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Abstract: This paper presents the application of a reduced order model called
Harmonic Balance method (HB) to perform aerodynamic and aeroacoustic analy-
sis of quasi-periodic external flows. The time spectral method was already imple-
mented in the open-source PDE solver SU2 and in this work is applied in the field
of aeroacoustic prediction. A uniform time sampling inside the dominant period is
adopted and the solution is found for 2K+1 time instances, where K is the number
of solved frequencies. The computational cost is strongly reduced with respect to
a fully time-accurate unsteady Reynolds-Averaged Navier-Stokes (URANS) simu-
lation. To obtain a more time-resolved solution necessary for acoustic prediction,
spectral interpolation has been implemented to interpolate the solution for an ar-
bitrary number of instances inside a specified time range. In a modular style, the
surface solution is used by the computational aeroacoustic (CAA) module, im-
plemented in SU2, which uses Farassat’s 1A formulation to compute the pressure
perturbation perceived by far-field observers for tonal noise prediction. Finally,
the aerodynamic and aeroacoustic results obtained with the proposed framework
are compared with time-accurate solutions using three test cases.

Key-words: HARMONIC BALANCE, SPECTRAL INTERPOLATION, SU2, FARASSAT 1A FOR-
MULATION, OptTP ALGORITHM, UNSTEADY SIMULATION

1. Introduction

The field of Computational Fluid Dynamics (CFD) has witnessed notable advancements in predicting complex,
unsteady flows. However, accurately simulating unsteady flows, particularly in aeronautical applications, poses
a significant challenge due to the substantial computational time and resource requirements. Traditional meth-
ods like Direct Numerical Simulation (DNS) and Large-Eddy Simulation (LES) [1, 2] provide high precision
but demand extensive computational resources and time. In these simulations, a substantial portion of initial
iterations is dedicated to resolving the transient phase, which, in practice, offers limited practical value[3].
Moreover, conventional design optimization has predominantly concentrated on steady-state flow physics [4].
The integration of unsteady aerodynamics into design procedures has the potential to shape next-generation
aerospace vehicles with enhanced efficiency, reduced fuel consumption, and lower noise emissions. Emphasizing
the significance of unsteady flow computation, it is crucial to consider various aeronautical scenarios such as
Urban Air Mobility [5], which has garnered substantial interest as a solution to traffic congestion in densely
populated regions, as well as applications in wind turbines [6], jet engines[7], and turbo-machines[8]. Therefore,
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there is an urgent need to develop cost-effective techniques that strike a balance between accuracy and com-
putational cost. In recent times, alongside the pursuit of aerodynamically efficient designs, there has been a
growing demand for predicting, analyzing, and mitigating the noise generated by aircraft. This is particularly
relevant for rotary aircraft, such as Vertical Take-Off and Landing (VTOL) aircraft like drones and helicopters,
and rotary wing components like rotors, propellers, and engines[9]. The urgency in addressing aircraft noise
has been further heightened by increasingly stringent aviation noise regulations, emphasizing the quest for qui-
eter design solutions[10]. In response to this challenge, Computational Aero-Acoustic (CAA) codes have been
developed to calculate and analyze noise emissions. These codes rely on unsteady CFD solutions as input data
for aeroacoustic noise propagation, further motivating the exploration of efficient and accurate computational
techniques for solving unsteady flows[11]. The importance of these advancements is particularly underscored in
the context of helicopter operations and the emerging field of Urban Air Mobility, where unsteady flow consid-
erations play a pivotal role in achieving optimal performance and meeting regulatory requirements.

In this work, a reduced-order model known as the Harmonic Balance method (HB)[12] which falls under the
category of numerical methods referred to as time spectral methods, is presented and investigated. Harmonic
Balance method presents a significant advantage in terms of computational efficiency compared to conventional
time-accurate methods by eliminating the need to compute the transient phase of the simulation. This is
achieved by employing a Fourier representation in time of the conservative variables and by directly computing
the periodic solution at regime, thus bypassing the requirement to resolve numerical transients[13]. By solving
the complete nonlinear unsteady Reynolds-Averaged Navier-Stokes (URANS) equations, this method can ac-
curately capture all unsteady effects, provided that an adequate number of frequencies are included. Notably,
what sets harmonic balance apart from other time spectral methods is that the specific set of frequencies does
not necessarily have to be integral multiples of each other[14, 15].

The solution obtained through Harmonic Balance consists of conservative variables computed at specific time
instances inside the assigned period. In this study, a uniform time sampling approach[16] is adopted to dis-
cretize the time domain. As a result, the solution is accessible only in N instances, where N corresponds to
2K+1 instances and K denotes the number of user-specified input frequencies. Consequently, to facilitate post-
processing and later aeroacoustic noise analysis, it becomes imperative to increase the resolution of the solution
in time. Therefore, this study also presents spectral interpolation[17] and its implementation to interpolate the
solution for an arbitrary duration with an arbitrary number of time instances.

Unfortunately, the harmonic balance method with uniform sampling of the time domain has been known to
have stability issues for certain sets of frequencies. Extensive investigations into this issue have led to a range
of solutions proposed in existing literature[18]. These solutions span from oversampling the time domain to
using non-uniform time sampling, and many other complex methods like gradient-based OPTimization (OPT)
algorithm[19]. This study introduces and implements a uniform time sampling algorithm named the Optimal
Time Period (OptTP) algorithm[14]. This algorithm is not only simple to implement compared to alternative
methods but also delivers performance comparable to the robustness observed in the OPT algorithm, which has
proven to be the most robust choice up to this point.

