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Abstract

In the financial industry, as in other fields, the usability of models largely
depends on the flexibility they offer in a production environment, and the
ability to adapt to scenarios that were not necessarily intended for the model
to handle. In this work, we present a modular model that offers great flexi-
bility and allows to be scaled according to the needs of a particular situation.
The model proposed here is made up of a series of neural network, and its
purpose is to forecast price movements in a high-frequency setting. In par-
ticular, we apply our model to Limit Order Book data from the NASDAQ
and Bitfinex exchanges. Moreover, we illustrate a series of analysis steps that
need to be taken in order to determine relevant parameters for models -not
necessarily similar to ours- trying to deal with the same data at our disposal.
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Sommario

Nel settore finanziario, come in altri campi, l’usabilità dei modelli dipende in
gran parte dalla flessibilità che offrono in un ambiente di produzione e dalla
capacità di adattarsi a scenari diversi da quelli pensati nella fase di definizione
del modello. In questo lavoro, presentiamo un modello modulare che offre
grande flessibilità e consente di essere scalato in base alle esigenze. Il modello
qui proposto è costituito da una serie di reti neurali e il suo scopo è prevedere
i movimenti dei prezzi in un ambiente ad alta frequenza. In particolare,
applichiamo il nostro modello a dati provenienti da Limit Order Book estratti
dagli exchange NASDAQ e Bitfinex. Inoltre, illustriamo una serie di passaggi
di analisi che devono essere compiuti per determinare parametri rilevanti per
modelli -non necessariamente simili al nostro- che cerchino di trattare gli
stessi dati a nostra disposizione.
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Chapter 1

Introduction

1.1 General framework
In the last decades, machine learning has gained a lot of attention world-
wide. A machine learning model is essentially an universal approximator of
non-linear functions. A deep learning model tends to be incredibly robust
with respect to overfitting data, and can be trained on enormous datasets to
be able to classify and predict new observations. Development in this field
have accelerated rapidly in the last two decades, because of the increasing
recording and availabilty of large datasets, as well as advancements in hard-
ware, such as GPU, that can be used to train machine learning models.

With the advent of modern electronic markets, most historical data regard-
ing financial markets are readily available to be used to fit deep learning
models. However, it is relatively uncommon to be able to use large datasets
in this field. For example, if one is to retrieve daily stock market data of the
S&P500, one of the most important indices in the field, it would only be able
to obtain less than one hundred thousand datapoints. This problem can be
avoided if one is to access high frequency data, which is what we use in this
work.

Most applications of machine learning in finance are not related to stock
forecasting. Rather, most applications are about tasks such as derivatives
calibration and pricing, as well as risk management purposes.

9



CHAPTER 1. INTRODUCTION 10

Stock forecasting is a difficult task for many reasons: firstly, and most no-
tably, markets are irrational, and large moves in stock prices are exogenous,
coming from events such as press releases, earnings report, geo-political tur-
moil, influencers’ tweets, and much more. Therefore, the information that
could be consequential to predict new observations is not generally included
in the market data itself. Moreover, any consistently successful forecasting
model can be used in principle to make low-to-no-risk profits. Therefore,
were there any such models, large market participants would surely make
use of them, and the markets would ’price’1 those in, and they wouldn’t be
successful anymore.

1.2 Brief description of this work
Since the advent of electronic markets, a large amount of literiture has been
produced on the topic. This is also due to the fact that, in a high-frequency
setting there’s availability of large number of data, contrary to most other
financial timeseries’ analysis. This is only partly balanced by the difficulty
of accessing this type of data, that usually require subscription to specific
softwares, such as LOBSTER, since the commonly used data providers such
as Bloomberg and Reuters don’t offer limit order books snapshots.

Generally, we can distinguish between theoretical models and data-driven
models. A large number of both types of studies have been produced.

Some examples of theoretical models include Blanchet and Chen (2013),
where the authors derive a continuous time model for the joint evolution
of the mid price and the bid-ask spread from a multiscale analysis of the
whole limit order book dynamics; Avellaneda and Stoikov (2008) and Cont
et al. (2010) where the authors propose a diffusion model for the best bid and
ask prices; Cont and De Larrard (2013) in which arrivals of LOB events are
modelled in terms of Markovian queueing system; Abergel and Jedidi (2013)
describe the order book as a multidimensional continuous-time Markov chain,
with a particular focus of LOB events, most particularly cancellations; Donier
et al. (2015) where limit order book events are analysed through the help of
a reaction-diffusion; Carmona and Webster (2012) model the market maker

1’Priced in’ is a terms used in finance to indicate that an information, such as earnings
reports, is already ’included’ in the market price of a given security.
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stochastic optimization problem as a stochastic control problem; Avellaneda
et al. (2011) try to forecast new prices using a diffusion model.

Some examples of data-driven models include Qureshi (2018) where the
authors compare severals machine learning methods for forecasting future
mid-prices; Passalis et al. (2018), where the authors use a Bag-of-Features
approach to predict future mid-prices; Nevmyvaka et al. (2006) a reinforce-
ment learning approach is used to optimize order executions; Zhang et al.
(2019) where a Convolutional Neural Network is used to predict future prices;
Kercheval and Zhang (2015) where the authors make use of a Support Vector
Machine approach.

This work is based on the work of Sirignano (2019). The authors take ad-
vantage of the discrete nature of prices of securities traded in electronics,
order-driven exchanges such as the NASDAQ exchange, to frame stock fore-
casting as a classification problem. They then develop a model, which they
call the spatial neural network, to model the tails of the distribution of fu-
ture price movements. Classification problems usually consists in modelling
a discrete probability distribution. In the case of forecasting, it consists of, in
particular, modelling a future probability distribution. The approach of the
authors lies in utilising a neural network for modelling a conditional proba-
bility, the form of which is justified by a local behaviour of the data.

We approach the classification problem in the same way, with a slightly
different target of forecasting, namely the joint distribution of best bid and
best ask price. Moreover, we make use of a modular model in which 3 neural
networks per side2 are used.This architecture was inspired by a analogous ar-
chitecture proposed in the first version of the work from Sirignano, uploaded
to ArXiv and available at https://arxiv.org/pdf/1601.01987.pdf.
In their architecture, 2 spatial neural networks, are used, along with a third
neural network. This third neural network is a classificator, which determines
the general direction of prices (either up, down, or constant).

However, we find that for 2 out of those 3 neural networks, the features used
as input are somewhat naive. Indeed, in the final published work, the authors
give most of the attention to the network that we do not modify, which is

23 networks for the bid side, and 3 for the ask side, for a total of 6 neural networks.

https://arxiv.org/pdf/1601.01987.pdf


CHAPTER 1. INTRODUCTION 12

used to forecast movements of the bid and ask prices moving towards their
respective side of the book3. We reproduce their study intended to justify its
input, with some slight differences dictated by practical limitations. As far
as the other two networks are concerned, we propose two different analysis
to justify the use of certain features as inputs. In the case of the second
spatial neural network, we analyse the bid-ask spread behaviour and other
local properties, before using the same features used by the authors. In the
case of the third neural network, we radically change the input following an
extensive work of feature selection and literature review.

There are many examples for the third neural network used in this work,
and we took inspiration from the one used in Zhang et al. (2019), where
the authors used a Recurrent Neural Network (RNN), paired with a convo-
lutional layer to predict next prices’ movements. The convolutional layer is
applied to the entirety of the limit order book information, and so it is meant
to automatically detect important features of the data.
Dissimilarly to this, we firstly identify relevant features, and then hard code
features into our input pipeline.

Other than modifying the inputs of the models proposed by Sirignano af-
ter some due diligence, we also perform some empirical analysis to determine
other relevants decisions for our models, such as sampling time and the range
in which to predict new observations. This analysis is valid for any work try-
ing to approach Limit Order Book forecasting as a classification problem,
and it’s not restricted to this particular model.

1.3 Chapters summary
This thesis is organised as follows:

In Chapter 2, we will give a brief introduction of modern order-driven mar-
kets, where our data is from. We will explore some features of order-driven
markets, such as hidden liquidity, and we will delve a little deeper on the
particular exchanges that we used.

In Chapter 3, we will set the stage for the rest of this work, formulating
3For the best ask, that means increasing in price, and decreasing for the best bid



CHAPTER 1. INTRODUCTION 13

our problem and exploring which behaviour of our data justify the nature of
the proposed architecture.

In Chapter 4, we will delve deeper on the data we have available, and what
empirical properties and features they have, and what this means for our
model. The last part of the Chapter is dedicated to explain the feature se-
lection process we utilized.

In Chapter 5 we completely specify how the model is composed, and how
it can be used to predict new data. We also present the benchmark model
that we will compare our model to.

In Chapter 6, results are presented and discussed.

In Chapter 7, we draw some conclusion and present ideas for future work.

In Appendix A, we specify the equity data, i.e. we list the stocks used
in this analysis, as well as the time windows from which our data are from.



Chapter 2

Order-driven markets

An increasing proportion of financial transactions -in stocks, futures and
other contracts- take place in electronic, order-driven markets where all buy-
ers and sellers display the prices at which they wish to buy or sell a particular
security, as well as the amounts of the security desired to be bought or sold.
This kind of trading environment is the opposite of a quote-driven market,
which only displays bids and asks of designated market makers and special-
ists for the specific security that is being traded.

In a order-driven market, traders may submit limit orders (for buying or
selling), market orders and order cancellations which are then centralized in
a limit order book and executed according to precise time and price priority
rules. Priority is always based on price, and then, in most markets, on time,
according to a FIFO (First In, First Out) rule.
Essentially, three types of orders can be submitted:

• Limit order: An order to specify a price at which one is willing to buy
or sell a certain number of shares, with their corresponding price and
quantity, at any point in time.

• Market order: An order to immediately buy or sell a certain quantity,
at the best available opposite quote.

• Cancellation order: An order to cancel an existing limit order.

14
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2.1 Limit Order Books
The Limit Order Book represents, at each point in time, the outstanding
orders which are awaiting execution: it consists in queues at different price
levels where these orders are arranged according to time of arrival. A limit
new buy (resp. sell) order increases the size of the bid (resp. ask) queue.
Market orders are executed against limit orders at the best available price:
a market order decreases of size x the corresponding queue size by x. Limit
orders placed at the best available price are executed against market orders.
In contrast to markets where a market maker or specialist centralizes buy
and sell orders and provides liquidity by setting bid and ask quotes, these
electronic platforms aggregate all outstanding limit orders in the limit order
book that is available to market participants and market orders are executed
against the best available prices, in a mechanical manner.

Established exchanges such as the NYSE, Nasdaq, the Tokyo Stock Ex-
change, Toronto Stock Exchange, Vancouver Stock Exchange, Euronext (Paris,
Amsterdam, Brussels), and the London Stock Exchange have fully or par-
tially adopted electronic order-driven platforms. At the same time, the fre-
quency of submission of orders has increased and the time to execution of
market orders on these electronic markets has dropped from more than 25
milliseconds in 2000 to less than a millisecond in 2010. As a result, the
evolution of supply, demand and price behaviour in equity markets is being
increasingly recorded: this data is available to market participants in real
time and for researchers in the form of high frequency databases.

2.2 Hidden Liquidity in Limit Order Books
Along with the previously discussed types of orders, there’s another, spe-
cial type of order, called ’hidden’ or ’iceberg’, that allows traders, through
a higher commission cost, to limit their exposure by hiding a portion of the
quantity they are willing to trade. In some opaque limit order books, traders
may even either fully hide the quantity of their limit order and disclose the
price only (as in the Australian Stock Exchange), or hide the price and the
quantity of their order (as in the dark pool1 Turquoise).

