
Reinforcement Learning-based
Trading Model for US Sectors

Tesi di Laurea Magistrale in
Mathematical Engineering - Ingegneria Matematica

Author: Giulia Mulattieri

Student ID: 962621
Advisor: Prof. Marcello Restelli
Co-advisors: Antonio Riva, Luca Sabbioni
Academic Year: 2021-2022

i

Abstract

In this thesis we present an examination and implementation of a Reinforcement Learning
algorithm to develop a trading model for the US market sector indices. These indices are
constructed according to the Global Industry Classification Standard (GICS). We incor-
porate both fundamental and technical financial indicators as features in order to improve
forecasting accuracy, instead of relying only on historical price series. This enables us to
handle the dynamic and complex nature of financial markets more efficiently.
Our final objective is to employ the signals derived from the trading model to construct
a market-neutral portfolio, which is a portfolio with a null net exposure with respect to
the market.
We perform an extensive analysis of selected financial indicators to evaluate their predic-
tive capabilities. We therefore identify the most informative features that can be used to
train our RL algorithm. We choose Fitted Q-Iteration algorithm to train a weekly trading
model on historical daily data. The performance evaluation of the model is conducted
on out-of-sample data, taking transaction costs into account. We were able to develop
a trading model that produced positive results for most of the sector indexes during the
testing period. However, the overall trading strategy displays high volatility. Despite
these instability issues, a proper implementation of volatility control techniques could
potentially make this approach able to produce an effective and stable trading strategy
for US sectors.

Keywords: Reinforcement Learning, Fitted Q Iteration, Financial Time Series, Invest-
ment Strategy, Market Neutral Portfolio.

Abstract in lingua italiana

In questa tesi presentiamo lo studio e l’implementazione di un algoritmo di Reinforce-
ment Learning per sviluppare un modello di trading per gli indici dei settori del mercato
americano. Questi indici sono costruiti secondo lo Standard di Classificazione Globale
dell’Industria (GICS). Abbiamo considerato sia indicatori finanziari fondamentali che tec-
nici come variabili al fine di migliorare l’accuratezza delle previsioni, invece di affidarci
solo alle serie storiche dei prezzi. Ciò ci consente di gestire in modo più efficiente la
natura dinamica e complessa dei mercati finanziari. Il nostro obiettivo finale è quello di
impiegare i segnali derivati dal modello di trading per costruire un portafoglio neutrale
al mercato, ossia un portafoglio che ha un’esposizione netta nulla rispetto al mercato.
Abbiamo effettuato un’analisi approfondita degli indicatori finanziari per valutare le loro
capacità predittive. Abbiamo quindi identificato le variabili più informative da utilizzare
nel nostro algoritmo di RL. Abbiamo scelto l’algoritmo Fitted Q-Iteration per costruire
un modello di trading settimanale sui dati storici giornalieri. La valutazione delle per-
formance del modello è stata condotta su dati out-of-sample, tenendo conto dei costi di
transazione. Abbiamo sviluppato un modello di trading che ha prodotto risultati positivi
per la maggior parte degli indici settoriali durante il periodo di test. Tuttavia, la strate-
gia di trading complessiva presenta un’elevata volatilità. Nonostante questi problemi di
instabilità, riteniamo che, con una corretta implementazione di tecniche di controllo della
volatilità, questo approccio possa generare delle efficaci strategie di trading per gli indici
settoriali americani.

Parole chiave: Apprendimento tramite Rinforzo, Fitted Q Iteration, Serie Storiche Fi-
nanziarie, Strategia di investimento, Portafoglio Neutrale al Mercato.

v

Contents

Abstract i

Abstract in lingua italiana iii

Contents v

1 Introduction 1
1.1 Research goal . 3
1.2 Outline of the Thesis . 4

2 Reinforcement Learning 7
2.1 Markov Decision Processes . 7
2.2 Policy . 9
2.3 Return . 9
2.4 Value Functions . 10
2.5 Optimal Value Functions . 11
2.6 Algorithms . 12
2.7 Q-Learning . 13

2.7.1 Fitted Q-Iteration . 14
2.7.2 Deep Q-Network . 15

2.8 Policy Gradient . 16
2.8.1 Trust Region Policy Optimization 17
2.8.2 Proximal Policy Optimization . 18

3 Related Works 21
3.1 Model based approaches . 21
3.2 Machine Learning based approaches . 22
3.3 Reinforcement Learning based approaches 23

4 Problem Formulation 29

4.1 Financial Preliminaries . 29
4.2 Reward . 30
4.3 Environment Formulation . 32
4.4 Algorithm Selection . 36

4.4.1 FQI dataset . 37

5 Data Analysis 39
5.1 Analysis of the Dataset . 39
5.2 Features Selection . 42
5.3 Stationarity . 47
5.4 Rolling Approach . 49
5.5 Recursive Feature Addition . 54

6 Experimental evaluation 57
6.1 Backtest . 57

7 Conclusions and future developments 61

Bibliography 63

List of Figures 69

List of Tables 71

Acknowledgements 73

1

1| Introduction

In the last decades investors have faced numerous challenges when making investment
decisions. The vast number of investment options, constantly evolving market conditions,
and the huge amount of available data make it increasingly difficult to perform effective
investment strategies.
To overcome these challenges, investors must conduct comprehensive research and analy-
sis of the market. In particular, opportunities and risks in investing in a specific asset can
be identified by analyzing historical performance, market trends, and financial indicators.
However, investing solely in a single asset can be risky, as it exposes investors to signif-
icant volatility and uncertainty. Therefore, it is crucial to use single asset analysis and
market signals to construct a balanced and diversified portfolio that maximizes returns
and minimizes risks.
In recent years, there has been growing interest in applying artificial intelligence (AI)
techniques to assist investors in managing financial markets and making well-informed
investment decisions. As highlighted in [10], AI has the potential to revolutionize trading
and portfolio management by enabling investors to analyze huge amounts of data and
make effective investment decisions. The article features an interview with Heloise Greeff,
a mechatronics engineer at Harvard who outperformed the S&P index for the past five
years. She asserts that AI improves performance while reducing the computational cost
of decision-making. Therefore, by properly analyzing market trends and historical data,
AI algorithms can assist investors in analyzing and selecting assets. Thus the integration
of AI represents a promising opportunity to achieve optimal investment objectives.
In this thesis, our focus is on applying AI techniques to find the best investment strategy.
However, before delving into the details of these techniques, it is essential to introduce
the concepts of asset and portfolio. A portfolio is a collection of financial assets, which are
instruments that represent an ownership claim on the underlying asset or a contractual
right to receive future cash flows. Financial assets can take various forms, such as stocks,
bonds, options, futures, and currencies. They are typically traded in financial markets,
such as stock exchanges, bond markets, or commodity markets, and their values are de-
termined by supply and demand. The composition of a portfolio can vary depending on

2 1| Introduction

the investor’s goals and risk tolerance. It can be structured in different ways, such as
by asset class, geographic region, industry sector, or other criteria. Asset class refers to
grouping assets together based on their underlying characteristics. Common asset classes
include stocks, bonds, and commodities. Geographic Region approach involves selecting
assets based on the country or region they belong to. For example, a portfolio might be
structured to focus on US-based companies. Industry Sector method, instead, involves
grouping assets by industry, such as financials, energy or technology. There are many
other criteria to consider when constructing a portfolio, which can include a variety of
different aspects, such as market capitalization or ESG factors [12].
However, the key principle to construct a portfolio is diversification, which means invest-
ing in different assets to manage risk by reducing exposure to any one particular security
or market. Therefore it is essential to analyze and select the right assets to properly
construct a portfolio able to achieve an optimal balance between performance and risk.
This can be achieved through traditional approaches or AI approaches.
Traditional approaches, e.g. Markovitz model [34], typically rely on static allocation
strategies based on historical time series and mathematical optimization techniques to
find the best investment strategies. However, an investment strategy should be a dy-
namic process, as market conditions and asset performance change over time, and these
approaches cannot always handle the dynamic nature of financial markets. Moreover,
they usually make some strict and unrealistic assumptions about the distribution and
stationarity of the data, which may be inadequate to describe the complexity and uncer-
tainty of the financial markets.
AI approaches can overcome the limitations of traditional methods; in particular, using
Reinforcement Learning, it is possible to construct an agent that can make effective in-
vestment decisions in a dynamic financial environment. The agent is trained on a series
of historical data and can perform real-time optimization of its investment strategy based
on available information, such as market conditions. One of the major challenges for
this kind of approach is the management of non-stationarity of the data. In fact, finan-
cial markets are known for their non-stationary nature, as they often present varying
behavior over time that can cause fluctuations and shifts in the underlying trends and
patterns. This can pose a challenge for AI models that are trained on historical data. In
this thesis, we aim to apply effective techniques for handling non-stationarity in financial
data. By doing so, we aim to improve the predictive power of the features used in our
models, and consequently, build a more reliable and robust model for financial analysis
and decision-making.

1| Introduction 3

1.1. Research goal

Most of the portfolio optimization procedures put the focus on modeling the interaction
between the assets, consequently finding the allocation of all the assets in a single step and
directly constructing an optimal portfolio. Instead, in this work, we will try to leverage
the more detailed information that the single asset analysis can provide. We will propose
an approach that exploits the representative power of reinforcement learning techniques
to characterize the optimal investment strategy when dealing with a single asset. In
particular, we want to build a trading model for the US Sectors. In a financial context, a
trading model is an investment strategy used to generate buy and sell signals by analyzing
various market indicators, such as moving averages, relative strength, or other technical
indicators. The goal is to determine when to buy or sell a particular security or asset
class in order to maximize returns. Therefore we aim to build a trading model to properly
identify buy and sell signals for US Sectors. The mission of this project, that goes far
beyond the contributions of this thesis, is to construct a portfolio accordingly to these
signals.
Therefore our methodology relies on a two-step procedure: we first want to determine an
optimal trading strategy for each sector individually by means of reinforcement learning
algorithms, and secondly, optimization procedures will be performed over the obtained
strategies to construct a market-neutral portfolio.
A portfolio is considered market-neutral if the size of the long positions equals the size of
the short positions, resulting in a null net exposure against the market.
The goal is to make such portfolio, obtained from the strategies of our trading model, able
to achieve better performance than the market weighting approach based on capitalization
and an equal-weighted portfolio. The first consists of weighting stocks by their market
capitalization, also known as market cap, which represents the total value of a company’s
outstanding shares of stock. It is calculated by multiplying the number of outstanding
shares by the current market price per share. While market capitalization weighting can
be a useful tool for constructing an index or portfolio, it can also lead to a concentration
of investments in a small number of large-cap companies or sectors, potentially increasing
overall risk and reducing diversification. The second one consists of weighting stocks
equally, leading to a more balanced and diversified portfolio. On the other hand, this
approach may also result in a lower concentration of investments in larger and more
established companies that may offer a good investment opportunity.
Therefore we aim to develop an effective trading model through reinforcement learning
techniques, which will enable us to develop an alternative weighting methodology for
constructing portfolios. This methodology can potentially mitigate risk concentration

4 1| Introduction

and increase overall returns.

In order to make this approach practical for real-world use, we make no simplifying
assumptions. The main challenges we face are the limited available data (daily data
from 2008 to 2022) and their non-stationarity.

First, we consider the main financial indicators that drive the market. We consider both
technical and fundamental indicators, and through feature selection algorithms, we find
the most relevant ones, i.e. those that have the greatest impact on sectors performance.
Then we try to handle the non-stationarity in order to increase the predictive power
without losing information.
As explained above, before focusing on identifying the optimal weights to construct a
portfolio, we decide to identify individual signals for buying and selling for each asset.
Therefore, through a Reinforcement Learning model, we train an agent on the selected
financial variables to find the best investment strategy for every sector. By using these
contextual variables, in fact, the algorithm makes more effective decisions compared to
ones based on historical price series alone.

As the goal of this thesis is to be employed in a real-world portfolio management, our ap-
proach also takes into account the requirement of being easily explainable and justifiable
to clients and investors. Thus, we seek a trade-off between the efficiency and transparency
of the models. As a result, we decided to employ the Fitted Q-Iteration (FQI) algorithm
[20] for our reinforcement learning approach. This algorithm offers the advantage of not
relying on black-box methods, such as neural networks, and allows for more transparent
monitoring of the decision-making process (Section 4.4). Furthermore, FQI is a highly
robust model and, by discretizing actions, it mitigates potential high-dimensionality is-
sues. To train our model, we used daily data from 2008 to 2019. Finally, we evaluated the
model’s performance through a backtest between 2020 and 2022. We achieve positive per-
formance for most of the sectors for some iteration of FQI. However, some of the obtained
strategies exhibit excessive volatility. One way to overcome these instability issues is to
implement effective volatility control techniques which could make our trading strategy a
promising approach for producing positive and stable results.

1.2. Outline of the Thesis

The thesis is organized as follows:

• in Chapter 2 we cover the theoretical background of Reinforcement Learning (RL).
First we introduce Markov Decision Process, which are the mathematical framework

1| Introduction 5

on which RL is based. Following this, we present the main RL algorithms, including
the FQI algorithm, which will be utilized in our trading model.

