POLITECNICO
MILANO 1863

SCUOLA DI INGEGNERIA INDUSTRIALE

E DELLINFORMAZIONE

EXECUTIVE SUMMARY OF THE THESIS

A journey towards transparent fault tolerance in embarrassingly

parallel MPI applications

LAUREA MAGISTRALE IN COMPUTER SCIENCE AND ENGINEERING - INGEGNERIA INFORMATICA

Author: LucA REPETTI
Advisor: PrRor. GIANLUCA PALERMO
Co-advisor: RoBERTO ROCco

Academic year: 2021-2022

1. Introduction

High-Performance Computing (HPC) has been
leading innovation in various fields, ranging from
weather forecasting to drug discovery. The com-
puting capabilities of such systems are quickly
reaching exascale performances, but the pro-
gramming paradigm is falling behind, limiting
the effective usage of such systems. Due to the
increasing number of nodes in these clusters, and
the related complexity, the likelihood of faults
increases exponentially. At the same time, the
standard intercommunication paradigm in HPC,
the Message Passing Interface (MPI), does not
handle fault tolerance: after a fault occurs in the
application, the behavior is undefined - requir-
ing a full restart.

The MPI Forum is working to improve the MPI
Standard to support new functionalities, includ-
ing fault tolerance, with the User-Level Fault
Mitigation (ULFM) framework [3]. ULFM is a
low-level solution to handle MPI faults, enabling
applications using its API to continue without
undefined behaviors after a fault. The library
exposes low-level APIs to deal with faults. To
simplify the adoption, various works have pro-
vided all-in-one solutions built on top of ULFM.
An example of such libraries is Legio [5], which

enables resiliency in embarrassingly parallel ap-
plications. It hides failures from the user and
allows the application to continue the execution
without the failed processes. Legio can empower
the application to reach a result in case of error
if the failed process was not critical to the com-
pletion of the application. In those cases, fault
resiliency is not enough to achieve complete fault
tolerance in MPI applications, and the recovery
of the failed process is needed.

In this work, we explore the status of fault re-
covery through checkpoint/restart in MPI with
the primary goal of maximum transparency and
minimum overhead. We identify as a goal the
minimization of latency and disk usage over-
head, which is achieved by applying fault recov-
ery only to the critical processes.

Different works have achieved similar outcomes
with a stop-and-restart approach: the entire
MPI job is killed and restarted from the most
recent consistent checkpoint. The main draw-
back is the latency overhead in restarting the
entire application after a failure. To solve this
problem, other approaches do not stop the exe-
cution upon a failure but restart only the failed
processes, thanks to the usage of ULFM.

The field still lacks a solution to give control

to application developers by allowing them to
specify which processes are critical (and must
be restarted). Such an approach would mini-
mize latency overhead by paying the restart cost
only when needed and minimize disk usage since
checkpoints should be performed only on criti-
cal processes. At the same time, the framework
should be transparent concerning MPI faults,
simplifying its adoption in existing applications.
In particular, we explore transparent and ap-
plication checkpoint to achieve the solution de-
scribed above:

Transparent checkpoint: we research the
main strategies and available frameworks to
reach fault recovery with user-level frameworks,
which do not require any change to user code.
After exploring the existing alternatives, we try
to integrate them with Legio and ULFM, at-
tempting to achieve a local transparent restart
of the failed nodes.

Application checkpoint: we apply a trans-
parent checkpoint/restart paradigm for MPI-
related structures, shielding the library user
from any details about the failure in the MPI
domain. The user can leverage existing tools
already used in the domain to checkpoint appli-
cations data reliably.

In this thesis, we explore the above alternatives,
reporting problems and proposing solutions to
the problem stated above.

This work is structured as follows: Section 2
gives a background on the main concepts needed
to grasp the proposals; Section 3 explores the at-
tempt to reach transparent checkpointing; while
Section 4 proposes the application checkpoint-
ing solution. Finally, Section 5 examines the
results of the experimental campaign, and sec-
tion 6 wraps up the work with the conclusions.