1Dark pools are private exchanges for trading securities that are not in general accessible
by the investing public.
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Hidden orders amount to a striking proportion of trading volume: for ex-
ample, they correspond to more than 44% of Euronext volume , about 28%
of the Australian Stock Exchange volume. In the case of the exchange from
which our data are from, Tuttle (2003) finds that the hidden liquidity repre-
sents 20% of the inside depth in Nasdaq 100 stocks.

Of course, this affects the quality of the data. Since, and as we will see
in Section 4, our LOB data is reconstructed by submitted orders, hidden or-
ders are not included. Therefore, the sizes -but not the prices- contained in
our data do not necessarily reflect the real sizes that drives prices dynamics.
This is an unsurpassable obstacle, and we can’t to better than just use the
data at our disposal .

One important concern, however, is the informative value of the non-observable
orders. Since in effect market participants hide their quantity in order to
conceal information, one may argue that informed traders will, on average,
resort to hidden orders more frequently than uninformed traders, and that
price movements will reflect that information, making hidden sizes’ knowl-
edge more consequential to forecast future movements.

However, Aitken et al. (2001) show that in the Australian stock market there
is no difference in the stock price reaction between disclosed and undisclosed
limit orders, and conclude that there is no evidence that undisclosed limit or-
ders are more frequently used by informed traders. Moreover, Bessembinder
et al. (2009) show that in the Euronext Exchange hidden orders are actually
mainly used by uninformed traders.

2.3 Importance of modelling Limit Order Books
The analysis of such high frequency data constitutes a challenge, not the least
because of their sheer volume and complexity. These data provide us with
a detailed view of the complex dynamic process through which the market
‘digests’ the inflow of supply and demand to generate the price. The large
volume of data available, the presence of statistical regularities in the data
and the mechanical nature of execution of orders makes order-driven markets
interesting candidates for statistical analysis and stochastic modelling.
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At a fundamental level, statistical analysis and modeling of high frequency
data can provide insight into the interplay between order flow, liquidity and
price dynamics and might help bridge the gap between market microstructure
theory –which has provided useful insights by focusing on models of price for-
mation mechanism stylized equilibrium settings– and ‘black box’ stochastic
models used in financial risk management, which represent the price as an
exogenous random process.

At the level of applications, models of high frequency data provide a quan-
titative framework for market making and optimal execution of trades. An-
other obvious application is the development of statistical models in view
of predicting short term behavior of market variables such as price, trading
volume and order flow. The study of high frequency market dynamics is also
important for risk management and regulation. Even though the horizons
traditionally considered by risk managers and regulators have been longer
ones (typically, daily or longer), trading strategies, at different frequencies
may interact in a complex manner, leading to ripples across time scales which
propagate from high frequency to low frequency and even leading to possible
market disruptions, as shown by the Flash Crash of May 2010.

2.4 NASDAQ exchange
NASDAQ is the acronym for National Association of Securities Dealers Au-
tomated Quotation. It is an American stock exchange based in New York
City. It is ranked second on the list of stock exchanges by market capitaliza-
tion of shares traded, behind the New York Stock Exchange. The exchange
platform is owned by Nasdaq, Inc., which also owns the Nasdaq Nordic stock
market network and several U.S. stock and options exchanges.

This market was established on Wall Street on February 8, 1971 and was the
world’s first purely electronic stock exchange. Originally, computers were
used only to disseminate price information continuously and not to con-
nect operators: the passage of orders, up to 1987, took place via telephone.
However, the dissemination of online quotes ensured a significant increase
in transparency and market efficiency: for a long time, the Nasdaq was the
stock market where spreads were lower.
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The entirely electronic transmission of orders was also established at the
end of 1987. During the collapse of the market that took place in October of
that year, the unsustainability of order collection by telephone was evident:
given the large number of incoming orders, traders and dealers could not
physically answer phones and the lines often dropped.

Most of the data available to us comes from the NASDAQ Stock Exchange.
In Section 4, we will more thoroughly explain exactly what kind of data is
publicly available and the steps to take in order to get to actual Limit Order
Book data.

2.5 Bitfinex exchange
Bitfinex is a Hong Kong-based digital asset trading platform, owned and op-
erated by iFinex Inc., which is headquartered in Hong Kong and registered
in the British Virgin Islands. It allows its users to participate in several
markets. The Exchange Trading entails trading in a regular cryptocurrency
exchange, by making use of limit order books for the spot trade of digital
tokens.

Moreover, it also offers the possibility to take part in an Over The Counter
trading system, where market participants can conduct large deals directly
with a counterparty without using public order books, which allows them to
access significant amounts of liquidity without affecting the exchange market
price.

2.5.1 Tether

By far the most traded asset on Bitfinex is a cryptocoin known as Tether
(often called by its symbol USDT) which is a cryptocurrency with tokens is-
sued by Tether Limited, which in turn is controlled by the owners of Bitfinex.
There are about 63.2 billion USDT tokens in existence. This number of
USDT amounts to roughly the same value in USD.

This is because the Tether coin is a stablecoin, i.e. it’s meant to closely
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follow the value of the US Dollar. It was originally designed to always be
worth $1.00, maintaining $1.00 in reserves for each tether issued. While, ac-
cording to its 2021 settlement with the New York Attorney General Letitia
James, "Tether represents to users that any holder of tethers can redeem
them from Tether the company at the rate of one tether for one U.S. dollar."
Tether Limited as of 2017 stated that owners of tethers have no contractual
right, other legal claims, or guarantee that tethers will or can be redeemed
or exchanged for dollars. On 30 April 2019 Tether Limited’s lawyer claimed
that each tether was backed by $0.74 in cash and cash equivalents. In May
2021, Tether published a report showing that only 2.9% of Tether was backed
by cash, with over 65% backed by commercial paper. As we will see later
this has profound impacts for our purposes.

We have at our disposal some Tether data, along with the data from the
NASDAQ exchange. Over this work, we will analyze what differences arise
between the two for the scope of our model. We will also see what are the
implications, for our work, of the stablecoin nature of Tether.



Chapter 3

Problem Formulation

This chapter is the central chapter of this work and, after some basic defini-
tions, we will formulate the problem we are trying to solve, as well as which
features of the data justify the particular formulation used in this work.

3.1 Limit order books

3.1.1 Basic Definitions

In general, the best bid price of a security is the highest amount that market
participants are willing spend in order to buy said security. Conversely, the
best ask price is the lowest amount they are willing to sell it for. The mid
price is defined as the mean of these two prices. In an order-driven market,
a trader can place an order below the current best bid price, and above the
best ask price. Therefore, a Limit Order Book is characterized by more than
2 prices -and relative order sizes-, but by two sets of quantities. The first set
refers to all the prices at which an order is placed, and the second set refers
to the sizes of such limit orders.

Definition 3.1.1 (Limit Prices). Limit prices are defined as all prices at
which a limit order is currently placed.

Limit prices = [..., PB
k , ..., P

B
1 , P

B
0 , P

A
0 , P

A
1 , ..., P

A
k , ...].

They are divided into bid prices, i.e. prices at which market participants are
willing to buy the security in question, and ask prices, i.e. prices at which

20
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market participants are willing to sell it.
In this notation PB

0 and PA
0 refers to the best bid and best ask prices, re-

spectively. PA/B
k refers to the k-th limit order, respectively below and above

the best bid and ask prices.

Along with the limit order prices, the order book is characterized by their
respective order sizes, i.e. the overall number of securities that can be either
bought or sold at a given limit price.

Definition 3.1.2 (Order sizes). Order sizes are defined as all the amounts
of securities available to be traded at the various limit prices

Order sizes = (.., V B
k , .., V

B
1 , V

B
0 , V

A
0 , V

A
1 , .., V

A
k , ..),

where V A/B
k is the order size correspondent to the price PA/B

k .

A crucial notion in orden-driven markets is that of tick size, or resolution
limit: a limit order cannot be placed at any conceivable price, i.e. any posi-
tive real number. Possible limit orders can only be placed at multiples of the
tick size. There is in effect a resolution limit for LOB prices:

Definition 3.1.3 (Tick size). Tick size is defined as the smallest possible
difference between two prices:

tick ∈ R+ : ∃h ∈ N : |PB/A
k − PB/A

j | = h · tick ∀k, j.

From now on, we will be using the words "ticks" and "levels" interchange-
ably, and we will be referring to possible limit prices -multiples of the tick
size- as price levels.

As we will see later, ticks, rather than amounts of currency1 will be the
main ’unit of measure’ of securities’ movements.

1In the case of the NASDAQ exchange, one tick corresponds to 1 cent of the currency,
i.e. US Dollars.
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3.1.2 Limit Orders Book representation

The discrete nature of a limit order book makes possible to allow a simpler
representation of its state, at any given time. This can be done by assuming
that every possible price level below the best bid and and above the best
price are occupied up to a certain depth N , i.e assuming that the following
equation holds:

Limit Prices = (PB
0 −N ·tick, .., PB

0 −tick, PB
0 , P

A
0 , P

A
0 +tick, .., PA

0 +N ·tick),

where Limit Prices is defined according to 3.1.1.

Therefore, the state of the order book can be uniquely characterized by PB
0 (t)

and PA
0 (t), and the order sizes correspondent to all included price levels, so

that:

Definition 3.1.4 (LOB). A simplified representation of the state of the
limit order book:

LOB = {(PB
0 , P

A
0 ) , (V B

N (t), ..., V B
1 (t), V B

0 (t), V A
0 (t), V A

1 (t), ..., V A
N (t))} ,

where V B
k (t) is the total size associated to the price PA

0 (t)−k ·tick and V A
k (t)

is the total size associated to the price PA
0 (t) + k · tick.

Note that this representation lacks no generality, in the sense that if an order
is not present at a given price level, say the k̄-th, we allow Vk̄ = 0.
For liquid stocks, this is relatively uncommon, i.e. there tend to be out-
standing limit orders on all possible price levels. However, this allows our
representation to be spatial in nature, where limit orders can occupy pre-
determined states -i.e. price levels-. As we will see later in this section, this
is highly connected with the model architecture.
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Figure 3.1: Limit Order Book spatial representation with a 1 cent tick size.

3.1.3 Orders impact on the Limit order book

Order books data vary between exchanges and Book Construction methods,
as we will see. But on a general level, the book is updated whenever a
new order, out of the different types of orders, is submitted. Therefore, any
subsequent change in the order book doesn’t necessarily reflect a change in
either best bid or best ask price.

Figure 3.2: Example of two limit orders on the order book.

In Figure 3.2 we can see the impact of two different types of orders execution
on the initial state in Figure 3.1. A sell limit order for 100 shares, at price
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149.02 -1 price level away from the best ask price-, is submitted. Moreover, a
previously submitted buy limit order of 20 shares at price 148.95 -1 price level
away from the best bid price- is cancelled, reducing the overall bid volume at
level 2, V B

1 . Note that these were two events, corresponding to two updates
of the book.

Figure 3.3: Example of a market sell order on the order book.

Subsequently to the situation in Figure 3.2, in Figure 3.3 it is shown the
impact of a market sell order of 150 shares. A market sell is executed at the
best available bid price. In this case, since the best bid price corresponds to
100 shares, the sell order consumes all the available size, as well as part of the
second best bid price. Note that this changes the Bid-Ask spread, differently
from the two previous limit orders. Naturally, limit orders can impact best
ask and best bid as well, by simply posting either a buy limit order on a
price greater than the best bid, or by posting a sell limit order on a price
smaller than the best ask. On the other side, market buy/sell orders may
not change best bid or best ask prices, if the size of the order is not enough
to consume the total size posted at the best bid/ask price. In Figure 3.3 this
would happen if the size of the market sell order would have been lower than
100.
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3.2 Stock forecasting as a classification prob-
lem

The discrete nature of the limit order book also implies that time variations
of a given price level, say the best bid, also can only amount to multiples of
the tick size, i.e.:

∃h ∈ (..,−2,−1, 0, 1, 2, ..) : |PB
0 (t)− PB

0 (s)| = h · tick ∀ t, s ∈ R+ .