Once the solution of the flow field has been obtained with the Harmonic Balance method, an aeroacoustic noise
analysis is performed to assess its noise-predicting capabilities. In recent years, there has been an increase
in faster and more robust predicting codes to perform aeroacoustic noise prediction. Historically, a series of
theories based on the acoustic analogy, in particular, Lighthill’s acoustic analogy[20, 21] have been used as
a main tool for predicting aeroacoustic noise. In this approach, the Navier-Stokes equations are transformed
into a non-homogeneous wave equation and all the remaining terms are grouped into a source term defined
as Lighthill’s stress tensor. Later, Lighthill’s acoustic analogy approach was extended by including the effects
of arbitrary types of surfaces in arbitrary motions and the so-called Ffowcs Williams and Hawkings (FW-H)
equation was derived[22]. Using the mathematical theory of generalized functions, the Navier–Stokes equations
are rearranged into a non-homogeneous wave equation with two surface source terms and one volume source
term. The two surface source terms are known as monopole or thickness source term, which models the noise
generated by the displacement of fluid as the body moves, and the dipole or loading source term, which models
the noise that results from the unsteady motion of the pressure distribution on the body. The volume source
term, also known as the quadrupole source term, models the non-linearities due to both the local sound speed
variation and the finite fluid velocity near the body. However, the quadrupole source term is often neglected
because of the high computational demand for determining the flow field with sufficient accuracy and the high
cost of volume integration. Moreover, when dealing with subsonic flow fields, the acoustic noise perceived by
observers which are usually placed far from the noise sources, predominantly consists of tonal noise which is
composed of thickness noise and loading noise[23].
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In this investigation, to propagate the noise from the emitter to an observer location, an integral method based
on Farassat’s 1A formulation is employed which exploits the free-space Green’s function for the FW-H equa-
tion. This results in an integral formulation that is solved numerically by providing the input data as the flow
field solution in the nearfield region[24]. This approach has the distinct advantage of eliminating the need for
calculating time derivatives, and solely surface integrals on the body need to be solved, which only requires the
solution from CFD computation on the surface of the body as input.

All the CFD simulations and aeroacoustic analysis were performed using the SU2-suite[25–27], which is an
open-source collection of tools for the analysis of partial differential equations (PDEs) and PDE-constrained
optimization problems on unstructured meshes with state-of-the-art numerical methods as it already contains
the implementation of Harmonic balance and a CAA module based on the Farassat’s 1A formulation[28]. To
assess the accuracy of the solution obtained through Harmonic Balance and its subsequent aeroacoustic noise
propagation, the results were confronted with the time-accurate solution using three test cases which consists
of a 2D NACA64A10 pitching airfoil, a 3D NACA6410 pitching rectangular wing and a rigid isolated propeller
immersed in a uniform flow.

In section 2, an exposition of the mathematical formulation and the implementation of Harmonic Balance
method (HB), Farassat’s 1A formulation for Ffowcs Williams and Hawkings (FW-H) equation and spectral
interpolation for Harmonic Balance is presented. In section 3, a brief introduction to stability analysis to
identify possible causes of instability in the Harmonic Balance method is performed with the implementation of
the OptTP algorithm to solve these stability issues. Section 4 presents the results obtained from the Harmonic
Balance method and the time-accurate simulation together with the aeroacoustic noise propagation. Finally,
the conclusions drawn from this study have been presented in section 5.

2. Numerical Methods

In this section, an overview of the governing flow equations, the Harmonic Balance method, Farassat’s 1A
formulation for Ffowcs Williams-Hawkings equations and spectral interpolation are presented along with their
implementation in SU2.

2.1. Governing equations

In SU2, the unsteady compressible Navier-Stokes equations in semi-discretized form are obtained using a Finite
Volume Method (FVM) and after spatial integration over a control volume and time discretization, these
equations can be expressed as

DtU|Ω|+R(U) = 0 (1)
Here, U represents the vector of conservative variables, and |Ω| represents the control volume. The residual,
R(U), encompasses convective and viscous fluxes integrated over the surface area of a cell, as well as any source
terms integrated within the cell’s volume. The operator Dt denotes the partial derivative operator with respect
to time, which can be approximated with any time discretizing schemes like explicit or implicit finite difference
method for time-accurate methods. A dual time-stepping method is used for time integration by solving each
physical time step as a steady-state problem in pseudo-time τ [29].

|Ω|∂Un

∂τ
+ |Ω|DtUn +R(Un) = |Ω|∂Un

∂τ
+R∗(Un) = 0 (2)

In order to solve the pseudo-time integration, an implicit first-order backward difference scheme is employed.
But for implicit integration, it is necessary to linearize the residual and construct the Jacobian for each time
instance. A first-order linearization of the residual R(U)∗ is adopted with respect to the physical time step, n.
Consequently, the final resulting linear system to be solved for the flow state Uq+1

n for pseudo-time step q + 1
can be expressed as follows:

Uq+1
n − Uq

n +
∆τ

|Ω|

(
R∗(Uq

n) +
∂R∗(Uq

n)

∂Un
· (Uq+1

n − Uq
n)

)
= 0 (3)

