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Abstract
In the last decade, the Italian wine industry experienced a relevant international expan-
sion. The wine industry is in second place for energy consumption in the food industry
despite the sustainability issue has become more and more important for the Italian and
foreign market. It is therefore of paramount importance to implement sound oenology
methodologies, i.e., precision oenology approaches, which aim to spur the vinification
process re-engineering possibly in a data-driven perspective.

The thesis falls into the framework of the technological cluster ALL4INNOVATION ; the
purpose is to assist Italian wine companies in this technological transformation, with the
scope of improving wine quality and minimizing energy consumption.

The thesis aspires to lay the foundations for the implementation of a predictive model
for the alcoholic fermentation of the Amarone della Valpolicella DOCG wine. The work
consists of data analysis and modelling of the fermentation process of Amarone della

Valpolicella DOCG wine. The objectives pursued are (i) prediction of fermentation ki-
netics and (ii) their optimization through the manipulation of temperature as a control
variable.

To build a structured database, a sampling plan and an experiments apparatus are devised.
A physical-based mathematical fermentation model describing the dynamics of sugar,
ethanol, nitrogen, yeast, and oxygen is studied and its parameters will be identified based
on the conducted experiments. The model will be finally used to propose a strategy to
minimize the energy consumption.

Keywords: data analysis, predictive models, model identification and validation, opti-
mization, amarone DOCG wine, wine alcoholic fermentation.





Abstract in lingua italiana
Nel corso dell’ultimo decennio, il settore vitivinicolo italiano ha conosciuto una rilevante
fase di espansione, soprattutto sul fronte della crescita internazionale. L’industria del
vino è al secondo posto per consumi energetici nel settore alimentare nonostante siano
numerosi i Paesi dove l’attenzione alla sostenibilità assume sempre maggiore importanza.
È quindi fondamentale implementare una nuova metodologia detta enologia di precisione

per l’avvio in sicurezza del re-engineering, in una logica data-driven, del sistema di gestione
del processo di vinificazione.

Questa tesi è inserita nel contesto del cluster tecnologico ALL4INNOVATION ; lo scopo
è quello di aiutare le imprese vitivinicole italiane nella trasformazione tecnologica, miglio-
rando così la qualità del vino e minimizzando i consumi energetici.

La tesi intende porre le basi per l’implementazione di un modello predittivo della fermen-
tazione alcolica del vino Amarone della Valpolicella DOCG. Il lavoro consiste in uno stu-
dio di analisi di dati e di modellizzazione del processo di fermentazione del vino Amarone

della Valpolicella DOCG. Gli obiettivi perseguiti saranno (i) predizione della cinetica fer-
mentativa e (ii) ottimizzazione della stessa attraverso la manipolazione della variabile di
controllo temperatura.

Per creare un database strutturato, sono stati ideati e applicati un piano di campiona-
mento e un sistema di esperimenti di fermentazione di laboratorio. È stato studiato un
modello fisico-matematico per la fermentazione che descrive le dinamiche di zucchero,
etanolo, azoto, lievito e ossigeno e i suoi parametri sono stati identificati basandosi sugli
esperimenti condotti. Infine, su questo modello sarà basato uno studio di ottimizzazione
per minimizzare i consumi energetici.

Parole chiave: analisi di dati, modelli predittivi, ottimizzazione, identificazione e vali-
dazione, amarone DOCG, fermentazione alcolica del vino.
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1| Introduction

1.1. Context and Motivation

The winemaking processes are characterized by a huge amount of variables that may affect
the grapes. In particular, climatic conditions, altitude, type of terrain, and many other
conditions may result in very different grapes’ conditions. This high variability of the
raw material imposes appropriate modifications also of the vinification process. In fact,
depending on the initial conditions of the grapes, the winemaking process may require
different yeast types, nutrition addition and may lead to different fermentation times.
The wine production chain is unique, because of the necessity to manage variations of
different types of products in terms of characteristics, identity, geographical typicality,
and variability of individual vintage.

The wine industry still widely adopts traditional methodologies, despite present-day tech-
nology allows the management of the vinification process and to reducing variability of
the wine characteristics.

Current projects, e.g., the so-called Precision Winemaking Model one, are devised for
the increasing market demands in terms of authenticity, sustainability, salubrity, and
quality of the wine industries. These demands cannot be satisfied solely thanks to the
oenologist’s talent and experience anymore. On the contrary, nowadays the improvement
in the process management and the introduction of more sound methods (defined as
precision) are necessary for this industry. Therefore, a technological transformation of
the vinification process is necessary for the wine industry; new technologies for data
collection and management, data support systems, data banks, and predictive models are
requested.

This thesis lays the foundations for the implementation of a predictive model for the
alcoholic fermentation of the Amarone della Valpolicella DOCG wine. The project lies
in the framework of the technological cluster ALL4INNOVATION, in favour of a group
of Italian wine companies. The project has been developed to “implement a new pre-

cision winemaking methodology”. Specifically, the goal is to help these companies with
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the introduction of more sound practices, defined precision, that lead to data-validated
decisions and to significant energy and cost savings.

The grape fermentation wine chain must be considered in a unitary fashion in order
to collect the necessary data to train mathematical models. An experiment-based sys-
tem, consisting on nanovinifcations, microvinifications and industrial vinifications, must
therefore be developed to investigate different operational conditions (e.g., yeast strains,
nutritional strategies, fermentation temperatures, etc.), different agronomic techniques
(which may lead to different chemical and organoleptic parameters of wines), and energy
saving.

This experimental system has the objective to create the database for developing predic-
tive models of: sustainability (energy saving), authenticity (isotopic, metabolic, gene),
quality (shelf life and sensory), food safety (organic and inorganic contaminants), and
corporate liability (compliance with standards and laws).

The expected benefits of these methodologies are:

1. encouraging innovation and development of new products

2. reducing operating costs through the optimization of resources (raw materials, en-
ergy, water, waste, etc.)

3. predict fermentation performances in order to plan the production process in relation
to market demands.

4. predict fermentation problems that may affect wine quality.

1.2. Contribution of the Thesis

This thesis proposes a study concerning data analysis and model identification on the
Amarone del valpolicella DOCG wine, produced by the Sartori winery (VR).

The objectives of this thesis are:

1. Predict fermentation kinetics starting from the initial conditions of the must after
the pressing phase, with particular interest in fermentation time.

2. Study the optimization of the fermentation kinetics on a laboratory-scale vinification
by acting on the temperature profile applied to the fermenting must.

For achieving the former objective, a detailed study of the fermentative kinetics of wine
is necessary. In this perspective, it is necessary to have a sufficiently large amount of
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data on fermentation kinetics to cover the number of variables that concur to the alco-
holic fermentation process. To analyze the biological behavior of this wine, the Ever -

Italiana Biotecnologie company (VI) has made available its equipment for winemaking
experiments. Various chemical analyses, similar to those of the winery, were carried out
also by the Vassanelli Laboratory (VR).

To build a structured database, a sampling plan and an experiment apparatus were im-
plemented. We actively worked on their conception and development: starting from the
sampling phase in the Sartori Fruttaio, leading up to the pressing and the managing of
the fermentation tank at Ever - Italiana Biotecnologie. This had the objective to create a
sound database based on which it was possible to carry out the study of the mathematical
model.

Since the thesis project is part of a broader study, many choices were made for purposes
external to that of the thesis. In particular, the winemaking tests were done using two
yeasts (Inverno 1936 and Vulcano) made available by Ever. However for the implemen-
tation, identification, and optimization of the mathematical model, only one of the two
yeasts was considered (Inverno 1936 ).

As far as the second objective is concerned, a sound mathematical predictive model will
be needed for devising strategies aiming to reduce the energy consumption. Specifically,
the energy consumption in cooling/heating tanks during the fermentation process is in-
vestigated. The purpose is to lay the foundations for possible future studies on the
economically optimal control of fermentation kinetics.

In general, this thesis creates a methodological basis to implement other mathematical-
predictive models suitable to help wine companies to apply the PDCA cycle (Plan-Do-
Check-Act) to the winemaking process. Particular interest is given to the planning phase
of production processes (vineyard and winery) to obtain optimal results and prevent risks
in authenticity, sustainability, quality, food safety and legality areas.

1.2.1. Partners and Strategic Choices

This project was possible thanks to a convergence of interests between many stakeholders
listed below:

Sartori Winery. The study tackles the flagship product of Sartori winery, i.e., the
Amarone della Valpolicella DOCG wine. Thanks to precision winemaking approach,
they want to stand out based on objective data as a distinctive element with respect to
competitors;
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Winegrowers. This project is viewed, by winegrowers, as an opportunity to obtain
and enhance certifications in the sustainability field (with reference to standards like 3R,
Equalitas, SQNP, etc.);

Research and Supply Chain Partners. This study is an opportunity for these part-
ners to study and apply innovative solutions already tested on other simpler processes to
one of the most complex production processes, winemaking. The latter are Ever - Italiana

Biotecnologie (VI), Vassanelli Laboratory (VR), APRA (AN), and various Research Part-
ners (e.g., Università di Verona - Viticoltura ed Enologia - Dipartimento di Biotecnologie

(VR)).

1.3. Thesis Structure

The thesis is structured as follows:

• Chapter 2 presents a winemaking overview to introduce the reader to the wine es-
sential concepts. The basics are briefly discussed for a better understanding of the
following chapters, together with the main variables affecting the alcoholic fermen-
tation kinetics.

• Experimental choices, vinification experiments and analysis that allowed the data
collection are presented in Chapter 3. The types of samples that have been collected
are two:

– grape samples: taken during the dehydration phase by the Sartori drying
rooms, also known as Fruttai ;

– must samples: collected after the pressing phase of the Sartori winery.

The experiments that are carried out with these samples are of two different types
and are called:

– Nanovinification: tests in 0.5L bottle;

– Microvinification: tests in 13L jar.

The limitations of vinification on laboratory operating conditions will be presented
as a result of these types of experiments’ analysis. In fact, the procedures that
have been carried out in laboratory try to imitate the winery conditions and to
simulate the industrial vinification in order to study the fermentation kinetics. It
is clear that it is not possible to replicate exactly the conditions of industrial wine-
making; however, the laboratory allows to make numerous tests and to analyze a
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number of parameters that would hardly be analyzed in winery. Together with
these winemaking tests, a variable’s analysis system was set up. In fact, Ever - Ital-

iana Biotecnologie has made available its tools for measuring the concentrations of
ethanol, sugars, vitamins, acids and amino acids on musts and wines. The analyses
carried out can be divided into two groups:

– Static analyses: they were manually carried out by the staff of Ever - Italiana

Biotecnologie on micro-samples of must and wine, collected before and after
the winemaking experiments.

– Dynamic analyses: the latter are the analyses performed during the fermenta-
tion tests; in these, only ethanol was measured.

This system of “sampling-vinification-analysis” allowed to build a database of fer-
mentation kinetics on which it was possible to identify a suitable mathematical
model.

• After a detailed review of the state-of-the-art we present, in Chapter 4, a criti-
cal review and comparison of selected fermentation physical-based mathematical
models. The aim is to select one of these models and then proceed to parameters
identification over the experimental data.

• The large number of tests (160) allows a good identification of the model and con-
tains great variability of initial conditions. The identification procedure is presented
in Chapter 5.

• The optimization study, presented in Chapter 6, concerns an optimization problem
with the aim of calculating the optimal temperature profile to minimize:

– Consumed energy;

– Fermentation time;

– Tracking error from a desired ethanol profile.

The optimal profile is applied to the heating/cooling system of a jar and the ethanol
kinetics were observed.
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2| Winemaking Overview

This chapter is dedicated to illustrate in details the process of alcoholic fermentation in
winemaking, with particular focus on the Amarone della Valpolicella DOCG wine. The
main steps of winemaking are illustrated in Figure 2.1, starting from the grape vintage
and ending with the wine bottling.

Figure 2.1: Main winemaking process steps.

2.1. Alcoholic Fermentation

Alcoholic fermentation is the anaerobic transformation of sugars, mainly glucose and
fructose, into ethanol and carbon dioxide [24]. This process, which is carried out by yeast
and some bacteria, can be summarised by following reaction:

C6H12O6

Hexoses

2CH3CH2OH
Ethanol

+ 2CO2

Carbon Dioxide

As this reaction proceeds, a number of other biological and chemical processes take place.
Indeed, several other compounds are produced, listed in Section 2.3.
At the beginning of the winemaking process, the grape juice may contain several species
of yeast, depending on multiple factors such as grape variety, ripening stage, treatments,
climatic conditions, viticultural practices, and development of mold or fungal plagues.
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Saccharomyces Cerevisiae is the predominant kind of yeast because of its greater resistance
to high ethanol concentration. Some other yeasts may also be present in the grape juice
and even in the wine itself, which may cause some organoleptic defects and influences the
final composition of wine in a positive or negative way. By inoculating selected strains
of dry yeasts (Saccharomyces Cerevisiae) the winemakers try to prevent developing of
undesirable yeasts.

2.1.1. Yeast Development

Figure 2.2: Example of simulation of yeast kinetic during alcoholic fermentation.

At the beginning of the fermentation, the yeasts start to metabolize the sugars and other
nutrients present in the must to obtain energy and increase their population [24]. In the
first hours, during the so called Latency phase, the number of cells does not increase, it
is necessary for the cells to adapt to the new environmental conditions. Once the yeast
cells adapt, they start to grow: in this Exponential Growth phase, the population begins
to increase and in this phase temperature plays a key role together with concentration
of ammonia, amino acids and other nutrients; this phase lasts from 3 to 6 days. After
the growth stops, because of the deficiency of some nutrients, now the Quasi-stationary

phase begins: the number of yeast cells remains almost constant. After 2 - 10 days,
the Decline phase begins and the yeast cells start dying, because of the lack of nutrients
and also because ethanol and other substances, produced during alcoholic fermentation,
are toxic for them; this phase lasts until the cells have almost completely disappeared.
The objective is to avoid stuck and sluggish fermentation (discussed in Section 2.2),
which can be done maintaining the population of viable yeast at sufficient levels until all
the fermentable sugars have been fully consumed. It is important to highlight that the
concentration of cells (number of cells per milliliters of grape juice) remains the same for
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the entire process: indeed the yeast cells dies, but they does not disappear in the must.
This phenomenon will be considered in some fermentation models (presented in Chapter
4), which make this distinction between yeast and active yeast.

2.1.2. The Importance of Nitrogen

Figure 2.3: Example of simulation of nitrogen kinetic during alcoholic fermentation.

Saccharomyces Cerevisiae needs significant amounts of assimilable nitrogen to increase
its population during fermentation process [24]. Inside the grape juice there is a variety
of nitrogen compounds (such as ammonia, amino acids, peptides, proteins, etc.), but only
some of them can be assimilated by the yeast. Saccharomyces Cerevisiae can only use am-
monia and amino acids, with the exception of proline, as an assimilable source of nitrogen.
These substances are called YAN, Yeast Assimilable Nitrogen, (APA, Azoto Prontamente

Assimilabile, in Italian). Grape juice is relatively poor in ammonia and amino acids and,
with low values of YAN the probability of stuck or sluggish fermentations increases. For
this reason, winemakers use to supplement grape juice with a Nutrition composed basi-
cally on ammonium salts. The YAN requirement for a the alcoholic fermentation depends
on the yeast strain and the potential alcoholic degree, that depends on the initial sugars in
the grape juice. In contrast, too high concentration of nitrogen can lead to the production
of toxic substances. For this reason, nitrogen must be supplemented carefully and taking
into account the initial YAN concentration and the potential alcoholic degree of the wine.
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2.1.3. The Temperature Effect

Figure 2.4: Two examples of simulation of ethanol kinetics with two different
temperatures of 24 � and 28 �.

