver can determine the direction, rotational speed, and angular position of the
motor based on the input provided by the control unit. The discussed control chain
of the STASIS MMUs can be schematized as presented in [22] (Figure 1.10).

Figure 1.10: Stepper motors control chain [22].

3. Power Generation and Management System (PGMS): Solar panel equip-
ment is planned for the future developments of the platform, ensuring energetic
autonomy of the system to enable operations of all the platform apparatuses.

Figure 1.11: Solar panel CAD model.
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1.4. Motivation and possible outcomes

The development and testing of an automatic balancing procedure for STASIS is of
paramount importance in the spacecraft subsystems design of the EXTREMA project.
As a matter of fact, within the framework of autonomous GNC simulations, a balanced
satellite simulator, facilitating the simulation of micro-gravity conditions, emerges as an
invaluable asset for the purposes of:

• Research and development advancements: A simulated environment aids in
refining ADCS and GNC algorithms, enabling iterative development. Upon trained
knowledge on system behavior, engineers can promptly operate with refinement
procedures in real-time.

• Risk mitigation: Launching a satellite with untested autonomous systems might
result in catastrophic failures. By testing in a micro-gravity environment, the poten-
tiality of pre-flight errors rectification is introduced in the design process, boosting
mission success and preventing financial losses.

Simulations of micro-gravity condition are expected to have a very relevant impact on the
EXTREMA project, enabling to bolster the chances of highly innovative missions success.
Indeed, potential results of the implementation of an automatic balancing procedure are:

• Enhanced reliability: Ground testing is expected to result in higher reliability,
lower number of in-flight correction and, consequently, longer mission lifetimes.

• Cost efficiency: The anomalies addressing in the pre-flight phase is a potential for
reducing the costs related to in-flight adjustments.

• Performances improvement: An hardware-in-the-loop iterative design enables
the refinement of the algorithms, enhancing the mission objective achievement.

• Accelerated design and deployment: Confidence in the system functionality is
expected to reduce considerably the decision-making times.

In summary, in paving the way for advanced deep-space mission, it is still essential to
address practical challenges and ensure unwavering reliability.

1.5. Research questions and objectives

To provide a valid aid in the design of STASIS ADCS the research question that shall be
answered is the following:
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1. Main research question: To what extent an automatic balancing procedure can
provide a micro-gravity environment for an air-bearing CubeSat simulator?

That implicitly requires to face different operative research questions:

2. Operative research question: What is the impact of the other disturbances (e.g.,
aerodynamic drag, structural sagging) on the balancing performances for a nano-
satellite dimensions simulator?

3. Operative research question: How attitude sensors noise can affect the balancing
performance?

4. Operative research question: What is the most efficient strategy to achieve an
unbiased platform balancing?

5. Operative research question: What are the advantages of having 4 planes of
symmetry in the balancing hardware configuration?

The goals that this work shall achieve to answer the questions can be outlined as follows:

• Objective 1. Developing an automatic balancing algorithm that maximizes robust-
ness to unmodeled dynamics and STASIS sensors noise.

• Objective 2. Testing the automatic balancing algorithm on STASIS and assess the
attainable performances.

At this point, considering the primary goals and the specific features of STASIS, some
high level requirements can be assessed.

Table 1.5: High-level compensation requirements.

ID Type Text Rationale Verification
R001 O The algorithm shall

be flexible with re-
spect to changes in
satellite mock-up.

A crucial feature for a work-in-
progress platform is the capability
to perform balancing under different
conditions and phases.

Inspection

Continued on next page
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Table 1.5 – Continued from previous page
ID Type Text Rationale Verification

R002 F The algorithm shall
be capable of ac-
complish balancing
without using RWs.

Uncertain availability. Even if they
were delivered promptly, mounting
challenges arise. Placing them on
the top could compromise attitude
knowledge, while bottom placement
could exacerbate vibration effects
due to the increased distance from
the rotation center.

Inspection

R003 F The algorithm shall
avoid error propa-
gation of prelimi-
nary estimations.

Independence from any preliminary
estimation on the problem param-
eters is crucial in an experimental
procedure.

Inspection

R004 F The algorithm shall
operate with the
available ADCS
hardware precision.

Convergence of the algorithm shall
be guaranteed with the available
sensors noise and MMU to prevent
from further design bottlenecks.

Analysis

R005 F The algorithm shall
be robust against
measurements
noise.

To maximize performances, the
trade-off between different strategies
must be performed considering that
STASIS has very accurate off-board
attitude reconstruction system.

Analysis

R006 O The compensation
shall guarantee
brevity in time.

Minimized time window ensures
minimal impact of unmodeled dy-
namics and disturbances.

Analysis

R007 O The compensation
shall exploit the
symmetrical con-
figuration of the
MMU.

The performance guaranteed by a
symmetrical MMU setup shall be as-
sessed to answer the 5th operative re-
search question.

Analysis

R008 O The compensation
strategy should
guarantee fast
repeatability.

The complexity of the problem may
cause divergence also in proper algo-
rithms, therefore the strategy should
minimize the restart time.

RoD

Continued on next page
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Table 1.5 – Continued from previous page
ID Type Text Rationale Verification

R009 V The performance
assessment shall
not alter the physi-
cal arrangement of
the system.

Performances shall be gauged
through non-invasive procedures
to prevent from alteration of the
results.

Inspection

Table 1.5 enumerates the initial requirements that have been delineated to ensure com-
patibility with the evolving FlatSat platform, without introducing additional design con-
straints. Consequently, the devised algorithm is mandated to compensate STASIS without
relying on RWs. Nonetheless, RWs are not entirely ruled out, their utilization would be
reserved for potential enhancement or fine-tuning of the outcomes.
It should be emphasized that, for effectively addressing the associated research question,
the algorithm is designed to leverage the symmetrical configuration of the MMU. This
preference is translated on preferring algorithms that segregate the problem into planar
and vertical balancing stages, given the minimal interference of the second stage on the
outcomes of the first if the MMU configuration is symmetrical.

1.6. Thesis outline

The thesis is organized as follows:

• Chapter 1: the thesis begins with an introduction to the balancing problem, situ-
ates STASIS within the scope of the EXTREMA project, and delineates the initial
requirements guiding this study.

• Chapter 2: this chapter delineates the theoretical foundation required to institute
a standardization and a rigorous scientific methodology pertaining to the problem
at hand.

• Chapter 3: mathematical proofs underpinning the entire automatic balancing pro-
cedure are elucidated, with a comprehensive exposition of the rationale for each
adopted strategy.

• Chapter 4: numerical simulations outcomes are detailed, highlighting both the
constraints and potentialities intrinsic to each strategy.

• Chapter 5: the experimental phase concerning the platform is delineated, eluci-
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dating the rationale for the devised strategy, which is contingent upon the findings
from the simulations.

• Chapter 6: this chapter presents the results procured from the experimental eval-
uations on STASIS.

• Chapter 7: a recapitulation of the accomplishments of this research is provided,
accompanied by recommendations for prospective advancements.
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In this chapter, the bedrocks upon which the entirety of this thesis stands are presented.
Herein, an unambiguous definition of the reference frames essential for capturing the dy-
namics is proposed. The mathematical model is detailed, leveraging the Euler rigid body
equations to describe the behavior of the rotational dynamics.
Furthermore, partial observability, which stems from the orthogonality between the solic-
iting torque and the gravity vector, is mathematically proven. This phenomenon, coupled
with its implications, is dissected in detail to offer readers an in-depth understanding of
its significance and inherent challenges.
Finally, a comprehensive overview of the state-of-the-art solutions traditionally employed
for automatic balancing procedures is provided. This chapter, therefore, serves not merely
as a mere introduction but as a beacon, illuminating the intricacies of the problem at hand,
standardizing its description, and spotlighting the immediate challenges, such as partial
observability. Such foundational insights are indispensable for the design and execution
of a consistent experiment.

2.1. Reference frames and kinematics

Prior to delving into the dynamic modeling of the simulator, it is imperative to establish
a standardization of the problem. Hence, reference frames must be delineated with pre-
cision. In the scope of this study, two distinct frames are stipulated: an inertial and a
body-fixed frame.

• The inertial frame has its z-axis along the local vertical direction, whereas the x-y
plane is parallel to ground.

• The body frame, rigidly affixed to the moving body, has axes parallel to the MMUs
screws. Specifically, the z-axis corresponds to the nominal direction of the vertical
MMUs, oriented upwards, while the x and y-axes align with the horizontal MMUs.

Both the frames are centred in the Centre of Rotation of the platform (Figure 2.1).
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Figure 2.1: Inertial (i) and body-fixed (b) frames.

The orientation of the inertial frame axes is designed for a straightforward representation
of the gravity vector, as encapsulated in Equation (2.1), which is pivotal, allowing to
lighten the mathematical manipulations in subsequent chapters.

g =

 0

0

−g

 . (2.1)

Concurrently, the definition of the body frame is very convenient for an automatic bal-
ancing procedure, as it obviates the need for rotational transformations between the body
and the motion directions of the MMUs. This alignment strategy, which superimposes
the observation axes upon the actuation axes, significantly streamlines the compensation
process, and potentially reduces the computational load of the algorithms.
Regarding the kinematic representation of the rotation between the frames, multiple
mathematical forms are used (e.g., direction cosine matrix, quaternions, Euler angles),
depending on the convenience in each case. For instance, for a PID control application,
a kinematics represented in the form of Euler angles, may result very direct and sim-
ple to implement, since the angles are the errors to feed the control with. Furthermore,
this attitude representation proves especially beneficial for a tabletop attitude simulator.
Given that the roll and pitch angles are confined to ±30◦, the Euler angles in the 321
sequence remain non-singular, eliminating the need for any switching. Conversely, the
direction cosine matrix is employed for quick and efficient vector rotations between the
frames, while quaternions are used to seamlessly interface with attitude sensors.
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2.2. Dynamic model

The dynamic model adopted for this work is the one of a 3D-pendulum-like motion, whose
physical model is represented in Figure 2.2.

Figure 2.2: 3D pendulum physical model.

Hence, the mathematical model is represented by the Euler equation Of Motion (EOM)
centred in the CR of the simulator, where the external torque considered is only the one
due to the CR-CM offset, as reported in Equation (2.2).

dHCR

dt
= MCR

ḢCR = Jω̇ + ω × Jω

MCR = r × Fg = r ×mg,

(2.2)

where HCR is the angular momentum, MCR is the external momentum, J is the platform
inertia matrix, ω is the platform angular rate, and r is the CR-CM offset.
However, to achieve faster manipulation, the same equation can be arranged in the form:

Jω̇ + ω × Jω = −m[g×]r, (2.3)
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where [g×] is a skew-symmetric matrix, given by:

[g×] =

 0 −gz gy

gz 0 −gx
−gy gx 0

 . (2.4)

It is worth noticing that, as reported in literature, drag is usually the most significant
disturbance [23], therefore, an higher fidelity mathematical model of the dynamics is:

Jω̇ + ω × Jω = −m[g×]r − εΛJω, (2.5)

wherein the aerodynamic damping effect is shaped proportional to the platform angular
momentum. Indeed, in modeling drag, it is imperative to consider the influence of the
platform’s mass distribution. By simply modeling drag as directly proportional to the
angular rate, the nuances introduced by varying mass distribution would be irrelevant.
For instance, even if the platform rotates swiftly around the z-axis, if the mass distributed
around this axis is minimal, the resulting drag will be relatively small. Therefore, to cap-
ture this intricacy, drag is modeled in this work as proportional to the rotational angular
momentum of the platform, which inherently embeds both angular velocity and the dis-
tribution of mass.
Although a comprehensive model would also factor in the cross-sectional area exposed
to the flow, for STASIS, such intricacies are mitigated by the uniformity of the density
distribution of the platform structure. Consequently, the mass distribution is utterly rep-
resentative of the volumetric distribution of STASIS. As a result, the proposed model is
assessed to remain valid for the purposes of this work.
At the moment of the experiment, still there is not an accurate estimation of drag coef-
ficients for the STASIS, therefore drag is considered as an unknown disturbance effect,
taken into account to achieve simulations maximally congruent with reality.

2.3. Observability analysis

The rationale behind a balancing procedure is the achievement of accurate knowledge of
the offset vector, as visible in Equation (2.3). However, obtaining this may be markedly
intricate in a real-world environment.
As discussed in [24], in a parameters identification scenario, one of the first steps to design
an experiment is the observability assessment. In the case of a 3D pendulum-like motion,
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the full observability is guaranteed without any external solicitation only if the inertia
matrix is known. However, the inertia knowledge is a very strong assumption, potentially
leading to significantly skewed outcomes. Indeed, this approach demands a high-fidelity
CAD assembly, not only introducing susceptibility to error, but also proving impractical
for a work-in-progress platform, given the modifications continuously introduced.
When this assumption is released, the system identification is affected by a scaling problem
[19]. Indeed, being x = [ωx ωy ωz Jx Jy Jz Jxy Jxz Jyz rx ry rz]

T the solution vector,
any scaling αx with α ∈ R, still represents a solution for the problem. As a consequence,
an observability discussion is fundamental for the planning of a consistent experiment,
unaffected by this ambiguity.

2.3.1. Z-observability

In the non-linear dynamics case, as for the 3D pendulum, the observability of the system
is not determined as directly as in the linear case. For this reason, the Z-observability
concept is introduced, referring to [24, 25] definitions.

Proposition 2.1. Z-observability. Considering a general non linear control system,

ϵ̇ = f(t, ϵ, u), ϵ ∈ Rn, u ∈ Rm

Y = h(t, ϵ, u),
(2.6)

where ϵ and Y are respectively the state and the output. Let U ∈ R×Rn×Rm be an open
set in the time-state-control space. The function z=Z(t,x,u) is said to be Z-observable in U
with respect to the system, if for any two trajectories, (t, ϵi(t), ui(t)), i=1,2, in U defined
on a same interval [t0, t1], the equality

h(ϵ1(t), u1(t)) = h(ϵ2(t), u2(t)), a.e. in [t0, t1] (2.7)

implies

Z(t, ϵ1(t), u1(t)) = Z(t, ϵ2(t), u2(t)), a.e. in [t0, t1] (2.8)

almost everywhere in [t0, t1]. Suppose that there exist U1 ∈ U such that (t, ϵ(t), u(t)) ∈ U1

and Z(t, ϵ(t), u(t)) is observable in U1. Then, the function z = Z(t, ϵ, u) is said to be
locally observable in U.

This mathematical framework is substantially resuming observability as a condition wherein,
identical measurement histories are generated if and only if the trajectories are identical
as well. Reference [25] also proposes an observability lemma, which is very powerful to



24 2| Theoretical foundation

assess the observability of complex systems.

Proposition 2.2. Z-observability (lemma). Considering a system without control

ϵ̇ = f(t, ϵ), ϵ ∈ Rn,

Y = h(t, ϵ).
(2.9)

Let U ∈ R× Rn be an open set in the time-state space. Consider

V = (YT , DYT , ..., Dl−1YT )T (2.10)

for some l>0, where D is the differentiation operator. If

rank
(
∂V
∂ϵ

)
= n (2.11)

for (t, ϵ) ∈ U , then z = Z(t, ϵ) is locally observable in U.

After establishing the theoretical framework, Z-observability shall be tailored to the spe-
cific problem at hand. First, it is important to highlight that the presented observability
lemma has been streamlined to be directly applicable to the problem [24], whereas the
form presented in [25] presents further intricacies.
At this point the relevant quantities specifically for the 3D-pendulum motion shall be
identified. It should be evident to the reader that Y represents the measurement vec-
tor, that is the system output. The next consideration is determining the extent of its
derivative in the observability demonstration. That is, identifying the value of n for the
3D-pendulum motion observation. The underlying theory of Z-observability is intricate,
and for a deeper understanding, readers can refer to [25]. However, when applied to
observing the specific dynamics of the 3D pendulum, the theory can be streamlined. Sub-
stantially, the requirement is for z = Z(t, ϵ) to be a function of (YT , DYT , ..., Dl−1YT )T .
Given that the Euler rigid body equations encompass only ω and ω̇, it can be conclusively
determined that Y = ω, DY = ω̇. Therefore, n = 6, independently from any assumption
on the knowledge of the inertia matrix of the platform.
Hence, the two parameters identifications, differing for whether or not including the iner-
tia parameters in the estimation procedures, can be studied separately. In the case that
the inertia matrix is supposed to be known, the state is x = [ω r]T , hence:

∂V
∂[ω r]

=

[
I3×3 03×3

∂DY
∂ω

∂DY
∂r

]
. (2.12)
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Being rank(I3×3) = 3, to prove that the rank of the matrix is equal to 6, it is sufficient to
demonstrate that rank(∂DY

∂r ) = 3.

∂DY
∂r

=
∂

∂r
J−1(r ×mg) = J−1m(−[g×]I3×3). (2.13)

Hence, the system is observable if all the components of the gravity vector are non null
in the body frame. Essentially, to ensure observability, it is sufficient for the platform to
undergo a tumbling motion during the observation window.

As the hypothesis of exactly knowing the inertia parameters is released, the state of
the problem shall include also the inertia parameters, therefore x = [ω J̃ r]T . Where J̃ is
an array containing the inertia values.

J̃ = [Jx Jy Jz Jxy Jxz Jyz]
T . (2.14)

In this case, an external control is required to achieve an unambiguous identification.
Indeed, the core hypothesis underpinning the subsequent analysis is:

rank
(

∂V
∂[ω J̃ r]

)
= 5 < n. (2.15)

To validate this rank assertion, 3 methodologies can be exploited:

1. Linear dependency analysis: Demonstrate that a row (or column) within the
matrix can be constructed as a linear blend of other rows (or columns). If such
a dependency exists, it implies redundancy in information, effectively resulting in
reduced matrix rank.

2. Determinant inspection: Establish that every 6× 6 sub-matrix holds a determi-
nant of zero, while at least one 5× 5 sub-matrix exhibits a non-zero determinant.

3. System equivalence argument: Highlight the rank deficiency by demonstrating
that a linear combination of the system parameters can yield the same output.

The third approach, based on system equivalence, is especially insightful. The initial two
methodologies demand strict assumptions on the platform’s inertia matrix. Even with
these assumptions, the analytical computations remain complex. Conversely, the system
equivalence logic is straightforward: given any scalar α ∈ R, a system characterized by
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scaled parameters αJ, αr produces an acceleration described as:

ω̇ =
J−1

α
(−ω × αJω −m[g×]αr)

=
J−1

α
α(−ω × Jω −m[g×]r)

= J−1(−ω × Jω −m[g×]r)

(2.16)

that is, the same acceleration of the non-scaled system. The scaling invariance proves the
need to apply an external control to provide observability, being related to a reduced rank
of the observability matrix.
Hence, as highlighted in [24, 25], the control is appended to the state as following:

∂V
∂[ω J̃ r u]

=

[
I3×3 03×9 03×3

∂DY
∂ω

∂DY
∂[J̃ r]

∂DY
∂u

]
. (2.17)

Equation (2.17) is fundamental to understand the high effectiveness of the concept of Z-
observability in the case of study. Indeed, the control variable is treated as a state variable,
which is convenient in the case that is the control itself to guarantee observability.
Hence, in the case that the control is provided by the variation of the angular momentum
of RWs, the control variable assumes the form:

u = [ḣwx ḣwy ḣwz]
T . (2.18)

As in the previous case, to infer that the rank of the matrix is equal to 6, it is sufficient
to prove that rank(∂DY

∂u ) = 3. Therefore, considering that

∂DY
∂u

= − ∂

∂ḣw
J−1(ḣw + ω ×

∫
ḣw dt), (2.19)

and conjecturing sinusoidal RWs trajectory,

∂DY
∂u

= −J−1(I3×3 + [ω×](1− cos t)I3×3). (2.20)

Consequently, the system is observable if all the components of the torque provided by
RWs are non-null. As a result, to ensure continuous observability on the time window,
RWs trajectories shall be characterized by same frequency but different phases, to avoid
multiple zero-crossings in the same instant.
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2.4. State of the art

Provided the major exigence of minimizing the disturbance torque due to the CM dis-
placement, several recent publications have discussed different methodologies to approach
the problem of balancing automatically a three-axis spacecraft simulator.
Reference [19] recognizes 3 different categories of algorithms for platform balancing:

• the open loop approach, which is based on CAD models to properly place the masses
and eliminate the gravity torque. Despite the conceptual simplicity of the approach,
its primary limitations are its susceptibility to errors and the challenges associated
with implementing a high-fidelity CAD model.