• in Chapter 3 we provide an overview of the various approaches used to implement
trading strategies and optimize portfolios. We first present model based and machine
learning based approaches. We analyze their limitations, which lead to the advent
of Reinforcement Learning based approaches.

• in Chapter 4 we cover the introduction of key financial concepts, followed by the
presentation of the problem formulation of the single asset trading model.

• in Chapter 5 we first present a qualitative analysis of financial indicators, both
technical and fundamental. Then we select the most relevant ones through feature
selection algorithms.

• in Chapter 6 we show the achieved experimental results employing FQI algorithm
with XGBoost and ExtraTrees as regressor.

• in Chapter 7 we illustrate conclusions drawn from experimental results and possible
future developments.

7

2| Reinforcement Learning

Machine learning is a subfield of Artificial Intelligence that involves the development of
algorithms and models that can analyze data and/or make predictions. There are three
different types of machine learning: supervised learning, unsupervised learning, and rein-
forcement learning.
Supervised learning [15] aims to train a model to make accurate predictions by using
labeled datasets. Specifically, the model is trained on a given dataset where the correct
output is provided for each sample. Once the model is trained, it is used to make predic-
tions on new data.
In unsupervised learning [3], the model is not provided with training input-output exam-
ples. Instead, it must discover the structure and pattern of the data through techniques
such as clustering or dimensionality reduction.

Reinforcement learning [50] develops and trains an agent to interact with a given system,
denoted as environment, in order to maximize a reward signal. In particular, the agent
improves its behavior through interaction with the environment and receiving feedback
in the form of a scalar rewards for its actions. The agent-environment interaction is
schematized in Figure 2.1, where the state St ∈ S represent the set of information that
an agent has about the environment at a given time, At ∈ A represents what an agent
can do in each state, rt is the reward.

Reinforcement learning has been applied in a variety of domains, such as game playing
[26], robotics [18], and finance, and is particularly well-suited for problems where there is
a dynamic framework and the optimal solution must be learned through interaction with
the environment.

2.1. Markov Decision Processes

The reinforcement learning theory is built on the framework of Markov decision processes
[39], which are stochastic mathematical systems able to model the interaction between an

8 2| Reinforcement Learning

Figure 2.1: Agent-Environment Interaction Schematization

agent and an environment:

Definition 2.1.1 (Markov Decision Process). A Markov Decision Process (MDP) is a
tuple < S,A, P, R, γ, µ >, where:

• S is the (finite) set of all possible states called state space;

• A is the (finite) set of all possible actions called action space;

• P is the stationary transition probability matrix defining P(s’|s,a);

• R is the reward function R(s, a) = E(r|s, a);

• γ is the discount factor such that γ ∈ [0, 1];

• µ is the probability distribution over all states modeling the probability of a state to
be the initial one

In a MDP, the probability of transitioning from one state to another depends only on
the current state and not on any previous states. This property is known as the Markov
property and can be expressed as:

P (St+1 = s′|At, St, St−1, At−1, .., S1, A1, S0, A0) = P (St+1 = s′|St, At), (2.1)

where P (St+1|St, At) is called Transition Probability.

By using a MDP to model the environment, the agent can use the transition probabilities
to estimate the expected rewards of different actions in each state and find the optimal
policy, which means the policy that maximizes its cumulative reward over time.

2| Reinforcement Learning 9

2.2. Policy

A policy π is a function that maps states to a probability distribution over the action
space, and it can be expressed as:

π(a|s) = P (At = a|St = s). (2.2)

It represents the behavior of the agent, in particular how the agent selects actions based
on the current state.
In a MDP it is possible to exclusively consider stationary and Markovian policies (de-
pending only on the current state and action) since it is demonstrated that it always
exists an optimal policy with these characteristics. Moreover, a policy can be stochastic
or deterministic.
The agent, at each state, has to make a decision following a certain policy and then re-
ceive feedback, giving rise to a sequence of states S, actions A, and rewards R known as
a trajectory:

s0, a0, r1, a1, r2, ... (2.3)

2.3. Return

The goal of the agent is to maximize the cumulative reward, that can be expressed as the
sum of all the rewards received over time. In RL there exist different reward functions
used to measure the cumulative reward:

• Total Reward V =
∑∞

i=0 ri+1

• Average Reward V = limn→∞
r1+...+rn

n

• Discounted Reward V =
∑∞

i=0 γ
iri+1, where γ ∈ [0,1] is the discount factor. In

particular, γ represents the importance of future rewards. A value of γ closer to 1
implies that the agent places more emphasis on future rewards, while a lower value
of γ indicates a greater focus on immediate rewards. Therefore, the choice of γ

is critical in balancing the trade-off between short-term and long-term gains in a
reinforcement learning system.

The most commonly used reward in RL is the Discounted Reward since it avoids diver-
gence issues. From the definition of Discounted Reward, it is possible to introduce a key

10 2| Reinforcement Learning

element in RL, the return:

vt =
∞∑
k=0

γkrt+k+1. (2.4)

2.4. Value Functions

The value function V of a state s represents the goodness of that state following a specific
policy and informs the agent of how much return to expect if it takes an action in that
state. It’s computed as a prediction of expected future rewards:

Vπ(s) = Eπ[vt|St = s]. (2.5)

Where s is the current state at time t, π is the policy followed by the agent, r is the
reward and

The action-value function Qπ describes the expected future reward for taking a particular
action a in a given state s following a certain policy π. It can be expressed as:

Qπ(s, a) = Eπ[vt|St = s, At = a]. (2.6)

One of the key tools in reinforcement learning are the Bellman equations [50], used to
describe the relationship between the value of a state or action and the expected future
return by following a specific policy. They are named after Richard Bellman, who intro-
duced them in the 1950s.
The first one is a mathematical equation that describes the relationship between the
value Vπ of a state s (or a state-action pair) and the expected value of the next state. It
helps the agent to decide which action to take in order to maximize the long-term return.
Therefore, starting from the definition of the value function, it is possible to establish a
recursive relationship between the expected returns of consecutive states, leading to the
Bellman Equation:

Vπ(s) = Eπ[rt+1 + γVπ(st+1)|st = s]

=
∑
a∈A

π(a|s)(R(s, a) + γ
∑
s′∈S

P (s′|s, a)Vπ(s
′)).

(2.7)

2| Reinforcement Learning 11

2.5. Optimal Value Functions

The optimal state-value function V ⋆(s) is the maximum state-value function over all
policies:

V ⋆(s) = max
π

Vπ(s). (2.8)

The optimal action-value function Q⋆(s, a) is the maximum action-value function over all
policies:

Q⋆(s, a) = max
π

Qπ(s, a). (2.9)

Value functions also define a partial ordering over policies:

Vπ(s) ≥ Vπ′(s) ∀s ∈ S =⇒ π ≥ π′, (2.10)

which means that it is possible to define the optimal policy (π⋆) as the policy that is
always better or equal than any other policy. The optimal policy is not unique in an
MDP but all optimal policies lead to the same (optimal) value functions V ⋆(s), Q⋆(s, a)

∀s, a.

The relationship between the optimal value function and the optimal policy is character-
ized by the Bellman Optimality Equation. It states that the optimal value function can
be expressed as the maximum expected return achievable by following any policy:

V ⋆(s) = max
a∈A

Qπ⋆(s, a)

= max
a∈A

(R(s, a) + γ
∑
s′∈S

P (s′|s, a)V ⋆(s′)]
(2.11)

This equation essentially states that the optimal value function satisfies a recursive rela-
tionship that takes into account the expected immediate reward and the expected value
of the next state under the optimal policy.

The Bellman equations provide a fundamental framework for evaluating and optimizing
decision-making processes. In particular, these concepts form the basis for reinforcement
learning algorithms, which enable agents to efficiently make optimal decisions by inter-
acting with the environment.

12 2| Reinforcement Learning

Figure 2.2: Actor Critic Schematization

2.6. Algorithms

Reinforcement learning algorithms can be divided into two main categories: value-based
and policy-based. The former tries to learn the optimal policy by iterating on the space
of value function thanks to the Bellman Optimality equation, while the latter learns the
optimal policy by iterating over the space of the policies. In the first case, the algorithm
estimates the state value (usually the value function or action value function), while in
the second case, it directly obtains the optimal policy without estimating the value of
each state by using a parameterized function to represent the policy, which is optimized
through gradient ascent to maximize the expected return.

There are also actor-critic algorithms that are a compromise between policy-based and
value-based. They simultaneously perform two learning tasks: one for optimizing the pol-
icy using gradient descent, and another for estimating the advantage function A (Equation
2.12), which can be expressed as:

Aπ(s, a) = Qπ(s, a)− Vπ(s). (2.12)

In particular, the actor takes as input the state and outputs the best action using Policy
Gradient (Section 2.8) with estimations from the critic. It essentially controls how the
agent behaves by learning the optimal policy (policy-based). The critic, on the other
hand, evaluates the current policy by computing the value function (value-based) and the
result is used in the policy training. Therefore these algorithms are able to learn both
value function and policy.

2| Reinforcement Learning 13

In the following sections, we introduce Q-learning and Policy Gradient, which are two
fundamental reinforcement learning algorithms that have a significant impact on the de-
velopment of many other RL algorithms. Q-Learning and Policy Gradient, in fact, have
been instrumental in advancing the field of RL by providing a foundation for exploring
more advanced and complex RL techniques, such as Actor-Critic and Deep Reinforcement
Learning.
In particular, Q-learning is a value-based method that involves learning an action-value
function (Q-function) to estimate the expected cumulative return of taking a particular
action in a given state, while Policy Gradient is a policy-based method that involves
learning a policy function directly.

2.7. Q-Learning

The Q-learning approach [59] involves an agent learning the Q-value function by updating
a table of action values called the Q-table (Figure 2.3). The Q-table stores the expected
return for each action in each state, and the agent uses this information to determine the
optimal action to take in any given state. The Q-function is learned through an iterative
process of updating the Q-values based on the Bellman Equation. Once the Q-function
is learned, the agent can use it to select the optimal action at each state by choosing the
action with the highest Q-value. This allows the agent to learn a policy that maximizes
the expected cumulative reward over time.
The Q-Learning pseudocode is presented in Algorithm 2.1, where α is the learning rate,
which is the parameter used to control the degree to which the Q-values are updated
in each iteration of the algorithm. Specifically, it determines the weight given to the
new information obtained from the observed reward and the estimated maximum future
reward. A high learning rate means that the Q-values are updated more strongly in
response to new information, while a low learning rate means that updates are more
gradual and stable.

As previously mentioned, Q-learning employs a tabular representation of the Q function,
which makes it well-suited for tabular environments. However, to extend this approach
to more complex environments, an approximation method is necessary. Two popular
variations of the Q-learning algorithm, presented in the next sections, are Fitted Q-
Iteration (FQI) and Deep Q-Network (DQN). FQI is an extension of Q-learning that
utilizes batch learning to estimate the Q-function. With batch mode learning, the agent
does not directly interact with the environment, instead, it is provided with a set of

14 2| Reinforcement Learning

Algorithm 2.1 Q-Learning
1: Initialize the Q-table arbitrarily with Q-values Q(s,a) for each state-action pairs
2: Iterations:

Repeat until stopping conditions are reached:
- Choose an action (a) in the current state s based on the current Q-value esti-

mates Q(s,·)
- Take the action a and observe the next state s’ and the reward r
- Update

Q(s, a) = Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)] (2.13)

Figure 2.3: Q learning Schematization

tuples. The agent’s task is to evaluate these tuples and deduce a control policy that
closely approximates the optimal policy.
DQN is a variant of Q-learning that utilizes deep neural networks to approximate the
Q-function.

2.7.1. Fitted Q-Iteration

Fitted Q-Iteration (FQI, [20]) is a value-based algorithm that aims to approximate the
optimal action-value function for each action in a given state. The core idea of FQI is to
use an approximate model of the system dynamics to estimate the action value function.
The model is iteratively trained on a dataset in the form (s, a, s′, r) with the aim of
obtaining the optimal policy. Unlike Q-learning, which uses a lookup table to store Q-
values, FQI uses a regression model, such as Extra Trees [22] or XGBoost [13], to estimate
the Q-values for each state-action pair. This iterative process updates the model based on
a batch of experiences collected from the environment, allowing it to learn from the past
and improve its predictions of future rewards in order to obtain a new policy. The final
result is an approximation of the optimal policy that maximizes the long-term reward.

2| Reinforcement Learning 15

Algorithm 2.2 FQI
1: Input: a set of four-tuples F and a regression algorithm
2: Initialization: set N equal to 0. Let Q̂N be a function equal to 0 everywhere on

S×A
3: Iterations:

Repeat until stopping conditions are reached:
- N ← N+1
- Build the training set T S = (il, ol), l = 1, ...,#F based on the function Q̂N−1

and on the full set of four-tuples F :

il = (slt, a
l
t),

ol = rlt + γmax
a∈A

Q̂N−1(s
l
t+1, a)

(2.14)

- Use the regression algorithm to induce from T S the function Q̂N(s, a)

One key advantage of using a machine learning model like Extra Trees or XGBoost is that
it can capture complex, non-linear relationships between states and actions, which can
be difficult to represent using a simple table. Another advantage is that the model can
generalize to unseen states, allowing it to make accurate predictions even in situations
where it has not seen a particular state before.

