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1. Introduction
1.1. Clinical problem
Upper limb (UL) motor impairment affects a
significant number of individuals worldwide [1].
The need for assistance in carrying out activities
of daily living (ADLs) can lead to a deteriora-
tion of the quality of life. Motor rehabilitation is
therefore essential to mitigate the consequences
of UL motor impairment. In-clinic rehabilitation
consists in attending exercise and assessment ses-
sions within the first six months after the occur-
rence of the compromising event. More in detail,
the assessments are mostly based on standard
clinical scales, among which the most popular
are Fugl-meyer Assessment scale for Upper Ex-
tremity (FMA-UE) and Action Arm Research
Test (ARAT). Despite their popularity, the ap-
plication of these scales is time-consuming and
can reduce the efficiency of the rehabilitative
session. Moreover, evaluation inaccuracies can
be introduced by ceiling effects, the subjective
interpretation of the practitioner, and difficulties
in recognizing compensatory strategies.
For these reasons, in recent years, wearable sen-
sors have been proposed as tools for an objective
assessment of UL recovery. These sensors can be

used in the clinic but the application can also
move to home environments. In this scenario
they can be embedded, for example, in wearable
robotic devices, to promote home-based ther-
apy and to provide a continuous and reliable arm
movement registration while performing the exer-
cises. Indeed, the extension of the rehabilitation
program over the 6-month period has proved to
be effective [3]. However, limited resources in
healthcare centers and the rising demand caused
by population aging make it difficult to prolong
the treatment in the clinic.

1.2. Machine learning for motor prim-
itive classification

As mentioned, wearable sensors represent a
promising tool to overcome the limitations of
functional assessment clinical scales. Among
the different possibilities, inertial measurement
units (IMUs) can provide data on the acceler-
ation, angular velocity, and orientation of the
limb they are positioned on. To extract meaning-
ful metrics from IMUs data, it is first necessary
to segment the data stream into movements and
motor primitives. Indeed, according to the taxon-
omy proposed by Schambra et al. [4], functional
movements can be segmented into a sequence
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of ’motion units’, namely the primitives, which
are characterized by a short duration and a pre-
cise goal. Machine-learning algorithms applied
to IMUs data can be exploited to achieve this
purpose.
For instance, Guerra et al. conducted a study
aimed at the classification of rest, reach-to-grasp,
release-to-retract primitives, and different sub-
types of object manipulation [5]. The collection
of data was performed on both healthy and stroke
subjects by means of 7 IMUs placed on different
upper body segments including hand and head.
In particular, they exploited linear and angular
acceleration, linear and angular velocity, posi-
tion, and orientation provided by the sensors for
the construction of a dataset characterized by
665 features. They used logistic regression and
Hidden Markov models to classify data labeled
through video observation, achieving an average
precision of around 80%. Parnandi et al. [2]
proposed an algorithm, based on deep neural net-
works, for the classification of 5 primitives: idle,
stabilize, reach to grasp, reposition, and trans-
port. They exploited kinematic data (77 features
including 22 anatomical angles) obtained from
9 IMUs during the execution of typical rehabili-
tation exercises done while sitting and without
trunk flexion. The proposed neural network ar-
chitecture was based on sequence-to-sequence
algorithms; in particular, they used Gated Re-
current Units (GRU). Their algorithm performed
well in counting primitives, achieving an accu-
racy of around 90%. However, regarding the
specific sensibility for each primitive, they ob-
tained values from 67.7% to 82.2%. There is a
gap in the literature regarding an application
that specifically attempts to classify primitives
in an uncontrolled scenario using joint angles.

1.3. Open challenges and scope of the
thesis

In home-based rehabilitation and assistive sce-
narios, soft exoskeletons, known as exosuit, are
gaining attention thanks to their lower weight,
safety, and comfort. Exosuits, just like exoskele-
tons, are equipped with kinematic sensors to al-
low control. The present work is part of a wider
project in which an upper limb cable-driven ex-
osuit is being developed. The exosuit includes
three IMUs that estimate the orientation of the
arm of the user by means of rotation matrices.