• the observe and compensate approach, which relies on the full observation of the
motion of the platform to deduce the inertia properties, according to a faithful
mathematical model of the platform.

• the closed loop approach, which relies on control laws of the moving masses to cancel
the disturbance torque due to the CM-CR offset. In this case, the trade-off for
achieving high accuracy and robustness against unmodeled effects is the significant
computational and implementation demands.

Generally, the first approach is chosen for a preliminary rough estimation, primarily due
to the inherent constraints regarding the fidelity of a CAD model, particularly for complex
platforms. Furthermore, factors like production tolerances and the presence of non-rigid
components (e.g., cables) introduce additional errors. Subsequently, one of the alternative
approaches is employed to enhance the precision of the offset compensation.

2.4.1. Observe and compensate approach

Within this category, distinct sub-categories can be identified. Reference [26] reports a
complete review of the balancing techniques historically considered. The significance of
this work also stems from the comprehensive analysis of the advantages and disadvantages
of the various techniques, therefore constituting a baseline for any trade-off on the batch
estimations of a spacecraft simulator parameters.

Least squares methods

This category has the advantage of low implementation effort while achieving fast con-
vergence, however, it requires typically computational demanding operations (e.g., high-
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dimension matrix inversions), necessitates substantial memory allocation (due to the accu-
mulation of all batch data) and exhibits pronounced sensitivity to modeling inaccuracies.
References [27–29] report examples of the direct offset computation through the discretiza-
tion of the dynamics equations. Nonetheless, the attainable accuracy is significantly lim-
ited by the propagation of errors related to the inertia characteristics, as in these instances,
they are directly derived from the CAD models.
To overcome this limit, the torque method strategy can be adopted, which effectively
treats the inertia characteristics as additional unknowns of the problem. Consequently,
besides the advantage of flexibility to any change on inertia matrix due modifications per-
formed on the platform, unbiased estimations are obtained. References [30–32] outline the
mathematical manipulation of the equations of motion to compute simultaneously both
the inertia parameters and the CM-CR offset. Reference [33] highlights that the method
may achieve unsatisfactory results on the products of inertia due to measurements noise,
therefore a novel methodology based on modified law of conservation of angular momen-
tum is proposed, and the higher performances are demonstrated.
It is worth noticing that the state vector can also be computed recursively, through the
Recursive Least Squares Method (RLS), as in the case of [31, 34]. This last work is par-
ticularly significant, since numerical Tracking Differentiator (TD) is exploited to filter the
noisy angular acceleration. Typically the equations of motion of the torque method are
integrated, in order to prevent the noisy angular accelerations (computed numerically)
from affecting the final estimation. However, the integrated form is more sensitive to the
effect of unmodeled disturbance torques, as their cumulative effect becomes greater and
greater. Therefore, a double TD is adopted to filter the angular accelerations, resulting in
higher accuracy with respect to the integrated form. Finally, the paper shows the great
number of aspects that shall be considered when facing an automatic balancing problem.
Reference [35] presents a further application of the RLS for the automatic balancing of a
spacecraft simulator. In this case an external torque is provided by moving the movable
masses randomly for a preliminary estimation, then an innovative technique based on RLS
is presented. The novelty of the technique is due to the parametrization of the influence
matrix, which is the matrix containing the directions of the sliding masses. The proce-
dure separates the nominal direction from the misalignment terms, and also considers the
uncertainties on the movable masses positions. Both these sources of error are estimated
in the RLS algorithm, which is declared to be fundamental in achieving the final accuracy.
Finally, the residual offset in the horizontal plane is compensated.
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Classical Levenberg Marquardt estimation

Classical Levenberg Marquardt (CLM), is adopted to determine the minimum of a mul-
tivariate function, which in the case of [31] is the sum of the squares error between real
and expected data. This algorithm has the main advantage of being very flexible with
respect to the difference between the initial guess of parameters and the optimal values.
Specifically, the algorithm works similarly to the Gradient Descend method when the ini-
tial guesses are far from the effective values, and as the Gauss–Newton algorithm in the
case that the initial guesses lie in the neighbourhood of the real values.
Reference [31] enables to conclude the higher accuracy of the method with respect to RLS,
and lower sensitivity to disturbances and uncertainties.

Filtering methods

When the process is highly affected by noise the Kalman filtering and its extensions may
provide optimal solutions. A great benefit of these techniques is memory saving, since
data are not gathered, being recursive methodologies. Additionally, computational de-
manding operations, as high-dimensions matrix inversion, may be avoided.
Reference [24] offers an interesting insight on the mathematical model adopted for the
Extended Kalman Filter (EKF) and the Unscented Kalman Filter (UKF), and the aug-
mented dynamics, including also the inertia terms, is presented for the EKF. In this
case the full observability of the 9 parameters can be guaranteed through the innovative
definition of Z-observability reported in [25].
Regarding the EKF, the implicit linearization of the dynamics around the current esti-
mate, may lead to disappointing results, as observed in [34]. In this case the problem
is addressed to low acquisition frequency of sensors, which reduces the accuracy of the
linearization. Another drawback of the EKF is the need to calculate the Jacobians, whose
analytical computation may be so complex that reference [24] proposes the use of Complex
Step Differentiator, to obtain it numerically. Reference [36] highlights that the numerical
Jacobian computation may increase the computational effort of the procedure. To over-
come this limit, reference [37] approaches the computation with a closed-form solution,
which is declared to be more accurate and computationally efficient than a finite difference
method approximation. The paper develops different applications of the Kalman filtering,
making use of dual-filtering procedures and joint-filters, in which the set of parameters
to be estimated are appended to the state vector. These procedures are applied for both
the EKF and the Iterated Extended Kalman Filter (IEKF), whose element of novelty is
that the Jacobian of the measurements is computed around the new estimate of the state
vector, instead of the old. Consequently, the Kalman gain computation is an implicit
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equation and shall be cycled at each step until convergence is reached. It is worth notic-
ing that the convergence properties of the filter can be enhanced through a pre-filtering
procedure, as presented in [38], where a Savitzky-Golay filter allows to retrieve precisely
inertia parameters of the platform.
On the other hand, UKF does not require any linearization around the current estimate,
resulting not only in lower proneness to error propagation, but also in lower time for
convergence and higher accuracy. This is due to the strong non-linearities that may affect
the platform dynamics (e.g., significant off-diagonal terms of the inertia matrix, magnetic
actuation [39]). It is worth noticing that the convergence performances of this methodol-
ogy can be improved through a proper design of the momentum trajectory, as presented
in [40], where an Optimal Control Problem (OCP) is resolved to keep the matrix Φ

well-conditioned, therefore minimizing its conditioning number. Where Φ is the matrix
mapping the augmented state, made of inertia parameters and the CM-CR offset, into
the external torque.

Φ
[
Jx Jy Jz Jxy Jxz Jyz mrx mry mrz

]T
= Text. (2.21)

Nonetheless, the UKF requires higher computational effort than the EKF due to the
computation of the σ-points, which are then propagated through the non-linear model of
the platform to update the state estimate and covariance. For this reason, reference [26]
suggests as future development the implementation of complexity reduction techniques for
the UKF, as reported in [41], where the structure of the state vector and measurements
models are exploited to reduce the computational load.

2.4.2. Closed-loop approaches

This category of techniques consists of a balancing accomplishment through the use of the
mounted actuators, to compensate the torque generated by the CM-CR offset. Typically
the actuators involve a set of sliding masses, movable in three orthogonal directions to
ensure a fully controllable system.
A very simple methodology is the manual balancing, where an operator recursively ad-
justs movable masses positions until a satisfactory residual torque is reached. Despite
its tempting conceptual simplicity, manual balancing has the drawback of very limited
accuracy. Specifically the published works in literature demonstrate a reachable value of
residual torque of 0.01 N m [17, 42]. A further drawback is that manual balancing requires
hours of work of the operator, which is particularly demanding as the procedure shall be
repeated every time a change in the satellite mock-up is performed.
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Discharged the human-in-the-loop solutions, the active control techniques may be divided
into 2 categories:

• Under-actuated control techniques, in which the actuators adopted for the balancing
procedure are only the movable masses.

• Fully actuated control techniques, where another set of actuators (e.g., CMGs, RWs)
is involved in the gravity torque compensation.

The nomenclature arises from the system’s inherent dynamics. Specifically, when the
torque is produced by the group of shifting masses, it operates within a plane that is
perpendicular to the direction of gravitational force, meaning that the control problem is
under-actuated. To withstand the non full controllability of the system, in many works
in literature a two-step procedure is proposed [13, 43]. The first step is devoted to an x-y
plane CM offset compensation, while the vertical compensation is achieved in the second
step, involving a batch estimation through the techniques discussed previously.
The main advantage of this technique is the simplicity of the system design, as no further
actuators are required besides the movable masses. This feature is particularly effective
when the system is susceptible to the disturbance that may arise from the vibrations of
the actuators, which is declared to be one of the main issues for an accurate estimation
in [31]. On the other hand, a fully actuated control technique, which requires a set of ac-
tuators capable to generate any three-dimensional torque vector, may overcome the other
methods with a similar hardware (e.g., sensors). Moreover, this approach achieves balance
in a single step, eliminating the need for batch estimations for vertical compensation.
It is worth noticing that various control methodologies within this category can be uti-
lized to address the balancing problem. Presently, the methods implemented include PID,
non-linear, and adaptive controls.
The central premise underlying all the aforementioned methodologies is that the CM-CR
offset stands as the primary disturbance in the system. Thus, designing a control capable
to stabilize the system, intrinsically cancels the offset. Therefore, the balancing is treated
as a classical non linear attitude control problem, deeply described in [44, 45], where the
convergence implies a full or partial offset compensation.

PID control

PID control is the most diffused method for solving an automatic balancing problem. The
widespread use primarily stems from the ease of implementation and the commendable
accuracy, which is on par with that achieved by the latest techniques (e.g., non-linear, L1



32 2| Theoretical foundation

adaptive controls). The working principle essentially involves applying a control torque
composed of three distinct contributions: the first is proportional to the attitude error,
the second to the cumulative attitude error, and the third to the angular rate [46]. For
the under-actuated technique, the attitude error is defined by the discrepancy between
the current kinematics and a configuration with null pitch and roll, allowing the probe
to freely spin around the yaw axis. Conversely, in the fully actuated approach, all three
rotational motions are nullified. Concerning the pragmatic control setup, the control
gains can be determined through the Ziegler–Nichols method, followed by a fine tuning
adjustment [47], or directly through trial and error.
It is worth noticing that within the same loop also the effect of disturbances with known
frequency can be compensated, as reported in [48], through the use of a Disturbance Rejec-
tion Filter (DRF). The paper, once assessed the low robustness of the DRF to frequency
uncertainties, presents two different strategies to identify the disturbance frequencies in
the system dynamics.

Non-linear control

Besides the PID control, literature is rich of novel nonlinear feedback laws. These latter
have typically higher performances with respect to the linear control, which may result
completely ineffective if the stabilizing effect of the control is overcome by large non-
linearities. Furthermore, in the PID controls, typically low gains must be selected to
ensure stable control, due to the unmodeled dynamics effects. The consequent result are
an higher closed-loop time constant and an amplified effect of non-linearities.
A distinctive characteristic of these nonlinear control laws is the introduction of a multi-
variate function, namely the Lyapunov function. This function is zero at the desired state
and positive elsewhere. Hence, the control torque is designed to assure the time-derivative
of the Lyapunov function to be semi-definite negative, and null in correspondence of the
desired kinematics. As in the case of PID, the target kinematics differs between under-
actuated case, characterized by a rotation around yaw as target state, and fully actuated
case, where all rotations are canceled. Reference [13] introduces one of the most compelling
techniques, proposing in the first step of a dual-stage procedure the Lyapunov function:

V =
1

2
ωTJω +

1

2
KP (ĝ − ẑ)T (ĝ − ẑ), (2.22)

where ĝ is the local vertical direction and ẑ is the longitudinal direction in the body
frame. Thus, the Lyapunov function implicitly embeds the kinetic energy and the error
between current and target kinematics. The work, as an admissible control feedback is
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proposed, offers a mathematical proof of the asymptotic stability of the control. The
designed control is tuned heuristically, demonstrating superior performance compared to
a PID control. Furthermore, the only kinematic data needed by the control is the gravity
vector in the body frame, differently from the PID control, which requires a comprehensive
set of kinematic parameters.
The second step of the balancing algorithm is a Least Squares (LSQ) estimation of the
residual offset, which is used for the further cycles of the plane balancing. This is a key
feature of the strategy in achieving high performances, as, after the first iteration, the
closed-loop algorithm relies on accurate information of the inertia characteristics of the
platform. In this step, the Savitzki-Golay filtering of the angular rate measurements is
assessed to be of paramount importance, allowing to obtain better results of the integrated
form of the LSQ method.
References [43, 49, 50] put forth a Lyapunov function incorporating both the energetic
term and the estimation error r̃(t) = r − r̂(t), representing the discrepancy between the
actual and estimated offset vector. The primary distinction among these works is that
both [43, 50] incorporate a kinematic term as illustrated in Equation (2.23), wherein q is
the quaternion vector. However, this term is nullified in subsequent calculations.

V =
1

2
ωTJω +

1

2
r̃T r̃ +

1

2
qTq. (2.23)

This balancing approach leans on the conservation of angular momentum. It formulates a
control law adjusting the movable masses until the platform’s angular momentum deriva-
tive becomes zero. Hence, as proved in [43, 50], the time-derivative of the Lyapunov
function can be expressed as V̇ = −KP ||ω⊥||2. Therefore, being it negative semi-definite,
the proof of the asymptotic stability of the system is provided. Being ω⊥ the transverse
angular velocity, the control law drives the system to a rotation around the vertical axis.
Furthermore, utilizing the LaSalle Invariance Principle, references [43, 50] prove that the
system converges to a state such that ω⊥ → 0, i.e., exact compensation of the horizontal
offset in absence of disturbances. The second step consists in a Kalman filtering of the
pendulum-like motion to retrieve the information on the vertical offset. It is pivotal to
note that in this phase, for ensuring complete system observability, the platform under-
goes tumbling motion, preventing the condition of [gx gy] = [0 0] in the body frame.
Finally, reference [30] provides a fully actuated strategy for the automatic mass balancing
through a set of Control Moment Gyros (CMGs). In this case the candidate Lyapunov
function is

V =
1

2
HTH +

1

2
rTΓ−1r, (2.24)

where H is the angular momentum of the platform, r is the offset, and Γ is a positive
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definite matrix. Nevertheless, a control derived from this function might result in a state
where the angular momentum is preserved even if the CM does not align with the CR.
Indeed, the zero-vector solution is introduced, meaning the CM is displaced from the CR
along the local vertical direction. This indicates that the proposed Lyapunov function
is not suitable for use. Differently from concurrent works, in [30] the issue of partial
observability is not addressed using a two-step procedure. The proposed solution to this
problem is to generate a desired spacecraft momentum trajectory Hd leading to complete
offset compensation

V =
1

2
(H − Hd)

T (H − Hd) +
1

2
rTΓ−1r. (2.25)

L1 adaptive control

L1 adaptive control is a novel methodology able to achieve a fast adaptation without sac-
rificing the robustness [51]. The key feature of this type of control is the decoupling of the
adaptation loop from the control loop. Specifically, the rate of the adaptation loop can be
set arbitrarily high, subject only to hardware limitations (e.g., computational power), en-
abling to achieve fast compensation of undesirable effects without affecting convergence.
Reference [52] presents a clear L1 adaptive control algorithm flow, whose key features
are the state predictor step, whose dynamics can be prescribed according to a reference
model, and the utilization of projection techniques in the adaptive law.
References [47, 52] compare the results of an adaptive scheme with those attainable from
a PID controller, proving the higher performances of the first. Specifically, in [47] both
the PID and L1 control schemes are compared in nominal operation, in case of perturbed
values of mass and inertia, and in case of sudden external disturbances. In all these sce-
narios the adaptive scheme achieves equal or better results than the PID controller, both
for the settling time and steady state error. In particular, the L1 control maintains the
same results on accuracy in all the different scenarios, thereby proving its high robustness
to uncertainties and external disturbance rejection.

2.4.3. Disturbances and performance assessment

The significance of the literature is further underscored by the extensive list of distur-
bances presented [15], and also the empirical methods used to attribute sub-optimal per-
formances to a specific disturbance. For instance, reference [30] suggests that if the
momentum error has peaks in correspondence of the maximum or minimum attitude, the
main source of error is due to structural sagging, which can be minimized performing a
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calibration and sensitivity test, so relating the CM shift with the platform tilt; reference
[31] instead, suggests to seek for any match between the high error and the high RWs
velocity, since in that case the vibrations are expected to be the main disturbance; and
reference [43] suggests to monitor the angular rate around the vertical direction, this to
inspect the effect of aerodynamic drag.
Modeling these perturbations may be very challenging as, an effective emulator of the
disturbance shall be designed without affecting excessively the computational effort of
the simulations. Reference [23] offers a simple model for the aerodynamic drag effect on
a rotational dynamics, considering the body surrounded by a linearly resisting medium.
The main assumption of the work is that the diagonal viscous damping torque tensor is
proportional to the moment of inertia tensor, implying a resisting torque proportional to
the angular momentum

Mdrag = −εΛJω, (2.26)

where ε is a small number and Λ is a coefficient accounting for medium properties. On
the other hand, reference [29] models drag as a vector proportional to the square of the
angular rate

Mdrag = −

Bxω
2
x

Byω
2
y

Bzω
2
z

 , (2.27)

where Bx, By, Bz are aerodynamic drag coefficients. Literature also provides insights into
the disturbances impacting performance. In numerous references, an accurate modeling
of these perturbations is highlighted as the primary area for further enhancements.
Furthermore, the mentioned studies introduce a variety of methods for performance as-
sessment. Since the objectives of the balancing processes vary, it might be challenging to
establish a universal performance metric. Nevertheless, there are some shared criteria for
evaluating performance. For instance, computational effort can be quantitatively gauged
across all balancing algorithms. On the other hand, accuracy and robustness can be eval-
uated only qualitatively, since a precise assessment would require the exact knowledge of
the centre of mass position.
In references [35, 53] to evaluate the final distance between the CM and the CR the oscilla-
tion period of the test-bed is measured. In the first case the oscillation period is retrieved
from the frequency spectrum of the roll and pitch angles signals, therefore involving a
Fourier transform for the signal decomposition, whereas in the second work it is deducted
with a proper LSQ fitting of the pendulum motion, to filter out the undesired effects. The
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offset is therefore evaluated through the following relationship

Tp = 2π

√
Js

mg||δr||
, (2.28)

where Tp is the period, Js the inertia of the axis of rotation, δr the residual offset.
Reference [43] presents a further indirect technique to estimate the offset, which involves
the kinetic energy. In the hypothesis of negligibility of disturbances, the exact compen-
sation implies constant gravitational potential energy, and consequently constant kinetic
energy. Although the presence of dissipative effects cause a kinetic energy secular reduc-
tion, the effectiveness of the technique is not compromised. Indeed, the performance index
is the amplitude of the oscillations, independently on the effective value. Specifically, a
properly executed balancing procedure, should result in significantly reduced amplitude
of the kinetic energy oscillations.
Finally, reference [13] presents a direct estimation of the residual gravity torque simply
considering the Euler Equations of Motion for a rigid body [44, 54], therefore equating
the time-derivative of the angular momentum to the external torque. However, as this
technique utilizes the angular rate ω and the angular acceleration ω̇, a preliminary filter-
ing of the measurements shall be performed to achieve significant results.
It is imperative to note that these methodologies are not definitive benchmarks for com-
paring different balancing algorithms. The outcomes are multifaceted, influenced by a
myriad of factors including platform dimensions, sensor noise and bias, and external
torque excitation. Hence, while they provide valuable insights, they should be viewed in
the context of the broader parameters influencing the final results.
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algorithms

In this chapter, different algorithms are individually presented to assess attainable per-
formances of each of them. The rationale behind developing multiple algorithms stems
from the overarching objective of integrating them. This integration seeks to capture
the distinct advantages of each algorithm, culminating in a unified automatic balancing
procedure, capable to transcend the inherent limitations of each standalone method. This
synergistic approach is designed to yield a comprehensive balancing procedure, specifically
optimized for the operational exigencies of the STASIS platform.