2.7.2. Deep Q-Network

Deep Q-Network (DQN, [35]) algorithm is a value-based algorithm that adopts a deep
neural network to predict the expected cumulative reward and, therefore, an approxi-
mation of the Q-function for each action in a given state. During training, the agent
interacts with the environment and stores transitions (state, action, reward, next state)
in a replay memory. At each step, the agent selects an action with the highest predicted
Q-value according to the current neural network, with some probability of selecting a
random action to encourage exploration. The agent then executes the selected action
and observes the resulting reward and next state. To update the neural network, DQN
employs the Bellman equation to compute the target Q-value for each transition, which
is a combination of the immediate reward and the estimated maximum Q-value for the
next state. The target Q-values are then used to train the neural network to minimize
the mean squared error between the predicted and target Q-values.

16 2| Reinforcement Learning

Algorithm 2.3 DQN
1: Initialize replay memory D to capacity N
2: Initialize action-value function Q with random weights
3: for episode = 1, ...,M do
4: Initialize sequence s1 = x1 and preprocessed sequenced ϕ1 = ϕ(s1)
5: for t = 1, ..., T do
6: With probability ϵ select a random action at otherwise select

at = maxa Q
⋆(ϕ(st), a; θ)

7: Execute action at in emulator and observe reward rt and image xt+1

8: Set st+ 1 = st, at, xt+1 and preprocess ϕt+1 = ϕ(st+1)
9: Store transition (ϕt, at, rt, ϕt+1) in D

10: Sample random minibatch of transitions (ϕj, aj, rj, ϕj+1) from D

11: Set yj =

rj for terminal ϕj+1

rj + γmax
a′

Q(ϕj+1, a
′
; θ) for non-terminal ϕj+1

12: Perform a gradient descent step on (yj −Q(ϕj, aj; θ))
2

13: end for
14: end for

2.8. Policy Gradient

Policy gradient [47, 51] is a popular approach in reinforcement learning for finding the
optimal policy in a Markov decision process (MDP). It involves directly optimizing the
parameters of a policy function by using gradient-based optimization methods.
We define a set of parameters θ to parametrize this policy πθ. If we represent the total
reward for a given trajectory (Equation 2.3) τ as r(τ), the objective is to find the param-
eters that maximize the expected cumulative reward over a set of trajectories following a
parametrized policy:

J(πθ) = Eπ[r(τ)]. (2.15)

This is typically done by using stochastic gradient ascent (or descent) to iteratively update
the parameters of the policy function, based on estimates of the gradient of the objective
function. In particular, in gradient ascent, the parameters are updated using the following
rule:

θt+1 = θt + α∇θJ(πθt). (2.16)

This optimization procedure can be performed by using the policy gradient theorem. It
states that the gradient of the expected cumulative reward with respect to the policy
parameters can be expressed as an expectation over the state-action distribution under

2| Reinforcement Learning 17

the policy:

∇θJ(πθ) = Eτ∼pθ,a∼πθ

[
T∑
t=0

∇θ log πθ(at|st)Qπ(st, at)

]
, (2.17)

where θ are the parameters of the policy πθ, J(πθ) is the expected reward under the policy,
pθ is the distribution over trajectories induced by the policy,
τ = {(s0, a0, r0), (s1, a1, r1), ..., (sT , aT , rT)} is a trajectory, Qπ(st, at) is the expected re-
turn starting from state st and taking action at under the policy πθ), and ∇θ denotes the
gradient with respect to the policy parameters θ.
This result allows for an unbiased estimate of the gradient, which can be used to update
the policy parameters. PPO (Proximal Policy Optimization) and TRPO (Trust Region
Policy Optimization) are policy gradient-based algorithms that include constraints to im-
prove their stability and convergence. In particular, both algorithms use a constraint
on the magnitude of policy parameter updates during neural network weight updates.
TRPO uses a constraint on the Kullback-Leibler (KL) divergence between the old and
new policies, while PPO uses a constraint on the ratio between the consecutive policies.
These constraints are designed to avoid overly drastic policy parameter updates, which can
cause instability or a deterioration in performance. Additionally, these constraints help
ensure that the updated policy remains close to the old policy, which can be important
for preventing the loss of previously learned useful information.

2.8.1. Trust Region Policy Optimization

Trust Region Policy Optimization (TRPO, [43]) algorithm is a policy-based algorithm that
aims to find the optimal policy. In particular, it employs a constraint on the maximum
change in policy distribution (KL divergence) to ensure that the new policy does not
deviate too far from the previous policy. This constraint helps to ensure that the new
policy is still close enough to the old one allowing effective policy updates in a robust way.

This means that we have a trust region constraint of the following kind:min
θ

Lθold(θ)

Dmax
KL (θold, θ) ≤ δ

(2.18)

where Lθold(θ) is a local approximation of the expected return obtained with a new policy θ

under the experience collected by the old policy θold. This problem is practically unsolvable
due to a large number of constraints. Instead, we can solve an approximation of this
problem which considers the average KL divergence as a constraint.

18 2| Reinforcement Learning

Algorithm 2.4 TRPO
1: Input: initial policy parameters θ0
2: Hyperparameters: KL-divergence limit δ, backtracking coefficient α, maximum

number of backtracking test ncg

3: for k = 0, 1, 2, ... do
4: Collect set of trajectories Dk on policy πk = π(θk)
5: Estimate advantages Âπk

t using any advantage estimation algorithm
6: Form sample estimates

• policy gradient ĝk using advantage estimates
• KL-divergence Hessian-vector product function f(v) = Ĥkv

7: Use the conjugate gradient algorithm with ncg iterations to obtain xk ≈ Ĥ−1
k ĝk

where Ĥk is the Hessian of the sample average KL-divergence
8: Estimate proposed step ∆k ≈

√
2δ

xT
k Ĥkxk

xk

9: Perform backtracking line search with an exponential decay to obtain the final
update

θk+1 = θk + αj∆k

10: end for

The algorithm adopts a surrogate objective function that approximates the performance
improvement of the new policy:

L(θ) = Êt[
πθ(at|st)
πθold(at|st)

Ât] (2.19)

where Ât is an estimate of the advantage function At (Equation 2.12).
Then a constrained optimization on this function is performed using a conjugate gradient
method. This optimization step helps to ensure that the new policy update is guaranteed
to improve the performance of the agent.

2.8.2. Proximal Policy Optimization

Proximal Policy Optimization (PPO, [45]) algorithm is a policy-based algorithm that
provides an improvement on TRPO. It works by iteratively updating the policy of the
agent based on a surrogate objective function, which provides a lower bound on the
performance improvement of the new policy update. A commonly used surrogate objective
function is the clipped one, which helps to prevent the policy from changing too much
between updates and provides a more stable optimization process.

In particular, TRPO maximizes the objective in Equation 2.19, which can lead to large

2| Reinforcement Learning 19

Algorithm 2.5 PPO Actor-Critic Style
1: for iteration = 1, 2, ... do
2: for actor = 1, 2, ..., N do
3: Run the policy πold in environment for T timesteps
4: Compute advantage estimates Â1, ..., ÂT

5: end for
6: Optimize surrogate L wrt θ, with K epochs and minibatch size M ≤ NT
7: θold ← θ
8: end for

Algorithm 2.6 PPO with Clipped Surrogate Objective
1: Input: initial policy parameters θ0, clipping threshold ϵ
2: for k = 0, 1, 2, ... do
3: Collect set of partial trajectories Dk on policy πk = π(θk) in the environment
4: Estimate advantages Âπk

t using any advantage estimation algorithm
5: Compute policy update by maximizing

θk+1 = argmax
θ

LCLIP
θk

(θ)

via stochastic gradient ascent with Adam, where

LCLIP
θk

(θ) = Êτ∼πk
[
∑T

t=0[min(rt(θ)Â
πk
t , clip(rt(θ), 1− ϵ, 1 + ϵ)Âπk

t)]]
6: end for

policy updates. PPO instead wants to maximize:

LCLIP (θ) = Êt[min(rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ))], (2.20)

where rt =
πθ(at|st)

πθold
(at|st) . The clip function defines an interval for rt, which is clipped into a

range [1-ϵ, 1+ϵ], where ϵ is a hyperparameter. This is done in order to penalize changes
to the policy that make rt far from 1.

It employs the advantage function Â, estimated through generalized advantage estima-
tion (GAE, [44]), instead of the expected return in order to reduce the variance of the
estimations.

21

3| Related Works

Efficiently constructing a portfolio requires properly analyzing the assets’ historical per-
formance and correctly identifying market signals. This is a crucial topic in finance and,
in order to obtain the best investment strategy, several issues need to be addressed in-
cluding handling the non-stationarity of the data, balancing risk and return, and finally
dealing with the high dimensionality of the portfolio space. Therefore several approaches
can be found in recent literature.

3.1. Model based approaches

With model-based approaches, we refer to a broad family of mathematical techniques that
are used to determine the optimal allocation of assets, individually or in a portfolio, based
on a set of constraints and assumptions. These methods rely on historical data, and are
designed to optimize a specific criterion such as the Sharpe Ratio [46].
One popular approach is the mean-variance (MV) optimization technique, also known
as Modern Portfolio Theory (MPT), which is a method for constructing a portfolio that
maximizes the expected return for a given level of risk. This approach was first introduced
by Harry Markowitz in [34]. Initially, the analysis focuses on individual stocks or financial
assets, evaluating the historical returns, volatility, and correlation. Using this information
an efficient frontier of portfolios is constructed and then the portfolio that optimizes
the trade-off between expected return and risk is selected. This method is based on
the assumption that investors are risk-averse: this means that every investor wants to
maximize the expected return for a given level of risk.
Other two traditional approaches are Risk Parity [54] and Kelly Criterion [41]. The former
estimates the expected risk of each asset and then distributes it evenly to construct a
portfolio. This means that higher-risk assets receive smaller allocations than lower-risk
assets, with the goal of achieving a more balanced risk profile across the portfolio. This
approach is based on the idea that the best performance is obtained when the risk of a
portfolio is allocated in proportion to the volatility of each asset. Kelly Criterion, instead,
aims to maximize the long-term growth while minimizing the overall risk. In particular,

22 3| Related Works

it maximizes the expected logarithm of the portfolio value, representing wealth, which
means maximizing the expected value of the portfolio growth rate. It can be proven
that, under certain conditions, there is an equivalence of the Markovitz model with Kelly
Criterion or Risk-Parity [5]. This is an important result, leading to a universal solution
to the problem of portfolio optimization.
The main limitation of these approaches is that they are built on assumptions that may
not accurately portray realistic situations: Markovitz’s model assumes that all investors
think rationally and avoid risks, which is not always true as some investors are high
risk-takers. Additionally, it assumes that asset returns are random variables with known
expected returns and variances. But in general financial time series are non-stationary
and it may be difficult to accurately estimate the expected returns and variances of the
assets.
Therefore, since these methods make some unrealistic assumptions which make them not
suitable for real-world applications, new approaches for portfolio optimization have been
developed, such as Machine Learning and Reinforcement Learning.

3.2. Machine Learning based approaches

By relaxing certain model-related assumptions, machine learning (ML) can overcome the
limitations of purely model-based approaches. However, this family of techniques depends
more heavily on data quality, which may lead to some stability issues as a trade-off. One
potential application of ML consists in better identifying market signals and determining
the key factors that influence stock performance. This information can be valuable in
improving the accuracy of return predictions and overall investment strategy.

[33] employs deep learning models to predict returns for single assets. Then it constructs
a portfolio employing a mean–variance (MV) approach, introduce in Section 3.1. The
performance evaluation is based on historical data of 9 years from 2007 to 2015 of 100
stocks from Chinese market. Experiments show that the proposed approach outperforms
traditional approaches. However, this method only relies on a window of the previous 60
daily returns to predict the next daily return which, if used alone, may not have a stable
predictive power over different market conditions.

[14] combines supervised learning approaches to make returns’ prediction and then MV
technique, introduce in Section 3.1, to select the best portfolio. For stock price forecasting
XGBoost is employed. Then the mean-variance model is employed for portfolio selection,
based on the selected assets. This work randomly selects 24 stocks in the SSE 50 index as
candidate assets. Additionally, 19 indicators are used as predictive features, including 15

3| Related Works 23

lagged return observations and 4 technical indicators (e.g. the relative strength index).
Transaction costs are considered during the performance evaluation. The obtained re-
sults demonstrate that the proposed method is superior to traditional methods (without
stock prediction) and benchmarks in terms of returns and risks. The main limitations
of this approach are that it considers only a few financial indicators. Moreover, this pa-
per presents a limited backtest which does not allow us to understand how the model is
actually performing.

[16] employs an artificial neural network to produce a set of continuous buy and sell
signals for stock trading. Specifically, the proposed approach integrates technical analysis
with machine learning techniques for the efficient generation of stock trading decisions.
This approach considers three class values representing the buy, hold and sell signals.
The performance evaluation is made on five years of historical stock index price values
of two stock indices (BSE SENSEX and S&P 500). The results show that the model
outperforms some other machine learning techniques such as Support Vector Machines
(SVM), K-nearest neighbor (KNN), and Decision Tree models. However, this paper only
gives as results a sell/buy signal analysis and does not provide a backtest by simulating
a trading strategy employing that signals, in which also transaction costs are considered.
Moreover, the proposed model is tested on limited scenarios.