This means that price forecasting is in effect not a regression problem, where
h ∈ R, but rather a classification problem , aimed at determining which
h characterises the price movement. Indeed, the output of our model will
be a probability distribution on the h-space, i.e. the set of integers Z =
(..,−2,−1, 0, 1, 2..).

A couple of natural questions arise, however. The first question is that any
price forecasting application on an exchange with a resolution limit, and not
only a high-frequency application, should be a classification problem. Sec-
ondly, in a classification framework classes are uncorrelated, whereas in our
problem this is clearly not the case. This is because our application is spa-
tial in nature, since h represents the magnitude of a price movement, and
a notion of distance between classes is trivially defined. For example, the
events h = 4 and h = 5 are much more correlated than the events h = −1
and h = 17.

Having access to limit order book data can be a possible solution for both of
this problems.

As for the first, it is true that any forecasting application in presence of
a tick size should be a classification problem, and a regression is only an
approximation. However, if the time horizon is anything higher than what is
generally considered high frequency, e.g. daily, the natural range of possible
tick sizes of variation becomes unfeasibly large, as a daily variation ranges
orders of magnitude more than a 1s variation. This causes the number of
classes to be considered to increase dramatically, causing stability problems.
Therefore, the use of LOB data allows us to select an appropriate sampling
time to somewhat control classes’ balancing. We will delve on this more
deeply in the next chapter.
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As for the second problem, the use of limit quotes beyond best bid and
best ask allow our architecture to not only take this spatial nature of our
classification problem into consideration, but also to make use of any spatial
relationship in our data. We explain how this can be done in practice in the
next section.

3.3 Local behaviour of the Limit Order Book
In order to make use of spatial relationships deep in the order book, Sirignano
(2019), builds an appropriate architecture to do so. The first building block
of this architecture is based on the idea that there’s a local relationship in
the way the best bid and best ask price move.
Let us define the prices variations, that will be the target of our model:

Definition 3.3.1 (Prices Variation).

Y A/B = P
A/B
0 (t+ τ)− PA/B

0 (t),

where τ can either be a sampling time or a random variable indicating the
next price move.

Y A refers to the best ask price variation, whereas Y B to the best bid vari-
ation. When the difference between them is not relevant, we will stick to
the Y A/B notation, as done in the definition. Throughout this work, we will
measure Y A/B in ticks, i.e. if PA/B

0 (t+τ) = P
A/B
0 (t)+2 ·tick, then Y A/B = 2.

Let us consider best ask variation, without lack of generality. In principle,
it could depend on the whole state of the order book. However, Sirignano
(2019) finds that the probability that Y A moves more than a certain amount
of levels y, conditional on moving by at least y levels, mostly depends on the
size at level y, V A

y :

P (Y A > y|Y A ≥ y) = f(V A
y ) . (3.1)

Looking at Figure 3.4, it is quite clear why there should be this local re-
lationship: conditioned on the fact that the next best ask price PA

0 (t + τ)
will assume any price level greater or equal to PA

0 (t+ τ) + 1 · tick, the event
that it will actually go over that level can only occur if the entire liquidity
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present at V A
1 is consumed by subsequent orders. In other terms, V A

1 acts as
a barrier for Y A to move higher than y = 1 levels.

Figure 3.4: Visualisation of the event Y A > 1|Y A ≥ 1. The first ask size is
left blank as we are conditioning on Y A ≥ 1, so taking for granted that that
event occurred. The event in which we are interested refers to whether or not
the best ask price will move up by 2 levels, by consuming the size highlighted
by the diagonal lines.

Again looking at Figure 3.4, it should be clear why we use the LOB represen-
tation introduced in Definition 3.1.4, where we allow V A

k to be zero if there’s
no outstanding limit order at price level PA

0 + k · tick, instead of making
V A
k refer to the k-th non-zero limit order. We need V A

k be the liquidity to
be consumed at exactly PA

0 + k · tick, in order not to have a spatial mis-
match between order sizes and price levels. If V A

k happens to be zero, then
P (Y A > k|Y A ≥ k) will simply increase. Note that V A

k = 0 doesn’t imply
P (Y A > k|Y A ≥ k) = 1, since between t and t+ τ a limit order could fill the
k-th price level.

A good measure for capturing this local behaviour comes from fitting a logis-
tic regression to estimate the conditional probability in (3.1), using the ask
sizes in a neighbourhood of y:

P (Y A > y|Y A ≥ y) = f(V A
y−k, .., V

A
y−1, V

A
y , V

A
y+1, .., V

A
y+k) ,
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where f is the logit function, i.e.

f(~x) = (1 + exp {β + σ · ~x})−1 .

In Figure 3.5, coefficients from the logistic regression using y = 12 and k = 5
are shown. The central coefficient, correspondent to V A

y is greater than all
others, having more influence on the event Y A > y|Y A ≥ y. Moreover,
the p-value associated is the sole p-value below the traditional significance
threshold, confirming that V A

y is the only significant regressor.

Figure 3.5: Coefficients from the logistic regression, as well as correspondent
p-values and the threshold α = 0.05. On the x-axis, the distance from y = 12,
with V A

y corresponding to x = 0. The logistic regression was fitted on the
stock Amazon.

As we will explain better in the next chapter, statistical analysis across
stocks is restricted whenever the use of a full-depth of a limit order book is
required. This is because of the large memory required to store full-depth
limit order book is much greater than the one required to store first-level
limit order book data. Therefore it is difficult confirm this behaviour across
stocks, by keeping y and k fixed. To avoid this, we perform the logistic
regression of above varying y and k, as well as iterating across the stocks in
Set B2. We then compute two sets of quantities:

2As explained in the next chapter, Set B refers to the list of stocks used for analyses
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• CoefRatiok: The frequency with which the coefficient correspondent
to the y-th level is within the top k greatest coefficients.

• PvalueRatiok: The frequency with which the p-value correspondent to
the y-th level is within the top k smallest p-values.

Results are summarized in Table 3.1 below:

CoefRatiok PvalueRatiok
k = 1 47.1% 52.3%
k = 2 72.5% 78.1%
k = 3 95% 98.9%

Table 3.1: Summary of the local behaviour of the limit order book.

After estimating f(·), it is possible to reconstruct the entire distribution of
Y A via a simple application of conditional probability properties:

Lemma 3.3.1 (Spatial representation).

P (Y A = y|Y A > 0) = (1− f(V A
y ))

y−1∏
k=1

f(V A
k ) .

Proof. Let us prove instead, but equivalently, that:

P (Y A > y|Y A > 0) =

y∏
k=1

f(V A
k ),

by induction:

• y = 1: by definition of f(·) if follows that,

P (Y A > 1|Y A > 0) = P (Y A > 1|Y A ≥ 1) = f(V A
1 ).

• y =⇒ y + 1: by definition of conditional probabililty, and by the
fact that P (·|Y A > 0) is a probability, it follows that:

P (Y A > y+1|Y A > 0) = P (Y A > y+1|Y A ≥ y+1)P (Y A ≥ y+1|Y A > 0),

where a full-depth order book is required.
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so that, given that P (Y A ≥ y + 1|Y A > 0) = P (Y A > y|Y A > 0) =∏y
k=1 f(V A

k ) because of the induction hypothesis,

P (Y A > y+1|Y A > 0) = P (Y A > y+1|Y A ≥ y+1)

y∏
k=1

f(V A
k ) =

y+1∏
k=1

f(V A
k )

Lemma 3.3.1 will be the only theoretical tool used in this work. It’s worth
noticing how P (Y A = y|Y A > 0) is reconstructed, and not the full probabil-
ity P (Y A = y).

This is because the reasoning for which the order sizes below the best bid/ask
should act as a kind of ’barrier’ against its movement it’s valid whenever the
best ask and bid move into their respective side of the limit order book, i.e.
the best ask increasing in price, and the best bid decreasing.
So whenever trying to model P (Y A = y|Y A < 0), one cannot make use of
the this local behaviour.

However, the bid-ask spread is often modelled as a constant, meaning that
the best ask and best bid tend to move in lockstep, as represented in Figure
3.6. This would allow us to keep leveraging the local behaviour of the order
book, with a simple modification: the probability of the best ask decreasing
should depend on the bid size of the book:

P (Y A = y|Y A ≤ y) = f(V B
y ). (3.2)
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Figure 3.6: Best bid and best ask moving in lockstep 2 levels down. In this
case, it is sensible to allow P (Y A < −1|Y A ≤ −1) to depend on the size at
level 1 in the bid size, i.e. V B

1 .

To show this, we fit a similar logistic regression for the ask movement as
above, but this time using the bid order sizes i.e.:

P (Y A < y|Y A ≤ y) = f(V B
y−k, .., V

B
y−1, V

B
y , V

B
y+1, .., V

B
y+k).

In Figure 3.7, coefficients from the logistic regression using y = −12 and
k = 5 are shown. The central coefficient, correspondent to V B

y is greater than
all others, having more influence on the event Y A < y|Y A ≤ y. Moreover,
the p-value associated is the sole p-value below the traditional significance
threshold, confirming that V B

y is the only significant regressor also in this
case. Results similar to those of Table 3.1 can also be achieved.
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Figure 3.7: Coefficients from the logistic regression, as well as correspondent
p-values and the threshold α = 0.05. On the x-axis, the distance from y = 12,
with V B

y corresponding to x = 0. The logistic regression was fitted on the
stock Amazon.

Everything mentioned in this section about behaviour of best ask applies
symmetrically to the best bid price, i.e. it depending on its side of the order
book when decreasing and on the ask side when increasing, so that Equations
3.1 and 3.2 become:

P (Y B = y|Y B ≤ y) = f(V B
y ) and P (Y B = y|Y B ≥ y) = f(V A

y ).

However, as it’s shown in the next section, there’s evidence to conclude that
the bid ask spread shouldn’t be modelled as a constant too confidently.

3.4 Joint bid ask distributions
In this section we will explore how best bid and best ask tend to move,
whether jointly or not. To do this, for every stock j in the dataset we com-
pute a set of quantities:

• Zj: the frequency of best bid and ask moving in lockstep.
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• Mj: the frequency of one of the two best prices moving in the same
general direction, i.e. both moving up, both moving down, or both
remaining constant.

• Qα: the empirical quantiles of the bid ask spread, measured in number
of levels.

Once these quantities are computed for every stock, we compute their quan-
tiles across the stocks in Set A. These quantiles are indicated by a non
capital letter qα, in order not to confused them with the quantiles referring
to the different stocks’ distributions.

Results are summarized in Table 3.2 below:

q05 q10 q20 q50 q80 q90 q95

Z 0.075 0.198 0.382 0.785 0.945 0.971 0.983
M 0.61 0.638 0.662 0.717 0.946 0.977 0.991
Q10 1 1 1 1 3.8 7.9 9
Q50 1 1 1 2 8.4 145 14.95
Q90 1 1 1 3 14.4 23.9 50.75

Table 3.2: Spread Summary

Looking at the quantiles of Z, for about 50% of the stocks, best bid and best
ask move in lockstep about 80% of the time, whereas for 20% of the stocks,
only about 40% of the time. Still, the co-movement remains a powerful fea-
ture that we think justifies the use of Equation 3.2.

Either way, it is clear that best bid and best ask share a powerful corre-
lation. This means that it is important to model them jointly, rather then
predicting them separately.