2.2. Harmonic Balance method

The Harmonic Balance (HB) method was implemented in SU2 by [15]. Here a brief theory for Harmonic
Balance method and its implementation is presented. The primary difference between a time-accurate scheme
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and Harmonic Balance is the definition of the partial derivative operator, Dt defined in equation 1. Let’s
consider a scalar variable ϕ defined within a control volume, denoted by the superscripts ‘ ∗ ‘ and ‘ ∧ ‘ to
represent it in the time and frequency domain, respectively. The time period T is divided into N time instances.
Throughout this paper, uniform time-sampling of the time domain is adopted and the resulting instances tn
are tn = (n− 1)T/N , where n goes from 0 to N − 1. The set of input frequency vector is represented by
ω = [ω0, ω1, . . . , ωK , ω−K , . . . , ω−1]

T and ω−K = −ωK because the flow variables are real and the operator
matrix has to be real. In this analysis, the time period T is chosen to be T = 2π/ωmin and ωmin corresponds
to the minimum frequency from the set of input frequencies ω. The value K represents the number of input
frequencies and is related to the number of time instances N [14] by:

N = 2K + 1 (4)

The vector ϕ∗ consists of a conservative variable ϕ evaluated at each time instance, i.e. ϕ∗ =
[
ϕ0, ϕ1, . . . , ϕN−1

]T .
This vector, ϕ∗ is transformed into ϕ̂, the vector of Fourier coefficients in the frequency domain, denoted as
ϕ̂ =

[
ϕ̂0, ϕ̂1, . . . , ϕ̂K , ϕ̂−K , . . . , ϕ̂−1

]T
, using a Discrete Fourier Transform (DFT) matrix, denoted by E using

the following relation,

ϕ̂ = Eϕ∗ (5)

where,

E(k,n) =
1

N
e−iωktn (6)

ϕ̂k =
1

N

N−1∑
n=0

ϕne
−iωktn (7)

By utilizing the definitions provided in Equation 5 and recognizing that ϕ̂ is a vector in the frequency domain
and thus independent of time, the time derivative can be reformulated as follows:

Dtϕ
∗ = Dt

(
E−1ϕ̂

)
=

(
DtE

−1
)
ϕ̂ =

∂E−1

∂t
Eϕ∗ (8)

Unfortunately, in the Harmonic Balance method, the frequencies doesn’t necessarily have to be integral multiples
of each other. As a result, an analytic formulation for the inverse of matrix E or called Inverse discrete Fourier
Transform (IDFT) matrix, E−1, does not exist. Therefore, it needs to be computed numerically by inverting the
matrix E. Once the partial derivative is defined, as discussed before, the partial derivative operator matrix, Dt,
is used in the computation of the source term and added to the residual of corresponding governing equations
in each control volume and then the N steady-state problems are simultaneously marched towards steady-state
solution in pseudo-time.

2.3. Ffowcs Williams and Hawkings equation and Farassat’s 1A formulation

The Ffowcs Williams and Hawkings equation (Equation 9) represents an alternative formulation of the conser-
vation laws. In this form, the equation encompasses all types of noise components that are associated to distinct
sources of aerodynamic noise, namely the monopole, dipole, and quadrupole terms.

1

c2
∂2p′

∂t2
−∇2p′ =

∂

∂t
[ρ0vnδ(f)]−

∂

∂xi
[pniδ(f)] +

∂2

∂xi∂xj
[H(f)Tij ] (9)

where p′ is acoustic pressure, ni is the unit outward normal, f = 0 represents a moving control surface. δ(f) and
H(f) are the Dirac delta and Heaviside functions, respectively. Lastly, ρ0, vn, p and Tij are defined as freestream
density, normal surface velocity, the static pressure and Lighthill stress tensor, respectively. Farassat introduced
a series of more practical integral formulations for the Ffowcs Williams and Hawkings (FW-H) equation[22]. In
this work, Farassat’s 1A formulation is used as it is already implemented in SU2[24]. In this formulation, the
quadrupole term is neglected and so the acoustic noise is mainly tonal noise which is composed of thickness
noise and loading noise.

p′(x, t) = p′T (x, t) + p′L(x, t) (10)

Furthermore, all the time derivatives in the solution for the FW-H equation have been transformed into surface
integrals on the body, which has the advantage of increasing the speed and accuracy of the CAA numerical code
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and in addition, the computational time becomes independent of the observer distance. So the final solution
for the acoustic pressure, p′ is given as,

p′T (x, t) =
1

4π

∫
s

[
ρ0(U̇ini + Uiṅi)

r(1−Mr)2

]
ret

dS +
1

4π

∫
s

[
ρ0UiniK

r2(1−Mr)3

]
ret

dS (11)

p′L(x, t) =
1

4π

1

c

∫
s

[
Ḟir̂i

r(1−Mr)2

]
ret

dS +
1

4π

∫
s

[
Fir̂i − FiMi

r2(1−Mr)2

]
ret

dS +
1

4π

1

c

∫
s

[
Fir̂iK

r2(1−Mr)3

]
ret

dS (12)

Where, for an impermeable surface

Ui = vi (13)

Fi = Lijnj (14)

Lij = P′
ij = (p− p∞)δij (15)

K = Ṁir̂ir̂ +Mrc−M2c (16)

Mr =
vi
c
r̂i (17)

and r is the radiation vector or distance between the observer and source points, r̂i represents the unit radiation
vector. Ṁi is the time derivative of the local Mach number, M which depends on the speed of sound, c, and local
velocity, vi. Lastly, dS, δij and p∞ are the local panel area, the Kronecker delta function and the freestream
pressure respectively.