Additionally, neither of the papers provides a detailed analysis of how to handle the non-
stationarity of the data.
In general the main limitations of Machine Learning techniques is that they require a
fixed dataset to train and they are not able to handle dynamic and uncertain environ-
ments, such as financial markets. In Reinforcement Learning, instead, an agent learns to
make decisions by interacting with the environment and receiving feedback in the form of
rewards: this allows the agent to adapt to changing market conditions and optimize its
decisions over time, which makes it more suitable for finding the best investment strategy.

3.3. Reinforcement Learning based approaches

The advent of Reinforcement Learning has allowed us to overcome the assumptions and
limitations of previous approaches by managing the dynamics and non-stationarity of
financial markets more carefully, leading to better performance. RL, in fact, has been
shown to be effective in dealing with dynamic and uncertain environments, making it
well-suited for financial markets.
A commonly employed approach is by means of deep RL techniques, which use neural
networks to approximate the agent’s decision-making process. This approach can be

24 3| Related Works

performed both to directly construct an optimal portfolio and develop a single asset
trading strategy.

[24] presents a deep reinforcement learning approach to approximate the optimal policy
and find the optimal portfolio weights. Performance is evaluated in three back-test ex-
periments trading periods of 30 minutes in a cryptocurrency market. Despite a 0.25%
commission rate in back-tests, the framework is capable of generating returns that are at
least four times the initial investment within 50 days. The main limitation of this work is
that it often leads to extreme weights [42] which makes the resulting optimal portfolio not
diversified. This is because the reward function doesn’t include any kind of penalization
by portfolio volatility. Moreover, these extreme weights make this approach unstable and
suitable only for buy-and-hold strategies.

[23] employs a Convolutional Neural Network in order to approximate the optimal policy.
The reward function is the logarithm of the expected return of a portfolio of 100 randomly
selected stocks of the CSI300 index. Positive results in terms of performance are reached,
compared to some traditional strategies, on several backtests. In this case, the volatility is
taken into consideration, but in the evaluation of the performances there are no transaction
costs, which does not represent a realistic setting.

[48] employs a deep reinforcement learning framework called Deep-Breath. Such a method-
ology combines a restricted stacked autoencoder in order to conduct dimensionality reduc-
tion (only the most informative abstract features are kept) and a Convolutional Neural
Network. It implements a settlement system on a Bitcoin blockchain to mitigate settle-
ment risk. According to the results, the presented approach outperforms current expert
investment strategies in terms of return on investment while minimizing market risk. The
main limitation of this paper is that it is based on a blockchain simulator so there is
limited knowledge on its potentiality in a real-world scenario; moreover, the authors do
not provide a realistic backtest since they only evaluate their method in a very short time
horizon (90 days).

[25] aims to optimize a two-stock portfolio using a Q-learning approach with an artificial
neural network. As features, only historical data of the two assets are taken into con-
sideration and transaction costs are considered during the performance evaluation. After
investigating various reward functions and hyperparameters, the presented models have
achieved performance similar to their corresponding benchmarks. The main limitations
of this approach is that it has only 2 stocks, which may not be representative of more
complex portfolio management problems which require a larger number of assets.

3| Related Works 25

[1] employs deep recurrent reinforcement learning techniques to construct a real-time
optimal portfolio with continuous actions and 15-minute price changes for ten selected
stocks from different sectors of the S&P500 as input data. According to the experiments,
the proposed approach outperforms the selected benchmark. The main limitation of this
work is the instability of a continuous framework, which may lead to suboptimal solutions.
Moreover only historical price series are taken into account to evaluate the next allocation,
which may not be enough to describe the market conditions and make good investment
decisions.

[30] experiments policy gradient, deep deterministic policy gradient, and PPO to find the
best investment strategy. The authors consider 5 Chinese stocks, taking into account
the volatility to penalize the agent’s rewards. The experiments show that the strategy
obtained by the Policy-Gradient based algorithms can outperform Uniform Constant Re-
balanced Portfolios in asset allocation. However they do not consider the non-stationarity
of the data, therefore the results are highly sensitive and the performance is very unstable.
Furthermore, the model often leads to the purchase of only one asset at a time.

[31] presents a deep multi-agent approach which considers, as assets, the 11 sectors ac-
cording to the Global Industry Classification Standard (GICS). Each agent is equipped
with deep policy networks to optimize the risk-adjusted criterion. Transaction costs are
considered in the performance evaluation, which consists of a 2-year backtest. As input
data, only the (normalized) 1-min historical price series are considered. They obtain good
results in terms of performance. However, also in this case, they do not consider technical
indicators as additional features. Moreover this method is only tested with high-frequency
data and it may not be well suited for different kinds of datasets, such as daily data.

[53] adopts deep reinforcement learning to generate buy and sell signals for various finan-
cial instruments including stocks, currencies, and cryptocurrencies. The authors employ
the SARSA algorithm and a neural network framework based on the DQN model to
find an optimal trading strategy. The proposed method is tested on real-world financial
daily data and achieved superior performance compared to other state-of-the-art models
in learning trading rules specific to individual assets. The proposed model also achieved
almost 12.4% more profit compared to the best state-of-the-art model on the Dow Jones
Index. However there is no analysis of which financial indicators should be used to better
train the agent and improve the models performance.

[55] presents a Double DQN setting with Sharpe ratio as a reward function to perform
daily stock trading. They consider 15-min historical data, in particular open, high, low,
and close prices and the Relative Strength Index. Transaction Costs are considered in

26 3| Related Works

the performance evaluation. According to the results, the proposed model is designed
to assist traders in making quick and effective decisions, with the most up-to-date in-
formation from the market. Therefore this approach is shown to perform well only with
high-frequency input data. Moreover, they consider, as a technical indicator, only the RSI.

An alternative approach that does not rely on neural networks is the FQI algorithm,
a variation of Q-learning introduced in Section 2.7.1, which can be used used for single-
asset trading with action discretization. Rather than using neural networks, FQI typically
adopts regressors such as Extra Trees or XGBoost in the model. This approach enables a
more transparent decision-making process and mitigates the instability issues frequently
encountered in continuous framework models.

[8] and [40] develop an effective high frequency FX trading strategy by training an agent
via Fitted Q-Iteration. They take into account both the non stationarity of the data and
the transaction costs. However they do not incorporate any financial indicators as features.

In summary, the main limitations of current reinforcement learning approaches include:

• Limited backtesting: Some papers may not provide a realistic backtesting of their
proposed methods. This leads to overfitting, unrealistic results, and a lack of gen-
eralization.

• Model complexity: Many of these works use deep learning-based models, which
can be complex and difficult to interpret. This makes it challenging to understand
how the model is making decisions and to identify potential errors or biases in the
model. Moreover, in real-world financial framework, models have to be explained
to investors so they should not be too complex or black-box.

• Real-world applicability: A large number of papers is mostly focused on simulat-
ing investment strategies considering a few assets, and it is not clear how well
these methods would perform in a real-world setting where portfolios must be more
diversified. Some papers also use simplified assumptions, such as the absence of
transaction costs, which is not realistic.

• Non-stationarity: financial time series are non-stationary, and many papers do not
provide a comprehensive solution to it.

• Feature selection: another limitation in many works consists in the adoption of a
limited number of financial indicators, which may not be enough to capture all the
important information about the assets and properly train the agent.

3| Related Works 27

In this thesis, we propose an approach that manages daily signals to perform weekly
trading without any simplified hypothesis. To achieve this goal, we incorporate effec-
tive techniques for managing data non-stationarity and selected financial indicators as
input data in order to better handle the dynamics and complexity of the financial mar-
ket. We adopt the FQI algorithm with action discretization as Reinforcement Learning
model. Performance evaluation is made through a realistic backtest on out-of-sample data
considering transaction costs.

29

4| Problem Formulation

In order to effectively apply reinforcement learning algorithms to find the best investment
strategy, the first step is to model the trading dynamic as a Markov decision process and
define the concepts of state, action, and reward.
Our goal is to create an agent that utilizes RL techniques to perform portfolio management
and/or generate trading signals. Therefore, we need to introduce fundamental concepts
related to price time series and define the underlying dynamics.

4.1. Financial Preliminaries

The price of an asset is one of the fundamental measures in finance, as it represents the
current value at which the asset is traded in the market. Therefore it is important to
clearly specify what is meant by the price of an asset and how it is evaluated to analyze
its performance.
A trading session is a period of time during which financial markets are open for buying
and selling securities. Different markets around the world have their own trading sessions,
which usually last for a few hours each day. For instance the American Market trading
sessions, known as New York Stock Exchange (NYSE) session, runs from 3:30 PM to 10:00
PM in Central European time (CET), Monday through Friday.
The closing price of an asset is the price of the last transaction made on that security
during a trading session. The closing price is used as a reference point to evaluate the
performance of the stock during the trading session in question.
The opening price of an asset is the price of the first transaction made on that security
during a trading session. Typically, the opening price is calculated using the closing price
of the last trading session as a reference point.
The performance of an asset is evaluated by calculating its return 1, which can be deter-
mined in various ways depending on the time horizon under consideration. For instance,

1This concept of return is different from the return commonly used in RL

30 4| Problem Formulation

if we consider daily returns, they are computed as:

rt =
ClosePricet − ClosePricet−1

ClosePricet−1

=
ClosePricet
ClosePricet−1

− 1 (4.1)

Investors can buy, sell or hold financial assets, depending on their investment objectives
and market conditions:

• ‘Buy’ means purchasing a financial asset, hoping that its value will increase in the
future.

• ‘Sell’ involves disposing of a financial asset and selling it, either to realize a profit
or to cut losses.

• ‘Hold’ refers to maintaining the current position with respect to the financial asset,
which is typically done when investors expect that the costs of a potential transac-
tion will be higher than future returns.

These actions represent what an investor can do with financial assets. Another crucial
concept to consider is the position that an investor can have in relation to an asset. There
are two main positions: ‘Long’ and ‘Short’.
The former term refers to a position that investors can take in a financial asset in which
they are hoping for an increase in the asset’s value. A long position is taken by buying
the asset or through an options contract that gives the investor the right to buy the asset
at a specified price.
‘Short’ position involves selling a financial asset that the investor does not own, hoping
that its price will go down in the future. If the price does fall, the investor can buy the
asset back at a lower price and realize a profit. Short selling is typically used in bearish
market conditions. The main difference between selling and shorting is that selling involves
disposing of an asset that an investor already owns while shorting involves selling an asset
that the investor does not own with the hope of buying it back at a lower price in the
future.

4.2. Reward

In reinforcement learning, the reward function maps a state or a state-action pair to a
scalar value that represents the ‘goodness’ of that state or state-action pair in terms of
immediate reward. The goal of the agent is to maximize the cumulative reward it receives
over time, so the reward function plays a central role in defining the agent’s objective.
Our objective is to identify the optimal investment strategy for every sector (Section

4| Problem Formulation 31

5.1), with the ultimate goal of building a market-neutral portfolio. Therefore we have to
properly define a reward function in order to reach this goal.

Let us consider a set Ω of financial assets. A portfolio is a combination of such assets, in
a way that each asset i ∈ Ω at a specific timestep t is associated to a weight denoted as
ωi,t ∈ [0, 1] and

∑
i ωi,t = 1.

The value of such portfolio can be expressed as:

Vt =
∑
i∈Ω

ωi,t−1(
OpenPricei,t

ClosePricei,t−1

− 1) + ωi,t(
ClosePricei,t
OpenPricei,t

− 1), (4.2)

where OpenPrice and ClosePrice are respectively the opening price and the closing price
of the asset i.
Assuming that the closing price at time t-1 is equal to the opening price at time t, we
obtain:

Vt =
∑
i∈Ω

ωi,t(
ClosePricei,t
ClosePricei,t−1

− 1), (4.3)

which can be rewritten as:
Vt =

∑
i∈Ω

ωi,tri,t, (4.4)

where ri,t is the return of the asset i at time t, introduced in Equation 4.1

In real markets, when an investor buys or sells an asset, a transaction cost must be paid. If
we assume that the transaction costs are linear in the change of allocation, homogeneous
in time and constant for all assets, the value of a portfolio including transaction costs at
time t can be defined as:

Vt =
∑
i∈Ω

ωi,tri,t − fee · |ωi,t − ωi,t−1|, (4.5)

where fee is the transaction cost associated with each operation.
Given this result, we can define the reward function of the asset i as the difference between
the return and the transaction cost associated with the trading operation:

Ri,t = ωi,tri,t − fee · |ωi,t − ωi,t−1|. (4.6)

In our case, we decide to work with discrete actions instead of continuous weights ω,
therefore the final reward function of asset i at time t becomes:

32 4| Problem Formulation

Ri,t = ai,tri,t − fee · |ai,t − ai,t−1|, (4.7)

where ai,t ∈ A is the action performed by the agent as described in (4.8).