One way to do this is to choose a side to predict first, say the bid ask,
and then use the best bid movement as a feature to predict the best ask
movement, i.e.:

P (Y A > y|Y A ≥ y) = f(V A
y , Y

B).

Note that this doesn’t impede predicting in the test set. It is possible to just
substitute the best bid movement with the predicted best bid movement, i.e.

P (Y A > y|Y A ≥ y) = f(V A
y , Y

B
pred).
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Looking at the quantiles of M however, is quite clear that the general di-
rection of the best prices tends to be the same the majority of times for all
stocks. As mentioned before, we will make use of a neural network to predict
the general direction of prices. Therefore, it seems reasonable that for this
particular model is even more important to use the best bid movement as a
feature for predicting the best ask movement, i.e.:

P (Y A ∈ A|X = x) = f(x, Y B) A ∈ ({Y = 0}, {Y > 0}, {Y < 0}),

where X are other features, that will be explored further in the next chapter.
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3.5 Modelling the future probability of stock
movement

The goal of our model is to forecast the probability distribution of the best
bid price and best ask price at a future time t+ τ , i.e. we want to model:

P (Y A/B = y).

In the next section we will be, among other things, discussing what is the
most appropriate value for τ .

The local behaviour of the order book allows us to model P (Y A/B > y|Y A/B ≥
y) and P (Y A/B < y|Y A/B ≤ y). Starting from this, it is possible to recon-
struct, respectively, P (Y A/B = y|Y A/B > 0) and P (Y A/B = y|Y A/B < 0)
with two different models3.
A third model is also used, in order to determine whether Y A/B is greater than
zero, lower than zero, or constant, thereby indicating that PA

0 (t+τ) = PA
0 (t).

This last model cannot make use of the local behaviour feature of the order
book, and therefore must rely, as we will see in the next section, on a care-
fully chosen set of features.

There are several advantages in modelling the future distribution rather
than making a punctual prediction: first off, modelling the distribution
still allows to compute to make punctual prediction, simply by taking y =
argmaxyP (Y = y) as the most likely movement.

Therefore, modelling the future distribution is more general and allows to
handle a wide variety of scenarios. For instance, a market partecipant such
as a market maker would be more interested in estimating the probability
that the best prices will move within a predefined range, with a punctual
prediction having little use when directionality is not a particular concern.
Lastly, modelling the whole distribution offers many solutions as far as risk
management is concerned, being able to properly quantify all possible moves’
scenarios.

3Two for the bid side, and two for the ask size.
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Data and Features

4.1 Dataset
The dataset at our disposal consists of two very different sets of data, one
referring to stocks, more precisely stocks traded in the NASDAQ exchange,
and one referring to cryptocurrencies, in particular data from the cryptocur-
rency known as Tether, traded on the Bitfinex exhcange. In this section we
will explain the precise format of our data, along with some specifications of
our dataset.

4.1.1 NASDAQ dataset

The stock data of our disposal consist of NASDAQ’s Historical TotalView-
ITCH data. Until 2019, some days worth of data, usually the last day of
the month, were published online for free. It’s still possible to access some
of these data via FTP1 clients, suchs as Cyberduck, accessing the server
ftp://@emi.nasdaq.com/ITCH/.

A .ITCH50 file covers the entirety of negotiations for all stocks traded in
the exchange, and it covers the length of the trading day.
Figure 4.1 illustrates the structure of the TotalView-ITCH messages from
which the limit order book can be reconstructed. The original data is stored

1The File Transfer Protocol (FTP) is a standard communication protocol used for the
transfer of computer files from a server to a client on a computer network. FTP is built
on a client–server model architecture using separate control and data connections between
the client and the server.

36
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in binary files, depicted here is a ’readable’ version.

Figure 4.1: Fictitious of a series of TotalView-ITCH messages.

There are two types of messages. The messages indicated by ’T’ are time
messages giving the number of seconds after midnight. The first entry in the
figure below indicates that the subsequent events occur 57842 seconds after
the last midnight, i.e. at 16:04:02.
The second types of messages concerns received orders. The second message
is a limit order indicated by the type ’A’ (for ’add’). The second element of
this message gives the number of nanoseconds since the last message of type
’T’, i.e. since the last full second after the previous midnight. The exact
time in which this order was submitted is therefore 16:04:02.823000000. The
nanosecond time stamp is followed by a unique order ID, 5631892, which is
used to reference the order in case of an execution or cancellation. The rest of
the message gives further details about the order: the market side indicator,
’B’, indicating a buy order, the order volume, ’600’, the stock ticker, ’AAPL’
for Apple, and the limit price of ’1482300’, i.e. $148.23.

The third message is analogous to the previous one, but is an ask order
for the stock Amazon. The message of type ’E’ together with the preced-
ing message of type ’T’ indicate a partial execution of the order with ID
’5631892’ at 16:04:03.341000000. The transaction of 400 shares is identifi-
able by the transaction ID, 6738764. Note that in the execution message,
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only the unique order ID, ’4172917’, is referenced. Further detail about this
order, such as the price, the ticker and market side have to be inferred from
the previous submission message.
The last message is the cancellation of the previous Amazon ask order of ID
5714925.

Starting from .ITCH50 data, it is possible to reconstruct the history book
of a given stock of in an iterative manner, by updating its state after every
message regarding the stock in question. Note that this is computationally
intensive as previous orders’ IDs have to be kept in memory for executions
and cancellations referring that particular order. In order to do this, we use
the BookConstructor.sh function as available at Bernasconi-De-Luca et al.
(2021). It takes as input a .ITCH50 file, the ticker of the stock to reconstruct,
and the maximum depth at which the Book Constructor should update limit
orders.

Below it is shown the output for the Google stock, with 50 levels depth. The
first column is the nanoseconds from the previous midnight. The ’k_bid_price’
column refers to the k-th best bid price, whereas ’k_bid_vol’ refers to its
total size. Analogously for the ask side.

Figure 4.2: Output of the BookConstructor for the Google stock. Data from
30/01/2019.

The days at our disposal are listed in Appendix A. We use a total of 8 days,
amounting to a total size of about 15 GB.

This is not a large amount of days, however it is not uncommon for the
literiture to work with similar amounts of data, as in Qureshi (2018) and
Zhang et al. (2019). Indeed it is important to keep in mind that whereas the
ITCH files are relatively small, from each ITCH file it’s possible to recon-
struct the daily book of every single stock traded on the NASDAQ exchange.
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An average 50-level book for a mid-to-large cap stock occupies around 0.5
GB. So unless only a single stock is of interest, the memory usage to store re-
constructed limit order book data increases dramatically from the raw ITCH
data.

The fact that a 50-level book, which is the depth we usually use for our
models, takes up much more memory than a 1-level book2, has deep impli-
cation for our results. Statistical analysis across stocks are only possible for
us to do whenever only the first level is required, e.g. for an analysis of the
bid-ask spread. This is because in order to perform such analysis a relatively
large amount of stocks are required, and it would be impractical for us to
keep a large amount of 50-level books in memory.

In Appendix A, two sets of stocks are listed: Set A, which contains the
stocks we used for a 1-level analysis, and Set B, which contains the list of
stocks we used for all other analyses that required more than 1-level, e.g.
fitting our models.

4.1.2 Bitfinex data

Dissimilarly from the stock data, our crypto data consists in already recon-
structed and sampled data. In particular, we have at our disposal the limit
order book snapshots in CSV format. These snapshots are already sampled
with a frequency of 1 second,spanning the entire month of September 2020.
Below it is shown how the Tether limit order book file looks, with 50 levels
depth. The first two columns represents the time in h:m:s:ns format. The
first refers to the time of the exchange, and the second the time of the api
snapshotting data from the exchange. The ’ask[k].price’ column refers to the
k-th best bid price, whereas ’ask[k].price’ refers to its total size. Analogously
for the bid side.

2i.e. a book that contains only the best bid and the best ask prices
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Figure 4.3: First five seconds of sampled Tether limit order book data since
the midnight of the 1-st of September 2020.

The reconstructed stock data and the sampled crypto data share an equiv-
alent format. Our input pipeline is designed around the BookConstructor
output format, so Tether data is firstly translated into the stock format, and
then used in the exact same way in our code.

4.2 Empirical Properties of Limit Order Book
data

In this section we will be presenting some statistical properties from our data,
and how some of these properties impact some characteristics of the input
pipeline and model parameters, most notably sampling time.

There’s extensive literiture on empirical properties of Limit Order Book data.
Cont (2011), Cont and De Larrard (2012), Gopikrishnan et al. (2000) all find
that order sizes are highly heterogeneus and with heavy-tails. Cont (2011),
in particular, finds that order sizes tend to follow a power law. Moreover,
in Bouchaud et al. (2002), heavy tailed distribution are shown to provide a
good fit for price movements as well.

Since many of the statistical properties of interest are heavily impacted by
a single stock’s features such as liquidity, stock price, and volatility, we’ll be
presenting, in this section, properties from a single stock, Microsoft, with
data from all days at our disposal.
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Figure 4.4: Bid-Ask spread distribution plot. Data from Microsoft stock.

The bid ask spread throughout our dataset doesn’t present any particular
feature, apart from the left skewness that is to be expected with positive
prices. Of course, as it is possible to see in the distribution plot, the bid-ask
spread can only assume a discrete amount of values, i.e. the possible price
levels / tick sizes.

As previously mentioned, there’s plenty of evidence for heavy tails in price
quotes’ movements. We confirm this by analysing the absolute non-zero
movements of best bid and best ask in our data. This is because, as we will
see in the next section, the overwhelmingly majority of order book updates
doesn’t change neither the best bid nor the best ask. Moreover, movements
are reported by number of levels.

For both bid and ask, respectively in Figure 4.5 and in Figure 4.6, the dis-
tribution plot and the boxen plot are shown. A boxen plot, introduced by
Hofmann et al. (2011), is a generalization of a boxplot to properly visualize a
large, heavy tailed distribution, in which what would be defined as "outliers"
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for a boxplot make up a large percentage of data, thereby hampering visual-
ization. A boxen plot works by determining which quantiles, apart from the
50% quantile, which is always used, to use in order to fill a pre-determined
number of boxes. The height of the boxes is proportional to the level of the
quantile, i.e. the box corresponding to the median is the one with greatest
height.

Figure 4.5: Distribution plot and boxen plot for absolute non-zero movements
of best bid. Data from Microsoft stock.

Figure 4.6: Distribution plot and boxen plot for absolute non-zero movements
of best bid. Data from Microsoft stock.

As seen in the distribution plots, the overwhelmingly majority of movements
correspond to a 1-tick movement, and all other movements have a decreasing
occurrence. This is to be expected by high-frequency data, as prices natu-
rally tend to move in a continuous fashion, which in this discrete framework
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means that they tend to move by the smallest possible tick sizes.

In the boxen plots, heavy tails are clearly recognizable by the shape of the
last boxes, with a very low height, indicating that it represents a very low
quantile, and by it’s elongated shape, suggesting that it contains a large
range of observations.

Heavy tails in the best bid prices and best ask prices suggest that a large
range of possible movements must be included in the predictions, however
rare they might be in the training set. As we will see, the benchmark model
we will be comparing our model with falls quite short in this regard, as the
possible range of price movements must be specified before training.

4.2.1 Data sampling

In this section we will analyze some reasons behind one of the crucial decision
in designing a high-frequency forecasting model: the sampling time.

This would be a significant decision in a regression model, but, for reasons
that will be explained in this section, has particular implications for a clas-
sification model, most notably in terms of balancing classes.

A 0-levels move of best bid or best ask, i.e. them remaining constant, will be
one of the classes of interest. Since, as explained in the previous paragraph,
our data contains all available changes in order book data -and not just to
best bid and best ask-, sampling is necessary since most updates leave best
bid and best bid ask unchanged.
We would like to sample with a frequency such that a 0-level move of best
bid or best ask wouldn’t make up the overwhelmingly majority of classes, as
it would be using all available lines of the book.