2. Background

This chapter outlines the principal concept
needed to grasp the journey defined in the rest
of the work. Section 2.1 describes the Mes-
sage Passing Interface (MPI), the communica-
tion method used in most HPC applications.
Section 2.2 outlines the novelty introduced by
User-Level Fault Mitigation (ULFM), a fault
tolerance framework for MPI applications. Sec-
tion 2.3 gives an overview of checkpoint/restart
strategies to achieve fault tolerance. Finally,
Section 2.4 recaps frameworks that achieve C/R

through ULFM and checkpoint /restart.

2.1. Message Passing Interface

MPI is the de-facto standard interface to coor-
dinate multiple processes in a parallel applica-
tion in a distributed environment [1]. The MPI
Forum is the committee that defines the specifi-
cations, which are then followed in different im-
plementations, such as OpenMPI and MPICH.
To enable parallel applications to distribute
work, communicators are used. They encap-
sulate the context of communication between a
group of processes identified uniquely inside the
communicator through their rank, starting from
0. The main APIs exposed by MPI to achieve
distributed computing are the following;:
Point-to-point operations: they focus on the
simplest model of communications: exchang-
ing messages between single processes. Given
a communicator, processes are identified with
their respective rank in the communicator and
can send and receive messages.

Collective operations: they enable complex
communication models by involving all processes
within the used communicator and must be is-
sued by all the processes in the given communi-
cator.

MPI also exposes other primitives to achieve
more complex goals, such as dynamically spawn-
ing new processes in the application after
startup.

2.2. ULFM

User-Level Fault Mitigation (ULFM) is one of
the recent efforts to introduce fault tolerance in
MPI applications. Without any fault tolerance
extension, the behavior of MPI after the occur-
rence of faults is undefined. With ULFM, MPI
operations that involve failed processes must ei-
ther succeed or raise an MPI error, which can
be propagated to the user. Additionally, it guar-
antees that operations performed after a failure
on non-failed processes will succeed, respecting
MPI semantics.

The specification aims to define an interface to
enable applications to resume communications
after a failure. Still, it does not explore prob-
lems related to the recovery from the failure
inside the application. Instead, it exposes the
primitives needed to implement either shrinking
solutions (where the application can continue

with fewer processes in case of failure) or non-
shrinking ones (where failed processes continue
the execution elsewhere).

2.3. Checkpoint /restart

Reaction to failures can be executed either with
fault resiliency (continuing the execution with
fewer processes) [5] or fault recovery (replacing
the faulty processes with new ones) [2]. Al-
though the first one minimizes the overhead, it
has a few drawbacks: the expected result will
likely be an approximate one, and the resiliency
may not be guaranteed to finish execution in
case a process needed for execution completion
fails.

To solve these issues, it is possible to react to
failures by restarting the entire application at
a previous checkpoint (global restart) or only
the node that experienced failure (local restart).
Together with the different restart procedures,
there also exists a taxonomy for the checkpoint-
ing strategy, which is differentiated based on the
transparency of the solution. We can distinguish
application-level and system-level checkpoints.
The first requires a dedicated integration inside
the user code to save and restore the most impor-
tant application data. The second is transparent
since it does not require user code changes but
usually incurs additional overhead and can be
system-specific.

2.4. Fault Recovery Techniques

Various efforts aim at fault recovery of an
application after a failure by joining check-
point /restart and ULFM [3]. They achieve non-
shrinking recovery by restarting the execution
of failed nodes from the latest consistent check-
point. To implement this, they either initial-
ize the application with a pool of spare nodes
(incurring additional resource usage) or use dy-
namic process management MPI functions to
Spawn new processes.

3. Transparent Checkpoint

The first explored path proposes a technique to
checkpoint and restore processes in an MPI ap-
plication transparently. No change to the user
code should be required, making our work avail-
able for already existing HPC applications.

Subsection 3.1 attempts to reach the de-
sired solution with Distributed MultiThreaded

Checkpointing (DMTCP) and MANA, while
subsection 3.2 explores the usage of Check-
point/Restore in Userspace (CRIU) to achieve
transparent fault recovery.