Alcoholic fermentation is an exogenous chemical reaction, so when heat is applied, fermen-
tation rate is higher [24]. With increasing temperature, the yeast will convert faster the
grape’s natural sugars to alcohol: in fact, between 15 °C and 25 °C the fermentation rate
is doubled when the temperature is increased by approximately 8 °C. In Figure 2.4, the
fermentation rate difference can be appreciated when fermentation occurs at two distinct
temperatures (24 °C and 28 °C). When the temperature is higher, the fermentation ends
5 days before. Nevertheless, too high fermentation temperatures may reflect on the wine
specifics. Indeed, high temperatures might kill yeast cells or prevent the population from
growing. On the contrary, lower fermentations temperatures help to preserve the flavors
and the desired characteristics of the wine. Red wines are typically fermented between
20 °C and 30 °C. This range results in richer colors, good levels of tannin and fruit flavors.
Moreover, the temperature profile is also important. In fact, an increase of several degrees
during the fermentation process greatly changes the fermentation kinetics.

2.2. Stuck and Sluggish Fermentations: Causes and
Solutions

At the end of the process, alcoholic fermentation might become too slow. It can happen
that yeasts reduce the sugar consumption and before all the fermentable sugars have been
completely metabolised, fermentation stops. When this happens, two problems may arise:
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• The wine can be not finished and actions must be taken to finish it.

• There is high risk of bacterial spoilage.

Various studies [24] analyzed the reasons of stuck and sluggish fermentations. Here the
possible causes and solutions of these issues are summarized:

1. High sugar concentration: excessive levels of sugar in the must may inhibit yeasts
in some cases. Moreover, a high concentration of ethanol can be a serious problem
for the complete consumption of sugars, especially during the final stages of fermen-
tation. In this case, using yeast with high ethanol resistance is recommended.

2. Extreme temperatures: when the process starts at too low temperature the pop-
ulation of yeast cells may have problems to grow. Also, if the temperature is too
high (more than 30�) the risk of stalled fermentation is very high. Moreover, rapid
changes of temperature may provoke serious problems in fermentation. For these
reasons, nowadays fermentation temperature needs a thermic control.

3. Complete anaerobiosis: oxygen is necessary, without it yeast will not grow and may
adapt itself to the environmental conditions. For this reason, aeration is recom-
mended, especially during the exponential growth phase.

4. Nutrient deficiencies: the lack of some nutrients in the must can bring to serious
issues during the process, because nitrogen, vitamins, minerals, etc. may be deficient
in grape juice. For this reason, yeast activators are usually added in wineries: the
nutrient consists of ammonium salts (phosphate and/or sulphate), thiamine and
their application is certainly very useful. Moreover, adding nitrogen is more effective
if it is done more than once and if it is combined with aeration.

5. Presence of anti-fungal substances: sometimes grape juice can contain residues sub-
stances that may affect alcoholic fermentation. To avoid this, inspections at vineyard
level are indispensable.

6. Antagonism between microorganisms: the different microorganisms which are present
in grape juice compete for nutrients. Indeed, sometimes autochthonous yeast or
even bacteria can grow and they can be the causes of deviations and even stuck and
sluggish fermentations.

All these causes can prevent alcoholic fermentation from developing correctly. However,
it is rare to find a single responsible for stuck and sluggish fermentation: usually the
cause is a synergistic combination of some of them. Nevertheless, in case of problems
in a fermentation tank, winemakers must act as soon as possible: with aeration and
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inoculating yeast the issue may be solved. In fact, if fermentation stops, the yeast must
be reinoculated. The succes of the inoculum is based on the choice of the yeast and the
way it is preadapted to ethanol.

2.3. Other Subproducts of Alcoholic Fermentation

Alcoholic fermentation is not only the process that transform sugars into ethanol, but it is
also a complex process that leads to an equally complex product, wine. Indeed, sugars are
transformed mainly into ethanol but also into other subproducts, which can contribute
negatively or positively to wine quality. Moreover, alcoholic fermentation also implies the
transformation of other compounds present in the grape juice which have a high influence
on wine quality.

• Diacetyl, acetoin and 2,3-butanediol: they are not present in significative amounts,
indeed, they do not have a real effect on the aroma. When lactic acid bacteria are
present, they can considerably increase their concentrations, affecting the organolep-
tic characteristics of the wine.

• Ethanal: this compound is reduced for the most part into ethanol, but some little
quantities may be released into the wine. It gives off the aroma of oxidized wine,
although in alcoholic fermentation, this compound is produced in a small amount.
High concentration of ethanal can be found in some wines, obtained by aging the
wine under a film of Saccharomyces Cerevisiae, that produces ethanal from ethanol.

• Acetic acid: this compound is the main volatile acid of wine. High concentrations
of it give off a vinegar odour and a disagreeable sensation in the mouth. Indeed,
volatile acidity is one of the most important analytical parameters in oenology. This
compound can be produced by yeast, but normally Saccharomyces Cerevisiae only
produce small quantities of acetic acid without problems during alcoholic fermen-
tation. However, in case of stuck and sluggish fermentations the production of this
acid can increase.

• Higher alcohols: normally their presence is below the limit of detection, but they
are the precursors of some esters, which have a large sensory impact.

• Esters: the first group (acetates of higher alcohols) gives off different odours, such as
rose (phenylethanol acetate), banana (isoamyl acetate) or glue (ethyl acetate). The
second group (esters of fatty acids and ethanol) is responsible of a fruity aroma.

• Succinic acid: it has significant effect on wine acidity. The yeasts also release into
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the wine several other acids such as lactic acid, fatty acids, isobutyric acids, etc. in
low concentrations.

2.4. Amarone della Valipolicella DOCG Wine

The Amarone wine is produced in Valpolicella, a region situated along the province of
Verona’s foothills. The official birth of Amarone wine dates back to 1936, in the wine
cellars of Villa Mosconi in Novare di Arbizzano, Negrar [1]. The Denominazione di Origine
(DOC) “Valpolicella” was created in 1968, both for Valpolicella Recioto (a sweet wine) and
Valpolicella Recioto Amarone (a dry wine), because Amarone was considered to be the
“child” of Recioto. The peculiarity of this kind of wine are the varieties used in the grape
juice, and the dehydration technique that is unusual for the classic winemaking process.

2.4.1. The Dehydration Techniques

Dehydration phase is a key factor in the Amarone production chain. This procedure
allows to develop the typical organoleptic characteristics of this wine [1]. The spaces
dedicated to this phase are big warehouses called Fruttai, see Figure 2.6. Here, the grapes
are stored in pallets so that water inside them can evaporate; dehydration ends when the
grapes have lost the 30-40% of their weight. This process lasts about 2 months. The
aim of this procedure is to increase the sugar and so the potential ethanol, influencing the
alcoholic fermentation and leading to a dry, full-bodied and complex wine. The controlled
dehydration systems used today are essentially made up of dehumidifiers and vents (Figure
2.7) working at ambient temperatures with important air changes. The humidity levels
are kept between 60% and 70%. This variable, together with temperature, plays a key
role in this procedure.

2.4.2. Vinification

At the end of the dehydration process, the sugar concentration has reached values around
280 � 300 g L�1 and an alcohol potential is close to 17%. The grapes are then crushed
and destemmed, eliminating clusters attacked by vulgar Botrytis (fungi).

After adding nutrient to the must (the importance of this inoculation is explained in
Section 2.2), fermentation can start: at this moment, the external temperature is very
low, the grapes may enter the tanks when temperature is around 0 °C. Now the choice
of yeast is extremely important, since the conditions are not favourable with this low
temperatures and high sugar levels. A good yeast for Amarone wine needs to be able
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to start fermentation at low temperatures, a high alcohol production (⇠18 °C) and a low
degradation of malic acid (which is normally present in small quantities).

Figure (2.6) Grape stored in pallets in Fruttaio. Figure (2.7) Vents to keep the desired temperature.

With this particular low-temperature vinification, there are two types of maceration: the
first, before the fermentation, is a cold maceration of crushed grapes and the second is the
maceration that takes place during the fermentation process. The process usually starts
8˘10 days after crushing and may last around 30 days. Then a second step consists of
the tumultuous fermentation, that goes from a 3–4% to a 13–14% alcohol content, and
it lasts 10˘15 days. Finally, the final phase takes place, the alcohol content goes from
14% to 17%. The latter is the most important phase, where heat can be applied and
that lasts 5� 7 days. The fermentation temperature should be between 22 °C and 26 °C.
In this project, fermentation temperature is kept at 24 °C, as it can be seen in Chapter
3. Finally, residual sugar (3-4 g L�1) can be found in the wine and the fermentation is
generally completed in barrels.
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2.4.3. Grape Varieties

Figure 2.7: Example of Corvinone variety grape, stored in Fruttaio.

The key factor for the grape variety choice is their ability to shrivel [1]. This characteristic
mainly depends on genetics and production techniques. The variety that may be found
in the grape blend for Amarone wine are listed below:

• Corvina: the most important variety of the grape blend for the production of Valpo-
licella wines. In fact, the new DOCG (Denominazione di Origine Controllata e

Garantita) rules accept a Corvina percentage between 40% and 80% (including the
Corvinone variety). It is a vigorous late-flowering variety, fairly cold hardy.

• Rondinella: this variety is cold hardy and drought-resistant. It is characterized by
a low sensitivity to fungal diseases. For this reason it is suitable for the dehydration
process. Rondinella can be used to between 5% and 30%, according to the new
DOCG rules.

• Corvinone: similar to Corvina, it is a different variety, the new DOC rules stated
that can form up to 50% of the grape blend. It is an ideal variety for dehydration
for its thick skin and juicy berries.

• Optional varieties: other red varieties, among those that are authorized and rec-
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ommended for the province of Verona, may be added to the blend with an overall
maximum of 15%, and 10% per single variety. For example Molinara, Croatina,
Merlot, Cabernet etc.

2.4.4. Sartori Amarone Winery

The process of industrial vinification begins with the unloading of the boxes of dried grapes
inside the collection tank, and then in the crusher-destemmer. On the newly obtained
grape must, the following must be added:

• 10 g hL�1 of potassium metabisulphite previously dissolved in water;

• 20 g hL�1 tannin having antioxidant action, previously soluble 1:10 in warm water.

The fermentation temperature, regulated by two external jackets containing refrigerant
glycol, is set to 4 °C, so as to leave the grapes crushed and destemmed in maceration for
about a month, avoiding the onset of undesired spontaneous fermentation. This period
of maceration allows further extraction from the skins of tannins and polyphenolic com-
pounds to further increase the dry extract of the finished wine. As already mentioned in
Section 3.7, in this phase the mass stratifies and remains uneven: this behavior makes
the vinification at industrial scale very different from those dealt with in Chapter 3. It
is important to note that any analysis of the total sugar content, and therefore potential
ethanol, can be considered reliable from 4-5% alcol content, since at this stage the carbon
dioxide produced allows the mixing of the total mass.

At the end of the maceration phase, the glycol temperature is set to 20 °C to heat the
pressed and avoid thermal shock to the yeast, which after a few days is rehydrated ac-
cording to internal protocol. To the total mass one adds:

• 20 g hL�1 of yeast specific to Amarone, tolerant to high concentrations of ethanol
and able to express the maximum sensory potential of grapes;

• 4 g hL�1 of specific activator for rehydration and start fermentation;

• 20 g hL�1 of an amino-acid-nitrogen-based complex activator (nutrition) to feed the
yeasts and avoid situations of reducing stress.

To the rehydrating yeast a quantity of must is gradually added such as to bring the pied

de cuve (fermentation starter) to a quantity of about 10% of the total mass. In this
way the yeast settles in its final growth environment and does not suffer stress when it
is inoculated in the fermenter. Now, the fermentation phase begins. At this point two
daily air-exposed pump-overs take place. At the first pump-over, 10 g hL�1 of tannin is
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added. The glycol temperature is set to 15 °C to obtain a fermentation temperature of
approximately 25 °C. Then:

• At about 6% alcohol, 20 g hL�1 of ammonium-based nitrogen activator is added;

• At about 12% alcohol, 20 g hL�1 of specific activator is added. This helps the yeast
to complete the fermentation in the final stage, more critical both from the point
of view of ethanol, and from the point of view of the presence of toxic substances
produced by the yeast in firming.

Finally, when the total quantity of sugar is reduced to (3-4 g L�1), the wine is separated
from the pomace and it is decanted into steel tanks where the long refinement phase
begins.
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3| Instrumentation, Data
Collection and Analysis

3.1. Introduction to the Experimental Setup and to
Data Collection

As discussed in Chapter 2, a massive number of elements play a role in the alcoholic
fermentation process. In fact, as more formally described in Chapter 4, the dynamics of
the fermentation phase can depend on multiple factors that influence the transformation
of sugar in ethanol. For example, a faster production of alcohol in the grape must may
depend on the type of used yeast, but also on the quantity of yeast assimilable nitrogen
(YAN).

To study a similar process we need a large amount of experiments, trials and data. For
these reasons, a structured method for data collection, based on a massive numbers of
solid experiments, is needed.

A suitable experimental campaign has therefore been designed to examine a huge vari-
ability of operational conditions. Ten grape suppliers of Sartori winery were considered
in order to explore as many different grape condition as possible. In fact, in the different
vineyards, fruit conditions might be considerably different depending on various factors,
such as terrain type, slope or sun exposure.

We decided to withdraw grapes in four different periods during the dehydration phase,
starting from the last days of September until the middle of December. The sample times
were equally distributed in this period, spaced nearly twenty days each. Moreover, we
identified a fifth period for the withdraw of the industrial must samples.

Furthermore, we will study the fermentation at different scales, spanning from 350mL

(nanovinification), to 9L (microvinification) to the industrial one, at the Sartori winery,
of 150 hL. The data provided by the latter will not be used for this thesis purposes (for the
reasons explained in Section 3.7), but will be useful for future works. Table 3.1 collects
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the names of the different types of fermentation experiments that we carried out.

Name Quantity Location

Nanovinification 350mL Ever - Italiana Biotecnologie

Microvinification 9L Ever - Italiana Biotecnologie

Ind.Vinification 150 hL Sartori winery

Table 3.1: Processes of vinification and relative quantities and locations.

3.2. Instrumentation

3.2.1. Nanovinification Equipment

The nanovinification experiment allows for the evaluation of the fermentation kinetics and,
in particular, of the evolution of the alcohol content. They were carried out using the
ANKOMRF

Gas Production System. This system uses of bottles with a capacity of 500mL

closed with caps (RF1 modules) equipped with sensors that, at regular intervals (every
30 minutes), detect the pressure inside the bottle, as a consequence of the production of
CO2. The ANKOMRF system records the pressure of the produced gas at regular basis
until the end of fermentation. The increase in pressure is used to indirectly determine the
alcohol content in the must. The relative production of alcohol content is calculated using
the equation of the line y = 5.2173x � 0.1442 where x is the cumulative pressure value.
This equation correlates pressure and produced ethanol (with a correlation coefficient
R2 = 0.9828) and has been derived from the analysis of data obtained from a pool of
more than three hundred experiments carried out by the Ever - Italiana Biotecnologie

company, see Figure 3.1.

Figure 3.1: Correlation graph relating alcohol content and developed pressure.
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The main advantage of the nanovinification experiments is availability of the measuring
system. Since the pressure measurement is automatically collected every thirty minutes,
the ethanol kinetic measurement is much more accurate with respect to the one obtained
in the microvinification system (where the alcohol content is manually measured, and the
number of data is considerably lower, see Section 3.5.2) or the methodology consisting of
measuring the weight loss in the flask.