Our approach involves using a reward function that evaluates the performance of each
asset individually, rather than treating the entire portfolio as a single entity. We make
this choice because we aim to analyze each sector in a more specific and accurate way
to better identify buy and sell signals, rather than directly constructing a portfolio by
finding the optimal weights.
To achieve this goal, we employ the algorithm described in section 4.4, which operates at
the asset level. Specifically, we construct a single asset optimal trading strategy for each
sector in which the goal of the agent is to maximize the reward expressed in (4.7) over
time.

4.3. Environment Formulation

In reinforcement learning, the environment is the system that the agent interacts with to
learn how to perform a task and make the right decisions. At each time step, the agent
receives an observation of the current state of the environment and chooses an action to
take based on its current policy. The environment then transitions to a new state based
on the chosen action and provides a reward signal to the agent.
In order to construct an environment suitable for a trading framework, we need to properly
define the reward function (introduced in Section 4.2), the action space, and the state
space.

Action Space The action consists of the allocation the agent chooses for the week,
therefore the set of possible actions is defined as:

A = {−1, 0, 1}, (4.8)

which corresponds respectively to the three different possible actions described in Sec-
tion 4.1: Sell, Hold, and Buy.

Feature Space The state in an MDP contains all information needed to select the
best action to maximize future rewards. While the current state of an asset is trivially
represented by the current price, we can include a series of financial indicators that may
provide useful information to better understand the underlying dynamics of the dynamic

4| Problem Formulation 33

process. These indicators can be obtained by considering the past asset prices, or by
gathering market information. The most significant financial indicators we select are:

• Fundamental indicators: These indicators are related to a single company. The
corresponding sector indicator is constructed by considering the indicators of the
companies in that sector.

1. Price to Book (PB): it is a financial indicator computed by dividing the price
of a company by its total book value, which is the difference between its assets
and its liabilities. It indicates whether a stock is undervalued or overvalued.
In particular, a low PB ratio means that the stock is undervalued and may be
a good investment opportunity, while a high PB ratio indicates that the stock
is overvalued and may be overpriced.

2. Price over earnings (PE): it is a financial indicator computed by dividing the
price of a company by its earnings per share (EPS) from the last 12 months.
This ratio is used to determine whether a stock is undervalued or overvalued.
A high PE ratio indicates that the stock is overvalued and may be overpriced,
while a low PE ratio indicates that the stock is undervalued and may be a good
investment opportunity.

3. Dividend yield: it is a financial indicator computed by dividing the annual
dividends per share (DPS) of a company by the share price. It is used to
evaluate the income of a stock. In particular, a high or low dividend yield
indicates that a stock is paying a high or low level of dividends relative to its
market price.

4. Earnings growth: it is a financial indicator computed by comparing the current
EPS to the one of the same period in the previous year. It measures the rate at
which a company’s EPS has increased over time and it is used to evaluate the
future performance of a company. In particular, a high earnings growth rate
indicates that a company is increasing fast its earnings therefore its market
price will probably grow.

5. Earnings Yield: it is a financial indicator that is the inverse of the PE ratio,
so it is computed by dividing a company’s EPS by its current market price
per share. It measures the return on investment that a stock provides based
on its EPS relative to its current market price and it is used to determine
whether a stock is undervalued or overvalued. In particular, a high earnings
yield indicates that a stock is providing a high return on an investment relative

34 4| Problem Formulation

to its market price and may represent an investment opportunity. Instead, a
low earnings yield may indicate that a stock is not providing an attractive
return on investment.

• Technical Indicators [38]: These indicators are daily technical indicators generated
by mathematical calculations based on historical prices and/or volume data.

1. Volatility: it is a financial indicator that measures the stability of a stock
price, and the risk of an investment and also can evaluate the overall market
conditions. For instance, high volatility can indicate that a stock is risky and
may be subject to significant price fluctuations. We computed it as the 20-day
exponentially weighted standard deviation of the stock performance relative to
the market.

2. Bollinger Bands: it is a technical indicator that represents a confidence interval
for the stock price and can be used to measure volatility. It is constructed
through two standard deviation above and below the 20-day moving average of
the stock performance. The upper band represents an overbought condition,
and the lower band represents an oversold condition. When the price of a
stock moves outside of the upper or lower band, it indicates that the stock is
becoming overbought or oversold, and a trend reversal may occur. Therefore,
when the indicator falls below the lower band, it is recommended to buy since
we expect the price to rise. Conversely, if the indicator rises above the upper
band, it is advised to sell as a downward trend in the price is expected. As
features, we consider the difference between the bands and the correspondent
sector price.

3. Relative Strength Index (RSI): it is a technical momentum indicator used to
determine the overbought and oversold conditions of a stock by comparing the
magnitude and the speed of recent price changes.

4. Moving Average Convergence Divergence (MACD): it is a technical indicator
computed as the difference between the 12-day exponential moving average
and the 26-day exponential moving average of the asset’s price. It is used to
identify bullish or bearish market conditions. In particular, when the MACD is
positive it is considered a bullish signal while when it is negative it is considered
a bearish signal.

5. Signal Line: it is a technical indicator computed as a moving average of another
indicator in order to act as a signal for buy or sell. As a feature we consider it

4| Problem Formulation 35

combined with the Moving Average Convergence Divergence: in this case, the
signal line is a 9-day exponential moving average of the MACD line. When the
MACD line crosses above the signal line we have a bullish trend, while when
the line crosses below the signal line we have a bearish trend. In the first case,
we expect the price to rise, in the second case we expect the price to fall.

6. Diff: it is the difference between Macd and Signal Line. It can be used to iden-
tify the fluctuations and trends of stock prices in order to determine whether it
is better to buy or sell. In particular, a transition from a negative to a positive
value may be interpreted as a buy signal, while a transition from a positive to
a negative value may be interpreted as a sell signal.

7. Volume: it refers to the number of shares or contracts traded in the financial
market during a specified period of time. It is used to detect price movements
and to confirm trends identified by other technical indicators. In particular, if
a stock is trending upward and the volume is increasing, it may suggest that
the trend is likely to continue. Conversely, if the stock is trending downward
and volume is increasing, it may suggest that the trend is likely to reverse.

8. Volume Oscillator: it is a technical indicator used to measure the changes in
trading volumes over a specified period of time. It is based on the difference
between two moving averages (12-day and 26-day) of the volume.

The large number of financial indicators can lead to computational and sample complex-
ities issues, as well as the possibility of having correlated features. Therefore a feature
selection process will be conducted in the next chapter (5) to identify the most relevant
and informative features. Starting from the results of this analysis, we define the state
of our environment composed of 8 technical indicators (Bollinger Bands, diff, MACD,
RSI, signal Line, volatility, Volume, Volume Oscillator) and the returns (daily, weekly,
and weekly lagged). Specifically daily returns are the ones introduced in Equation 4.1.
Similarly the weekly returns are computed considering a window of 5 days:

rt =
ClosePricet − ClosePricet−5

ClosePricet−5

=
ClosePricet
ClosePricet−5

− 1 (4.9)

The lagged returns we consider are the weekly returns of 2,3, and 4 previous weeks.

Additionally we consider the allocation at the previous step. This last feature is crucial
because when the agent selects an action, he needs to take into account the previous
position because of transaction costs. In particular, if the price changes by an amount

36 4| Problem Formulation

smaller than the transaction fee, the cost of the operation will be higher than the return,
resulting in a negative reward. Adding the position of the previous step enables the agent
to choose the ‘hold’ action if he predicts that the costs of a potential transaction exceed
the returns. In other words, this feature is essential for helping the agent make more
informed decisions on managing transaction costs and expected returns.

4.4. Algorithm Selection

In reinforcement learning, the agent is the entity that interacts with the environment to
learn how to perform a task. The agent receives observations from the environment, takes
actions based on its current policy, and receives rewards as feedback for its actions. The
goal of the agent is to learn a policy that maximizes its cumulative reward over time.
In order to properly define our agent we opt for a value-based approach over a policy-based
approach. While the latter is more sample efficient, it tends to be less stable and more
sensitive to the quality of the function approximator and the choice of hyperparameters.
In general, the main limitations of policy gradient algorithms are that they typically have
a high number of hyperparameters that need to be tuned in order to achieve good per-
formance. This can be time-consuming and can lead to instability issues. Moreover, they
can get stuck in local optima, especially when dealing with large state and action spaces.
This can result in suboptimal policies that are far from the true optimal policy. Moreover,
a policy-based approach with a continuous action space can lead to dimensionality issues
and consequently to suboptimal solutions.
On the other hand, the value-based approach is less sensitive to these factors and it is
more stable, even though it may require a larger amount of data to converge to the opti-
mal policy. Therefore, for our problem, it is better to adopt a value-based approach with
action discretization.
We choose FQI algorithm because it is more robust than other value-based methods, such
as DQN algorithm which is more sensitive to noise or inaccuracies in the data. Addition-
ally, FQI is more interpretable since it uses XGBoost or Extra Trees instead of neural
networks, which are a black box approach. Specifically Neural networks are often referred
to as black box models because they are complex and difficult to understand. Unlike
decision trees or XGBoost, which are based on a series of simple, interpretable rules that
can be easily visualized and understood, neural networks consist of many interconnected
layers of nodes that operate on input data in a highly nonlinear way. This complexity
makes it difficult to understand how the network produces the predictions or decisions,
which can be a disadvantage in some contexts where interpretability is important. As
explained above, the purpose of this work is to be employed in a real-world financial con-

4| Problem Formulation 37

text, so it is essential to consider that the models need to be explained to investors.
Therefore, we employ FQI algorithm to perform a weekly trading strategy for each sector
individually. In order to train our model, we consider daily features as input.
To evaluate our model, we simulate the optimal trades according to the predictions of the
model and compute the cumulative returns over the testing period.

4.4.1. FQI dataset

The dataset D required to train FQI algorithm consists of the four-values tuples
(st, at, st+1, rt+1) containing the previous state, the performed actions, the obtained re-
ward, and the next state for all the possible combination of previous allocation and action:

D = {(skt , akt , skt+1, r
k
t+1), k = 1, 2, ..., |D|} (4.10)

39

5| Data Analysis

In this chapter, we aim to find the most relevant features. We begin by analyzing the
historical financial series relative to each asset to assess its predictive power. Then we
apply effective techniques to remove non-stationarity.

5.1. Analysis of the Dataset

We focus on analyzing the sectors using the Global Industry Classification Standard
(GICS, [7]). The sectors we consider are shown in Table 5.1.

After selecting the sectors, we need to rebuild their price series. In order to do that the
natural choice is to consider the S&P 500 as a reference market index. S&P 500 index, in
fact, represents the top 500 large-cap U.S. companies, and it is considered to be a leading
indicator of U.S. equities, usually used as a benchmark for the overall performance of the
U.S. stock market. Unfortunately, the stocks component, called constituents, of the S&P
500 index are not freely available through Bloomberg. As an alternative, we choose the
B500 index, which is a Bloomberg proprietary index that replicates the S&P 500. Like
the S&P 500, it is a stock market index, and it tracks the performance of the largest
US companies but has the necessary data available. Therefore, using the constituents of
the B500 index and their corresponding stock prices, we reconstruct the historical sectors
price series (Figure 5.1).

Instead of only considering the sectors prices independently, we decide to use sector per-
formance data relative to the market, which means that we construct an historical time
series of sector minus market. In order to do this we compute the performance of each
sector, and the performance of the B500 index and take the difference. We then recalcu-
late the prices. By doing this, we are able to identify specific sector risks: by removing
the market component, we eliminate the market risk, leading to a market neutral time
series. We will refer to this new time series as sectors vs market.

Moreover, by removing market risk, we also obtain historical series with less noise, as we

40 5| Data Analysis

GICS

Communication Services

Consumer Discretionary

Consumer Staples

Energy

Financial

Health Care

Industrial

Information Technology

Materials

Real Estate

Utilities

Table 5.1: Sectors from GICS classification

Fundamental Indicators

Price to Book (PB)

Price over Earnings (PE)

Dividend Yield

Earnings Growth

Earnings Yield

Table 5.2: Fundamental Indicators

can see in Figure 5.2.

Then we choose the most significant financial indicators, both fundamental and technical,
as explained in Section 4.3. The fundamental indicators we chose are shown in Table 5.2.
Like for sector prices, we consider these indicators relative to the market, constructing for
each of them a new historical time series of Indicators vs Market. Similarly we construct
the technical indicators (Table 5.3) in order to have all the variables relative to the market.

5| Data Analysis 41

Figure 5.1: Historical Price Series - Sectors and Market

Figure 5.2: Historical Price Series - Sectors vs Market

Technical Indicators

Volatility

Bollinger Bands

Relative Strength Index (RSI)

Moving Average Convergence Divergence (MACD)

Signal Line

Volume

Volume Oscillator

Table 5.3: Technical Indicators

42 5| Data Analysis

5.2. Features Selection

In this section, we perform a feature selection procedure to detect the most informative
indicators, that is, which indicators have an effective predictive power on asset returns.
In order to do that we choose ExtraTrees Regressor [22] and XGBoost [13], which are su-
pervised learning algorithms that have been shown to be effective in producing accurate
predictions for a wide range of regression problems [27, 37].