3.1. DMTCP and MANA

Distributed =~ MultiThreaded Checkpointing
(DMTCP)|2] is a library supporting user-level
checkpoint /restart without requiring kernel or
OS changes. MANA enhances DMTCP with a
special flow that separates MPI memory parts
and application level, simplifying the restore
process. The libraries follow a stop-and-restart
approach by killing the application once a fault
has been detected. The novelty to introduce
concerning the current situation is resiliency:
the application should continue in case of
non-critical faults and respawn only the failed
processes. To minimize latency and disk usage
overhead, we try to implement local backward
restart, which rollbacks the failed processes at
the latest checkpoint and leaves the others to
continue the execution.

Unfortunately, upon investigation, it was clear
that DMTCP presents architectural challenges
in how the MPI process management is struc-
tured to achieve this result. In particular, it
does not support the respawn of a process
attached to the same sockets as the ongoing
application. On the other hand, MANA is not
yet mature for our needs - we found issues in
running it with OpenMPI.

3.2. CRIU

We make a second attempt to achieve the desired
goal using Checkpoint-Restart in Userspace
(CRIU) [4], which is a robust solution to the
checkpoint with support in the Linux kernel. We
envisioned the possible execution flow:

1. We checkpoint the current process, in case
it is critical, before each MPI call. This
ensures always a consistent state of check-
points between the different processes and
avoids deadlocks.

2. In case of failure of a non-critical process,
we integrate Legio to ensure the application
can continue in the presence of faults.

3. In case of failure of a non-critical process,
Legio will handle the failure by restart-
ing the failed processes and re-joining them
with the already running MPI application,

by repairing the communicators removing

the failed process, and including the new

one.
The first two parts used features already part of
Legio and CRIU, while the third was less triv-
ial. First, we restarted the failed process us-
ing CRIU’s already existing features. After, we
leveraged the MPI routines MPI_Comm_connect
and MPI_Comm_accept to join the survivor pro-
cesses with the restarted ones, mimicking a
client-server approach. Finally, we attempted
to repair the existing communicators in the MPI
application by removing the failed process and
adding the new one.
Initially, the operation was unsuccessful because
shared memory communication should be dis-
abled to let CRIU checkpoints the processes. We
fixed the issue by using TCP as a communica-
tion method, which is supported by CRIU.
The second issue encountered is the weak sup-
port of the dynamic process management in the
MPI versions which integrate ULFM. For exam-
ple, in OpenMPI 4.0.1, there is an issue that
makes the dynamic process management oper-
ations described above unusable. On the other
hand, OpenMPI version 5.0.0 raised an inter-
nal error that aborted the application after the
MPI_Comm_connect and MPI_Comm_accept func-
tions were called. The new OpenMPI runtime,
introduced in the 5.0.0 version, sets the restarted
process communicator as malfunctioning inter-
nally, making subsequent MPI operations fail.

3.3. Limitations

Due to the issues found in both C/R state-of-of-
the-art frameworks, we decided to re-evaluate
the initial transparency requirement. In partic-
ular, we chose to aim at restoring failed critical
processes and the related MPI objects with local
backward recovery. At the same time, we leave
control to the user to checkpoint application-
level data.

4. Application Checkpoint

The section explores the journey in application
checkpointing. In particular, subsection 4.1 de-
fines the motivation for the change from trans-
parent to application checkpoint, while subsec-
tion 4.2 propose and details the project work to
achieve the desired goal.

4.1. Motivation

Continuing the journey, we use application
checkpointing to reach resiliency and recovery.
Compared to system-level checkpointing, the
main drawbacks are the lack of transparency and
the need to implement user code support. On
the other hand, different advantages arise:

e Only the critical processes should be check-
pointed, minimizing the latency and disk
usage. Moreover, the application awareness
given from the application checkpoint can
help minimize the overall overhead in terms
of latency and disk usage.

e The application developer chooses each
checkpoint’s granularity, frequency, and
criticality. It is then possible to easily in-
tegrate multi-level checkpointing where the
likelihood of failure influences the storage
system of the checkpoint.

e The only requirement is a storage layer that
allows to dump and restore checkpoints: it
is therefore highly portable and does not
need to be adapted for particular environ-
ments.