At the same time, by sampling, one reduces the number of data available
for training, so it is of interest to select a sampling time as short as possible.

To get a measure of how fast a stock changes in price, for every t, we can
define a random variable τ , describing the random time associated with a
change in the mid price:
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Definition 4.2.1 (Mid change time). The mid change time is defined as the
time between two movements of the mid price:

τt = inf{s > 0 | mid(t+ s) 6= mid(t)}.

An appropriate metric for price changing can then be the median value of τt.

We compute the median value of τt for all the stocks at our disposal. We then
average the results, which are shown in Table 4.1 below. Time is measured
in seconds.

Mean 0.010211
Std Dev 0.017052
25% 0.001349
50% 0.004547
75% 0.010612

Table 4.1: Descriptive statistics of median jump times.

Therefore, 0.01 seconds looks like an appropriate rounded value. However,
this number should be considered more of as a lower bound for sampling
times, rather than a rule of thumb for sampling.

There are two reasons for this:

Firstly the median jump time refers to a change in mid price, which en-
compasses changes both in the best ask and best bid prices, whereas the our
models only train on one of the two at a time.

Secondly, and more importantly, having a median jump time of 0.01 sec-
onds, doesn’t mean that by using a sample frequency of 0.01 seconds we
will obtain roughly 50% realizations of nonzero-levels moves. An uniform
sampling negates clustering effects, so if between t and t + 0.01 more than
one price change occur, that will drive down the median jump time, but it
will only count as one move after discretizing at 0.01 seconds.
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4.2.2 Stocks sampling

To determine an appropriate sampling time we then discretize our data with
sampling times greater than the median jump time, and then compute vari-
ation quantiles on the sampled data.
In Figure 4.7 25%−90% boxplots of levels variations corresponding to various
sampling times are shown for selected stocks.

(a) Apple (b) Amazon

(c) Google (d) Tesla

Figure 4.7: Boxplots of four selected stocks.

In Figures 4.8 and 4.9, 25% and 90% quantiles are reported in a uniform
scale.
Once sampled at 0.1 seconds, the median move is almost never a non-zero
move, and most stocks have only have a 1-level move only as a 90% per-
centile, with some stocks barely ever moving at that timescale. As in Sirig-
nano (2019), we find that 1 seconds seem to be an appropriate sampling
time, allowing enough movement such that classes are not overwhelmingly
unbalanced towards the 0-ticks class.

It’s worth noticing how there’s significant variation between different stocks,
that would allow for some space to ’calibrate’ appropriate sampling times
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on individual stocks. However, in order to produce consistent comparisons,
whenever we will be presenting model results across different stocks, we will
stick to a 1s sampling time.

Also note that in a real-life production environment, having a fixed sam-
pling time for all stocks would be much more convenient, especially in order
to allow multiple-stocks trading strategies.

The trade-off in sampling data is that, by balancing classes, one also re-
duces the dataset size used for training. In this case 1-second sampling time
reduced the available dataset size by around 2 orders of magnitudes.

Figure 4.8: (25,90) percentiles for 0.1s-sampled stocks. Blue-colored lines
refer to the bid side, whereas red-colored refer to ask side.
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Figure 4.9: [25,90] percentiles for 1s-sampled stocks. Blue-colored lines refer
to the bid side, whereas red-colored refer to ask side.
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4.2.3 Tether Sampling

Unfortunately, in the case of USDT/USD, in order to obtain the same level
of movement such that the classes are not overly unbalanced, it is necessary
to sample with a much lower frequency. This is most likely due to the fact
that Tether is supposed to be worth almost exactly 1 USD, with BitFinex
claiming to have 1 USD in reserve for each USDT issued. Still, since they
have no legal -or otherwise- obligations for Tether to be exactly equal to 1
USD, its price can fluctuate to a certain degree due to supply and demand
dynamics within the Bitfinex Exchange.

Figure 4.10: (25,90) percentiles of tick changes over three different sampling
frequencies. Blue-colored lines refer to thebid side, whereas red-colored refer
to ask side.

Given this behaviour, we select 240 seconds as the minimum acceptable sam-
pling time. Note that this decreases significantly the dataset size. In par-
ticular, our crypto dataset contains 1739600 datapoints, but after sampling
only 9240 remains.
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4.3 The role of Liquidity
As in every stock market forecasting study analysis, liquidity plays a crucial
role in obtaining robust results. This is because liquidity guarantees market
depth and tight bid-ask spreads, as well as reducing significant jumps in the
stock price.
Market depth is particularly important in this application as it is desirable
that limit orders beyond best bid and best ask play a significant role in
determining future best bid and best ask prices. Any kind of information
contained deep in the order book can be used by our model. As described in
the next section, we will hand-pick features obtained order book in order to
try and forecast future best bid and best ask prices.
More importantly, and as we will see, the model used tries to predict the full
distribution of next best bid and best ask prices. In order to do so, it uses
every limit order size at depth y in order to estimate the probability that the
next bid or ask price will move by at least y levels. It is therefore crucial that
a stock is liquid to guarantee enough market depth in order to do this task.
As one would expect, price variation its more frequent if the stock is liquid.
We use market capitalization a proxy for liquidity, as in Bariviera (2011).

Figure 4.11: Linear Regression of median jump times over market capital-
ization. data refer to 200B+ capitalized companies listed on NASDAQ.
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The linear relationship confirms the general idea that a liquid stock is a better
candidate to apply our model to. This is particularly true in this particular
application, where the sampling time could -in principle- be selected to be
lower for liquid stocks, as they are associated to more frequent movements.
Note that the same apply to volatility, so historically more volatile stocks
will tend to move more in a given span of time than less volatile stocks.
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4.4 Feature Selection

4.4.1 Feature engineering

Order book data contains more information than the simple timeseries of
the prices we want to predict, as it contains volumes and prices for all levels
beyond the first level. However it is not straightforward how this information
is relevant and how it should be fed to a neural network.

In Cao et al. (2009), using data from the Australian Stock Exchange, the
authors assess the information content of an open limit-order book with a
particular focus on the incremental information contained in the limit orders
behind the best bid and offer. The authors find that the order book is moder-
ately informative—its contribution to price discovery is approximately 22%.
The remaining 78% is from the best bid and offer prices on the book and the
last transaction price. Furthermore, the authors find that order imbalances
between the demand and supply schedules along the book are significantly
related to future short-term returns. As we will see later in this section, order
imbalances will be crucial features for our model.

Our model makes use of the entire book, in two different ways.

Firstly, as we introduced in Chapter 3 and will be explained better in the
next Chapter, we use all volumes and prices in the books when predict-
ing by how much the price will change, making use of spatial relationships
in the data. This is done via two neural networks, predicting respectively
P (Y A/B = y|Y A/B > 0) and P (Y A/B = y|Y A/B < 0). These two networks
make use of all the order sizes in the book.

However, there’s a third neural network, that tries to predict whether the
Y A/B will be either positive, negative, or zero,i.e. :

P (Y A ∈ A|X = x) A ∈ ({Y = 0}, {Y > 0}, {Y < 0}).

In this section we will be exploring what set of features X seems reasonable
to include.

In Zhang et al. (2019) the authors pose themselves the same target, i.e.
forecasting the price general direction. To do so, they use a convolutional
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layer that takes as input the whole book, and automatically selects relevant
features, passing them over to an LSTM layer which then classifies the move.

However, we consider training a CNN layer to be an unnecessary use of
computational power for our circumstances. This is because there’s exten-
sive literature of non-linear transformations of order book data that pro-
vides some kind of predictive power, such as order book imbalances. We
therefore-hard coded many transformations of LOB data, and subsequently
used feature-selection methods to rule out insignificant features. We now list
out all features that ended up being selected as an input to our model.

4.4.2 Comulated volumes

The first selected feature, as used by Sirignano and Cont (2019) is simply the
cumulated levels of bid and ask sizes. We propose a slight difference, namely
where the information about the trading day is included.

Definition 4.4.1 (Cumulated volumes). For every price level, they are
defined as the cumulated order size for that price level, since the start of the
trading day:

CV
A/B
k (tj) =

j∑
i=start_day

V
A/B
k (ti),

where start_day is the index corrisponding to the start of the trading day
relative to the time tj.

In the case of cumulated volumes is important to keep track of which day
a given time refers to, given that during preprocessing data are shuffled in
time. As simple as it is, we will see that it consistently holds more predictive
power than its non-cumulative counterpart.

4.4.3 Volume Imbalance

In recent years, some authors (see, e.g., Cartea et al. (2018) and Yang and
Zhu (2016)) have proposed that the queue imbalance, which describes the
difference between the volumes offered for purchase or sale at the best bid
and ask quotes in a limit order book (LOB), could constitute a simple yet
powerful quantity that is suitable for this purpose. In particular, Gould and
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Bonart (2016), find that volume imbalances increases accuracy as much as
60% w.r.t. to a null model for liquid stocks.

Definition 4.4.2 (Volume Imbalance). Volume Imbalance is defined as
the percentage difference between the best ask order size and the best bid
order size:

V I =
V A

0 − V B
0

V A
0 + V B

0

.

Volume imbalance can be defined for several levels, with analogous meaning
to the first level imbalance, i.e. measuring the imbalance between two sym-
metric levels, on the bid side and on the ask size:

V Ik =
V A
k − V B

k

V A
k + V B

k

.

In particular, Qureshi (2018) finds that deeper levels imbalances has infor-
mative value for predicting mid price movements.

4.4.4 Weighted Price

In order to combine price and volumes imbalance, Cao et al. (2009), propose
a weighted price defined as:

Definition 4.4.3 (Weighted price). The Weighted Price is analogous to
the bid-ask spread, but where the best bid and best ask are weighted by their
relative order size:

WPk =
V A
k P

A
k − V B

k P
B
k

V A
k + V B

k

.

4.4.5 Order Flow Imbalance

Similarly to Cont et al. (2014), the last feature included in the input pipeline
represents a less static feature, encompassing and summarizing a number of
events in a temporal frame, rather than providing a quantity referring to a
snapshot of the book, such as the other features included.
Order flow imbalance represents the net order flow at the bid and ask and
tracks changes in the size of the bid and ask queues by:

• increasing every time the bid size increases, the ask size decreases or
the bid/ask prices increase.
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• decreases every time the bid size decreases, the ask size increases or the
bid/ask prices decrease.

Interestingly, this variable treats a market sell and a cancel buy of the same
size as equivalent, since they have the same effect on the size of the bid queue.
In particular, bid price and size represent the demand for a stock, while the
ask price and size represent the supply. Indicating by PB/A

t the best bid/ask
price at time t and by V

B/A
t the best bid/ask price order size at time t ,

between two data points a number of events could happen:

• PB
t > PB

t−1 or V B
t > V B

t−1 signifying an increase in demand

• PB
t < PB

t−1 or V B
t < V B

t−1 signifying a decrease in demand

• PA
t > PA

t−1 or V A
t > V A

t−1 signifying an increase in supply

• PA
t < PA

t−1 or V A
t < V At− 1 signifying a decrease in supply

Finally, we define our own version of Order Flow Imbalance as:

Definition 4.4.4 (OFI). The order flow imbalance is an engineered metric
of supply and demand movements in time:

OFI(t) = IPB
t ≥PB

t−1
V B
t − IPB

t ≤PB
t−1
V B
t−1 − IPA

t ≥PA
t−1
V A
t + IPA

t ≥PA
t−1
V A
t−1.