The ultimate goal of this thesis is to assess UL
movements of exosuit users during ALDs exploit-
ing IMUs. The purpose of this assessment is
to provide the input for the control system of
the exosuit and to enable remote and continuous
tracking of patients’ progresses. This informa-
tion may be used to provide feedback to the user
so as to promote engagement.
More in detail, the first objective of this the-
sis concerns the development of an algorithm to
extract upper limb 3D joint angles from IMUs:
to control the anti-gravitational action of the
exosuit, it is indeed necessary to know the 3D
position of the arm in space. To this purpose, a
calibration method needed to be implemented to
compensate for misalignment between the sensor
and the limb segments. Then, the algorithm to
compute the 3D angles according to the Interna-
tional Society of Biomechanics (ISB) standard
needed to be defined and validated against a
robotic arm and an optoelectronic system.
The second objective of this work is the develop-
ment of a classifier to perform automatic motor
primitive classification on a dataset including
simple and complex ADLs activities. The ne-
cessity to introduce motion classification arises
considering that the final application of the exo-
suit will be in an uncontrolled environment and
the evaluation of metrics has to be performed on
meaningful windows of data. With the obtained
upper limb kinematic model, which was derived
from the previous objective, the main aim is to
classify motor primities from activities of daily
living by utilizing the joint angles as inputs.
This thesis focuses on these two objectives, leav-
ing UL movement evaluation metrics for further
work.

2. Materials and methods
2.1. IMU-based estimation of upper

limb angles
This section describes the development and val-
idation of a calibration method to align IMUs
reference frames on body segments, and the for-
malization of a method to extract UL angles
according to ISB convention. At this scope,
NGIMU (x-io Technologies Limited Bristol, UK)
sensors were used to acquire data at 150Hz for
the validation on the robotic arm and at 50Hz
for the one on humans. In particular, an IMU
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Figure 1: IMUs (circled in red) positioning on TIAGo
robot (left) and healthy subject (right).

was positioned on the thorax, one on the upper
arm, and on the forearm as in figure 1.
Validation was performed in 2 steps: comparing
first IMU-based angle estimation with a robotic
arm’s (TIAGo, PAL Robotics Barcelona, Spain)
encoders (sampling frequency of 35Hz), then on
healthy participants comparing the validity of
the measurements against an optoelectronic sys-
tem (BTS SMART DX 400, BTS SPA, Italy)
acquiring video at 100fps.

2.1.1 Calibration procedure

To avoid magnetic interference, the magnetome-
ter of each IMU was switched off: this choice
introduced the need to perform a reset of the
sensor prior to each acquisition by aligning them
to guarantee a common reference ground. The
calibration procedure was based on the acqui-
sition of two different poses: i)the N-pose and
ii)the T-pose. During the N-pose, the user stands
still with the arms resting and the palms of the
hands pointing forward. In this configuration,
the ISB joint angles are ideally null. The T-pose
corresponds to a rotation of 90° of the arm on the
coronal plane, but lower elevation angles were
also accepted. This calibration aimed at defin-
ing the orientation of the upper arm (UA) and
forearm (FA) with respect to the thorax (TH).
This reference frame is characterized by a verti-
cal y-axis, the x-axis pointing forward, and the
z-axis to the right as depicted in Figure 2.

2.1.2 ISB angles computation

ISB defines the shoulder joint angles according to
a Y-X-Y sequence of Euler angles rotations with
respect to the reference frame in Figure 2. The
first rotation around the Y axis defines the Plane
Of Elevation angle (POE ), the rotation around
X the Angle Of Elevation (AOE ), and the last ro-

Figure 2: ISB reference frames. TH indicates the
thorax, FA indicates the upper arm, FA indicates the
forearm.

tation around the Y axis represents the Humeral
Rotation (HR). The elbow joint is instead de-
fined as a Z–X–Y rotation sequence. The first
rotation around Z is the Flexion-Extension (FE )
angle and the rotation around Y is the Prona-
tion/Supination angle (PS ). The rotation around
X, which is descriptive of the ulnar deviation, will
be considered as negligible. The orientation of
the upper arm body segment (ISB,UA) with re-
spect to the ground reference frame (G) can be
defined as:

RG
UA = RG

THRy(κPOE)Rx(−κAOE)Ry(κHR)

(1)
where RG

TH is the rotation matrix of the thorax
body segment with respect to G and k is an
index equal to 1 for the right arm, and -1 for
the left arm. The rotation matrix describing the
orientation of the forearm body segment with
respect to G can be defined as:

RG
FA = RG

UARz(FE)Ry(κPS) (2)

The POE can be computed as:

POE = ̸ (projXZTH
(YUA),−κZTH) (3)

that is the relative angle between the projection
of the y-axis of FA (YUA) onto the plane defined
by the x-axis and the z-axis of TH (XZTH), and
the z-axis of TH.
The AOE can be computed as:

AOE = ̸ (YUA, YTH) (4)

that is the relative angle between the y-axis of
TH and the y-axis of UA.
Inverting Eq. (1) Ry(HR) can be obtained, and
HR can be computed as:

HR = tan−1([Ry(HR)]1,3, [Ry(HR)]1,1) (5)
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where [A]i,j indicates the element of the matrix
at the i-th row and j-th column.
FE can be computed as:

FE = ̸ (YFA, YUA) (6)

that is the relative angle between the y-axis of
FA and the y-axis of FA.
Inverting Eq. (2) Ry(PS) is defined, and PS can
be computed as:

PS = tan−1([Ry(PS)]1,3, [Ry(PS)]1,1) (7)

Given that, because of soft tissues, there could
be relative movement between the IMUs and the
bones of the upper limb, the angle estimation
could be corrupted. This is especially true for
HR and PS. Therefore, an alternative definition
of the FA rotation matrix, namely UAcorr, was
proposed in order to define two variants for PS
and HR angles.

XUAcorr = (projYFAUAYUA)− YFA (8)

YUAcorr = YUA (9)

ZUAcorr = (XUAcorr/|XUAcorr |)× YUAcorr (10)

Where projYFAUA is the projection of y-axis of
FA onto y-axis of UA. Finally, the variant of the
HR, namely HRcorr, can be computed exactly
like HR substituting in Eq. (1) FA with UAcorr.
The same "corrected" FA rotation matrix was
used to estimate an alternative PS angle, namely
PScorr starting from the application of UAcorr
in Eq.(2).

2.1.3 Validation on the robotic arm

The experimental protocol for the validation of
the IMU-based angle estimation against TIAGo’s
encoders was subdivided into 2 tests. During the
first test, the IMUs were positioned trying to
align the y-axis of the sensors with the robot’s
segments. The second test was instead conducted
after positioning the IMUs in a non-aligned man-
ner. Each test consisted in the execution of a
sequence of movements that were registered both
by TIAGo’s encoders and IMUs. IMUs were po-
sitioned on TIAGo’s upper arm, forearm, and
head. Root Mean Squared Errors (RMSE) and
correlation coefficients (r) of the two tests were
evaluated and the mean percentage RMSE rel-
ative to the Range Of Motion (ROM) of every
single angle (RMSE%) was computed.

2.1.4 Validation on healthy participants

A second validation was conducted on healthy
participants by means of an optoelectronic sys-
tem. 5 volunteers (mean age=24, 2 males, 3 fe-
males) were included in the acquisition protocol.
17 markers were positioned on bony landmarks of
the thorax, upper arm, and forearm as suggested
in [6]. The IMUs were positioned as in Figure
1. The acquisition protocol consisted of 5 simple
tasks, aimed at exploring one single joint at the
time. Drift control was performed and, if iden-
tified, the calibration procedure was repeated
together with the task after which the drift was
detected. To enable a comparison between the
two measurement systems data were processed
by interpolating the IMU signals at 100Hz to
match the optoelectronic system sampling fre-
quency, removing discontinuities, and removing
the offset. Synchronization of signals was then
performed by means of cross-correlation. Similar
to the validation against TIAGo, mean value and
Standard Deviation (SD) of RMSE, correlation
coefficient, and RMSE% were computed among
subjects.

2.2. Classification of motor primitives

2.2.1 Experimental setup and acquisition
protocol

10 volunteers (1 male, 9 females, mean age=30.5,
3 left-handed, 7 right-handed) participated in
the acquisition protocol. This consisted in the
execution of a dataset including 8 ’simple’ ADLs
(SADL) (moving a bottle, pouring water, drink-
ing, answering the phone, mixing, reading a book,
watering plants), and 3 ’complex’ ADLs (CADL)
(breakfast preparation and eating, folding clothes,
and personal hygiene routine). IMUs positioned
as in Figure 2 were used for the registration of
kinematic data of both arms. A GoPro HERO
5 (GoPro Inc.) was used to acquire videos to
perform the labeling of the motor primitives (24
fps).

2.2.2 Ground truth identification and
data preparation

In order to build a ground truth for the clas-
sification of motor primitives, a video labeling
procedure was performed. At first, videos were
cut so that the first frame coincided with the
moment when a LED activation command was
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sent to the IMU, indicating the acquisition’s start.
Frames were labeled according to the 5 primitives
that had to be classified: ’idle’, ’stabilize’, ’reach’,
’transport’, and ’reposition’. A more refined data
synchronization was then performed by minimiz-
ing the standard deviation of ISB angles during
’idle’ and ’stabilize’ movements. Each activity
was zero-padded so that the length of activity
in the dataset was homogeneous. In this way,
by setting the batch size equal to the maximum
exercise length, the neural network was allowed
to process a whole exercise in a single iteration.
Prior to the application to the neural network,
labeled IMU data was segmented in overlapping
(overlap=80%) 0.12 s windows. Train and test
datasets were created by splitting each exercise
into 80-20 % portions respectively.