3.1. STASIS digital twin

Prior to delving into the intricacies of the balancing algorithms, this study elucidates
the digital simulation framework employed. The formulation and refinement of the bal-
ancing algorithm have been facilitated by the utilization of the platform’s digital twin,
which is substantially a digital model of a real cyber-physical system for its monitoring
and functional improvement [55]. Reference [22] deeply describes the procedure behind
the multi-physics modeling of STASIS. The work acknowledges the intricate nature of
pinpointing a clear-cut definition for a digital twin. Nevertheless, its core attributes are
identified as reliability, the capability of supporting a continuous stream of data, and
adaptability. The inherent challenge, then, lies in crafting an accurate model that not
only embodies these features but is also characterized by a well-organized code architec-
ture, ensuring ease of future developments.
The work, following an initial evaluation of potential software options, favors the Sim-
Scape1 environment over alternatives like Simulink2 or OpenModelica3 [22]. This decision

1Mathworks, "SimScape Multibody", https://it.mathworks.com/products/
simscape-multibody.html, last accessed: 16/05/2023.

2Mathworks, "Simulink", https://it.mathworks.com/products/simulink.html, last accessed:
16/05/2023.

3OpenModelica, "OpenModelica", https://openmodelica.org/, last accessed: 16/05/2023.

https://it.mathworks.com/products/simscape-multibody.html
https://it.mathworks.com/products/simscape-multibody.html
https://it.mathworks.com/products/simulink.html
https://openmodelica.org/
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aligns with the goal of executing an A-causal model of the platform. Such a model empha-
sizes the representation of the physical connections between blocks, rather than detailing
the computational procedures linking them, which is characteristic of causal modeling
instead [22, 56–58]. MathWorks4 synthesizes the difference between the 2 approaches for
a simple mechanical system, as visible in Figure 3.1.

(a) Simulink model. (b) SimScape model.

Figure 3.1: Causal (left) and A-causal (right) modeling of a Mass–Spring–Damper system
[22].

Opting for A-causal modeling offers significant benefits in terms of re-configurability and
composability, attributes that become paramount when dealing with a sophisticated work-
in-progress platform.
Moreover, an invaluable feature of SimScape is its ability to directly import CAD assem-
blies, complete with mass and inertia properties. This provides an intuitive visual inter-
face for observing the system’s dynamic responses. In addition, the SimScape Multibody
library facilitates the inclusion of blocks representing joints, bearings, and screws, thus
further elevating the authenticity and the expeditiousness of implementation (Figure 3.2).

4MathWorks, "Mass-Spring-Damper in Simulink and Simscape", https://uk.mathworks.com/help/
simscape/ug/mass-spring-damper-in-simulink-and-simscape.html, last accessed: 16/05/2023

https://uk.mathworks.com/help/simscape/ug/mass-spring-damper-in-simulink-and-simscape.html
https://uk.mathworks.com/help/simscape/ug/mass-spring-damper-in-simulink-and-simscape.html
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(a) CAD model. (b) SimScape CAD assembly.

Figure 3.2: CAD comparison.

It is important to acknowledge that multi-domain problems can be plagued by compu-
tational stiffness, potentially leading to numerical instability unless an exceedingly small
step size is employed. As outlined in [59], while the basic concept is intuitive to math-
ematicians, a definite metric to establish whether a system is stiff or not is impossible.
Nonetheless, the stiffness index, presented in Equation (3.1), can provide a quantifiable
parameter to judge the degree of stiffness in a system.

S =
max|Re(λi)|
min|Re(λi)|

. (3.1)

In common practices, S is established to be "very high" if in the order of 106 or higher
[59]. Being λi the eigenvalues of the Jacobian, it is implied that this definition demands
the system to be linearized around a stable equilibrium point. However, this simple def-
inition hints that, in a multi-domain system stiffness arises when different components
of the state exhibit significantly diverse timescales. Indeed, this would be related to a
significant disparity in the magnitudes of eigenvalues [59, 60].
To address this challenge, the algorithms are crafted within a modified digital twin,
wherein the transient response of the stepper motor is neglected. This essentially as-
sumes the motor’s dynamics to be infinitely faster than the platform’s dynamic response.
The rationale behind this approach is to sidestep potential bottlenecks during the devel-
opmental phase of the algorithm.

3.1.1. Model simplification

The primary aim of model block reconfiguration is to ensure accurate results during the
algorithm’s developmental stage without stalling due to the extensive computational time
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demanded by stiff systems. As such, the stepper motor block’s simplicity became pivotal,
even at the cost of overlooking its transient phase.
In a first attempt, modifications to the digital twin were minimal, therefore modeling the
system as a torque imparted to a lead screw to mobilize the mass. The objective was
to maintain a consistent angular rate, thus, the torque was initially conceptualized as a
Dirac δ function. However, given SimScape limitations in handling mathematical limits,
narrow square waves were used instead. This yielded a trapezoidal angular rate pattern,
which more closely resembled the desired behavior as the wave width approached zero.
The drawback of this method was the trial and error tuning needed to align with refer-
ence [22]. Furthermore, the masses in this model were subjected to external forces (e.g.,
gravity), causing a potential disparity between the desired and actual mass’ shifts.
Consequently, a more rigorous modeling have been approached, in which the motion
command is directly translated to an angular position on the screw, while the torque is
automatically computed to satisfy the command by the revolute screw block (Figure 3.3).

Figure 3.3: Revolute screw SimScape Multibody block.

In this configuration, also the first and second derivative of the motion shall be provided
to the SimScape revolute screw block. Table 3.1 reports the performances of the simplified
model compared to the original model [22], for a 10 seconds dynamics simulation, proving
the utmost importance of the model reconfiguration. Indeed, in this setup, the algorithm
design is considerably accelerated.

Table 3.1: Simplified model performances.

Model Simplified model

Time [s] 98.7 2.8

3.1.2. Sensor implementation

In the STASIS digital twin, angular rates and attitude are directly outputted without
modifications. However, for a more authentic simulation mirroring a real-world experi-
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ment, it is essential to incorporate sensors behaviour.
The reference IMU for the simulation is the Bosch BNO0555 sensor, already available in
the ESH. The Power Spectral Density (PSD) of the IMU noise, whose value is presented
in Equation (3.2), is reported on its datasheet.

S(f) = 0.014◦/s
√
Hz. (3.2)

The PSD allows to compute the variance of the noise, as reported in Equation (3.3),

σ2
ω =

∫ fmax

fmin

S(f)2 df (3.3)

where fmin and fmax define the bandwidth of the noise.
For white noise, the PSD remains constant across all frequency values:

σ2
ω = S(f)2(fmax − fmin). (3.4)

Therefore, to introduce the noise in the simulations, it is necessary to know the bandwidth.
As the adopted sensor operates at 100 Hz, it is inferred that the Nyquist frequency is 50
Hz, that is half of the sampling rate. This means that the sensor can correctly capture
frequency components up to 50 Hz, and hence the relevant frequency band for noise would
be from 0 Hz to 50 Hz

σω = 0.014◦/s
√
Hz

√
(50− 0)Hz

= 0.09899◦/s

≈ 0.1◦/s.

(3.5)

It should be noted that white noise does not represent the sole source of error. Measure-
ment quantization can also introduce considerable inaccuracies.
Considering that the selected IMU sensor has a resolution of 16 bits in the gyroscope
mode, then there are 216 distinct levels that the sensor’s output can assume. Therefore,
considering the nominal range of 125◦/s, the following quantization interval have been
incorporated in the simulations,

QI =
125◦/s π

180◦

216
rad/s. (3.6)

Coherently, attitude parameters have been corrupted adding random noise on the Euler
angles knowledge. This approach was based on preliminary studies conducted at the

5BOSCH, "Smart Sensor BNO055" https://www.bosch-sensortec.com/products/
smart-sensors/bno055/, last accessed: 19/09/2023.

https://www.bosch-sensortec.com/products/smart-sensors/bno055/
https://www.bosch-sensortec.com/products/smart-sensors/bno055/
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DART laboratory by doctoral students. Following their recommendations, the variances
for the ground truth attitude reconstruction system were established as σϕ = σθ = 15

arcsec and σψ = 1 arcsec. The attitude reconstruction does not rely on any previous
measurements, being directly retrieved at each time instant from the spacial distribution
of the LEDs placed on the platform. As a consequence, bias instability is not incorporated
in the digital twin simulations.
The rationale behind different approaches for the models of attitude knowledge, wherein
the error variance is directly introduced, and IMU, for which a prior analysis of the PSD
is conducted, is the higher criticality of the noise of this latter. Indeed, iterative tuning of
the IMU acquisition frequency may be developed to achieve good performances. Notably,
within this tuning process, boundaries shall be posed to acquire consistent measurements.
As a matter of fact, reducing the acquisition frequency may procure aliasing, escalated bias
instability, drift or non-linearities of the system dynamics to become more pronounced.
Additionally, in a real-time procedure, latency issues may arise.

3.1.3. Reaction wheels implementation

The RWs provide a torque given as:

Tw = Jwω̇w + ω × Jwωw. (3.7)

However, considering the intricacies of these systems, it is imperative to conduct a thor-
ough analysis to achieve accurate simulations [61]. To this end, various error sources were
assessed, based on a notable market reference6.
Literature offers analytical representations of the primary dynamic disturbances within
the RWs [62, 63]. Vibrations arising from both static and dynamic imbalances have been
meticulously analyzed, and models have been affirmed through experimental procedures.
The vibrations are evaluated in the frequency domain, noting that the predominant dis-
turbance aligns with the rotational frequency of the RWs. However, disturbances at higher
frequencies were also detected.
Furthermore, reference [64] delves into the micro-vibrations resulting from single-point
contact in the wheel’s mechanical structure, investigated using the Hertz contact theory.
Nonetheless, integrating these insights necessitates a profound knowledge of the reaction
wheel’s internal configuration. Hereafter, the incorporated sources of error are detailed.

• Quantization error. Both the wheels angular accelerations and angular rates are
6"Faulhaber, DC Brushless Motors BX4" https://www.faulhaber.com/it/prodotti/serie/

3242bx4/, last accessed: 01/06/2023.

https://www.faulhaber.com/it/prodotti/serie/3242bx4/
https://www.faulhaber.com/it/prodotti/serie/3242bx4/


3| Automatic balancing algorithms 43

quantized based on a 14-bit resolution.

• Non-linearities. Saturation is introduced to simulate the non-linear behaviour of
the component at high velocities.

• Friction. The output is damped with respect to the command, according to the
available dynamic friction coefficient cV .

Tf = −cVωw. (3.8)

• Mass imbalances. Vibration are introduced, with the same frequency of the wheel
dynamics and with a magnitude proportional to the square of the wheel rate.

Tv = Tmaxω
2
w sin(2πfw). (3.9)

• Gyroscopic effect. The noise on the angular rates of the platform is propagated
to the term ω × Jwωw in the torque knowledge.

• Backlash. A backlash behaviour is incorporated to simulate the dynamic behaviour
during zero-crossings.

• Delay. A delay is introduced from command to actuation.

3.2. Least squares estimation

As presented in [30–32], the EOM can be manipulated to obtain through a Least Square
estimation not only the unbalance vector, but also the inertia parameters of the platform.
This choice introduces the scaling problem discussed in Section 2.3, however allows to
retrieve a system identification independent from the assumptions performed on the in-
ertia characteristics of the platform. In the simulations, the full observability have been
accomplished through the employment of RWs. Therefore the EOM become:

Jω̇ + ω × Jω = Text = Tw − [g×]mr. (3.10)

Hence, considering the parameters vector to be estimated is x = [Jx Jy Jz Jxy Jxz Jyz

mrx mry mrz]
T , Equation (3.10) may be rearranged as follows

[Ω̇+ ω ×Ω [g×]]

[
J̃
mr

]
= Tw, (3.11)
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wherein,

Ω =

ω1 0 0 ω2 ω3 0

0 ω2 0 ω1 0 ω3

0 0 ω3 0 ω1 ω2

 (3.12)

J̃ = [Jx Jy Jz Jxy Jxz Jyz] (3.13)

[g×]] = g

 0 − cosϕ cos θ sinϕ cos θ

cosϕ cos θ 0 sin θ

− sinϕ cos θ − sin θ 0

 . (3.14)

It is worth noticing that Equation (3.11) involves angular acceleration, which are generally
affected by high noise, introduced by the numerical differentiation. To avoid relying on
them, Equation (3.11) can be integrated in the time window of dynamic observation,

[Ω+

∫ t

t0

ω ×Ω dt

∫ t

t0

[g×] dt]︸ ︷︷ ︸
Φ

[
J̃
mr

]
︸ ︷︷ ︸

x

=

∫ t

t0

Tw dt.︸ ︷︷ ︸
H

(3.15)

To apply the LSQ, n samples are considered,

Φaug =


Φ0

Φ1

...
Φn


3n×9

, with Φk = [Ω+

∫ tk

t0

ω ×Ω dt

∫ tk

t0

[g×] dt] k = 1, 2...n (3.16)

Haug =


H0

H1

...
Hn


3n×1

, with Hk =

∫ tk

t0

Tw dt k = 1, 2...n. (3.17)

Therefore, the LSQ solution is

x = (ΦT
augΦaug)

−1ΦT
augHaug. (3.18)

An alternative approach to address the scaling problem is to impose a mathematical
constraint on the final solution vector x. This is feasible when certain components of
x can be ascertained through a distinct procedure. For instance, given a preliminary
compensation in the x-y plane, thus determining rx and ry, the problem illustrated in
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Equation (3.15) can be reformulated as follows

Φx = 0, such that Bx = c. (3.19)

As highlighted in [13], in the study case, the constraint determination is straightforward:

B =

[
01×6 1 0 0

01×6 0 1 0

]
, c =

[
mrx

mry

]
. (3.20)

This procedure is expected to be prone to propagation of errors, since rx and ry are
estimations, however it allows to exclude from the methodology the RWs, which is a key
feature in the case of STASIS, as detailed in Section 1.5.

3.2.1. Filtering of measurements

Upon rigorous implementation of the IMU sensor in the digital framework, the numerically
determined angular accelerations turned out to be indecipherable. To address this, the
Savitzky-Golay filter was employed, following the recommendation in [13].
The Savitzky-Golay filter is a digital filter that can be applied to a set of digital data
points in order to smooth the data, that is, to increase the precision of the data without
distorting the signal tendency. This is achieved by fitting successive subsets of adjacent
data points with a low-degree polynomial, typically using linear least squares. For a given
window size n and polynomial order m, the local segment of data is approximated as

f(x) = a0 + a1x+ a2x
2 + · · ·+ amx

m. (3.21)

Therefore, the Savitzky-Golay coefficients ci are computed by performing a least squares
fit of the data within the window to a polynomial of order m. As reported in [65], the
smoothed value ySGi at position i is given by

ySGi =
k∑

j=−k

cjyi+j (3.22)

where k is (n − 1)/2 and the coefficients cj depend on both the window size n and
polynomial order m. As proposed in [38], the filter can be also used for differentiation.
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The derivative is computed using a similar convolution with different coefficients,

ẏSGi =
k∑

j=−k

gjyi+j. (3.23)

Therefore, to compute the variable at the current instant, the filter uses the future acqui-
sitions. Hence, its implementation on SimScape environment requires a buffering of data,
in order to collect all the required measurements. Algorithm 3.1 presents the procedure
for the input variable omega. It is worth noticing that, to achieve a consistent set of LSQ

Algorithm 3.1 Real Time Savitzky-Golay Filtering
Create a persistent variable buffered_data
if if-isempty(buffered_data) then

Initialize buffered data as null matrix
end if
Slide data to make room for new input
for i = 1:length(omega) do

Data filtering
end for

matrices, also the external torque and the quaternion vector shall be artificially delayed
of the same steps of the filtered data. The results of Savitzky-Golay filtering have been
compared to a low-pass filtering procedure (Figure 3.5). To design such a filter, the plat-
form dynamics is analyzed in the frequency domain. The analysis is performed through
the Fast Fourier Transform (FFT), through the MATLAB command fft, leading to the
results reported in Figure 3.4. Upon detection of both dynamics and disturbance frequen-
cies, the filter is designed through the Butterworth technique, to achieve a maximally flat
frequency response in the passband [66, 67]. To achieve a limited delay, a 4th order filter
is proposed. The cut-off frequency is set to 2.5 Hz, such as the dynamics response is not
attenuated from the filter. This value is set after the imposition of margins on the dy-
namics frequency of the platform, and it is therefore normalized on the Nyquist frequency
(i.e., 50 Hz in this case) to generate a discrete-time filter through the MATLAB function
butter. On the other hand, the numerical filter is configured with m = 2 and n = 6,
while the angular accelerations are processed according to the approach in [38].
The inherent delay in low-pass filtering causes the Savitzky-Golay filtering to yield supe-
rior outcomes, as depicted in Figure 3.5. Nonetheless, implementing a low-pass filter is
an interesting back-up strategy. Indeed, if the inherent delay is strategically cancelled, its
superior smoothing capability could result in highly accurate estimations. Specifically, in
the constrained case the LSQ equation is given as Φx = 0. Since the equation is set to a
null vector, the delay from a low-pass filter can be effortlessly offset. In fact, if the same
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Figure 3.4: Angular rates in the frequency domain.

filter is applied to all state parameters and given that both the attitude and angular rates
operate at the same frequency, applying the same filters to both quaternions and angular
rates will result in the delay being cancelled.
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(a) Angular accelerations on x-axis, wherein the "Real" is the nominal
trajectory and "Numerical" is attained from numerical differentiation
of the noisy angular velocities. "Lowpass" and "Savitzky-Golay" refer
to the filters which take as input "Numerical".
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(c) Angular accelerations on z-axis.

Figure 3.5: Filtering techniques comparison.
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3.3. Active control techniques

In this category of methods, the MMUs accomplish the offset compensation through the
actuation of an active control technique. The rationale underlying the methodology is to
devise a control law that steers the MMUs towards a configuration in which the offset is
neutralized. This achievement can be realized through direct estimation of the offset, or
imposing a condition (e.g., null angular momentum), wherein intrinsically the offset must
have settled to zero.

3.3.1. PID control

The simplest control strategy is PID, requiring only the Euler Angles of the platform and
its angular rates. It is worth noticing that in the small angles approximation the roll and
pitch angles may be approximated by the components of the gravity vector in the body
frame, therefore, as reported in [13], the error becomes

e = [ϕ, θ]T = [−gy
g
,
gx
g
]T . (3.24)

The different signs are assigned considering that a positive roll angle results in negative y-
component of the gravity vector in the body frame and, conversely, a positive pitch implies
a positive x-component of the gravity vector. The non-full controllability is managed with
null error around yaw axis, as follows:

ePID = [−gy
g
,
gx
g
, 0]T . (3.25)

The resulting control torque is therefore

τ = −KPePID −KI

∫ t

t0

ePID dt−KDω, (3.26)

where the control gains KP , KI , KD are tuned by trial and error.