The bottles are placed in incubators equipped with agitators and with the possibility of
setting the desired temperature. Considering the reduced bottle volume, the time that
must needs to reach the desired temperature is of the order of a few minutes. In this
case, using this particular equipment, it is not possible to withdraw samples during the
fermentation. In fact, if the cap gets opened, the pressure measurement is compromised.

Figure 3.2: Bottles ready to start the fermentation with ANKOMRF caps.

3.2.2. Microvinification Equipment

The device shown in Figure 3.3 is called jar and is used for the microvinification process.
It consists of a glass tank with capacity 13 liters where alcoholic fermentation takes place.

A heating/cooling system is also present. The latter is composed of an outer jacket
surrounding the jar, in which water flows at approximately 10 °C. The presence of a
resistor that heats the water before entering the jacket ensures that the must can also
be heated up. The system has a temperature sensor and a monitor interface thanks to
which a set-point can be imposed, so that the temperature can be kept constant at the
desired value. An agitation system is also present, composed of a rotor that emulates the
movements in industrial fermentation tanks. Importantly, it is possible to collect samples
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of fermented must from which the percentage of produced alcohol and other features of
interest can be measured (Figure 3.3, right panel). In this case, the measurements are
done manually; therefore, the sample frequency can be chosen at will. In this work we
have collected one sample per day. Only the alcohol content was measured in this work.

Figure 3.3: The jar for the microvinification, with the pipe and valve to withdraw
samples.

3.2.3. Analysis Instruments

Besides the fermentation kinetics, other data concerning the initial and final composition
of the must and wine were needed in order to set up the identification and optimization
problems. In particular, we collected the measurements of initial sugar, yeast assimilable
nitrogen, and final sugar concentrations. The samples of must, new wine in fermenta-
tion and finished wine, collected in the various stages of the experimental process, were
subject to analysis from two different laboratories: Vassanelli Lab and Ever - Italiana

Biotecnologie. Both laboratories are project partners: the former is a control laboratory
responsible for commercial compliance and food safety analysis; the latter is a biotechno-
logical research laboratory that hosted our experimentation. The analytical methodology
used by the two laboratories to determine YAN values is different:

• Ever - Italiana Biotecnologie uses the HPLC (High-performance liquid chromato-
graph) technique for sugars, and an UPLC - MS/MS (Ultra-high performance liquid
chromatography tandem mass Spectrometry) for the determination of the amino
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acids from which the YAN value is directly derived.

• Vassanelli Lab uses the FOSS multiparameter analysis tool that provides both sugar
and yeast assimilable nitrogen values. The analytical technique principle is the
FTIR (Fourier Transform Infrared spectroscopy). The YAN content is measured by
comparison with a database of enzymatic YAN values (as the sum of ammoniacal
and amino nitrogen) and the value obtained on the sample.

The YAN values obtained by these methodologies are considerably different. For instance,
in Table 3.2 the differences in the musts used for nanovinification 4 are shown.

Supplier UPLC/MS-MS FOSS

Mol 136 200
Nic 165 210
Dor 123 200
Sar 150 210
Fed 128 187
Tap 136 196
Cas 158 194
Bon 109 162
Rig 107 152
Mar 108 135

Table 3.2: Comparison between the YAN measuraments using UPLC - MS/MS and
FOSS in the musts of the fourth period experiments. The unit of measure is [mgL�1].

The UPLC technique allow to obtain more reliable data. Despite this, the YAN value
obtained with FOSS was chosen for convenience. In fact, the costs, the times of analysis,
and the availability of tools or internal competences are not compatible with the industrial
practice. The two analytical techniques (FTIR and UPLC) also allow to measure the
value of sugar concentration. Since they both are extremely reliable, we opted for those
of Vassanelli Lab.

The FTIR technique also allow to measure the value of alcohol content. Ever - Italiana

Biotecnologie, instead, employs an Alcolyzer Wine M (Anton Paar), which uses the NIR
technique (Near Infrared spectroscopy). Because of the reliability of the methods, the
comparability of data, the availability of both instruments in wineries, and the similarity
of costs, we opted for the alcoholic content measurements obtained by Ever - Italiana

Biotecnologie laboratory.
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From these two laboratories, a number of further analytical parameters were obtained.
However, the latter are not used in this thesis. Nevertheless, they give an important
contribution to the project (see Chapter 1) and will certainly be used in future studies.

3.3. Sampling Plan

In this section the sampling plan is briefly described.
We have identified two types of samples: grape must and industrial must. The former is
collected during the drying phase, while the latter immediately before the Sartori winery
fermentation, see Section 2.4.4. The industrial must sample is the result of the grape
pressing. The sampling plan follows the following guidelines:

• Sampling periods - To study the evolution of the grapes during the whole drying
phase until the vinification, five instants were identified:

– Period 1: beginning of the drying phase;

– Period 2: 1
3 of the drying phase;

– Period 3: 2
3 of the drying phase;

– Period 4: end of the drying phase;

– Period 5: beginning of the industrial fermentation phase.

The time period between each sampling instant and the following one is about
twenty days, as detailed in Table 3.3.

• Variety of grapes - As already mentioned in Chapter 2, Amarone wine is produced
with a blend defined according to its production disciplinary. Therefore, each sample
of grapes was taken respecting the prescribed proportions of grape variety: 60%
Corvina, 20% Corvinone, 15% Rondinella and 5% minor varieties.

• Suppliers selection - Ten grape suppliers were selected, they are labelled as fol-
lows: “Bon”, “Cas”, “Dor”, “Fed”, “Mar”, “Mol”, “Nic”, “Rig”, “Sar”, “Tap”.

• Sample quantity - The amount of must needed for experiments and analyses
is approximately 2L. However, during the drying phase the grapes go through a
process of dehydration and the weight decreases. In fact, to obtain 2L of must,
from 5 kg to 10 kg of grapes (depending on the dehydration level) are necessary.

Table 3.3 presents the samples collected and the weight loss data of the Sartori winery
during the whole drying phase.
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Period Date Dehydration days Sample Sample size Weight Loss
1 24/09/2021 0 Grape 5 kg 0%
2 18/10/2021 24 Grape 7.5 kg 15%
3 15/11/2021 52 Grape 8.5 kg 27%
4 15/12/2021 82 Grape 10 kg 33%
5 13/01/2022 - Must 50L -

Table 3.3: Sampling phases for the experimental databank, weight loss measure is
provided by Sartori.

3.4. Preparation of the Must

In this section the process that grapes and industrial must undergo before being vinified
is described. We decided to adhere as much as possible to the vinification protocol of
Sartori winery (see Section 2.4.4). These processes were conducted separately on each
sample.

Concerning each grape sample, once collected and brought to the Ever - Italiana Biotec-

nologie laboratory, the grapes are manually destemmed (fruit and branches are separated)
and pressed with an hydraulic press (see Figure 3.4), to obtain approximately 2 liters of
must.

Figure 3.4: Hydraulic press used to obtain the must (left), must in agitation with
nutrition added (right).
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Then the laboratory maceration phase, which aims to emulate the one that is conducted
in the winery, takes place: a quantity of the pomace equal to roughly half of the must
volume is added to the liquid. Then, 80mg L�1 of Potassium Metabisulfite is added to
avoid wine oxidation. The mixture is then kept in a cold room at 3 °C for about a week. In
this phase, the red grape pomace adds flavors and color to the must (see Chapter 2). After
these days, the maceration mixture is filtered to separate the liquid from the solid part.
The latter is removed, and the must passes to the next stage of fermentation. The mass is
heated until reaching a temperature of 15 °C and 20 g hL�1 of amino-acid-nitrogen-based
complex activator (nutrition) are added. At this moment, 20 g hL�1 of hydrated yeast are
inoculated, and the fermentation starts.

Concerning the industrial must sample, it consists of only the liquid part without pomace.
The latter is first collected and brought to the Ever - Italiana Biotecnologie laboratory
and then it is treated in the same way as the must after the laboratory maceration phase
described above.

3.5. Experiments

Figure 3.5: Scheme presenting the samples type, correlated with the performed
experiments, the numbers after nanovinification correspond to the sampling periods.
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3.5.1. Nanovinification

Figure 3.6: Bottles for nanovinification
ready to start the fermentation.

As shown in Figure 3.5, the grape samples
are used in nanovinification experiments.
To avoid lack of data due to technical
or other problems during fermentation, it
was decided to run each experiment in du-
plicate. Therefore, for each sample, four
nanovinification bottles were set up. Each
of these bottles were filled with 350 ml of
must: two of them were inoculated with
the Inverno 1936 yeast and two with the
Vulcano one. Finally, the temperature of
the incubators was set to 24 °C, as in the
Sartori winery.

Since four periods of nanovinifications
(corresponding to the nanovinifications
1,2,3,4 in Figure 3.5) are taken into ac-
count (i.e., four drying phases) and since

we have used ten grape suppliers, the number samples is in total 160.
As far as the industrial must sample is concerned, it was decided to set up five nanovinif-
cations for each type of yeast, resulting in ten experiments (nanovinifications 5 in Figure
3.5). As already mentioned in Chapter 1, only the data coming from experiments with
Inverno 1936 yeast will be considered in this thesis.

Figure 3.7: Wine after nanovinification (left) and Wine samples (right).
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3.5.2. Microvinification

Figure 3.8: Microvinification jar.

Only industrial must was used for these tests,
as shown in Figure 3.5. Two types of experi-
ments were conducted.
The first consists of a vinification at a constant
temperature of 24 °C, as for nanovinification
and, consequently, vinification in Sartori win-
ery. The two types of yeast were used, one per
jar.

The second experiment consists of a vinifica-
tion at variable temperature. This vinification
was used for the optimization study described
in Section 6.2. The fermentation was run in
duplicate: the same temperature profile and
the same yeast (Inverno 1936 ) were used for
both jars. For both experiments, each jar was
filled with 9 litres of must.

3.6. Data Adjustment

The data concerning the evolution of the concentration of ethanol (i.e. the fermentation
kinetics), produced by the nanovinifications and microvinifications have been provided.
Then, data adjustment procedures have been performed in order to make them suitable
for the identification and optimization software.

Regarding the nanovinifications in bottle, the operations are listed here.

• The ANKOMRF software detects the measurement every thirty minutes. To reduce
the computational load, we decided to increase the sampling interval to two hours
without loss of generality.

• We performed an ethanol measurement conversion from E[%] to E[g L�1] to make
it suitable for the considered model. As discussed, the conversion formula is:
E[g L�1] = E[%] · 10 · ⇢, where ⇢ = 0.789 g cm�3 is the ethanol density.

• Since the considered model (see Section 4.4.7) does not take into account the lag
phase [19], it was decided to remove all ethanol data below 2 g L�1 [17].

• As already mentioned, every experiment has been done in duplicate. For each grape
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supplier and for each period, instead of considering two separate fermentations, was
decided to compute an average between the data collected during the two experi-
ments. Since the ethanol mean error between the duplicates was on the order of
maximum 1.68 g L�1, we assumed that there was no loss of generality in doing so.
In Figures 3.9 and 3.10 the two experiments that have the maximum and minimum
mean error, respectively, are shown. “Bon” and “Fed” are the name abbreviations of
two of the the grape suppliers of Sartori winery.

• For the sake of identification and optimization, it was necessary to find the time
instant in which the fermentation ends for each experiment. We have assumed
that the fermentation can be considered terminated if the rate at which ethanol is
produced is smaller than 0.05 g L�1 h�1.

For what concerns microvinifications in jars, no data adjustments were necessary.

Figure 3.9: Experiments with the highest mean error equal to 1.68 g L�1.
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Figure 3.10: Experiments with the lowest mean error equal to 0.0036 g L�1.

3.7. Limitations of Small-Scale Vinifications

Most studies [17] on the kinetic parameters of wine fermentation have been performed
at laboratory scale. However, the hydrodynamics of reactions in small fermenters change
considerably with respect to those in large tanks (containing up to several hundred hec-
tolitres of wine). In addition, considering non-isothermal fermentation, the laboratory
facilities do not permit comparison with industrial vinifications.

In red winemaking, maceration represents the major problem and, on small scale, indus-
trial conditions cannot be perfectly replicated. The hydrodynamic conditions in tradi-
tional red winemaking fermentation systems are highly specific and cannot be simulated
in an adequate manner in laboratory fermentors. Therefore, the conditions should be
studied with tank volumes of at least 100L [16]. During vinification, the pomaces rise
to the surface to form a cap, which becomes compact over time. This cap is only partly
immmersed (approximately half). The upper part of the cap is highly heterogeneous in
terms of both temperature (Schmid et al. [20]) and yeast concentration. Pumping over
(or cap punching) is usually carried out to homogenize the substances in the tank. In
studies of changes in CO2 production rate in such fermentation conditions at 100L scale,
Aguera et al. [2], observed cap formation and the effect of cap punching on fermentation
kinetics. They experienced a highly significant boost in CO2 production rates after cap
punching. This increase was nearly immediate, continuing over several hours, and it was
higher when pumping over was carried out during the stationary phase. Cell population
measurements indicated that this kinetics acceleration was mostly attributable to a trans-
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fer of yeasts from the cap to the liquid phase, increasing the size of the cell population in
the liquid (by more than 50%).

Figure 3.11: Choice of the fermentation scale and equipment required for answering
different research questions, Figure from [16].

Mouret et al. [16] summarizes in the scheme shown in Figure 3.11 which experimental
setup is needed to be organized to best answer different research questions. For what
concerns the study carried out in our thesis, it can be noted that the fermentation kinetics
can be an object of study at all scales. Fermentation control, instead, is only feasible with
fermenters from 1L to 100L. Here, again, 100L scale is especially appropriate for red
wine fermentation [16]. Other studies objectives not treated here (for example study of
yeast metabolism or sensorial analysis), can be observed.

What can be found in this scheme matches with the experiments that we have carried
out. In fact, the nanovinification system in 0.350L bottles was very effective and useful
to study the kinetics of the various fermentations, as can be seen the following sections.
Moreover, thanks to the 9L microvinification system, in addition to the study of fermen-
tative kinetics, it was possible to complete a optimization study on the of the vinification
process, as can be observed in Chapter 6.2. However, for the reasons mentioned above,
these fermentation systems are still small-scale and, therefore, it was not possible to com-
pare them with the red wine fermentation process performed by the winery.
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3.8. Experimental Results and Analysis

The results of the vinification experiments and the analyses on the collected samples are
briefly collected in this section.
As discussed, for each available sample, we could measure the initial condition of sugar
and the yeast assimilable nitrogen, the final ethanol concentration, and the fermentation
time.

As explained in the previous sections, the experiments carried out are: nanovinifications 1-
4 (with pressed grapes, divided in four periods), nanovinifications 5 (with industrial must),
and microvinifications (with industrial must). Figures 3.12-3.15 and Tables 3.4-3.7 present
the ethanol kinetics during the nanovinification phase together with the measurements of
interests. Moreover, Figures 3.17, 3.18 and Table 3.8 show the same analysis and kinetics
related to the industrial must.