2.2.3 Model architecture

The deep learning network was built as a se-
quence of layers. The model included a first a
masking layer to assure that the algorithm ig-
nored the null values added during zero-padding
with an input shape equal to (6, 26), in which 6
is the window size, and 26 are the features cor-
responding to relative accelerations and angular
velocities between segments, 7 ISB angles as com-
puted in 2.1.2 and the angle between TH and
FA y-axes. A Long-Short Term Memory (LSTM)
layer and a dropout layer (dropout rate=0.5)
were then added. The latter was introduced to
prevent overfitting. Finally, a ’Dense’ layer was
stacked at the end of the model in order to map
the inputs into a number of outputs equal to one
of the possible labels by means of a ’softmax’ ac-
tivation function. The model was compiled using
Adam optimizer and categorical cross-entropy as
loss function.

2.2.4 Training and assessment of classifi-
cation performance

The LSTM performance was tested for different
values of hidden units, in particular, 50, 100, 200,
and 300. Each model was trained 2 times for each
hyperparameter choice: one using only SADL
dataset both for training and testing (dataset
A), the other using both SADL and CADL data
for training and testing (dataset B). For each
combination, 5 repetitions of training and testing
were conducted by randomly choosing 5% of the

training dataset for validation purposes.

3. Results and discussion
3.1. ISB angles: validation on the

robotic arm
Results in terms of RMSE, RMSE% and correla-
tion between the angles estimated from the IMUs
and the motor encoders of TIAGo are presented
in Table 1. As can be observed, signals from
both tests show similar metrics. Moreover, both
IMU signals are highly correlated to the one of
TIAGo since they present a low RMSE and a
high r. Correlation and RMSE values for PS and
FE of Test 1 are slightly worse compared to Test
1, possibly due to inaccuracies introduced during
calibration. The slightly worse RMSE that can
be observed in the POE, can be traced back to
the ill-posed definition of POE when AOE is
equal or close to 0°.

3.2. ISB angles: Validation on healthy
participants

Results in terms of RMSE and correlation be-
tween the angles estimated from the IMUs and
the optoelectronic system are presented in Table
2 and Figure 3. These metrics were computed
on signals after subtracting their mean values:
for assessment purposes, is indeed more relevant
to observe the ROM rather than the absolute
angles.
Regarding the shoulder joint, the AOE presents
higher errors compared to POE and HRcorr
(RMSE<10°). This error can be introduced by
calibration: during N-pose, in fact, the non-
perfect alignment of upper arms to the vertical
axis due to hips width could introduce an offset.
HRcorr performed better than HR. The reason be-
hind this might be that the latter was corrupted
by the movements of the soft tissues around the
humerus. HRcorr instead is computed from a ro-
tation matrix that moves, theoretically, in unison
with the bone.
Regarding the elbow joint, results are poor both
for FE, PS, and PScorr. The estimation of these
angles, in fact, can be more easily biased by a
drift, expected to cause an offset, or by a non-
negligible ulnar deviation. Moreover, the value of
the FE corresponding to zero may be different for
the optoelectronic system and the IMUs: from
Figure 3, in fact, is possible to notice that the
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Test 1 Test 2
r RMSE [°] RMSE[%] r RMSE [°] RMSE[%]

POE 0.998 3.99 3.57 0.998 5.75 5.14
AOE 0.998 3.16 2.48 0.999 2.33 1.83
HR 0.999 3.23 2.67 0.999 2.27 1.87
FE 0.997 4.57 3.61 0.995 5.28 4.16
PS 0.997 2.54 2.41 0.993 7.37 6.99

Table 1: Correlation coefficient (r) and RMSE between TIAGO’s encoders and IMU during two tests. RMSE%
refers to the percentage of the RMSE with respect to the range of motion (ROM).

Figure 3: ’IMU’=angles acquired with IMU sys-
tem (red), ’IMUcorr’=angles acquired with IMU
system computed with UA correction (green),
’OPTO’=angles acquired with the optoelectronic sys-
tem (blue).

FE estimated by the IMUs reverts its concavity
for small angle values. The underestimation of
PS and PScorr by IMUs is probably due to the
relative movement of the wristband and the more
proximal position of FA sensor with respect to
the wrist markers.