3.3.2. Non-linear control based on gravity vector

Despite the theoretical efficacy of PID control, there is a significant susceptibility to
instability during practical implementation, particularly when nonlinear effects surpass
the control torque. Consequently, a nonlinear control strategy has also been executed, as
advocated in [13]. This approach leverages the platform’s attitude information to produce,
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under the hypothesis of diagonal inertia tensor, a torque that orients the yaw axis towards
the local vertical direction. In line with this approach, a candidate Lyapunov function is
introduced as follows:

V =
1

2
ωTJω +

1

2
KP (ĝ − ẑ)T (ĝ − ẑ) (3.27)

wherein ẑ is the yaw-axis direction and ĝ is the local vertical direction, that is the opposite
of the gravity versor,

ĝ = − g
||g||

. (3.28)

Therefore, the time-derivative of the Lyapunov function becomes:

V̇ =ωTJω̇ −KP ẑT ˙̂g

=ωT (τ u − ω × Jω) +KP ẑTω × ĝ

=ωTτ u +KPω
T ĝ × ẑ

=ωT (τu +KP ĝ × ẑ),

(3.29)

where the local vertical versor is seamlessly propagated as a constant vector in a rotating
frame ˙̂g = −ω × ĝ. The control torque shall be generated such as the time-derivative of
the Lyapunov function is semi-definite negative. Hence,

τu = −KP ĝ × ẑ −KDω⊥ (3.30)

satisfies the asymptotic stability criterion. Indeed, given that ω⊥ is the component of
the angular velocity orthogonal to the gravity vector, the time derivative of the candidate
Lyapunov function becomes

V̇ =−KDω
Tω⊥

=−KDω
T
⊥ω⊥

=−KD||ω⊥||2.

(3.31)

The control strategy is fundamentally designed to steer the system towards a state of
pure rotation around the vector ĝ. This method remains robust against aerodynamic drag
disturbances, which is a primary reason for devising an active control mechanism for planar
balancing. Aerodynamic momentum typically introduces bias in estimation processes,
such as filtering techniques or batch estimation methods. Instead, within the active
control approach, the system is simply guided toward an alternative equilibrium state. To
illustrate this, if the drag’s dissipative term −εΛJω is incorporated into the mathematical
derivations found in Equation (3.29), it is possible to show that the Lyapunov function’s
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derivative maintains a negative semi-definite characteristic,

V̇ = ωT (τu +KP ĝ × ẑ − εΛJω). (3.32)

Therefore, without any modification to the control torque,

V̇ = −KD||ω⊥||2 − εΛωTJω

= −KD||ω⊥||2 − εΛEkin
(3.33)

where Ekin represents the kinetic energy of the platform, which is a quadratic form. Hence,
the platform is driven to a condition wherein no rotation is performed, instead of pure
rotation around ĝ. Nonetheless, the control theoretically maintains its capabilities.
The mathematical manipulations depend uniquely on the model assumed for the aerody-
namic drag. Indeed, no assumption are performed on the shape of the inertia matrix of
the platform, being it positive semi-definite by definition.
The formulated control torque, rather than being directly applied, incorporates an inte-
gral element into the control schema, bolstering both stability and control effectiveness.
Such an approach effectively dampens steady-state discrepancies, fortifying the system’s
resilience against perturbations. As expounded in [13, 68], this strategy proves especially
beneficial when the disruptive torque is confined within certain bounds, analogous to the
scenario of a 3D pendulum motion. Consequently,

τu = −KP ĝ × ẑ −KDω⊥ −KI

∫ t

t0

ĝ × ẑ (3.34)

is the definitive control law. The designed strategy is underpinned by the principle that
when the integral term converges to a bounded value, it is a sufficient indicator that the
cross product of the vectors ĝ and ẑ has stabilized to zero. This is a critical aspect of the
control law, as it implies that the platform’s z-axis has aligned with the local gravitational
vector, signifying a successful attainment of the desired orientation.

3.3.3. Non-linear control based on angular momentum

Although certain control laws are not currently intended for deployment on STASIS due
to hardware constraints or insufficient data, they have been incorporated into the digital
twin as a preliminary stage for prospective advancements. For example, when RWs will be
installed on STASIS, a preliminary LSQ could be executed to assess platform parameters.
Following, control strategies based on a comprehensive knowledge of the inertia matrix or
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the offset could be examined, potentially leading to a refined compensation mechanism.
Hence, an adapted version of the control law detailed in [30] has been implemented. Under
the assumption that the torque generated by the offset between the CM and the CR is
the sole acting on the simulator, the EOM can be expressed as follows:

Ḣ + [ω×]H = mr × g. (3.35)

Therefore, a control able to minimize the angular momentum, concurrently shall minimize
the offset as well. To compute the angular momentum at each step, the knowledge of the
inertia parameters shall be available. Hence, conjecturing the knowledge of platform
inertia, the control can be implemented updating at each step J(t). Thus, considering
the MMUs as lumped masses, the expression of the inertia matrix is the following:

J(t) = Jp +
8∑
i=1

(−mi[Ri(t)×][Ri(t)×]), (3.36)

where mi and Ri(t) are respectively mass and position of each MMU with respect to the
platform centre of rotation. Hence, decomposing the offset respectively in initial offset
and offset shift due to the control,

r = r0 + δr (3.37)

the following Lyapunov function is proposed:

V (H, δr) =
1

2
HTH +

1

2
(r0 + δr)TΓ−1(r0 + δr) (3.38)

where Γ is a symmetric positive definite matrix. Ergo, the time-derivative of the candidate
Lyapunov can be seamlessly computed,

V̇ =HT Ḣ + (r0 + δr)TΓ−1δ̇r

=HT (−[ω×]H −m[g×](r0 + δr)) + (r0 + δr)TΓ−1δ̇r,
(3.39)

where Ḣ is substituted through Equation (3.35). Hence, the proposing adaptation law

δ̇r = mΓ[g×]TH (3.40)

the control is capable to attain a semi-definite negative derivative of the Lyapunov func-
tion. Indeed, substituting Equation (3.40) in Equation (3.39), it is possible to demon-
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strate, upon cancellation of the last terms, that

V̇ = −HT [ω×]H, (3.41)

thus satisfying the asymptotic stability criterion. It is important to recognize that the
theoretical convergence of the system is not impacted by the aerodynamic effect. In fact,
when incorporating the dissipative term −εΛJω into the EOM, and then substituting
this into Equation (3.39),

V̇ = HT (−[ω×]H −m[g×](r0 + δr)− εΛJω) + (r0 + δr)TΓ−1δ̇r, (3.42)

which still results in a negative semi-definite function. Indeed, considering the adaptation
law proposed in Equation (3.40), the time-derivative of the Lyapunov function becomes:

V̇ = −HT ([ω×] + εΛI3×3)H, (3.43)

proving the environmental robustness of the control. As in the previous case, an integral
term is incorporated to the proposed control law to accelerate convergence and enhance
the stability of the control.

δ̇r = mΓ[g×]TH +KI

∫ t

t0

mΓ[g×]TH. (3.44)

Equation (3.44) can be directly integrated at each step to feed the MMUs with a position
information, without any intermediate step passing through a control torque generation.
Hence, the control loop is capable to output directly the MMUs positions at each step
without further conversions, enhancing the computational efficiency.

3.3.4. Non-linear control based on offset estimation

An alternative to the aforementioned control strategy involves offset compensation based
on its prior estimation. The underlying principle remains the conservation of angular mo-
mentum. However, the approach here entails directly producing a torque that neutralizes
the torque arising from the CR-CM offset. Indeed, as evident from EOM,

Jω̇ + ω × Jω = mr × g + τu (3.45)

if τu is shaped to cancel the mr×g term, the angular momentum is necessarily conserved.
To actuate a direct compensation, the real offset value would be required. Instead, con-
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sidering the impossibility of an exact estimation of the offset, let r̃(t) be the error between
the real offset r and the real time estimate r̂(t).

r̃(t) = r − r̂(t). (3.46)

In order to expedite the manipulation of equations, the matrix Ψ is defined as

Ψ = −m[g×], (3.47)

lightening the mathematical notation in the following demonstrations. Hence, the can-
didate Lyapunov function is proposed to embed both the kinetic energy and the error
in Equation (3.46). Moreover, a kinematic component is incorporated by including the
quaternion vector q,

V (q,ω, r̃) =
1

2
ωTJω +

1

2
r̃T r̃ +

1

2
qTq. (3.48)

Thus, substituting Equation (3.45) and conjecturing constant inertia matrix, the time-
derivative of the Lyapunov function is:

V̇ =ωTJω̇ + r̃T ˙̃r + qT q̇

=ωT (−ω × Jω +Ψr + τu) + r̃T ˙̃r

=ωTΨr + ωTτu + r̃T ˙̃r

(3.49)

where the kinematic contribution of the quaternion vector is canceled as qT q̇ = 0 [50].
Subsequently, Equation (3.49) is rearranged using the definition of the estimation error in
Equation (3.46). As a result, the time-derivative of the Lyapunov function can be further
developed as:

V̇ = ωTΨr̂ + ωTτu + r̃T ( ˙̂r + ˙̃r) (3.50)

where ˙̃r = −ΨTω [43, 50]. Hence, accurate selection of the adaptive law of the offset
estimation and proper shaping of the control torque result in an asymptotic stability of
the control. Indeed, letting the adaptive law for the estimated parameter be

˙̂r = ΨTω (3.51)

and the control torque,

τu = −Ψr̂ −KPω⊥ (3.52)
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the time-derivative of the candidate Lyapunov function becomes:

V̇ =ωTΨr̂ − ωTΨr̂ −KPω
Tω⊥

=−KPω
Tω⊥

=−KP ||ω⊥||2,

(3.53)

proving the stability of the designed control, being negative semi-definite. Again, the
control is robust with respect to unmodeled aerodynamic effect. To prove this inference,
it is sufficient to incorporate the dissipative aerodynamic momentum −εΛJω in Equation
(3.53) and demonstrate that the resulting function remains negative semi-definite.

V̇ = ωT (Ψr̂ + τu − εΛJω) + r̃T ˙̃r. (3.54)

Therefore, executing the same passages reported in Equation (3.53):

V̇ = −KD||ω⊥||2 − εΛωTJω

= −KD||ω⊥||2 − εΛEkin.
(3.55)

Hence, upon incorporation of drag, the system is driven to a different equilibrium point,
which is the null rotation. As in the previous cases, an integral contribution is embodied
in the control law, to improve the convergence properties of the offset compensation. As
such, generating a torque given by

τu = −Ψr̂ −KDω⊥ −KI

∫ t

t0

Ψr̂ dt (3.56)

is theoretically functional to the purpose of compensating the platform.

3.3.5. Control torque generation

Upon implementation of the control law, the torque τu shall be physically generated by
using the MMUs system. Thus, a mapping function from control torque to mass shift
shall be formulated. To fulfill this objective, the torque generated by the individual i-th
mass is inspected,

τu = mi(−g × Ri). (3.57)

A proper mapping function shall consider consistency in the transformation. Specifically,
it shall be mentioned that the MMUs cannot generate a torque in the tridimensional space.
Indeed, as discussed in Section 2.4, the problem is under-actuated. This information is
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encapsulated in the cross product in Equation (3.57), constraining the torque on a plane
orthogonal to the gravity vector. Consequently, given the output of the control τu, to
generate consistent command to the MMUs it is necessary to observe that the control
output is always orthogonal to the gravity vector. Coherently, all the control torques
designed in Section 3.3, are orthogonal to g, which is pivotal for a consistent actuation.
Upon this verification, the mapping function can be consistently implemented. However,
it is important to acknowledge that Equation (3.57) cannot be inverted to directly retrieve
the command, because matrix [−g×] is always singular. Nonetheless, since all the control
torques are consistently generated, they are guaranteed to be in the range of [−g×].
Hence, it is possible to prove that there always exist a mass position Ri capable to satisfy
Equation (3.57). Indeed, a solution is given by:

Ri =
g × τu
||g||2mi

. (3.58)

To verify this, it is sufficient to substitute Equation (3.58) in Equation (3.57).

τu =−mi(
g × g × τu
||g||2mi

)

=−mi(
(g · τu)g − (g · g)τu

||g||2mi

)

=τu.

(3.59)

Summarily, if the control law is designed with consistency with respect to the under-
actuation problem, it is always possible to generate a consistent command to the MMUs.

3.4. Kalman filtering methods

In Section 3.2, the LSQ method is introduced as a mean to estimate the unbalance vector,
operating under an implicit linearity assumption, which is evident in Equation (3.18).
This stringent assumption could potentially lead to sub-optimal outcomes due to the
inherent non-linear dynamics of the 3D pendulum. Consequently, demonstrating a non-
linear technique for estimation becomes notably pertinent. To address this, EKF and
UKF are incorporated into this work, aimed at developing a dependable estimator for
experimental application.
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3.4.1. Extended Kalman filtering

Considering the myriad of challenges presented by non-linear systems, the Extended
Kalman Filter (EKF) was devised as an enhancement to the traditional Kalman filtering
methodology. Even though it inherently operates by linearizing about the current state,
the EKF is specifically tailored to address non-linear applications effectively.
To settle the basis for the filter’s implementation, it is essential to first represent the
model, embedding both state and measurements, in the state-space form:

xk = fk−1(ωk−1, rk−1,wk−1),

yk = hk(ωk, rk,vk),
(3.60)

wherein the state vector contains angular velocities and offset x = [ω r]T and measure-
ments are the measured angular velocities, obtained integrating white noise to the real
values. The vectorial function f(ω, r,w) is retrieved through a linearization of the EOM
around the current estimate of the state:



fk−1
1 = ωx,k = ωx + ω̇x∆T = ωx + [ωzωy(

Jy−Jz
Jx

) + 1
Jx
(mgzry −mgyrz)]∆T

fk−1
2 = ωy,k = ωy + ω̇y∆T = ωy + [ωxωz(

Jz−Jx
Jy

) + 1
Jy
(mgxrz −mgzrx)]∆T

fk−1
3 = ωz,k = ωz + ω̇z∆T = ωz + [ωxωy(

Jx−Jy
Jz

) + 1
Jz
(mgyrx −mgxry)]∆T

fk−1
4 = rkx = rk−1

x

fk−1
5 = rky = rk−1

y

fk−1
6 = rkz = rk−1

z

(3.61)

It shall be noticed that to adeptly update the covariance matrix at each step, the EKF
necessitates the computation of the Jacobian of f(ω, r,w). This can be straightforwardly
derived from Equation (3.61). Specifically, deriving the function of the dynamics with
respect to the state vector,

Fk−1 =


∂fk−1

1

∂xk−1
1

. . .
∂fk−1

1

∂xk−1
6...
...

∂fk−1
6

∂xk−1
1

. . .
∂fk−1

6

∂xk−1
6

 (3.62)

the Jacobian can be fully analytically compiled. To lighten the computation of the 36
derivatives involved, let notice that some rows are straightforward to implement. Indeed,
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given that the offset is independent of the angular rate, the Jacobian matrix Fk−1 assumes
the following structure:

Fk−1 =

[
[
∂fk−1

1:3

∂xk−1
]3×6

03×3 I3×3

]
. (3.63)

Performed the linearization around the current state, the filter can be seamlessly imple-
mented. Indeed, with the state and the Jacobian in hand, the EKF can be executed in
the subsequent loop:

1. Prediction step: The state is predicted through a dynamics propagation of the
previous state estimate x̂+

k−1. Covariance matrix P+
k−1 is propagated through the

computed Jacobian. In this step also the measurements yk are predicted through
the measurement equation.

x̂−
k = fk−1(x̂+

k−1,wk−1),

P−
k = Fk−1P+

k−1F
T
k−1,

ŷ−
k = hk(x̂−

k ,vk).

(3.64)

2. Measuremets Update: The state estimation ad covariance matrix are updated ac-
cording the acquired measurements yk.

Kk = P−
k H T

k (H kP−
k H T

k + R)−1,

x̂+
k = x̂−

k + Kk(yk − ŷ−
k ),

P+
k = (I − KkH k)P−

k .

(3.65)

Where H k is the Jacobian of the measurements.

H k =
∂hk(x̂−

k ,vk)
∂x

|x−
k
. (3.66)

However, given that the measurements are integrated into the state, H k is simply
expressed as:

H k = [I3×3 03×3]. (3.67)

Therefore, the filter at each step updates its estimates through a weighted difference of
the acquired measurements and their analytical prediction, retrieved through dynamics
propagation of the previous state estimation.
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3.4.2. Augmented Extended Kalman filter

Interestingly, within the context of the EKF, linearity might not be its most stringent
assumption. Indeed, the procedure presupposes precise knowledge of the platform’s inertia
parameters, a condition that is unattainable in real-world experiments. This could notably
limit the accuracy of the state-observer. Hence, to release this stringent assumption, let
J matrix be part of the estimation process. Operationally, this is augmenting the state
including the inertia parameters, as follows:

x = [ωx ωy ωz Jx Jy Jz Jxy Jxz Jyz rx ry rz]
T . (3.68)

However, as detailed in Section 2.3, this necessitates the use of Reaction Wheels (RWs),
or any equivalent control, to reestablish the observability of the state. In this study, RWs
are employed in alignment with the anticipated future advancements of STASIS.
Incorporating RWs introduces a notable challenge, primarily due to the intricate nature of
analytically computing the Jacobian Fk−1. As a solution, this study employs a numerical
method to determine the Jacobian: the Complex Step Differentiator (CSD) [24]. The CSD
stands out as a highly precise algorithmic differentiation tool, exhibiting a second-order
convergence relative to the step size. The key characteristics of the CSD are detailed in
[69] and succinctly encapsulated in Figure 3.6.

Figure 3.6: CSD performances [69].

Distinctively, CSD, unlike finite difference methods, is not subjected to cancellation error,
since no subtracting operations are involved. This feature enables to achieve quadratic
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convergence also for very small step sizes, reaching practically the Machine ε degree of
accuracy. Specifically, the principle behind the CSD can be summarized as:

• Firstly, the function is added of an imaginary step of size h.

• Then, the imaginary part of the computed function is isolated.

• Finally, the result is divided by h.

For instance, at the instant k-1 the derivative of the angular acceleration with respect to
the angular rate can be seamlessly computed:

[
∂ω̇k−1

∂ωk−1

]
CSD

=

ℑ

ω̇k−1

ωx,k−1 + h · i
ωy,k−1

ωz,k−1




h
. . .

 . (3.69)

Hence, the (1:3,1:3) sub-matrix of the Jacobian Fk−1 becomes:

[
∂fk−1

1:3

∂ωk−1

]
3×3

= I3×3 +∆T
[
∂ω̇k−1

∂ωk−1

]
CSD

. (3.70)

By executing a similar procedure for each component of the state vector, the Jacobian
is comprehensively constructed, paving the way for the EKF implementation. Beyond
the problem’s dimension, which is doubled, the architectural framework of the augmented
EKF implementation mirrors the simple EKF case. However, in this case, the prediction
step is slightly modified to include the dynamic effect of RWs solicitation. As a conse-
quence, considering u the control torque generated by the RWs apparatus, the state-space
form shall be implemented as

xk = fk−1(ωk−1, rk−1,uk−1,wk−1),

yk = hk(ωk, rk,vk).
(3.71)

3.4.3. Unscented Kalman filtering

Given the inherent non-linearity of the problem, a non-linear filtering approach could po-
tentially yield superior results. Consequently, the UKF has been integrated into the study
[70–72]. In this filter, there is no endeavour to determine analytically the probability dis-
tribution of the problem. Instead, it is shaped through the propagation of optimal points,
the σ points. Following, the UKF algorithm can thus be structured in the subsequent
manner:
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1. Generation of σ points: set α = 1e − 3, β = 2, κ = 0, the σ points are computed
from the previous estimated state.

χ0,k−1 = x̂+
k−1,

χi,k−1 = x̂+
k−1 +∆xi for i = 1...2n,

∆xi =
√
cP+

k−1 for i = 1...n,

∆xi =
√
cP+

k−1 for i = n+ 1...2n,

c = α2(n+ κ).