3.8.1. Grape Sample Experiments

Nanovinifications 1
The must collected during the drying period 1 is characterized by low value of sugar and
yeast assimilable nitrogen for all suppliers. For what concerns the kinetics in Figure 3.12,
we can appreciate good fermentative performance for almost all the ten experiments, with
a small loss in fermentation rate in only three of them. This issue might depend on the low
ratio R = YAN0/S0. Specifically, the ratio R gives information about the initial quantity
of YAN related to the initial sugar. The latter has shown, in this experiments, to affect
significantly the fermentation kinetics: in fact, when R takes values smaller than a certain
value, we could observe lower fermentation rates (consequently, higher tf ). However, we
cannot directly correlate the fermentation rate with this ratio. In fact, comparing the
data labelled “Nic” and “Rig” (from Table 3.4), that display a similar value of R, we
can notice that in the experiment with lower sugar, the fermentation rate is significantly
higher (0.772 g L�1 h�1 for “Rig” and 0.534 g L�1 h�1 for “Nic”).
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Figure 3.12: Kinetics nanovinifications - Period 1.

Supplier S0 YAN0 R Eend tf

name g/L mg/L ·103 % d

Bon 197,1 84 0,43 11.97 5.58
Cas 217,7 35 0,16 13.74 8.95
Dor 190,6 64 0,34 11.65 5.66
Fed 209 111 0,53 12.74 5.16
Mar 176,4 91 0,52 10.60 4.41
Mol 220,7 77 0,35 13.68 7.70
Nic 213,2 46 0,22 13.11 9.45
Rig 163,2 37 0,23 9.81 5.41
Sar 202,9 121 0,60 12.22 4.91
Tap 196,2 56 0,29 12.03 6.91

Table 3.4: Analyses for the first period of dehydration.
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Nanovinifications 2
In these experiments, fermentation problems have been detected in four experiments only
(labelled as “Bon”, “Nic”, “Mol” and “Dor”). Interestingly, the latter are the experiments
where the must displays the lower ratio R. Comparing “Dor” and “Bon”, even if the ratio
R and the YAN of the former are lower, the second one displays much slower fermentation
kinetics. This could be due to the fact that, under a certain value of sugar, acceptable
performances can be achieved even with low values of YAN.

Figure 3.13: Kinetics nanovinifications - Period 2

Supplier S0 YAN0 R Eend tf

name g/L mg/L ·103 % d

Bon 265,4 61 0,23 15.87 27.08
Cas 253,8 118 0,46 16.18 9.54
Dor 215,3 38 0,18 13.72 11.79
Fed 244,1 116 0,48 15.70 7.41
Mar 188,6 86 0,46 11.82 5.58
Mol 253 57 0,23 16.55 18.70
Nic 293,2 103 0,35 17.91 26.66
Rig 215,3 81 0,38 13.76 7.50
Sar 244,8 96 0,39 15.60 10.04
Tap 237,1 96 0,40 15.30 8.62

Table 3.5: Analyses for the second period of dehydration.
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Nanovinifications 3
In these experiments, we can observe very good fermentative performance and great simi-
larity between the results. The initial conditions, after more that fifty days of dehydration,
are close to the ones in winery. In fact, the sugar values increase and the YAN values
are acceptable (in large scale vinification the YAN value is often corrected to reach values
around 150 � 180mg L�1 [17]. Here we can highlight the highest value of R for “Fed”;
despite the medium-high initial sugar concentration, its fermentation ends in a very short
time.

Figure 3.14: Kinetics nanovinifications - Period 3

Supplier S0 YAN0 R Eend tf

name g/L mg/L ·103 % d

Bon 251,6 170 0,68 15.50 7.25
Cas 271,4 173 0,64 16.94 10.79
Dor 278,4 210 0,75 17.32 9.45
Fed 266,4 250 0,94 16.33 6.75
Mar 269,4 138 0,51 16.85 12.37
Mol 259,9 176 0,68 16.14 7.87
Nic 262,1 149 0,57 16.29 10.54
Rig 273,6 184 0,67 17.11 9.70
Sar 251,4 127 0,51 15.79 9.45
Tap 230,3 85 0,37 14.27 7.95

Table 3.6: Analyses for the third period of dehydration.
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Nanovinifications 4
The conditions of the must in these experiments are actually the ones detected in winery:
we can appreciate the large values of the ratio R and the sugar S0. In view of this, the
musts undergo efficient fermentations, except for “Mar”: specifically, its fermentation rate
(together with tf ) is slightly larger than in the other cases, i.e. R = 0.47 and S0 is also
high.

Figure 3.15: Kinetics nanovinifications - Period 4.

Supplier S0 YAN0 R Eend tf

name g/L mg/L ·103 % d

Bon 279,3 162 0,58 17.19 12.29
Cas 278,5 194 0,70 17.14 10.12
Dor 258,6 200 0,77 15.84 12.04
Fed 259,8 187 0,72 15.89 8.12
Mar 285,9 135 0,47 17.59 13.54
Mol 255,4 200 0,78 15.69 7.33
Nic 269 210 0,78 16.38 8.29
Rig 267,6 152 0,57 16.80 12.37
Sar 272,3 210 0,77 16.57 8.54
Tap 276,3 196 0,71 17.03 10.45

Table 3.7: Analyses for the fourth period of dehydration.
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Final Comments on Nanovinifications 1-4
The data related to these nanovinifications are characterized by extreme variability. Note
that the sugar and yeast assimilable nitrogen trends are not always increasing with respect
to the time spent in the deyhdration phase, as shown in Figure 3.16.

Figure 3.16: Sugar and YAN trends over the four periods.

This is due to the fact that the sampling plan occurred during the conferral, which was
one-month long, and it was not possible to have control of the pallets from which grapes
were sampled. Moreover, it was not possible to supervise the whole sample collection from
the vintage phase. In view of this, it can be assumed that the samples were not completely
consistent. This could be a problem for the study of the drying phase trends, but it is
not an issue for the objectives of the thesis. Indeed, the evolution of the parameters
during the drying phase has not been studied. On the contrary, the variety of the initial
conditions has great importance and, as can be seen in Tables 3.4-3.7, the sugar and yeast
assimilable nitrogen values are sufficiently variable.
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3.8.2. Must Sample Experiments

Nanovinifications 5
In this section the results of the nanovinification experiments with the industrial must
are presented, see Table 3.8. As we can see in Figure 3.17, fermentation times are con-
siderably larger than in nanovinifications 1-4. This depends on the fact that the ratio
R is low: while the value of sugar is by far the highest (330 g L�1), the initial YAN con-
centration is 104mg L�1, that is one of the lowest value of our analyses. However, the
initial value of sugar may be subject to a relevant measurement inaccuracy due to possi-
ble non-homogeneity of the sampled liquid. The value of S0 should be around 308 g L�1,
according to the Sartori winery measurement.

The nanovinifications 5 experiments can be surely considered as characterized by stuck
fermentation (see Section 2.2). In fact, the kinetics proceeded very slowly. Moreover, the
fermentation rate is basically equal to zero after twenty days, but the final concentration
of sugar is above 30 g L�1. This means that the sugar is not exhausted, the production of
ethanol is not finished, and there is no yeast activity that can complete the fermentative
process.
Note that values of Send in the previous experiments (nanovinifications 1-4) are not re-
ported because all the sugars were consumed by fermentation.

S0 YAN0 R

g/L mg/L ·103

330 104 0.32

Exp n° Eend Send tf

- % g/L d

1 18.11 34,6 19.95
2 17.59 40,7 20.70
3 17.96 37,5 19.79
4 17.88 39 20.70
5 18.25 32,9 20.79

Table 3.8: Analyses of the industrial must, used for nanovinification 5 and
microvinification (left). Analyses of the wine obtained from nanovinification 5 (right).
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Figure 3.17: Kinetics nanovinifications - Period 5, with industrial must.

Microvinifications
In Figure 3.18 we depict the comparison between the kinetics of the experiments carried
out using the industrial must, i.e., nanovinifications 5 and microvinification. Note that
the two different systems behave in the same way. This is an important result in the
perspective outlined by the system project. In fact, as also confirmed by the partner Ever

- Italiana Biotecnologie, the two processes are comparable. This correspondence has been
useful for some considerations done in the optimization study (presented in Section 6.2.1).

Also in this case, the fermentation is stuck: the final value of sugar concentration is
37.19 g L�1, and the same considerations done for the nanovinification 5 must be done.
In fact, applying the formula for the conversion from initial sugar to potential ethanol
(Epot = 0.057 · S0), we can conclude that 2.1% (corresponding to 16.72 g L�1) of alcohol
is not developed.

Figure 3.18: Comparison between the nanovinifications 5 (dotted lines) and the
microvinification experiment (continuous line).
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3.9. Analysis and Validation of Fermentative Perfor-
mances

Some fermentation kinetics performance indicators are used in the winery in order to
evaluate the progress of the fermentation and to intervene if necessary. Acceptability
ranges are important to make decisions and to take actions in order to avoid, for example,
stuck or sluggish fermentations. The performance indicators are:

• Maximum fermentation rate dE

dt max
;

• Time required to reach the maximum fermentation rate tmr;

• Ethanol produced at the maximum fermentation rate E(tmr);

• Latency time tlag;

• Ethanol produced at the end of the lag phase E(tlag);

• Duration of the stationary phase ts.

These indicators are calculated from the ethanol curve. In particular, the maximum
fermentation rate corresponds to the maximum slope of the tangent to the curve and is
obtained by calculating the maximum value of the ethanol derivative over time. On the
other hand, the intersection between the tangent and the time axis identifies the latency
time. Finally, the duration of the stationary phase corresponds to the time elapsing
between the instant when the curve reaches the maximum rate of fermentation and the
moment when all the sugar is consumed (i.e., when the ethanol reaches its maximum
value).

According to the data base of the Ever - Italiana Biotecnologie laboratory, the data
obtained in nanovinification 4 (see Table 3.9) are in line with the industrial ones. For our
case study, fermentation time intervals between 9 and 13 days are aligned with those of
the Sartori industrial vinification (fermentation time of 15 days).

tlag E(tlag)
dE

dt max
tmr E(tmr) ts

d g L�1 g L�1 h�1 d g L�1 d

0.9043 2.7137 1.3280 1.2816 11.8679 9.6117

Table 3.9: Performance indices mean values of the fourth period experiments.
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Figure 3.19: Example of latency time identification, highlighting the steepest tangent
intersection with the x-axis.

Figure 3.20: Example of lag and stationary phases identification. The maximum
fermentation rate is highlighted.
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4.1. Introduction to Batch Processes

The term batch process is used to refer generically to both batch, where all the ingredients
are fed at the beginning of the operation, and fed-batch ones, in which material can be
added during the process [4]. In a batch process, only air/gas exchange, anti-foam or pH
controlling agents can be added or removed. Winemaking processes, at industrial scale,
are a fed-batch ones. In this project the analyzed models have been tested and validated
with batch processes data.

Despite batch processes are simple to set up and operate, it is quite challenging to model,
monitor, and control them. They are characterized by time-varying dynamics by complex,
nonlinear physiological phenomena that are difficult to model. For these reasons, moni-
toring process modelling, variables trajectories definition, quality assessment and product
safety are challenging. Models referring to this kind of processes can be classified into two
groups [4]:

• First-principles (fundamental) models, that are based on fundamental physical laws,
such as the conservation of mass, energy and momentum. The importance of this
kind of models is that they relate key features, providing analytical expressions for
the dynamic behavior of the physical system.

• Data-based (empirical, black box) models, that provide relationships between mea-
sured inputs and outputs describing how the system responds to different inputs.
In this case the model development is much faster than first principles models, but
less accurate, robust and general.

For this project many models have been analyzed, all first-principles ones. In the literature
there are some attempts to develop data-based models of wine fermentation, but they are
not very reliable. In fact, they are not validated in a sufficiently accurate way.
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4.2. State of Art and Main Assumptions

Over the years, advances in research in many scientific fields, such as chemical process
engineering, have revolutionized the understanding of the fermentation process in general,
including also the winemaking process. According to the review edited by Miller et al.
[13], there are three phenomena that require to be modelled:

• Well-mixed fermentation kinetics;

• Heat and mass transfer in heterogeneous wine fermenters;

• Phenolic extraction during wine fermentation.

The first one studies the growth of wine yeast (in most cases the latter consist of Saccha-

romyces Cerevisiae), the consumption of sugars and other nutrients, ethanol production,
heat generation, and the increase of primary and secondary byproducts during fermen-
tation [13]. The second one examines the differences between industrial and well-mixed
fermentation in terms of creation of temperature gradients, which can be detected espe-
cially at large scale. The third one deals with phenolic extraction, that is what gives red
wine its distinct color and mouthfeel: the latter is strongly dependent on temperature,
ethanol concentration, and fermentation conditions. To gain a physical understanding
of the process (which is necessary to optimize it under both the sustainability and the
quality perspectives), an accurate quantitative modelling of these three phenomena is
required. However, only the first category will be taken into account in this thesis for
reasons concerning instrumentation limitations.

A well-mixed system is a system where all fluids whitin the fermentor are homogeneous.
To verify this assumption, Vlassides and Block [23] measured the stratification of solids
and yeast in white wine fermentation at pilot scale (1200 L) in the absence of any external
agitation. When the yeast is properly hydrated, they have found that, although the system
is initially heterogeneous, as yeast proliferated and fermentation proceeded, the fermentor
eventually behaved as a well-mixed system. Schwinn et al. [21] also addressed this
question. In the latter work, a similar experiment at multiple scale (105, 2500 and 7000 L)
has been performed without agitation. The system displayed an heterogeneous behaviour
until the fourth day at the 7000-liter scale, after which it could be considered as well-
mixed. Lastly, measuring the temperature, sugar and ethanol concentration at different
heights of the fermentor, Malherbe [10] found no heterogeneity in tanks of dimension up
to 11.000 L in white wine fermentation. In view of these results, it can be assumed that a
system can be considered well-mixed if its volume is smaller than 10.000 L. Unfortunately,
this assumption applies only to white wine fermentation. As far as red fermentation is
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concerned, due to the inclusion of pomace in the must, at essentially any scale the system
exhibits a non-well-mixed behavior. During the process, substantial temperature gradients
are produced and, even though pump overs and punch downs are effective at eliminating
them, they rapidly reform in hours (Schmid et al [20]).

In the literature, different studies can be found on red wine fermentation modelling at
industrial scale. The work of Zenteno et al. [25] provides a first attempt to quantify
the evolution of temperature gradients. Also, Miller et al. [12, 14, 15] derives a higher
fidelity spatial fermentation model utilizing computational fluid dynamics and finite ele-
ment analysis to generate spatial and temporal reactor engineering predictions. This work
was extended to include also some phenolic species extraction dynamics: this combined
comprehensive model allows for the prediction of phenolic concentration and concentra-
tion gradients over a wide range of winemaking conditions and grape parameters. The
major limitations of this model are two: it is computationally expensive, and it can
track few phenolic species in the limited range of temperatures of 25�-30�. Due to his
huge complexity and to his need for highly performance instrumentations, such as ad-
vanced computer processors and dedicated programs, it will not be treated in this thesis.
Consequently, the study of this thesis will end with the modellization of the laboratory
fermentation process.

The experiments that have been carried out could be cast as white wine vinification ones,
because the fermentor volumes available were too small to allow for the inclusion of grape
solids in order to simulate red wine vinification. Therefore, in the choice of the model
to be used, only well-mixed models were considered. In addition to adopting this well-
mixed assumption, these models treat yeast as an “unstructured” matter, ignoring the
biochemical machinations inside the cells. For this reason, the predictions obtained by
the models taken into consideration would be sufficient in most cases, but do not help
to understand the physiology of the yeast or the impact of fermentation in the central
metabolism. The work of all the considered authors, treats the cell as a “black box”,
consuming nutrients and releasing products into the extracellular environment. Models
of “structured” or “flux-based” kind have to manage the myriad of processes within the cell.
The aim of this thesis is to define a suitable model for the laboratory scale vinification.
This is the base for a wider study, that aims to manage also industrial vinification and
find a model that could be validated in real life winemaking conditions.
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4.3. Description of Fermentation Kinetics

This section describes the kinetics of alcoholic fermentation in winemaking conditions
[17], the main parameters that affect these kinetics, and the main elements that can be
controlled to improve fermentation and modify wine properties. In a standard fermenta-
tion, performed by a pure culture of Saccharomyces Cerevisiae at constant temperature,
three main phases are observed: lag, growth, and stationary phases, which are discussed
in the following sections.