RMSE[°] RMSE% r
POE 9,459 ±5, 270 6,525 ±3, 538 0,976 ±0, 028
AOE 16,000 ±4, 069 14,004 ±3, 674 0,952 ±0, 031
HR 15,365 ±3, 318 11,342 ±2, 373 0,963 ±0, 037
HRcorr 9,455 ±4, 380 7,303 ±3, 859 0,966 ±0, 032
FE 24,984 ±10, 932 16,397 ±7, 897 0,970 ±0, 019
PS 28,409 ±8, 239 16,905 ±3, 866 0,958 ±0, 022
PScorr 29,654 ±12, 726 18,091 ±8, 802 0,919 ±0, 121

Table 2: Mean and standard deviation (SD) of RMSE,
RMSE% evaluated on the range of motion (ROM)
and correlation coefficients among 5 subjects.

A B
LSTM 50 0,738 ±0, 0058 0,700 ±0, 0033
LSTM 100 0,754 ±0, 0047 0,714 ±0, 0054
LSTM 200 0,765 ±0, 0062 0,711 ±0, 0046
LSTM 300 0,762 ±0, 0079 0,718 ±0, 0024

Table 3: Mean and SD values of f1-scores achieved
by LSTM 50, 100, 200, and 300 during the testing
phase of 2 combinations of datasets over 5 repetitions.
’A’:training and testing only SADL data. ’B’:training
and testing SADL+CADL data.

During the validation process with optoelectron-
ics, the results for human validation significantly
deteriorate with respect to the one presented in
3.1. Several factors may have contributed to this
degradation: the presence of soft tissues which
is not compensated for POE, FE, and AOE, the
calibration procedure, which can lead to some in-
accuracies especially when the participant had a
pronounced ulnar deviation, and the error intro-
duced by the optoelectronic system itself given
the lack of a standard protocol for UL kinematic
assessment.

3.3. Classification of motor primitives
The acquisition process resulted in a dataset of
6∗105 windows. Results for different model com-
plexity trained with different datasets (Table 3)
show that dataset A achieved in general better
performances with respect to dataset B, when
more complex activities were classified. This
result was predictable since in SADL dataset ac-
quisition, the same activities were executed in the
same way for all participants. On the contrary,
some variability was introduced in the CADL
tasks, in which subjects were able to move as
they wished. For dataset B, the absolute f1-score
slightly increases with LSTM layer depth: by
increasing the model’s complexity in fact, the
algorithm could learn more complex represen-
tations. A performance deterioration can be
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instead noticed in the case of dataset A: this
suggests that increasing the complexity of the
model could lead to overfitting.

Figure 4: LSTM200 confusion matrix of dataset A.

From Figure 4 it is possible to notice that the
primitives that were better classified were ’idle’
and ’transport’. Datasets were, in fact, unbal-
anced, with a prevalence of ’transport’ class com-
pared to the others (50% of the entire dataset).
The unbalancing of datasets had an effect on the
prediction of ’reach’ and ’reposition’, which the
algorithm still recognized as a movement but mis-
classified as ’transport’. However, even if ’idle’
and ’stabilize’ are characterized by very similar
kinematics since the arm is practically station-
ary, is interesting to notice that they were clearly
distinguished.

Figure 5: LSTM200 confusion matrix of dataset B.

As it is possible to observe in Figure 5, the unbal-
ancing of the dataset had an effect also when the
CADLs were introduced: the misclassification of
’reach’ and ’reposition’ is even more pronounced

with respect to the previous model. This could
be caused also by the fact that during CADLs,
movements were faster and more varied com-
pared to SADLs, and some errors may have been
introduced due to inaccurate labeling.

4. Conclusions
The validation of ISB computation achieved ex-
cellent results in terms of correlation for the
robotic arm. The validation on humans, as ex-
pected, in particular for FE, AOE, and PS, could
be improved by introducing individual specific
parameters such as ulnar deviation or hip width.
Moreover, to improve IMUs’ accuracy in the com-
putation of ISB angles, future works should focus
on drift compensation strategies. However, for
classification purposes, is not necessary that the
angles are estimated perfectly. The classification
algorithm performed well in the recognition of the
primitives that were more present in the dataset,
even in the CADL scenario. Indeed, the misclas-
sification of ’reach’ and ’reposition’ in ’transport’
was consistent with their similar kinematic and
the lack of information about hand movements.
’Stabilize’ and ’idle’ primitives, even if they are
very similar in terms of arm kinematics, were
well distinguished among the dataset A. It’s rea-
sonable to believe that, with a more balanced
and wider dataset, the classification could per-
form much better. By the implementation of a
clear computation method for ISB angles, and a
simple neural network for primitive classification,
this work represents a starting point for future
developments for UL assessment in daily living
scenarios.
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