(3.72)

2. Prediction step: σ points are propagated through the f function and the respective
measurement are computed.

χi,k = f(χi,k−1,wk−1),

γi,k = h(χi,k,vk).
(3.73)

Hence, the Unscented Transform weights are introduced,

W
(m)
0 = 1− n

α2(n+ κ)
,

W
(m)
i =

1

2α2(n+ κ)
, for i = 1, . . . , 2n,

W
(c)
0 = 2− α2 + β − n

α2(n+ κ)
,

W
(c)
i =

1

2α2(n+ κ)
, for i = 1, . . . , 2n.

(3.74)

paving the way for computing the estimated means and covariances

x̂−
k =

2n∑
i=0

W
(m)
i χi,

ŷ−
k =

2n∑
i=0

W
(m)
i γi,

P−
k =

2n∑
i=0

W
(c)
i (χi − x̂−

k )(χi − x̂−
k )

T ,

Pee,k =
2n∑
i=0

W
(c)
i (γi − ŷ−

k )(γi − ŷ−
k )

T + Rk,

Pxy,k =
2n∑
i=0

W
(c)
i (χi − x̂−

k )(γi − ŷ−
k )

T .

(3.75)
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3. Measuremets Update: The state estimation ad covariance matrix are updated ac-
cording the acquired measurements yk.

Kk = P−
xy,kP

−1
ee,k,

x̂+
k = x̂−

k + Kk(yk − ŷ−
k ),

P+
k = P−

k − KkPee,kKT
k .

(3.76)

Within this framework, the primary objective is to engineer a filter robust enough to
contend with significant dynamic non-linearities, inherent in the rotational dynamics de-
scribed by EOM. By forgoing the EKF linearity assumption, the system potentially
benefits from an expedited rate of convergence, a crucial factor when aiming to reject the
influence of unforeseen disturbances. Indeed, the impact of unmodeled dynamics is more
relevant the longer is the time window of observation.
Furthermore, even in instances where initial guesses are far from accurate values, the
inherent flexibility of the UKF assures its convergence, guaranteeing robustness to the es-
timation mechanism. In synthesis, potentially the UKF could stand as a optimal solution
in the intricate realm of automatic balancing algorithms.

3.4.4. Augmented Unscented Kalman filtering

It seems incongruous to develop such an intricate and efficient algorithm like the UKF,
only to leave it vulnerable to errors stemming from the assumption of precise knowledge of
the inertia matrix. To counteract this potential weak point, similar to the EKF approach,
the state can be augmented to incorporate inertia parameters into the estimation process.
This augmentation bolsters the robustness of the UKF, requiring however the integration
of RWs to address the partial observability of the problem.
While this approach effectively doubles the problem’s dimension, the structural foundation
of the control remains similar. However, it is crucial to note, that the inclusion of RWs
does impart an influence on the system dynamics, modifying the state-space form, as
reported hereafter,

xk = fk−1(ωk−1, rk−1,uk−1,wk−1),

yk = hk(ωk, rk,vk).
(3.77)

3.5. Methodologies remarks

Given the methodological analysis for automatic mass balancing on satellite simulators,
it is imperative to elucidate the inherent limitations associated with each approach. This
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understanding is crucial for the meticulous planning and organization of an efficient ex-
periment within the STASIS framework. Table 3.2 summarizes the main aspects of each
methodology, focusing on the features required to design a consistent experiment.
In structuring an automatic balancing procedure, an astute assessment of the individual
strengths and vulnerabilities of each methodology is pivotal. Given the constraints in
the frequency of experiment repetition, an approach grounded in diligence and precision
becomes indispensable. Ideally, the proficient goal would be to architect a strategy that
amalgamates the salient features of individual methodologies while circumventing their
inherent limitations. In the framework of STASIS, wherein RWs are omitted from the

Table 3.2: Methodologies remarks, wherein both general and specific features of Kalman
filters are explored.

Methodologies Remarks

Least square

Model independence: versatile due to lack of reliance on a
specific hypothesis or dynamic model.
Constraint necessity: requires external mechanisms like RWs
or mathematical constraints to determine offset.

Active control

Operational complexity: necessitates online control
mechanisms for balance.
Environmental robustness: maintains performance even in the
presence of external disturbances like drag.
Observational independence: no prior information or control
is needed to compensate.
Bi-axial compensation: limits compensation to two vector
components only.

Kalman filters

Model dependency: relies on a predefined state-space model for
system state estimation.
Inertia sensitivity: performance are contingent to precise inertia
knowledge.
Noise attenuation: capable of attenuating measurement and
process noise through prediction-correction mechanism.

EKF Need for Jacobian: inherent simplifications or uncertainties
on inertia tensor may lead to skewed results.

UKF

High computational demand: requires the computation and
integration of σ points.
Robustness: more equipped to reject the effects of uncertainties
on the filtering process.

procedure, the essential pillar of an experiment is to find a consistent information on the
state vector to feed the following observer with. Therefore, a preliminary experiment
chain can be assessed posing the active control as basis to determine the mathematical
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constraint Bx = c required by the LSQ. As the method outputs the inertia parameters,
the Kalman filter could be adopted to refine the estimations. Figure 3.7 encapsulates this
preliminary strategy.

Figure 3.7: Preliminary flux diagram.
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This chapter delves into the results derived from extensive simulations carried out using
MATLAB and Simscape Multibody, all operating within the framework of the digital twin
of the platform. As such, it stands as a pivotal foundation for methodical and coherent
experiment planning. Notably, any techniques identified that pose pragmatic challenges
or fail to show convergence in the presence of disturbances are promptly discarded. This
proactive approach ensures that no valuable time is wasted in attempting to actualize
them in the real-world experiments. As a result, readers will gain a comprehensive un-
derstanding of which methodologies prove promising and which ones are set aside for the
scope of this work. In the following sections the solver adopted is automatically set by
SimScape, however, it is constrained to be a fixed-step type to keep uniformity with a
real world environment, wherein both sensors and actuators work at a set frequency.

4.1. Least squares estimation

The simulation are performed setting a time step coherent with the acquisition frequency
of the BNO055 sensor of 100 Hz. Table 4.1 presents the performance outcomes of the
LSQ method when the external solicitation is sourced from RWs. The RWs performance
metrics are configured based on specific, market-available models1.
Furthermore, simulations were conducted addressing the scaling problem by employing
the mathematical constraint Bx = c, detailed in Section 3.2. It is pivotal to note that un-
der this condition, where the offset torque is constrained to a plane orthogonal to the local
vertical, the z-axis remains unsolicited. As a result, even if the scaling problem is solved,
Jz can theoretically assume any value, since no torque directly acts on z. Nonetheless,
these outcomes are deemed acceptable, as rotations around the yaw axis are not expected
in subsequent Kalman filtering. Thus, a potentially imprecise estimation of Jz does not
jeopardize the overall experimental integrity. Eventually, for a more precise estimation, a
viable approach is to employ one wheel, oriented with rotational axis aligned with yaw.

1"Faulhaber, DC Brushless Motors BX4" https://www.faulhaber.com/it/prodotti/serie/
3242bx4/, accessed: 01/06/2023

https://www.faulhaber.com/it/prodotti/serie/3242bx4/
https://www.faulhaber.com/it/prodotti/serie/3242bx4/
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It is imperative to recognize that, although the outcomes in Table 4.1 represent idealized
performances (assuming no drag, sensor noise, and perfectly behaving RWs), the inertia’s
exact values are not achieved. This discrepancy is attributed to the bad-conditioning of
the Φ matrix. Essentially, performance across all axes is not uniformly optimal due to
the differential magnitudes of inertia moments, with the cross inertia slightly skewed by
numerical inaccuracies.

Table 4.1: Ideal LSQ results, wherein the relative error with respect to the reference
parameters is reported in brackets.

Real state RWs esteem Constrained esteem Constraint + RW

Jx 0.4142 0.4149
(+0.17%)

0.4036
(-2.56%)

0.4110
(-0.77%)

Jy 0.4042 0.4058
(+0.40%)

0.4052
(+0.25%)

0.4060
(+0.44%)

Jz 0.4546 0.4534
(-0.26%)

0
(-100%)

0.4518
(-0.61%)

Jxy 2.84e-6 -4.43e-4
(-15592%)

-2.25e-04
(-7912%)

-0.0030
(-105633%)

Jxz 0.0052 0.0040
(-23.08%)

0.0066
(+26.92%)

-0.0162
(-411.54%)

Jyz 0.0013 7.55e-4
(-41.92%)

0.0072
(+453.85%)

0.0274
(+2008.46%)

mrx 0.0225 0.0224
(-0.44%)

0.0225
(0%)

0.0225
(0%)

mry 0.0058 0.0059
(+1.72%)

0.0058
(0%)

0.0058
(0%)

mrz -0.5201 -0.5211
(-0.19%)

-0.5211
(-0.19%)

-0.5248
(-0.90%)

The extremely high relative errors on the cross inertia parameters are due to a combination
of two factors. Firstly, very small values of the real parameters cause the relative error to
escalate due to the nature of its calculation, wherein, as evident from Equation (4.1),

Relative error =
Estimated value − Real value

Real value
· 100% (4.1)

the real value is the denominator in the computation. Secondly, significant deviations of
cross inertia are detected, potentially attributable to the mathematics behind the LSQ
technique. The underlying principle of the method is a square error minimization. Con-
sidering that the principal inertia values have a greater influence the overall error due to
their greater magnitude, the LSQ necessarily provides more accurate estimates for them.
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While initial observations may suggest that the estimation executed using RWs yields
superior accuracy, it is crucial to underline that these are results under ideal conditions.
When factors like noises and disturbances are incorporated, the performance significantly
degrades. As presented in Table 4.2, even with the employment of Savitzky-Golay filter-
ing, the outcomes deviate considerably from the ideal benchmarks.

Table 4.2: Effective LSQ results upon incorporation of noise and disturbances and
Savitzky-Golay pre-filtering, with relative error in brackets.

Real state RWs esteem Constrained esteem Constraint + RW

Jx 0.4142 0.3916
(-5.46%)

0.4017
(-3.02%)

0.3992
(-3.62%)

Jy 0.4042 0.4055
(+0.32%)

0.4015
(-0.67%)

0.4046
(+0.10%)

Jz 0.4546 0.4642
(+2.11%)

0.0351
(-92.28%)

0.5085
(+11.85%)

Jxy 2.848e-6 -0.0080
(-280734%)

-1.33e-4
(-4573%)

-0.0039
(-136718%)

Jxz 0.0052 0.0806
(+1450%)

-0.0337
(-748%)

0.0231
(+344%)

Jyz 0.0013 -0.0368
(-2931%)

0.0098
(+654%)

0.0049
(+277%)

mrx 0.0225 0.0225
(0%)

0.0225
(0%)

0.0225
(0%)

mry 0.0058 0.0058
(0%)

0.0058
(0%)

0.0058
(0%)

mrz -0.5201 -0.5228
(-0.52%)

-0.5210
(-0.17%)

-0.5210
(-0.17%)

Table 4.2 highlights that the estimations in this case typically underestimate the principal
inertia, while overestimating the cross-inertia terms. The observed effect arises because
the noise introduced is perceived by the least square procedure as a rapid dynamic. Hence,
the method tries to allocate this fast dynamics to the inertia parameters. The consequent
effect is the diminished estimation of principal inertia, as faster dynamics are typically
linked to reduced inertia. Concurrently, there is an amplification in the estimation of cross-
inertia. This is attributed to the noise being perceived as rapid and pronounced energy
exchanges between the rotational axes. On the contrary, drag diminishes the amplitude
of the oscillations, increasing the values of the estimated inertia. Hence, the two main
disturbances have subtracting effects. However, the impact of noise predominates over
the influence of aerodynamic drag due to the intentionally minimized time window, which
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aims to mitigate the effects of unmodeled dynamics.
It is worth noticing that RWs estimation is more significantly affected by noise (Table 4.2).
This phenomenon arises because the solicitation from the RWs is so light that the sensor
noise exhibits a magnitude comparable to the angular rates.

4.2. Active control techniques

This section offers an insight into the results achieved from the various active control
techniques. At the core of these techniques is a two-fold process: a torque generation,
and a subsequent manipulation to retrieve a command to send to the MMU.
Initially, the best-case scenario is presented, where outcomes under ideal conditions are
showcased. This provides a benchmark against which real-world results can be gauged.
Subsequently, the complexities of real-world experiment are incorporated, specifically the
noise from sensors and the drag forces. Such considerations lead to more authentic, real-
world representative performances, allowing for a thorough evaluation of the techniques.
More importantly, by juxtaposing these results against the ideal, we can accurately pin-
point and address the root causes behind any eventual subpar performance. Through this
structured presentation, readers will not only grasp the efficacy of the control strategies
but also discern the tangible impacts of real-world impediments on system performance.

4.2.1. PID results

The method’s efficacy is demonstrated via a simulation spanning 600 seconds, within
which the time history of the offset and the profile of angular velocities are key metrics
indicating the control’s success. These performance metrics are illustrated and further
discussed in Figure 4.1. The results are obtained placing the MMUs 3 mm, from the
centre of the leadscrew, therefore with initial offset of [5.29e-4, 2.64e-4,−0.08525]T m.
The initial condition on the state are assigned as null yaw, pitch and roll angles, and null
angular velocities. Hence, the platform to oscillate under the unique effect of its offset.
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Figure 4.1: Ideal PID performances.

However, these performances do not incorporate the aerodynamic disturbance and mea-
surements noise, which are introduced as detailed in Section 3.1, resulting in the perfor-
mances encapsulated in Figure 4.2.
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Figure 4.2: PID performances upon incorporation of noise and disturbances.

Table 4.3: PID compensation performances.

rx [m] ry [m] rz [m]
Ideal PID 8.45e-06 4.18e-06 -0.08525

PID 4.82e-06 1.25e-05 -0.08525
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Table 4.3 resumes the results of the ideal and realistic cases of the methodology. When
disturbances and noises are incorporated, there is a notable degradation in performance,
with the error amplifying by roughly an order of magnitude. Nonetheless, the method
continues to exhibit commendable convergence capabilities. This is largely attributed to
the PID methodology’s predominant reliance on attitude knowledge, which, in the context
of STASIS platform, is exceptionally precise.

4.2.2. Non-linear control based on gravity vector

The efficacy of the method, namely ĝ control, is assessed under the same conditions as
previously, to ensure result comparability, both in the ideal scenario and in the more
realistic setting where noises and aerodynamic disturbances are incorporated.
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Figure 4.3: Ideal ĝ control performances.
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Figure 4.4: ĝ control performances upon incorporation of noise and disturbances.

Table 4.4: ĝ control compensation performances.

rx [m] ry [m] rz [m]
Ideal ĝ control -2.14e-08 4.32e-08 -0.08525

ĝ control -2.54e-07 4.17e-07 -0.08525

Table 4.4 demonstrates, as anticipated, that the nonlinear compensation significantly
outperforms the PID. Moreover, similar to the previous instance, the strong dependence
on accurate attitude knowledge ensures satisfactory convergence even in scenarios with
incorporated disturbances.

4.2.3. Non-linear control based on angular momentum

Unlike the other methods, this nonlinear control is highly dependent on the noisy angular
rates, given that the platform’s angular momentum is computed at each step. Conse-
quently, when aerodynamic disturbances and measurement noise are introduced, a signif-
icant decline in its performance is expected.
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Figure 4.5: Ideal non-linear H control performances.
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Figure 4.6: Non-linear H control performances upon incorporation of noise and distur-
bances.

As anticipated and evident from the Figure 4.6, the method’s performance deteriorates
significantly in a more realistic scenario. In fact, the method cannot be conclusively
deemed to achieve full compensation. This degradation arises because the control relies
on the cross product of the gravity vector and the angular momentum, therefore on a
composition of two corrupted measurements, as visible hereafter,

δ̇r = mΓ[g×]TH +KI

∫ t

t0

mΓ[g×]TH. (4.2)

Indeed, both the gravity vector and angular momentum are skewed due to imprecise
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ground truth and BNO055 measurements. Therefore, the two primary compromised mea-
surements compound, resulting in amplified errors. Nonetheless, as depicted in Figure
4.6a, the angular rates do converge to zero, likely attributable to the aerodynamic drag

incorporated in the model.

Table 4.5: H control compensation performances.

rx [m] ry [m] rz [m]
Ideal H control 9.11e-07 -7.66e-07 -0.08525

H control 8.40e-04 -8.44e-04 -0.08525

4.2.4. Non-linear control based on offset estimation

Given its conceptual similarity to the preceding control, one would anticipate comparable
performance in this instance. Indeed, the underlying principle of this control is still angu-
lar momentum compensation, also if in a different arrangement. Indeed, the momentum
cancellation does not derive from direct knowledge of the platform angular momentum
but rather from a time-integrated estimation of the CR-CM offset. Figure 4.7 and Fig-
ure 4.8 showcase the results in the ideal and corrupted measurement cases, highlighting
the significant degradation in compensation capabilities upon the incorporation in the
simulations of noise and disturbances.
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Figure 4.7: Ideal non-linear r̃ control performances.
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Figure 4.8: Non-linear r̃ control performances upon incorporation of noise and distur-
bances.

Once again, the imprecise angular rates measurements lead the control to diverge, fail-
ing to fully compensate for the offset. As with the prior instance, albeit in a different
arrangement, error accumulates through corrupted measurement composition, indeed,
implementing the control adaptation law

˙̂r = ΨTω, (4.3)

two flawed measurements are employed, resulting in a significant error escalation. How-
ever, due in part to the dampening effect of aerodynamic drag on the angular rates, the
control successfully nullifies them.

Table 4.6: r̃ control compensation performances.

rx [m] ry [m] rz [m]
Ideal r̃ control -3.86e-07 -1.95e-07 -0.08525

r̃ control 8.56e-04 -8.57e-04 -0.08525

4.3. Kalman filtering

Within the realm of Kalman filtering, the results are bifurcated into two classifications:
one achieving solely the offset estimation, and another that integrates inertia into the
estimation framework. Despite these variations, the methodological foundation remains
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consistent, focusing on the ideal results and, therefore, gauging the effects of measure-
ments corruption and disturbances. This approach facilitates an evaluation of the filter’s
robustness against environmental disturbances and noise, therefore proving crucial for
comprehensively addressing the operative research questions. This section underscores
the importance of meticulous filter initialization, which is instrumental in ensuring op-
timal outcomes. Specifically, all requisite covariance matrices are evaluated based on
plausible preliminary offset knowledge and noise variance metrics. Notably, the adopted
methodology exhibits a pronounced dependency on the mathematical model. Thus, un-
like the active control and least square methods, wherein noise is the principal source of
error, dynamic disturbances can potentially represent the major cause of degradation in
performances in this case.

4.3.1. 6-state Kalman filters

The efficacy of the developed filter is evaluated through simulations conducted in the
MATLAB environment over a span of 20 seconds. This concise time window is selected
aiming to curtail the influence of any unmodeled dynamics within the simulation frame-
work. The covariance matrix is initialized conjecturing a poor knowledge of both the
angular rates and the offset:

P0 = diag([1e− 1, 1e− 1, 1e− 1, 1e− 4, 1e− 4, 1e− 4]). (4.4)

On the other hand, the matrix Rk is mathematically derived from the BNO055 IMU
sensor datasheet, according to the ESH availability. The primary source of error in this
sensor is attributed to the white noise, which amounts to 0.099◦/s. Therefore, in the
hypothesis of null cross-correlation between the noises of different axes, the measurement
covariance matrix can be set to:

Rk = diag([3.1e− 6, 3.1e− 6, 3.1e− 6]) rad2/s2. (4.5)

In the simulation the measurements noise vk is generated through the mvnrnd MATLAB
function. A set of random vectors from the multivariate normal distribution is generated
with zero expected value and 0.099◦/s standard deviation, consistently with the assump-
tions performed on the IMU sensor.
The process noise covariance Qk should be set according to the expected effect of the dy-
namics’ uncertainties. However, due to the absence of a definitive aerodynamic coefficient
value for STASIS, establishing the process noise matrix with a rigorous criterion becomes
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unfeasible. Consequently, the matrix values are derived from existing literature, adjusted
upwards by an order of magnitude to account for the procedure’s preliminary nature.