In a first instance, we have to introduce the concept of Decision Tree. A Decision Tree
is a machine learning method that uses decision rules learned from data to predict the
value of a target variable. The structure is composed of nodes and branches. At every
node, the data is split based on a specific input feature, which generates multiple branches
as output. This process continues with increasing numbers of branches until a node is
formed where the data mostly belong to the same class, and no further splits or branches
are possible. This results in a tree-like structure, with the first splitting node being the
root node and the end nodes being the leaves.
There are two different types of decision trees:

• Classification Trees: These trees are used for predicting categorical or discrete val-
ues. They split the data based on the features. Each branch represents a decision
rule based on a feature value, and each leaf node represents a class or category.

• Regression Trees: These trees are used for predicting continuous or numerical values.
Like classification trees, they split the data based on the features, but instead of
predicting a class, they predict the average value of the target variable for the data
in each leaf node.

Extremely Randomized Decision Tree (Extra-tree) is a type of decision tree in which the
cut-point while splitting a tree node, whereas decision trees choose the optimal split based
on information gain or Gini impurity. This makes extra-trees more robust to noisy data
and less prone to overfitting.

Extra Trees Regressor Extra Trees Regressor is a supervised learning method that
creates many extra-trees to develop a more robust model. In particular, it provides an
estimator that fits multiple extra-trees on various sub-samples of the dataset, followed by
averaging the predictions to improve predictive accuracy and prevent over-fitting. The
fact that the cut points are chosen randomly for each tree makes the trees diversified and
uncorrelated.

5| Data Analysis 43

XGBoost Extreme Gradient Boosting (XGBoost, [13]) is a decision-tree-based algo-
rithm that combines multiple decision trees. It works in a gradient boosting framework,
which is a technique that uses gradient descent to optimize the loss function of the model,
providing a parallel tree boosting. It starts by fitting an initial predictor model (e.g. a
tree) to the data. Then the algorithm works by iteratively adding predictors to the model
while optimizing a given objective function. Each successive model attempts to correct
for the shortcomings of the combined boosted ensemble of all previous models.

Extra Trees Regressor and XGBoost are both ensemble learning methods. XGBoost is
a more powerful and efficient algorithm, but Extra Trees is simpler to use and can still
achieve good performance. Moreover, Extra Trees has fewer parameters to be optimized
therefore the tuning process is computationally less expensive.

As a final regression method, we decide also to consider the KNN Regressor [36], where
KNN stands for K-Nearest Neighbors. It is denoted as a ‘lazy algorithm’, which means
it doesn’t build a model during training. Instead, it simply stores the training data and
uses it during prediction. The algorithm first chooses a value for k, which will deter-
mine the number of nearest neighbors that will be used to predict the target variable.
Then the distance between the new observation and each observation in the training set
is computed. There are various methods for calculating this distance, of which the most
commonly known methods are Euclidian, Manhattan, and Hamming distance ([58]). Fi-
nally, the algorithm selects the k nearest data points to the new observation, based on
the calculated distances, and computes the average of the target variable for the k-nearest
neighbors. The average value is the predicted value for the new observation.

In order to assess the accuracy of the forecast, commonly used statistics are the R2 and
the Accuracy.

Determination Coefficient R2 is the coefficient of determination, which is a measure
of how well the regression line fits the data. It ranges from 0 to 1, with higher values
indicating a better fit. It is computed as:

R2 = 1−

n∑
i=1

(yi − ŷi)
2

n∑
i=1

(yi − ȳ)2
, (5.1)

44 5| Data Analysis

where n is the number of observations in the dataset, yi is the observed value of the
dependent variable for the ith observation, ŷi is the predicted value of the dependent
variable for the ith observation based on the model, ȳ is the mean value of the dependent
variable across all observations.

Instead of considering the R2 for our analysis, we decide to consider adjusted R2 statistic.
It ranges from inf to 1,with higher values indicating a better fit. It can be expressed as:

R2
adj = 1− (1−R2)(n− 1)

n− k − 1
, (5.2)

where k is the number of features.

The adjusted R2 is a modified version of the R2 that takes into account the number of
independent variables in the model. It adjusts the R2 to better manage overfitting, which
can occur when additional variables are added to the model that does not significantly
improve its explanatory power. Like the R2, higher values indicating a better fit.

Accuracy Accuracy is a commonly used metric to evaluate the performance of a classi-
fication model. It measures the proportion of correct predictions made by the model out
of the total predictions made. In order to mathematically define the accuracy we have to
introduce the true/false positive/negative measures. The True Positives (TP) refers to
the number of positive instances that were correctly classified as positive by the model.
True Negatives (TN) refers to the number of negative instances that were correctly clas-
sified as negative by the model. False Positives (FP) refers to the number of negative
instances that were incorrectly classified as positive by the model. False Negatives (FN)
refers to the number of positive instances that were incorrectly classified as negative by
the model.
The accuracy is defined as the ratio of the number of correct predictions to the total
number of predictions made by the model:

Accuracy =
TN + TP

TP + FP + TN + FN
, (5.3)

In our case, since the return values are continuous, we have considered their sign to com-
pute the accuracy. By doing this, we have a measure of how well the model can predict
gains (positive returns) and losses (negative returns) correctly.

As statistics measures, we decide to consider both the adjusted R2 and the accuracy. The
adjusted R2 is more suitable than accuracy because it takes into account not only the sign

5| Data Analysis 45

Min Sample Split R2 Train R2 Test

0.01 0.618 -0.081

0.05 0.309 -0.031

0.1 0.243 -0.027

0.2 0.192 -0.025

0.7 0.127 -0.017

0.99 0.039 -0.005

Table 5.4: R2 Score - Daily Analysis

of the prediction but also its magnitude. In fact in the case of a predicted negative return,
we are interested in knowing how negative it is. In particular, the problem arises when
the model predicts a negative return of a certain magnitude, but a much larger negative
return occurs.
On the other hand the adjusted R2 statistic may produce inaccurate or misleading results
when dealing with datasets containing outliers or high variability. Therefore, when inter-
preting the adjusted R2, we have to consider that the presence of outliers in the data can
negatively effect the model’s fit and predict. In this case accuracy can play a key role in
order to understand the predictive power of the features in our model.

Results We first employ a daily approach, using daily data to predict daily returns. We
divide the dataset into a training set and a test set, with proportions of 80% and 20%,
respectively.
We present the results using Extra Tree Regressor: for every trial, we varied the num-
ber of trees in each forest (n_estimators), the minimum number of samples required to
split a node (min_sample_split) and the time window. We present the obtained ad-
justed R2 for Consumer Discretionary sector with n_estimators = 500, window = 5, as
min_sample_split is varied in Table 5.4.

We also construct the Confusion Matrix considering the absolute value of the predicted
returns in order to show the number of correct and incorrect sign predictions. Specifically
the ConfusionMatrix indicates how many TP, TN, FP, and FN are predicted. Therefore
it is a way to visualize all the terms used to compute the accuracy (Formula 5.3). Results
are shown in Figure 5.3 and 5.4 for min_sample_split = 0.05.

Unfortunately, we found no evidence of predictive power at the daily level. Therefore,

46 5| Data Analysis

Figure 5.3: Confusion Matrix Train -
Daily Analysis

Figure 5.4: Confusion Matrix Test -
Daily Analysis

Min Sample Split R2 Train R2 Test

0.01 0.654 -0.071

0.05 0.326 -0.026

0.1 0.283 -0.022

0.2 0.210 -0.019

0.7 0.138 -0.014

0.99 0.064 0.002

Table 5.5: R2 Score - Weekly Analysis

we shifted our analysis to the weekly level using daily data to predict weekly returns.
Although there was a slight improvement in the results in terms of adjusted R2 (Table
5.5) and in terms of accuracy (Figure 5.5, Figure 5.6), the predictive power remained
inadequate.

In light of this, we turned our attention to the impact of non-stationarity on the accuracy
of the predictions. Additionally, the net division between train and test made it challeng-
ing to select the optimal regressor’s parameters. To address these issues, we attempted
to enhance the data stationarity and adopt a rolling approach with a validation set to
optimize the parameter selection process.

5| Data Analysis 47

Figure 5.5: Confusion Matrix Train -
Weekly Analysis

Figure 5.6: Confusion Matrix Test -
Weekly Analysis

Min Sample Split R2 Train R2 Test

0.005 0.621 0.039

0.01 0.578 0.041

0.05 0.494 0.033

0.2 0.227 0.019

Table 5.6: R2 Score - Shuffle

5.3. Stationarity

We randomize the historical time series in order to observe the impact of non-stationarity
since shuffling data removes non-stationarity. Next, we split the data into a train set and
a test set with a 20% test size, remove the test data from the training set, and calculate
the adjusted R2 score and the accuracy score while varying the min_sample_split to
evaluate the predictive performance.
We present the results for the Consumer Discretionary sector using Extra Trees Regressor
with a window of 5 days and 500 trees while varying the minimum number of data required
to split a node. We obtain an improvement in the results in terms of adjusted R2, as we
can see in Table 5.6. Therefore we conclude that non-stationarity has a negative impact
since the predictive power improves after removing it. Consequently, we attempt to make
the data more stationary while preserving their predictive power and information.

To achieve this, we employ an approach called Fractional Differentiation, which was first
introduced by Lopez de Prado in [17] and implemented on real data in [57]. Fractional
Differentiation makes time series more stationary while retaining their memory and pre-
dictive power.

48 5| Data Analysis

Year p-value Stationarity

2008 2.125e-2 stationary

2009 1.257e-3 stationary

2010 3.384e-2 stationary

2011 2.348e-4 stationary

2012 5.506e-4 stationary

2013 1.753e-3 stationary

2014 3.607e-6 stationary

2015 1.624e-3 stationary

2016 1.134e-2 stationary

2017 4.357e-2 stationary

2018 1.65e-5 stationary

2019 8.747e-7 stationary

2020 2.594e-4 stationary

2021 1.044e-6 stationary

2022 1.743e-5 stationary

Table 5.7: ADF Test - Bollinger Up

The most common method used to remove non-stationarity from data is to make the first
(or in general some integer) order difference or the logarithm. However, these approaches
erase a significant portion of the data memory, dramatically reducing their predictive
power. Fractional differentiation overcomes this problem by finding the fraction d such
that the data become sufficiently stationary while preserving as much information as
possible. In particular, each past value of the time series is assigned a weight ω such that:

ω = {1,−d, d(d− 1)

2!
, ..., (−1)k

k−1∏
i=0

d− i

k!
} (5.4)

When d is equal to k, the memory beyond that point is removed. The goal is to find d

such that stationarity is achieved and the maximum volume of memory of the time series
is preserved.
We obtained good results in terms of stationarity by setting d = 0.2. In Table 5.7 we
present the result of ADF test on the historical data of the technical indicator Bollinger
Up. Similar results were obtained for the other features.

5| Data Analysis 49

In particular we perform an augmented Dickey-Fuller test on each feature in the dataset
after applying the Fractional Differentiation method for some value of d.

The Augmented Dickey-Fuller (ADF) test is a type of unit root test that examines how
strongly a time series is defined by a trend. It does this by fitting an autoregressive model
to the time series and optimizing an information criterion across multiple different lag
values. The test then evaluates the null hypothesis that the time series can be represented
by a unit root, indicating that it is non-stationary, against the alternative hypothesis that
the time series is stationary. To interpret the results of the ADF test, we use the p-value
obtained from the test. If the p-value is below a defined threshold α (set to 0.05), we
reject the null hypothesis and conclude that the time series is stationary. Conversely, if
the p-value is above the threshold, we fail to reject the null hypothesis and conclude that
the time series is non-stationary.

Therefore, analyzing the p-value, we find that with d = 0.2 the data became stationary.

5.4. Rolling Approach

We decided to employ a rolling approach in order to avoid a net division between train
and test set: considering a rolling window allows us to properly evaluate the predictive
power of the features over different periods, leading to a more stable analysis. In order
to find the best model parameters for each train-test period we used Optuna [2], which is
a commonly employed open-source hyperparameter optimization framework for machine
learning [29, 49].
We consider as training set 3 years of daily data and as validation period the following
year. In order to find the best parameters we set the Optuna objective function as the
R2 computed on the weekly returns of the validation set. After identifying the optimal
parameters, we train the model on 3 years of daily data to predict weekly returns for the
following month. We then shift the dataset by one month and repeat this process. At the
end of each year, i.e. after 12 shifts, we collect the predictions and evaluate their accuracy
and adjusted R2.
We present the results for sector Consumer Discretionary, considering Extra Trees Re-
gressor. In Table 5.8, Figure 5.8 and Figure 5.9 we can see the results in terms of adjusted
R2 and accuracy with training set from 2018 to 2020 and test set 2021. Unfortunately,
the results at the adjusted R2 level are still negative, despite achieving a reasonable level
of accuracy. In Table 5.9, Figure 5.10 and Figure 5.11 we can see the results in terms of
adjusted R2 and accuracy with training set from 2009 to 2011 and test set 2012. In this
case we obtain both a negative adjusted R2 and a low accuracy.

50 5| Data Analysis

R2 Train 0.68

R2 Test -0.03

Accuracy Train 0.87

Accuracy Test 0.56

Table 5.8: R2 and Accuracy -
Rolling Approach 2018-2021

R2 Train 0.59

R2 Test -0.04

Accuracy Train 0.67

Accuracy Test 0.51

Table 5.9: R2 and Accuracy -
Rolling Approach 2009-2012

Through various years of train-test, we have always obtained negative R2 values. However,
our accuracy score has yielded some good results (>55%).