Lag Phase
The lag phase is usually defined as the phase before “active fermentation”. This phase
corresponds to the progressive saturation of the medium in CO2. A yeast cell population
of approximately 107 cells/ml is reached by the end of this phase, corresponding to 2–3
generations. Here, less than 4 g L�1 of sugar is consumed and, at the same time 2 g L�1

of ethanol is produced [17].

Growth Phase
The growth phase, during which 20–40% of the sugar is consumed, lasts from the end of
the lag phase until the maximum cells population is reached. More specifically, at the
beginning of this phase, the yeast population increases exponentially, i.e., at a constant
specific growth rate.

Considering the measure of CO2, strongly linked to both the ethanol and sugar kinetics,
it can be observed that:

1. The maximum specific CO2 production rate is reached very soon, i.e., when the
sugar concentration has reduced by less than 10 g L�1.

2. The maximum CO2 production rate (dCO2
dt

)max is reached later but always before
the end of cell growth.

Usually, the growth phase ends when assimilable nitrogen in the must is exhausted. This
occurs when (dCO2/dt) is maximal [17].

Stationary Phase
The stationary phase starts when the yeast cells have reached the maximum population.
Most of the sugar (between 50 and 80%) is fermented during this phase thanks to the
yeast, whose population cells remain almost constant [17]. This feature is specific to the
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winemaking conditions. The fermentative activity of the yeast gradually decreases during
this phase, because various mechanisms that inhibit yeast growth and activity during this
phase. The main inhibitor is the presence of ethanol.

4.4. Model Comparison and Selection

Various models, with different levels of complexity, were considered for this study. In all
cases, the microbiological behavior of the cells was not analyzed, but only macro-variables
were taken into account. These variables are the main actors in the fermentation process.
They are ethanol, sugar, nitrogen, yeast, oxygen mainly. This section compares the
available models.

4.4.1. Introduction to Well Mixed Models

The thesis objective is to develop a model considering laboratory vinification. This choice
was due to the available equipment. As discussed in Chapter 2, the fermenters used to
create a database for the fermentation are either containers of reduced capacity consisting
of 0.5L bottles or 9L jars. For this reason, it was not possible simulate the vinifications
at industrial scale, performing a fermentation with the must in contact with the pomace.
This means that the models that were taken into account are well-mixed, so it is assumed
that there is homogeneity in the must. We studied the well-mixed models in the literature
and apply them to the fermentation laboratory tests.

Five models have been studied from different research groups and this section aims to
summarize them and to briefly illustrate the various approaches taken to describe such a
complex process. To distinguish the various models, they are addressed using the name
of their authors.
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4.4.2. Malherbe Model

Variables
S, N , X

Experiments
>100 tests, with:
S: 200-280 g L�1

N : 70-570 mgL�1

T : 18-30 °C
Focus

Accuracy of
the predictive

model

Malherbe et al. [10] described the main physiological dynamics
which constrain the yeast activity. This paper was the first to
consider the two main parameters limiting fermentation kinetics:
temperature (both in isothermal and anisothermal conditions) and
assimilable nitrogen (including additions at different moments of
fermentation). Its effectiveness with respect to experimental data,
tested in very different conditions, emphasizes the usefulness of
this model for describing the main physiological dynamics of the
fermentation kinetics. In fact, the model accurately predicts the
fermentation kinetics of more than 80% of a large (>100) number
of experiments performed with 20 wine yeast strains, 69 musts
and different fermentation conditions [10].

This is considered a highly reliable model in the literature. In fact,
other works (e.g., David & Dochain [7], see Section 4.4.5) rely on
[10]. The authors use this model to produce an experimental database, to identify their
models.
The model objective is to predict the glucose consumption speed and, at the same time,
the amount of produced ethanol (or CO2). Some variables are involved in this process:
temperature (varying within a predefined range) and yeast assimilable nitrogen (YAN),
which has a major effect on the yeast activity and whose concentration really depends
on must characteristics. Moreover, the effects of both initial nitrogen concentration and
added nitrogen have been investigated. It is known that the fermentation rate increases
with initial nitrogen concentration. Nitrogen affects both population growth and the
activity of the yeast (i.e., fermentation rate). For this reason it is necessary to model the
yeast growth and the average activity of a single yeast cell.

Equations
In this model the state variables S, N and X represent the sugar, yeast assimilable
nitrogen and yeast concentrations, respectively.

8
>>>><

>>>>:

Ṡ = �X(t) ⌫ST NST

Ṅ = �X(t) ⌫N

Ẋ = k1(T ) X(t) [1� X(t)

Xmax

]

(4.1a)

(4.1b)

(4.1c)
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The term:

⌫N =
k3(T ) N

N +KN +KNINE↵N
(4.2)

is a global estimation of the nitrogen transport and

⌫ST =
k2(T ) S

S +KS +KSISE↵S
(4.3)

represents the average activity of a single glucose transporter. The function NST repre-
sents the mean number of transporters in a yeast.

In the identification of the first equation of model (4.1a), it is impossible to discrimi-
nate the number of hexose transporters, NST , from the numerator, k2(T ), of the hexose
transport function, ⌫ST . Without loss of generality, Malherbe et al. [10] assumed that
a bilinear function would best model the function NST k2(T ). The model was obtained
by the least-squares estimation method for nonlinear regression models. In isothermal
condition the function NST k2(T ) takes the following form:

NST k2(T, t) = �a

Ni(t)

X(t)
+ �bT (t) + �c

Ni(t)

X(t)
T (t) + �d (4.4)

where

Ni(t) = N0 + �0[Nadd(t)�N(t)] (4.5)

Nadd is the amount of nitrogen added, �0 is a Boolean value, it is required only if nitrogen
is added.
In anisothermal condition and for the temperatures in the range 18-30 °C, NST k2(T ) is
identified as follows:

NST k2(T, t) = �1Tucd(t)Ni(t) + �2TNi(t) + �3T + �4Tucd + �5Ni(t) + �6 (4.6)

Considering the inclusion of the term k2(T ) in the function NST k2(T ), the Equation (4.3)
becomes:

⌫ST =
k̄2 S

S +KS +KSISE↵S
(4.7)
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where k̄2 is a “normalizing” parameter.

In the Equations (4.1) - (4.7), KS, KSI , KN , KNI , ↵S, ↵N are constant describing the
dynamics of the variables during the fermentation process and they can be identified
using experimental data. On the contrary �a, ...,�d and �1, ...,�6 are weights and have
no physical meaning. Finally, Tucd represents the temperature at which the growth phase
ends.

Pro & Cons

Pros Cons
Validated with a large and highly It does not “sufficiently incorporates T to

reliable database, in both allow prediction of stuck/sluggish
isothermal and anisothermal conditions fermentation” [5]

The behaviour of E is not modelled,
instead they are deducted by CO2

kinetic
“Not suitable for

control purposes” [7]

4.4.3. Scaglia Model

Variables
X, S, CO2

Experiments
Fleet 1993 [9]

Toro &
Vazquez 2003 [22]

Focus
Improve and adapt
fermentative model

of Syrah wine

The objective of the paper [18] is to implement a predictive con-
trol algorithm to monitor and control a wide variety of wine
fermentations. For example, some fermentations need to fol-
low a specific temperature profile in order to achieve particular
organoleptic properties. The model is first principles one, defined
to describe the fermentation of Syrah wine in a batch bioreactor
under controlled bench-scale laboratory conditions. The authors
modelled the fermentation process with a set of equations which
are based on the mass balances on cells, substrate as carbon
source, and ethanol.
The authors based their work on experimental data provided in
other two studies: Fleet [9] and Toro & Vazquez [22].
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Equations
The state variables are X, S, CO2 and P representing yeast and sugar concentrations,
produced carbon dioxide and accumulated pressure, respectively.

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

Ẋ =  (CO2) Aµm

S

S +KSBa
X

 
1� X

Aµm
S

(S+KSB
a)�

!

+ (1� (CO2))

✓
CX

dS

dt
�DX

◆

Ṡ =
1

YX/S

h
�X

⇣
µm

S

S+KSB
b � EX

⌘i � FX

˙CO2 = Gµm

S

S +KSBc
X +

d

dt
(Hµm ⌦(S)X + IX)

Ṗ =
1

YCO2/P

˙CO2

(4.8a)

(4.8b)

(4.8c)

(4.8d)

(4.8e)

In (4.8) we used the following functions:

 (CO2) =
e�CO2�CO2,95

eCO2�CO2,95 + e�CO2�CO2,95
(4.9)

⌦(S) =
S2

(S +KSBd)(S +KSBe)
(4.10)

Differently from the models presented in the other sections of this chapter, where the
fermentation kinetics are described by Michaëlis-Menten equations, here the yeast growth
is modeled with a variant of Verhulst logistic equation, i.e., a sigmoidal curve used to
describe biological processes (see Figure 4.1), and a Monod equation (a common approach
to describe enzymatic growth kinetics, see Figure 4.1).

The parameter µm is the maximum specific cellular growth rate and � represents the
Verlhurst’s equation coefficient. The first term of (4.8a) defines if the ongoing fermentation
cellular step corresponds to growth or death. The growth rate (4.11) is modeled by the
Monod kinetic.

µm

S

S +KSBa
(4.11)

where KS is the substrate saturation coefficient.
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Figure 4.1: Generic Verhulst logistic kinetics and equation, where N is the population, r
is the growth rate and K is the maximum population size (left). Comparison between
Monod and Haldane kinetics (right), in Section 4.4.6 further information can be found.

The death rate is modelled so as to be consistent with the experimental evidence that
the faster the decrease of substrate concentration, the larger the increase in the cellular
death rate, i.e.,

CX
dS

dt
�DX (4.12)

The parameters A,B, a, b, c, etc. are identification coefficient. YX/S is the rate of cells
formed per consumed substrate and YCO2/P is the rate of CO2 formed per produced
ethanol.

Pro & Cons

Pros Cons
Predict accurately the Nitrogen effect on fermentation

the fermentation evolution kinetics is not considered
Complexity of the equations is considerably

higher than the other models
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4.4.4. Coleman Model

Variables
X, XA, N , E, S
Experiments

several tests, with:
S: 265-300 g L�1

N : 80-330 mgL�1

T : 11-35 °C
Focus

managing stuck
and slugghish
fermentation

The Coleman model [5] incorporates a model previously devel-
oped by Cramer et al. [6] with one describing the behavior of
the system at varying temperatures. The aim of the author was
to develop a model that could predict the course and possible
problems of fermentation (sluggish and stuck) according to three
main elements: the temperature, the initial nitrogen, and the
sugar concentrations.

Equations
The state variables are X, XA, N , E, S representing yeast, active
yeast, YAN, ethanol, and sugar concentrations, respectively.

8
>>>>>>>>>>>><

>>>>>>>>>>>>:

Ẋ = µ(N, T ) XA

ẊA = µ(N, T ) XA � kd(E, T ) XA

Ṅ = �µ(N, T ) XA

YX/N

Ė = �(S, T ) XA

Ṡ = ��(S, T ) XA

YE/S

(4.13a)

(4.13b)

(4.13c)

(4.13d)

(4.13e)

where YX/N is the yield coefficient of the cell mass growth per mass of utilized nitrogen;
also, YE/S represent the yield coefficient of the produced ethanol per consumed sugar.

The Coleman model, togheter with the following ones, describes the fermentation kinetics
using Michaëlis-Menten kinetics, that is one of the most common approach to model
enzymatic processes kinetics.

Figure 4.2: Michaëlis–Menten kinetics, with generic equation: �̇ = Vmax

[S]
KM+[S] . Here, �

is the growth rate of the product, Vmax is the maximum rate, KM is the half saturation
(or Michaëlis-Menten) constant, [S] is substrate concentration.
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µ(N, T ) = µmax(T )
N

KN +N
(4.14)

�(S, T ) = �max(T )
S

KS + S
(4.15)

kd(E, T ) = k0
d
(T ) E (4.16)

Figure 4.3: Trends for growth rates
µmax(T ), k0

d
(T ), �max(T ) in

function of Temperature, Figure
from Coleman [5].

Equation (4.14) represents the mortality rate of
yeast cells. It can be appreciated how XA grows ex-
actly as X with the inclusion of a subtracting term
representing death of yeast cells. This is modeled
by k0

d
, a death or inactivation parameter, describ-

ing the sensitivity of the cells to ethanol.
The specific growth rates �(S, T ) and µ(N, T ) for
the sugar and nitrogen, respectively, are described
using the Michaëlis-Menten equation and �max(T )

and µmax(T ) are the maximum specific growth
rates, depending on temperature, and Ks, KN are
the half saturation constants for S and N respec-
tively.

µmax(T ) = µ1T + µ2 (4.17)

�max(T ) = �1T + �2 (4.18)

From Equations (4.13a) and (4.13b) it can be
noticed that a distinction between yeast concen-
tration and active yeast concentration is done.
Cramer et al. (11) evidenced that cells may not
be completely active in terms of growth, utilization
of sugar and nitrogen, and production of ethanol.
Thus, X will be the total concentration of yeast,
while XA is only the active one.
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Pro & Cons

Pros Cons
Validated in different initial Not validated in real

condition of T , N , S. winemaking conditions
Properly predicts also at extreme

temperatures (18 and 30 �)

4.4.5. David & Dochain First Model

Variables
X, N , E, S

Experiments
Malherbe [10]
experiments

Focus
Design control

action for
fermentation

The objective of the authors was to design control tools
to optimize the fermentation and at the same time ob-
tain a determined aromatic profile. Therefore, they de-
rived a mass-balance model based on a set of biological re-
actions that allow to describe the behavior of the batch
fermentation process. The authors developed two formula-
tions of the model. The first one [7] will be presented
in this section and describes the fermentation with variable
temperature but not for different initial nitrogen concentra-
tions. The second formulation [7] will be presented in Section
4.4.6.

The first model, presented in [7] considers biomass X growing on nitrogen N , which in
this case is the limiting nutrient in the fermentation process. Meanwhile, sugar S is
enzymatically degraded into ethanol E and CO2, and inhibited by ethanol. The kinetics
are modeled with the classical formulation of Michaëlis-Menten, as in Figure 4.2.

In this study, the authors have not run experiments for identification and validation
of their predictions. Instead, they used the Malherbe model (4.1) as a simulator that
provides a representative behaviour of the process. This is justified by the fact that the
Malherbe model [10] is highly reliable and validated in a wide range of initial conditions
and temperatures.
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Equations
The state variables for the first formulation of the David & Dochain model are X, N , E,
and S describing the yeast, YAN, ethanol, and sugar concentrations,respectively.

8
>>>>>>><

>>>>>>>:

Ẋ = µ(N, T ) X

Ṅ = �k1 µ(N, T ) X

Ė = ˙CO2 = �(S, T )
KE(T )

KE(T ) + E
X

Ṡ = �k2 Ė

(4.19a)

(4.19b)

(4.19c)

(4.19d)

A great similarity with the Coleman model (4.13) should be noted. In fact, David &
Dochain based their formulation on Coleman model, among others. Thus, both authors
used Michaëlis-Menten kinetics, so the growth rates for nitrogen and sugar are the same
equation of the previous model (4.14) and (4.15).