Qk = diag([1e− 5, 1e− 5, 1e− 5, 1e− 10, 1e− 10, 1e− 10]). (4.6)

As detailed in Section 2.2, unmodeled effects are incorporated in the simulations, with an
unknown damping effect −εΛJω. However, this effect is not integrated in the prediction
step. Indeed, in the current configuration of STASIS, the absence of an estimation for
damping effects is a recognized limitation, slated for future enhancement. Incorporating
damping effects in the prediction step, at this juncture, could compromise the verisimil-
itude of the simulations relative to empirical experiments. Conversely, the goal at this
stage is to architect a filter exhibiting maximal robustness, even when driven by a sim-
plified dynamic model. Nonetheless, forthcoming iterations should prioritize the precise
quantification and integration of dissipative aerodynamic effects to bolster the system’s
realism and efficacy.

Theoretical results

Simulations are conducted with uniform matrices applied across both filters, and a time
step is configured at 0.01 s, aligning with the peak acquisition frequency of 100 Hz of the
BNO055 sensor. As delineated in Table 4.7, the superior performance characteristics of
the UKF become evident, primarily attributable to its ability to bypass the constraints
of linearity assumptions.

Table 4.7: EKF and UKF ideal results.

Filter error [m]
EKF [5.94e− 07, 1.56e− 07, 6.25e− 06]

UKF [3.45e− 07, 2.31e− 07, 3.68e− 06]

Yet, the simulation has not incorporated the aerodynamic disturbance, a critical compo-
nent for aligning with real-world experimental conditions.

Effective results

When the aerodynamic effect is integrated into the model, the filters’ performance dimin-
ishes, with the residual error increasing approximately by an order of magnitude compared
to the ideal scenario, as illustrated in Table 4.8.
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Table 4.8: EKF and UKF results upon integration of the aerodynamic effect.

Filter error [m]
EKF [6.78e− 06, 2.27e− 06, 4.41e− 05]

UKF [3.91e− 06, 9.91e− 07, 2.09e− 05]

The outcomes prove to be commendable to achieve simulations conducted under micro-
gravity conditions. Notably, they effectively reduce the CM-CR offset torque to levels
comparable with other inherent disturbances.
As a matter of fact, owing to the extremely brief observation time window, the unmod-
eled effects do not lead to divergence in the procedure. Figure 4.9 and 4.10 present the
behaviour of the errors on the state during the simulation. The associated 3σ value,
retrieved at each step from the state covariance matrix, is reported as well.
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Figure 4.9: 6-state EKF upon incorporation of the aerodynamic momentum.
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Figure 4.10: 6-state UKF upon incorporation of the aerodynamic momentum.

4.3.2. Augmented Kalman filters

To demonstrate the sensitivity of the aforementioned procedure to inaccuracies on the
inertia matrix, the EKF was iteratively tested with progressively larger error introduced
on the inertia parameters.
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Figure 4.11: EKF error norm upon integration of increasing uncertainty on the inertia
parameters. The percentage is respective to the maximum inertia.

As depicted in Figure 4.11, even minor deviations in the inertia parameters lead to an
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exponential surge in error, especially when close to the true solution. Beyond this initial
zone, the error tends to rise moderately with increasing perturbation of inertia parameters.
Specifically, the pattern emerging is a great error escalation at low relative inertia errors
levels, rapidly increasing the EKF error of more than one order of magnitude, followed
by a more gradual linear-like increase for higher errors on the inertia. As consequence,
integrating an augmented procedure is of utmost interest in this application.
The filter’s configuration remains consistent with the previous scenario. However, with
the inclusion of inertia parameters in the state, both the state covariance matrix and the
process noise covariance matrix have been coherently augmented. As anticipated in Sec-
tion 2.3, RWs shall be utilized to rigorously address the problem of partial observability
inherent to an estimation incorporating both the inertia parameters and the offset vector.
The RWs reference is the same for the LSQ estimation, to ensure a consistent basis for
comparing results.

Theoretical results

Avoiding strict assumptions on the inertia parameters, the procedure allows to obtain
satisfactory results on the offset estimation. The results are reported in Table 4.9.
.

Table 4.9: Augmented EKF and UKF ideal results.

Filter error [m]
EKF [2.77e− 06, 9.84e− 07, 1.16e− 05]

UKF [2.98e− 06, 8.89e− 07, 1.09e− 05]

In general, simulations proved that this approach may lead to optimal results, whenever
the available RWs have high degree of control on the platform. Moreover, Table 4.9
highlights that there is no significant advantage between augmented UKF and EKF, as
the final errors in the estimation are comparable. The reasons behind these results include:

1. Very high accuracy of CSD in computing the Jacobian in the EKF.

2. MATLAB inner algorithms, which typically adopt different procedures when the
complexity of the problem increases, in order to optimize the run time.

3. The higher complexity of the augmented case may cause that the linear assumption
inherent in the EKF is not the major source of error.
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Effective results

Figures 4.12–4.14 display the outcomes from a 20-second simulation. It is evident that the
method does not converge when aerodynamic disturbance is introduced. This occurrence
can be attributed to the fact that the wheel solicitation has comparable magnitude to the
effects of the unmodeled dynamics, preventing the method from discerning the dynamic
responses due to wheel solicitation from the drag effect. Consequently, the methodology
could be executed with a RWs actuation, wherein the control trajectory is designed to
embed quiescent phases, aimed to filter out the aerodynamic effect from the observation.
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Figure 4.12: Augmented EKF angular rates error.
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Figure 4.13: Augmented EKF inertia error.
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Figure 4.14: Augmented EKF offset error.

Figures 4.15–4.17 illustrate that the unscented Kalman filter falls short in its effectiveness
as well, leading to the conclusion that the drag effect neglecting is a rather stringent
assumption for these approaches.
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Figure 4.15: Augmented UKF angular rates error.
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Figure 4.16: Augmented UKF inertia error.
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Figure 4.17: Augmented UKF offset error.

In summary, the filters can reconstruct the dynamic behavior and distinguish it from
noise. However, they fall short in attributing this dynamic response to the 3D pendulum-
like motion. Consequently, these procedures are recommended exclusively when a precise
estimation of the drag coefficients is available, or in the case that the available torque
provided by RWs is order of magnitude above the drag damping effect.

4.4. Final remarks

Following the development and implementation on STASIS digital twin, it is impera-
tive to outline several key aspects contingent to the initial strategy design. The ensuing
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discussion will deliberately bypass the augmented filters. Although these have been im-
plemented as a foundation for imminent advancements, they contravene the requirement
of excluding RWs involvement from the experiment.
The residuals shall be computed considering that, in absence of RWs, the LSQ method
shall rely on rx and ry, given by an active control method, to output rz. Therefore, the
Kalman filters could be fed with the inertia matrix to refine the estimations. Table 4.10
reports the attainable order of magnitude of the residual for the selected methodologies.

Table 4.10: Residual evaluation across different methods.

Methods rx [m] ry [m] rz [m]

Least squares - - ∼ 10−4

PID ∼ 10−6 ∼ 10−6 -
ĝ × ẑ control ∼ 10−7 ∼ 10−7 -
H control ∼ 10−4 ∼ 10−4 -
r̃ control ∼ 10−4 ∼ 10−4 -
EKF ∼ 10−6 ∼ 10−6 ∼ 10−5

UKF ∼ 10−6 ∼ 10−7 ∼ 10−5

A critical assessment is imperative at this juncture. In pursuit of eliminating the involve-
ment of RWs, an experiment with a sequential structure has been crafted, consecutively
setting one phase output as input of the following one. The active control technique pro-
vides the basis to build the mathematical constraint Bx = c; then, the LSQ outputs the
inertia parameters for the Kalman filter (Figure 3.7). While such a design inherently opens
avenues for error propagation, it is essential to underscore that the inherent compensatory
capabilities remain theoretically unaltered. In fact, the active control methodology boasts
a precision that surpasses the LSQ by several orders of magnitude. Consequently, any
propagated errors are anticipated to have a negligible impact on the final outcomes.
Contrarily, the LSQ method emerges as the limiting factor in the pursuit of superior
accuracy. Directly feeding the inertia parameters into a Kalman filter under these cir-
cumstances could potentially instigate divergence. However, once the LSQ phase is termi-
nated, the complete offset knowledge becomes accessible. As such, the propagated error
is likely to influence only the refinement of the results, rather than the core computations.
In summary, taking into account the intrinsic challenges associated with a sequential struc-
ture experiment, the preliminary evaluation posits that the initial experimental design
retains its robustness to the myriad of complexities inherent to a real-world experiment.
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Indeed, it is projected to adeptly facilitate comprehensive CR-CM offset compensation.
The initial experimental design was virtually modeled to provide a mathematical basis of
the performed dissertation. The deviations in the parameters rx, ry are propagated to the
LSQ, attaining null effect due to the very high accuracy of the ĝ × ẑ control. Hence, the
resulting inertia is inputted to the Kalman filtering techniques. Table 4.11 demonstrates,
through an error on rz reduced of the 53% with respect to EKF’s, the major capability
of UKF to reject uncertainties effects, a crucial feature for experiments with sequential
structure.

Table 4.11: EKF and UKF of the simulated experiment, fed with the inertia parameters
attained through the constraint+RW LSQ fitting, detailed in Section 4.1.

Filter error [m]
EKF [1.96e− 05, 8.88e− 06, 1.68e− 04]

UKF [2.14e− 05, 1.71e− 05, 7.85e− 05]

As a consequence, the designed balancing procedure is theoretically capable to reach 10−7

m accuracy for planar balancing, and 10−5 m for the vertical offset compensation. Since
these results show an improvement over the previous LSQ estimate on rz, the initial
design of the experiment is corroborated. Nevertheless, these findings do not constitute a
mathematical proof of the procedure’s convergence in practical applications. Real-world
complexities can substantially alter outcomes, potentially leading to divergence in the
UKF performance.
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experimental procedure

The experimental procedure is meticulously designed to align with the STASIS attitude
determination system, maximizing the benefits of low-noise measurements while minimiz-
ing the impact of the most noise-infused measures. However, the true challenge of the
experiment is to ensure the procedure’s effectiveness, even with the myriad of complexi-
ties inherent in a real-world test. As a consequence, a crucial feature of the approach is
its ability to operate without cables, due to the challenges associated to the modeling of
their influence on STASIS attitude dynamics.

Figure 5.1: Real-time wireless interface [22].

Hence, requests and commands with the attitude sensors, the IMU and the actuators
are carried out through either the User Datagram Protocol (UDP), Transmission Control
Protocol (TCP) and Hypertext Transfer Protocol (HTTP) communication protocols [73],
briefly presented in Table 5.1.
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Table 5.1: Comparison of UDP, TCP, and HTTP protocols.

UDP TCP HTTP

Key
Features

Fast : No handshake.
No Guarantees : No
error checking or
acknowledgment.
Lightweight : No
connection
establishment.

Connection-oriented :
Requires handshake.
Reliable: Ensures data
integrity and delivery.
Flow control : Prevents
network congestion.

Request-Response
mechanism.
Stateless : Without
session persistence.
Reliable: Ensures data
integrity and order.

Reliability
Fast but data might
be lost.

Ensures data delivery
through
acknowledgments
and re-transmissions.

Ensures data delivery
but might be slower
due to the inclusion
of the header in the
message.

Complexity Simple to implement.
More complex due to
reliability and flow
control.

Higher level, more
intricate setup and
handling.

Use Streaming media.
Web browsing, emails,
file transfers.

Web browsing, data
transfer in web
applications.

In essence, the UDP protocol offers a lightweight solution without assurances for data
integrity or sequence maintenance. In contrast, both TCP and HTTP protocols, despite
their higher computational overhead, provide the advantage of ensuring the integrity of
the data received.

5.1. The experiment

In adherence with the conduced research, the experiment was meticulously designed to en-
sure unbiased balancing (i.e., independent from CAD data), while ensuring compatibility
with the hardware available in ESH. In this context, a crucial feature of the compensation
methodology is its reliance solely on attitude data and angular velocity measurements,
abstaining from the need for additional information. This element of the strategy ensures
its general applicability, maintaining its efficacy regardless of potential future modifica-
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tions to the simulator’s mock-up, that may invalidate any prior hypothesis on inertia or
CR-CM offset. Furthermore, by not depending on prior knowledge of inertia parameters
or offset estimations, the method prevents the possibility of error accumulation in the
balancing experiment.

5.1.1. The experiment phases

The design of the experiment is fundamentally underpinned by two primary considera-
tions. First, it shall adhere scrupulously to all the specifications delineated in Section
1.5. Second, it shall be driven by an ambition to realize peak performance, a goal that is
substantiated through the critical analysis provided in Chapter 4.
Due to STASIS hardware availability constraints, the RWs are omitted from the exper-
imental procedure. Hence, being the torque generated by the displacement of a set of
movable masses, control is implicitly constrained to a plane orthogonal to the gravity
vector, making the problem under-actuated. To withstand the non-full controllability of
the system, a two-step experimental procedure is proposed.

• 1st step: Planar balancing is executed through the MMUs. Providing the values
of rx and ry, a pivotal mathematical constraint to address partial observability.
Notably, the spectrum of viable strategies to perform unbiased balancing is reduced
to PID and ĝ × ẑ control methodologies, as encapsulated in Chapter 3.

• 2nd step: The free motion of the platform is observed and analyzed to solve the
constrained problem detailed in Section 3.2.

Φx = 0, such that Bx = c. (5.1)

The availability of the inertia parameters is therefore exploited for eventual results
refinement, through Kalman filtering.

To yield satisfactory outcomes, the methodology necessitates highly accurate information
regarding both the MMU and the platform masses, whose involvement is implicit in both
the steps. For instance, in computing the command to the masses in the active control
technique, as illustrated in Equation (5.2),

Ri =
g × τu
||g||2mi

, (5.2)

the knowledge of the MMU mass is required. Additionally, after the vertical offset is
retrieved, it shall be mapped into a command for the vertical masses. Assumed mz to be



88 5| Hardware-in-the-loop experimental procedure

the sum of the vertical MMU, the command is expressed as:

∆Rz =
m

mz∆rz
, (5.3)

requiring therefore the knowledge of the platform-MMU mass ratio. A further example
involves the errors propagated through the mathematical constraint Bx = c. Indeed,
while c = [mrx mry]

T , the active control technique provides the knowledge of [rx ry]T ,
rendering the procedure vulnerable to any uncertainty on the platform mass. Thus, prior
to procedure execution, the MMU and the platform shall be necessarily weighed.
It is noteworthy that a two-step procedure aligns seamlessly with the experimental design
requirements, effectively reducing disturbance impacts and obviating the need for RWs,
while simultaneously leveraging the symmetrical arrangement of the MMU. Specifically,
the symmetry inherent in the MMU setup ensures that the vertical compensation’s influ-
ence on the preceding phase is minimized, given that the center of gravity of the vertical
MMU configuration is anticipated to be proximal to the CR to the greatest extent possi-
ble. This proximity strengthens the theoretical justification for segregating the problem
into distinct planar and vertical balancing tasks, thereby enhancing the methodological
robustness of the approach.

1st step - planar balancing

The procedure is performed synchronously through UDP and HTTP communication as
receiver from the attitude sensors and as sender with the MMUs. In particular, this step
proceeds according the following phases:

1. Facility mock-up. During this initial setup phase, equipment is installed on
STASIS in a manner that mirrors the configuration present in the digital twin.
This similarity ensures that the simulated control gains are already closely aligned
with their optimal values. This phase is crucial as it allows for the evaluation of
result consistency against the digital framework.

2. Experiment initialization. The stepper motors are interconnected to the control
software via a wireless setup. Subsequently, a concise examination of the movable
masses control is conducted, scrutinizing several aspects: adherence to the issued
commands, the effect of the lag between command dispatch and actuation, and the
precision in the recorded command sequence for each stepper motor. Paramount to
this process is ascertaining the positive direction of motion within each MMU frame,
a critical step for maintaining consistency throughout the experiment. Furthermore,
special emphasis is placed on verifying the integrity of the sensor readings, especially
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focusing on the zero-offset calibration of the IMU.

3. Initial conditions imposition. Initial conditions on attitude and angular rates are
imposed by randomly moving the set of movable masses. Being an under-actuated
problem, under the negligible cross-inertias assumption, no rotation around yaw
is expected in this phase. Therefore, measuring this rotation may give an idea
of the consistency of the main hypothesis underneath the procedure, that is the
negligibility of the cross-inertia terms.

4. Active control balancing. At the core of the process lies the activation of the
closed-loop control. Real-time data on attitude orientation and angular velocities are
transmitted via HTTP and TCP. Then, they are decoded and analyzed to generate
a UDP directive dispatched to the MMUs. This phase unfolds iteratively, continuing
until the command value converges on a predetermined threshold, denoted as εA.
In adherence with the peak demonstrated performances, the selected methodology
is the ĝ× ẑ control. Figure 5.2 illustrates the logical sequence of the control phase.

Figure 5.2: Active control scheme.

5. Data collection. To complete the 1st step, some relevant data, such as the exact
final position of the MMUs and the attitude orientation, are collected for further
analysis.

The rigor in executing this 1st step is of paramount importance, as any error is propagated
to the following step through the mathematical constraint. Therefore, in this first half of
the procedure the checklist should be severely observed, in particular regarding phase 2,
wherein the performance of each controlled MMU is assessed separately.

2nd step - observe and compensate

In the 2nd step the MMUs are not actively controlled. Instead, STASIS dynamics is
observed with no interference, collecting data transmitted by sensors via TCP and HTTP
protocols. Then, MMUs position adjustment is performed to cancel the vertical offset.
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6. Initial conditions imposition. This phase is conceptually identical to phase 3.
However, in this case, the final MMUs position is not randomic. Contrarily, they
are placed with a precisely known distance from the point of offset compensation,
possibly maximizing it, to retrieve an accurate mathematical constraint Bx = c. It
should be noted that a significant MMUs shift maximizes the vector c = m[rx ry]

T ,
enabling to reduce at minimum the relative error.

7. Batch estimation. Data from IMU are collected to perform the batch estimation
of the augmented state. According to literature, 500 measurements are sufficient to
retrieve a proper estimation [26, 53]. In this phase the Savitzky-Golay filter cleans
angular rates from noise. Once this phase is concluded, a preliminary estimation
including both the inertia parameters and the offset is available.

8. Batch estimation + Kalman filtering. Once an initial estimation of inertia
properties is at hand, the procedure advances into a loop consisting of batch esti-
mation coupled with the filtering of angular measurements through a 6-state Kalman
filter. This batch estimation, taking the filtered angular rates as input, periodically
(e.g., every 20 seconds) yields a refined inertia estimation for the Kalman filter.
The logic underpinning this approach is twofold. Firstly, as proved in Chapter 4,
batch estimation, while robust against unmodeled effects, typically does not deliver
exceptionally precise results. Conversely, the Kalman filter, though capable of at-
taining high accuracy levels, exhibits considerable sensitivity to unmodeled effects
and any inaccuracies in the inertia information. The process continues iteratively
until a stable value of εB is reached, which is determined by the normalized differ-
ence between two consecutive estimations. Once this settled threshold is achieved,
indicating minimal variation between estimations, the procedure concludes.

Figure 5.3: Observe-and-compensate scheme.

9. MMUs adjustment. After the estimation, vertical MMUs are shifted consistently
with the vertical offset estimation. Conversely, horizontal MMUs are positioned in
the final position of phase 4, that is, re-compensating the planar offset.
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10. Performance assessment. The residual offset ||δr|| is finally estimated through
direct (e.g., computing the derivative of the angular momentum) or indirect tech-
niques (e.g., measuring the period of the pendulum, kinetic energy oscillations).