2.4. Spectral interpolation for Harmonic Balance method

As discussed in section 2.1, the solution obtained in time domain from Harmonic Balance method is inherently
limited in terms of number of time instances. In this work, a uniform time-sampling of time domain is adopted
and for a given number of input frequencies, K, the solution is found only for N time instances, where

N = 2K + 1 (18)

To achieve a better time resolution of the flow solution with an arbitrary number of time instances and of ar-
bitrary duration which can be utilized for post-processing or in this work mainly for aeroacoustic propagation,
spectral interpolation is employed. Spectral interpolation is used because the solution is composed of harmonics
whose frequencies are known and the solution for N time instances is also known [17]. So, the solution can be
easily interpolated for any instance in time through the following procedure:

1. Given a vector of conservative variables obtained from Harmonic Balance, ϕ∗, it is transformed into
Fourier coefficients in the frequency domain using the DFT matrix, E. However, as there is no analytical
formulation for E, the IDFT matrix, E−1, is exploited using the following expression,

ϕ̂ =
(
E−1

)−1
ϕ∗ (19)

where ϕ̂ rappresents the vector containing the Fourier coefficents.

2. These Fourier coefficients are again transformed back into the time domain but instead of using the the
original IDFT matrix, a larger interpolating IDFT matrix, E∗−1 of size N∗ ×N is used. In the place of
the original time instances vector t used in the Harmonic Balance simulation, a different vector of time
instances, t∗ of length N∗ greater than N , is used for interpolation which is defined by the user.

ϕ = E∗−1ϕ̂ (20)

where ϕ is the vector containing interpolated solution and E∗−1 is defined as E∗−1
n,k = eiωkt

∗
n .

Through this procedure, all the conservative variables and integral quantities like lift coefficient and drag
coefficient are interpolated. For other kinematic and geometric quantities such as surface normals and grid
velocity vectors, built-in functions available in the SU2 code were modified and then employed to find their
corresponding values for user-defined time instances vector t∗.
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3. Stability analysis

It has been observed that Harmonic Balance method exhibits unreliability when dealing with specific sets
of frequency, leading to instability and in certain cases divergence of the simulation. In this section, the
underlying cause of this instability issue is presented and analyzed, followed by a possible solution along with
its implementation in SU2.

3.1. IDFT matrix

It has been observed that the high condition number of the inverse Discrete Fourier Transform (IDFT) matrix
E−1, is the primary factor responsible for stability issues present in Harmonic Balance method[30]. By definition,
for a linear system,

Ax = b (21)

the quantification of the amplification of errors in input vector x, is determined by the condition number of
matrix A, κ (A) through the following expression,

∥ x− x̃ ∥
∥ x ∥

≤ κ (A)
∥ A− Ã ∥
∥ A ∥

(22)

Larger condition number result in a greater amplification of the input, which can lead to system instability.
Therefore, in the case of the Harmonic Balance method, the extent of error amplification is governed by the con-
dition number of the operator matrix Dt, which is composed of IDFT matrix which is inherently ill-conditioned.
When the full spectrum of the actual flow problem is truncated to a limited number of discrete frequencies
provided as input to Harmonic Balance method, aliasing errors arise during the conversion between the time
and frequency domains of the conservative variables through E−1 matrix[31]. As the condition number of E−1

matrix increases, larger errors are introduced into the system due to higher amplification. Given that the
system matrix Dt is inherently ill-conditioned, small increments of errors even at low condition number of 10
(a heuristic approximation based on numerical simulations) can be significant enough to make the simulation
diverge. Moreover, when the frequencies are arbitrary, it is generally challenging to select a uniformly spaced
set of time instances where the IDFT matrix is well-conditioned. In fact, it is common for uniformly sampled
sinusoids at multiple frequencies to exhibit a near-linear dependence, resulting in them being non-orthogonal
and thus contributing to the ill-conditioning of the Dt operator [32].
Figure 1, Figure 2, and Figure 3 illustrates the condition number of the matrix E−1 using uniform time sam-
pling with 2K +1 instances for K values of 2, 3, and 4 respectively. The first two frequencies ω1 and ω2, range
from 1 rad/s to 750 rad/s with a resolution of 0.5 rad/s, while for the case of K = 3 and K = 4, only specific
frequencies for ω3 and ω4 have been chosen.

Figure 1: Condition number of matrix E−1 for K = 2.
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(a) ω3 = 50 rad/s (b) ω3 = 100 rad/s

(c) ω3 = 250 rad/s (d) ω3 = 500 rad/s

Figure 2: Condition number of matrix E−1 for K = 3.

(a) ω3 = 400 rad/s and ω4 = 1000 rad/s (b) ω4 = 700 rad/s and ω4 = 1000 rad/s

Figure 3: Condition number of matrix E−1 for K = 4.

From these figures, it can be seen that as K increases which corresponds in increasing number of the input
frequencies for the Harmonic Balance method, the uniform time sampling approach becomes more and more
unstable. Also, choosing frequencies close to each other, which corresponds to the region near the bisector of
the first quadrant, or choosing frequencies very far from each other, which corresponds to the region near the x
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or y axis (the plot is symmetric with respect to bisector), can lead to high condition number. Furthermore, as
K increases, the region near the origin (which corresponds to frequencies with lower values) becomes unstable
and the sensitivity of these input frequencies on condition number also increases.