On the contrary, a difference can be noted in the novel term KE(T ), introduced in the
ethanol equation. This function represents the ethanol inhibition and it is:

KE(T ) = �KE1T +KE2 (4.20)

Also, parameters k1 and k2 represent the yield coefficients associated to nitrogen and
sugar consumption respectively; µ(N, T ) and �(S, T ) are defined in (4.14) and (4.15),
where KN and KS are the half-saturation constants.

Finally, with respect to Coleman model (4.13), in this case yeast cells viability it is not
considered. In fact, in Equation (4.19a) there are no terms describing the descending
phase of the live cells of yeast population.

Comments about this model are postponed to the next section.
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4.4.6. David & Dochain Second Model

Variables
X, N , Tr, E, S
Experiments
Malherbe [10]
experiments

Focus
Design control

action for
fermentation

The second model proposed by David & Dochain [7] is defined
considering the fact that nitrogen consumption can be split into
two terms: biomass growth and transport proteins synthesis. A
next step [8] could be to integrate the effect of a nitrogen addition
during the fermentation, but it has not been studied. During the
fermentation, a portion of nitrogen is assimilated to synthesize new
yeast cells, but the remaining part is mostly used in the synthesis
of essential proteins. Meanwhile, the yeast assimilates glucose and
nitrogen thanks to dedicated proteins called transporters.

Equations
The state variables X, N , Tr, E, and S represent yeast, YAN, transporter proteins,
ethanol, and sugar concentrations, respectively.

8
>>>>>>>>>><

>>>>>>>>>>:

Ẋ = µ(N, T ) X

Ṅ = �k1 µ(N, T ) X � k0
1 Ṫ r

Ṫ r = ⌘max(T ) N X

Ė = �(S, T )
KE(T )

KE(T ) + E
X

Ṡ = �k2 Ė

(4.21a)

(4.21b)

(4.21c)

(4.21d)

(4.21e)

Basically, the formulation is very similar to the first model (4.19) with the main differences
in the dynamics of nitrogen, as explained above. In this second model, David & Dochain
abandoned the Michaëlis-Menten kinetics. In fact, the best curves fitting for the biomass
growth (and therefore, for the N dynamics) correspons with an Haldane kinetics (a more
generic formulation for describing enzymatic processes), hence:

µ(N, T ) = µmax

N

KN +N + N2

KI(T )

(4.22)

From David & Dochain [7], experiments have shown that if the initial nitrogen concen-
tration is low, the yeast is mainly focused on increasing the population. On the contrary,
when N0 is larger, the cells production increases but, meanwhile, a bigger part of nitrogen
is used for the synthesis of transporters. Figure 4.4 presents the different trends for µ and
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⌘ with different intial conditions of nitrogen:

• When N(0) has a low value, µ is larger than ⌘ and therefore X grows by consuming
quickly almost all the nitrogen.

• When N(0) has a large value, ⌘ is larger than µ and Tr consumes quickly nitrogen
when compared to X.

Figure 4.4: Trends for ⌘(N, T ) and µ(N, T ) with respect to the nitrogen initial
condition, Figure from [7].

The functions ⌘(N, T ) = ⌘max(T ) ·N , �max(T ) (Equation (4.18)), and µmax(T ) (Equation
(4.17)) are the maximum specific growth rates. It can be remarked that, in nitrogen
dynamics (4.21b), the presence of the transporter inhibits the effect that nitrogen has on
ethanol. This inhibition is modeled by ⌘max which is the maximum specific reaction rate
for transporter proteins and by k0

1, the yield coefficient associated to Tr synthesis.

KN and KI(T) are the half saturation constants and the inhibition constant of the Hal-
dane law. Finally, KS is the Michaëlis-Menten constants, KE(T ) represents the ethanol
inhibition.

Pro & Cons

Pros Cons
Unique model considering Identified and validated with a simulator

transporter proteins synthesis and not with experimental data
More accuracy in yeast and

nitrogen behaviours
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4.4.7. Schenk & Schulz Model

Variables
X, N , E, S, O2

Experiments
Experiments

appliyng control
action on

Riesling must
Focus

Design control
action with

EMPC

The Schenk & Schulz model [19] is a modified version of the Borzì
model [3], which in turn is an evolution of the first David & Dochain
model (4.19). The improvements that Borzì has brought are the
inclusion of the oxygen dynamic and the yeast dying phase term.
Afterwards, Schenk & Schulz improved the formulation of both this
aspects. According to Borzì, yeast activity is equal to zero in ab-
sence of oxygen. In alcoholic fermentation, even in the absence of
oxygen, yeast is not inactive, therefore, an adjustment in the oxy-
gen equation was needed. Moreover, the yeast cells death rate is
designed in a different way with respect to the Borzì model. More
explanations about oxygen and death rate follow in the next sec-
tions.
In addition, for temperature control purposes, an equation describ-
ing the temperature development was included. In fact, the purposes of the article are:
minimizing the energy consumption and maintaining the quality of the wine invariated.

Equations
The model state variables X, N , E, S, and O2 represent yeast, yeast assimilable nitrogen,
ethanol, sugar and oxygen concentrations, respectively.

8
>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>:

Ẋ = µ(N, T )
S

KS1 + S

✓
O2

KO +O2
+ ✏

◆
X � kdX � �(E) X

Ṅ = �k1 µ(N, T )
S

KS1 + S

✓
O2

KO +O2
+ ✏

◆
X

Ė = �max

S

KS2 + S

KE(T )

KE(T ) + E
X

Ṡ = �k2 Ė � k3 µ(N, T )
S

KS1 + S

✓
O2

KO +O2
+ ✏

◆
X

Ȯ2 = �k4 µ(N, T )
S

KS1 + S

O2

KO +O2
X

(4.23a)

(4.23b)

(4.23c)

(4.23d)

(4.23e)

Being an evolution of the David & Dochain first model (4.19), the main structure of (4.23)
is the same as (4.19). In fact, the kinetics are described by Michaëlis-Menten equations
and the term µ(N, T ) still appears, as in (4.22).

The growth of yeast is dependent on the consumption of nitrogen, sugar and oxygen.
Sugar is converted into ethanol and the latter has inhibitory effect on the sugar itself.
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Still, sugar has two functions: producing ethanol and serving as nutrient for yeast.

Borzì [3] was the first one that introduced the oxygen dynamics in the fermentation model.
This is an improvement also in perspective of any confrontation with winery data, because
the oxygen has major effect on vinification at industrial scale, as explained in Section 2.2.
Moreover, Schenk & Schulz added the term ✏ to the Equation (4.23e), because even in
the absence of oxygen, yeast is not totally inactive.

Another feature introduced by Borzì and integrated in the Schenk & Schulz model is the
yeast cells death:

�(E) =

✓
0.5 +

1

⇡
arctan(kd1(E � tol))

◆
kd2(E � tol)2 (4.24)

where tol is the tolerated ethanol concentration, and kd1 and kd2 are parameters associated
to the death of yeast cells due to ethanol exceeding the tolerance tol. This term makes sure
that the yeast cells undergo a death phase after the stationary one. Other phenomenon,
that can cause the death of yeast cells, is described by the term kd ·E in Equation (4.23b).

The Michaëlis-Menten kinetics are used in the formulation of this model. Here, µmax and
�max are the specific grow rates and are linearly dependent on the temperature, as in
previous models, Equation (4.17).

KN and KO are the half-saturation constants associated to nitrogen and oxygen respec-
tively. KS1 and KS2 are two saturation constants associated to the part of sugar used
for yeast activity and to the other needed for the production of ethanol respectively. At
the same time, other two yield coefficient k2 and k3 associated to these two effects of the
sugar are needed. The temperature has the following dynamics:

Ṫ = ↵1 Ė � ↵2 Ȯ2 � ↵3 (T � uc) !1(t)� ↵4 (T � Text) (4.25)

In order to manipulate the temperature, the tanks available to the Schenk & Schulz
team could be cooled by means of a cooling fluid flowing through a cooling element
surrounding the tank. The main assumption is that, with the accumulation of ethanol,
the temperature increases. This increment has a higher impact at the beginning of the
fermentation where oxygen is still present. The coefficient ↵1 indicates how much heat is
generated by the conversion of sugar into ethanol, the coefficient ↵2 quantifies the fact that
the consumption of the oxygen reduces the accumulation of heat, while the coefficients ↵3

and ↵4 are two heat transfer coefficients. Temperature T is the temperature of the tank,
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uc is the temperature of the cooling fluid, which is constant, Text is the temperature of
the room and !1 is the control input i.e, the cooling fluid flowrate.

Pro & Cons

Pros Cons
Unique model considering death of Experimental conditions slightly

yeast cells with good accuracy different from ours
Introduction of O2 dynamics Slightly higher formulation complexity

Control action already applied
with good results

4.4.8. Model Selection

This section aims to summarize the Pro & Cons of the studied models and highlights their
differences. Finally, one model will be selected for our study, among the ones analyzed
above.

Malherbe The model predicts the fermentation evolution with a good accuracy: in
fact, the data bank from the experiments that Malherbe et al. have run is very large
and highly reliable. They worked with different initial conditions, varying three variables:
temperature from 18 °C to 30 °C, nitrogen (YAN) from 70mg L�1 to 570mg L�1, and sugar
from 200 g L�1 to 280 g L�1. However, issue with this formulation is that the ethanol
dynamics is not accurately modeled. In fact, the behaviour of ethanol is only described
by its link with CO2:

(
S(t) = S(0)� 2.17CO2(t)

E(t) = 0.464(S(0)� S(t))

(4.26a)

(4.26b)

while in the other publications the kinetics for E is more precisely designed.

Finally, according to David & Dochain [7], the Malherbe model does not consider consis-
tent mass balances and is not simple to manipulate due to the complexity of the equations.
Moreover, the large number of parameters and initial conditions used as parameters, does
not allow a straightforward identification. For all of this reasons the Malherbe model has
been discarded.

Scaglia The Scaglia model (4.8), despite the absence of nitrogen source, has proven to be
satisfactory for what concerns the substrate trajectory and the performances regarding
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the tracking errors. For this reasons, according to the authors, the application of this
model for the the design of suitable controllers of the fermentation dynamics is promising.
However, the effect of nitrogen should not be neglected, both in the light of the discussion
in Section 2.1.2 and in view of possible considerations of the case of modelling the nitrogen
addition effect during fermentation (that is a common procedure in winemaking), not
considered in this study.
In addition, ethanol was not introduced directly into the equations governing the other
variables. Also the ethanol concentration was expressed as a function of the amount of
carbon dioxide. The latter is not a strong limitation, but a model that describes directly
the ethanol effect and dynamics is preferable.

Coleman This model is the first one that can accurately predict the transformation
from sluggish to normal to stuck fermentation. Also, the model is the first to accurately
predict fermentation behaviours at extreme conditions (from 11 to 35 °C). Therefore, this
formulation presents both the accuracy and the formulation simplicity that we are looking
for in this work. However, the model selection did not fall into this model mainly because
this model was further improved by David & Dochain. In fact, the ethanol dynamic is
better described by the David & Dochain model (4.19), thanks to the inclusion of the
term KE(T ).
Another reason for discarding this model was that it have not been validated in real
winemaking conditions [7].

David & Dochain and Schenk & Schulz David & Dochain first model (4.19) was
not selected basically because it was improved firstly by Borzì, then by Schenk & Schulz.
In fact, as highlighted in Section 4.4.7, the Schenk & Schulz formulation has improved
this model, under various aspects. The oxygen dynamics is included, and a better under-
standing of the yeast cells death rate is modelled. Also, the interdependencies among the
variables are more accurately modelled.

For what concerns the second model of David & Dochain (4.21), there are definitely some
improvements with respect to the first model (4.19), but some limitations came out. As a
matter of fact, modelling the synthesis of transporter proteins is an addition that surely
improves the accuracy of the modelling, but, according to David & Dochain [7], without
measurament on Tr (not available neither to us, neither to David & Dochain) the variable
k0
1 remains undetermined. Moreover, we decided to rely on models validated with real-life

experiments, instead, as discussed this model has been identified and validated only using
a simulated database provided by the Malherbe model (4.1).
To conclude, this second model has been taken up and improved over years by David
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& Dochain themselves, focusing on the boost and shorten effect in the process duration
generated by the addition of nitrogen during fermentation. Later, the modelling of the
aromatic profile was also added, increasing its complexity. This model was not used
because the experimentation of Ever - Italiana Biotecnologie did not allow the addition
of nitrogen on course and the monitoring of the aroma profile. However, these models are
very valid and could be investigated in the future.

To conclude, the Schenk & Schulz model was chosen to model the experimental fermen-
tation conducted in the laboratory of Ever - Italiana Biotecnologie. It seems the better
tradeoff between accuracy and complexity, among all the analyzed models. Moreover, it
has been devised for control design purpose, that could be an interesting future perspec-
tive. Inevitably, also for this formulation, some limitations are present. For example, the
experiments on which the model has been identified and validated are quite different from
our setup, presented in Chapter 3. In fact, their wine had different organoleptic character-
istics with respect to Amarone: it have 18 g L�1 of residual sugar, and so the fermentation
is tuned to end at that sugar level. However, this problem is not so restrictive, indeed, it
is enough to make some considerations to avoid it, see Chapter 5. Also, the inclusion of
the oxygen dynamics is not so important for model accuracy, but it can be interesting for
possible future other studies that could consider industrial-scale vinifications.
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Validation

In this section, model parameters are considered and identified. Since the chosen model
has a significant number of parameters, the first problem consisted in the selection of the
most suitable ones to identify and which were the ones whose literature values were to be
considerable as trustable. Considering model (4.23):

• KN and KO are the Michaëlis-Menten half-saturation constants associated to nitro-
gen and oxygen, respectively.

• k1 and k4 are the yield coefficients of nitrogen and oxygen, respectively.

• KS1 and KS2 are two saturation constants associated to sugar. Specifically, KS1

represents the saturation constant associated to the portion of sugar that is a nu-
trient for the yeast and KS2 is the saturation constant associated to the portion of
sugar necessary for the metabolization into alcohol.

• k2 and k3 are the yield coefficients of sugar. The first one is associated to the part
of sugar converted into alcohol and the second one is related to the part of sugar
which is used as a nutrient for the yeast.

• KE(T) is a function dependent of the temperature, i.e.,

KE(T ) = �KE1T +KE2 (5.1)

and has direct effect on the ethanol kinetics.

• kd1, kd2 and tol are parameters that allow to model the function �(E) in (4.24),
representing the yeast cells death rate. The parameters kd1 and kd2 are associated
with the death of yeast cells due to exceedance of ethanol concentration over the
quantity tol. On the other hand, kd represents the death rate of yeast cells for other
circumstances.
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• ✏ allow to represent the fact that nutrients are consumed by the yeast for its activity
even when there is no oxygen available.

• µmax and �max are growth rates for ethanol and oxygen respectively, i.e.,

µmax(T ) = µ1T + µ2 (5.2)

�max = �1T + �2 (5.3)

They are functions of temperature depending on parameters, µ1, µ2 and �1, �2,
respectively.

Schenk & Schulz used a direct multiple shooting approach for the discretization of the
parameter estimation problem. A sequential quadratic programming method was applied
to minimize the objective function, consisting of the sum of squares of the weighted
residuals represented by the estimating function. In [19], not all the parameters described
were estimated: some of them were considered drawn from the literature. In Tables 5.1
and 5.2 the values of the estimated and the fixed ones are shown.