One of the reasons we identified for this behavior is that the adjusted R2 may be too sen-
sitive as a measure to evaluate prediction in such a volatile context, and already achieving
discrete accuracy results (5.9) may indicate that some features are more significant than
others.
Therefore, we have considered the feature importance results obtained from Extra Tree
Regressor, which revealed that fundamental indicators are not relevant (Figure 5.7).
The importance of a feature derived from Extra Trees is computed using the Mean De-
crease Impurity (MDI, [32]) method. This method calculates the total amount that the
impurity of the target variable is decreased by splits over a particular feature.
For each tree the importance nij of node j is computed as:

nij = ωjCj − ωleft(j)Cleft(j) − ωright(j)Cright(j) (5.5)

where ωj is the weighted number of sample reaching node j, Cj is the impurity value of
node j, left(j) is the child node from left split on node j, right(j) is the child node from
right split on node j.

5| Data Analysis 51

The importance Fi of feature i on each extra tree is then calculated as:

Fi =

∑
j∈F⟩

nij∑
j∈N nij

(5.6)

where N is the set of all the nodes and F⟩ is the set of nodes that split in features i.
Then a normalization procedure is performed:

Fi,norm =
Fi∑
j∈F Fi

(5.7)

The final feature importance is the average over all the trees:

Fj =

∑
t∈T Fj,t

T
(5.8)

where T is the total number of trees and T is the set of all trees.
The impurity metric C used in Extra Trees Regressor to calculate feature importance is
the Gini impurity [61]. The Gini impurity is a measure of how often a randomly chosen
element in a set would be incorrectly labeled if it were randomly labeled according to the
distribution of labels in the subset. It is computed as:

G =
C∑
i=1

fi(1− fi), (5.9)

where fi is the frequency of label i at a node and C is the number of unique labels.

Therefore, as a consequence of feature importance results, the set of features selected to
perform further analysis includes only technical indicators and returns.
This result is quite intuitive even at a qualitative level since fundamental indicators depend
heavily on prices (and therefore returns). For example, the PE ratio is the price divided
by earnings, and earnings data are updated once every 3 months, while the price changes
daily. Therefore, the daily and weekly impact depends only on prices.

52 5| Data Analysis

Figure 5.7: Feature Importance

Figure 5.8: Confusion Matrix Train -
Rolling Approach 2018-2021

Figure 5.9: Confusion Matrix Test -
Rolling Approach 2018-2021

5| Data Analysis 53

Figure 5.10: Confusion Matrix Train -
Rolling Approach 2009-2012

Figure 5.11: Confusion Matrix Test -
Rolling Approach 2009-2012

54 5| Data Analysis

5.5. Recursive Feature Addition

Recursive feature addition (RFA, [20]) is a machine learning method that performs feature
selection by iteratively adding features to a model and evaluating their importance until
a desired level of accuracy is achieved. The process starts with an empty set of features
and the model is trained and evaluated using only a single feature. The feature with
the highest importance score is then added to the feature set, and the model is trained
and evaluated again using this new set of features. This process is repeated, with the
next highest importance feature being added at each iteration until the desired level of
accuracy is achieved or all features have been added.

The advantage of RFA over other feature selection methods is that it takes into account
the interaction between features and their combined importance to the model. However,
it can be computationally expensive, especially for large datasets with many features.
In algorithm 5.1 we present the RFA algorithm.

In particular, VR is a variable ranking algorithm and MB is the model-building approach.
The former is used to determine the most important variable based on a specified crite-
rion. The latter is used to build the regressor model and estimate the variable of interest.
It takes as input the set of selected features from the VR algorithm and uses them to train
the model. The MB approach then estimates the variable of interest by making predic-
tions using the trained model. By iteratively adding features based on their importance
scores and building the model, RFA gradually selects the most relevant set of features for
accurately predicting the variable of interest.
We employ Extra Trees Regressor and rank the features according to their importance
derived from the estimator, as explained in Section 5.4. Our approach involves conducting
training and validation to identify optimal parameters that would maximize the adjusted
R2 on the validation set. Once we had fine-tuned the parameters, we evaluated the per-
formance of the model on the test set considering only features selected by the RFA.
Unfortunately, even in this case, we obtain a negative adjusted R2, equal to -0.02.

5| Data Analysis 55

Algorithm 5.1 Recursive Feature Addition
1: Input: A dataset D, the variable to be explained V o

2: Output: Vsel: a set of variables selected to estimate V o

3: Initialize: Vsel ← ∅,V̂ o ← V o, R2
old ← 0

4: while ∆R2 > ϵ do
5: V ⋆ ← argmax

V ∈D
V R(D, V̂ o, V)

6: if V ⋆ ∈ Vsel then
7: return Vsel

8: end if
9: Vsel ← Vsel ∪ V ⋆

10: f̂ ←MB(Vsel, Vo)
11: V ← V \ f̂(Vsel)
12: ∆R2 ← R2(D, V o, V̂ o)−R2

old

13: R2
old ← R2(D, V o, V̂ o)

14: end while

57

6| Experimental evaluation

In this chapter, we present the results achieved by training the FQI model on real market
data. Specifically we proceed to train the model on daily data in order to construct an op-
timal weekly trading strategy for every asset. Finally, we evaluate the model performance
on out-of-sample data.

6.1. Backtest

We trained the FQI model during the period from 2008 to 2015, using the 2016-2019 data
as a validation set to obtain optimal parameters for the FQI regressor through Optuna
Optimizator. We experiment XGBoost and Extra Trees as regressors, with XGBoost
being selected due to its superior performance in computational efficiency and accuracy.
To ensure the robustness of the optimal parameters, the Optuna objective function is
set to maximize the average cumulative reward during the validation period across three
different independent runs.
Finally, the validation set is included again in the training period and the model is re-
trained using the previously obtained parameters on daily data from 2008 to 2019 (Figure
6.2), with performance evaluation conducted on weekly out-of-sample data from 2020 to
2022 with 5 FQI iterations. We assume transaction costs of 0.0005 for each operation.
Therefore, in our problem, we have to consider for each transaction a cost of 0.001 as
our historical series are sector vs market, which requires two transactions each time a
signal is generated. In fact when we have, for instance, a buy signal, it results in double
transaction costs since we have to buy the sector index and sell the market.
To test the stability and robustness of the model, we perform backtesting simulations for
the same sector using various seeds to observe the strategy volatility.

We present the results for the sector Consumer Discretionary, whose price (against the
market) is shown in Figure 6.1. We consider a 5-day window and XGboost as regressor.
Similar results were obtained for other sectors.

58 6| Experimental evaluation

Figure 6.1: Consumer Discretionary vs Market

We obtain positive performance in backtesting for certain iterations of FQI, such as the
3th iteration which yielded a mean return of +7.8% across various seeds (Figure 6.3).
However, the results from validation set (Figure 6.4) indicates that the iteration to choose
in the test is the 1th, since it is the iteration that leads to the better performance (+10.6%).
Therefore if we consider the first iteration of FQI for the test we get -5.3% (Figure 6.5).
One reason we identified for this negative results it that the choice of the iteration to
consider is biased due to our use of Optuna which optimizes the parameters only in the
first iteration of FQI. Specifically we train the model and we employ Optuna to find the
parameters that maximize the cumulative return on the validation set, but only for the
first iteration of FQI. This is because the Optuna research is computationally really ex-
pensive therefore the optimization procedure is limited to the first iteration. However
selecting the best parameters for each iteration during the validation procedure would
lead to a more stable and correct choice of what FQI iteration to consider, instead of rely
only on the optimal parameters of the initial iteration.
However, concerns regarding the volatility and instability of the resulting strategies per-
sist, especially when we compare the results obtained with different independent runs
(Figures 6.2, 6.4 and 6.3).
In conclusion, while the tested FQI iterations have shown promising performance for some
US sectors, further investigation is needed to address the identified issues and ensure the
reliability of the proposed trading model.

6| Experimental evaluation 59

Figure 6.2: Performance Train - Consumer Discretionary

Figure 6.3: Performance Test - Consumer Discretionary

60 6| Experimental evaluation

Figure 6.4: Performance Validation - Consumer Discretionary

Figure 6.5: Performance Test, First Iteration - Consumer Discretionary

61

7| Conclusions and future

developments

The aim of this work is to use reinforcement learning to construct a trading model for US
market sector indices. We begin by selecting and analyzing a set of financial indicators in
order to identify the most relevant ones in terms of predictive power on asset returns. We
consider both fundamental and technical financial indicators. We employ the Fractional
Differentiation approach to remove non-stationarity in the data while preserving their
predictive power. In order to evaluate the predictive power of our features we decide to
employ a rolling approach with Extra Trees Regressor. Although the adjusted R2 statis-
tic did not indicate a strong predictive power among the features, we obtained a discrete
level of accuracy. Therefore we selected the most relevant features for further analysis
according to the Extra Trees feature importance.
Finally we trained the FQI algorithm on the selected features. The choice of FQI was
made as it offers a transparent decision-making process, thereby avoiding black box is-
sues. However, although the robustness of the algorithm, we notice that the resulting
strategies exhibit high volatility and instability issues. Therefore there are several future
developments that could enhance this work, including:

• investigating additional financial indicators in order to find other significant features
which can improve the predictive power on asset returns;

• exploring alternative approaches for managing the non-stationarity of data;

• exploring alternative approaches to perform feature selection, e.g. discretize the
features using quantiles and employ a classifier rather than a regressor. This ap-
proach makes the regressor more stable and efficient: grouping the features in classes
instead of considering continue values lead to a less complex models.

• developing effective techniques to manage the volatility, e.g. set a volatility target
and normalize the historical time series of the sectors and the market by this target.
This approach makes the historical time series more stable.

62 7| Conclusions and future developments

In conclusion, we developed an effective trading model with the final goal of constructing
a market-neutral portfolio based on the strategies obtained with the developed approach.
One way to do this can be to consider the Q-value Function of the FQI agent’s buy action
for each sector to derive the optimal weights since assets with lower Q-values should have
lower weights. The Q-value, in fact, represents the expected return when buying the asset,
enabling us to assign lower weights to sectors with lower expected returns. Additionally,
we must perform volatility controls to penalize assets with high expected returns that also
have higher volatility.

This approach can be extended to any investment universe, not just sector indices but
also other real asset classes such as equity indices, multi-asset portfolios or synthetic asset
classes such as multi-factor portfolios or ETFs.

63

Bibliography

[1] A. M. Aboussalah and C.-G. Lee. Continuous control with stacked deep dynamic
recurrent reinforcement learning for portfolio optimization. Expert Systems with Ap-
plications, 140:112891, 2020.

[2] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama. Optuna: A next-generation
hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD
international conference on knowledge discovery & data mining, pages 2623–2631,
2019.

[3] H. Barlow. Unsupervised learning. Neural computation, 1(3):295–311, 1989.

[4] R. J. Bauer and J. R. Dahlquist. Technical Markets Indicators: Analysis & Perfor-
mance, volume 64. John Wiley & Sons, 1998.

[5] J. Baz and H. Guo. An asset allocation primer: connecting markowitz, kelly and risk
parity. PIMCO Quantitative Research, 2017.

[6] E. Benhamou, D. Saltiel, J. J. Ohana, J. Atif, and R. Laraki. Deep reinforcement
learning (drl) for portfolio allocation. In Machine Learning and Knowledge Discovery
in Databases. Applied Data Science and Demo Track: European Conference, ECML
PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part V, pages
527–531. Springer, 2021.

[7] S. Bhojraj, C. M. Lee, and D. K. Oler. What’s my line? a comparison of industry
classification schemes for capital market research. Journal of accounting research, 41
(5):745–774, 2003.

[8] L. Bisi, P. Liotet, L. Sabbioni, G. Reho, N. Montali, M. Restelli, and C. Corno.
Foreign exchange trading: A risk-averse batch reinforcement learning approach. In
Proceedings of the First ACM International Conference on AI in Finance, pages 1–8,
2020.

[9] L. Bisi, L. Sabbioni, E. Vittori, M. Papini, and M. Restelli. Risk-averse trust region
optimization for reward-volatility reduction. In Proceedings of the Twenty-Ninth In-

64 | Bibliography

ternational Conference on International Joint Conferences on Artificial Intelligence,
pages 4583–4589, 2021.

[10] V. Carlini. L’intelligenza artificiale aiuta gli investimenti, ma serve più conoscenza.
https://www.quotidiano.ilsole24ore.com/sfoglio/aviator.php?newspaper=

S24&edition=SOLE&issue=20230311&startpage=2&displaypages=2&articleId=

1867716, 2023.

[11] A. Castelletti, S. Galelli, M. Restelli, and R. Soncini-Sessa. Tree-based variable se-
lection for dimensionality reduction of large-scale control systems. In 2011 IEEE
Symposium on Adaptive Dynamic Programming and Reinforcement Learning (AD-
PRL), pages 62–69. IEEE, 2011.

[12] Y. Chan, K. Hogan, K. Schwaiger, and A. Ang. Esg in factors. The Journal of Impact
and ESG Investing, 1(1):26–45, 2020.