3.2. OptTP algorithm

To solve these stability issues, extensive work has been done in recent years, and many solutions have been
proposed[14, 31, 32]. In this work, OptTP algorithm [14] has been proposed and the starting point of this
algorithm is based on the fact that the IDFT matrix depends on two parameters, the input frequencies (ωk)
and the time instances (tn). Since the input frequencies are already chosen by the user, the only remaining
parameter to stabilize the IDFT matrix are the time instances. Given the adoption of uniform time sampling,
these time instances are determined solely by the time period T0, which corresponds to the time period obtained
from the smallest input frequency ωmin as T0 = 2π/ωmin.

Consequently, this method consists in finding an optimal time period T ∗ which varies from an interval of time
periods T0 to Tmax with a certain step size of ∆T for which the condition number of the IDFT matrix is
minimized. Both the maximum time period, Tmax and the step size ∆T are defined by the user. In Figure 4,
the condition number of IDFT matrix is drawn in the case of K = 2 with ω1 = 100 rad/s and ω2 = 270
rad/s with the time period T ranging from T0 = 2π/ω1 to Tmax=5*T with ∆T = 0.01T0. The figure clearly
illustrates that the condition number changes with T and displays several local minima. By selecting the time
period of T ∗=1.7294*T0, which corresponds to the global minima, the condition number decreases from 4.0258
to 1.71286. Consequently, the optimal time period, T ∗ is selected and the new vector of time instances t∗, is
uniformly sampled with 2K + 1 instances with t∗n = (n− 1)T ∗/N .

Figure 4: Variation of the Condition number with respect to time period T .

In Figure 5, the condition number of IDFT matrix for K values of 2, 3, and 4 after applying the OptTP method
has been plotted. The first two frequencies ω1 and ω2, range from 1 rad/s to 750 rad/s with a resolution of 0.5
rad/s, while for the case of K = 3 and K = 4, only specific frequencies for ω3 and ω4 have been chosen. The
reduction in the condition number is evident across the majority of input frequencies. However, as the number
of input frequencies (K) increases, the efficiency of this method tends to diminish. An important remark must
be made about decreasing the condition number of the IDFT matrix. Decreasing the condition number has an
impact on only reducing the amplification of input errors, however, this reduction doesn’t necessarily lead to an
acceleration in the convergence of the solution. The speed at which the solution converges depends upon various
factors, such as mesh quality, the numerical techniques employed for solving linear systems, the effectiveness of
pre-conditioning methods.
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(a) K = 2 (b) K = 3 with ω3 = 250 rad/s

(c) K = 4 with ω3 = 250 rad/s and ω4 = 1000 rad/s

Figure 5: Condition number of matrix E−1 after applying OptTP algorithm.

In SU2, this algorithm is applied at the beginning of the simulation to determine the time period for which the
IDFT matrix has the minimum condition number. Typically, as the optimal time period T ∗ increases, the error
in the solution also increases. This is due to a reduced sampling rate resulting from a longer time period, leading
to aliasing errors and additional corruption of the interpolated solution. Furthermore, the Harmonic Balance
method attempts to fit the solution based on an incorrect basis over a larger time interval, compromising the
accurate representation of local variations in the solution. So, instead of choosing the global minima of the
condition number, usually, T ∗ is chosen to be the first time period, T , for which the local minima of the
condition number is smaller than the condition number of the initial time period T0[14].

4. Results

In this section, the test cases and the verification results are presented. The first test case compares the accuracy
of the solution obtained from Harmonic Balance method with a time-accurate solution using a 2D geometry.
Next, a simple 3D geometry is employed to perform the same evaluations and then the solutions obtained from
these simulations were utilized for comparing the aeroacoustic noise propagation results using the Farassat’s
1A formulation. Finally, a more practical test case of a propeller was used to further assess and compare the
aeroacoustic noise propagation results.

4.1. 2D NACA64A10 pitching airfoil

For benchmarking the Harmonic Balance method, a 2D NACA64A010 airfoil pitching about its quarter-chord
point in viscid flow is used, which is proposed by the SU2 community. A rigid sinusoidal motion around the
quarter-chord of the airfoil is imposed by defining a time-varying function of the angle of attack as follows,
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α(t) = 1.01 sin(ω1t) (23)

where the pitching frequency, ω1 = 109.339 rad/s. The simulations were performed using standard conditions for
free stream pressure and temperature with a freestream Mach number of 0.4 with a resulting Reynolds number
of 9.319∗106. The convective fluxes were computed using the Jameson-Schmidt-Turkel (JST) scheme, while the
turbulent viscosity was calculated using the SA one equation turbulence model. An O-grid structured mesh,
available on the SU2 repository, was used which is composed of 12288 elements with 192 elements along the
airfoil and 192 elements on the far-field boundary. In figure 6a, the mesh near the airfoil is shown. Concerning
the time-accurate simulation, a 2nd order dual time stepping method was used to solve URANS equations. The
simulation was performed for 10Ts where T = 2π/ω1, is the period corresponding to the pitching frequency.
A total of 600 physical time steps were simulated and for each physical time step, 40 inner iterations were
performed. Regarding harmonic balance, three simulations were performed using three set of frequencies as
shown in table 1 using a total of 40000 iterations.