The main advantage of this approach lies in its ability to inherently generate a back-up
estimation, despite the intrinsic complexity of the system and the inability to evaluate
convergence properties a priori. Specifically, if unmodeled effects lead to divergence during
phase 8, the preliminary batch estimation from phase 7 stands ready as an alternative,
directly applicable for adjusting the MMUs’ positions. This redundancy ensures that, even
when faced with unforeseen modeling discrepancies or analytical challenges, the procedure
retains the capacity to proceed with corrective actions based on the most reliable data.

5.1.2. Maintaining experimental consistency amidst procedural
condensation

In the practical execution of the experiment, a strategic condensation can be introduced
to mitigate potential risks associated with the re-initialization of mass positions post the
initial balancing phase. The foundational basis of such a condensation is the high sim-
ilarity of phase 3 in the planar balancing and phase 6 in the observe-and-compensate.
This approach, besides the reduced operational efficacy, since two identical phases are
performed separately, also lets the experiment vulnerable to an untenable risk. Indeed, in
the procedure presented in Section 5.1, inducing a non-zero offset, required to initialize
the observe-and-compensate step, necessitates shifting the masses from their equilibrium
positions. Such an operation is characterized by the risk of not being able to return them
to the exact prior configuration, a critical concern in sensitive procedures as for balanc-
ing. Let consider the initialization of the observe-and-compensate step, involving, for
instance, moving one MMU 60000 steps toward its positive direction. In theory, reversing
this movement by 60000 steps should reestablish the equilibrium. However, conjectur-
ing that 50 steps are missed during this process, an error approximately on the order of
10−5 m would be introduced in the planar balancing. Such an error significantly exceeds
the residual observed in the simulations presented in Chapter 4, proving the necessity of
managing the associated risk. In summary, the risk can be resumed as the impossibility
to ascertain the MMUs exact adherence to the command.
To circumvent this issue, the experimental framework can be restructured to obviate the
need for re-initialization, while preserving conceptual integrity. The essential idea of this
procedural condensation lays in designing an experiment where a unique initialization
stands for both the subsequent steps. Therefore, once the initial conditions are imposed
moving the MMUs, prior to any control activation, a 30 seconds window of dynamics
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observation is performed. In absence of the mathematical constraint Bx = c, the es-
timation cannot be directly performed, it is instead let to post-processing. Hence, the
control is activated paving the way for the observe-and-compensate step. Essentially,
while the conceptual flux diagram remains unaltered, the system dynamics observation
of the observe-and-compensate step is anticipated to the planar balancing. This adapta-
tion ensures that a univocal enforcement of the initial condition is pertinent to both the
steps, thereby enhancing procedural efficiency without compromising the experiment’s
foundational principles. This paralleling strategy is illustrated in Figure 5.4.

Figure 5.4: Experiment breakdown.

This modification allows to better fulfill the experiment requirements, including the fast
repeatability of the process, enhanced by the procedural condensation.

5.2. Hardware interface

Establishing real-time communication with both sensors and shifting masses is facilitated
through the Simulink software. This approach offers significant advantages, including the
possibility to aggregate sensor readings into an array for subsequent analysis, as well as
enabling real-time control of mass adjustments. However, operating a real-time experi-
mental compensation in Simulink introduces a higher procedural intricacy, increasing the
susceptibility to errors and data loss.
Furthermore, managing communication within this software presents specific challenges,
primarily because numerous functions in Simulink are not compatible with code genera-
tion. This limitation necessitates their replacement with iterative algorithmic loops that
can be more time-consuming and less efficient (e.g., Algorithm 5.1).
In summary, while the real-time data acquisition and control introduces enhanced compen-
sation capabilities, a meticulous oversight to mitigate the risks of data fidelity compromise
and capability to navigate the constraints imposed by the Simulink environment’s code
generation capabilities are required.
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5.2.1. Sensor reading

Communication with attitude sensors and IMU is established in real-time via the TCP and
HTTP communication protocols. A distinctive feature of these protocols is the request-
response model, meaning that sensors transmit data only upon receipt of explicit requests.
To facilitate this communication within the system architecture, two primary TCP blocks
are employed:

• A TCP Send block, tasked with issuing requests.

• A TCP Receive block, responsible for acquiring the corresponding responses.

The utilization of TCP blocks also for the HTTP communication is necessitated by the
absence of dedicated HTTP communication blocks within the Simulink environment. De-
spite this, the TCP blocks suffice in managing the data exchange process, ensuring the
system’s capability to perform real-time data retrieval and processing tasks essential for
operational efficacy.
The comprehensive subsystem shall also accomplish a conversion of the received message
into the desired format, specifically a double-precision vector, a paramount aspect in the
command generation chain. Specifically, in the communication with ground truth system,
the server’s response for attitude data appears as follows:

HTTP/1.1 200 OK

Access-Control-Allow-Origin: *

Content-Length: [PayloadSize]

Server: Crow/master

Date: [Time]

[Quaternion] [Residual] [ValidityFlag]

Where [PayloadSize] is the size of the data payload, [Time] is the timestamp of the
response, [Quaternion] represents the quaternion array, [Residual] denotes the residual
value, and [ValidityFlag] indicates the integrity of the data received. The response is
prefaced with a char message containing metadata, followed by the effective payload in the
uint8 data type. Therefore, data parsing and processing operations are required to extract
and convert this information into a usable format. Algorithm 5.1 details the proposed
structure for handling data. Though it appears as a unified procedure, its functions are
executed separately within the Simulink environment, according to the following structure:

• Data transmission initiation → TCP Send block.
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• TCP Receive block → Data reception and processing.

Algorithm 5.1 Procedure for Attitude Orientation Data Acquisition in Real-Time
Data transmission initiation:
for each predetermined temporal interval do

Create an HTTP ’GET /raw’ request
Construct a formatted string utilizing the sprintf function
Encode the formatted string into uint8 binary format

end for
Data reception and processing:
Isolate the terminal line of the data stream
for each element within the isolated data array do

Employ the typecast function to transmute data into the target type
end for

As prefigured, the algorithmic complexity escalates within the Simulink environment, due
to incompatibility of the webread MATLAB function with the code generation capabili-
ties of the software. In fact, webread would inherently simplify the process by obviating
the necessity for specific request generation, explicit string segmentation and data trans-
mutation.

Conversely, the IMU is programmed to interface through the TCP protocol. While the
block configuration remains analogous, featuring both a TCP Send and a TCP Receive as
for the previous case, the request-response mechanism implementation, diverges slightly.
Specifically, responses are not utf-encoded char messages but arrays of bytes directly, en-
compassing a complete set of different outputs. Accordingly, the viable requests command
structures are the following:

GET /quaternion

GET /gyro

GET /acc

GET /grav

GET /all

The request depends on the specific data one aims to extract, whether it is solely the
quaternion, the angular rates, the linear acceleration, the gravity vector, or an all-
encompassing unique 26-bytes array that includes all these elements, with each component
comprising 2 bytes. This array structure hints that response handling is tasked with dis-
secting the array components, converting them into 16-bit integer values, and scaling them
based on the Least Significant Bit (LSB) value documented in the datasheet for each mea-
surement. Algorithm 5.2 reports the structure of the request-response mechanism. An
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Algorithm 5.2 Real-time IMU Data Acquisition
Data transmission initiation:
for each predefined time instant do

Initiate the request using ’GET/all’
Construct a structured string with sprintf
Convert the structured string to uint8 format

end for
Data reception and processing:
Separate bytes corresponding to each vector
for each component of the extracted vector do

Rearrange assuming little-endian order using bitshift and bitor
if most significant bit of rearranged bytes is 1 then

Apply bitwise NOT operation using bitxor
Add 1 to result
Convert to negative int16 format

else
Convert to int16 format

end if
end for
Adjust according to the LSB value

inner function is developed to manage negative outputs according the two-complement
logic: the most significant bit is detected and the two-complement inversion of the bit ar-
ray is performed to enable proper reading. These operations lead to separate information
of both sign and value of the reading, enabling seamless detection.

5.2.2. Control command generation

The stepper motor controller is configured to accept commands in JavaScript Object
Notation (JSON) format, a data interchange standard derived from the JavaScript pro-
gramming language [74, 75]. An example of such a command is shown hereafter:

{

"type": "move",

"data": {

"steps": 16000,

"delay": 120,

"microsteps": 16,

"dir": 1

}

}

'GET/all'
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This command essentially constitutes a structured entity specifying the command type,
accompanied by additional pertinent details. Specifically, it includes the number of steps
the motor is to execute, the interval between steps measured in microseconds, the quantity
of micro-steps encompassed within each individual step, and the intended direction of
motion. The latter is represented in binary form, with possible values being 0 and 1,
respectively indicating reverse and forward motion.
The initial critical observation regarding this input is that it clearly processes a specified
number of steps to be executed within a certain time interval, that is a ∆steps in a
∆t. This necessitates the primary operation of ensuring compatibility with the control
command, which is, conversely, position-oriented. Therefore, the MMU position at each
step is subtracted by the precedent position, and the difference is fed as command. This
method, if the ∆t (i.e., the step delay) is priory set, facilitates the conversion of a position-
based command to a dual information embedding the required steps and duration, aligning
with the stepper motor controller’s operational parameters.
Upon the successful generation of the appropriate mass shift, its magnitude is channeled
into the command generation algorithm, dictating the number of steps to be executed.
Concurrently, the mass shift’s sign is processed to yield binary information, indicative
of the direction of motion. The real-time command generation is executed iteratively,
adhering to the subsequent procedural outline:

Algorithm 5.3 Generation of Real-Time Command
Employ int32 for the formulation of an integer-based command.
Utilize sprintf to instantiate a temporally-variable JSON command while maintaining
a fixed dimension.
Invoke blanks to establish a consistently dimensioned array composed of spaces.
Apply uint8 for the transformation of the constructed command into a byte array.

The process encompasses the conversion of command specifications into an integer for-
mat, the dynamic generation of JSON command strings with uniform dimensions, and
the conversion of the command into a byte array, optimizing it for transmission.

The generation of the control command for the batch procedure stands distinct, intrin-
sically requiring the system’s center of mass displacement, ∆r. Specifically, executing a
mass command mandates the utilization of the following relationship:

∆Ri =
m

mi∆ri
i ∈ {x, y, z} (5.4)

Provided the information of ∆r, the steps to perform are unequivocally defined. However,
this ostensibly straightforward concept conceals multiple underlying uncertainties. Equa-
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tion (5.4) necessitates an accurate knowledge of both the MMU and the platform’s mass
attributes. Further processing is required when considering that a single step equates
to an angular displacement of 1.8◦, and a complete revolution corresponds to a linear
displacement of 0.1 mm, contingent upon the screw thread’s specifications, which are
potential sources of error as well. In summary, the vertical balancing procedure requires
meticulous knowledge of the system’s physical properties and an adept handling of the
associated operative uncertainties.

5.3. Performance assessment

In estimating the residual offset, it is crucial to acknowledge the complexity of evaluating
a two-step procedure. Specifically, challenges may arise in attempting to gauge the 2
steps performance separately. In fact, the techniques proposed in literature and detailed
in Section 2.4, may be impractical to evaluate distinctly the residuals δrx, δry and δrz.
The LSQ fitting of Euler equations, while providing separate evaluation, demonstrated in
Chapter 4 its limited accuracy; and the method employing the period of the pendulum
offers an evaluation on the total residual magnitude ||δr||.
However, a comprehensive estimation of the residual offset ||δr||, without segregating the
performance assessment for planar and vertical balancing, is inadmissible for the proce-
dure. Indeed, it poses a significant risks, potentially highlighting the weaker procedure
and thereby undermining the overall experiment’s validity, even if one stage is conducted
proficiently. For instance, if the achieved residuals are comparable to the precision levels
observed in simulations detailed in Chapter 4:

δrx, δry ∼ 10−7 m,

δrz ∼ 10−4 m,
(5.5)

the total residual necessarily becomes:

||δr|| =
√
δr2x + δr2y + δr2z ∼ 10−4 m. (5.6)

In this case, the notably larger residual in the vertical component δrz effectively overshad-
ows the proficient planar compensation. Furthermore, separate performance evaluation is
more suitable in dealing with challenges presented by real systems, such as the potential
non-exact orthogonality of the MMU axes. Specifically, any significant uncertainty in
MMUs position and screw direction might jeopardize the results of the planar balancing,
as the in-plane residual might increase following the vertical compensation.
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Given these intricacies, the performance assessment plan necessitates a methodology that
is both simple, in terms of being easily comprehensible and implementable, and distinct,
in its capacity to independently evaluate the unique aspects of each step while considering
their inter-dependencies.
The challenge lies in the scaling problem, which renders the segregation of evaluation
metrics particularly complex. Specifically, it is not possible to establish a planar offset
residual, without disposing of the vertical offset information. For instance, relying on a
static methodology to infer the residual planar offset, the problem becomes indetermi-
nate. This is because there exists an infinite array of solutions corresponding to different
vertical offsets, all of which can result in the same platform inclination α. Indeed, with
the unique information of α, the method is not able to distinguish the CM from any other
point lying on the local vertical direction (the gray line in Figure 5.5)

Figure 5.5: Scaling problem effect on performance assessment.

Therefore, the proposed performance evaluation strategy focuses on utilizing the offset
computed in the batch estimation phase to address the scaling problem in the static
methodology. This balanced approach ensures a comprehensive evaluation of the planar
balancing without unjustly discrediting the experimental accuracy and success. Hence,
to obtain δrx, δry the residual planar offsets,

δrx = rz tan θ, (5.7)

δry = rz tanϕ, (5.8)
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where ϕ, θ are directly retrieved from the last readings of the attitude sensors in the ex-
periment. The procedure is non-invasive, eliminating the necessity to artificially induce
motion within the satellite simulator. While it is acknowledged that the process is suscep-
tible to error propagation via rz, the performance assessment does not demand exceedingly
high precision levels. Instead, the focus is on capturing the order of magnitude, which
suffices for the intended evaluative objectives. This approach maintains the integrity of
the system while providing a reasonable approximation of performance metrics, aligning
with the overarching experimental criteria.
Ultimately, an indirect methodology is utilized for computing the magnitude of the whole
offset vector. The chosen strategy utilizes the period of the 3D pendulum to extract the
information on the magnitude of the residual δr.

Tp = 2π

√
Js

mg||δr||
. (5.9)

Hence, the method requires to enforce the motion externally and acquire the platform
angular velocities during the oscillation. Equation (5.9) is therefore inverted to retrieve
the residual norm. Finally, the acquired data pertaining to the planar offset facilitates
the evaluation of the vertical compensation’s efficacy inverting the relationship

||δr|| =
√
δr2x + δr2y + δr2z , (5.10)

therefore culminating in an individual steps performance assessment through the separate
knowledge of δrx, δry and δrz. The discussed strategy is favored over the application of
LSQ fitting to the Euler equations of rigid body motion. Evident from the results attained
in Chapter 4, while least squares fitting is theoretically capable of delineating the residual
components along x,y and z axes distinctly, its practical application for extremely precise
estimations is constrained by limited accuracy levels, ∼ 10−4 m. Indeed, as anticipated in
Section 4.4, the residual for planar balancing is expected to be in the order of 10−6 or 10−7

m. Consequently, adopting LSQ fitting for performance evaluation would introduce an er-
ror magnitude that surpasses the tolerable bounds of the planar balancing expected error,
rendering it an unsuitable method for an accurate performance assessment. Conversely,
the segregated assessment strategy, as outlined in Table 5.3, demonstrates a increased
sensitivity to detect even microscopic residuals. Specifically, with the incorporation of
a ground truth system error of 15 arcseconds, and conjecturing, with reference to CAD
models and simulation results, a maximum vertical offset of 5 cm, the residual can be dis-
cerned with a precision in performance evaluation reaching 3.635 · 10−6 m. This precision
underscores the efficacy of the proposed method in accurately identifying and quantifying
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offsets that would be otherwise imperceptible with less sensitive evaluation techniques.

Table 5.3: Comparison of unique and segregated performance assessment.

Integrated Separated
Objective Evaluates overall system perfor-

mance holistically.
Evaluates planar and vertical
balancing steps separately.

Features Straightforward but can mask
the performance of individ-
ual steps due to the inter-
dependency of vertical and pla-
nar offsets.

Addresses the complexity by as-
sessing each step based on its
unique parameters and chal-
lenges.

Challenges Difficulty in isolating the impact
of each balancing step on the
overall performance.

More equipped to reject real sys-
tem sources of error (e.g., non-
orthogonality of axes) but re-
quires addressing the partial ob-
servability of the 3D pendulum.

Evaluation
Method

Qualitatively, observing the re-
duced kinetic energy oscilla-
tions; or quantitatively, LSQ fit-
ting of EOM or measuring the
period of the 3D pendulum to re-
trieve ||δr||.

Quantitatively, exploiting sensor
measurements for direct estima-
tion of δrx and δry, followed
by δrz estimation from separate
knowledge of ||δr||, δrx, δry.

Mathematical
Approach

||δr|| = 4π2Js
mgT 2

p
.

δrx = rz tan θ,
δry = rz tanϕ,
||δr|| = 4π2Js

mgT 2
p
,

δr2z = ||δr||2 − δr2x − δr2y.
Error
Propagation

Uncertainties on inertia param-
eters propagate on the final re-
sult.

More subjected to error propa-
gation due to the reliance on the
batch estimation.

Outcome Provides a holistic overview but
with less actionable insight for
stepwise improvement.

Yields detailed, actionable in-
sights for each step, enhancing
the potential for precise adjust-
ments.
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5.4. Requirements fulfillment

Following the comprehensive planning of the experiment, it is imperative to verify the
fulfillment of requirements to evaluate the rigor and validity of the presented research.

Table 5.4: High-level compensation requirements fulfillment.

ID Type Text Fulfillment
R001 O The algorithm shall be

flexible with respect
to changes in satellite
mock-up.

The approach is agnostic to any particular
configuration of STASIS and does not man-
date specific constraints on its setup.

R002 F The algorithm shall be
capable of accomplish
balancing without using
RWs.

Strategies involving the utilization of RWs
have been excluded from consideration.

R003 F The algorithm shall
avoid error propaga-
tion of preliminary
estimations.

The strategy does not require prior infor-
mation on the CR-CM offset or the inertia
parameters.

R004 F The algorithm shall op-
erate with the available
ADCS hardware preci-
sion.

Through simulations, various strategies
were evaluated, confirming those ap-
proaches that exhibited compensation ca-
pabilities even in the presence of noise and
aerodynamic drag.

R005 F The algorithm shall be
robust against measure-
ments noise.

The gains for active control techniques have
been tailored to prioritize reliance on atti-
tude knowledge over angular rates. More-
over, the LSQ methodology is enhanced
through Savitzky-Golay and Kalman filters.

R006 O The compensation shall
guarantee brevity in
time.

Both the Kalman filters and LSQ meth-
ods have demonstrated effectiveness within
an observation window of 1 minute. Ac-
tive control techniques achieve convergence
within a span of 10 minutes.

Continued on next page
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Table 5.4 – Continued from previous page
ID Type Text Fulfillment

R007 O The compensation shall
exploit the symmetrical
configuration of the
MMU.

The algorithm leverages the entirety of the
MMUs system. Moreover, the division into
two steps is argued to be more efficient when
the MMUs system exhibits symmetry.

R008 O The compensation strat-
egy should guarantee fast
repeatability.

Beyond ensuring the experiment’s effi-
ciency, its condensation in a unique step
also promotes a shorter restart time.

R009 V The performance assess-
ment shall not alter the
physical arrangement of
the system.

Neither the evaluation of the planar com-
pensation nor the vertical’s necessitate
shifting the MMUs from their position.