Note that if V B increases but PB remains the same, the contribution from
the bid size is V B

t − V B
t−1, representing the size that was added at the bid. If

V B decreases, this contribution is also V B
t , but representing the size that was

removed from the bid, whether due to a market sell or cancel buy order. If
PB increases, we let this contribution becomes V B

t representing the size of a
price-improving limit order. If PB decreases, we let then the contribution be
V B
t−1, representing the size that was removed, whether due to a market order

or a cancellation. The contributions for events on the ask side are analogous,
with signs reversed.

4.5 Feature Importance
In order to determine which features from the LOB should be part of the
input of our model, we make use of a very popular method to select features
in Machine Learning, namely Random Forests.
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4.5.1 Decision trees

Random forests are based on decision trees. A decision tree determines a
number of cutoffs for each of the features, in order to build a binary tree to
classify the outcome. A decision tree determines not only the cutoffs to use,
but the order in which to use features while it trains on the data.

In Figure 4.12 a tree trained on Amazon stock, as well as the head of the
training data. The training data contains a simplified version input to the
one we will use later in our architecture. It contains two features, namely
best ask order size and volume imbalance, and its forecasting target is the
direction of the best ask price move.

Figure 4.12: Decision Tree classifier trained on a simplified input. Data from
30/01/2019 Microsoft stock.

4.5.2 Random Forests for feature selection

Random forest consists of a large number of decision trees. Each tree is
trained on a bootstraped sample of the dataset. This sample contains a
random subsample of rows, with rows repeated to match the original length
of the dataset. The rows that were not included constitute the ’out-of-bag’
sample. Out-of-bag samples can then be used to measure the accuracy of the
forest.
In Figure 4.13 below, the dataset in Figure 4.12 is bootstrapped in two bags.
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Figure 4.13: Visualization of data bootstrapping.

To measure the importance of the j-th feature after training, the values of
the j-th feature are permuted among the training data and the out-of-bag
error is again computed on this perturbed data set. The importance score for
the j-th feature is computed by averaging the difference in out-of-bag error
before and after the permutation over all trees. The score is normalized by
the standard deviation of these differences.

Features which produce large values for this score are ranked as more impor-
tant than features which produce small values. The statistical definition of
the variable importance measure was given and analyzed by Zhu et al. (2015).

On each of the stocks, we fit a random forest classifier and then rank features
importances. Below, in Figure 4.14 is the output for the forest trained on
Microsoft data.
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Figure 4.14: Features importances computed by fitting a random forest clas-
sifier.

Features importances somewhat varies between stocks, but ’vanilla’ volumes
are consistently overperformed by other features. For 100% of the stocks
in set B, i.e. the one containing the stocks used to train the models, the
’vanilla’ volumes are always the least important features, altho the skew of
the ’importance gradient’ in Figure 4.14 varies.

Interestingly enough, cumulative volumes play an important role. This is
probably due to the fact that it introduces a long term dependence in the
input, by keeping an account on cumulative buying and selling pressure over
the course of a given trading day.

Some features of the ones just mentioned can be indexed to include order
book information deeper than the best bid and best ask prices. As stated,
Cao et al. (2009) find that this information is consequential. We therefore use
this information, and throughout this work we will be indexing all indexable
features up to k = 5 levels. This allows us to make use of some information,
without -possibly unnecessarily- increasing to much the dimension of the in-
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put. Note that in Figure 4.14 features are indexed up to k = 2 levels for
better readability.



Chapter 5

The model

In this section we will be explaining how the model is structured. As ex-
plained in Chapter 3. the model is not simply composed by a neural network,
but by 6 neural networks, 3 for the bid side, and 3 for the ask side, that work
together to forecast the next price move.

5.1 Standard Neural Network for classification
The basic neural network for classification is a highly nonlinear parameterized
function that takes an input x ∈ X and produces a probability distribution
on the finite discrete space Y . This will be the baseline model that we will
be comparing our model with.
Given an input x, the output of the k-th layer of a neural network is:

Rdk 3 fθ,k(x) = gk(Wkfθ,k1(x) + bk), k = 1, ..., K,

where Wk ∈ RdkRdk−1 is a linear combination of the previous layer’ output ,
the bias bk ∈ Rdk , fθ,0(x) = x, and dK = |Y |.

For k = 1, ..., K1, the nonlinear transformation g is defined as:

g(z) = (σ(z1), ..., σ(zdk)) for z ∈ Rdk and z1, ..., zdk ∈ R.

The functions σ are nonlinear; typical choices are sigmoidal functions, tanh,
rectified linear units (ReLU), and clipped rectified linear units. The function
gL for the final layer L is the softmax function g.

59
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g(z) =

(
ez1

ΣdK
i=1e

zi
, ..,

ezK

ΣdK
i=1e

zi

)
z ∈ RdK .

In our application, the output of the neural network is a probability dis-
tribution on Y conditional on the features x. Therefore, for every class yi,
the estimated probability that Y will assume the value of the k-th class,
conditioned on the observed feature x:

fkθ (x) = Pest(Y = yk) k = 1, .., Nclasses,

where fkθ (x) is the k-th component of the output vector fθ(x).

A very commonly used loss function is the categorical loss-entropy, which
measures the distance between the estimated probability distribution, and
the observed probability distribution. Given the set of all features-observation
couples D = {(xi, yi}i=1,..,Nsamples

, the overall loss L(D) is:

L(D) =
1

Nsamples

Nsamples∑
i

Nclasses∑
k

log fkθ (x))1yk=yi .

The standard neural network for classification has two major drawbacks in
this particular application. The classes refers to possible movements Y A/B of
either the best bid or the best ask price. Therefore Y A/B ∈ (..,−2, 1, 0, 1, 2..)
and so they can assume an infinite amount of values.

However, the standard neural network for classification can only handle a
finite number of classes. Therefore, the possible movements of Y A/B have
to be truncated within a finite range in order for the model to be trained.
This is inconvenient because large movements of the best bid and best ask
are important for risk management purposes.

Moreover, one incurs in an inconvenient trade-off when determining the num-
ber of classes Nclasses. A realistic model should have a reasonable amount of
classes, but the more classes one chooses to include, the greater the training
time is, since the dimension of the output is increased. This is greatly ampli-
fied if one wants to model the joint distribution of bid of ask, in which case
fθ(x) ∈ (..,−2, 1, 0, 1, 2..)2.
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The real problem of truncating the number of classes is that, in the case
of the standard neural network, the truncation must be done before training.
Once specified and trained, the standard architecture can only be used to
predict within that pre-defined range, and so has little flexibility in a pro-
duction environment. If for instance, the trained model is being used to
predict real-time data, and the market happens to be particularly volatile,
the range of possible movements to predict might need to be extended. How-
ever, the standard neural network does not offer the flexibility for this to be
done in a timely manner. As we will see later in this Chapter, this is not the
case for our model.

A second drawback of a standard neural network ,as previously mentioned, is
that it fails to model spatial correlation of Y A/B. If the order of the classes is
shuffled, little changes in training the model. However, the events that Y A/B

moves by y1 = 1 levels or y2 = 2 levels are more greatly correlated than Y A

moving by y1 = 1 levels or y17 = 17 levels, so the order of the classes is crucial.

5.2 Spatial Neural Network
The architecture proposed by Sirignano (2019), solves all the drawbacks of
the standard neural network for classification. It does this by modelling a
conditional probability of a local event rather the full probability. We use
two models of this type, one for both possible direction of the next bid price.

Definition 5.2.1 (Upper spatial network). It outputs the probability of
the next price movement will be equal to y conditioned on the event that it
will be greater or equal than y

f spatial,up(x, y) = Pest(Y
A/B = y|Y A/B ≥ y) y ∈ (1, 2, 3, ..).

Definition 5.2.2 (Lower spatial network). It outputs the probability of
the next price movement will be equal to y conditioned on the event that it
will be lower or equal than y

f spatial,down(x, y) = Pest(Y
A/B = y|Y A/B ≤ y) y ∈ (..,−3,−2,−1).
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By doing this, one ensures to make use of spatial relationship in the data,
such as the one explored in Chapter 3. Moreover by including the y as a
feature, the model can keep track of spatial correlation between different
events.

Spatial Neural Network dataset preparation

The most obvious advantage of this architecture is that it can practically
take into account all observed movements y. Given a vector of movements
Y A/B, it being either the best ask or best bid movements, the dataset for
positive movements Y A/B = y|Y ≥ y is assembled as follows:

where x represent the feature relative to the event Y A/B = y|Y ≥ y.
In Figure 5.1, a visualization of the input is shown. The whole dataset is
scanned to include all realization of Y A/B = y|Y A/B ≥ y for which a label 1
is given, and Y A/B > y | Y A/B ≥ y for which a value of label 0 is given. This
is done iteratively for all possible values of y, therefore without truncating
in the training phase.
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Figure 5.1: Visualisation of the Spatial neural network input data.

5.3 Our model
As previously mentioned, starting from probability of events of the type
P (Y A/B = y|Y ≥ y) it is possible to reconstruct P (Y A/B = y|Y ≥ 0), and
similarly for the negative side, by using Lemma 3.3.1.
Therefore,for each side of the order book, i.e. bid and ask, there’s a need for 3
models, 2 for the tails and one required to "stitch" together Y > 0 and Y < 0.

Definition 5.3.1 (Middle model). It outputs the probability that the next
price movement will be either positive, negative, or null.

fmid(x,A) = Pest(Y
A/B ∈ A|X = x) A ∈ ({Y A/B = 0}, {Y A/B > 0}, {Y A/B < 0}).

.

Definition 5.3.2 (Upper tail model). It outputs the probability that the
next price movement will amount to exactly y levels, conditioned on the fact
of y being positive.

f tail,up(x, y) = Pest(Y
A/B = y|Y A/B > 0, X = x) y ∈ (1, 2, 3, ..).
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.

Definition 5.3.3 (Lower tail model). It outputs the probability that the
next price movement will amount to exactly y levels, conditioned on the fact
of y being negative.

f tail,down(x, y) = Pest(Y
A/B = y|Y A/B < 0, X = x) y ∈ (..,−3,−2,−1).

.

In Figure 5.2 it is shown a visualisation of how our models reconstruct the
estimation of the next price move. It is can simply done by multiplication:

• y > 0: Pest(Y A/B = y,X = x) = f tail,up(x, y)fmid(x, {Y A/B > 0})

• y = 0: Pest(Y A/B = y,X = x) = fmid(x, {Y A/B = 0})

• y < 0: Pest(Y A/B = y,X = x) = f tail,down(x, y)fmid(x, {Y A/B < 0})

Figure 5.2: Visualisation of the way our model reconstruct the probabilities
of the movements of either the best bid or the best ask.
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Note that the two f tail models are not neural networks, but rather composi-
tion of outputs of spatial neural networks, according to Lemma 3.3.1.

For instance,

f tail,upask (x, y) = f spatial,upask (x, y)

y−1∏
k=1

(1− f spatial,upask (x, k)), (5.1)

where f spatial,upask (x, y) is a neural network that will be specified shortly.

The modularity of our model, i.e. being composed by three neural networks
per side 1, is motivated by making use of spatial relationship in the data.
However, as we will see later in this section, it offers greater flexibility in
predicting several scenarios of interest. Of course, this come at the increased
computational cost of having three models to train instead of just one.

5.3.1 Mid neural network

The first neural network to come into play has the most crucial role, i.e. to
determine the general direction of the next price movement. We use a stan-
dard neural network for classification to do this with a 3-dimensional output,
but using the engineered features presented in Section 3.

The input for the bid side Y B is similar to the input for the ask side Y A.
The same type of features are used .

• Bid side: For predicting the next bid movement Y B, we use the fea-
tures describing the global state of the order book.

fmidbid (x, ·) = fmidbid (BookFeatures).