No. of Frequencies Set of Frequency

K=1 ω = [0, ω1,−ω1]
T

K=2 ω = [0, ω1, 2ω1,−ω1,−2ω1]
T

K=3 ω = [0, ω1, 2ω1, 3ω1,−ω1,−2ω1,−3ω1]
T

Table 1: Set of frequencies used for Harmonic Balance simulation.

In figure 6b, the Mach field around the airfoil obtained from the time-accurate simulation at maximum angle of
attack is shown. No shocks are present in the flow field, no big flow separation occurs even when the maximum
angle of attack is reached since the amplitude of the oscillation is very low.

(a) Mesh around the airfoil (b) Mach field at maximum angle of attack

Figure 6: 2D NACA 64A10 airfoil

In figure 7a and figure 7b, a comparison of lift and drag coefficient is made between the time-accurate simulation
(URANS) and Harmonic balance simulation (HB), each with and without spectral interpolation. There is an
excellent agreement between the time-accurate simulation and Harmonic Balance even when a single frequency
is used. In table 2, the maximum lift coefficient (Clmax

) and maximum drag coefficient (Cdmax
) obtained from

time-accurate simulation and Harmonic Balance simulations are compared with their corresponding relative error
(Errorrel%). As the number of input frequencies K increases, the accuracy of Harmonic Balance increases and
in this case, even one input frequency is sufficient to represent accurately the lift and drag coefficients. Any
small deviations from the time-accurate solution can be attributed to the presence of other harmonic content
in the flow due to non-linear phenomena generated in the boundary layer.
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(a) Lift coefficient (b) Drag coefficient

Figure 7: Comparison of Harmonic Balance solution with time-accurate solution.

Clmax |Errorrel%| Cdmax |Errorrel%|

URANS 0.082916 - 0.00635268 -

HB-3 inst 0.0813366 1.905542959 0.00639397 0.649961906

HB-5 inst 0.0814281 1.79446689 0.00631303 0.62414603

HB-7 inst 0.0814841 1.726928458 0.0063132 0.621469994

Table 2: Comparison of maximum lift and drag coefficient

To further investigate the discrepancies in the solution, in figure 8, the pressure at several locations on the
airfoil is plotted from all the simulations. The locations where the pressure is measured are shown in figure 8.
A good agreement is reached for most of the locations on the airfoil, except in the region near the leading and
trailing edge.

Figure 8: Locations where the pressure is measured.

(a) Location A (b) Location B
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(c) Location C (d) Location D

Figure 8: Comparison of pressure obtained from Harmonic Balance and Time-accurate solution.

Applying the Fourier transform to these pressure variations (only the magnitude of the Fourier coefficients is
represented) obtained from the time-accurate solution (figure 9), it is clear that in the wake region, additional
harmonics are present which degrade the quality of the solution obtained from Harmonic Balance method as
these harmonics were not simulated. The frequency spectrum also shows the dominant frequencies in the flow
field which are also the input frequencies chosen for the Harmonic Balance simulation, thus giving excellent
results. It is also important to highlight that increasing the number of frequencies doesn’t always result in a
significant increase in accuracy as demonstrated by simulating a third frequency (3ω1). In figure 9, it is evident
that the third frequency doesn’t contribute much to the harmonic content of the pressure time history, thus
resulting in a very limited increase in the accuracy of the solution.

(a) Location A (b) Location B

(c) Location C (d) Location D

Figure 9: Frequency spectrum of the pressure measured in the same locations.

12



4.2. 3D NACA6410 rectangular wing

To evaluate the aeroacoustic noise propagation using the flow solution from Harmonic Balance method, a 3D
NACA6410 rectangular pitching wing immersed in a uniform flow is used. The wing has a chord of 1m and a
wingspan of 3m (figure 10a). The computational mesh is made using Pointwise and it consists of a cylinder of
radius 50m and height 40m (figure 10a). The wing is placed in the middle of the cylinder with the origin of
the reference frame in the quarter-chord point in the mid-span of the wing. To reach a y+ value of 1, boundary
layer cells were added with the height of the first cell being 2µm, and for the rest of the computational domain,
unstructured mesh was used (figure 10c). The free-stream conditions, the change of angle of attack in time,
and all the simulation parameters are chosen to be the same as the 2D NACA6410A pitching airfoil test case.
Even in this case, two sets of input frequencies were used for the Harmonic Balance method. The first one
being [0, ω1, -ω1] and the second being [0 , ω1, -ω1, ω2, -ω2] where ω1=109.339 rad/s and ω2=2*ω1. For the
time-accurate solution again a 2nd order dual time stepping method was used to solve the URANS equations.

(a) NACA6410 3D model (b) Computational domain

(c) Mesh around the wing

Figure 10: Geometry and domain

In the figure 11a and figure 19b, the pressure distribution over the suction side and pressure side of the wing is
shown. The flow is smooth over the whole wing except near the wingtips, where on the suction side, wingtip
vortices are present.

(a) Suction side (b) Pressure side

Figure 11: Pressure distribution over half wing
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In figure 12a and figure 12b, a comparison of lift and drag coefficient is made between the solution obtained from
time-accurate simulation (URANS) and Harmonic Balance method (HB) using the two sets of input frequencies
mentioned before. In this case, a single frequency is not sufficient to predict accurately the drag coefficient but
by increasing the number of input frequencies, the accuracy is improved. This occurs in the 3D case because the
flow field is more intricate due to the presence of wingtip vortices which interact with the wake region behind
the wing greatly affecting the drag coefficient.