Following the detailed planning of the experiment and extensive simulations, there re-
mains one requirement that poses a challenge for unambiguous fulfillment assessment,
R006. Initially, the requirement was conceptualized to favor a procedure that could com-
pensate the platform before disturbances led to divergence or significant errors. However,
in the absence of studies on aerodynamic coefficients for STASIS, the "brevity in time"
criterion remains qualitative and cannot be quantitatively assessed. This evaluation forms
a focal point for future development endeavors. The experience accrued during the the-
sis development suggests that a duration of 20 minutes is reasonable. Consequently, the
finalized strategy is tailored to balance the platform within 10 minutes during simula-
tions. Nevertheless, an essential consideration emerges at this juncture. While it might
be theoretically feasible to adopt more aggressive gain settings, conservative gains were
chosen. This decision aims to enhance the probability of achieving convergence, given
the intricacies inherent to real-world experiments, and importantly, to prevent command
throttling during wireless control operations.
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experiment results

Upon several months of dedicated research, the automatic balancing experiment of STASIS
is approached. The outcome, whether positive or negative, holds significant implications
for the EXTREMA project and will dictate the subsequent course of action. Given this
importance, detailed performance metrics and analysis of the planar offset residual’s mag-
nitude is provided. It is crucial to note that due to specific time and power constraints,
the opportunity to repeat this experiment is limited. The time constraint was primar-
ily due to a delay caused by the commercial unavailability of motor controllers, which
significantly postponed the commencement of the experiment. Power limitations were
also a factor, as the intended power-beaming system for continuous energy supply to the
platform had not been installed yet. This absence necessitated reliance on battery power,
which restricted the number of possible experiment runs due to the extended recharge
periods. Given these intricacies, meticulous attention to detail and precision during the
procedure’s executions was paramount.

6.1. Experiment setup

During the experimental phase, the MMUs system was undergoing a prototypical transi-
tion, following a substantial upgrade of the platform. The upgraded MMUs system was a
response to issues noted in the previous version, including high power consumption and
overheating problems. Consequently, the use of newly integrated, yet untested compo-
nents, was anticipated to introduce unexpected behaviors in the experiment.
Furthermore, the platform exhibited recognized areas for improvement, including the flex-
ibility of its lower plate and the presence of intermittent gaps in the power rails. These
gaps were known to cause sporadic disconnections of the masses from the power line.
A minor constraint was the unavailability of the whole set of MMUs. Specifically, as
depicted in Figure 6.1, on the day of the experiment, STASIS was equipped with only
two out of the eight MMUs that were originally planned in the design. This configuration
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negated the capability to achieve three-dimensional compensation.

Figure 6.1: STASIS at the time of the experiment, wherein the light-emitting masses are
the active ones.

In light of the limited number of MMUs available during the experiment, the focus was
exclusively on planar balancing. Venturing into vertical compensation would have been
impractical without the requisite masses for vertical movement, negating the possibility
to evaluate the vertical offset residual. Moreover, given the high operational complexity
and error susceptibility of the active control phase, priority was given to laying a robust
foundation for its future implementation. This approach was chosen over conducting a
less rigorous, complete experiment. Concentrating on the most complex aspect allowed for
a more efficient and detailed exploration, setting the stage for further improvements and
refinement of initial results. Consequently, while the results might not exhibit extreme
accuracy, the primary objective is to demonstrate the viability of the proposed procedure
for STASIS. This focus is critical in establishing a solid foundation for the subsequent
development of the platform’s balancing.

6.2. PID balancing results

Upon proper calibration of the ground truth system, performed through the acquisition
of 5000 images in different attitude configurations, and observed the convergence of the
reconstruction algorithm, the PID control was tested on STASIS. The control method-
ology is configured to operate at two distinct frequencies, stemming from the varying
operational frequencies of the hardware components responsible for attitude knowledge
and those for attitude control. Initial investigations have determined that a frequency of
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10 Hz is optimal for attitude reconstruction, effectively circumventing request throttling.
On the other hand, preliminary tests indicated that a lower frequency of 1 Hz is preferable
for actuation, ensuring that each MMU command is executed within the constraints of
command latency, maintaining smooth operational flow.
Additionally, post preliminary actuator tests, a further measure to mitigate the risk of
command throttling was adopted. The control strategy artificially saturates the com-
mand, bounding the actuator steps at a limit of 500 steps/s. This approach offers signifi-
cant advantages in active control systems, which are often marked by initial high-intensity
actuation that subsequently tapers off. Such moderation of actuator responses is particu-
larly advantageous in scenarios where precise pointing accuracy is critical, even sacrificing
the settling time, as in the case of platform balancing.
The experiment sustained operation for an approximate duration of 650 seconds, as visible
from Figure 6.2. At this point, the depletion of the batteries resulted in the shutdown of
the entire CubeSat simulator1.
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Figure 6.2: Results from the first PID control experiment.

Analysis of the Euler angles trajectory, as shown in Figure 6.3, indicates that the control
parameters were appropriately selected, evidenced by the system’s gradual progression
towards a state with negligible roll and pitch angles. However, due to the experiment’s
truncated execution, full convergence was not realized, implying the necessity for a revision
to select higher gains.

1It is important to note that the batteries’ capacity exceeds 650 seconds under normal conditions.
However, for this experiment, they were already in a state of less-than-optimal charge.
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Figure 6.3: Euler angles history during the first PID actuation.

The initial experimental setback proved to be a valuable learning experience. Conse-
quently, the PID control experiment was reconducted with increased gain settings, pre-
ceded by a thorough verification of the batteries status. In this second iteration, however,
the wireless connection to the ground truth server was lost after approximately 820 sec-
onds, as evident in Figure 6.4. The cause of this disruption remains undetermined, though
likely attributable to generic connection issues, potentially leading to network congestion.
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Figure 6.4: Data from the repeated PID control trial.

Despite the interruption, the data acquired during this period were encouraging. The
Euler angles residuals, as shown in Figure 6.5, were considerably reduced, indicating a
successful application of the control within the given operational time-frame.
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Figure 6.5: Euler angles history during the second PID actuation.

Figure 6.6 provides a visual demonstration of the procedure’s effectiveness. It shows that
the platform achieves effective planar balance, as indicated by the near-perfect horizontal
alignment of its upper face.

Figure 6.6: STASIS, concluded the second PID actuation.
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6.3. Non linear balancing results

Following the experimental testing of PID, the facility underwent testing with the non-
linear ĝ control method, aiming to achieve improved outcomes. Unfortunately, in the
course of the attitude control phase, the pitch-oriented MMU encountered a malfunction,
remaining immobilized on its thread. This issue originated from a damage on one out
of the four wheels whereon the MMU is mounted. Consequently, the actuator became
jammed, causing continuous transmission of a single command without achieving conver-
gence to a definitive value. Hence, the experiment was abruptly interrupted as presented
in Figure 6.7. Despite the challenges, the outcomes are deemed positive in the terms of
future developments. The MMU that functioned properly demonstrated a clear conver-
gence to a specific position, underscoring the validity of the applied methodology. This
inference is further supported by the final position of the MMU, aligning closely with the
mid-point of the screw, as anticipated from the digital twin analysis.
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Figure 6.7: Non-linear ĝ control experimental results.

6.4. Performance assessment

The absence of the experiment’s second step precludes an unbiased evaluation of the
methodology’s performances. Nonetheless, as the aim of this phase is primarily to ascer-
tain the residuals order of magnitude, utilizing CAD data is deemed a justifiable approx-
imation. In the current MMUs configuration, the digital twin indicates a vertical offset
of rz = 2.55 cm, placing rz order of magnitude at 10−2 m. Consequently, with the known
residuals of the Euler angles, a rough estimate of the CR-CM offset can be achieved.
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Table 6.1: Static estimation of residuals.

Euler Angles [rad] Residuals [m]

First PID
ϕ = −0.0006

θ = −0.0286

rx ∼ 10−4

ry ∼ 10−6

Second PID
ϕ = 0.0056

θ = 0.0005

rx ∼ 10−6

ry ∼ 10−5

To evaluate the effectiveness of the procedure, these residuals shall be evaluated with
respect to a reference framework, providing a quantitative comparison base to properly
gauge them. Hence, three distinct approaches have been conceptualized:

• A methodology based on control torque, involving a comparison with the torque gen-
erated by the actuators that STASIS is planned to employ specifically to counterbal-
ance the residual offset. This approach, prior to any assessment on the experiment
efficacy, shall include specific considerations on actuators’ saturation.

• An approach founded on a comparison with the aerodynamic drag effect, aimed at
measuring the residual relative to the predicted drag disturbance torque at a specific
angular velocity.

• An examination of MMUs precision, assessing the minimal CM shifting provided by
the stepper-motor driven masses, to determine the control execution performances.

The first two approaches are not suitable for an evolving platform such as STASIS, as
they necessitate comprehensive system knowledge. Presently, the final actuators for the
residual offset compensation have not been determined, and accurate drag coefficient esti-
mates are unavailable. Conversely, the third approach aligns with the currently available
data. The maximum precision of the system actuators can be effectively evaluated by
considering their minimal impact on the overall CR-CM offset. Given the mass ratio
between MMU and platform, and the smallest possible shift for an MMU (equivalent to
one step), the actuators precision can be computed as:

∆rmin =
1

2

mi

m
∆Rmin ≈ 1.33 · 10−7 m, (6.1)

which is two orders of magnitude below to what has been achieved, suggesting that addi-
tional enhancements are necessary to fully leverage the actuators’ high precision.
In summary, despite being aware of the numerous complexities associated with real-world
experimentation, it is essential to complement the commendable design efforts in the
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balancing hardware of STASIS with a more proficient algorithm. Therefore, further de-
velopment of the closed-loop strategy, potentially incorporating the non-linear approach,
is strongly advised.

6.5. Lessons learnt

The control experiments conducted as part of the EXTREMA project has yielded signif-
icant findings. Besides the identification of key operational parameters such as working
frequencies and control saturation, it has also laid a foundational framework for future
enhancements. Specifically, non-invasive modifications to STASIS are advisable to rec-
tify the observed structural anomalies. Notably, during various experimental runs and
tests, the MMUs frequently disengaged around the mid-point of the screw. Moreover,
disconnections were observed at points other than the known structural singularity of
STASIS, suggesting that the screws supporting the MMUs may be experiencing mechani-
cal bending. Evident from Figure 6.8, this bending might generate a vertical force on the
actuators, leading to their loss of electrical connectivity with the linear guide.

Figure 6.8: Real STASIS movable mass unit.

Furthermore, the experimental phase, employing diverse communication protocols simul-
taneously, highlighted the risk of overloading the local router. Notably, during real-time
experiments, the host server was observed to reject connections after approximately 10
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minutes of actuation. This duration is acceptable for a balancing procedure, but might
cause a significant slowdown for the EXTREMA project, which intrinsically requires the
execution of simulation that may span several days. Finally, as underscored in [19] and
evident from the first experimental PID execution, enhancing the FlatSat with an en-
ergetic autonomy constitutes a significant advancement. This advancement is pivotal
for enabling rapid experiment repetition, which is instrumental in expedited parameter
adjustment and debugging processes.
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This thesis delves into the simulation, design, and testing of an automatic balancing pro-
tocol for a nano-satellite dimension simulator. The intrinsic complexity of the project
necessitated scrupulous planning to guarantee consistent balancing process, rendering the
actual experimental execution a comparatively minor component of this project. The
introduction of unforeseen variables into the simulation markedly constricts the range of
viable strategies, underscoring the procedure’s susceptibility to errors. Specifically, given
the simulator’s reduced dimensions, the potential for disturbances such as structural sag-
ging and vibrations, may significantly skew the final outcomes.
Acknowledging these complexities, even the simulation results are not exceptionally ac-
curate, exhibiting a residual error on the scale of 10−4 m. This accuracy, however, could
potentially be enhanced through the application of a state observer. Despite these chal-
lenges, the research underscores the critical nuances and careful orchestration required
in balancing algorithms for nano-satellite simulators, especially due to the pronounced
impact of minor disturbances.

7.1. Addressing the research question

The comprehensive efforts dedicated to the STASIS digital twin and the EXTREMA
Simulation Hub have facilitated a thorough response to the study’s research questions,
encompassing both theoretical achievements discerned from the simulations and the tan-
gible challenges faced during experimental processes. The discussion initially focuses on
resolving operative research questions, addressed through the comprehensive simulations
performed on the platform digital twin. Hence, an in-depth exploration of the primary
research question, which constitutes the essence of this study, is provided, focusing on the
main outcomes of the experimental activities.

2. Operative research question: What is the impact of the other disturbances on
the balancing performances for a nano-satellite dimensions simulator?
Consistent simulations have unequivocally demonstrated the criticality of distur-
bances in the balancing process. Specifically, incorporating aerodynamic drag into
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the automated balancing simulations markedly diminishes performance outcomes.
This phenomenon has minor impact on batch estimation, primarily because it does
not rely on specific assumption on platform dynamics. However, state observers,
such as extended and unscented Kalman filters, are exposed to the risk of diver-
gence. This is predominantly due to their intrinsic dynamic prediction phase, which
can become ineffective if there is a lack of comprehensive understanding of the
platform’s consistent dynamic behavior. Consequently, it is advisable to employ
state observers only when there is an in-depth, precise model of platform dynamics,
possibly combined with RWs with very high torque capability.

3. Operative research question: How attitude sensors noise can affect the balanc-
ing performance?
An intricate and precise characterization of sensor noise has highlighted the pro-
found influence that sensor inaccuracies exert on balancing performance. In this
scenario, it is not just the observe-and-compensate methodologies suffering signif-
icantly, leading to highly skewed inertia estimations, but also certain theoretically
efficient active controls, potentially tending toward divergence when these factors
are included. This outcome is attributable not only to their dependence on the most
noise-afflicted measurements but also to certain stages in the control implementation
where noise-infused measurements aggregate, thereby culminating in compounded
errors. In essence, the introduction of both dynamic disturbances and sensor errors
drastically reduces the array of viable strategies that can be effectively employed.

4. Operative research question: What is the best strategy to achieve an unbiased
platform balancing?
Upon integrating the primary error sources and considering the practical constraints
of the procedure, the spectrum of feasible strategies significantly contracts, paving
the way for the implementation of an effective approach. Simulations’ analyses indi-
cate that the optimal path for platform balancing hinges on a compensation strategy
primarily anchored to the most accurate sensor available. Additionally, the selected
approach shall avoid the amalgamation of noise-affected readings and steer clear of
any initial assumptions regarding platform inertia or gravitational torque.
The remaining vertical offset can be proficiently ascertained using a robust batch
estimation technique. The strength of this method lies in its lack of stringent pre-
suppositions, although this same factor contributes to its less-than-ideal precision.
The accuracy of this technique can be enhanced through the employment of an ad-
ditional Kalman observer. However, while this tool can yield precise outcomes, it
also exhibits an increased susceptibility to divergence, attributable to the multitude
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of underlying assumptions.

5. Operative research question: What are the advantages of having 4 planes of
symmetry in the balancing hardware configuration?
The utilization of continuous and rapidly reproducible simulations via the digital
twin facilitated an accelerated understanding of the balancing problem, encompass-
ing all its complex and technical aspects. Specifically, the benefits of employing
a symmetric balancing hardware configuration were fully realized. This symmetry
presents both technical and practical advantages. From a technical standpoint, the
dual-actuation system allows for the use of lower control gains, thereby reducing
the propensity for divergence and minimizing step commands to the stepper mo-
tors, which subsequently decreases the likelihood of request throttling. Moreover, a
symmetric configuration facilitates the proximity of the actuator’s center of mass to
that of the platform. This proximity is crucial when segregating the procedure into
planar and vertical balancing, as it significantly mitigates the influence of vertical
balancing on planar compensation. By ensuring that the actuator’s center of mass
is closely aligned with the platform’s, the process enhances the precision of each
balancing action, making the overall procedure more efficient and reducing poten-
tial interference between the two phases.
On the practical side, there is an inherent advantage, especially in processes where
the procurement and setup of micro-controllers are bottlenecks of the procedure.
The ability to deploy multiple controllers enhances resilience against motor mal-
functions, as it permits the continuation of experiments by simply installing the
operational MMU on the simulator, accelerating the balancing algorithm execution
and providing robustness against pragmatic setbacks.

1. Main research question: To what extent an automatic balancing procedure can
provide a micro-gravity environment for an air-bearing CubeSat simulator?
Upon months of dedicated research, the primary research question of this thesis
can be effectively addressed. The design of a balancing procedure for a CubeSat
simulator presents substantial challenges, mainly due to escalated disturbances and
uncertainties effects with decreasing dimensions of the platform. Hence, designing a
procedure that inherently possesses robustness against environmental variables and
production uncertainties is pivotal. Despite the numerous complexities associated
with real-time empirical methodologies, this work has demonstrated the possibility
of achieving a 10−5 m compensation in the planar CR-CM offset. Additionally, there
is optimism for attaining higher precision with further refinement of this method, as
evidenced by the roll axis reaching a precision of 10−6 m in the second PID experi-
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mental execution. This achievement provides accurate data of STASIS, essential for
progressing to a consistent state observation, unbiased by CAD information. Con-
sidering that observe-and-compensate methods typically yield less precise outcomes,
the active control’s error propagation is judged to be minimal. This factor renders it
a robust solution for the automatic balancing of the platform, effectively addressing
the technical challenges posed by the compensation of a partially observable system.

7.2. Recommendations for future developments

Given the procedure’s elevated complexity and susceptibility to errors, expanding the ar-
ray of available hardware could facilitate the implementation of a technique with enhanced
robustness in facing the real-world variables.
While this work demonstrates only virtually the outcomes achievable with RWs, future
advancements could leverage them, especially as they are planned to be mounted on
STASIS to simulate complex GNC algorithms performances. Hence, the restored observ-
ability would facilitate the design of a balancing process executed in a singular phase.
It is noteworthy that utilizing RWs does not inherently preclude the implementation of
active control strategies. In fact, RWs serve as instrumental components in re-establishing
observability and can be integrated into an active control framework, thereby enabling
comprehensive, multi-directional balancing executions in a singular operational phase.
Subsequent recommendations also advocate for a more rigorous examination of STASIS
disturbances, hence, the potential integration of high-fidelity aerodynamic effects and the
structure’s anisoelasticity. Such incorporation could be crucial for offset compensation
through an augmented Kalman filter that concurrently estimates inertia parameters and
offset in a singular step. This filter has demonstrated a precise capacity for compensating
simulator offset but necessitates an exceptionally accurate dynamic model and three-
dimensional actuation to ensure complete observability.
Additionally, considering that balancing procedures focus on the cancellation of the major
disturbance only, delving into these advanced disturbances and incorporating them into
the simulation model would significantly contribute to the development of more reliable
and robust GNC algorithms for future deep-space probes missions.
The experimental endeavors provided valuable insights, from which actionable recom-
mendations for the future development of the platform can be discerned. To tackle the
jamming of the pitch-oriented MMU, caused by structural discontinuities, a revision of
the actuator assembly, including the re-installation of the damaged wheel, is proposed.
In addressing the structural bending of the leadscrew, a redesign of the rigid joint at the
terminus of the thread is suggested, potentially mitigating the internal stress when the
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MMU is positioned centrally on the leadscrew. Furthermore, the implementation of a
router appositely tailored for the ESH is advisable. While the current continuous connec-
tion duration might suffice for balancing procedures, for GNC simulations extending over
several days, inherent to the EXTREMA project, the risk of disconnection is untenable.
Finally, the interruption of simulations and tests due to battery depletion reaffirms the
need for STASIS to achieve energetic autonomy, aligning with the planned design ad-
vancements of the platform.
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A| IMU validation

Comprehensive review and adherence to the IMU datasheet were conducted to guarantee
accurate data capture and appropriate measurement scaling. Preliminary tests were exe-
cuted on the IMU sensor to verify the uniformity of the readings. The sensor underwent
specific motions to promptly ascertain result consistency. Initially, a rotation around the
yaw axis was applied, with the anticipation of a steady gravity vector reading.
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Figure A.1: Yaw rotation IMU test.

Subsequently, a rotation around the pitch axis was introduced to assess the proper inver-
sion of the gravity vector.
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Figure A.2: Pitch rotation IMU test.

Evident from the accompanying Figures A.1 and A.2, the sensor readings align precisely
with the expected outcomes, thereby confirming the precision of the sensor’s configuration.
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