4.2. Proposal

To reach this goal, we propose a framework, Le-
gio++, that uses dynamic process management
to restore failed processes. At the high level, the
main parts of the application are three:

1. Initialization - the application code should
use specific routines to ensure our frame-
work can keep track of the MPI structures.

2. Failure detection - during process failure,
the framework notices a fault and acts ac-
cordingly based on the criticality of the
failed process. Failure resiliency without
recovery is mainly based on Legio, but it
needs a revamp in the context of possible
restarted processes.

3. Restart phase - the routine that enables a
failed process to be restarted and re-join the
existing group of MPI processes is at the
core of the thesis work.

During initialization, we wrap MPI commu-
nicators, ensuring that the application devel-
oper cannot see errors directly. We also expose
initialize_comm, a function able to create a re-
silient communicator which must be called dur-
ing startup. The operation allows us to keep
track of communicators, which won’t change for

the entire lifetime of the application.

Once a failure is detected, the first process notic-
ing it communicates it to the rest of the alive
processes. Other processes will be able to re-
ceive and check for failure notification messages
without interrupting their work, thanks to a
thread spawned during initialization. It period-
ically checks for incoming messages that report
a failure. It is key that, once a failure is de-
tected, all the processes are notified and partici-
pate actively in the reparation process. More-
over, it achieves consistency by avoiding that
disjoint group of processes trying to recover from
a critical process’ failure by spawning it twice.
The last part of the flow is the restoration,
where our work manages to re-create failed pro-
cesses through the MPI_Comm_spawn_multiple
function, which spawns several processes equal
to the number of failures. After, it repairs the
internal MPI_COMM_WORLD, not exposed to the
user, restoring order in the ranks concerning the
newly introduced process. The survivor pro-
cesses will pass the restarted ones all the infor-
mation needed to reconstruct the state of the
MPI structures, such as the already failed pro-
cesses and the rank of the processes to respawn.
Finally, it uses the new MPI_COMM_WORLD to re-
pair the rest of the registered communicators.
Contrary to Legio, this approach pays the over-
head for restoration only once, ensuring that
all communicators are repaired after a failure.
This guarantees that, with multiple communi-
cators, failures will be detected and dealt with
only once.

5. Experimental Evaluation

We tested and confirmed that the proposed ap-
proach is functionally correct, checking that the
exposed feature works as expected. To evalu-
ate whether it brings novelty and its usability in
real-world conditions, we perform an experimen-
tal campaign by analyzing the latency overhead
for the proposed Legio+-+.

To evaluate the performance of the proposed
work, we conduct two experiments: we focus on
the overhead of the restart operation, and then
we analyze a complete application that is em-
barrassingly parallel (a Montecarlo simulation
to compute the value of 7). We conducted these
experiments on the Antarex node at Politecnico
di Milano, featuring 2 x Intel(R) Xeon(R) CPU

E5-2630 v3 @ 2.40GHz processors and 128 GB
of RAM.

To simulate the restart and its overhead, the
SIGINT signal is injected in one of the processes,
making it impossible to continue and abort im-
mediately. Therefore, the MPI_Barrier right af-
ter will not succeed immediately - making it nec-
essary for the framework to act with either re-
siliency or recovery.

S5 m Legio
B Legio++ (Restart)
4 W Legio++ (Resiliency)

Overhead [s]
w

o

=
=
=
-
—

0
8 16 32 64 128 256

Network size [processes]
Figure 1: Failure tolerance overhead with differ-
ent frameworks.

In the figure 1, we see the comparison between
three different fault tolerance libraries:

e Legio [5], which implements fault resiliency
without any recovery of failed processes.

e Legio++ (Restart), acting following the re-
covery flow. The rank where the SIGINT
is injected is considered critical. Legio++
performs the recovery procedure respawn-
ing a new process and performing the pre-
viously missing MPI_Barrier operation.

e Legio++ (Resiliency), acting following the
resiliency flow. The rank where the SIGINT
is injected is considered a non-critical rank.
Therefore, no recovery operation is needed.