Parameter Value

KN 0.1156
k1 0.0536
KS2 4.3262
KE1 0.2616
KE2 38.90
kd1 99.86
kd2 0.0021
KO 0.0007
k4 0.0025
✏ 0.02
kd 0.01
tol 79.0

Table 5.1: Parameters from literature.

Param. Initial val. Estim.

µ1 0.08 0.514
µ2 0.1858 4.9325
KS1 33.35 34.2695
�1 0.3371 0.3954
�2 0.0285 0.0
k2 1.2 1.5324
k3 15 15.75

Table 5.2: Parameters estimated.

The parameters estimated by Schenk & Schulz were, however, not suitable for our thesis,
since their data and tests are based on different experiments and wine. For these reasons,
we performed the parameter estimation using new data, see Section 5.3.
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5.1. Choice of the Parameters to Estimate

The choice of the parameters to estimate was similar to the one considered by Schenk &
Schulz: some were taken from the literature, while some were subject to identification.
This choice was made since the large number of parameters considerably increased the
computational cost and, since the ethanol profile was the only available, we attempted
to avoid identifiability problems. The selected parameters to be estimated and their
respective literature nominal values are shown in Table 5.3.

Parameter Initial value

µ1 0.08
�1 0.3371
KS1 33.35
k2 1.2
k3 15
KS2 4.3262
KN 0.1156
tol -
kd 0.01

Table 5.3: Selected parameters to be estimated.

There are small differences and several additions with respect to the choice made by
Schenk & Schulz, i.e.,

• µ1 and �1 - Working at a constant temperature of 24 °C, µmax and �max in (5.2) and
(5.3) assume constant values. Therefore, µ1 and µ2 are not practically identifiable
when the system is not excited enough in terms of temperature. We decided to
identify µ1 and draw the value of µ2 from the literature, since the latter has a minor
effect on µmax. The same consideration has been done for �max: for the same reason,
only �1 was estimated.

• tol - In the simulations, we observed that the level of final ethanol was far too low
with respect to the nominal value, especially when the initial concentration of sugar
was higher than 210 g L�1. This was due to the fact that parameter tol in the death
yeast cells equation (4.24) was not correctly tuned. For example, considering a
potential value of ethanol of 120 g L�1 (corresponding to about 250 g L�1 of sugar),
the fixed value of tol = 79 g L�1 starts the yeast cells death too early, preventing the
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concentration of ethanol to reach its correct final value. This effect has an influence
also on the sugar kinetics since the sugar could not be exhausted completely. In
contrast to the other parameters, we decided to estimate tol through an ad-hoc
formula, as discussed later.

• KS2 - In preliminary identification attempts, despite the addition of tol to the pa-
rameters to be estimated, the sugar did not reach the final zero value. Therefore,
in addition to KS1, we decided to estimate the other parameter directly involved in
the dynamics of sugar, that is KS2.

• KN - to help the parameter estimation problem to find the optimal solution, KN

was also added to the set of estimated parameters. This parameter has effect on
almost all the state variables of (4.23); thereby, it seemed reasonable to identify it
since it affects basically all the kinetics.

• kd - This parameter was estimated only for the nanovinification 5 and the microvini-
fication tests. We decided to add it because the extreme initial conditions of the
industrial must sample (high sugar, low YAN) could not permit a satisfactory fer-
mentation prediction. Since these fermentations resulted sluggish and stuck, we
assumed that it could have been useful to estimate another parameter involved in
the yeast cells death.

The parameters nominal values, used as initial conditions in the iterative identification
process, were chosen from [19]. An exception was made for tol, being it highly dependent
on the sugar initial condition and on the ethanol concentration final value. In view of this,
we decided to estimate it as 90% of the final ethanol concentration (for each experiment):

tol = Eend · 0.9 (5.4)

This decision was taken for two reasons:

1. The value of 79 g L�1 considered by Schenk & Schulz was about the 80% of the
final ethanol value and their goal was not to consume all the sugar. Therefore, we
assumed that increasing this percentage would have made sure that the final value
of sugar would have reached 0 g L�1.

2. Given the great variability of initial sugar conditions among all musts, it is not pos-
sible to find a single value of tol that would be suitable for each operating condition.
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5.2. Computational Procedure

The Parameter Estimator application of Simulink has been used for identification pur-
poses. The software formulates the parameter estimation problem as an optimization one
and the solution consists of the estimated parameter values set. To formulate the latter
prolem we need to specify the following:

• x — Design variables. They are the model parameters and initial states to be
estimated.

• F (x) — Objective function, also called cost function or estimation error. It is
a function that calculates a measure of the difference between the simulated and
measured outputs.

• x  x  x — Bounds. They are limits on the estimated parameter values.

• C(x) — Constraint function. It is a function that specifies further (nonlinear)
restrictions on the design variables.

The software estimates the model parameters so as to obtain a simulated output (ysim)
that follows the measured output (ymeas). To do so, the solver minimizes the estimation
error which is defined as the measure of the difference between the simulated and measured
outputs and has the following form:

e(t) = ymeas(t)� ysim(t)

The software provides two types of cost functions to process e(t). The default option is
the “Sum Squared Error” cost function, and the other is the “Sum Absolute Error”. After
various tests, better performances were observed with the first option. The cost function
is therefore:

F (x) =
tNX

t=0

e(t)2

where N is the number of samples.

Various optimization methods are also proposed. For the case of parameter estimation,
the Nonlinear Least Squares optimization method was recommended [11].

The measured ethanol data (called “experiments” in Simulink) from the various winemak-
ing tests were uploaded together with their relative initial states, see Figure 5.1. Moreover,
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the final condition of the sugar concentration has been set to 0 g L�1, at the corresponding
time instant in which the fermentation is considered terminated. The computation of this
time instant is explained in Section 3.6. Then, we have selected which parameters had to
be estimated and defined the corresponding bounds, as in Figure 5.2.

Figure 5.1: Experiments uploading
on Parameters Estimator App.

Figure 5.2: Parameters selection and
their boundaries.

The application allows to choose which experiments must be used for estimation, and
which for validation. To improve the model identification, we constrained the initial (S0)
and final condition (Send = 0) of sugar concentration.
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5.3. Estimation Strategies

5.3.1. Nanovinifications 1-4

The mathematical model defined using the data related to nanovinifications 1-4 has been
devised in order to validate the chosen modelling choices. In particular we will consid-
ered such choices validated if the identified model is capable of predict the fermentation
kinetics with good accuracy in different initial conditions, with special attention to the
one detected in the winery.

The strategy adopted for the model identification consists of estimating the parameters
over the ten experiments of the fourth drying period (Section 3.3). We decided to perform
this identification since the initial conditions of these experiments were the most similar
to the real winemaking conditions, in terms of initial sugar and yeast assimilable nitrogen.
As a matter of fact, as explained in Section 3.8, the fourth period musts are the ones with
higher S0 and YAN0.

The results of this strategy are presented in Table 5, that shows the initial values and the
estimates. Except for the value of µ1, which changes of two orders of magnitude, a slight
alteration can be noticed in all the other parameters.

Parameter Initial Value Estimate

µ1 0.08 2.1524
�1 0.3371 0.8687
KS1 33.35 72.145
k2 1.2 1.8327
k3 15 11.389
KS2 4.3262 3.6417
KN 0.1156 0.8270

Table 5.4: Parameters estimates.

From now on, we will refer to the experiments with a three letters abbreviation (reminding
of the supplier’s name) and a number (which stands for the dehydration period).

The identification can accurately predict the fermentation performance of both ethanol
and sugar kinetics for all the ten considered experiments, with a small accuracy loss
in some of them (in Figure 5.3 two examples can be observed). We assumed that the
predicting difficulties could come from the ratio R = YAN0/S0. In fact, results related
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to the experiments with R < 0.6 are less accurate than the others (only three ratios are
below this threshold in these experiments, the lowest is 0.47). This is totally reasonable
since a too low R value corresponds to an excessive amount of sugar to be consumed with
little yeast assimilable nitrogen. For this reason, the relationship between the predictive
performance result and R (as well as S0 and Y AN values) must be taken into account.

Figure 5.3: Best (Cas4) and worst (Mar4) predictions between the ten considered
experiments. Their R values are 0.7 and 0.47, respectively.

Given the good performances of the model on the fourth period tests, we have decided to
validate it on the other periods experiments. We have compared the experimental kinetics
with the simulated ones and observed the differences. Among the other thirty considered
experiments, eight were considered outliers:

• Cas1 Nic1 Rig1 Dor2 Mol2 Bon2 - All these experiments have R < 0.25 and
are characterized by very troubling fermentations (see sluggish fermentation, see
Chapter 2).

• Nic2 - Despite its R > 0.25, this experiment experienced severe fermentation trou-
bles; its process lasted almost 25 days (three times with respect to the others). Even
if it has an initial condition of YAN0 = 103mg L�1 (which is an average value), we
assumed that the value of initial sugar S0 = 293.2 g L�1 (the highest in all the four
periods) does not allow good fermentation performances.

• Fed3 - Its value R = 0.93 is far from the other R values. In fact, it is the only
R above 0.78 and it has the highest value in YAN, 250mg L�1. This experiment
experienced the fastest fermentation rate, even with a considerable initial value of
sugar S0 = 266.4 g L�1.
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Considering this outliers-removal, a good portion of experiments were fitted with good
accuracy. In the scatter plot (Figure 5.4) it is possible to notice which experiments
(defined by their initial conditions) were “well predicted” and which were not, highlighting
the outliers.

Figure 5.4: "Well predicted" experiments together with highlightened outliers.

Some examples of the validation procedure can be observed in Figure 5.5. Since we only
had this measurement available, ethanol kinetics was considered in validation phase.
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Figure 5.5: "Good" and "bad" predictions on various periods experiments. Nic3 and
Cas2 are two "well" predicted experiments: their R values are 0.57 and 0.46,

respectively. Dor1 and Tap3 are "bad" predicted experiments: their R values are 0.34
and 0.37, respectively.

The prediction performances of the model are evaluated in terms of:

1. Fermentation time;

2. Final ethanol concentration;

3. Euclidean norm (or minimum distance between two points) between the simulated
and measured ethanol curve.

The major interest for winemakers’ is the fermentation duration. Predicting this informa-
tion might allow them to act in advance on the must with nitrogen or nutrition addition
(see Chapter 2). For this reason, we decided to give more importance to the first term.
In fact, an experiment is said “well predicted” if one of the following statements is true:
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• | tsim
f

� tmeas

f
|  1.5 d;

• 1.5 d < | tsim
f

� tmeas

f
| < 2.5 d ^ | Efin

sim
� Efin

meas
|  4 g L�1 ^ ||e||2 < emean.

where, tsim
f

and tmeas

f
are the simulation and the measured curve fermentation times,

respectively; Efin

sim
and Efin

meas
are the ethanol concentration final values of the simulation

and the measured curve, respectively; ||e||2 =
qP

N

i=1 e
2
i

is the Euclidean norm between
the simulated and the measured ethanol curve, where e = Esim � Emeas and N is the
number of data; emean is the mean value of the Euclidean norms of all the experiments.

We have decided that all the simulations which can predict the fermentation time in a
range of ±1.5 d are “good”, without considering the final ethanol and the error between the
curves. Then, with poorer tf prediction (±2.5 d), two other conditions are considered. The
final ethanol prediction must be correct within an uncertainty of 4 g L�1(corresponding to
0.5% of alcohol content approximately). In addition, the Euclidean norm should be lower
than its mean value among all the experiments.

Using this criteria, we have defined which experiments were “well predicted” and which
were not. The model validation results are here listed:

• Considering all the experiments (except for outliers) the portion of “good predic-
tions” is 72%.

• Considering the experiments in which R 2 [0.5 � 0.8] the percentage increases to
90%.

• The model found difficult to predict experiments with very low R velues. In fact,
for R < 0.5 only, 41.2% of the experiments are “well predicted”.

Note that, according to [17], the initial conditions of the must are reasonably acceptable
within ranges of 230-280 g L�1 and 150-180 mgL�1 for sugar and yeast assimilable nitro-
gen, respectively. These values correspond to R 2 [0.5 � 0.8]. In view of this, we can
conclude that the model is validated for typical winery conditions.

At this point, it is clear that the alcoholic fermentation is a complex process which compre-
hends a vast multitude of variables and behaviors. The reasons why certain experiments
have not been “well predicted” cannot be due only to the initial value of S0 and YAN0.
Consider for example the two experiments, Dor3 and Sar4: they have very similar initial
conditions values but different kinetics. However, the model cannot accurately predict
the kinetic of Dor3, but it does with Sar4 (Figure 5.6). This might depend on several
factors: our hypotesis is that Sar4 has a higher values of Glutamine; in fact, when high
levels of this amino acid concentration are reached, the YAN consumption rate consider-
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ably increase (according to Ever - Italiana Biotecnologie). Further studies comprehending
amino acids and vitamins analyses will improve the accuracy of the model.

Supplier S0 YAN0 R

name g/L mg/L ·103

Sar4 272,3 210 0.77
Dor3 278,4 210 0,75

Table 5.5: Values of S0, YAN0 and R for the two experiments Sar4 and Dor3.

Figure 5.6: Comparison between the different kinetics and predictions for Sar4 and
Dor3, having very similar initial conditions (see Table 5.5).

The result of this identification are quite satisfactory; in fact, the model can predict
fermentation kinetics with good accuracy in a wide initial conditions. The predictive
performance decreases with low value of R. For this reason sluggish fermentations are
not well predicted. Nevertheless, this model identification is a promising starting point
for the Precision Winemaking Model project.

5.3.2. Nanovinification 5 and Microvinification

Five nanovinification and one microvinification experiments were performed using the
industrial must sample.

A significant imbalance between the industrial must sugar and YAN concentration values
can be observed from the fermentation kinetics data (see Section 3.8). This imbalance
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might be due to the fact that the sampling has occurred when the must was not homoge-
neous; our hypothesis is that various stratifications were present in the fermentation tank
and the sample could not have been representative of the total mass.

The sugar initial condition (330 g L�1) of the industrial must is certainly anomalous com-
pared to both the previous experiments and the real winemaking one. As a matter of fact,
the sugar mean value of the fourth period (sampled on the 15th of December) and the
one of the Sartori winery (sampled on the 17th of January) are 270 g L�1 and 300 g L�1,
respectively. Moreover, the YAN value of 104mg L�1 is too low compared to the mean
value (185mg L�1) of the fourth period experiments.

It is clear that the model validated on the nanovinification (1-4) experiments could not
be applied to a must with such extreme initial conditions. For this reason, we decided to
run a different identification strategy aiming to lay the foundations for a study concerning
stuck and sluggish fermentation prediction. This identification strategy will be used in
the optimization study presented in Section 6.

For the reasons explained above, the kd parameter was added to the identification, as
mentioned in Section 5.1. The initial parameter values were the ones obtained in the
previous estimation, except for kd: its initial value was taken from [19]. The new estimates
are listed in Table 5.6.

Parameter Initial Value Estimate

µ1 2.1524 0.5011
�1 0.8687 1.3170
KS1 72.1450 33.4210
k2 1.8327 0.8798
k3 11.3890 87.1650
KS2 3.6417 3.8915
KN 0.8270 0.0905
kd 0.0100 0.1268

Table 5.6: Parameters estimates.



78 5| Parameter Identification and Validation

Figure 5.7: Comparison between the five nanovinification experiments and the mean
curve.

The parameters were identified considering the mean curve obtained from the five nanovini-
fication experiments. It was supposed that there was no loss of generality in doing so,
since the mean error between these five kinetics and their average curve is not significant
(emax = 2.28 g L�1), as it can be observed in Figure 5.7. Moreover, we decided to per-
form a single identification procedure since the nanovinification results were comparable
to those obtained in microvinification, as explained in Section 3.8.