[13] T. Chen and C. Guestrin. Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd acm sigkdd international conference on knowledge discovery and data
mining, pages 785–794, 2016.

[14] W. Chen, H. Zhang, M. K. Mehlawat, and L. Jia. Mean–variance portfolio optimiza-
tion using machine learning-based stock price prediction. Applied Soft Computing,
100:106943, 2021.

[15] P. Cunningham, M. Cord, and S. J. Delany. Supervised learning. Machine learning
techniques for multimedia: case studies on organization and retrieval, pages 21–49,
2008.

[16] R. Dash and P. K. Dash. A hybrid stock trading framework integrating technical
analysis with machine learning techniques. The Journal of Finance and Data Science,
2(1):42–57, 2016.

[17] M. L. de Prado. Advances in financial machine learning, 2018.

[18] M. P. Deisenroth, G. Neumann, J. Peters, et al. A survey on policy search for
robotics. Foundations and Trends® in Robotics, 2(1–2):1–142, 2013.

[19] A. Edwards. Relational agency: Learning to be a resourceful practitioner. Interna-
tional journal of educational research, 43(3):168–182, 2005.

[20] D. Ernst, P. Geurts, and L. Wehenkel. Tree-based batch mode reinforcement learning.
Journal of Machine Learning Research, 6, 2005.

[21] R. A. Fisher. Statistical methods for research workers. Springer, 1992.

https://www.quotidiano.ilsole24ore.com/sfoglio/aviator.php?newspaper=S24&edition=SOLE&issue=20230311&startpage=2&displaypages=2&articleId=1867716
https://www.quotidiano.ilsole24ore.com/sfoglio/aviator.php?newspaper=S24&edition=SOLE&issue=20230311&startpage=2&displaypages=2&articleId=1867716
https://www.quotidiano.ilsole24ore.com/sfoglio/aviator.php?newspaper=S24&edition=SOLE&issue=20230311&startpage=2&displaypages=2&articleId=1867716

| Bibliography 65

[22] P. Geurts, D. Ernst, and L. Wehenkel. Extremely randomized trees. Machine learn-
ing, 63:3–42, 2006.

[23] Y. Guo, X. Fu, Y. Shi, and M. Liu. Robust log-optimal strategy with reinforcement
learning. arXiv preprint arXiv:1805.00205, 2018.

[24] Z. Jiang, D. Xu, and J. Liang. A deep reinforcement learning framework for the
financial portfolio management problem. arXiv preprint arXiv:1706.10059, 2017.

[25] O. Jin and H. El-Saawy. Portfolio management using reinforcement learning. Stanford
University, 2016.

[26] N. Justesen, P. Bontrager, J. Togelius, and S. Risi. Deep learning for video game
playing. IEEE Transactions on Games, 12(1):1–20, 2019.

[27] E. Karbassiyazdi, F. Fattahi, N. Yousefi, A. Tahmassebi, A. A. Taromi, J. Z. Manzari,
A. H. Gandomi, A. Altaee, and A. Razmjou. Xgboost model as an efficient machine
learning approach for pfas removal: Effects of material characteristics and operation
conditions. Environmental Research, 215:114286, 2022.

[28] L. Kennedy-Shaffer. Before p< 0.05 to beyond p< 0.05: using history to contextualize
p-values and significance testing. The American Statistician, 73(sup1):82–90, 2019.

[29] J.-P. Lai, Y.-L. Lin, H.-C. Lin, C.-Y. Shih, Y.-P. Wang, and P.-F. Pai. Tree-based
machine learning models with optuna in predicting impedance values for circuit anal-
ysis. Micromachines, 14(2):265, 2023.

[30] Z. Liang, H. Chen, J. Zhu, K. Jiang, and Y. Li. Adversarial deep reinforcement
learning in portfolio management. arXiv preprint arXiv:1808.09940, 2018.

[31] Y.-C. Lin, C.-T. Chen, C.-Y. Sang, and S.-H. Huang. Multiagent-based deep rein-
forcement learning for risk-shifting portfolio management. Applied Soft Computing,
123:108894, 2022.

[32] G. Louppe, L. Wehenkel, A. Sutera, and P. Geurts. Understanding variable impor-
tances in forests of randomized trees. Advances in neural information processing
systems, 26, 2013.

[33] Y. Ma, R. Han, and W. Wang. Portfolio optimization with return prediction using
deep learning and machine learning. Expert Systems with Applications, 165:113973,
2021.

[34] H. Markowitz. Portfolio selection, the journal of finance. 7 (1), 1952.

66 | Bibliography

[35] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. Playing atari with deep reinforcement learning. arXiv preprint
arXiv:1312.5602, 2013.

[36] L. E. Peterson. K-nearest neighbor. Scholarpedia, 4(2):1883, 2009.

[37] S. R. Polamuri, K. Srinivas, and A. K. Mohan. Stock market prices prediction using
random forest and extra tree regression. Int. J. Recent Technol. Eng, 8(1):1224–1228,
2019.

[38] R. Pramudya and S. Ichsani. Efficiency of technical analysis for the stock trading.
International Journal of Finance & Banking Studies, 9(1):58–67, 2020.

[39] M. L. Puterman. Markov decision processes: discrete stochastic dynamic program-
ming. John Wiley & Sons, 2014.

[40] A. Riva, L. Bisi, P. Liotet, L. Sabbioni, E. Vittori, M. Pinciroli, M. Trapletti, and
M. Restelli. Learning fx trading strategies with fqi and persistent actions. In Pro-
ceedings of the Second ACM International Conference on AI in Finance, pages 1–9,
2021.

[41] T. Roncalli and G. Weisang. Risk parity portfolios with risk factors. Quantitative
Finance, 16(3):377–388, 2016.

[42] Y. Sato. Model-free reinforcement learning for financial portfolios: a brief survey.
arXiv preprint arXiv:1904.04973, 2019.

[43] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz. Trust region policy
optimization. In International conference on machine learning, pages 1889–1897.
PMLR, 2015.

[44] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional
continuous control using generalized advantage estimation. arXiv preprint
arXiv:1506.02438, 2015.

[45] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[46] W. F. Sharpe. The sharpe ratio. Streetwise–the Best of the Journal of Portfolio
Management, 3:169–185, 1998.

[47] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra, and M. Riedmiller. Determin-
istic policy gradient algorithms. In International conference on machine learning,
pages 387–395. Pmlr, 2014.

| Bibliography 67

[48] F. Soleymani and E. Paquet. Financial portfolio optimization with online deep rein-
forcement learning and restricted stacked autoencoder—deepbreath. Expert Systems
with Applications, 156:113456, 2020.

[49] P. Srinivas and R. Katarya. hyoptxg: Optuna hyper-parameter optimization frame-
work for predicting cardiovascular disease using xgboost. Biomedical Signal Process-
ing and Control, 73:103456, 2022.

[50] R. S. Sutton and A. G. Barto. Reinforcement learning: An introduction. The MIT
Press, 2018.

[51] R. S. Sutton, D. McAllester, S. Singh, and Y. Mansour. Policy gradient methods for
reinforcement learning with function approximation. Advances in neural information
processing systems, 12, 1999.

[52] C. Szepesvári. Algorithms for reinforcement learning. Synthesis lectures on artificial
intelligence and machine learning, 4(1):1–103, 2010.

[53] M. Taghian, A. Asadi, and R. Safabakhsh. Learning financial asset-specific trading
rules via deep reinforcement learning. Expert Systems with Applications, 195:116523,
2022.

[54] E. O. Thorp. Portfolio choice and the kelly criterion. In Stochastic optimization
models in finance, pages 599–619. Elsevier, 1975.

[55] M. Tran, D. Pham-Hi, and M. Bui. Optimizing automated trading systems with deep
reinforcement learning. Algorithms, 16(1):23, 2023.

[56] H. Van Hasselt, A. Guez, and D. Silver. Deep reinforcement learning with double q-
learning. In Proceedings of the AAAI conference on artificial intelligence, volume 30,
2016.

[57] R. Walasek and J. Gajda. Fractional differentiation and its use in machine learning.
International Journal of Advances in Engineering Sciences and Applied Mathematics,
13(2-3):270–277, 2021.

[58] J. Walters-Williams and Y. Li. Comparative study of distance functions for nearest
neighbors. In Advanced techniques in computing sciences and software engineering,
pages 79–84. Springer, 2010.

[59] C. J. Watkins and P. Dayan. Q-learning. Machine learning, 8:279–292, 1992.

[60] L. Weijs. Reinforcement learning in portfolio management and its interpretation.
Erasmus Universiteit Rotterdam, 81:82, 2018.

68 7| BIBLIOGRAPHY

[61] Y. Yuan, L. Wu, and X. Zhang. Gini-impurity index analysis. IEEE Transactions
on Information Forensics and Security, 16:3154–3169, 2021.

69

List of Figures

2.1 Agent-Environment Interaction Schematization 8
2.2 Actor Critic Schematization . 12
2.3 Q learning Schematization . 14

5.1 Historical Price Series - Sectors and Market 41
5.2 Historical Price Series - Sectors vs Market 41
5.3 Confusion Matrix Train - Daily Analysis 46
5.4 Confusion Matrix Test - Daily Analysis . 46
5.5 Confusion Matrix Train - Weekly Analysis 47
5.6 Confusion Matrix Test - Weekly Analysis 47
5.7 Feature Importance . 52
5.8 Confusion Matrix Train - Rolling Approach 2018-2021 52
5.9 Confusion Matrix Test - Rolling Approach 2018-2021 52
5.10 Confusion Matrix Train - Rolling Approach 2009-2012 53
5.11 Confusion Matrix Test - Rolling Approach 2009-2012 53

6.1 Consumer Discretionary vs Market . 58
6.2 Performance Train - Consumer Discretionary 59
6.3 Performance Test - Consumer Discretionary 59
6.4 Performance Validation - Consumer Discretionary 60
6.5 Performance Test, First Iteration - Consumer Discretionary 60

71

List of Tables

5.1 Sectors from GICS classification . 40
5.2 Fundamental Indicators . 40
5.3 Technical Indicators . 41
5.4 R2 Score - Daily Analysis . 45
5.5 R2 Score - Weekly Analysis . 46
5.6 R2 Score - Shuffle . 47
5.7 ADF Test - Bollinger Up . 48
5.8 R2 and Accuracy - Rolling Approach 2018-2021 50
5.9 R2 and Accuracy - Rolling Approach 2009-2012 50

73

Acknowledgements

Ringrazio il prof. Marcello Restelli senza il quale questa tesi non sarebbe stata possibile.
Ringrazio Luca e Antonio per avermi seguito e aiutato con grande dedizione in questo
percorso.
Ringrazio Marcello Becchi per la sua costante disponibilità e pazienza non solo nella
stesura di questa tesi ma anche nel trasmettermi le conoscenze necessarie affinchè potessi
inserirmi al meglio nel mondo del lavoro.
Ringrazio Edwing per essermi stato sempre vicino nonostante la distanza, per avermi in-
segnato che non è necessario essere vicini di banco per essere sempre presenti e partecipi
nella vita altrui. Grazie anche per il supporto informatico.
Ringrazio Pes e Cate per essere stati i migliori compagni di università, di studio e di vita
che potessi incontrare. Siete sempre riusciti a trasformare le sventure in allegri momenti
in cui lamentarci insieme, e allo stesso tempo a celebrare con sincera felicità i successi di
ognuno di noi. La signora in giallo ha rappresentato molto durante questo percorso e per
questo vi sarò eternamente grata.
Ringrazio Gianmarco per tutto l’affetto e per aver sempre creduto in me. Grazie della
sincera stima. Averti a fianco in questo percorso mi ha arricchito non solo a livello acca-
demico (grazie per Python) ma soprattutto a livello personale. Averti a fianco in questi
anni mi ha reso una persona migliore.
E infine ringrazio i miei genitori, per tutto l’amore, il supporto costante, per le telefonate
giornaliere. Grazie per avermi fatto sempre sentire amata. Grazie per esserci sempre
stati, sia nei momenti belli sia in quelli difficili. Grazie per avermi insegnato che solo con
la fatica e il duro lavoro si raggiungono importanti risultati. Grazie per avermi insegnato
che studiare mi avrebbe reso una persona libera.

	Abstract
	Abstract in lingua italiana
	Contents
	Introduction
	Research goal
	Outline of the Thesis

	Reinforcement Learning
	Markov Decision Processes
	Policy
	Return
	Value Functions
	Optimal Value Functions
	Algorithms
	Q-Learning
	Fitted Q-Iteration
	Deep Q-Network

	Policy Gradient
	Trust Region Policy Optimization
	Proximal Policy Optimization

	Related Works
	Model based approaches
	Machine Learning based approaches
	Reinforcement Learning based approaches

	Problem Formulation
	Financial Preliminaries
	Reward
	Environment Formulation
	Algorithm Selection
	FQI dataset

	Data Analysis
	Analysis of the Dataset
	Features Selection
	Stationarity
	Rolling Approach
	Recursive Feature Addition

	Experimental evaluation
	Backtest

	Conclusions and future developments
	Bibliography
	List of Figures
	List of Tables
	Acknowledgements