It’s clear from the picture that only recovery
creates a sizable overhead between 64 and 256
nodes, which can be explained by fixing dynamic
process management operations.

To further analyze the motivations behind the
higher overhead of Legio++ with a restart ap-
proach, we perform a granular benchmark to un-
derstand the impact of the various parts of the
operation. The following times are examined:
failure propagation (communicate the failure to
other processes), failure acknowledgment, shrink
of MPI_COMM_WORLD to remove failed processes,
respawn of a new process, construction of the
new MPI_COMM_WORLD, and the reparation of the
communicators during restart.

175 W Failurc propagation
B Failure ack
150w WORLD Shrinking

125 Respawn
WORLD repair

1.00 Communicator reparation

0.75
0.50
0.25 I
_— | |
64 128
]

3 16 32
Network size [processes

Time [s]

Figure 2: Overhead of each operation in the
restart procedure, varying by the number of pro-
cesses involved.

Analyzing figure 2, it is clear that the contribu-
tion of dynamic process management operations
grows with the number of processes involved.
Similarly, also the reparations of each commu-
nicator have increasing costs.

Finally, to conclude the experimental campaign,
we test Legio++ with a Montecarlo simulation
computing the value of 7. In such a case, where
a MPI_Reduce operation is performed to group
results from different ranks, failure recovery is
needed for the critical process which collects the
results.

The results can be seen in Figure 3, confirm-
ing the minimal overhead of restart concerning
resiliency considering the major impact of a crit-
ical node.

40 BN Restart

B Resiliency
B
£
P 20
15
10
5
0

8 16 32 64

Network size [processes]
Figure 3: Average execution time of a Monte-
carlo simulation by varying the number of pro-
cesses involved and the failure tolerance method.

The testing campaign proved that the proposed
work contained latency overhead for fault re-
covery and resiliency, and recognized that the
overhead for reparation grows with the number
of processes. Given these results, the develop-
ers are in the best position to evaluate whether
a process should be marked critical, consider-
ing fault recovery’s more significant performance
overhead than fault resiliency.

6. Conclusions

This thesis presents a journey through fault
tolerance in MPI applications, starting with the
ambitious goal of full transparent checkpointing
and finishing with automatic failure recovery
in all process ranks when a failure is detected.
After evaluating the difficulties in reaching
the initial goal of transparency, we propose
Legio++, a prototype that allows application
developers to tolerate failures without signifi-
cant changes to the code for what regards MPI
usage; we shield the behavior of MPI under
failure by making the application developer
unaware of the underlying failures of processes.
The experimental evaluations demonstrate
that, although the overhead of fault recovery is
greater concerning fault resiliency, the trade-off
is acceptable regarding critical processes.

References

[1] Mpi: A message-passing interface standard,
version 4.0, 2021.

[2] Jason Ansel, Kapil Arya, and Gene Coop-
erman. DMTCP: Transparent checkpoint-
ing for cluster computations and the desk-
top. In 2009 IEEE International Sympo-
stum on Parallel & Distributed Processing
(IPDPS’09), pages 1-12, Rome, Italy, 2009.
IEEE.

[3] Wesley Bland, Aurelien Bouteiller, Thomas
Herault, George Bosilca, and Jack Dongarra.
Post-failure recovery of mpi communication
capability: Design and rationale. The Inter-
national Journal of High Performance Com-
puting Applications, 27(3):244-254, 2013.

[4] Adrian Reber. Criu: Checkpoint/restore in
userspace, 2012.

[5] Roberto Rocco, Davide Gadioli, and Gi-
anluca Palermo. Legio: fault resiliency
for embarrassingly parallel mpi applications.
The Journal of Supercomputing, 78(2):2175—
2195, 2022.

	Introduction
	Background
	Message Passing Interface
	ULFM
	Checkpoint/restart
	Fault Recovery Techniques

	Transparent Checkpoint
	DMTCP and MANA
	CRIU
	Limitations

	Application Checkpoint
	Motivation
	Proposal

	Experimental Evaluation
	Conclusions