Considering this identification strategy, the model can predict the experiments kinetics
(nanovinification 5 and microvinification) with satisfactory results, as depicted in Figure
5.8. However, since the model is based only on six experiments (employing the same must),
it is not sufficiently validated to manage stuck and sluggish fermentations in general.
Nevertheless, it was considered adequate for our optimization study, whose experiment
has been carried out with the same must.

As expected, most of the parameters experienced a variation of one order of magnitude
(see Table 5.6) with respect to the nominal literature values. This is totally reasonable:
in fact, a single set of parameters is unlikely to be adequate to properly describe, at
the same time, normal, stuck, and sluggish fermentations. Further studies, with further
fermentation data, will improve the model identification.
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Figure 5.8: Comparison between the microvinification experiments and the model
simulation.
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6| Optimization Strategy and
Experimental Results

6.1. Introduction

With reference to the theme of sustainability, an important goal of the project (see Chap-
ter 1), we decided to study the possible energy savings in relation to the fermentation
process. The Schenk & Schulz model (Section 4.4.7) was considered since it had already
been used in our previous studies and because it was already validated in this specific
field.

The biochemical transformation of sugars into alcohol performed by the yeast is an
exothermic reaction. The purpose of this work was to compute a temperature profile
aimed to optimize the process in order to achieve, at the same time, lower tracking er-
ror, lower fermentation time, and lower energy consumption. However, our work did not
study the correlation between wine quality and fermentation temperature profile varia-
tions, which will be subject of future investigations.

The microvinification in jars using the industrial must sample was employed. As already
mentioned in Section 3.5.2, the experiment was performed in duplicate, and the Inverno

1936 yeast was used.

The optimization problem has been entirely implemented in the MATLAB environment.
Regarding the fitting procedure (Section 6.2.2), the curve fitting app was used. Then,
in order to perform the nonlinear constrained optimization, the function fmincon was
utilized.
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6.2. Optimization Procedure

6.2.1. Optimization Problem

The optimization of the fermentation process has the following threefold objectives:

• Minimization of the difference between the simulated and the desired ethanol curve.

• Minimization of the fermentation time.

• Minimization of the energy consumption.

This procedure aims to calculate the optimal temperature profile (denoted ~Tu) by op-
timizing an open-loop objective function over the entire time horizon. The considered
optimization problem reads as follows:

min
x, ~Tu

�1

TX

t=0

(Eref (t, tf )� Esim(t, ~Tu))
2 + ↵ tf + �2

NX

i=1

(Text � Tu(i))
2

s.t. Schenk & Schulz model (4.23),

constraints (6.2a) (6.2b).

(6.1)

In (6.1) Esim(t, ~Tu) is the simulated ethanol profile, Eref (t, tf ) is the desired ethanol
behaviour, tf is the instant at which the fermentation ends, Tu(i) is the temperature
inside the jar (control input, i.e., ~Tu = {Tu1 , ..., TuN}), Text is the external temperature
(chosen to be equal to 22 °C), T represents the fixed simulation time horizon of 20 days

and N is the number of sampling steps in which it was decided to divide the time horizon.
Furthermore, �1, �2 and ↵ are suitable weights. In addition, p is the set of parameters
estimated from the previous nanovinification experiments (see Section 5.3). Therefore,
in formulation (6.1), the first term represents the tracking error, the second one the
fermentation time, and the third one the energy consumption. Constraints have been
added regarding the maximum and minimum temperature values, and its variations, see
Table 6.1. These values were suggested by the Ever - Italiana Biotecnologie staff. The
constraints have been introduced as follows:

Tmin  Tu(i)  Tmax 8i = 1, ..., N

�Tmin  Tu(i)� Tu(i� 1)  �Tmax 8i = 2, ..., N

(6.2a)

(6.2b)
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Tmin Tmax �Tmin �Tmax

15 °C 28 °C �2 °C 2 °C

Table 6.1: Values for the constraints in the optimization problem.

6.2.2. Strategic Choices

Temperature Profile and Sampling Time

The input variable profile ~Tu is a piece-wise constant curve. Therefore, the temperature
may assume a different value at each sampling step. This means that, for each sampling
step k, a degree of freedom is added, that is, a decision-making variable, ~Tu(k), to be kept
constant for a period denoted ⌧k, as in Figure 6.1.

Figure 6.1: Example of free variables in the temperature profile.

A variable sampling time has been selected. More specifically ⌧k is shorter at the beginning
of fermentation, when the kinetics are faster, and longer towards the end, when the
fermentation rate is almost zero. The chosen sampling instants are described in Table
6.2. Namely, in the first week, the sampling instants correspond to 8:00, 13:00, and 18:00
each day. On the other hand, in the second week, control inputs could be varied just two
times a day (i.e., 8:00 and 18:00).
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Week Time
1 08:00 13:00 18:00
2 08:00 - 18:00

Table 6.2: Chosen sampling time.

The choice of the sampling times has been done, not only based on physical considerations,
but also for practical ones (i.e., the temperature values had to be changed manually by
Ever - Italiana Biotecnologie staff) and numerical considerations (minimization of the
computational complexity).

Desired Ethanol Curve and End Fermentation Time
Once the sampling time and the type of the input profile are defined, we now specify the
optimization goals in details.

In particular, denote with ~z the vector whose elements are the components of the cost
function defined in (6.1), i.e.,

~z =

2

64
Eref � Esim

tf

Text � ~Tu

3

75 (6.3)

Instead, in this work, the ideal ethanol curve Eref was constructed through a fitting pro-
cedure in order to be function of the ideal fermentation time, i.e., it is itself a function of
the free variable tf . For fitting purposes, the ethanol curve obtained from the nanovinifi-
cation experiments was used for defining the shape of the reference one. This curve was
fitted using the following sigmoidal function:

f(t) =
tb

tb + cb
a (6.4)

where a = 149.9, b = 1.644 and c = 3.646.
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Figure 6.2: Ideal ethanol curve vs fitted curve (6.4).

Figure 6.2 shows the comparison of the two curves. In nanovinification experiments, the
fermentation time was approximately 20 days (the computation of this term is described
in Section 3.6). Therefore, the variable t inside function (6.4) has been replaced with
the term 20

tf
t. This change of variable in the curve allows the optimization algorithm to

change as a function of tf . In Figure 6.3 we show how the fitted curve changes considering
different values of tf . The desired ethanol curve, then, has been defined as:

Eref (t, tf ) =
(20
tf
t)b

(20
tf
t)b + cb

a (6.5)

Figure 6.3: Fitted curve with different fermentation times.



86 6| Optimization Strategy and Experimental Results

Energy Consumption
The energy consumption is mainly due to the necessity of cooling the tank to contain the
tumultuous phase of the fermentation. Therefore, we decided to set a maximum temper-
ature of the fermentation mass at 28 °C before cooling. We assumed that the external
temperature was constant at 22 °C and that there was a direct proportionality between
the energy consumption and the difference in the external and internal temperature.

Weights

Weight Value
�1 10

�2 5

↵ 106

Table 6.3: Weights.

The cost function needs to be formulated in such a way that the
simulated curve follows the fitted curve. Note that, if there was no
constraint on Tu(k) and a cost on the used energy, the algorithm
would try to reduce tf . A weight was assigned to each of the
three terms that form the cost function (6.1), and the best trade-
off was found via a trial-and-error procedure. The chosen weights
are listed in Table 6.3.

In the paper [19], several oenological indications were given, i.e.,
to set tf = 20 d and to consume the sugar as linearly as possible up to the final value of
18 g L�1.

As can be noted from the weight values (Table 6.3), we decided to gave a higher priority
the tracking and the fermentation time goals for the following reasons:

1. The working routine of Ever - Italiana Biotecnologie has forced us to limit the time
of the test to 15 days, against the 20 days of the previous experiment.

2. The uncertainty about the temperature of the room where the experiment was
carried out was extremely high. In fact, since it fluctuated around 18 °C at night
and 22 °C during the day, it was not possible to measure it accurately. Given this
problem, an accurate estimation of the energy savings was not possible. In view of
this, we decided to partially discard it from our cost function.
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6.3. Results

Date Time T
28/02 18:00 21 °C
01/03 13:00 23 °C
01/03 18:00 25 °C
02/03 08:00 28 °C
07/03 08:00 27 °C
10/03 13:00 24 °C
11/03 13:00 22 °C

Table 6.4: Optimal
temperature profile.

The temperature profile ~Tu, obtained as the result of the op-
timization problem, is shown in Table 6.4 and in Figure 6.4.
Note that, in Table 6.4, only the sample instants at which
Tu(k) value varies are reported. The comparison between
the simulated ethanol curve (using ~Tu) and the desired one
is shown in Figure 6.5, where the optimal fermentation time
is tf = 15.62 d. Note that, thanks to the suitable values
chosen for �1 and ↵, the simulated curve follows the desired
curve quite accurately.

Figure 6.4: Optimal temperature profile graph.
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Figure 6.5: Comparison between the desired ethanol curve Eref (t, tf ) and the simulated
ethanol curve Esim(t, ~Tu).

The comparison between the simulation and the microvinifi-
cation experiment is shown in Figure 6.6. The experimental
ethanol curve behaves consistently with the simulated one in
the yeast growth phase until about the third day. However,
from this moment on, the fermentation speed begins to decrease, and the consistency with
respect to the simulation is lost. It is likely that the low initial YAN content and the con-
tribution given by the high temperature (28 °C against 24 °C of previous fermentation),
have inhibited the fermentation on the fourteenth day. In fact, in reference to the behav-
ior of the function µ(N, T ) described by David & Dochain (Section 4.4.6), when YAN0 is
low, the yeast grows rapidly consuming almost all the nitrogen; high temperatures tend to
intensify this behavior. This is confirmed by our experimental results, as can be observed
in Figure 6.7.
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Figure 6.6: Comparison between simulation with the optimal ~Tu and microvinification
experiment.

Figure 6.7: Comparison between the experiments in jar, one with the fixed temperature
(24 °C), one with ~Tu applied.

The goal of the optimization study was to investigate the behavior of fermentative kinetics
and to validate our identification of the mathematical model under conditions of variable
temperature on a small-scale tank. Given the low excitation of the data from the previous
experiments with respect to temperature, we cannot be certain that the estimated pa-
rameters work under different operating conditions. Therefore, the outcome of this study
can be a basis for improving the identification of the model parameters in the future.
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Also, due to the current inadequacy of the available instrumentation, we could not apply
closed-loop strategies (i.e., MPC) to control the fermentation dynamics. This will be
subject of future works.
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This thesis is a case study that lays the foundations for the implementation of a predictive
model for the alcoholic fermentation of the Amarone della Valpolicella DOCG wine. The
project has been devised in the framework of the technological cluster ALL4INNOVATION.

The thesis has been functional in creating a methodological base to help wine companies in
the technological transformation aiming to improve the quality of wine and obtain a lower
energy consumption. The work consisted of data analysis and modelling of the fermenta-
tion process of Amarone della Valpolicella DOCG wine. The objectives pursued were (i)
prediction of fermentation kinetics, and (ii) their optimization through the manipulation
of the control variable, i.e., the temperature.

To build a structured database, a sampling plan and an experiments apparatus were
devised. A physical-based mathematical fermentation model describing the dynamics of
sugar, ethanol, nitrogen, yeast, and oxygen was studied and its parameters were identified
based on the experiments conducted.

The model studied in this thesis is still not suitable to predict the fermentation perfor-
mances of the Amarone wine in view of the following reasons: the winery conditions are
not well represented by the model terms (absence of pomace, fermentation temperature
gradient, oxygenation, etc.), the sugar, yeast, YAN profiles are not measured, absence of
terms representing the addition of nitrogen during fermentation. However, this thesis has
laid robust methodological grounds for its development in the medium term.

The critical point in this experimentation was to produce and collect large quantities
of data in order to train mathematical models, optimizing human, physical, economical
resources without losing in reliability. The nanovinification process seemed the most
promising solution in terms of data numerosity, cost savings and performance. The
performance indices of the fermentation kinetics were consistent with the research and
technology partners’ (Ever - Italiana Biotecnologie) experience. However, the downside
of the nanovinification process is the absence of grape solids in the fermentation bottle
during fermentations. To overcome the small-scale limitations (Section 3.7), experiments
including pomace and sensors (online and offline) will be conducted in the future. In this
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perspective, the collaboration with Università di Verona - Viticoltura ed Enologia - Di-

partimento di Biotecnologie is very promising. They could perform laboratory vinification
experiments in 3L quantity with inclusion of pomace. The comparison (analytical and
sensorial) of this procedure with the industrial one gives excellent results.

Another great limitation has been the insufficient excitation of the fermentation process
with respect to the temperature profile. Conducting experiments in non-isothermal con-
ditions and at different scales will allow data to be more informative and avoid practical
identifiabilty issues. This will also lead to improvement in the mathematical models which
will be used for automatic fermentation control purposes.

In the framework of the Precision Winemaking Model project, it will be necessary to
overcome the technological and organizational limitations. Considering our experience,
some improvements are here suggested:

Sampling Plan The experimental data robustness is significantly determined by this
phase. In this perspective, the project needs a more accurate planning in terms of pallet
lay out, samples’ storage, sampling methods, etc.

YAN Analysis Methods The YAN measurement difference between FOSS and UPLC
analysis methods is presented in Section 3.2.3. In particular, the FOSS method tends to
overestimate measurements. In the future, a study will be necessary to confirm the UPLC
as the reference measurement method for YAN analysis. The alignment of the measure-
ment obtained with the three most common YAN analysis methods (FOSS, Enzymatic
method, UPLC) will allow the wineries to choose the most agile and cost-efficient methods
for this kind of analysis.

Instrumentation Including sensors to the fermenters will allow an online data collec-
tion for fermentation variables (e.g. temperature, oxygen, density, carbon dioxide etc.).
This will also be useful in view of control action implementation. Moreover, sampling and
multiparametric analysis systems will be implemented for the offline measure of sugars,
yeast assimilable nitrogen and microbiological yeast measurement during fermentation.

Mathematical Modelling A more thorough and detailed study of fermentative process
modelling must be pursued in order to make it an accurate and reliable tool. In this
perspective, the future work will consist of the following points:

• To properly model the red wine fermentation, a heat and mass transfer study in
heterogeneous wine fermenters and an investigation on phenolic extraction during
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fermentation must be addressed. Quantitative modelling of these concepts allows
for improved physical understanding and process optimization.

• The yeast cells’ metabolism modelling must be improved; in this perspective, re-
cent research in this field concerning “structured” and “flux-based” models, must be
studied. These models try to account for the myriad of processes within the yeast
cells and serve as a transition between the unstructured models (the ones presented
in this thesis) and the more complex cell metabolism modelling.

• Data-based models, which use machine learning and multivariate analysis, must be
investigated.

• Stuck and sluggish fermentation suitable model must be devised ad hoc.

• Choosing the best modelling option according to the different raw material and pro-
duction process: vinification of white, red, rose, sweet, sparkling wine, and others.

Technological Support A suitable data storage and elaboration system should be
implemented. This could provide a technological support for the sensor-data collection,
and could be a valuable support for the winery process management. In this perspective,
the collaboration with the technological partner APRA is very promising.

In conclusion, the thesis results have proven that the Precision Winemaking Model project
may set the conditions to create a predictive models cluster aiming to manage the fer-
mentation process. This diagnosis-management-prediction system is set to become the
business transformation standard for the winery production processes.
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