• Ask side: For predicting the next ask movement Y A, along with the
book features, we also use the observed bid movement Y B, so that we
are able to model the joint distribution of bid and ask.

1Three networks for predicting P (Y A = y) and three for P (Y B = y)
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fmidask (x, ·) = fmidask (BookFeatures, Y B).

Both of these functions are identical neural networks. Similarly to Sirig-
nano (2019) use K = 4 layers, 250 neurons per layer, and tanh activations
functions.

5.3.2 Tail neural networks

There are four spatial neural networks to train, one for both the two sides,
and the ask and bid.

• Upper Bid side: The features for estimating the probability of Y B =
y|Y B ≥ y are the order sizes on the ask side, as mentioned in section
two, so that:

f spatial,upbid (x, y) = f spatial,upbid (V A
y , y).

• Upper Ask side The features for estimating the probability of Y A =
y|Y A ≥ y are the order sizes on the ask side, as well as the observed
bid movement Y B:

f spatial,upask (x, y) = f spatial,upask (V A
y , Y

B, y).

• Lower Bid side: The features for estimating the probability of Y B =
y|Y B ≤ y are the order sizes on the bid side, so that:

f spatial,downbid (x, y) = f spatial,downbid (V B
y , y).

• Lower Ask side The features for estimating the probability of Y A =
y|Y A ≤ y are the order sizes on the bid side, as well as the observed
bid movement Y B:

f spatial,downask (x, y) = f spatial,downask (V B
y , Y

B, y).

All of these functions are identical neural networks. Similarly to Sirignano
(2019) use K = 4 layers, 250 neurons per layer, and tanh activations func-
tions.
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5.4 Benchmark model
In order to evaluate our model, we compare it with the standard neural net-
work for classification, as visualized in Figure 5.3. To do so, as mentioned
earlier, we need to truncate the number of classes. To do so, we fix a sym-
metric range in which to predict, namely ymax, so that the number of classes
Nclasses = 2ymax + 1.

Figure 5.3: Visualization of the standard neural network for classification. It
directly outputs the probability for all possible movements, within a range,
of either the best bid or the best ask.

For the benchmark model, we use again two separate models for the bid and
the ask side. The two models share the same feature, i.e. all the order sizes
from the book, up to the desired depth ymax. However, as for our model,
we include the best bid movement as a feature for predicting the best ask
movement.

• Bid side: For predicting the next bid movement Y B, we use all order
sizes both from the bid size and the ask size.
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f standardbid (x) = f standardbid ((V B
y , V

A
y )y)) y = 1, .., ymax.

• Ask side: For predicting the next ask movement Y A, along with the
book order sizes, we also use the observed bid movement Y B, so that
we are able to model the joint distribution of bid and ask.

f standardask (x) = f standardask ((V B
y , V

A
y )y), Y

B) y = 1, .., ymax.

We use the same networks parameters as all our model, except of course the
number of classes, so we use K = 4 layers, 250 neurons per layer, and tanh
activations functions for both of these networks.

5.5 Predictions using our model
As mentioned, our model, when it comes to predicting new data, offers
greater flexibility than the standard model. The upper and lower model
are not trained neural networks, but rather output their probability estima-
tions from the trained spatial neural network according to equations of the
the same type of Equation 5.1.

In this section, we will analyze some features that characterises making pre-
dictions with our modular model, and how they compare with the standard
neural network for classification.

5.5.1 Predicting in a greater range than training

The functions f tail(x, y) can be used with every y, once the networks f spatial(x, y)
are trained. This means that the range of values to predict in, which is called
ymax during fitting, does not need to be the same than the one used in the
training phase.
In other terms, one can compute, for instance:

Pest(Y = y|Y > 0, X = x) = f spatial,up(x, y)

y−1∏
k=1

(1− f spatial,up(x, k)),

where we allow y to be greater than the ymax used during training.
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This is not possible for the standard neural network, which is forced to pre-
dict values in the same range as it was trained in.

Anyway, for computational reasons it is necessary to fix a range in which
to predict, after training. From now on, we will be referring to this range as
yrange. Since Y A/B ∈ Z, nothing guarantees that the truncated distribution
will still resembles a probability distribution, i.e such that:

yrange∑
y=−yrange

Pest(Y
A/B = y) = 1.

However, that sum can get arbitrarily close to 1 by choosing yrange large
enough, i.e. the model is well posed. This was shown in Sirignano (2019).
All our estimated probabilities output always sum to 1 by using yrange values
around 25.

5.5.2 Scenario Predicting

Moreover, many scenarios that might be of interest can be evaluated in a
straightforward manner by our model. For example, a broker willing to
execute a large sell order might be interested in only one side of the bid
queue, i.e. by how much the best bid will increase, conditioned on the fact
that it will increase. These scenarios include:

• Best Ask increasing:

Pest(Y
A = y|Y A > 0, X = x) = f tail,upask (x, y) .

• Best Bid increasing:

Pest(Y
B = y|Y B > 0, X = x) = f tail,upbid (x, y) .

• Best Ask decreasing:

Pest(Y
A = y|Y A < 0, X = x) = f tail,downask (x, y) .

• Best Bid decreasing:

Pest(Y
B = y|Y B < 0, X = x) = f tail,downbid (x, y) .
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Of course, the standard neural network can also be used to calculate these
probabilities, by composing the probabilities of the relevant singleton events.
However, the 4 different spatial networks f spatial, from which the 4 different
tail functions f tail are derived, are trained specifically for these types of
events, and are therefore more reliable.

5.5.3 Predicting joint events

With our model, we are able to model the full probabilities of bid and ask,
i.e.

P (Y A = y) and P (Y B = y), y ∈ (−yrange, ..,−1, 0, 1, .., yrange),

but we are not modelling the joint distribution directly, i.e. we are not
computing:

Pest[(Y
A, Y B) = (ya, yb)], (ya, yb) ∈ (−yrange, ..,−1, 0, 1, .., yrange)

2.

We also cannot obtain Pest[(Y A, Y B) = (ya, yb)] by multiplicating the proba-
bilities, as we have supposed non-indipendence between bid and ask, and we
are using the bid movements as a feature for the ask movement.

On the contrary, we predict joint events in a two different steps: we first
predict Y B

pred by selecting the most likely scenario from the bid distribution,
and then us it as a feature in order to predict Y A

pred.

This allows us to compute an accuracy metric on the joint events, but not
to produce a loss with respect to the joint probability distribution.



Chapter 6

Experiments

In this chapter we will explain how we have set our experiments, as well as
presenting the out of sample results of our models.

6.1 Training Neural Networks
The problem of training is equivalent to the problem of minimizing the loss
function, i.e. given a set of training features and labels {(xi, yi)}i=1,..,Nsamples

,
find weights θ, such that when applied to the neural network f(x):

θ = argminθL({(fθ, xi), yi}i=1,..,Nsamples
,

where L is the loss function.

6.1.1 Back Propagation

The task of minimizing the loss function is usually done via an algorithm
known as back-propagation. Back-propagation works by propagating the
loss from the last layer to the first, each time evaluating the derivatives of
the loss function with respect to the nodes of a given layer. At the end of
this procedure, the weights are updated.

6.1.2 Updating the weights

Updating the weights is a matter of optimization, and many different algo-
rithms are available. Most of these, however, are a generalization of the basic
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Gradient Descend algorithm. The gradient descend works by evaluating the
gradient of the loss function and updating the weights in a additive manner,
similarly to Newton Methods:

θn+1 = θn + α∇L((fθ, xi), yi)). for i ∈ 1, .., Nsamples

where α is the descend step.

Therefore, each weight is updated after every sample in the dataset. A
straightforward generalization of Gradient Descend, that works by updating
the weights not after a single sample but after a batch of samples. In this
work a batch size of 20 is used.

Nowadays, much more sophisticated optimizer are available. In our case,
we used the Adam optimizer, as introduced in Kingma and Ba (2014).

6.1.3 Other training parameters

There are several other concepts that contribute to a successful training of a
neural network.

• Epochs: The maximum number of iterations over the entire dataset.
We use 75 epochs.

• Data splitting: The dataset is divided into three groups: train set,
which is used for the training, validation set which is useful for early
stopping, and test set, on which the model is evaluated.

• Early stopping: To avoid overfitting, after every epoch the model
is used on the validation data and evaluated. Once the validation
performance stops increasing, for N epochs in a row, the training is
stopped. We use N = 15.

• Dropout: Another technique to reduce overfitting,it consists in "for-
getting" the value of a weight of a given layer, after every epoch, every
weight is set to zero with a given probability p. We use p = 0.3

• Data shuffling and repeating: To increase the number of different
batches available, we randomly shuffle the dataset before proceeding
with batching. After this, the dataset is repeated, so that it has infinite
length.
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• Evaluation interval: Having an infinite repeating dataset means that
we have to specify and evaluation interval Ne, i.e. the number of sam-
ples the model trains on in a single epoch. We use Ne = 10000

6.2 Out of sample prediction
The test set contains data that were not used for training. It is possible to
use the features in the train set to predict the price movements and compare
them with the observed ones.
It is then possible to then compute the loss on these out of sample values.
Along with the loss, we also use another metric to evaluate the model, namely
accuracy.
Accuracy measures the frequency with which our model correctly predict the
observed value.

6.2.1 Equity Out of sample results

We try our models on the test set of all the stocks in Set B, and compare it
with the results obtained by the benchmark model.
We use the same parameters across all differents stocks, most notably we
predict in a ymax = 25 range. This value was handpicked looking at the
empirical distribution of the stocks in Set B. It isn’t always enough to cover
all possible realizations, but in order to produce a fair comparison with the
standard model, we chose it not to increase too much the standard models
output dimension.

For all stocks, we compute the joint accuracy. We do this in a two-steps
way as explained in Chapter 5, i.e. predicting first the bid, and then the
ask. Then, we can compute the accuracies on the joint events. However,
we cannot produce a loss on the joint probability distribution, as we are not
modelling that directly. Instead, we compute the sum of the two marginal
losses.

Results are shown in Table 6.1 below. For better readibility, we used ’MM’
to indicate our Modular Model, as well as ’SNN’ to indicate the Standard
Neural Network.
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MM Accuracy SNN Joint Accuracy MM Loss SNN Loss
AMZN 0.57 0.57 3.12 3.43
FB 0.52 0.49 2.39 3.52
NVDA 0.57 0.54 2.24 3.07
AAPL 0.56 0.57 2.36 3.29
TSLA 0.60 0.53 4.30 4.51
NFLX 0.48 0.48 2.64 2.91
MSFT 0.63 0.59 2.21 2.25
GOOGL 0.63 0.56 2.17 2.98
DIS 0.73 0.73 1.31 1.33

Table 6.1: Results Summary

For both models, accuracies are quite high. This is because, even when
sampled with a 1s sampling time, most moves are 0-moves, i.e. the best bid
and the best ask not moving. Therefore, both models tend to assign a high
probability to the (0, 0) event, predicting it correctly most of the times.
Another possible metric is the top-k-accuracy, which measures the frequency
with which the observed value lies within the top-k most likely events. We
use k = 9. In Table 6.2, results are shown for our model, and in Table 6.3
for the Standard Network.