(a) Lift coefficient (b) Drag coefficient

Figure 12: Comparison of Harmonic Balance solution with time-accurate solution.

Once the surface flow solution is available from the Harmonic Balance method and the time-accurate method,
the aeroacoustic noise propagation is performed using the CAA module provided with SU2. In figure 21, the
distribution of observer locations (mics), where the noise is propagated, around the wing is shown. 120 uniformly
distributed observers are placed along a circumference of radius R centered in the mid-span of the wing. The
coordinate Φ denotes the angular position of the observer location on the circumference with Φ = 0◦ being the
position of the observer placed directly behind the trailing edge.

Figure 13: Microphone distribution at mid-span around the wing

In figure 14, the directivity plot for the radius R = 5m and R = 25m is shown. At every location (for clarity,
every 6th value of SPL is highlighted), the Sound Pressure Level(SPL) was computed as

SPL = 20 log

(
prms

pref

)
(24)

Where prms is the root mean square value of the pressure fluctuation and p0 is the reference value of 2∗10−6Pa.
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+

Figure 14: Directivity plot around the mid-span of the wing at different distances

Overall the agreement is excellent in all directions even when a single frequency for the Harmonic Balance
method is used, except for the region near the trailing edge (downstream) and leading edge (upstream). In
table 4 and table 3, SPL values and their relative error (Errorrel%) compared to the time-accurate solution are
reported for certain angular positions (Φ), at the radius of R = 5m and R = 25m respectively.

Φ −30◦ −15◦ −3◦ 0◦ 3◦ 15◦ 30◦ 60◦ 165◦

URANS 91.72 86.72 74.70 78.36 72.31 85.90 91.95 97.56 86.40

HB-3 inst 91.64 86.51 73.49 77.14 73.07 86.21 92.12 97.62 85.59

|Errorrel%| 0.085 0.237 1.617 1.555 1.043 0.356 0.185 0.063 0.930

HB-5 inst 91.65 86.56 73.97 78.34 73.29 86.18 92.10 97.61 85.81

|Errorrel%| 0.069 0.184 0.966 0.029 1.348 0.321 0.160 0.051 0.683

Table 3: Comparison of SPL in dB with its relative error at R = 25m

Φ −30◦ −15◦ −3◦ 0◦ 3◦ 15◦ 30◦ 60◦ 165◦

URANS 105.91 100.25 87.69 89.61 93.68 102.67 107.75 112.43 97.32

HB-3 inst 105.77 99.91 87.01 90.17 94.28 102.96 107.91 112.48 96.31

|Errorrel%| 0.130 0.342 0.777 0.629 0.642 0.277 0.147 0.044 1.035

HB-5 inst 105.82 100.03 87.83 90.40 94030 102.91 107.88 112.46 96.60

|Errorrel%| 0.088 0.223 0.159 0.888 0.655 0.234 0.116 0.026 0.746

Table 4: Comparison of SPL in dB with its relative error at R = 5m

Overall, the relative error remains less than 0.5% for the region above and below the wing even when a single
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frequency is used and by increasing the number of input frequencies, the error tends to decrease. In figure 14
and tables 3 and 4 it can also be observed that as the distance of the observer location increases with respect
to the wing, the relative error between the sound pressure level (SPL) evaluated in the region above and below
the wing, also decreases. As the distance increases, the terms present in the Farassat’s 1A formulation that
are proportional to (1/R2) which are dominant in the near-field die out quickly relative to terms proportional
to (1/R) that are dominant in the far-field which further enhances the precision of the noise propagation by
employing the Farassat 1A formulation.
In figure 17 and figure 16, a comparison between the time history of pressure fluctuations obtained from CAA
module using the Harmonic Balance solution and time-accurate simulation is made. The observers in figure 17
are positioned directly behind the trailing edge (Φ = 0◦) at two different distances (R = 5m and R = 25m),
while the observers in figure 16 are positioned directly above the suction side of the wing (Φ = 90◦) at the same
distances.

(a) R=5m (b) R=25m

Figure 15: Pressure fluctuations measured at Φ = 0◦.

(a) R=5m (b) R=25m

Figure 16: Pressure fluctuations measured at Φ = 90◦.

As expected, a good agreement is found in the case of Φ = 90◦, while in the case of Φ = 0◦, more harmonics
are required to better capture the pressure fluctuations. This behavior was also observed in the directivity
plot (figure 14), where the maximum relative error was found in the region in front of the leading edge and
behind the trailing edge. Breaking down these pressure fluctuations into the loading noise and thickness noise
components, as illustrated in figure 17 and figure 16, reveals that the primary source of error originates from
the loading noise component. Examining the pressure coefficient (CP ) distribution over some sections of the
wing (figure 18), it is apparent that in these regions there is a drastic variation of pressure on the wing surface
which introduces non-linearities and consequently additional harmonics[33].
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(a) Thickness noise (b) Loading noise

Figure 17: Pressure components measured at Φ = 0◦ and R=25m.

(a) Thickness noise (b) Loading noise

Figure 18: Pressure components measured at Φ = 90◦ and R=25m.