AMZN FB NVDA AAPL TSLA NFLX MSFT GOOGL DIS
1 0.57 0.52 0.57 0.56 0.60 0.48 0.63 0.63 0.73
2 0.64 0.67 0.69 0.69 0.67 0.59 0.73 0.70 0.84
3 0.67 0.78 0.78 0.78 0.71 0.66 0.78 0.74 0.90
4 0.69 0.85 0.83 0.86 0.75 0.72 0.82 0.77 0.94
5 0.69 0.89 0.87 0.91 0.77 0.75 0.87 0.78 0.96
6 0.71 0.92 0.90 0.94 0.79 0.79 0.91 0.79 0.97
7 0.72 0.95 0.92 0.96 0.81 0.81 0.93 0.80 0.98
8 0.73 0.96 0.94 0.97 0.82 0.84 0.94 0.81 0.99
9 0.73 0.97 0.95 0.98 0.84 0.86 0.95 0.82 0.99

Table 6.2: Modular Model Accuracies
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AMZN FB NVDA AAPL TSLA NFLX MSFT GOOGL DIS
1 0.57 0.49 0.54 0.57 0.53 0.48 0.59 0.56 0.73
2 0.64 0.63 0.65 0.61 0.62 0.55 0.76 0.64 0.84
3 0.67 0.73 0.78 0.75 0.67 0.63 0.91 0.68 0.87
4 0.67 0.79 0.81 0.82 0.70 0.65 0.95 0.72 0.90
5 0.69 0.86 0.83 0.89 0.72 0.69 0.98 0.74 0.94
6 0.72 0.89 0.85 0.92 0.74 0.72 0.99 0.75 0.96
7 0.73 0.93 0.87 0.95 0.76 0.76 0.99 0.77 0.98
8 0.74 0.94 0.90 0.96 0.78 0.78 0.99 0.78 0.98
9 0.75 0.96 0.92 0.98 0.79 0.81 0.99 0.79 0.99

Table 6.3: Standard Neural Network Accuracies

Looking at the top-k-accuracies, it is clear that both models do quite a good
job at predicting future events. This is due to the fact that, at this sampling
time, big price moves are increasingly less likely to happen, and most moves
tend to be just a few levels around the (0, 0) move. Therefore, as we will see
later, any naive model producing decreasing probabilities in a neighborhood
of (0, 0), with no particular criteria, will achieve high top-k-accuracies.

Something that it is interesting to see is that, for both model, sometimes
the top-9-accuracy reaches almost 100%, whereas other times does not. This
maybe due to the fact that different stocks have different volatilities, and for
the most volatile ones it may be appropriate to use a larger output range.
Again, this can easily be done by our model but not by the standard model.
but for the sake of these results we used the same range in both models.

Results concerning the comparison between our modular model and the stan-
dard model are somewhat mixed: our modular model is outperformed only
in one stock, namely Apple. For the rest of the stocks, our model barely
outperforms the standard model.
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There’s another, more trivial, benchmark that could be used, namely the
empirical distribution.

Definition 6.2.1 (Empirical Distribution). The estimated probability
equals the historical frequency:

Pest(Y
A/B = y) = pempy ,

where pempy =
∑Nsamples

i=0 1Y=y.

In particular, we compute the empirical distribution in the validation set.
Unfortunately, and dissimilarly from Sirignano (2019) -which this work is
based on-, the standard neural network never outperforms the empirical dis-
tribution. We didn’t report results from the empirical distribution because
they are identical to the results from the standard neural network. Therefore,
the standard model doesn’t manage to learn any fruitful information from
the data.

This is surely due to the low amount of data, compared to Sirignano (2019),
as well as the high dimensionality of the input. The features of both standard
neural networks are all the order sizes of the book. In contrast, the features
of the two spatial neural networks are one size at the time, according to the
way the architecture is conceived.

It maybe also due to the high dimensionality of the output of the standard
model, it being a wide range of possible movements. These classes will be
terribly unbalanced, with the 0-class -i.e. no price movement- taking up the
large majority of observations, and all others classes with increasingly less
observations, up to two orders of magnitude less. In contrast, in our modular
models, we never use more than 3 classes in output.

Despite this, we feel that the comparison with the standard model is some-
what invalidated by it not being able to outperform the null model. It very
well may be that, given enough data, the standard model will be able to do
so and end up performing equally to our model.

What is clear however, is that our modular model needs less data to out-
perform the null model. However, it barely does so for the majority of the
stocks, and surely wouldn’t be useful in a production environment, i.e. being
used to engage in high-frequency trading.
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6.2.2 Tether’s out of sample results

We perform the same experiments, with the same parameters and networks
with data from the cryptocurrency known as Tether. As mentioned in Chap-
ter 5 the format in which this data comes into is equivalent to the format
of our processed data from the NASDAQ exchange, save for the sampling.
Therefore, little needs to be changed in our input pipeline in order for the
models to be applied to this type of data as well.

In Table 6.4, results are summarised. Again, we use ’MM’ to indicate our
modular model, as well as ’SNN’ to indicate the standard neural network for
classification.

MM SNN
Loss 3.18 3.18
k=1 0.29 0.29
k=2 0.69 0.60
k=3 0.95 0.88
k=4 0.99 0.94
k=5 0.99 0.99

Table 6.4: Tether Results Summary

Differently from the accuracies achieved by the models trained on equity
data, the top-1-accuracy is quite low. This indicates that, once sampled,
Tether tends to move more, and a null model won’t be able to perform as
good. This is not unexpected however: we specifically picked 280s as sam-
pling time to try to maximise movements (without reducing too much the
dataset size), without having to account for multiple assets as in the case of
the data from NASDAQ. Moreover, we also didn’t have a benchmark, since
in the equity case we ended up using the same sampling time as in Sirignano
(2019), although after performing due diligence to justify its use.

However, the behaviour with respect to the top-k-accuracies is quite sim-
ilar to the stocks. This is because the same reasoning applies: probabilities
of large moves are rapidly decreasing, and any model producing decreasing
probabilities will have relatively high top-k-accuracies.
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Unfortunately, the results in the case of Tether show that our modular model
is not able to outperform the standard neural network, and with it the null
empirical model.

This is of course due to the low amount of data points at our disposal after
sampling, namely 9240 datapoints. What is interesting to note, however, is
that the top-k accuracy increases at a greatest rate for the modular model
than for the standard neural network. This doesn’t really seem to happen
for the NASDAQ data.



Chapter 7

Conclusions and further work

In this Chapter, we draw some conclusions and list some possible ideas for
future work.

7.1 Conclusions
As explored in Chapter 6, our modular model somewhat outperforms the
standard neural network, which in turn is not able to outperform the null
model, i.e. the empirical distribution.

In the case of the cryptocurrency USDT, our model performs the same as the
the standard neural network. This is of course due to the very low amount of
training data remaining after sampling, with around 10-15 times less avail-
able data than the average stock.

In any case, our model performing the same, or not significantly better,
than a standard model it’s still an acceptable result: the advantages in our
model are not necessarily related to its accuracy, but lie also in its flexibility
and usability.

The decisions taken in setting up are architecture were driven by a in-depth
analysis of order book data: exploring the local behaviour of the order book,
the correlation between bid and ask, feature selection, possible choices of
sampling time, and general empirical properties of LOB data.
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This kind of analysis would be crucial for any other work willing to model
LOB price movements with a classification model.

7.1.1 Limits of this work

In producing this work, we were ampered by several problems.
First of all, the low amount of data. Of course, this problem affects nearly
all deep learning works. However in our case, we have a particular mismatch
between the size of available data, namely a limit order book, and the size
of available data after sampling. This is most notable in the case of USDT
data. This mismatch makes it difficult to store many limit order books in
memory, only for them to be reduced in size by several orders of magnitude
before training.

Another problem is what data is available for free on the internet, namely
some selected end-of-month data. This means that most data are scattered
in time, and the same stock could be having wildly different properties -such
as stock price, volatility, etc- between different months. It would be much
more convenient to have the same amount of days worth of data, or even less,
provided that they are close in time or even contiguous. As we will explain in
the next section, the non-contiguity of our data doesn’t allow us to propose
and try some relevant architectures.

One last problem, that affects all LOB-related forecasting problems, is the
presence of hidden liquidity in the limit order book, as explained in Chapter
2. Stock forecasting is already a difficult problem. If, on top of that, models
are not allowed to access all possible information, and there’s no way to tell
if the observed quantities used to predict a given data point are actually very
different from the true quantities, as hidden orders may be hampering that.

7.2 Direction of future work
As mentioned in the last section, access to data was quite restricted for us, in
comparison to some of the relevant literiture on the topic, such as the work
from which this thesis is inspired from. Therefore, it would be interesting to
see how our model would perform once trained on extensively more data.
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Having access to better quality data would also allows us to try some other
architecture. Namely, in exploring possible architectures for this work, a Re-
current Neural Network (RNN) was long considered. In particular, a Long
Short Term Memory (LSTM) network, which has techniques in place to han-
dle vanishing gradient problems related to RNN applications to time series
forecasting. The LSTM is built in a way to be able to recognize long-term
dependencies of the data. When used on a single day of data, the LSTM
outperformed the standard networks. However, when used on several days,
this wasn’t the case anymore. This may have been due to the fact that we did
not have access to contiguous days, but on singular days scattered around
2019 and 2018. So, there were few long-term dependencies to be found in
data, and the LSTM was abandoned for the sake of this work.

It would be interesting to see how a LSTM-based network would perform
given extensive and high-quality data. Moreover, the first trials with this
latter architecture showed some degree of ability to transfer-learning. The
model, first trained on a single stock, would be able to be trained on another
stock and perform significantly better on the latter stock, without first train-
ing on the former stock.

Any transfer-learning application in NASDAQ LOB data could be incred-
ibly consequential, given the format that NASDAQ compressed data comes
into. As mentioned in Chapter 5, a single .ITCH50 files contains data from all
the stock listed on the NASDAQ exchange. Therefore, whereas there could
be little ’vertical’ training data -i.e. in time-, there is enormous potential for
’horizontal’ -i.e. across different stocks- training.



Appendix A

Data specifications

In this appendix, we will briefly list the stocks and the exact days1 used in
this thesis. As mentioned, we use two different sets of stocks depending on
the nature of each analysis. If the analysis involves using only the best bid
and best ask price, we use the stocks listed in Set A. If the whole book is
needed, we use the stocks listed in Set B.

• Set A: it’s composed by the stocks of the 43 companies with largest
market capitalization listed at the NASDAQ, at the time of this work.

The complete list of the stocks is:

AAPL (Apple), ABBV (AbbVie), ABT (Abbott Laboratories), ADBE
(Adobe), AMZN (Amazon), ASML (ASML Holding), BABA (Alibaba),
BAC (Bank of America), CMCSA (Comcast), CRM(salesforce.com),
CSCO (Cisco), CVX (Chevron), DIS (Disney), FB (Facebook), GOOGL
(Google), HD (Home Depot), INTC (Intel), JNJ (Johnson&Johnson),
JPM (JP Morgan), KO (Coke), LLY (Eli Lilly), MA (Mastercard),
MSFT (Microsoft), NFLX (Netflix), NKE (Nike), NVDA (Nvidia),
NVS (Novartis), ORCL (Oracle), PEP (Pepsi), PFE (Pfizer), PG (Proc-
ter&Gamble), PYPL (PayPal), T (AT&T), TM (Toyota), TMO (Thermo
Fisher Scientific), TSLA (Tesla), TSM (Taiwan Semiconductor), UNH
(United Health), V (Visa), VZ (Verizon), WMT (Walmart), XOM
(Exxon Mobil).

1Stock data is stored into files each worth a day of data.
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• Set B: it is composed by a subset of Set A. In Table A.1 below, we
list the ticker of stocks along with the number of datapoints used for
training.

MSFT 151960
AMZN 144450
FB 152204
NVDA 141444
AAPL 160224
TSLA 140062
GOOGL 136852
DIS 121906
NFLX 132620

Table A.1: Set B stocks and correspondent number of datapoints

• Available days: the list of days-worth of data used in this work is the
following:

21/01/2012, 28/12/2018, 30/01/2019, 27/03/2019, 30/05/2019, 30/07/2019,
30/08/2019, 30/10/2019
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