(a) 50% of wingspan (b) 25% of wingspan
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(c) 1% of wingspan

Figure 18: Pressure coefficient distribution over different sections of the wing at maximum angle of
attack.

4.3. Isolated propeller in uniform flow

To further evaluate the aeroacoustic noise propagation using Harmonic balance, a real-world test case of a rigid
isolated propeller of an eVTOL aircraft in uniform flow, is studied. The propeller that is used is a three-blade
hub consisting of left-handed VarioProp 12C blades with a disk diameter D of 300mm and a 65mm diameter
spinner installed on the propeller hub (figure 19). The propeller’s 3D geometric CAD model was obtained
through a 3D scanning of the blades[34, 35].

(a) Front view (b) Side view

Figure 19: 3D model of the propeller

The computational mesh was obtained using Pointwise. The maximum y+ value obtained at the first cell in
the normal direction is 1.8 with a total number of cells equal to 18.0 ∗ 106. In figure 20, the discretized blade
surface is shown.
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Figure 20: Surface discretization of the propeller

The simulations are performed at a reference temperature of 294.5K and reference density of 1.18kg/m3 with
the pitch angle of the rotor set to 23.3◦. The rotational speed of the propeller is set to 7050RPM which
results in a typical tip Mach number of Mt = 0.325 which also corresponds to the Mt of the full-scale eVTOL
aircraft’s propeller in cruise flight condition. The free-stream velocity, U∞ is parallel to the axis of rotation
of the propeller to simulate the wind tunnel configuration and is chosen by setting the advance ratio J to 0.8
which is representative of typical cruise flight conditions and is defined as,

J =
U∞

nD
(25)

Where n is rotor speed in rev/s.

The time-accurate simulation was carried out by solving the URANS equations using the dual time-stepping
method. Convergence was achieved by simulating six rotations of the propeller, with each physical time step
corresponding to one degree of rotation. Spalart-Allmaras turbulence model[36] is used with the algebraic
BCM transition model[37] considering a freestream turbulence intensity of 0.1% while the Convective fluxes are
solved using JST numerical scheme with 0.5 and 0.005 as 2nd and 4th order dissipation coefficients, respectively.
The gradients of the variables at each node are reconstructed using the Green-Gauss theorem. The harmonic
balance simulation was performed using a single input frequency (K = 1) with ω = [0, ω1,−ω1]

T , where ω1 =
738.2743rad/s, using a total of 35000 iterations.
The solutions obtained using harmonic balance simulation and time-accurate simulation are used to compute the
aeroacoustic noise emitted by the propeller using CAA module in SU2. The aeroacoustic noise is propagated to
19 locations equally distributed from φ = 10◦ to φ = 170◦ at fifteen times the blade radius in the axisymmetric
plane of the propeller as shown in figure 21.

Figure 21: Microphones distribution

At these locations, the Sound Pressure Level (SPL) in dB is calculated with its relative error and shown in
figure 22a and figure 22b, respectively. The relative error between the SPL computed by harmonic balance and
the time-accurate simulation is less than 0.4% for almost all of the angular positions (φ) and tends to increase
as φ approaches the axis of rotation of the propeller.
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(a) Directivity plot

relative error [%]

(b) SPL relative error

Figure 22: SPL comparison between Harmonic balance and time-accurate simulation

In figure 23, the directivity spectrum of the absolute error between the Harmonic Balance simulation and the
time-accurate simulation is shown. Overall, the absolute error is in the order of magnitude of 10−5 and tends
to increase in the presence of higher harmonics which were not included in the simulation.

Figure 23: Directivity spectrum of absolute error

5. Conclusions

In this paper, the effectiveness of the Harmonic Balance (HB) method for solving quasi-periodic unsteady flows
was studied. This method has demonstrated significant advantage in terms of computational efficiency compared
to traditional time-accurate approaches, making it a cost-effective technique for accurately computing unsteady
flows. Spectral interpolation was implemented to increase the limited time resolution of the solution obtained
from the Harmonic Balance method. To overcome the stability issues related to the choice of input frequencies,
a simple and robust, OptTP algorithm was implemented. The results were compared with the time-accurate
solution and even when a single frequency was used, this method was able to capture the dominant aspects
of the flow field, especially in the case of integral quantities like the lift coefficient and drag coefficient and
by increasing the number of input frequencies, the accuracy of the model can be increased. Furthermore, this
method was coupled with the CAA module based on Ffowcs Williams and Hawkings equation present in SU2 to
investigate aeroacoustic noise propagation. Only the surface flow solution was used to propagate the pressure
disturbances and the tonal noise at different locations was analysed. Even in this case, the Harmonic Balance
method has demonstrated its potential and by using a single frequency, the relative error of sound pressure level
(SPL) obtained using the Harmonic Balance method and the time-accurate method was less than 2%. The main
source of the error was identified to be the loading noise component which depends on the pressure variations on
the surface of the body. Consequently, this lead to a greater error in the vicinity of both the leading and trailing
edges. However, by increasing the number of harmonics, the relative error tends to decrease. In summary, the
results of this work clearly illustrate the advantages of using this reduced-order model for performing quasi-
periodic unsteady simulations and aeroacoustic noise prediction. In future work, instead of using simplified test
cases, a real-world case of a whole helicopter or drone could be simulated using the Harmonic Balance method
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and using additional frequencies, other effects like interference, Blade-Vortex Interactions (BVI), or high-speed
impulsive noise can be modelled and investigated.
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